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Abstract

In this paper we introduce and analyze a new class of service policies called multi-phase
gated service. This policy is a generalization of the classical single-phase and two-phase
gated policies and works as follows. Each customer that arrives at queue i will have to wait
Ki ≥ 1 cycles before it receives service. The aim of this policy is to provide an interleaving
scheme to avoid monopolization of the system by heavily loaded queues, by choosing the
proper values of interleaving levels Ki. In this paper, we analyze the effectiveness of the
interleaving scheme on the queueing behavior of the system, and consider the problem of
identifying the proper combination of interleaving levels K∗ = (K∗

1 , . . . ,K
∗
N ) that minimizes

a weighted sum of the mean waiting times at each of the N queues. Obviously, the proper
choice of the interleaving levels is most critical when the system is heavily loaded. For this
reason, we explore the framework developed in [26] to obtain closed-form expressions for the
asymptotic waiting-time distributions in heavy traffic, and use these expressions to derive
simple heuristics for approximating the optimal interleaving scheme K∗. Numerical results
with simulations demonstrate that the accuracy of these approximations is extremely high.

1 Introduction

This study is motivated by dynamic bandwidth allocation schemes in an Ethernet Passive Optical
Network (EPON), where packets from different Optical Network Units (ONUs) share channel ca-
pacity in the upstream direction. An EPON is a point-to-multipoint network in the downstream
direction and a multi-point to point network in the upstream direction. The Optical Line Ter-
minal (OLT) resides in the local office, connecting the access network to the Internet. The OLT
allocates the bandwidth to the Optical Network Units (ONUs) located at the customer premises,
providing interfaces between the OLT and end-user network to send voice, video and data traffic.
In an EPON the process of transmitting data downstream from the OLT to the ONUs is broadcast
in variable-length packet according to the 802.3 protocol [14]. However, in the upstream direc-
tion the ONUs share capacity, and various polling-based bandwidth allocation schemes can be
implemented. Simple time-division multiplexing access (TDMA) schemes based on fixed time-slot
assignment suffer from the lack of statistical multiplexing, making inefficient use of the available
bandwidth, which raises the need for dynamic bandwidth allocation (DBA) schemes. A dynamic
scheme that reduces the time-slot size when there are no data to transmit would allow excess
bandwidth to be used by other ONUs. However, the main obstacle of implementing such a scheme
is the fact the OLT does not know in advance how much data each ONU has to transmit. To over-
come this problem, Kramer et al. [15, 16] propose an OLT-based interleaved polling scheme similar
to hub-polling to support dynamic bandwidth allocation. To avoid monopolization of bandwidth
usage of ONUs with high data volumes they propose an interleaved DBA scheme with a maximum
transmission window size limit.
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In the present paper, we analyze and optimize the efficiency of interleaving schemes by modeling
the bandwidth sharing between the ONUs by cyclic polling models with a multi-phase gated
service policy. In this policy, a customer that arrives at queue i has to wait Ki cycles before it
can be taken into service. This interleaving scheme, which is a natural extension of the classical
(one-phase) gated and the two-phase gated service policy studied in [28, 20], provides the flexibility
to properly manage the relative waiting times among the queues by tuning the interleaving levels
K = (K1, . . . ,KN ), opening up possibilities for performance improvement and optimization.

Exact analysis of the delay in polling systems is only possible in some cases, and even in those
cases numerical techniques are usually required to obtain the expected delay at each of the queues.
However, the use of numerical techniques for the analysis of polling systems has several drawbacks.
First, numerical techniques do not reveal explicitly how the system performance depends on the
system parameters and can therefore contribute to the understanding of the system behavior only
to a limited extent. Exact closed-form expressions provide much more insight into the dependence
of the performance measures on the system parameters, which leads to significant insights in the
behavior of the system (e.g., insensitivity and monotonicity properties). Secondly, the efficiency
of the numerical algorithms tends to degrade significantly for heavily loaded, highly asymmetric
systems with a large number of queues, while the proper operation of the system is particularly
critical when the system is heavily loaded. These observations raise the attractiveness of using
heavy-traffic asymptotics as the basis for optimization of the system performance.

We consider an asymmetric Poisson-driven cyclic polling model with N queues and with generally
distributed service times and switch-over times. Each queue receives multi-phase gated service with
parameters K = (K1, . . . ,KN ), which works as follows. Newly incoming customers are first queued
at the phase-1 buffer. When the server arrives at queue i, it closes the gate behind the customers
residing in the phase-1 buffer, then serves all customers waiting in the phase-Ki buffer on a First-
Come-First-Served (FCFS) basis, and moves all customers before the gate at the phase-j buffer
to the phase-(j + 1) buffer, for j = 1, . . . ,Ki − 1, before moving to the next queue. The Ki-phase
gated service policy was introduced by Park et al. [20] for the case Ki = 2 (i = 1, . . . , N). The
model under consideration is easily seen to have a Multitype Branching Process (MTBP) structure
[22]. Exploring this structure, Van der Mei and Resing [28] derived closed-form expressions for
the complete asymptotic distributions of the waiting-times in the two-phase gated polling model,
when the load ρ tends to unity, under proper heavy-traffic scalings. Recently, Van der Mei [26]
developed a framework for deriving heavy-traffic asymptotics for a general class of MTBP-type of
polling models. In this paper, we apply this framework to multi-phase polling models to obtain
a closed-form expression for the Laplace-Stieltjes Transform (LST) of the limiting distribution of
(1−ρ)Wi (i = 1, . . . , N) as ρ goes to 1, where Wi is the waiting time at queue i. We also give strong
conjectures for heavy-traffic asymptotics for renewal arrivals. The expressions are strikingly simple
and show explicitly how the waiting-time distributions depend on the system parameters, and in
particular, on the interleaving levels Ki (i = 1, . . . , N). These asymptotic results directly lead to
a number of asymptotic insensitivity properties of the waiting-time distributions with respect to
the system parameters, and moreover, lead to simple approximations for the moments and tail
probabilities of the waiting times. Numerical results are presented to assess the accuracy of these
approximations. Finally, we consider the problem of finding a combination K∗ = (K∗1 , . . . ,K

∗
N ) of

interleaving levels that minimizes
∑N
i=1 ciE[Wi], where the weights c1, . . . , cN ≥ 0 can be chosen

arbitrarily. Using the asymptotic results, we propose simple heuristics. Numerical results show
that the heuristics lead to excellent results.

The results in this paper generalize those in [28], where the special case Ki = 2 (i = 1, . . . , N)
was considered. The contribution of the present paper compared to [28] is three-fold. First, we
propose a new class of service policies that are motivated by DBA problems for EPONs. This class
is attractive because it is flexible and allows for optimization of the system performance. Second,
we derive new and simple closed-form expressions for the asymptotic distribution and moments
of the scaled waiting-times in heavy traffic, which provides new and valuable insight in how the
system performs as a function of K. Third, we use these asymptotics to propose and validate
simple heuristics for the ”optimal” choice of K.
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The remainder of this paper is organized as follows. In Section 2 the model is described. In Section
3 we derive a pseudo-conservation law for the model, and present asymptotic expressions for the
waiting-time distribution in heavy traffic, and a number of asymptotic insensitivity properties.
These expressions suggest simple approximations for the moments and tail probabilities of the
waiting times for stable systems; in Section 4 these approximations are validated. In Section 5
we focus on optimization. To this end, we use the asymptotic results to develop simple heuristics
for determining the combination of interleaving levels K∗ that minimizes a weighted sum of the
mean waiting times. The heuristics are validated extensively by simulations. In Appendix A we
give a general description of MTBPs, used for reference. In Appendix B we discuss the details of
the use of the Descendant Set Approach (DSA), a numerical technique to calculate the moments
and tail probabilities of the waiting times at each of the queues. Finally, in Appendix C we use
the stepwise approach in [28] to prove the heavy-traffic results.

2 Model Description

Consider a system consisting of N ≥ 2 queues Q1, . . . , QN . Qi consists of Ki ≥ 1 buffers: a
phase-1 buffer, a phase-2 buffer up to a phase-Ki buffer, i = 1, . . . , N . Let K :=

∑N
i=1Ki. A

single server visits and serves the queues in cyclic order. Type-i customers arrive at Qi according
to a Poisson arrival process with rate λi, and enter the phase-1 buffer. The total arrival rate is
denoted by Λ =

∑N
i=1 λi. The service time of a type-i customer is a random variable Bi, with

LST B∗i (s) and with finite k-th moment b(k)
i (k = 1, 2, . . . ). The k-th moment of the service time

of an arbitrary customer is denoted by b(k) =
∑N
i=1 λib

(k)
i /Λ (k = 1, 2, . . . ). The load offered to Qi

is ρi = λib
(1)
i , and the total offered load is equal to ρ =

∑N
i=1 ρi. Define a polling instant at Qi as

a time epoch at which the server visits Qi. Each queue is served according to the Ki-phase gated
service policy, which works as follows. When the server arrives at Qi, it closes the gate behind
the customers residing in the phase-1 buffer. Then, all customers waiting in the phase-Ki buffer
are served on a FCFS basis. Subsequently, all customers before the gate at the phase-k buffer are
instantaneously forwarded to the phase-(k+ 1) buffer (k = 1, . . . ,Ki− 1), and the server proceeds
to the next queue. Denote K := (K1, . . . ,KN ), and denote the set of possible values of K by
S := {1, 2, . . . }N . Upon departure from Qi the server immediately proceeds to Qi+1, incurring a
switch-over time Ri, with LST R∗i (s) and finite k-th moment r(k)

i (k = 1, 2, . . .). Moreover, denote
by r =

∑N
i=1 r

(1)
i > 0 the expected total switch-over time per cycle of the server along the queues,

and denote the second moment by r(2) =
∑N
i=1 r

(2)
i +

∑
i6=j r

(1)
i r

(1)
j . All interarrival times, service

times and switch-over times are assumed to be mutually independent and independent of the state
of the system. A necessary and sufficient condition for the stability of the system is ρ < 1 (cf.
[11]). Let Wi be the delay incurred by an arbitrary customer at Qi, defined as the time between
the arrival of a customer at a station and the moment at which it starts to receive service, and
denote thee corresponding LST by W ∗i (s).

