
Optimal resource allocation for multi-queue systems

with a shared server pool

Ran Yanga,b, Sandjai Bhulaia,b, Rob van der Meib,a

aVU University Amsterdam, The Netherlands

bCWI, Amsterdam, The Netherlands.

March 4, 2011

Abstract

We study optimal allocation of servers for a system with multiple service facilities and

with a shared pool of servers. Each service facility poses a constraint on the maximum

expected sojourn time of a job. A central decision maker can dynamically allocate servers

to each facility, where adding more servers results in faster processing speeds but against

higher utilization costs. The objective is to dynamically allocate the servers over the

different facilities such that the sojourn-time constraints are met at minimal costs. This

situation occurs frequently in practice, e.g., in Grid systems for real-time image processing

(iris scans, fingerprints). We model this problem as a Markov decision process and derive

structural properties of the relative value function. These properties, which are hard to

derive for multi-dimensional systems, give a full characterization of the optimal policy.

We demonstrate the effectiveness of these policies by extensive numerical experiments.

Keywords: Constrained Markov decision problems, monotonicity, optimal resource allo-

cation, shared server pool, queueing theory.

1 Introduction

In recent years new real-time multimedia services have triggered a tremendous growth in

data volumes and computational demand. Typical services include iris-scan and fingerprint

systems that make high-resolution scans and require processing of the data to identify a

person; these services operate in a real-time environment and run under very strict time

constraints. To adhere to such constraints, these large-scale services typically use centralized

computing clusters to execute on. In these service-based scenarios, a central decision maker

then allocates a number of processing resources to different service facilities to process the

data. This gives rise to a class of models in which the central decision maker has to allocate

1

the number of resources to ensure that all Quality of Service (QoS) constraints of the different

facilities can be met.

In this decision making problem there is a trade-off between the processing time on the one

hand and the utilization costs (lease costs, operating costs, etc.) on the other hand. Having

too many resources at the server side leads to high costs and also to inefficiency, since only

a part of the resources are needed to ensure that the QoS-constraint is satisfied. However,

having too few resources leads to a long processing time so that the QoS-constraint of jobs

can be violated. Hence, the objective is to find the allocation of the number of resources for

the different facilities such that all QoS-constraints are met against minimal costs.

A few papers have been devoted to resource allocation problems closely related to our

setting. Perry and Nilson [8] have studied a system in which two types of jobs are served

by a single pool of resources. They associate priorities, based on an aging factor that grows

proportionally with the waiting time, to these jobs and give an analytical model for computing

the expected waiting. This heuristic, was first analyzed by Kleinrock [5, 6]. Borst and Seri [3]

apply more complex heuristics in a multi-skilled queueing system with as performance metric

the tail probabilities of the waiting time. They compare the number of jobs in each facility

that actually has been served to the number that, nominally, should have been served under a

long-run average allocation scheme. The “further behind” the actual number of services, the

higher the resulting priority. Bhulai and Koole [2] and Gans and Zhou [4] study a variant with

fully cross-trained servers in which only one queue has a QoS-constraint. They use Markov

decision processes and Linear Programming to obtain (nearly) optimal control strategies.

Stanford and Grassmann [11] simplify the problem by using fixed, static priority policies

using matrix-geometric methods. Shumsky [10] divides the state space into regions, and uses

an approximate analysis for the conditional system performance within each region.

In this paper, we study and compare the optimal server allocation for the following three

related models: (1) each service facility is viewed in isolation having their dedicated servers,

(2) a system in which a chosen allocation cannot be changed during a service of a job, and (3)

a fully flexible system in which it is allowed to change the allocation during the service of a job.

The main difference between the existing literature and our work is that we show by studying

monotonicity properties of the dynamic programming relative value function that the optimal

strategy has appealing structural properties; it is the multi-dimensional analog of a non-

decreasing step function. This structure enables one to find optimal policies relatively easily

as compared to solving the dynamic program which suffers from computational tractability.

These methods will be illustrated in extensive numerical experiments.

The contributions of the paper are two-fold. First, on the methodological side we provide

a full characterization of the optimal policy of a high-dimensional system, which is numer-

2

ically intractable. This is quite exceptional, since there is no standard approach to derive

monotonicity properties of the relative value function for multi-dimensional systems other

than componentwise and directional monotonicity (see [12, 13] for examples, and [7] for an

overview of monotonicity results using event-based DP). This is the reason why the literature

overview mainly deals with models having only two service facilities [8, 2, 4], or use heuris-

tics [5, 6, 3, 11, 10] (sometimes even without constraints). Second, on the application side we

have readily available policies that are easy to implement in systems that are highly relevant

in practice. The comparison of the different models provides fundamental insights into the

operational flexibility that is needed in the design of these systems.

The paper is organized as follows. In Section 2 we formulate the models for the different

cases. Next, we derive the structure of the optimal policy in Section 3. In Section 4 we

illustrate these results by numerical experiments. Finally, in Section 5 we conclude the paper

and discuss topics for further research.

2 Model formulation

Consider N parallel service facilities at which jobs arrive according to a Poisson process with

rate λi for facility i, i = 1, . . . , N . There is a common pool of A ≥ 1 resources to serve the

jobs in the system. When upon arrival of a job at facility i there are no other jobs present,

the arriving job is taken into service. However, if there are other jobs present, then the

arriving job joins an infinite-capacity queue at facility i and awaits its service in an FCFS

manner. When facility i has been allocated ai resources, the job that is in service has a service

duration that is exponentially distributed with parameter µ(ai), where µ(.) is an increasing

function. In the ideal case one would have µ(ai) = µai for some fixed service rate µ. However,

in practice, there is communication overhead between multiple resources, and therefore the

function µ is typically sublinear. In some cases, resources can cache results so that its effect

is that the function µ is superlinear. After a job has received its service, it leaves the system.

Each facility provides a QoS-guarantee on the mean delay to the jobs served at that facility.

Although, in practice, the QoS-constraints are usually expressed in terms of tail probabilities,

we choose to express the constraints in terms of the mean sojourn time. This choice keeps the

already complex model tractable for analysis and serves as a first step towards the analysis

with tail probabilities as QoS-constraints. For this purpose, let Si denote the steady state

sojourn time of an arbitrary job at facility i. Then facility i is constrained by ESi ≤ αi for

a preset value of αi. There is a central decision maker that needs to allocate the resources

to the different facilities such that the QoS-constraints are met. This gives rise to a problem

in which the optimal allocation strategy needs to be determined. However, when facility i

uses ai resources a cost of ci(ai) is incurred by the system with ci an increasing function in

3

ai. Therefore, we are simultaneously interested in meeting the N constraints against lowest

average costs. The optimal solution provides the value of A for which the optimal allocation

strategy meets all the constraints, but fails to meet them when the optimal allocation strategy

under A − 1 resources is used.

We study the optimal number of resources A∗ from three different viewpoints. First, we

consider the case in which all service facilities operate independently of each other. In this

case, the resources are not shared among the different facilities but are dedicated to each

facility. Second, we study the case in which the resource pool is shared among different

facilities. However, we make the assumption that the resource allocation cannot be changed

when a job is served; only upon the start of the service of the next job the resource allocation

can be changed. This is typically the case in systems where resources need to be reserved

in advance. The third case deals with the fully flexible case in which the system can take

full advantage of the economies of scale by allowing the resource allocation to change even

during the service of a job. Since we can directly observe that going from case 1 to case 3

increases the flexibility, we can expect that A∗
1 ≥ A∗

2 ≥ A∗
3, with A∗

i the optimal number of

resources needed in case i for i = 1, 2, 3. However, it is of interest to determine how big the

gap between the three cases is and to study how the policy changes from case to case.

2.1 Service facilities with dedicated resources

In this subsection we assume that the service facilities do not share the resources among each

other and thus have their own dedicated resources. This makes service facility i independent

of the other facilities and turns the facility into a regular M/M/1 queue with arrival rate λi

and service rate µ(Ai) when Ai servers have been allocated. In that case it is well-known that

the expected sojourn time is given by 1/
(

µ(Ai) − λi

)

. Hence,

A∗
1 =

N
∑

i=1

A∗
i =

N
∑

i=1

⌈

µ−1
(

λi + 1/αi

)

⌉

,

with ⌈x⌉ the smallest integer greater than or equal to x.

2.2 Service facilities with limited resource sharing

In this subsection we focus on the case in which service facilities are allowed to share resources

among each other. However, resources become free to be reassigned only at service completion

instants. Hence, we make the assumption that the resource allocation for a service facility can

only be changed upon the start of the service of a new job. Hence adding/removing resources

during a service is not allowed. To study this case, we cast the problem as a Markov decision

problem.

