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Abstract

The main barrier to the sustained growth of wireless communications is the Shan-
non limit that applies to the channel capacity. A promising means to realize
high-capacity enhancements is the use of multi-path communication solutions to
improve reliability and network performance in areas that are covered by a mul-
titude of overlapping wireless access networks. Despite the enormous potential
for capacity enhancements offered by multi-path communication techniques, lit-
tle is known about how to effectively exploit this. Motivated by this, we study
a model where jobs are split and downloaded over N multiple parallel networks,
each of which is modeled as a processor sharing (PS) queue. Each job is frag-
mented, according to a fixed splitting rule α = (α1, . . . , αN) and re-assembled at
the receiving end. The complex correlation structure between the sojourn times
at the PS nodes makes an exact detailed mathematical analysis of the model
impossible. Therefore, in this paper we propose a simple and fast approximation
for the splitting rule α∗ that minimizes the expected job-download time. Our
approximation is validated extensively by simulations. The results show that the
outcomes are extremely accurate over a wide range of parameter combinations.

Key words: Traffic Splitting, Processor Sharing, Concurrent Access, Flow-level
Performance, File Splitting

1. Introduction

The Shannon limit on channel capacity is already closely approached by some
of today’s wireless networks, leaving complex signal processing techniques room
for only modest improvements in the data transmission rate [6]. Concurrently
using multiple, possibly different, networks then becomes an alternative to in-
crease the overall data rate, because (a) the spectrum is regulated among various
frequency bands and corresponding communication network standards, and (b)
the overall spectrum usage remains relatively low over a wide range of frequencies
[8]. In areas that are covered by multiple wireless access networks, the concurrent
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use of multiple networks simultaneously opens up tremendous possibilities for in-
creasing capacity, improving reliability, and enhancing Quality of Service (QoS).
Despite the enormous potential for quality improvement, only little is known
about how to fully exploit this potential. A main requirement for the widespread
use of traffic-splitting algorithms for concurrent access is that the algorithms are
simple, yet effective. Motivated by this, we concentrate on splitting rules that
(a) require only aggregated information on the network status, and (b) are easy
to enforce by deciding upon the splitting ratio of the jobs only once. To this end,
we study static splitting rules that determine how jobs should be partitioned into
fractions (α1, . . . , αN), transferred over the different overlapping networks and re-
assembled, to minimize the expected download time of the entire job. We study
this file-splitting problem in a queueing theoretical context. Modeling network
performance using processor sharing (PS) based models [4, 19, 21] is applicable to
a variety of communication networks, including CDMA, 1xEV-DO, WLAN, and
UMTS-HSDPA. It was shown that PS models can actually model file transfers
over WLANs accurately [14], taking into account the complex dynamics of the
protocol-stack, including their interactions.

In the literature on telecommunication systems, the concurrent use of multiple
network resources in parallel was already described for a Public Switched Digital
Network (PSDN) [7]. Here inverse multiplexing was proposed as a technique to
perform the aggregation of multiple independent information channels across a
network to create a single higher-rate information channel. Various approaches
have appeared to exploit multiple transmission paths in parallel. Examples are
using multi-element antennas, as adopted by the IEEE802.11n standard [1], split-
ting at the physical layer or switching datagrams at the link layer [5, 16], and
also using multiple TCP sessions in parallel to a file-server [20]. In the latter case
each available network transports part of the requested data in a separate TCP
session. Previous work has indicated that downloading from multiple networks
concurrently may not always be beneficial [9], but in general significant perfor-
mance improvements can be realized [11, 13, 15]. Under these circumstances of
using a combination of different network types, the transport layer approaches
in particular have shown their applicability [15], as they allow appropriate link
layer adaptations for each TCP session. In addition, many papers have studied
traffic distribution algorithms in a more theoretical framework. In [10] the au-
thors investigate the same model as the one under consideration, but without
the presence of background traffic and with the Join the Shortest Queue (JSQ)
policy instead of the static splitting rules considered in the present paper. In
[18] and [17], the author analyzes a similar model but with FCFS queues and
with probabilistic splitting. We further refer to Altman et al. [2], who consider
routing policies in a distributed versus centralized environment. In general our
queueing model falls within the framework of fork-join queueing networks, see [3]
for an extensive overview. In a recent paper [12], the theoretical foundation for

2



a tail-optimal splitting rule is provided for light foreground load that is shown
to work well with respect to both the tail asymptotics and the mean sojourn times.