A non-negative continuous random variable Γ(α, µ) is said to have a gamma-distribution with
shape parameter α > 0 and scale parameter µ > 0 if it has the probability density function

fΓ(x) =
µα

Γ(α)
xα−1e−µx (x > 0) with Γ(α) :=

∫ ∞
t=0

tα−1e−tdt, (1)

and Laplace-Stieltjes Transform (LST)

Γ∗(s) =
(

µ

µ+ s

)α
(Re(s) > 0). (2)

Note that in the definition of the gamma-distribution µ is a scaling parameter, and that Γ(α, µ)
has the same distribution as µ−1Γ(α, 1).
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The heavy-traffic limits, denoted ρ ↑ 1, taken in this paper are such that the arrival rates are
increased, while keeping both the service-time distributions and the ratios between the arrival
rates fixed. For a random vector Y we denote (1 − ρ)Y →d Ỹ (ρ ↑ 1) if for all ε > 0 there exist
δ > 0 such that if |1− ρ| < δ then it holds that

sup
y

∣∣∣Pr
{

(1− ρ)Y < y
}
− Pr

{
Ỹ < y

}∣∣∣ < ε. (3)

The following notation will be useful. For each variable x that is a function of ρ, we denote
its value evaluated at ρ = 1 by x̂. For an event E, denote by IE the indicator function on
E. Denote by 1 a vector whose entries are all 1. Moreover, denote by Ik the k-by-k identity
matrix, and by 0k the k-by-k matrix whose entries are all 0. A K-dimensional vector x has
components x = (x(1)

1 , . . . , x
(K1)
1 , . . . , x

(1)
N , . . . , x

(KN )
N ). Finally, the notation [·] means rounding off

to the nearest positive integer.

3 Analysis

In Section 3.1 we present a pseudo-conservation law for the model under study. In Section 3.2 we
derive some preliminary results that will be used in Section 3.3 to derive heavy-traffic limits for
the waiting-time distributions at each of the queues. We also formulate conjectures for extension
of the results to renewal arrivals.

3.1 Pseudo-Conservation Law

On the basis of the principle of work decomposition, we have (cf. [5]): For ρ < 1,

N∑
i=1

ρiE[Wi] = ρ
ρ

1− ρ
b(2)

2b(1)
+ ρ

r(2)

2r
+

r

2(1− ρ)

[
ρ2 −

N∑
i=1

ρ2
i

]
+

N∑
i=1

E [Mi] , (4)

where Mi stands for the amount of work at Qi at an arbitrary moment at which the server departs
from Qi. It is clear that Mi = M

(1)
i + · · · + M

(Ki)
i , where M (k)

i is the amount of work at phase
k at a server departure epoch from Qi (k = 1, . . . ,Ki). Then simple balancing arguments can be
used to show that E[M (1)

i ] = ρ2
i r/(1 − ρ), and for k = 2, . . . ,Ki, E[M (k)

i ] = ρir/(1 − ρ), which
immediately implies

E [Mi] = ρi ((Ki − 1) + ρi)
r

1− ρ
. (5)

3.2 Preliminaries

In this section we derive expressions for the asymptotic waiting-time distributions when the load
ρ approaches 1. To this end, the following notation is convenient. Without loss of generality, we
focus on the waiting times at Q1 and consider the state of the system at polling instants at Q1.
Let X(k)

i be the number of phase-k customers present at Qi at an arbitrary polling instant at Q1

when the system is in steady state (k = 1, . . . ,Ki, i = 1, . . . , N). Moreover, for i = 1, . . . , N ,
define the Ki-dimensional random variable

Xi := (X(1)
i , . . . , X

(Ki)
i ), with joint PGF X̃∗i (z1, . . . , zKi

). (6)

Denote by X1 := X
(1)
1 + · · ·+X

(K1)
1 the total number of customers at Q1 at the beginning of a visit

period to Q1, and denote the corresponding (one-dimensional) PGF by X∗1 (z). Similarly, denote
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by Y1 the total number of customers at Q1 at the end of a visit period to Q1, and denote the
corresponding PGF by Y ∗1 (z). Then it is easily verified that, for |z| ≤ 1,

X∗1 (z) = X̃∗1 (z, . . . , z, z), and Y ∗1 (z) = X̃∗1 (z, . . . , z, B∗1(λ1(1− z))). (7)

Also denote by N1 the total number of customers at Q1 (possibly including a customer in service),
at an arbitrary moment, and denote the corresponding PGF by N∗1 (z). Recall that Wi is the
waiting time of an arbitrary customer at Qi, with corresponding LST W ∗i (s). Moreover, let Si
be the sojourn time of an arbitrary type-i customer in the system, and denote the corresponding
LST by S∗i (s). Note that since Wi and Bi are independent, it holds that, for Re(s) ≥ 0,

S∗i (s) = W ∗i (s)B∗i (s). (8)

Moreover, by applying the distributional for of Little’s Law it is readily seen that, for Re(s) ≥ 0,

S∗1 (s) = N∗1 (1− s/λ1). (9)

Then the following result gives an expression for the LST of W1 in terms of the distribution of the
K1-dimensional random variable X1, defined in (6).

Lemma 1
For ρ < 1, Re(s) ≥ 0,

W ∗1 (s) =
X̃∗1 (1− s/λ1, . . . , 1− s/λ1, B

∗
1(s))− X̃∗1 (1− s/λ1, . . . , 1− s/λ1, 1− s/λ1)

E
[
X

(1)
1

]
(B∗1(s)− 1 + s/λ1)

. (10)

Proof: The following result gives a relation between N1, X1 and Y1 (cf. [4]): For |z| ≤ 1,

N∗1 (z) =
B∗1(λ1(1− z))

E
[
X

(1)
1

] · Y ∗1 (z)−X∗1 (z)
B∗1(λ1(1− z))− z

. (11)

The result follows then directly by taking z := 1− s/λ1, and using (7), (8) and (9). �

Straightforward balancing arguments lead to the following expression for the first moment E[X(k)
1 ]:

For ρ < 1, k = 1, . . . ,K1,

E[X(k)
1 ] =

λ1r

1− ρ
. (12)

In general, the higher-order moments and the distributions of X(k)
1 cannot be obtained explicitly

for arbitrary values of the load, but can be calculated by numerical techniques, such as the classical
buffer-occupancy approach [23], and the Descendant Set Approach (DSA) [13, 8]. We refer to [28]
for a discussion of the use of the DSA for the special case Ki = 2 (i = 1, . . . , N), and to [31] for
an overview of the solution techniques for polling models. Throughout, the following notation is
useful. Let

X :=
(
X

(1)
1 , . . . , X

(K1)
1 , . . . , X

(1)
N , . . . , X

(KN )
N

)
(13)

be the K =
∑N
j=1Kj-dimensional vector that describes the state of the system at an arbitrary

polling instant at Q1. Recall that X(k)
i stands for the steady-state number of phase-k customers

that reside at Qi at an arbitrary polling instant at Q1. To determine the asymptotic behavior
of W1, Equation (10) implies that it suffices to determine the limiting behavior of X1, defined
in (6), as ρ tends to 1. To this end, we first show how the evolution of the system at successive
polling instants at Q1 can be described as a MTBP with immigration in each state. Then, in the
next section we use this MTBP-description to derive an asymptotic expression for the limiting
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distribution of X, and hence for X1 by taking the first K1 entries in (13) only, as ρ ↑ 1.

To establish the relation with the general MTBP-model described in Section 2, letX(k)
i,n be the num-

ber of type-i customers at phase-k in the system at the n-th polling instant at Q1, for i = 1, . . . , N ,
k = 1, 2 and n = 0, 1, . . ., and let

X(n) :=
(
X

(1)
1,n, . . . , X

(K1)
1,n , . . . , X

(1)
N,n, . . . , X

(KN )
N,n

)
(14)

be the state vector at the n-th polling instant at Q1. Then similar to the analysis made by Resing
[22] we make the following observation.

Theorem 1. The discrete-time process {X(n), n = 0, 1, . . .} constitutes a K-dimensional MTBP
with immigration in each state, the PGF of the offspring function is given by the following expres-
sion: For |s(k)

i | ≤ 1 (i = 1, . . . , N, k = 1, . . . ,Ki),

f(s) :=
(
f (1,1)(s), . . . , f (1,K1)(s), . . . , f (N,1)(s), . . . , f (N,KN )(s)

)
, (15)

where for i = 1, . . . , N ,

f (i,k) (s) := s
(k+1)
i for k = 1, . . . ,Ki − 1, (16)

and

f (i,Ki) (s) := B∗i

 i∑
j=1

λj

(
1− s(1)

j

)
+

N∑
j=i+1

λj

(
1− f (j,1)(s)

) , (17)

and where the PGF of the immigration function is given by

g(s) :=
N∏
i=1

R∗i

 i∑
j=1

λj

(
1− s(1)

j

)
+

N∑
j=i+1

λj

(
1− f (j,1)(s)

) . (18)

Proof: Relations (15)–(18) can be obtained along the lines of [28] for the case of two-phase gated
service, using simple generating-function manipulations. More specifically, in the spirit of the
work in [28], equation (16) follows from the fact that for k = 1, . . . ,Ki − 1 it holds that a type-i
customer at phase k at a given polling instant P1 at Q1 is not served during the visit period
starting at P1, but is simply forwarded from phase k to phase k + 1. In this way, this customer
is ”effectively replaced” by a single type-i customer at phase k + 1 at the next polling instant at
Q1. Similarly, (17) follows from the fact that each type-i customer at phase K1 at P1 is served
during the visit period starting at P1, and hence, is ”effectively replaced” by all customers that
arrive in the system during its service time with LST B∗i (·). Finally, (18) stems from the fact that
the immigration consists of the contributions of newly arriving customers that arrive during the
switch-over times, which are independently distributed with LST R∗i (·), i = 1, . . . , N . �

Remark 1. Theorem 1 corresponds to the results in [22] for the case of single-phase gated service
at all queues (i.e., Ki = 1 for all i). Note that in that case it holds that K = N and s =
(s(1)

1 , . . . , s
(1)
N ), and that (16) disappears, while (17) simply becomes: For i = 1, . . . , N ,

f (i)(s) = B∗i

 i∑
j=1

λj(1− s(1)
j ) +

N∑
j=i+1

λj(1− f (1,1)(s))

 , (19)

and Equation (18) simplifies to

g(s) =
N∏
i=1

R∗i

 i∑
j=1

λj(1− s(1)
j ) +

N∑
j=i+1

λj(1− f (j,1)(s))

 . (20)

Similarly, for Ki = 2 (i = 1, . . . , N) the results are in line with the ones in [28].
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For later reference, it is convenient to define the mean offspring matrix as follows: For i, j =
1, . . . , N, k = 1, . . . ,Ki, l = 1, . . . ,Kj ,

m
(k,l)
i,j :=

∣∣∣∣∣ ∂

∂s
(l)
j

f (i,k)(s)

∣∣∣∣∣
s=1

, (21)

i.e., the mean number of ”children” that a type-i customer at phase k has of type-j at phase l
in the MTBP defined in Theorem 1. Using this definition, the mean offspring matrix M can be
expressed as the block matrix:

M =

 M1,1 · · · M1,N

...
...

...
MN,1 · · · MN,N

 , with Mi,j =


m

(1,1)
i,j · · · m

(1,Kj)
i,j

...
...

...
m

(Ki,1)
i,j · · · m

(Ki,Kj)
i,j

 , (22)

for i, j = 1, . . . , N . Then it follows directly from (16), (17) and (21) that, for i, j = 1, . . . , N and
l = 1, . . . ,Kj ,

m
(k,l)
i,j = I{l=k+1, i=j} (k = 1, . . . ,Ki − 1) (23)

and

m
(Ki,l)
i,j = b

(1)
i

[
λjI{l=1, j≤i} + λjm

(1,l)
j,j I{j>i}

]
. (24)

These results will be useful throughout to derive the heavy-traffic asymptotics.