4

Define the state space X = {(x1, . . . , xN , a1, . . . , aN) ∈ NN
0 ×NN

0

∣

∣

∑N
i=1 ai ≤ A}, where

(x, a) ∈ X denotes that there are xi customers at facility i with ai resources allocated to

it for i = 1, . . . , N , where ai > 0 also means that a service is ongoing and ai = 0 means

that no job is in service at facility i. When the system is in state (x, a) ∈ X the decision

maker can choose actions from the action space A(x,a) = {(b1, . . . , bn) ∈ NN
0

∣

∣

∑N
i=1(ai + bi) ≤

A and aibi = 0 for i = 1, . . . , N}, where action b ∈ A(x,a) denotes the number of resources

that one can allocate. Here, the restriction aibi = 0 models the fact that when a service is

ongoing (i.e., ai > 0), the service allocation cannot be changed (i.e., bi = 0). However, after a

service completion at facility i, we have that ai = 0 and hence an allocation bi > 0 is allowed.

The transition rates when the system is in state (x, a) ∈ X and action b ∈ A(x,a) is chosen

are given by

p
(

(x, a), b, (x′, b′)
)

=

λi, x′ = x + ei, b
′ = a + b for i = 1, . . . , N,

µ(ai + bi), x′ = [x − ei]
+, b′ = a + b − aiei − biei for i = 1, . . . , N,

0, otherwise,

with ei the zero vector with a one at the i-th entry, and [x]+ the componentwise maximum

(max{x1, 0}, . . . ,max{xN , 0}). The first line in the expression above models arrivals, the

second line models service completions, and the third line prohibits any other state transitions.

Note that when a service completion takes place, the resource allocation for that facility is

set to zero. Finally, when the system is in state (x, a) ∈ X and action b ∈ A(x,a) has been

chosen, the direct costs c
(

(x, a), b
)

=
∑N

i=1 ci(ai + bi). The quadruple (X ,A, p, c) completely

describes the Markov decision process.

Define a decision rule π(x,a) as a probability distribution on A(x,a), i.e., when the system

is in state (x, a) ∈ X , the decision maker chooses action b ∈ A(x,a) with probability π(x,a)(b).

Let the policy π denote the collection of decision rules for all states. Let uπ
t (x, a) denote

the total expected costs up to time t when the system starts in state (x, a) under policy π.

Note that for any stable and work-conserving policy, the Markov chain satisfies the unichain

condition, so that the average expected costs g(π) = limt→∞ uπ
t (x, a)/t is independent of the

initial state (x, a) (see Proposition 8.2.1 of Puterman [9]). The goal is to find a policy π∗ that

minimizes the long-term average costs under the constraints, thus

min
π

g(π) subject to ESi ≤ αi for i = 1, . . . , N.

Note that due to Little’s Law the number of jobs Li in facility i can be related to the

sojourn time Si in facility i by ELi = λiESi. Using this knowledge, the constrained Markov

decision problem can be rewritten as an unconstrained Markov decision problem using La-

grange multipliers (see Section 12.6 of Altman [1]). To this end, we uniformize the sys-

5

tem (see Section 11.5 of Puterman [9]). Therefore, assume that the uniformization constant
∑N

i=1 λi +Nµ(A) = 1; we can always get this by scaling. Uniformizing is equivalent to adding

dummy transitions (from a state to itself) such that the rate out of each state is equal to

1; then we can consider the rates to be transition probabilities. Now, let V (x, a) be a real-

valued function defined on the state space. This function will play the role of the relative

value function, i.e., the asymptotic difference in total costs that results from starting the

process in state (x, a) instead of some reference state. The long-term average optimal actions

are a solution of the optimality equation (in vector notation) g + V = TV , where T is the

dynamic programming operator acting on V defined as follows

TV (x, a) =
N

∑

i=1

τi

xi

λi

+
N

∑

i=1

ci(ai) +
N

∑

i=1

λiH(x + ei, a) +
N

∑

i=1

µ(ai)H([x − ei]
+, a − aiei)

+
(

1 −
N

∑

i=1

λi −
N

∑

i=1

µ(ai)
)

V (x, a)

=
N

∑

i=1

τi

xi

λi

+
N

∑

i=1

ci(ai) +
N

∑

i=1

λiH(x + ei, a) +
N

∑

i=1

µ(ai)H([x − ei]
+, a − aiei)

+
(

Nµ(A) −
N

∑

i=1

µ(ai)
)

V (x, a),

(1)

where τi are Lagrange multipliers, and the function H is given by

H(x, a) = min
b∈A(x,a)

{V (x, a + b)}.

The first term in the dynamic programming operator corresponds to the QoS-constraints of

the several facilities. The second term represents the cost of using a resources. The third term

is involved with the decision making upon arrival of a job. The fourth term deals with the

decision making when a job has finished its service. The final term is the dummy term due

to uniformization. Note that the decision making is modeled uniformly through the function

H.

Note that when facility i has no holding costs xi/λi, then no resources will be allocated to

facility i, since it does not incur any costs from the buildup in jobs. Therefore, when τ = ei,

i.e., τi = 1 and τj = 0 for j 6= i, the optimal strategy will not allocate any resources to service

facility j 6= i. Hence, one can find a value zi such that the QoS-constraint for facility i with

τ = ziei is met under the assumption that there are infinitely many resources. By repeating

this procedure for all facilities, one finds a box
∏n

i=1[0, zi] in which the value of τ should lie

under the optimal allocation that satisfies all constraints. Now, we can divide this box into a

grid G which serve as our search space for τ . Then the following approach will find A∗
2.

6

1. Set A := A∗
1.

2. Solve the Markov decision process for all values of τ ∈ G until all QoS-constraints are

met or all grid points have been searched.

3. If for the value of τ all constraints are met, set A := A − 1 and return to step 2.

4. Return A∗
2 := A + 1.

Note that in Step 2 of the algorithm, one needs to solve an infinite-dimensional Markov

decision problem. In our numerical experiments, we truncate the state space such that we

get a finite-dimensional problem that is numerically tractable. In doing so, the truncation is

done such that the difference in the outcomes do not differ significantly when the state space

is somewhat enlarged by shifting the truncation boundary. We will illustrate this algorithm

in Section 4.

The algorithm to find A∗
2 relies on evaluating the Markov decision problem for all τ ∈ G.

One might formulate an unconstrained Markov decision problem, in which costs are associated

with the queue length, in order to circumvent these evaluations. However, this would lead to

formulation (1) with τi = λi for all i. Since the alternative unconstrained model is a special

case of (1), the structural results that are obtained in the next section for the constrained

Markov decision problem also hold for the unconstrained problem.

2.3 Service facilities with full flexibility in resource sharing

In this subsection we study the case in which service facilities have full flexibility in the

resource allocation policies. Thus, the resource facilities can change the resource allocation

during a service of a job, and do not have to wait for the job to finish. Since our system has

Poisson arrivals and exponential service times, such a situation need only occur at moments

an event occurs. Therefore, the only difference with the previous case is that this system

allows to change the allocation at arrival instants.

In this case, the state space is given by X = NN
0 , where x ∈ X denotes that there

are xi customers at facility i for i = 1, . . . , N . The action space is given by Ax = {a ∈NN
0

∣

∣

∑N
i=1 ai ≤ A}, where action a ∈ Ax denotes the number of resources that one can

allocate in state x ∈ X . The transition rates when the system is in state x ∈ X and action

a ∈ Ax is chosen are given by

p(x, a, x′) =

λi, x′ = x + ei for i = 1, . . . , N,

µ(ai), x′ = [x − ei]
+ for i = 1, . . . , N,

0, otherwise.

7

Finally, when the system is in state x ∈ X and action a ∈ Ax has been chosen, the direct costs

are c(x, a) =
∑N

i=1 ci(ai). The tuple (X ,A, p, c) completely describes the Markov decision

process for this problem.

Let V (x) denote the relative value function in this case. Then, the dynamic programming

operator acting on V is defined as follows:

TV (x) =

N
∑

i=1

τi

xi

λi

+

N
∑

i=1

λiV (x + ei) + min
a∈Ax

[N
∑

i=1

µ(ai)V ([x − ei]
+)

+
(

1 −
N

∑

i=1

λi −
N

∑

i=1

µ(ai)
)

V (x) +
N

∑

i=1

ci(ai)

]

=

N
∑

i=1

τi

xi

λi

+

N
∑

i=1

λiV (x + ei) + min
a∈Ax

[N
∑

i=1

µ(ai)V ([x − ei]
+)

+
(

Nµ(A) −
N

∑

i=1

µ(ai)
)

V (x) +
N

∑

i=1

ci(ai)

]

.

(2)

Note that the algorithm described in the previous subsection also applies to this case to obtain

A∗
3. In fact, in step 1 one can choose A := A∗

2 for faster convergence.

3 Structural properties of the optimal policy

In the previous section, we described the three models and a solution technique to obtain

the optimal policy. However, the optimal policy also possesses structural properties that can

speed up the solution technique. Instead of searching a full grid for the optimal solution, the

structural properties can reduce the search space considerably. Therefore, in this section, we

focus on the structural properties of the described systems.

3.1 Allocation strategy for service facilities with dedicated resources

In case the service facilities have their own dedicated servers, each facility i should be equipped

with A∗
i servers (as defined in Section 2.1) to meet the QoS constraint. Since the servers

are not shared, the optimal resource allocation strategy is quite simple. When there are

x > 0 customers at the facility, A∗
i servers are allocated, and when x = 0 then no servers

are allocated. This policy is also known as a bang-bang control policy (i.e., everything or

nothing).