In this paper we study static job-splitting rules α = (α1, . . . , αN), where a job
of size τ is split into N tasks of size αiτ (i = 1, . . . , N), where the i-th task is
processed by PS node i, and reassembled upon completion of all the tasks. In
addition, we assume the presence of background traffic at each of the nodes. The
goal is to find a splitting rule α∗ that minimizes E[Sα

0 ], where Sα
0 is the total

processing time of an entire foreground job, which generally depends on the file-
size distributions and on the characteristics of the background traffic streams.
Unfortunately, this model does not allow for an exact analysis. The complexity
lies in the fact that the sojourn times of the fragments in the different PS nodes
are generally correlated. Therefore, we develop a new approximation for E[Sα

0 ],
combining light- and heavy-traffic asymptotics, which then leads to an approx-
imation for α∗. The approximation is validated by extensive simulations over a
wide range of parameter combinations, including light- and heavy-tailed job-size
distributions, and mixtures of light- and heavy-load scenarios on foreground and
background traffic. These simulations demonstrate that the differences between
the approximated optimal splitting rule and the estimated optimum with respect
to the expected foreground sojourn time are extremely small for a wide range of
the parameter settings.

The organization of this paper is as follows. In Section 2 the model is described
and the notation is introduced. In Section 3 we analyze the performance of the
model and use these insights to develop a new approximation method for de-
termining the optimal split α∗. In Section 4 the accuracy of the approximation
method is discussed in detail. Finally, in Section 5 we address a number of topics
for further research.

2. Model description

We consider a job-split model consisting of N parallel PS nodes, PS1, . . . , PSN ,
operating at the same speed (see Figure 1). Each of these PS nodes in our
model corresponds to a communication network. Files are modeled as jobs that
are fragmented into tasks. There are N + 1 traffic streams: stream 0 is called
the foreground stream and streams 1, . . . , N are called the background streams.
Jobs of background stream i are not fragmented and are served exclusively at
PSi (i = 1, . . . , N). Jobs of the foreground stream are fragmented into tasks upon
arrival according to a fixed splitting rule α = (α1, . . . , αN) where

∑N

i=1 αi = 1
and αi ≥ 0, i = 1, . . . , N ; thus a foreground job of size B = τ is split into N
tasks of size αiτ , and the i-th task is processed by PSi (i = 1, . . . , N). Once all
tasks have been completed, they are reassembled, which completes the processing
of the job. Our probabilistic and load assumptions are as follows: arrivals of
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jobs in all streams are according to independent Poisson processes with rates
λi, i = 0, 1, . . . , N . The total arrival rate is denoted by Λ = λ0+λ1+· · ·+λN . For
all streams, each job size B is an independent sample from a general distribution
with k-th moment β(k) = E[Bk], for k = 1, 2, . . .. Denote the background load of
stream i by ρi = λiβ

(1) (i = 0, 1, . . . , N), and denote the total load offered to the
system by ρ = ρ0 + ρ1 + · · ·+ ρN . The utilization of node i is denoted by

ξi := ρi + αiρ0, and let ξ := max
i=1,...,N

ξi. (1)

For stability, it is assumed that ξ < 1. Note that if ρ > 1 the stability con-
dition may pose restrictions on the choice of the splitting rule α. Denote by
A := {α : ξ < 1}, i.e., the set of combinations for which the stability conditions
are met. A splitting rule α is called feasible if α ∈ A.

For an arbitrary foreground job, denote by Sα
i the sojourn time of its i-th task

operating under the splitting rule α. This is the time it takes the i-th task to
complete service at PSi. Denote Sα = (S

α
1 , . . . , S

α

N). The sojourn time of a
foreground job through the job-split model is denoted by

Sα
0 := max {Sα

1 , . . . , S
α
N} . (2)

Our purpose is to find a splitting rule α∗ = (α∗
1, . . . , α

∗
N) ∈ A such that

E[S
α∗

0 ] = min
α∈A

E[S
α
0 ]. (3)

For a non-negative random variable X with finite positive first moment, the
squared coefficient of variation is denoted c2X . Finally, heavy-traffic limits for
ξ ↑ 1 are taken such that the total arrival rate Λ is increased while the service-
time distribution, the splitting rule α and the proportions between the arrival
rates λ0, λ1, . . . , λN remain fixed. Note that in this limiting regime, not all nodes
tend to become unstable as ξ ↑ 1. More precisely, node i becomes unstable for
ξ ↑ 1 only if ξi = ξ, and otherwise node i remains stable as ξ ↑ 1. Denote the set
of potentially unstable queues by U := {i : ξi = ξ}, where ξi and ξ are defined in
(1).