3.3 Heavy-traffic asymptotics

The following result characterizes the limiting behavior of the state vector when the load goes to
1.

Theorem 2. The state vector at polling instants at Q1 satisfies the following asymptotic behavior:

(1− ρ)



X
(1)
1
...

X
(K1)
1
...

X
(1)
N
...

X
(KN )
N


→ δ ·A

 v̂1

...
v̂K

Γ(α, 1) (ρ ↑ 1), (25)

where

α = rδ
b(1)

b(2)
, A = |b|−1δ−1 b

(2)

2b(1)
and δ =

1
2

N∑
i=1

ρ̂i((2Ki − 1) + ρ̂i), (26)

and where v̂ is the left eigenvector of the mean matrix M at ρ = 1, characterized in Lemmas C.1
and C.2 in Appendix C.

Proof: The derivation of (25)–(26) is a natural extension of the proof for the special case of
two-phase gated service in [28], and can be obtained following the stepwise approach proposed in
[26], exploring the MTBP-structure of the model and using the Descendant Set Approach (DSA).
The details are outlined in Appendices A, B and C. �
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Remark 2. Recall from equation (3) that the convergence in (25) should be interpreted as follows:
for all ε > 0 there exist δ > 0 and N such that if |1− ρ| < δ then for all n > N it holds that

sup
x∈RK

∣∣∣Prob
{

(1− ρ)X(n) ≤ x
}
− Prob {δ ·A · Γ(α, 1) · v̂ ≤ x}

∣∣∣ < ε, (27)

where X(n) is defined in (14).

Theorem 3. Let W̃i be a non-negative random variable with LST

W̃ ∗i (s) =
1

(1− ρ̂i)rs

{(
µ

µ+ (Ki − 1 + ρ̂i)s

)α
−
(

µ

µ+Kis

)α}
(Re(s) > 0), (28)

with

α = 2rδ
b(1)

b(2)
, µ = 2δ

b(1)

b(2)
and δ =

1
2

N∑
j=1

ρ̂i((2Ki − 1) + ρ̂i). (29)

Then for the multi-phase gated model, the distribution of Wi satisfies the following limiting behav-
ior: For i = 1, . . . , N ,

(1− ρ)Wi →d W̃i (ρ ↑ 1). (30)

Proof. The results can be obtained by combining Theorem 2 and Lemma 1, following the lines
similar to those in [28] for the case Ki = 2 (i = 1, . . . , N). The details are omitted for compactness.
Note that the specifics of the convergence have been defined in (27).

Theorem 3 reveals a variety of properties about the dependence of the asymptotic delay distribution
with respect to the system parameters.

Corollary 1 (Insensitivity). For i = 1, . . . , N , the distribution of W̃i

1. is independent of the visit order;

2. depends on the switch-over time distributions only through r, i.e., the total expected switch-
over time per cycle;

3. depends on the service-time distributions only through b(1) and b(2), i.e., the first and second
moment of the service time of an arbitrary customer.

Corollary 1 is known to be not generally valid for waiting-time distributions in stable systems (i.e.,
for ρ < 1), where the visit order, the complete service-time and switch-over time distributions do
have an impact on the waiting-times distributions. Hence, Corollary 1 shows that the influence of
these parameters on the waiting-time distributions vanishes when the load tends to unity, and as
such can be viewed as lower-order effects in heavy traffic.

Corollary 2 (Zero switch-over times). For the case of zero switch-over times, the LST of W̃i is
given by the following expression: For i = 1, . . . , N , Re(s) ≥ 0,

lim
r↓0

W̃ ∗i (s) =
δ

(1− ρ̂i)s
b(1)

b(2)
log
(

µ+Kis

µ+ s(Ki − 1 + ρ̂i)

)
, (31)

where δ and µ are defined in (29), and where log(·) is an inverse function of the (complex) function
l(z) := exp(z).

This result follows directly from Theorem 3 by taking the limit for r ↓ 0 in (28), by using (29)
and standard algebraic manipulations.
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Corollary 3 (Moments of the asymptotic delay). The k-th moment of the asymptotic delay at
Qi is given by the following expression: For i = 1, . . . , N , k = 1, 2, . . . ,

E[W̃ k
i ] =

Kk+1
i − (Ki − 1 + ρ̂i)

k+1

(k + 1)(1− ρ̂i)

k∏
m=1

[
r +m

b(2)/b(1)∑N
j=1 ρ̂j(2Kj − 1 + ρ̂j)

]
. (32)

This result follows directly from Theorem 3 by taking the k-th order derivative in (28), letting
s→ 0, using (29) and by standard algebraic manipulations.

One may wonder what the heavy-traffic limits look like for the case of renewal arrivals. To this
end, let us assume that the arrival process at Qi is renewal, with mean interarrival time 1/λi and
with variance V ar[Ai], for i = 1, . . . , N . Moreover, define

σ2 :=
N∑
i=1

λ̂i

(
V ar[Bi] + ρ̂2

iV ar[Âi]
)
. (33)

Note that for the special case of Poisson arrivals we have V ar[Âi] = 1/λ̂2
i , which implies σ2 =

b(2)/b(1).

Conjecture 1. For cyclic polling models with Ki-phase gated service at Qi and renewal arrivals,
we have, for i = 1, . . . , N ,

(1− ρ)Wi →d W̃i (ρ ↑ 1) with W̃i =d UiΓ, (34)

where Ui and Γ are independent random variables, and where Ui is uniformly distributed over the
interval [Ki − 1 + ρ̂i,Ki], and Γ is a gamma-distributed random variable with parameters

α =
2rδ
σ2

+ 1, µ =
2δ
σ2

and δ =
1
2

N∑
j=1

ρ̂i((2Ki − 1) + ρ̂i), (35)

and where σ2 is defined in (33).

The conjecture can be obtained following the same lines of argumentation as in the derivation of
the results in [18] for the case of renewal arrivals with mixtures of exhaustive and gated service at
all queues. The following result is an immediate consequence of Conjecture 1.

Conjecture 2 (Moments of the asymptotic delay). For the case of renewal arrivals, the k-th
moment of the asymptotic delay at Qi is given by the following expression: For i = 1, . . . , N ,
k = 1, 2, . . . ,

E[W̃ k
i ] = E[Uki ]E[Γk] =

Kk+1
i − (Ki − 1 + ρ̂i)

k+1

(k + 1)(1− ρ̂i)

k∏
m=1

[
r +

mσ2

2δ

]
, (36)

where σ2 and δ are defined in (33) and (35), respectively.

We end this section with a number of remarks.

Remark 3. Substituting k = 1 in (32) leads to the following expression for the mean scaled delay
in heavy traffic: For i = 1, . . . , N ,

E[W̃i] =
2Ki − 1 + ρ̂i

2

[
r +

b(2)/b(1)∑N
j=1 ρ̂j(2Kj − 1 + ρ̂j)

]
. (37)

Equation (37) is remarkable in the sense that the mean asymptotic delay at Qi in the Ki-phase
gated system is proportional to the factor 2Ki − 1 + ρ̂i, whereas the results in [24] show that for
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Ki = 1 the asymptotic mean delay at Qi is proportional to 1+ ρ̂i. To provide intuition behind this
observation, it is convenient to relate the mean waiting times to the residual cycle times. Defining
a cycle time Ci as the time between two successive arrivals of the server to Qi, it is known that
for the case of single-phase gated polling we have the convenient relation, for Ki = 1 and ρ < 1,

E[Wi] = (1 + ρi)E[RCi], (38)

where RCi is the residual cycle time. This relation stems from the fact that the expected delay at
Qi consists of two parts (see also [23]): (a) the amount of time until the next visit of the server toQi,
which takes on average a mean residual cycle time E[RCi], and (b) the amount of work that arrived
during the past cycle time, which has mean value ρiE[RCi]; note that E[RCi] = E[C2

i ]/2E[Ci],
with E[Ci] = r/(1− ρ) (i = 1, . . . , N). On the basis of this relation Groenendijk [12] proposes an
approximation for E[Wi] simply by assuming that E[C2

i ] is the same for all i, and substituting
this into the PCL (4). Numerical results show that the approximation works well for medium and
heavily loaded systems.
One may wonder whether a simple cycle-time expression similar to (38) can be obtained for Ki > 1.
Unfortunately, this is not the case. To this end, note that the mean delay of tagged customer
Ti at Qi can be seen as the sum of the two components (a) and (b) mentioned above, plus the
Ki−1 (length-biased, see [18]) cycle times during which the customer proceeds along the successive
phases 2, 3, . . . ,Ki: For i = 1, . . . , N , ρ < 1,

E[Wi] = (1 + ρi)E [RCi] +
Ki∑
k=2

E
[
C

(k)
i

]
, (39)

where C(k)
i is the duration of a length-biased cycle time in which Ti resides in the phase-k buffer

(k = 2, . . . ,Ki). Note that this result can also be directly obtained directly from the cycle-
time representation in (99) in Appendix C, and that for Ki = 1 the last Ki − 1 terms in (39)
vanish. In general, for Ki > 1 the mean waiting times depend on the correlations between the
cycle time at which Ti arrives and the Ki − 1 preceding length-biased cycle times C(k)

i (k =
2, . . . ,Ki), whose mean values can not be expressed in closed form. In this context, note that
in heavy-traffic, the time-scale decomposition suggested by Coffman et al. [9, 10] implies that
the Ki successive cycle-time distributions (properly scaled) are the same for all queues, so that
limρ↑1 (1 − ρ)E[RCi]=limρ↑1 (1 − ρ)E[C(k)

i ] (k = 2, . . . ,Ki) for all i, so that (39) implies that
E[W̃i] is proportional to (1 + ρ̂i) + 2(Ki − 1) = 2Ki − 1 + ρ̂i.

Remark 4. Note that for special case k = 1 the correctness of (36) was rigorously proven in Van
der Mei and Winands [29] using mean value analysis.

Remark 5. It is readily verified that the LST of W̃i, defined in (34), is given by the expression
in (28), but with

α =
2rδ
σ2

, µ =
2δ
σ2

and δ =
1
2

N∑
j=1

ρ̂i((2Ki − 1) + ρ̂i), (40)

and where σ2 is defined in (33).

4 Approximation

The results presented in Section 3 suggest the following simple approximations for the moments
and the distributions of the waiting times for stable systems: for ρ < 1, i = 1, . . . , N , k = 1, 2, . . . ,

E[W k
i ] ≈ E[W k

i (app)] :=
E[W̃ k

i ]
(1− ρ)k

, (41)
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and for x > 0,

Pr{Wi < x} ≈ Pr{W̃i < x(1− ρ)}. (42)

where closed-form expressions for E[W̃ k
i ] in (41) can be directly obtained from (32) and (36), and

where Pr{W̃i < x(1− ρ)} in (41) can be calculated by standard one-dimensional inversion of the
LST of W̃i in (28), for which highly efficient techniques are available (see [1] for details). We have
performed numerical experiments to test the accuracy of the approximations in (41) for different
values of the load of the system. The relative error of the approximation of the k-th moment of
the waiting times at Qi is defined as follows:

∆% := abs
(
E[W k

i (app)]− E[W k
i ]

E[W k
i ]

)
× 100%. (43)

The results of the experiments are outlined below.