3.2 Allocation strategy for service facilities with limited resource sharing

The structure of the optimal policy for a service facility with limited resource sharing is more

intricate than the case with dedicated resources. In order to study the structure, in principle,

8

one needs to solve the optimality equation g + V = TV with TV given by Equation (1).

However, the optimality equation is hard to solve analytically in practice. Alternatively, the

optimal actions can also be obtained by recursively defining Vl+1 = TVl for arbitrary V0. For

l → ∞, the maximizing actions converge to the optimal ones (for existence and convergence of

solutions and optimal policies we refer to Chapter 8 of Puterman [9]). Therefore, we consider

the backward recursion equation that is given by

Vn+1(x, a) =

N
∑

i=1

τi

xi

λi

+

N
∑

i=1

ci(ai) +

N
∑

i=1

λiHn(x + ei, a) +

N
∑

i=1

µ(ai)Hn([x − ei]
+, a − aiei)

+
(

Nµ(A) −
N

∑

i=1

µ(ai)
)

Vn(x, a),

(3)

where the function Hn is given by

Hn(x, a) = min
b∈A(x,a)

{Vn(x, a + b)}.

For ease of notation in the proofs in the sequel, we also define argHn(x, a) by

argHn(x, a) = arg minb∈A(x,a)
{Vn(x, a + b)}.

The backward recursion equation allows us to prove structural properties of the relative value

function V through induction on n in Vn. It is clear that the objective of the system is

to strive for the fewest number of customers in the system as more customers mean higher

waiting costs. Therefore, it is intuitive that V is increasing in each component of x, i.e.,

adding customers to facility i results in higher costs for the system. The following lemma

makes this statement more precise.

Lemma 1 (increasingness): The relative value function V is increasing in the number of

customers, i.e.,

V (x + ej , a) − V (x, a) ≥ 0,

for all x ∈ X for some a with
∑N

i=1 ai ≤ A, and for j = 1, . . . , N .

Proof : The proof is by induction on n in Vn. Define V0(x, a) = 0 for all states x and

actions a. Then, clearly, V0(x, a) is increasing in all components of x. Now, assume that

Vn(x + ej , a) − Vn(x, a) ≥ 0 for some n ∈ N, and for j = 1, . . . , N . Now, we prove that

9

Vn+1(x, a) satisfies the increasingness property as well. Therefore, fix j ∈ {1, . . . , N}, then

Vn+1(x + ej , a) − Vn+1(x, a) =
τj

λj

+

N
∑

i=1

λi

[

Hn(x + ej + ei, a) − Hn(x + ei, a)
]

+
N

∑

i=1

µ(ai)
[

Hn([x + ej − ei]
+, a − aiei) − Hn([x − ei]

+, a − aiei)
]

+
[

Nµ(A) −
N

∑

i=1

µ(ai)
][

Vn(x + ej , a) − Vn(x, a)
]

.

(4)

Note that the first term (τj/λj) and the last term with Vn(x + ej , a) − Vn(x, a) are positive.

Hence, based on the induction hypothesis, we have

Vn+1(x + ej , a) − Vn+1(x, a) ≥
N

∑

i=1

λi

[

Hn(x + ej + ei, a) − Hn(x + ei, a)
]

+

N
∑

i=1

µ(ai)
[

Hn([x + ej − ei]
+, a − aiei) − Hn([x − ei]

+, a − aiei)
]

.

(5)

Let b = argHn(x + ej + ei, a) and c = argHn([x + ej − ei]
+, a − aiei). Then,

Vn+1(x + ej , a) − Vn+1(x, a) ≥
N

∑

i=1

λi

[

Vn(x + ej + ei, a + b) − Vn(x + ei, a + b)
]

+

N
∑

i=1

µ(ai)
[

Vn([x + ej − ei]
+, a − aiei + c) − Vn([x − ei]

+, a − aiei + c)
]

≥ 0.

(6)

Clearly, the inequality above holds because of the induction hypothesis. Hence, we conclude,

by taking the limit as n → ∞, that V (x, a) is increasing in xj for all j = 1, . . . , N .

Lemma 1 shows that the costs that the system incurs increase as the number of customers

in the system increases. In fact, more can be said about the rate at which the costs increase;

the increase in costs is higher when more customers are in the system. Hence, this implies

that the relative value function is a convex function. In the sequel we will show that this is

indeed true. We do this by studying the case with one dimension, e.g., N = 1, first. Note

that we will adjust the notation for N = 1 straightforwardly by omitting the indices of all

variables. However, before doing so, we need two preparative lemma’s.

Lemma 2: The value function satisfies the following property:

H(x + 1, 0) − H(x, 0) − V (x, 0) + V (x − 1, 0) < 0,

for all x ≥ 1.

10

Proof : Let x ≥ 1. Then

V (x, 0) − V (x − 1, 0) =
τ

λ
+ λ

[

H(x + 1, 0) − H(x, 0)
]

+ µ(A)
[

V (x, 0) − V (x − 1, 0)
]

.

Since λ + µ(A) = 1, the equation above implies

λ
[

V (x, 0) − V (x − 1, 0)
]

=
τ

λ
+ λ

[

H(x + 1, 0) − H(x, 0)
]

.

Therefore,

λ
[

H(x + 1, 0) − H(x, 0) − V (x, 0) + V (x − 1, 0)
]

= −τ

λ
.

Thus, H(x + 1, 0) − H(x, 0) − V (x, 0) + V (x − 1, 0) < 0, since −τ/λ < 0.

Lemma 2 is almost the inequality that represents convexity of the value function. This

would be the case if H were to be replaced by V . However, for the proof of convexity, we

need three additional properties to hold as well. The following lemma makes these properties

explicit.

Lemma 3 (convexity): For N = 1, the following properties hold

(i) V (x + 1, a) − 2V (x, a) + V (x − 1, a) ≥ 0 for all x ≥ 1 and a ≥ 0,

(ii) V (x, a) − V ([x − 1]+, a) − H([x − 1]+, 0) + H([x − 2]+, 0) ≥ 0 for all x ≥ 0 and a > 0,

(iii) argH(x, 0) > 0 for all x ≥ 2, and

(iv) H(x + 1, 0) − 2H(x, 0) + H(x − 1, 0) ≥ 0 for all x ≥ 1.

Proof : The proof is by induction on n in Vn. Define V0(x, a) = 0 for all states x and actions

a. Then, clearly, V0(x, a) satisfies all properties (in case (iii) there is an optimal action that

satisfies the property). Now suppose that the properties hold for some n ∈ N. We prove that

the properties also hold for n + 1. Therefore, we start with convexity first.

Property (i). Let x ≥ 1 and suppose that a = 0. Then,

Vn+1(x + 1, 0) − 2Vn+1(x, 0) + Vn+1(x − 1, 0)

= λ
[

Hn(x + 2, 0) − 2Hn(x + 1, 0) + Hn(x, 0)
]

+

µ(A)
[

Vn(x + 1, 0) − 2Vn(x, 0) + Vn(x − 1, 0)
]

≥ λ
[

Hn(x + 2, 0) − 2Hn(x + 1, 0) + Hn(x, 0)
]

≥ 0.

(7)

The equality following by expanding Vn+1 into Vn. The first inequality follows by using

property (i) of the induction hypothesis. The last inequality follows by using property (iv) of

the induction hypothesis.

11

Now let x ≥ 1 and suppose that a > 0. Then

Vn+1(x + 1, a) − 2Vn+1(x, a) + Vn+1(x − 1, a)

= λ
[

Vn(x + 2, a) − 2Vn(x + 1, a) + Vn(x, a)
]

+

µ(a)
[

Hn(x, 0) − 2Hn([x − 1]+, 0) + Hn([x − 2]+, 0)
]

+
[

µ(A) − µ(a)
][

V (x + 1, a) − 2V (x, a) + V (x − 1, a)
]

≥ µ(a)
[

Hn(x, 0) − 2Hn([x − 1]+, 0) + Hn([x − 2]+, 0)
]

≥ 0.

(8)

The equality following by expanding Vn+1 into Vn. The first inequality follows by using

property (i) of the induction hypothesis. The last inequality follows by using property (iv)

of the induction hypothesis. Thus, for all x ≥ 1 and a ≥ 0, Vn+1(x + 1, a) − 2Vn+1(x, a) +

Vn+1(x − 1, a) ≥ 0.

Property (ii). Let x ≥ 0 and suppose a > 0. Then, based on the optimality equation, we

have

Vn+1(x, a) − Vn+1([x − 1]+, a) =
τ

λ
+ λ

[

Vn+1(x + 1, a) − Vn+1(x, a)
]

+

µ(a)
[

Hn+1([x − 1]+, 0) − Hn+1([x − 2]+, 0)
]

+
[

µ(A) − µ(a)
][

Vn+1(x, a) − Vn+1([x − 1]+, a)
]

.