3. Analysis

In general, the “cost function” E[S
α
0 ] does not allow for an exact expression,

and the optimization problem defined in (2)-(3) cannot be solved explicitly. The
mathematical complexity is caused by the correlations between the sojourn times
S
α
1 , . . . , S

α

N of the jobs at the different nodes. This dependence is caused by the
fact that the (fragmented) foreground tasks arrive at the nodes simultaneously,
and by the fact that their sizes α1B, . . . , αNB are correlated. For this reason,
in this section we will develop heuristic methods to approximate E[Sα

0 ] and the

4



PS 1

PS 2

PS N

Foreground stream

Background stream 2

Background stream 1

Background stream N

f ragmentat ion reassembly

transfer of fragments

λ0

λ1

λ2

λN

α1

α2

αN

Figure 1: Illustration of the job-split PS-model.

optimal splitting rule α∗. The approximation of α∗ is based on an interpola-
tion between two components. The first component is based on the concept of
reduced-load equivalence (RLE), and works well in light-traffic scenarios. The
second component is based on heavy-load asymptotics, and complements the
RLE-based approximation for heavy-load scenarios.

In Section 3.1 we formulate some known results on multiclass PS models and
present a number of simulation results that lead to observations that are use-
ful for later reference. In Section 3.2 we outline the RLE-based approximation
and in Section 3.3 we present the heavy-load approximation. Subsequently, in
Section 3.4 both approximations for α∗ are combined into our composed-split
approximation, which interpolates α between these two components.

3.1. Preliminaries

Considering node i in isolation, it is easy to see that this node can be modelled as
a two-class M/G/1-PS model, where class-1 represents the tasks originating from
the foreground traffic and class-2 the background traffic. Class-1 tasks arrive
according to a Poisson process with rate λ0 and size αiB, where B is the size
of an arbitrary job. Similarly, class-2 jobs arrive according to a Poisson process
with rate λi and job size B. For this model, it is known that for given B = τ ,
the conditional expected sojourn time of a foreground task of size αiτ at node i
is given by:

E[S
α
i |B = τ ] =

αiτ

1− ξi
, and hence, E[S

α
i ] =

αiβ
(1)

1− ξi
(i = 1, . . . , N), (4)

where ξi = β(1)(λi + αiλ0) is the utilization of node i. However, despite the fact
that the conditional mean sojourn times E[Sα

i |B = τ ] of the individual tasks at
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each of the N nodes are known, an exact expression for the mean sojourn time
of entire foreground job, E[Sα

0 ] (defined in (2)-(3)), which is defined as the max-
imum of the (correlated) per task sojourn times is not known.

Prior to developing the approximations for the optimal splitting rule α∗, we
perform numerical experiments based on simulations to gain insight in the opti-
mization problem. This will lead to a number of important observations that will
turn out to be useful for later reference. As an illustrative example, for the case
N = 2 and β(1) = 1, Figure 2 shows the behavior of E[Sα

0 ] for the traffic splitting
rule α = (α, 1− α) ∈ A as a function of α (0 < α < 1), for different background
and foreground load scenarios. To highlight the impact of the service-time dis-
tributions, results are shown for the extreme cases of deterministic service times
(with c2B = 0) and Pareto-2 distributed service times with Pr{B > x} = 1

4x2 for
x > 1/2, so that c2B = ∞.
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Figure 2: E[Sα
0 ] as a function of the traffic splitting ratio α, based on simulations.

Figure 2 illustrates the behavioral differences between the various systems. In the
absence of background traffic, the curves exhibit wedge-shaped behavior around
their optimum, both for light (ρ0 = 0.1) and moderate (ρ0 = 0.9) foreground load.
For non-zero but mild background load and light foreground load, the curve is
nearly constant around its optimum. This is not the case if the background load
becomes highly asymmetric (ρ1 = 0, ρ2 = 0.9) in the presence of light foreground
load; the system is not stable for all values of α and exhibits a sharp increase in
the mean sojourn time for slightly underestimated values of α (below 0.95) and
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is rather forgiving to overestimations where it coincides with the system without
background load. Considering the outcomes depicted in Figure 2, it is clear that
heavy foreground traffic yields a bended curve, showing that the cost function is
highly sensitive to the choice α.

The most interesting observation from Figure 2 is that both the cost function
E[Sα

0 ] and optimal splitting ratio α∗ are nearly insensitive to the job-size distri-
bution. This observation is quite remarkable: Although it is well-known that
the per-node mean sojourn times are (fully) insensitive to the distribution of
the job sizes (see (4)), no general results are known for the expected value of the
maximum of the per-task sojourn times, which in general are mutually dependent.