Example 1. Consider the model defined by the following parameters: N = 3, K1 = 2, K2 = 3,
K3 = 1. The ratios of arrival rates at the queues are 1 : 1 : 1. The service times at queue 1, 2
and 3 are exponentially distributed with mean 3, uniformly distributed over the interval [1, 3], and
gamma distributed with mean 1 and variance 2, respectively. The switch-over times from queue
1 to queue 2 and from queue 2 to queue 3 are exponentially distributed with mean 0.1, and the
switch-over times from queue 3 to queue 1 are gamma distributed with mean 0.5 and variance
1. Note that the mean total switch-over times per cycle r = 0.7 is rather small, compared to
the service times. Table 1 shows the “exact” and approximated values of the k-th moments of
the waiting times at queue 1 and queue 3, for k = 1, 3. The exact values have been obtained
from simulations, the approximations are based on (41) and the relative error has been calculated
according to (43); confidence intervals are omitted for compactness.

Queue 1 Queue 3

k = 1 k = 3 k = 1 k = 3

ρ app exact ∆% app exact ∆% app exact ∆% app exact ∆%

0.50 6.42 4.94 30.0 9.77e2 7.77e2 25.7 2.14 2.63 18.6 5.36e1 1.86e2 71.0
0.70 10.7 9.15 16.9 4.53e3 4.10e3 10.2 3.57 4.37 18.3 2.48e2 6.90e2 64.0
0.80 16.1 14.4 11.8 1.53e4 1.45e4 5.52 5.35 6.37 16.1 8.37e2 1.89e3 55.7
0.90 32.1 30.4 5.59 1.22e5 1.20e5 1.67 10.7 12.0 10.8 6.70e3 1.09e4 38.5
0.95 64.2 62.4 2.88 9.78e5 9.70e5 0.82 21.4 22.9 6.55 5.36e4 6.95e4 22.9
0.98 160.5 158.7 1.13 1.53e7 1.52e7 0.66 53.5 55.2 3.08 8.37e5 9.31e5 10.2

Table 1. Exact and approximated values E
[
W k

i

]
(i = 1, 3, k = 1, 3) for different values of the load for

an asymmetric three-queue model, with r = 0.7.

Example 2. To assess the accuracy of the approximations for systems with a larger number of
queues, we also consider the seven-queue model with the following parameters: K1 = 1, K2 =
K3 = K4 = K5 = K6 = 2, K7 = 4. The arrival rates are the same for all queues. The service times
at queue 1 are gamma distributed with mean 0.5 and variance 4, whereas the service times at all
other queues are exponentially distributed with mean 1.5. The switch-over times from queue 1 to
queue 2 are uniformly distributed over the interval [0.05, 0.15], and all other switch-over times are
exponential with mean 0.25. Note that the mean total switch-over times per cycle equals r = 1.6.
Table 2 shows the exact and approximated values of the k-th moments of the waiting time at
queue 1 and queue 5, for k = 1, 3. Again, the exact values have been obtained from simulations,
the approximations are based on (41) and the relative error has been calculated according to (43).

To assess the accuracy of the approximations when the switch-over times are large, Table 3 shows
the exact and approximated values of the k-th moments of the waiting time at queue 1 and queue
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Queue 1 Queue 5

k = 1 k = 3 k = 1 k = 3

ρ app exact ∆% app exact ∆% app exact ∆% app exact ∆%

0.50 2.63 2.72 3.31 7.64e1 1.64e2 53.4 7.88 6.60 19.4 1.22e3 9.89e2 23.4
0.70 4.38 4.68 6.41 3.54e2 6.31e2 43.9 13.1 11.9 10.1 5.65e3 5.22e3 8.24
0.80 6.56 6.99 6.15 1.19e3 1.83e3 35.0 19.7 18.5 6.49 1.91e4 1.83e4 4.37
0.90 13.1 13.7 4.38 9.55e3 1.21e4 21.1 39.4 38.2 2.87 1.53e5 1.50e5 2.00
0.95 26.3 26.9 2.23 7.64e4 8.63e4 11.5 78.8 77.6 1.42 1.22e6 1.21e6 0.83
0.98 65.6 66.3 1.06 1.19e6 1.25e6 4.80 196.9 195.8 0.56 1.91e7 1.90e7 0.53

Table 2. Exact and approximated values E
[
W k

i

]
(i = 1, 5, k = 1, 3) for different values of the load for

an asymmetric seven-queue model (r = 1.6).

Queue 1 Queue 5

k = 1 k = 3 k = 1 k = 3

ρ app exact ∆% app exact ∆% app exact ∆% app exact ∆%

0.50 17.8 18.1 1.66 1.19e4 1.50e4 20.7 53.4 51.9 2.89 1.89e5 1.87e5 1.07
0.70 29.6 30.1 1.66 5.49e4 6.43e4 14.6 88.9 87.5 1.60 8.77e5 8.72e5 0.57
0.80 44.5 45.0 1.11 1.85e5 2.07e5 10.6 133.4 132.0 1.06 2.96e6 2.95e6 0.34
0.90 88.9 89.5 0.67 1.48e6 1.57e6 5.73 266.8 265.4 0.49 2.37e7 2.36e7 0.11
0.95 177.8 178.4 0.34 1.19e7 1.22e7 2.46 533.5 532.2 0.28 1.89e8 1.89e8 0.09
0.98 444.6 445.2 0.01 1.85e8 1.87e8 1.07 1334 1332 0.23 2.96e9 2.96e9 0.01

Table 3. Exact and approximated values E
[
W k

i

]
(i = 1, 5, k = 1, 3) for different values of the load for

an asymmetric seven-queue model, with large switch-over times (r = 16).

5, for k = 1, 3, where the switch-over times are multplied by a factor 10 compared to the models
in Table 2.

The results in Tables 1, 2 and 3 reveal a number of observations. First, we observe that the ap-
proximations become more accurate when the load is increased, and that the relative error tends
to 0 when the system tends to saturate. These observations were expected on the basis of the
asymptotic results shown in this paper (Theorem 2). Second, we observe that the accuracy of
the approximations tend to degrade for larger values of k. That is, the approximations tend to
become less accurate for the higher moments of the delay. This observation can also be explained
by the fact that deviations from the limiting waiting-time distribution (for ρ ↑ 1) are ”magnified”
by taking higher moments. Lastly, we observe that the accuracy of the approximations tends
to become better when the switch-over times are large. This observation is in line with similar
observations made in [27, 18, 25].

Modified approximation
Expression (37) implies that in the limiting case ρ ↑ 1 it holds that the ratios of the mean waiting
times converge to a known limit: For i, j = 1, . . . , N ,

lim
ρ↑1

E[Wi]
E[Wj ]

=
2Ki − 1 + ρ̂i
2Kj − 1 + ρ̂j

. (44)

This result (44) suggests the following modification to the approximation for the mean waiting
times in (41), by combining (44) with the PCL formulated in (4)–(5): For ρ < 1, i = 1, . . . , N ,

Emod[Wi] :=
(2Ki − 1 + ρi)

1− ρ
x, (45)

where x can be directly obtained by substituting (45) in (4)–(5). Note that both approximations
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(i.e., Eapp[Wi] defined in (41) and Emod[Wi] defined in (45)) are asymptotically exact, satisfying
the limiting behavior in Corollary 3 and (37). Recall that the refined approximation generalizes,
and follows the same line of argumentation of, the one proposed by Groenendijk [12], which is
based on the assumption that the mean residual cycle times are the same for all queues, and which
was shown to work very well for a wide range of load values.

To assess the accuracy of this modified approximation, Tables 4 and 5 below show the exact
(i.e., simulated) and approximated results for the models considered in Tables 2 and 3, respec-
tively. The column indicated as “mod” gives the mean waiting times based on (45), and the
relative error is given in the column right next to that.

Queue 1 Queue 5

ρ exact app ∆% mod ∆% exact app ∆% mod ∆%

0.50 2.72 2.63 3.31 2.14 21.3 6.60 7.88 19.4 6.43 2.58
0.70 4.68 4.38 6.41 3.89 16.9 11.9 13.1 10.1 11.7 1.68
0.80 6.99 6.56 6.15 6.08 13.0 18.5 19.7 6.49 18.2 1.62
0.90 13.7 13.1 4.38 12.6 8.03 38.3 39.4 2.87 37.9 1.04
0.95 26.9 26.3 2.23 25.8 4.09 77.7 78.8 1.42 77.3 0.51
0.98 66.3 65.6 1.06 65.2 1.66 195.8 196.9 0.56 195.5 0.15

Table 4. Exact and approximated values E [Wi] (i = 1, 5) for different values of the load for an asymmetric
seven-queue model (r = 1.6).

Queue 1 Queue 5

ρ exact app ∆% mod ∆% exact app ∆% mod ∆%

0.50 18.1 17.8 1.66 17.2 4.97 51.9 53.4 2.89 51.7 0.39
0.70 30.1 29.6 1.66 29.1 3.32 87.5 88.9 1.60 87.2 0.34
0.80 45.0 44.5 1.11 43.9 2.44 132.0 133.4 1.06 131.7 0.23
0.90 89.5 88.9 0.67 88.4 1.23 265.5 266.8 0.49 265.1 0.15
0.95 178.4 177.8 0.34 177.3 0.62 532.0 533.5 0.28 531.8 0.04
0.98 444.7 444.6 0.02 444.0 0.16 1331 1334 0.23 1332 0.08

Table 5. Exact and approximated values E [Wi] (i = 1, 5) for different values of the load for an asymmetric
seven-queue model (r = 16).

The results in Tables 4 and 5 show that the modified approximation generally does not lead to
better results than the approximation defined in (41), indicated as ”app”. Note that the asymp-
totic correctness of (45) is confirmed by the results in Tables 4 and 5.

Extension to renewal arrivals
In the previous section we formulated conjectures about the heavy-traffic limits for the case of
renewal arrivals, which also led to an approximation for the moments of the waiting times for the
stable systems (41). To test the accuracy of the approximations, Table 6 presents the results for the
three-queue models considered in Table 1, but where the interarrival times are Erlang-distributed
with squared coefficient of variation 0.25.