Recall that the uniformization constant λ+µ(A) = 1. Thus, the equation above is equivalent

to

λ
[

Vn+1(x, a) − Vn+1([x − 1]+, a)
]

=
τ

λ
+ λ

[

Vn+1(x + 1, a) − Vn+1(x, a)
]

+ µ(a)
[

Hn+1([x − 1]+, 0) − Hn+1([x − 2]+, 0)
]

− µ(a)
[

Vn+1(x, a) − Vn+1([x − 1]+, a)
]

.

The equation above implies that

µ(a)
[

Vn+1(x, a) − Vn+1([x − 1]+, a) − Hn+1([x − 1]+, 0) + Hn+1([x − 2]+, 0)
]

=
τ

λ
+ λ

[

Vn+1(x + 1, a) − 2Vn+1(x, a) + Vn+1([x − 1]+, a)
]

.

Hence, by using property (i) of the induction hypothesis, the righthand side of the equation is

non-negative. Hence, Vn+1(x, a)−Vn+1([x−1]+, a)−Hn+1([x−1]+, 0)+Hn+1([x−2]+, 0) ≥ 0.

Property (iii). We prove the property by means of contradiction. Assume that there exists

a x ≥ 2 such that argH(x, 0) = 0. This, by definition, implies that Vn+1(x, 0) = Hn+1(x, 0).

Therefore,

Hn+1(x, 0) − Hn+1(x − 1, 0) − Vn+1(x − 1, 0) + Vn+1(x − 2, 0)

≥ Vn+1(x, 0) − 2Vn+1(x − 1, 0) + Vn+1(x − 2, 0)

≥ 0.

12

The first inequality follows by taking action a = 0 in the second term Hn+1(x − 1, 0). The

second inequality follows by property (i) of the induction hypothesis. However, based on

Lemma 2 we know that Hn+1(x, 0) − Hn+1(x − 1, 0) − Vn+1(x − 1, 0) + Vn+1(x − 2, 0) < 0.

Therefore, we conclude that argH(x, 0) > 0 for x ≥ 2.

Property (iv). Let x ≥ 1. Since x − 1 ≥ 0, we have x + 1 ≥ 2. Thus by using property (iii)

of the induction hypothesis, we have a∗(x) := argH(x, 0) > 0. Therefore,

Hn+1(x + 1, 0) − 2Hn+1(x, 0) + Hn+1(x − 1, 0)

≥ Vn+1(x + 1, a∗(x + 1)) − Vn+1(x, a∗(x + 1)) − Hn+1(x, 0) + Hn+1(x − 1, 0)

≥ 0.

The first inequality follows by taking action a∗(x + 1) in Hn+1(x, 0). The second inequality

follows by property (ii) of the induction hypothesis.

We conclude the proof by taking the limit as n → ∞.

Lemma 3 shows that the relative value function is convex. However, in proving this one

needed three additional properties simultaneously in the proof by induction (property (i)

depends on (iv), which depends on (ii) and (iii)). Now, we are ready to study monotonicity

properties of the optimal policy. The convexity of the relative value function is crucial in this

step. Due to the convexity, we have that the optimal policy is a step function. The following

theorem formalizes this statement.

Theorem 4 (monotonicity): For N = 1, let a∗(x) := argH(x, 0) for all x ≥ 0. If the service

rate µ(a) and cost function c(a) are increasing functions in a, then a∗(x) is an increasing

function in x.

Proof : For x = 0, it is clear that a∗(0) = 0, since there are no customers to serve. For

x = 1, we know that when a∗(1) = 0, then a∗(2) > 0 [property (iii) of Lemma 3]. Hence,

a∗(2) > a∗(1) ≥ a∗(0). Now, for x ≥ 1 and a > 0 it suffices to show that the relative value

function satisfies an extension of submodularity, namely

[V (x, a + k) − V (x, a)] − [V (x + 1, a + k) − V (x + 1, a)] ≥ 0, (9)

for all k ≥ 0. If this property holds, then since V (x+1, a∗(x+1)+k)−V (x+1, a∗(x+1)) ≥ 0, we

have that V (x, a∗(x+1)+k)−V (x, a∗(x+1)) ≥ V (x+1, a∗(x+1)+k)−V (x+1, a∗(x+1)) ≥ 0.

Hence, this implies that the minimizing action a∗(x) in state x, satisfies a∗(x) ≤ a∗(x + 1).

We prove the submodularity property by induction on n in Vn. Let V0(x, a) = 0. Clearly,

the submodularity property holds. Now assume that the property holds for for some n ∈ N
13

and for all x ≥ 0. We proceed to prove that Vn+1(x, a) satisfies the property as well. Therefore,

fix x ≥ 1 and a > 0, then

V n+1(x, a + k) − Vn+1(x, a) − Vn+1(x + 1, a + k) + Vn+1(x + 1, a)

= λ
[

Vn(x + 1, a + k) − Vn(x + 1, a) − Vn(x + 2, a + k) + Vn(x + 2, a)
]

+
[

µ(a + k) − µ(a)
][

Hn(x − 1, 0) − Hn(x, 0)
]

+

µ(A)
[

Vn(x, a + k) − Vn(x, a) − Vn(x + 1, a + k) + Vn(x + 1, a)
]

−

µ(a + k)Vn(x, a + k) + µ(a)Vn(x, a) +

µ(a + k)Vn(x + 1, a + k) − µ(a)Vn(x + 1, a)

= λ
[

Vn(x + 1, a + k) − Vn(x + 1, a) − Vn(x + 2, a + k) + Vn(x + 2, a)
]

+
[

µ(a + k) − µ(a)
][

Hn(x − 1, 0) − Hn(x, 0)
]

+

µ(A)
[

Vn(x, a + k) − Vn(x, a) − Vn(x + 1, a + k) + Vn(x + 1, a)
]

−
[

µ(a + k) − µ(a)
]

Vn(x, a + k) − µ(a)Vn(x, a + k) + µ(a)Vn(x, a) +
[

µ(a + k) − µ(a)
]

Vn(x + 1, a + k) + µ(a)Vn(x + 1, a + k) − µ(a)Vn(x + 1, a)

= λ
[

Vn(x + 1, a + k) − Vn(x + 1, a) − Vn(x + 2, a + k) + Vn(x + 2, a)
]

+
[

µ(A) − µ(a)
][

Vn(x, a + k) − Vn(x, a) − Vn(x + 1, a + k) + Vn(x + 1, a)
]

+
[

µ(a + k) − µ(a)
][

Vn(x + 1, a + k) − Vn(x, a + k) − Hn(x, 0) + Hn(x − 1, 0)
]

.

(10)

The first equality follows from expanding Vn+1 into Vn. The second equality follows from

adding and subtracting µ(a)Vn(x, a + k) and µ(a)Vn(x + 1, a + k). The third equality follow

from standard algebraic manipulations. Based on the induction hypothesis, we have

V n+1(x, a + k) − Vn+1(x, a) − Vn+1(x + 1, a + k) + Vn+1(x + 1, a)

≥
[

µ(a + k) − µ(a)
][

Vn(x + 1, a + k) − Vn(x, a + k) − Hn(x, 0) + Hn(x − 1, 0)
]

.
(11)

By using property (ii) of Lemma 3, we obtain

Vn(x + 1, a + k) − Vn(x, a + k) − Hn(x, 0) + Hn(x − 1, 0) ≥ 0. (12)

Thus, we have shown that [V (x, a + k) − V (x, a)] − [V (x + 1, a + k) − V (x + 1, a)] ≥ 0.

Consequently, this completes the proof as this property implies that a∗(x) is an increasing

function in x.

Theorem 4 shows that in the one-dimensional case, i.e., N = 1, the optimal policy a∗(x) is

a step function in the variable x. The multi-dimensional case with arbitrary N has the same

structure. The proof of this statement fundamentally boils down to the one-dimensional case.

The following theorem shows the argument.

14

Theorem 5 (step function): Consider an arbitrary number N ∈ N of queues, and let

a∗i (x, a) := [argH(x, a)]i = [arg minb∈A(x,a)
{Vn(x, a + b)}]i. If the service rate µ(a) and cost

function c(a) are increasing functions in a, then a∗i (x, a) is an increasing function in xi.

Proof : Fix (x, a) ∈ X and suppose that (x + ei, a) ∈ X as well. If a∗(x, a) is such that
∑N

n=1

(

an + a∗n(x, a)
)

< A, then there is spare capacity to assign. Hence, in state (x + ei, a)

all queues except queue i need no more capacity, since the number of customers in their

system did not increase. Hence, queue i can be viewed in isolation due to the spare capacity.

Therefore, Theorem 4 applies and a∗i (x, a) ≤ a∗i (x + ei, a). In case
∑N

n=1

(

an + a∗n(x, a)
)

= A,

there is no spare capacity left. Now, there are two cases. Either the performance of queue

i becomes so stringent that capacity is taken away from a different queue, or the capacity

allocation does not change at all. In both cases we have a∗i (x, a) ≤ a∗i (x + ei, a).

3.3 Allocation strategy for service facilities with full flexibility in resource

sharing

In this subsection, we shall adopt the same techniques in deriving the structure of the optimal

policy as in the previous section, but now for the case of service facilities with full flexibility

in resource sharing. Therefore, we focus on the main theorems that characterize the structure

of the policy, while we move the lengthiest proof to Appendix A.