Similarly, Table 7 shows the results for the case where the interarrival times follow a two-phase
hyper-exponential distribution (with balanced means) with squared coefficient of variation 4. The
results in Tables 6 and 7 show that the accuracy of the approximations is comparable to the case
of Poisson arrivals (Table 1).
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Queue 1 Queue 3

k = 1 k = 3 k = 1 k = 3

ρ app exact ∆% app exact ∆% app exact ∆% app exact ∆%

0.50 4.77 3.33 43.2 3.26e2 2.37e2 37.6 1.59 2.13 25.4 1.79e1 9.69e1 81.5
0.70 7.96 6.23 27.8 1.51e3 1.30e3 16.2 2.65 3.27 19.0 8.27e1 2.77e2 70.1
0.80 11.9 10.1 17.8 5.09e3 4.66e3 9.23 3.98 4.64 14.2 2.79e2 6.87e2 59.4
0.90 23.9 21.9 9.13 4.07e4 3.94e4 3.30 7.96 8.68 8.29 2.23e3 3.68e3 39.4
0.95 47.7 45.8 4.15 3.26e5 3.21e5 1.56 15.9 16.7 4.79 1.79e4 2.30e4 22.2
0.98 119.4 117.3 1.79 5.04e6 5.04e6 0.99 39.8 40.5 1.73 2.79e5 3.07e5 9.12

Table 6. Exact and approximated values E
[
W k

i

]
(i = 1, 3, k = 1, 3) for different values of the load for

an asymmetric three-queue model, with Erlang-distributed interarrival times with squared coefficient of
variation 0.25.

Queue 1 Queue 3

k = 1 k = 3 k = 1 k = 3

ρ app exact ∆% app exact ∆% app exact ∆% app exact ∆%

0.50 13.0 7.45 74.5 1.07e4 2.61e3 310.0 4.33 3.31 30.8 5.84e2 4.12e2 41.7
0.70 21.7 16.6 30.7 4.93e4 2.53e4 94.9 7.22 6.71 7.60 2.95e3 2.95e3 8.47
0.80 32.5 27.9 16.5 1.67e5 1.15e5 45.2 10.8 11.0 1.82 9.13e3 1.14e4 19.9
0.90 65.0 61.1 6.38 1.33e6 1.15e6 15.7 21.7 23.0 5.65 7.30e4 9.26e4 21.2
0.95 130.0 126.8 2.52 1.07e7 1.00e7 7.00 43.3 46.0 5.87 5.84e5 6.94e5 15.9
0.98 325.1 321.4 1.15 1.67e8 1.64e8 1.83 108.4 112.0 3.21 9.13e6 9.95e6 8.24

Table 7. Exact and approximated values E
[
W k

i

]
(i = 1, 3, k = 1, 3) for different values of the load for

an asymmetric three-queue model, with hyper-exponential interarrival times with squared coefficient of
variation 4.

5 Optimization

The choice of the control parameter K = (K1, . . . ,KN ) opens up possibilities for optimization.
In this section we will use the asymptotic results discussed in Section 4 to develop and evaluate
simple yet effective rules for determining the optimal values of K. To this end, we consider the
following optimization problem.

Optimization Problem. For given weights c1, . . . , cN ≥ 0, find K∗ = (K∗1 , . . . ,K
∗
N ) ∈ S that

minimizes

C(K) =
N∑
i=1

ciE[Wi] (46)

over all possible values of K ∈ S = {1, 2, . . .}N .

In the absence of closed-form expressions for E[Wi] for ρ < 1, this problem is very hard to solve
in general, and K∗ will generally depend on the loads offered to each of the queues. However,
the proper choice of the interleaving levels K∗ is most critical when the system is heavily loaded.
Therefore, in this section we will use the heavy-traffic asymptotic presented in Section 4 to develop
approximations for K∗. In Section 5.1 we present and evaluate the approximations for the case
of zero switch-over times, and in Section 5.2 we consider the case of non-zero switch-over times.
Section 5.3 ends this section with a discussion.
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5.1 Zero switch-over times

In this section we assume that the switch-over times are zero. To start, note that it follows
directly by substituting r = 0 in (4) that if the ratio ci/ρi is the same for all i = 1, . . . , N , then
the cost function C(K) is the same for all K ∈ S, so that any choice of K is optimal. Therefore,
throughout this section we will assume that ci/ρi 6= cj/ρj for some i, j = 1, . . . , N . Then without
loss of generality, there exists an index p such that

c1
ρ1
≥ · · · ≥ cp

ρp
>
cp+1

ρp+1
= · · · = cN

ρN
, and hence,

c1
ρ̂1
≥ · · · ≥ cp

ρ̂p
>
cp+1

ρ̂p+1
= · · · = cN

ρ̂N
. (47)

The following result shows that under heavy-traffic assumptions, the interleaving levels should be
taken either 1 or infinity, and where the ”break point” is between p and p+ 1.

Lemma 1 (Optimal policy in the limiting case). If the switch-over times are zero, then in the
limiting case, the setting K∗1 = · · · = K∗p = 1 and K∗p+1 = · · · = K∗N =∞ is optimal.

Proof. Assuming the ordering in (47), it is readily seen that if we denote xi := 2Ki − 1 + ρ̂i > 0
then the cost function in (46) can then be written as

C(K) =
c1x1 + · · ·+ cNxN
ρ̂1x1 + · · ·+ ρ̂NxN

B, with B :=
1

1− ρ
· b

(2)

2b(1)
. (48)

The derivative of (48) with respect to xi is

∂C(K)
∂xi

=
B

(ρ̂1x1 + · · ·+ ρ̂NxN )2
× [x1(ciρ̂1 − ρ̂ic1) + · · ·+ xi−1(ciρ̂i−1 − ρ̂ici−1)

+xi+1(ciρ̂i+1 − ρ̂ici+1) + · · ·+ xN (ciρ̂N − ρ̂icN )] .

Note that the sign of this derivative does not depend on the value of xi itself. It can easily be
verified that ciρ̂j − ρ̂icj ≤ 0 for j < i and that ciρ̂j − ρ̂icj ≥ 0 for j > i, because of (47). Since
this derivative with respect to x1 is therefore always non-negative, this immediately proves that
x1 should be taken as small as possible, thus K∗1 = 1. For xN this derivative is always non-
positive, hence xN should be taken as large as possible, thus K∗N =∞. Given these values of K∗1
and K∗N , the derivatives of (48) with respect to x2, . . . , xp are then always non-negative as well,
meaning that K∗2 = · · · = K∗p = 1. Finally, the derivatives with respect to xp+1, . . . , xN−1 are all
non-positive, thus K∗p+1 = · · · = K∗N−1 =∞.

This asymptotic optimum suggests the following heuristic rule for approximating the optimum
interleaving level K∗.

Heuristic rule. If the switch-over times are zero, then in the case ρ < 1 the following heuristic
rule applies: if ci/ρi > minj=1,...,N cj/ρj then K

(app)
i = 1, and K

(app)
i = K(max) otherwise. Here

K(max) ≤ ∞ is an upper bound on the number of phases that can be assigned to queue i.

Note that Lemma 1 explicity relies on the assumption that K(max) =∞. In case K(max) <∞, a
simple rule for the asymptotically optimal interleaving scheme K∗ cannot be obtained in general.
Therefore, to propose a simple rule for the case K(max) <∞ we simply adopt the idea from Lemma
1 that the queues i for which ci/ρi ≤ minj=1,...,N cj/ρj are assigned the maximum interleaving
level K(max). The numerical results discussed below show that this leads to highly accurate
approximations.

Example 3. Consider the four-queue model defined as follows: the service times are exponentially
distributed with mean 3, 1, 2 and 1 respectively and arrivals occur according to a Poisson process
in proportion to 1 : 2 : 2 : 3. Switch-over times are zero (see Corollary 2) and K(max) = 4.
Table 8 shows the approximated and exact optimum interleaving level K∗ where the cost vectors
c = (1, 1, 2, 1) and c = (1, 1, 1, 1), for different values of the load ρ. The relative error has been
calculated similar to (43).
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c = (1, 1, 1, 1), K(app) = (1, 1, 4, 1) c = (1, 1, 2, 1), K(app) = (4, 1, 1, 4)

ρ K∗ C(K∗) C(K(app)) ∆% K∗ C(K∗) C(K(app)) ∆%

0.50 (1, 1, 4, 2) 6.909 6.944 0.507 (3, 1, 1, 4) 8.618 8.645 0.313
0.70 (2, 1, 4, 1) 15.59 15.64 0.321 (4, 1, 1, 3) 19.55 19.63 0.409
0.90 (1, 1, 4, 1) 57.32 57.32 0 (4, 1, 1, 3) 72.47 72.58 0.152
0.95 (1, 1, 4, 1) 118.7 118.7 0 (4, 1, 1, 4) 150.4 150.4 0

Table 8. Approximated and optimal values of the interleaving level K.

It can be seen that the heuristic rule performs very well in this case: the difference between the
approximation and the exact solution is much less than 0.5% even for small values of the load.
The general observation is that the approximation becomes more accurate for higher values of the
load. This was to be expected because when the load tends to unity, the approximation approaches
optimality.

5.2 Non-zero switch-over times

Let us now examine the case of non-zero switch-over times (i.e., r > 0). To start, let us assume
we have an additional constraint that the number of phases is the same for each queue, i.e.,
K1 = · · · = KN = K. In that case, the optimization function (46) can be rewritten as

C(K) =
1

1− ρ

(∑N
i=1 ci(L+ ρ̂i)∑N
i=1 ρ̂i(L+ ρ̂i)

B +
1
2
r

N∑
i=1

ci(L+ ρ̂i)

)
,

with L = 2K − 1 and B = b(2)/2b(1). Taking K as a continuous variable, we obtain

dC(K)
dK

=
1

1− ρ

2B
∑N
i=1 ci

∑N
i=1 ρ̂

2
i −

∑N
i=1 ciρ̂i(

L+
∑N
i=1 ρ̂

2
i

)2 + r

N∑
i=1

ci

 .

Substitution of A =
∑N
i=1 ρ̂

2
i , C =

∑N
i=1 ci and D =

∑N
i=1 ciρ̂i gives

dC(K)
dK

=
1

1− ρ

(
2B

CA−D
(L+A)2 + rC

)
.

Now a couple of observations can be made. First, L is discrete-valued and can take the odd values
1, 3, 5, . . . . Second, the sign of the term CA−D determines to great extent whether the derivative
becomes zero for some L. Third, if L is increased the derivative goes to rC monotonically. These
observations lead to the following simple heuristic rule for finding an approximation for the optimal
value of K for ρ < 1.

Heuristic rule. If the switch-over times are non-zero, then the following heuristic rule applies:
if CA − D ≥ 0 then K(app) = 1, else if 2B CA−D

(1+A)2
+ rC ≥ 0 then K(app) = 1, else K(app) =[

1
2

(√
2BCA−D

−rC −A+ 1
)]

.

Note that in the limiting case the approximation lies only in the fact that rounding takes place. To
assess the accuracy of this heuristic rule, we have performed extensive numerical experimentation
based on simulations. The results are outlined below.