We start by rewriting Equation (2) for the fully flexible system as a set of backward

recursion equations. This set of equations is given by

Vn+1(x) =

N
∑

i=1

τi

xi

λi

+

N
∑

i=1

λiVn(x + ei) + min
a∈Ax

T n
a (x), (13)

where T n
a (x) is given by

T n
a (x) =

N
∑

i=1

µ(ai)Vn([x − ei]
+) +

[

Nµ(A) −
N

∑

i=1

µ(ai)
]

Vn(x) +

N
∑

i=1

ci(ai).

Rewriting the optimality equations in this way has its advantage in showing structural

properties of the relative value function V . We start by showing that the relative value func-

tion is increasing in all components of the state. The following lemma makes this statement

more precise.

Lemma 6 (increasingness): The relative value function V (x) is increasing in all compo-

nents of the state x, i.e., V (x + ej) − V (x) ≥ 0 for j = 1, . . . , N .

Proof : The proof is by induction on n in Vn(x). Let V0(x) = 0 for all states x ∈ X .

Then, clearly, V0(x) satisfies the increasingness property. Now, assume Vn(x) is an increasing

15

function in x. We proceed to prove that Vn+1(x) is also increasing in x. First, we have

Vn+1(x + ej) − Vn+1(x) =
τj

λj

+
N

∑

i=1

λi

[

Vn(x + ei + ej) − Vn(x + ei)
]

+ min
a∈Ax

{

T n
a (x + ej)

}

− min
a∈Ax

{

T n
a (x)

}

≥ min
a∈Ax

{

T n
a (x + ej)

}

− min
a∈Ax

{

T n
a (x)

}

.

The inequality holds because the first term is non-negative, and the second expression between

the brackets is also non-negative due to the induction hypothesis. Let a∗ = arg mina∈Ax
{T n

a (x+

ej)}. Then we have

Vn+1(x + ej) − Vn+1(x) ≥T n
a∗(x + ej) − min

a∈Ax

{

T n
a (x)

}

≥T n
a∗(x + ej) − T n

a∗(x)

=

N
∑

i=1

µ(a∗i)
[

Vn(x − ei + ej) − Vn(x − ei)
]

+
[

Nµ(A) −
N

∑

i=1

µ(a∗i)
][

Vn(x + ei) − Vn(x)
]

≥0.

Therefore, by induction, we have shown that Vn+1(x + ej) − Vn+1(x) ≥ 0. Hence, by taking

the limit as n approaches infinity, we get that V (x) is increasing in xj for j = 1, . . . , N .

We are now ready to pose our main theorem for the model with full flexibility. The

theorem characterizes the structure of the optimal policy to be a non-decreasing function

in the components of the state, i.e., if the number of customers in queue i increases, then

the allocation of the number of servers to queue i is non-decreasing. The following theorem

provides a rigorous proof to this statement.

Theorem 7: Consider an arbitrary number N ∈ N of queues, and let

a∗i (x) : =
[

arg min
a∈Ax

{

Ta(x)
}]

i

=
[

arg min
a∈Ax

{

N
∑

i=1

µ(ai)V ([x − ei]
+) +

[

Nµ(A) −
N

∑

i=1

µ(ai)
]

V (x) +
N

∑

i=1

ci(ai)
}]

i
.

If the service rate µ(a) and cost function c(a) are increasing functions in a, then a∗i (x) is an

increasing function in xi, while a∗j (x) is non-increasing in xi for j 6= i.

Proof : Fix x ∈ X and suppose that x+ei ∈ X as well. If a∗(x) is such that
∑N

i=1 a∗i (x) < A,

then there is sufficient spare capacity to assign. Hence, in state x+ei all queues except queue i

16

need no more capacity, since the number of customers in their system did not increase. Hence,

queue i can be viewed in isolation due to the spare capacity. The queue in isolation satisfies

that conditions of Theorem 1 of [14]. From this theorem it follows that a∗i (x + ei) ≥ a∗i (x)

and a∗j(x + ei) = a∗j(x) for j 6= i.

Now suppose that
∑N

i=1 a∗i (x) = A, i.e., all servers have been allocated. Denote a =

a∗(x + ei) and b = a∗(x). Note that Ta(x) − Tb(x) ≥ 0 and Ta(x + ei) − Tb(x + ei) ≤ 0.

Therefore, Z = Ta(x) − Tb(x) − Ta(x + ei) + Tb(x + ei) ≥ 0. Since

Ta(x) − Tb(x) =
[

N
∑

j=1

cj(aj) −
N

∑

j=1

cj(bj)
]

+
[

µ(bi) − µ(ai)
][

V (x) − V (x − ei)
]

+

N
∑

j 6=i

[

µ(bj) − µ(aj)
][

V (x) − V (x − ej)
]

,

(14)

and

Ta(x + ei) − Tb(x + ei) =
[

N
∑

j=1

cj(aj) −
N

∑

j=1

cj(bj)
]

+
[

µ(bi) − µ(ai)
][

V (x + ei) − V (x)
]

+

N
∑

j 6=i

[

µ(bj) − µ(aj)
][

V (x + ei) − V (x + ei − ej)
]

,

(15)

we have

Z =Ta(x) − Tb(x) − Ta(x + ei) + Tb(x + ei)

=
[

µ(ai) − µ(bi)
][

V (x − ei) − 2V (x) + V (x + ei)
]

+

N
∑

j 6=i

[

µ(aj) − µ(bj)
][

V (x + ei) − V (x + ei − ej) − V (x) + V (x − ej)
]

.

(16)

Now, we proceed to prove the structure of the policy. We distinguish between four cases:

1) aj > bj for j = 1, . . . , N ,

2) ai < bi and aj > bj for j 6= i,

3) aj < bj for j = 1, . . . , N , and

4) ai ≥ bi and aj ≤ bj for j 6= i.

Note that case 1 cannot occur, since we assumed that our starting point was a state in which

all capacity was assigned already. Hence, one cannot assign even more capacity. Case 2

and 3 do not occur either. Intuitively, assigning fewer servers to queue i while increasing the

number of jobs in queue i leads to degraded performance. To improve readability, the rigorous

proofs are given by Lemma 8 and Lemma 9 in the appendix. The proofs are by contradiction:

assuming that the statement of case 2 or 3 are true, we derive that Z ≤ 0. However, above

we have shown that Z ≥ 0. Knowing that Z = 0 cannot occur, we are left with case 4, which

completes the proof.

17

4 Numerical experiments

In this section, we will illustrate the monotonicity results of the previous sections. First, we

will show how variability in the time constraints affects the processor allocation for the three

different models: I) service facilities with dedicated resources, II) service facilities with limited

resource sharing, and III) service facilities with full flexibility in resource sharing. Then,

we will study the differences between the optimal policies for the three different models, in

particular, we will study the effect of having more flexibility in the system versus the reduction

in the number of allocated processors. We will run our experiments under two systems that

consist of 2 and 3 facilities, respectively. The parameters used in the experiment are defined

as follows:

• λi: the arrival rate at facility i;

• µ(ai): the service rate of using ai processors at facility i;

• ci(ai): the costs of using ai processors at facility i;

• αi: the time constraint of facility i.

First, we show the experimental results of the system consisting of 2 facilities. The parameter

values are set as follows:

• λ1 = λ2 = 0.5;

• µ(ai) =
√

aiµ and µ(ai) = a2
i µ/5 with µ = 1.2;

• ci(ai) = ai, ci(ai) = a2
i , and ci(ai) =

√
ai;

• α1 = 0.5 and α2 ∈ {0.25, 0.35, 0.5, 0.75, 1, 1.25, 1.5}.

Based on these values, the minimum number of processors required by the system to meet all

time constraints of the different facilities are illustrated in Table 1(a) and 1(b). From these

tables, we observe that 1) when the time constraint is less strict, the minimum number of

processors required is non-increasing, and 2) we see that as the system is more flexible, the

number of processors needed decreases.

The properties stated above also hold for the experiment with 3 facilities, and its results

are shown in Table 1(c) and 1(d). The results of the system with 3 facilities are based on the

parameter values below.

• λ1 = λ2 = λ3 = 0.5;

• µ(ai) =
√

aiµ and µ(ai) = a2
i µ/5 with µ = 1.2;

18

(a) System with two facilities and µ(ai) =
√

aiµ with µ = 1.2.

α2 0.25 0.35 0.5 0.75 1 1.25 1.5

dedicated resources 20 13 10 8 7 7 6

limited resource sharing 16 10 6 6 6 6 5

full resource sharing 15 9 6 5 5 5 5

(b) System with two facilities and µ(ai) = a2
i µ/5 with µ = 1.2.

α2 0.25 0.35 0.5 0.75 1 1.25 1.5

dedicated resources 9 8 8 7 7 7 7

limited resource sharing 5 4 4 4 4 4 4

full resource sharing 5 4 4 4 4 4 4

(c) System with three facilities and µ(ai) =
√

aiµ with µ = 1.2.