Example 4. Consider the five-queue model defined as follows: the arrival rates at all queues are
the same, the service times at queue i are log-normally distributed with σ = 1 and µ = i

2 , i =
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1, . . . , 5, and the switch-over times between all queues are gamma distributed with mean 0.1 and
variance 0.05. Table 9 shows the approximated and exact optimum value of K for c = (0, 0, 0, 0, 1)
and c = (1, 1, 1, 1, 1), and for different values of the load ρ. The relative error has been calculated
similar to (43).

c = (1, 1, 1, 1, 1), K(app) = 1 c = (0, 0, 0, 0, 1), K(app) = 2

ρ K∗ C(K∗) C(K(app)) ∆% K∗ C(K∗) C(K(app)) ∆%

0.50 1 89.14 89.14 0 1 20.32 20.90 2.85
0.70 1 202.4 202.4 0 2 47.40 47.40 0
0.90 1 759.2 759.2 0 2 177.7 177.7 0
0.95 1 1631 1631 0 2 371.3 371.3 0

Table 9. Approximated and optimal values of K.

In the situation where c = (0, 0, 0, 0, 1), the heuristic rule is optimal in all cases except for small
values of the load. But the difference then is almost negligible. These situations put confidence in
the accuracy of the heuristic rule. Note that for the case c = (1, 1, 1, 1, 1), in all cases considered
the approximation was found to be even identical to the real optimum. Note however that the
usefulness of this heuristic rule is a bit limited. Only in extreme cases where the total switch-over
time is small, the service times have a very high variability and the costs fulfil exactly the right
conditions, the value of K is unequal to 1. Nevertheless, in these cases the heuristic rule performs
very well too.

The most general case is the one in which the number of phases in each queue may be different.
The optimization problem is here to find K∗ that minimizes

C(K) =
1

1− ρ

(∑N
i=1 cixi∑N
i=1 ρ̂ixi

B +
1
2
r

N∑
i=1

cixi

)
, (49)

where xi = 2Ki − 1 + ρ̂i and B = b(2)/2b(1). This is a difficult problem to solve and one whose
solution involves complex conditions that are not suitable for a simple heuristic rule. Therefore,
we will develop a heuristic rule by combining the previous obtained results. If r = 0, equation
(49) reduces to (48), which was optimized exactly. Here it is optimal to take some values of
Ki to be 1 and others to be ∞. On the other hand, if we only look at the last terms of (49)
(the terms containing r), then all Ki should be taken 1. Combining this, it seems reasonable to
take at least the Ki to be 1 where both agree on. For the remaining queues, we apply the same
heuristic rule where all phases were taken the same. The following heuristic rule is then obtained
for approximating the optimal interleaving level K∗ for ρ < 1.

Heuristic rule. Denote by V the set of queues for which ci/ρi > min cj/ρj, i, j = 1, . . . , N , and
make the substitutions

A =
N∑
i=1

ρ̂2
i +

∑
i∈V

ρ̂i,

C =
∑
i/∈V

ci,

D =
∑
i/∈V

ρ̂i

(
N∑
i=1

ciρ̂i +
∑
i∈V

ci

)
.

If i ∈ V then K(app)
i = 1. Otherwise, if CA−D ≥ 0 or 2B CA−D

(∑i/∈V ρ̂i+A)2 +rC ≥ 0 then K(app)
i = 1,

else K(app)
i =

[
1
2

(
1∑

i/∈V ρ̂i

(√
2BCA−D

−rC −A
)

+ 1
)]

.
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To assess the accuracy of this heuristic rule, we have performed extensive numerical experimenta-
tion based on simulations. The results are outlined below.

Example 5. Consider the model defined in Example 3 with the following adjustment: the switch-
over times from queue 1 to queue 2 and from queue 3 to queue 4 are exponentially distributed
with mean 0.1, and the switch-over times from queue 2 to queue 3 and from queue 4 to queue 1
are gamma distributed with mean 0.5 and variance 1. Table 10 shows the approximated and exact
optimum interleaving level K, for c = (1, 1, 1, 1) and c = (3, 2, 2, 7), and for different values of the
load ρ. The relative error has been calculated according to (43).

c = (1, 1, 1, 1), K(app) = (1, 1, 1, 1) c = (3, 2, 2, 7), K(app) = (1, 1, 2, 1)

ρ K∗ C(K∗) C(K(app)) ∆% K∗ C(K∗) C(K(app)) ∆%

0.50 (1, 1, 1, 1) 16.06 16.06 0 (1, 1, 1, 1) 56.48 57.43 1.682
0.70 (1, 1, 1, 1) 29.64 29.64 0 (1, 1, 2, 1) 102.4 102.4 0
0.90 (1, 1, 1, 1) 97.49 97.49 0 (1, 1, 2, 1) 324.0 324.0 0
0.95 (1, 1, 1, 1) 198.7 198.7 0 (1, 1, 2, 1) 655.4 655.4 0

Table 10. Approximated and optimal values of the interleaving level K.

c = (6, 1, 3, 5), K(app) = (1, 4, 1, 1) c = (1, 10, 10, 10), K(app) = (9, 1, 1, 1)

ρ K∗ C(K∗) C(K(app)) ∆% K∗ C(K∗) C(K(app)) ∆%

0.50 (1, 1, 1, 1) 60.75 64.99 6.979 (3, 1, 1, 1) 117.2 130.8 11.60
0.70 (1, 2, 1, 1) 110.5 114.6 3.710 (4, 1, 1, 1) 202.4 219.8 8.597
0.90 (1, 3, 1, 1) 350.8 352.1 0.371 (5, 1, 1, 1) 581.7 603.9 3.816
0.95 (1, 4, 1, 1) 704.6 704.6 0 (6, 1, 1, 1) 1119 1139 1.787

Table 11. Approximated and optimal values of the interleaving level K.

Similarly, Table 11 shows the results for c = (6, 1, 3, 5) and c = (1, 10, 10, 10). The results show
that this heuristic rule also performs very well. This can be explained by a couple of factors.
Firstly, because the switch-over times are non-zero the number of phases in each queue are not
likely to be large. The heuristic rule takes this into account, since in many cases all but one queue
are given a parameter of Ki = 1, and the parameter of the remaining queue obeys a square root
function. Values of, say, 4 or higher are thus very unlikely. Secondly, the most important queues
are given priority over the least important ones. The heuristic rule takes this into account since
the queues with a high ci/ρi ratio are immediately given a parameter of one. The parameter of
the queues with the smallest ratio can potentially be higher.

5.3 Discussion

The results on optimization discussed in Sections 5.1 and 5.2 are based on the asymptotic results
derived in Section 3. In this section we discuss a number of observations on the performance of
the system for stable systems (i.e., for ρ < 1).

Conjecture 3 (Monotonicity of the mean waiting times). For ρ < 1, it holds that if Ki is increased
then E[Wi] is increased, while E[Wj ] is decreased for all j 6= i.

Note that the conjecture is supported by numerous numerical experiments, and moreover, is in
line with similar observations made for cyclic polling models with Ki-limited [6] and for Bernoulli
service disciplines [3]. Note also that it is easily verified from (37) that the conjecture is asymp-
totically correct for ρ ↑ 1. The following result is an immediate consequence of Conjecture 3.
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Corollary 4. For ρ < 1 and r ≥ 0, it holds that

if
ci
ρi

= max
{
c1
ρ1
, . . . ,

cN
ρN

}
, then K∗i = 1. (50)

Proof: The result follows directly from the following inequalities:

∆
∆ki

N∑
j=1

cjE[Wj ] =
ci
ρi

∆
∆ki

ρiE[Wi] +
∑
j 6=i

cj
ρj

∆
∆ki

ρjE[Wj ] (51)

≤ ci
ρi

∆
∆ki

ρiE[Wi] +
ci
ρi

∑
j 6=i

∆
∆ki

ρjE[Wj ] (52)

=
ci
ρi

∆
∆ki

N∑
j=1

ρjE[Wj ] ≤ 0. (53)

Here, the first inequality follows from the assumption (47), and the second inequality follows from
(4)–(5).

Corollary 5. For ρ < 1 and r = 0, it holds that

if
ci
ρi

= min
{
c1
ρ1
, . . . ,

cN
ρN

}
, then K∗i =∞. (54)

Proof: The result follows from the following inequalities:

∆
∆ki

N∑
j=1

cjE[Wj ] =
ci
ρi

∆
∆ki

ρiE[Wi] +
∑
j 6=i

cj
ρj

∆
∆ki

ρjE[Wj ] (55)

≥ ci
ρi

∆
∆ki

ρiE[Wi] +
ci
ρi

∑
j 6=i

∆
∆ki

ρjE[Wj ] (56)

=
ci
ρi

∆
∆ki

N∑
j=1

ρjE[Wj ] = 0, (57)

noting that the last equality follows from (4)–(5) by taking r = 0.

Remark 6. It is hard to make general statements about the sensitivity of the waiting-time
performance of the system as a function of the interleaving levels K = (K1, . . . ,KN ) for ρ < 1.
The PCL in (4)–(5) reveals that the summation

∑N
i=1 ρiE[Wi], representing the total amount

of waiting work in the system, is primarily sensitive to the choice of K when the system is
heavily loaded and the switch-over times are large. Extensive numerical experiments show similar
observations regarding the individual waiting times.

Remark 7. Note that strictly speaking the notion of Ki = ∞ (e.g., in Lemma 1 and Corollary
5) is not well defined, and that in practice this means setting Ki to a large but finite value.

Remark 8. Let us reconsider the optimization problem (46) for the case of zero switch-over
times (i.e., r = 0). Loosely speaking, Corollary 4 states that for stable systems (i.e., ρ < 1) the
queue(s) with the highest ci/ρi-ratio should get the best available service (i.e., K∗i = 1), whereas
the queue(s) with the lowest ci/ρi-ratio should get the worst available service (i.e., K∗i =∞). Note
that this leaves open the possibility that 1 < K∗i < ∞ for queues for which the ci/ρi-ratio is in
between the minimum and the maximum ci/ρi-ratio. In this context, note that Lemma 1 implies
that in the limiting case ρ ↑ 1, K∗i -values between 1 and ∞ do not occur. More precisely, Lemma
1 implies that K∗i = 1 or K∗i = ∞ for all i, and that K∗i = ∞ if and only if ci/ρi = min{ci/ρi}.
Apparently, the possibility of having finite K∗i -values larger than 1 vanishes when ρ ↑ 1.
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Remark 9. In the polling literature, cost-optimization problems similar to (46) have been stud-
ied. For example, for cyclic polling models, minimization of a cost function of the form T (c) :=∑N
i=1 ciE[Wi] with respect to the choice of the service policies has been studied by Boxma et al.

[5] for Ki-limited service and by Blanc and Van der Mei [3] for Bernoulli service policies. For these
models, conjectures similar to Conjecture 3 have been formulated without rigorous proofs. As an
alternative, Boxma et al. [7] study the problem of minimizing T (c) by choosing (near-)optimal
periodic visit orders, and derive elegant square-root rules for the relative visit frequencies. For
the multi-phase gated model under consideration, minimization of T (c) with respect to the visit
order, following the lines of argumentation of [7] and deriving heavy-traffic limits similar to those
in [19], addresses an interesting direction of research.