α3 0.25 0.35 0.5 0.75 1 1.25 1.5

dedicated resources 25 18 15 13 12 12 11

limited resource sharing 17 11 8 7 7 7 7

full resource sharing 15 9 6 6 6 6 6

(d) System with three facilities and µ(ai) = a2
i µ/5 with µ = 1.2.

α3 0.25 0.35 0.5 0.75 1 1.25 1.5

dedicated resources 13 12 12 11 11 11 11

limited resource sharing 5 5 4 4 4 4 4

full resource sharing 5 5 4 4 4 4 4

Table 1: Minimum number of processors required to meet service level constraints.

• ci(ai) = ai, ci(ai) = a2
i , ci(ai) =

√
ai;

• α1 = α2 = 0.5, and α3 ∈ {0.25, 0.35, 0.5, 0.75, 1, 1.25, 1.5}.

From Table 1 we observe that the difference in the required number of processors between

the system with dedicated servers and the system with limited resource sharing is quite large

(models I versus model II). However, the system with limited and full resource sharing have

quite similar performance (model II versus model III). Note that we did not specify the

cost functions that have been used in these experiments. This is due to the fact that the

calculation of the minimum required number of processors A∗
i , such that the time constraints

are satisfied, is independent of the cost functions.

Now we focus our attention to the structure of the optimal resource allocation policy for a

system consisting of 2 and 3 facilities, respectively. To illustrate the structure of the policies,

we vary the structure of the functions for ci(·), and µ(·) as given in Table 2. We start by

19

experiment 1 ci(ai) = ai µ(ai) =
√

aiµ

experiment 2 ci(ai) = a2
i µ(ai) =

√
aiµ

experiment 3 ci(ai) =
√

ai µ(ai) = a2
i µ/5

Table 2: Parameter choices for ci(·) and µ(·) with µ = 1.2.

showing the experimental results of the system with 2 facilities. The parameter values used

in the three experiments are set as follows.

• λ1 = λ2 = 0.5;

• α1 = 0.5 and α2 = 0.25.

In model I of service facilities with dedicated resources, the number of resources A∗
i allocated

to facility i in the system is a constant, given by A∗
i =

⌈

µ−1
(

λi + 1/αi

)⌉

. For example, for

experiment 1, the expression gives that 5 processors should be used for facility 1 and 15 for

facility 2.

We now turn our attention to model II of service facilities with limited resource sharing.

Based on Theorem 7, if both µ(ai) and ci(ai) are increasing functions in the number of

allocated resources ai, then the optimal allocation policy to any facility j is a non-decreasing

function in the number of customers at that facility, given that the number of customers

at all other facilities and the number of resources allocated to all other facilities are fixed.

Given that the number of customers at facility 2 is 2 and the number of resources assigned

to facility 2 is 1, Figure 1 illustrates the structure of the optimal policy for facility 1. These

three figures correspond to the three experiments shown in Table 2.

We finally discuss model III with full flexibility in resource sharing. The structure of the

optimal policy is quite similar to that of the previous model (with limited resource sharing).

Consider again the optimal policy for facility 1. The corresponding experimental results are

shown in Figure 2. All figures illustrate that the optimal policy is a non-decreasing function

in number of customers at the facility, given that the number of customers at facility 2 is

x2 = 2.

Figure 1 and 2 show that the structure of the optimal policy for the system with two

facilities. The experiments with three (and more) facilities show similar structure. Combining

the experimental results of the system with 2 and 3 facilities, we conclude that the optimal

policy for an arbitrary facility in model I with dedicated resources is a constant, since there is

no resource sharing; in case of model II with limited resource sharing and model III with full

flexibility in resource sharing, the optimal policy for each facility is a non-decreasing function

in the number of customers at that facility.

20

0 1 2 4 6 8 10 12 14 16 18 20
0

5

10

15

x

a

(a) Optimal action a as a function of x1 for exper-

iment 1.

0 1 2 4 6 8 10 12 14 16 18 20
0

5

10

15

x

a

(b) Optimal action a as a function of x1 for exper-

iment 2.

0 1 2 4 6 8 10 12 14 16 18 20
0

5

10

15

x

a

(c) Optimal action a as a function of x1 for exper-

iment 3.

Figure 1: Experiments of the system with two facilities: optimal policy of facility 1 for the

limited resource sharing model, given (x2, a2) = (2, 1).

5 Conclusion and further discussion

In this paper, we have derived a characterization of the optimal policy in three different

models. We have shown that directional monotonicity is not sufficient to derive the structure

of the optimal policy. In addition to directional convexity, the structure of the problem also

requires submodularity of the relative value function. In general, this is hard to derive for

multi-dimensional systems, since one needs to compare different states that differ in multiple

components simultaneously. The extensive numerical experiments reveal several fundamental

insights of the relative effectiveness the optimal policies.

There are several interesting avenues for further research. First, one may suspect that the

Poisson assumption of the arrival process can be relaxed. The proof of submodularity shows

21

0 1 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

x

a

(a) Optimal action a as a function of x1 for exper-

iment 1, given x2 = 2

0 1 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

x

a

(b) Optimal action a as a function of x1 for exper-

iment 2, given x2 = 2

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

3

4

5

6

7

8

9

10

x

a

(c) Optimal action a as a function of x1 for exper-

iment 3, given x2 = 2

Figure 2: Experiments of the system with two facilities: optimal policy to facility 1 in case

of service facility with full flexibility in resource sharing

that the service rates are the dominant factor for the properties of the relative value function.

That suggests that there is room for more generality in the arrival process for which the struc-

ture of the policies remain valid. Second, from an application point of view, generalization to

non-exponential service times is practically relevant. It is an open question to what extent

the policies are still optimal for, e.g., phase-type service distributions. Finally, user-perceived

service quality often requires more detailed information than the mean processing time only.

The level of quality can be highly dependent on, e.g., variance and/or tail probabilities in the

processing times. This requires a new approach to handle such service requirements, opening

up new challenging areas in research.

22

6 Acknowledgments

The authors would like to thank Dennis Roubos for his fruitful discussions which have helped

in the details of the proofs and for his help in the simulation code.

References

[1] E. Altman. Constrained Markov Decision Processes. Chapman and Hall, 1999.

[2] S. Bhulai and G.M. Koole. A queueing model for call blending in call centers. IEEE

Transactions on Automatic Control, 48:1434–1438, 2003.

[3] S.C. Borst and P. Seri. Robust algorithms for sharing agents with multiple skills. Tech-

nical Report, Bell Laboratories, Murray Hill, NJ, 2000.

[4] N. Gans and Y. Zhou. A call-routing problem with service-level constraints. Operations

Research, 51:255–271, 2003.

[5] L. Kleinrock. A delay-dependent queue discipline. Naval Research Logistics Quarterly,

11:59–73, 1964.

[6] L. Kleinrock and R.P. Finkelstein. Time dependent priority queues. Operations Research,

15:104–116, 1967.

[7] G. Koole. Monotonicity in Markov reward and decision chains: the theory and applica-

tions. Foundations and Trends in Stochastic Systems, 1, 2006.

[8] M. Perry and A. Nilsson. Performance modeling of automatic call distributors:

Assignable grade of service staffing. In XIV International Switching Symposium, pages

294–298, 1992.

[9] M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley & Sons, 1994.

[10] R.A. Shumsky. Approximation and analysis of a queueing system with flexible and

specialized servers. OR Spectrum, 26, 2004.

[11] D.A. Stanford and W.K. Grassmann. Bilingual server call centres. In D.R. McDonald

and S.R.E. Turner, editors, Call Centres, Traffic and Performance, volume 28, pages

31–48. Fields Institute Communications, 2000.

[12] M.H. Veatch and L.M. Wein. Monotone control of queueing networks. Queueing Systems,

12:393–408, 1992.

23

[13] R.R. Weber and S. Stidham. Optimal control of service rates in networks of queues.

Advances in Applied Probability, 19(1):202–218, 1987.

[14] R. Yang, S. Bhulai, R. van der Mei, and F. Seinstra. Optimal resource allocation for

time-reservation systems. Technical report, VU University Amsterdam, 2010.

A Proofs of Section 3.3

In this section we provide proofs of statements made on two cases that appear in Theorem 7.

The first case deals with the situation in which ai < bi and aj > bj for j 6= i, i.e., the case in

which the queue with one additional customer is allocated strictly fewer processors, whereas

the other queues are potentially allocated more processors. The other case concerns aj < bj

for j = 1, . . . , N , i.e., all queues, including the one with an additional customer, are allocated

strictly fewer processors. In Theorem 7 the claim is that both cases cannot occur (which is

intuitively plausible). In Lemma 8 and 9 we show that this claim indeed holds.

Lemma 8: Let a = a∗(x + ei) and b = a∗(x). If ai < bi and aj > bj for j 6= i then the

following properties hold

1. V (x) is convex in i:

V (x + ei) − 2V (x) + V (x − ei) ≥ 0,

2. V (x) is submodular in (xi, xj):

V (x)−V (x−ej)−V (x+ei−
∑N

p=1,p 6=j,p 6=i dp ·ep)+V (x+ei−ej−
∑N

p=1,p 6=j,p 6=i dp ·ep) ≥ 0

for j ∈ {1, 2, . . . , N} \ {i} and dp ≥ 0,.