Acknowledgment: The authors wish to thank the anonymous referees for their useful comments,
which have led to a significant improvement of the readability of the paper.
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Appendix A: Multi-type branching processes with immigra-
tion in each state

For completeness, in this appendix we briefly describe general MTBPs with immigration in each
state, and introduce notation useful for further reference. We refer to [2] for more details on
MTBPs. We consider a general M -dimensional multi-type branching process with immigration
in each state, Z = {Zn, n = 0, 1, . . .}, where Zn = (Z(1)

n , . . . , Z
(M)
n ) is an M -dimensional vector

denoting the state of the process in the n-th generation, and where Z(i)
n is the number of type-

i particles in the n-th generation. The process Z is completely characterized by the one-step
offspring function f(z) = (f (1)(z), . . . , f (M)(z)), with z = (z1, . . . , zM ), and where for |zk| ≤
1 (k = 1, . . . ,M), i = 1, . . . ,M ,

f (i)(z) =
∑

j1,...,jM≥0

p(i)(j1, . . . , jM )zj11 · · · z
jM
M , (58)

where p(i)(j1, . . . , jM ) is the probability that a type-i particle produces jk particles of type k (k =
1, . . . ,M). The immigration function is defined as follows, for |zk| ≤ 1 (k = 1, . . . ,M),

g(z) =
∑

j1,...,jM≥0

q(j1, . . . , jM )zj11 · · · z
jM
M , (59)

where q(j1, . . . , jM ) is the probability that a group of immigrants consists of jk particles of type
k (k = 1, . . . ,M). Denote

g := (g1, . . . , gM ), where gi :=
∂g(z)
∂zi

|z=1 (i = 1, . . . ,M), (60)

and where 1 is the M -vector where each component is equal to 1. A key role in the analysis will
be played by the first and second-order derivatives of f(z). The first-order derivatives are denoted
by the mean matrix

M = (mi,j) , with mi,j :=
∂f (i)(z)
∂zj

|z=1 (i, j = 1, . . . ,M). (61)

Thus, for a given type-i particle at the n-th generation, mi,j is the mean number of type-j children
it has at the (n+ 1)-st generation. Similarly, for a type-i particle, the second-order derivatives are
denoted by the matrix

K(i) =
(
k

(i)
j,k

)
, with k

(i)
j,k :=

∂2f (i)(z)
∂zj∂zk

|z=1 (i, j, k = 1, . . . ,M). (62)

Denote by v = (v1, . . . , vM ) and w = (w1, . . . , wM ) the left and right eigenvectors corresponding
to the largest real-valued, positive eigenvalue ξ of M, commonly referred to as the maximum
eigenvalue, or the Perron-Frobenius eigenvalue (cf., e.g., [2]), normalized such that

v>1 = v>w = 1. (63)

The following conditions are necessary and sufficient conditions for the ergodicity of the process
Z (cf. [22]): ξ < 1 and∑

j1+···+jM>0

q(j1, . . . , jM )log(j1 + · · ·+ jM ) <∞. (64)

Following standard branching-process terminology the process Z is called sub-critical if ξ < 1,
critical if ξ = 1 and super-critical if ξ > 1. Throughout the following definitions are convenient.
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For any variable x that depends on ξ we use the hat-notation x̂ to indicate that x is evaluated at
ξ = 1. Moreover, for ξ > 0 let

π0(ξ) := 0, and πn(ξ) :=
n∑
r=1

ξr−2, n = 1, 2, . . . . (65)

Theorem A.1
Assume that all derivatives of f(z) of order two exist at z = 1 and that 0 < gi <∞ (i = 1, . . . ,M).
Then

1
πn(ξ)

Zn → A · v̂ · Γ · (α, 1) (ξ, n)→ (1,∞), (66)

in the sense that for all ε > 0 there exist δ > 0 and N such that if |1− ξ| < δ then for all n > N
it holds that

sup
x∈RM

∣∣∣∣Prob
{

1
πn(ξ)

Zn ≤ x
}
− Prob {A · Γ(α, 1) · v̂ ≤ x}

∣∣∣∣ < ε, (67)

where v̂ = (v̂1, . . . , v̂M ) is the normalized left eigenvector of the mean matrix M̂, and where Γ(α, 1)
is a gamma-distributed random variable with scale parameter 1 and shape parameter

α :=
1
A
ĝ>ŵ =

1
A

M∑
i=1

ĝiŵi, with A :=
M∑
i=1

v̂i

(
ŵ>K̂(i)ŵ

)
> 0. (68)

Proof: See [21, 26]. �

Appendix B: The Descendant Set Approach for multi-phase
gated service

In this appendix we formulate the use of the DSA for the model under consideration. It is a rather
straightforward extension of the DSA for the two-phase gated model discussed in [28]. Customers
can be classified as originators and non-originators. An originator is a customer that arrives at
the system during a switch-over period. A non-originator is a customer that arrives at the system
during the service of another customer. For a customer C, define the children set to be the set of
customers arriving during the service of C; the descendant set of C is recursively defined to consist
of C, its children and the descendants of its children. The DSA is focused on the determination
of the moments of the delay at a fixed queue, say Q1. To this end, the DSA concentrates on the
determination of the distribution of the K1-dimensional stochastic vector

X1(P ∗) :=
(
X

(1)
1 (P ∗), . . . , X(K1)

1 (P ∗)
)
, (69)

where X(k)
1 (P ∗) is defined as the number of phase-k customers at Q1 present at an arbitrary fixed

polling instant P ∗ at Q1 (k = 1, . . . ,K1). P ∗ is referred to as the reference point.

The main ideas are the observations that (a) each of the customers present at Q1 at the reference
point P ∗ (at either phase) belongs to the descendant set of exactly one originator, and (b) the
evolutions of the descendant sets of different originators are stochastically independent. Therefore,
the DSA concentrates on an arbitrary tagged customer which arrived at Qi in the past and on
calculating the number of type-1 descendants it has at all K1 phases at P ∗. Summing up these
numbers over all past originators yields X1(P ∗), and hence X1, because P ∗ is chosen arbitrarily.
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The DSA considers the Markov process embedded at the polling instants of the system. To this
end, we number the successive polling instants as follows. Let PN,0 be the last polling instant
at QN prior to P ∗, and for i = N − 1, . . . , 1, let Pi,0 be recursively defined as the last polling
instant at Qi prior to Pi+1,0. In addition, for c = 1, 2, . . . , we define Pi,c to be the last polling
instant at Qi prior to Pi,c−1, i = 1, . . . , N . Define the c-th cycle to be the time between P1,c and
P1,c−1, for c = 0, 1, . . . . The DSA is oriented towards the determination of the contribution to
X1(P ∗) of an arbitrary customer present at Qi at Pi,c. To this end, define an (i, c)-customer to be
a customer present at Qi at Pi,c. Moreover, for a tagged (i, c)-customer Ti,c at phase 1, we define
for i = 1, . . . , N , c = 0, 1, . . .,

Ai,c :=
(
A

(1)
i,c , . . . , A

(K1)
i,c

)
, and its PGF A∗i,c(z1, . . . , zK1) := E

[
z
A

(1)
i,c

1 · · · zA
(K1)
i,c

K1

]
, (70)

where A(k)
i,c is the number of type-1 descendants it has at phase k at P ∗ (k = 1, . . . ,K1). In this

way, the K1-dimensional random variable Ai,c can be viewed as the contribution of Ti,c to X1(P ∗).

To express the distribution of X1 in terms of the distributions of the descendant set variables Ai,c,
denote by Ri,c the switch-over period from Qi to Qi+1 immediately after the service period at Qi
starting at Pi,c. Moreover, for i = 1, . . . , N , c = 0, 1, . . ., denote

Si,c :=
(
S

(1)
i,c , . . . , S

(K1)
i,c

)
, and its PGF S∗i,c(z1, . . . , zK1) := E

[
z
S

(1)
i,c

1 · · · zS
(K1)
i,c

K1

]
, (71)

where S(k)
i,c is the total contribution to X(k)

1 of all customers that arrive at the system during Ri,c
(note that, by definition, these customers are original customers). In this way, Si,c can be seen as
the (joint) contribution of Ri,c to X1(P ∗). It is readily verified that we can write

X1(P ∗) =
N∑
i=1

∞∑
c=0

Si,c. (72)

Note that for k, l = 1, . . . ,K1, the random variables S(k)
i,c and S

(l)
i′,c′ are generally dependent if

(i, c) = (i′, c′) but independent otherwise. Hence we can write, for |z1|, . . . , |zK1 | ≤ 1,

X∗1 (z1, . . . , zK1) =
N∏
i=1

∞∏
c=0

S∗i,c(z1, . . . , zK1). (73)

Because Si,c is the total joint contribution to X1(P ∗) of all (original) customers that arrive during
Ri,c, the distribution of Si,c can be expressed in terms of the distributions of the descendant set
variables Ai,c as follows: For i = 1, . . . , N , c = 0, 1, . . . , and |z1|, . . . , |zK1 | ≤ 1,

S∗i,c(z1, . . . , zK1) =

R∗i

 N∑
j=i+1

[
λj − λjA∗j,c(z1, . . . , zK1)

]
+

i∑
j=1

[
λj − λjA∗j,c−1(z1, . . . , zK1)

] .
(74)

Next, to define a recursion for the evolution of the descendant set, note that a customer at phase-1
present at Q1 at the polling instant at Q1 during cycle c is served during cycle c−K1 + 1, because
it takes K1 − 1 cycles to proceed along the phases 1→ 2→ · · · → K1. This leads to the following
relation: For i = 1, . . . , N , c = 0, 1, . . . , and |z1|, . . . , |zK1 | ≤ 1,

A∗i,c(z1, . . . , zK1) =

B∗i

 N∑
j=i+1

[
λj − λjA∗j,c−K1+1(z1, . . . , zK1)

]
+

i∑
j=1

[
λj − λjA∗j,c−K1

(z1, . . . , zK1)
] ,

(75)
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supplemented with the basis for the recursion: for i = 1, . . . , N , k = 1, . . . ,K1, |z1|, . . . , |zK1 | ≤ 1,

A∗i,−k(z1, . . . , zK1) =
{
zk if i = 1,
1 if i > 1. (76)

In this way, relations (72)-(76) give a complete, characterization of the distribution of X1. Sim-
ilarly, recursive relations to calculate the (cross-)moments of X1 can be readily obtained from
those equations.