Proof : The proof is by induction on Vn. First, for n = 0, define V0(x) = 0 for all x. Clearly,

the function V0(x) is convex in xi and submodular in (xi, xj). Second, assume that the two

properties hold for n = k. Then, we proceed to prove that Vn+1(x) is also convex in xi and

submodular in (xi, xj) under the conditions stated in the theorem. Let c = a∗(x − ei) and

recall that a = a∗(x + ei) and b = a∗(x). By the conditions of the theorem, we have that

ai < bi < ci and aj > bj > cj for all j 6= i. Now, we are ready to prove convexity.

24

Convexity:

Vn+1(x + ei) − 2Vn+1(x) + Vn+1(x − ei)

=
[

N
∑

l=1

λlVn(x + el + ei) − 2
N

∑

l=1

λlVn(x + el) +
N

∑

l=1

λlVn(x + el − ei)
]

+
[

min
a∈Ax

{T k
a (x + ei)} − 2 min

a∈Ax

{T k
a (x)} + min

a∈Ax

{T k
a (x − ei)}

]

=

N
∑

l=1

λl

[

Vn(x + el + ei) − 2Vn(x + el) + Vn(x + el − ei)
]

+
[

min
a∈Ax

{T k
a (x + ei)} − 2 min

a∈Ax

{T k
a (x)} + min

a∈Ax

{T k
a (x − ei)}

]

≥ min
a∈Ax

{T k
a (x + ei)} − 2 min

a∈Ax

{T k
a (x)} + min

a∈Ax

{T k
a (x − ei)}.

The inequality holds because the first expression between the brackets is non-negative due to

the induction hypothesis. Now, by expanding the operator T , we derive

Vn+1(x + ei) − 2Vn+1(x) + Vn+1(x − ei)

≥T k
a (x + ei) − T k

a (x) − T k
c (x) + T k

c (x − ei)

≥
[

N
∑

l=1

cl(al) −
N

∑

l=1

cl(al) −
N

∑

l=1

cl(cl) +
N

∑

l=1

cl(cl)
]

+
[

N
∑

l=1

µ(al)Vn(x − el + ei) −
N

∑

l=1

µ(al)Vn(x − el)

−
N

∑

l=1

µ(cl)Vn(x − el) +

N
∑

l=1

µ(cl)Vn(x − el − ei)
]

+
[(

Nµ(A) −
N

∑

l=1

µ(al)
)

Vn(x + ei) −
(

Nµ(A) −
N

∑

l=1

µ(al)
)

Vn(x)

−
(

Nµ(A) −
N

∑

l=1

µ(cl)
)

Vn(x) +
(

Nµ(A) −
N

∑

l=1

µ(cl)
)

Vn

(

x − ei)
)]

.

Note that the first expression between the brackets is equal to 0 (with a slight abuse of

notation, where we use cl(·) for the cost function, and cl as variable for the optimal allocation).

Now, we rearrange the terms and put all terms together. Then we get,

Vn+1(x + ei) − 2Vn+1(x) + Vn+1(x − ei) ≥ Si +
N

∑

l 6=i,l=1

Sl,

where

Sl :=
[

µ(al)Vn(x − el + ei) − µ(al)Vn(x − el) − µ(cl)Vn(x − el) + µ(cl)Vn(x − el − ei)
]

+
(

µ(A) − µ(al)
)

Vn(x + ei) −
(

µ(A) − µ(al)
)

Vn(x)

−
(

µ(A) − µ(cl)
)

Vn(x) +
(

µ(A) − µ(cl)
)

Vn(x − ei),

25

for l = 1, . . . , N . Clearly, if all Sl ≥ 0, then Vn+1(x+ei)−2Vn+1(x)+Vn+1(x−ei) ≥ 0. Thus, as

the next step we prove that this statement holds. We discuss this for Si first, and then we deal

with the case Sl for l 6= i. We first add, −µ(ci)
[

Vn(x)−Vn(x−ei)
]

+µ(ci)
[

Vn(x)−Vn(x−ei)
]

and
[

− µ(ai) + µ(ai)
][

Vn(x) − Vn(x − ei)
]

to Si. Then, we get

Si =
[

µ(ai) − µ(ci)
][

Vn(x) − Vn(x − ei)
]

+ µ(ci)Vn(x) − 2µ(ci)Vn(x − ei) + µ(ci)Vn(x − 2ei)

+
[

µ(A) − µ(ai)
][

Vn(x + ei) − Vn(x)
]

−
[

µ(A) − µ(ai) + µ(ai) − µ(ci)
][

Vn(x) − Vn(x − ei)
]

=
[

µ(ai) − µ(ci)
][

Vn(x) − Vn(x − ei)
]

+ µ(ci)Vn(x) − 2µ(ci)Vn(x − ei) + µ(ci)Vn(x − 2ei)

+
[

µ(A) − µ(ai)
][

Vn(x + ei) − Vn(x)
]

−
[

µ(A) − µ(ai)
][

Vn(x) − Vn(x − ei)
]

−
[

µ(ai) − µ(ci)
][

Vn(x) − Vn(x − ei)
]

=µ(ci)
[

Vn(x) − 2Vn(x − ei) + Vn(x − 2ei)
]

+
[

µ(A) − µ(ai)
][

Vn(x + ei) − 2Vn(x) + Vn(x − ei)
]

≥0.

The second and third equalities above follow from the standard calculus. The last inequality

holds because of the induction hypothesis. Next, we proof that Sl ≥ 0 for l 6= i. By

rearranging the terms of Sl, we derive

Sl =µ(al)
[

Vn(x) + Vn(x − el + ei) − Vn(x + ei) − Vn(x − el)
]

+ µ(cl)
[

Vn(x) + Vn(x − el − ei) − Vn(x − ei) − Vn(x − el)
]

+ µ(A)
[

Vn(x + ei) − 2Vn(x) + Vn(x − ei)
]

Recall that al > cl for l 6= i. In addition, due to the induction hypothesis, Vn(x) is submodular

in (xi, xl) for all dp ≥ 0 and for l 6= i. This implies that

Vn(x)−Vn(x− el)−Vn(x+ ei −
N

∑

p=1,p 6=i,p 6=l

dp · ep)+Vn(x+ ei − el −
N

∑

p=1,p 6=i,p 6=l

dp · ep) ≥ 0.

Set dp = 0 for all p ∈ {1, . . . , N} \ {i, l}. Then it follows: Vn(x) + Vn(x − el + ei) − Vn(x +

26

ei) − Vn(x − el) ≥ 0 for l 6= i. Therefore, using al > cl we derive that

Sl ≥ µ(cl)
[

Vn(x) + Vn(x − el + ei) − Vn(x + ei) − Vn(x − el)

+ Vn(x) + Vn(x − el − ei) − Vn(x − ei) − Vn(x − el)
]

+ µ(A)
[

Vn(x + ei) − 2Vn(x) + Vn(x − ei)
]

≥ µ(cl)
[

Vn(x − el + ei) − 2Vn(x − el) + Vn(x − el − ei)
]

+
[

µ(A) − µ(cl)
][

Vn(x + ei) − 2Vn(x) + Vn(x − ei)
]

≥ 0.

Hence, we conclude that Vn+1(x + ei) − 2Vn+1(x) + Vn+1(x − ei) ≥ 0. Now, we proceed to

prove that Vn+1(x) is submodular in (xi, xj). To this purpose, define P = {1, . . . , N} \ {i, j}.
Submodularity: Let dp ≥ 0 for all p ∈ P . Then,

Vn+1(x) − Vn+1(x − ej) − Vn+1(x + ei −
∑

p∈P

dp · ep) + Vn+1(x + ei − ej −
∑

p∈P

dp · ep)

=

N
∑

l=1

λl

[

Vn(x + el) − Vn(x − ej + el) − Vn(x + ei −
∑

p∈P

dp · ep + el)

+ Vn(x + ei − ej −
∑

p∈P

dp · ep + el)
]

+
[

min
a′∈Ax

{T k
a′(x)} − min

a′∈Ax

{T k
a′(x − ej)} − min

a′∈Ax

{T k
a′(x + ei −

∑

p∈P

dp · ep)}

+ min
a′∈Ax

{T k
a′(x + ei − ej −

∑

p∈P

dp · ep)}
]

≥ min
a′∈Ax

{T k
a′(x)} − min

a′∈Ax

{T k
a′(x − ej)} − min

a′∈Ax

{T k
a′(x + ei −

∑

p∈P

dp · ep)}

+ min
a′∈Ax

{T k
a′(x + ei − ej −

∑

p∈P

dp · ep)}.

The inequality holds because the first expression between the brackets is non-negative due to

the induction hypothesis. Let ã = a∗(x + ei − ej −
∑

p∈P dp · ep) and recall that b = a∗(x).