Relation (75) leads to recursive relations for the moments of the DS variables A(k)
i,c . Here, we will

work out the details of the DSA for calculation the first moment of the DS variables; they are also
needed for the proof of Lemma C.4 below. Define for i = 1, . . . , N , c = −K1,−K1 +1, . . . , 0, 1, . . . ,
and k = 1, . . . ,K1,

α
(k)
i,c := E

[
A

(k)
i,c

]
=
[
∂

∂zk
A∗i,c(z)

]
z=1

. (77)

Then (75)-(76) are easily seen to lead to the following recursive scheme: For i = 1, . . . , N , c =
0, 1, . . . , and k = 1, . . . ,K1,

α
(k)
i,c = b

(1)
i

 N∑
j=i+1

λjα
(k)
j,c−K1+1 +

i∑
j=1

λjα
(k)
j,c−K1

 , (78)

supplemented with the following basis for the recursion, for i = 1, . . . , N , k, l = 1, . . . ,K1,

α
(l)
i,−k :=

[
∂

∂zk
A∗i,−k(z)

]
z=1

=
{

1 if i = 1 and k = l,
0 otherwise. (79)

Moreover, recalling that X1 := X
(1)
1 + · · ·+X

(K1)
1 , it follows directly from (73)-(74) that

E[X1] =
K1∑
k=1

E
[
X

(k)
1

]
, where E

[
X

(k)
1

]
=

N∑
i=1

∞∑
c=0

E
[
S

(k)
i,c

]
(k = 1, . . . ,K1), (80)

with

E
[
S

(k)
i,c

]
= r

(1)
i

 N∑
j=i+1

λjα
(k)
j,c−K1+1 +

i∑
j=1

λjα
(k)
j,c−K1

 . (81)

The calculation of the higher moments of X1 requires more effort because of the dependence
between the random variables (X(1)

1 , . . . , X
(K1)
1 ), but is methodologically straightforward but no-

tationally cumbersome. Working out the details is beyond the scope of this paper.

Appendix C: Stepwise derivation of Theorem 2

In this section we use the MTBP structure and the DSA discussed in Appendix A and Appendix B,
respectively, to transform Theorem A.1 into Theorem 2, which gives an expression for the limiting
distribution for X as ρ goes to 1. We follow the step-wise approach proposed in [26]. Similar to
the derivation of the result for the case of two-phase gated service at all queues [28], we proceed
along the following steps:

Step 1: Derive an expression for the mean offspring matrix M for the polling model under
consideration (Lemma C.1).
Step 2: Derive an expression for the left and right eigenvectors v and w of the mean matrix,
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evaluated at ρ = 1 (Lemma C.2)
Step 3: Derive an expression for the mean immigration vector g, evaluated at ρ = 1 (Lemma
C.3).
Step 4: Derive an expression for limiting behavior of ξ(ρ) considered as a function of ρ, as ρ goes
to 1 (Lemma C.4).
Step 5: Derive an expression for A, evaluated at ρ = 1 (Lemma C.5).
Step 6: Combine steps 1 to 5 into an asymptotic expression for the distribution of (1− ρ)X as ρ
goes to 1.

Lemma C.1 (Mean matrix)
The mean offspring matrix M, defined in (21)–(24), is given by

M = M1 · · ·MN , where Mk :=


T(k)

1,1 · · · T(k)
1,N

...
...

...
T(k)
N,1 · · · T(k)

N,N

 (k = 1, . . . , N), (82)

where for i, j = 1 . . . , N , T(k)
i,j is a Ki-by-Kj block matrix with entries {t(k)

i,j (m,n), m = 1, . . . ,Ki, n =
1, . . . ,Kj}, defined as follows: For i 6= k,

t
(k)
i,i (m,n) = I{m=n}, t

(k)
i,j (m,n) = 0 for i 6= j. (83)

Moreover, for k 6= j,

t
(k)
k,j(m,n) =

{
bkλj if (m,n) = (Kk, 1),

0 otherwise, (84)

and

t
(k)
k,k(m,n) =

 1 if n = m+ 1,
bkλk if (m,n) = (Kk, 1),

0 otherwise.
(85)

Proof: The result can be obtained by taking the partial derivatives of the mean offspring function
defined in Theorem 1. �

The following result gives the left and right eigenvectors of the mean matrix M, evaluated at
ρ = 1, and normalized according to (63).

Lemma C.2 (Eigenvectors of mean matrix M at ρ = 1)
The normalized right eigenvector of the mean matrix M̂ is given by ŵ := |y|−1y, with

y :=
(
b
(1)
1 , . . . , b

(1)
1 , . . . , b

(1)
N , . . . , b

(1)
N

)
, and |y| :=

N∑
j=1

Kj∑
k=1

y
(k)
j =

N∑
j=1

Kjb
(1)
j . (86)

Similarly, the normalized left eigenvector of M̂ is given by v̂ :=
|y|
δ û, where

u
(1)
j := λj(ρj + · · ·+ ρN ), u

(k)
j := λj (k = 2, . . . ,Kj), for j = 1 . . . , N, (87)

and where

δ := û>y =
N∑
i=1

N∑
j=i

ρ̂iρ̂j +
N∑
i=1

(Ki − 1)ρ̂iI{Ki>1} =
1
2

N∑
i=1

ρ̂i((2Ki − 1) + ρ̂i). (88)

Proof: It is readily verified from (83)–(85) that M̂kŵ = ŵ for k = 1, . . . , N , which immediately
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implies Mŵ = M1 · · ·MN ŵ = ŵ, so that ŵ indeed is a right eigenvector of M̂. Similar arguments
can be used to show that M̂>v̂ = v̂, which implies that v̂ is a left eigenvector of M̂. �

We define the mean immigration vector g :=
(
g

(1)
1 , . . . , g

(K1)
1 , . . . , g

(1)
N , . . . , g

(KN )
N

)
by

g
(l)
k :=

∣∣∣∣∣ ∂

∂s
(l)
k

g(s)

∣∣∣∣∣
s=1

(k = 1, . . . , N, l = 1, . . . ,Kk). (89)

Lemma C.3
The mean immigration vector g satisfies the following equations: For k = 1, . . . , N , l = 1 . . . ,Kk,

g
(l)
k =

N∑
i=1

ri

 i∑
j=1

λjI{l=1,k=j} +
N∑

j=i+1

λjm
(1,l)
j,k

 , (90)

and moreover,

ĝ>ŵ = |y|−1r, with |y| =
N∑
j=1

Kjb
(1)
j . (91)

Proof: Equation (90) can be directly obtained from (18) by differentiating once with respect to
s

(l)
k and substituting s = (1, . . . , 1). Next, (91) follows directly from the following sequence of

relations:

ĝ>ŵ :=
N∑
k=1

Kk∑
l=1

ĝ
(l)
k ŵ

(l)
k = |y|−1

N∑
k=1

b
(1)
k

Kk∑
l=1

N∑
i=1

ri

 i∑
j=1

λ̂iI{l=1,k=j} +
N∑

j=i+1

λ̂jm
(1,l)
j,k

 (92)

= |y|−1
N∑
i=1

ri

 i∑
j=1

λ̂jb
(1)
j +

N∑
j=i+1

λ̂j

N∑
k=1

Kk∑
l=1

m
(1,l)
j,k b

(1)
k

 (93)

= |y|−1
N∑
i=1

ri

 i∑
j=1

λ̂jb
(1)
j +

N∑
j=i+1

λ̂jb
(1)
j

 = |y|−1ρ̂r = |y|−1r. (94)

The first equality in (92) follows from the definitions of g(k)
j and ŵ

(k)
j , standard algebraic ma-

nipulations and by noting that for j = 1, . . . , N it holds that
∑N
k=1

∑Kk

l=1m
(1,l)
j,k b

(1)
k = b

(1)
j , which

follows from the fact that y is a right eigenvector of M̂, as shown in Lemma C.2. This completes
the proof of the result. �

Lemma C.4
The Frobenius eigenvalue ξ = ξ(ρ) of M satisfies the following properties:

(1) ξ < 1 if and only if ρ < 1, ξ = 1 if and only if ρ = 1 and ξ > 1 if and only if ρ > 1;
(2) ξ(ρ) is a continuous function of ρ;
(3) limρ↑1 ξ(ρ) = ξ(1) = 1;
(4) the derivative of ξ(ρ) at ρ = 1 is given by

ξ′(1) = lim
ρ↑1

1− ξ(ρ)
1− ρ

=
1
δ
, with δ =

1
2

N∑
i=1

ρ̂i((2Ki − 1) + ρ̂i). (95)

Proof: The proof proceeds along similar lines as the one for Ki = 2 (i = 1, . . . , N) in [28]. �
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Lemma C.5
For the multi-phase gated polling model,

A = |y|−1δ−1 b
(2)

2b(1)
. (96)

Proof: The scaling parameter A, defined in (68), result can be directly obtained from Theorem
1 and the definitions in (61)–(63), following rather tedious calculations. Alternatively, A follows
directly from Theorem 2 (which does not require the scaling parameter A to be known explicitly),
and (12). To this end, note that taking the mean value of the first entry in (25) and combining
this with Lemma C.2 implies that λ̂1r = δAv̂1 · α = δA · |y|δ λ̂1 · 2rδ b

(1)

b(2)
, where δ is defined in (95).

This immediately implies (96). �

Proof of Theorem 2: Without loss of generality, we assume i = 1. In the sequel, it will
be convenient to relate the waiting-time and queue-length distributions at polling instants at Q1

to the joint distribution of K1 successive cycle times. Let a given polling instant P at Q1 mark
the end of a cycle time with duration C

(1)
1 , let the duration of the K1 preceding cycle times be

C
(2)
1 , . . . , C

(K1)
1 , and denote the joint LST of

(
C

(1)
1 , . . . , C

(K1)
1

)
by:

C∗1 (s1, . . . , sK1) := E
[
e−s1C

(1)
1 −···−sK1C

(K1)
1

]
. (97)

Recall from Appendix B that X∗1 (z1, . . . , zK1) is the joint PGF of the numbers of type-1 customers
at all K1 phases at Q1 at an arbitrary polling instant at Q1. Then the population of customers
present at Q1 at phase k at polling instant P consists exactly of those customers that arrived
during the cycle time C

(k)
1 , for k = 1, . . . ,K1. Standard GF manipulations then immediately

imply that

X∗1 (z1, . . . , zK1) = C∗1 (λ1(1− z1), . . . λ1(1− zK1)) . (98)

Using (98), equation (10) can be reformulated in the following convenient form: For Re(s) > 0,

W ∗1 (s) =
(1− ρ1)s

s− λ1(1−B∗1(s))
· C
∗
1 (s, . . . , s, λ1(1−B∗1(s)))− C∗1 (s, . . . , s, s)

s(1− ρ1)r/(1− ρ)
. (99)

Now, combining Theorem A.1 with Lemmas C.2–C.5, and by taking the proper components of
the vector v̂ defined in Lemma 2, it follows that

(1− ρ)
(
X

(1)
1 , . . . , X

(K1)
1

)
→d

1
2δ
· b

(2)

b(1)

(
λ̂1, . . . , λ̂1

)
Γ(α, 1) (ρ ↑ 1), (100)

where α and δ are defined in (26) and (95), respectively (see Remark 3.3 in [28] for the details
on the convergence). Then, using (98) and similar arguments as those discussed in [28], equation
(100) can be expressed in terms of cycle times as

(1− ρ)
(
C

(1)
1 , . . . , C

(K1)
1

)
→d

1
2δ
· b

(2)

b(1)
(1, 1, . . . , 1) Γ(α, 1) (ρ ↑ 1). (101)

Theorem 2 follows then directly by combining (99), (101) and standard algebraic manipulations,
recalling that without loss of generality we focused on the waiting-time distributions Q1 . �
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