27

Then it follows that,

Vn+1(x) − Vn+1(x − ej) − Vn+1(x + ei −
∑

p∈P

dp · ep) + Vn+1(x + ei − ej −
∑

p∈P

dp · ep)

≥T k
b (x) − T k

b (x − ej) − T k
ã (x + ei −

∑

p∈P

dp · ep)} + T k
ã (x + ei − ej −

∑

p∈P

dp · ep)

=
[

N
∑

l=1

µ(bl)Vn(x − el) +
(

Nµ(A) −
N

∑

l=1

µ(bl)
)

Vn(x)
]

−
[

N
∑

l=1

µ(bl)Vn(x − ej − el) +
(

Nµ(A) −
N

∑

l=1

µ(bl)
)

Vn(x − ej)
]

−
[

N
∑

l=1

µ(ãl)Vn(x + ei −
∑

p∈P

dp · ep − el)

+
(

Nµ(A) −
N

∑

l=1

µ(ãl)
)

Vn(x + ei −
∑

p∈P

dp · ep)
]

+
[

N
∑

l=1

µ(ãl)Vn(x + ei − ej −
∑

p∈P

dp · ep − el)

+
(

Nµ(A) −
N

∑

l=1

µ(ãl)
)

Vn(x + ei − ej −
∑

p∈P

dp · ep)
]

.

Now we rearrange the terms to simplify the inequality. Then,

Vn+1(x) − Vn+1(x − ej) − Vn+1(x + ei −
∑

p∈P

dp · ep) + Vn+1(x + ei − ej −
∑

p∈P

dp · ep)

≥
N

∑

l=1

µ(bl)
[

Vn(x − el) − Vn(x) − Vn(x − ej − el) + Vn(x − ej)
]

−
N

∑

l=1

µ(ãl)
[

Vn(x + ei −
∑

p∈P

dp · ep − el) − Vn(x + ei −
∑

p∈P

dp · ep)

− Vn(x + ei − ej −
∑

p∈P

dp · ep − el) + Vn(x + ei − ej −
∑

p∈P

dp · ep)
]

+ Nµ(A)
[

Vn(x) − Vn(x − ej) − Vn(x + ei −
∑

p∈P

dp · ep) + Vn(x + ei − ej −
∑

p∈P

dp · ep)
]

.

28

As the next step, we write the final expression above by Si + Sj +
∑N

l=1,l 6=i,l 6=j Sl, where

Sk = µ(bk)
[

Vn(x − ek) − Vn(x) − Vn(x − ej − ek) + Vn(x − ej)
]

− µ(ãk)
[

Vn(x + ei −
∑

p∈P

dp · ep − ek) − Vn(x + ei −
∑

p∈P

dp · ep)

− Vn(x + ei − ej −
∑

p∈P

dp · ep − ek) + Vn(x + ei − ej −
∑

p∈P

dp · ep)
]

+ µ(A)
[

Vn(x) − Vn(x − ej) − Vn(x + ei −
∑

p∈P

dp · ep) + Vn(x + ei − ej −
∑

p∈P

dp · ep)
]

,

for k = 1, . . . , N . In the remainder of the proof, we will show that all Sk ≥ 0. First, we

focus on Si. Consider the first term between brackets in Si. By setting x′ = x − ei, we see

that this term is equal to Vn(x′) − Vn(x′ − ej) − Vn(x′ + ei) + Vn(x′ + ei − ej) ≥ 0, since

Vn(x) is submodular. In addition, because of the conditions of the theorem, we have bi ≥ ãi.

Therefore,

S3 ≥ µ(ãi)
[

Vn(x − ei) − Vn(x) − Vn(x − ej − ei) + Vn(x − ej)
]

− µ(ãi)
[

Vn(x −
∑

p∈P

dp · ep) − Vn(x + ei −
∑

p∈P

dp · ep)

− Vn(x − ej −
∑

p∈P

dp · ep) + Vn(x + ei − ej −
∑

p∈P

dp · ep)
]

+ µ(A)
[

Vn(x) − Vn(x − ej) − Vn(x + ei −
∑

p∈P

dp · ep) + Vn(x + ei − ej −
∑

p∈P

dp · ep)
]

= µ(ãi)
[

Vn(x − ei) − V (x − ej − ei) − Vn(x −
N

∑

p∈P

dp · ep)

+ Vn(x − ej −
N

∑

p∈P

dp · ep)
]

+
[

µ(A) − µ(ãi)
][

Vn(x) − Vn(x − ej) − Vn(x + ei −
N

∑

p∈P

dp · ep)

+ Vn(x + ei − ej −
N

∑

p∈P

dp · ep)
]

]

≥ 0.

The second equality above follows from standard calculus and the last inequality follows from

submodularity of the induction hypothesis. Now, we proceed to study Sj. Since Vn(x) is

convex, the first expression between the brackets of Sj is non-positive. Combining this result

29

with the condition of the theorem, ãj ≥ bj that is equivalent to −bj ≥ −ãj, we get

Sj ≥ µ(ãj)
[

Vn(x − ej) − Vn(x) − Vn(x − 2ej) + Vn(x − ej)
]

− µ(ãj)
[

Vn(x + ei −
∑

p∈P

dp · ep − ej) − Vn(x + ei −
∑

p∈P

dp · ep)

− Vn(x + ei − 2ej −
∑

p∈P

dp · ep) + Vn(x + ei − ej −
∑

p∈P

dp · ep)
]

+ µ(A)
[

Vn(x) − Vn(x − ej) − Vn(x + ei −
∑

p∈P

dp · ep) + Vn(x + ei − ej −
∑

p∈P

dp · ep)
]

≥ µ(ãj)
[

Vn(x − ej) − Vn(x − 2ej) − Vn(x + ei − ej −
N

∑

p∈P

dp · ep)

+ Vn(x + ei − 2ej −
N

∑

p∈P

dp · ep)
]

+
[

µ(A) − µ(ãj)
][

Vn(x) − Vn(x − ej) − Vn(x + ei −
N

∑

p∈P

dp · ep)

+ Vn(x + ei − ej −
N

∑

p∈P

dp · ep)
]

≥ 0.

Finally, we prove that Sl for l 6= i and l 6= j is also non-negative. Let x′ = x − ej . Then the

first term of Sl is equal to Vn(x′) − Vn(x′ − el) − Vn(x′ + ej) + Vn(x′ + ej − el). Since Vn(x)

is submodular in all (xi, xj) with j 6= i, Vn(x′) is submodular in (xj, xl). Therefore, using

µ(A) ≥ µ(ãl, we derive that

Sl ≥ µ(bl)
[

Vn(x − ej) − Vn(x − ej − el) − Vn(x) + Vn(x − el)
]

− µ(ãl)
[

Vn(x + ei −
∑

p∈P

dp · ep − el) − Vn(x + ei −
∑

p∈P

dp · ep)

− Vn(x + ei − ej −
∑

p∈P

dp · ep − el) + Vn(x + ei − ej −
∑

p∈P

dp · ep)
]

+ µ(ãl)
[

Vn(x) − Vn(x − ej) − Vn(x + ei −
∑

p∈P

dp · ep) + Vn(x + ei − ej −
∑

p∈P

dp · ep)
]

≥ µ(ãl)
[

Vn(x) − Vn(x − ej) − Vn(x + ei −
N

∑

p∈P

dp · ep − el)

+ Vn(x + ei − ej −
N

∑

p∈P

dp · ep − el)
]

.

30

Now, let d′ = d + el. Then,

Sl ≥ µ(ãl)
[

Vn(x) − Vn(x − ej) − Vn(x + ei −
N

∑

p∈P

d′p · ep) + Vn(x + ei − ej −
N

∑

p∈P

d′p · ep)
]

≥ 0.

Hence, Vn+1(x) is submodular in (xi, xj). Thus, by taking the limit of n → ∞, we conclude

that V (x) is convex and submodular under the conditions given in the theorem.

Lemma 8 shows that the relative value function V satisfies convexity and submodularity

in case ai < bi and aj > bj for j 6= i. Note that this leads to a contradiction in Theorem 7,

since this implies that Z = Ta(x)−Tb(x)−Ta(x+ei)+Tb(x+ei) ≤ 0. However, it was shown

in the theorem that Z ≥ 0. Hence, this case cannot occur. Similarly, when aj < bj for all j

cannot occur. The next lemma provides a rigorous statement for this.

Lemma 9: Let a = a∗(x + ei) and b = a∗(x). If aj < bj for j = 1, . . . , N then the following

properties hold

1. V (x) is convex in i:

V (x + ei) − 2V (x) + V (x − ei) ≥ 0,

2. V (x) is supermodular in (xi, xj):

V (x+ei−
∑N

p=1,p 6=j,p 6=i dp ·ep)−V (x+ei−ej−
∑N

p=1,p 6=j,p 6=i dp ·ep)−V (x)+V (x−ej) ≥ 0

for j ∈ {1, 2, . . . , N} \ {i} and dp ≥ 0.

Proof : The proof of the lemma is by induction on Vn. Note that the proof of convexity

and supermodularity is completely analogous to the proof of convexity and submodularity

in Lemma 8. The only difference is that in Lemma 8 we have al > cl for l 6= i, whereas in

this case al < cl. However, with supermodularity (instead of submodularity) the signs of the

inequalities turn out to be correct for proving convexity and supermodularity.

31