The question arises as to what the impact of the job-size distribution is on the
correlations between the per-node sojourn times of the foreground tasks of sizes
α1B, . . . , αNB. Recall that the correlations between the sojourn times are caused
by the foreground traffic, because (a) the foreground traffic stream generates si-
multaneous arrivals of tasks at each of the nodes, and (b) the job sizes of the
per-node tasks α1B, . . . , αNB are stochastically dependent. Intuitively, one may
expect that the higher the foreground load, the stronger the correlations.

To validate this, we have performed simulation experiments for a two-node model,
with β(1) = 1 and split rule α = (1/2, 1/2), where ρ0, ρ1 and ρ2 are parameterized
as follows ρ1 = 1 − 2ρ0/3, ρ2 = 1/2 − ρ0/3, and where ρ0 is varied between 0
and 3/2. In this way, ρ0 is varied over the interval [1/10, 3/2] such that the total
load ρ = ρ0 + ρ1 + ρ2 is kept fixed at value ρ = 3/2, while the ratios between ρ1
and ρ2 are fixed to ρ1 = 2ρ2. For each foreground job, we have calculated the
statistical correlation between the two per-node tasks (both of size τ/2), and the
mean sojourn times of the foreground jobs. Simulations have been run for 1011

jobs, which led to extremely narrow confidence intervals (not shown here). Figure
3a below shows the empirical correlation between the sojourn times of the fore-
ground jobs considered as a function of ρ0, where the service-time distributions
are varied as deterministic (c2B = 0), exponential (c2B = 1), Erlang-2 (c2B = 1/2),
two-phase hyper-exponential with c2B = 4 and c2B = 16 (and balanced means),
Pareto-3 (with Pr{B > x} = (1 + x/2)−3 for x > 0 and hence c2B = 3), and and
Pareto-2 (with Pr{B > x} = 1

4x2 for x > 1/2 and hence c2B = ∞). Note that
in Figure 3a the results for Pareto-3 and the two-phase hyper-exponential with
c2B = 4 are so close that they can hardly be distinguished. Moreover, the results
in Figure 3b are so strikingly similar that they almost entirely overlap.
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Figure 3: The correlations between the sojourn times of the foreground traffic
and E[Sα

0 ] as a function of ρ0 with fixed total load ρ = 1.5, based on simulations.

The results depicted in Figures 3a and 3b lead to the following remarkable ob-
servation.

Observation 1: The correlations between the per-task sojourn times of the fore-
ground traffic depend on the job-size distribution, whereas E[S

α
0 ] is nearly insen-

sitive to the job-size distribution.

This observation is rather intriguing. First, we observe an obvious dependence
of the correlation between the per-task sojourn times with respect to the job-size
distribution, where higher variability seems to imply a stronger correlation. This
observation can be intuitively explained by the fact that the per-task sojourn
times are positively correlated, while this correlation becomes most predominant
for large job sizes, thus for outliers in the job size B. Hence, the higher the vari-
ability in the distribution of B, the more outliers in B and hence, the stronger
the correlation. Second, the results show that the differences in correlations over
the different service-time distributions do not manifest themselves in significant
differences in E[Sα

0 ]. The impact of the correlations between the per-task sojourn
times “vanishes” when looking at E[S

α
0 ]. This observation will turn out to be

useful for developing an approximation for E[Sα
0 ], see Sections 3.3 and 3.4.

3.2. Reduced Load Approximation (RLA)

The Reduced Load Approximation (RLA) splits jobs into tasks according to the
split rule (cf. [12]):

α∗
RLA,i :=

1− ρi
∑N

j=1(1− ρj)
(i = 1, . . . , N). (5)

This simple splitting rule α∗
RLA = (α∗

RLA,1, . . . , α
∗
RLA,N) cuts the foreground jobs

into tasks proportional to 1 − ρi, i.e., the average amount of capacity not used
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by the background traffic at node i. Note that the RLA is insensitive to the
job-size distribution (except of course for its mean β(1)), which is in line with
Observation 1 in Section 3.1. In addition to its attractive simplicity, the RLA
(5) is asymptotically tail optimal for the case of regularly varying service-time
distributions (see [12] for details).

Extensive numerical experimentation in [12] (and Table 1 in Section 4 below)
reveals that the RLA leads to highly accurate approximations of α∗ if either
ρ0 ≈ 0 or if the nodes are fairly equally loaded, but that it may become inac-
curate when one or more nodes are heavily loaded while others are not (see for
example the right upper corner in Table 1 below). This raises the need for a
refinement of the RLA to improve its accuracy for asymmetric background-load
scenarios, which is the main goal of the present paper. To this end, in the next
section we use and combine known heavy-traffic asymptotics for multi-class PS
models and Observation 1 to derive approximations for E[Sα

0 ], and hence for the
optimal splitting of jobs α∗, under heavy-traffic assumptions.

3.3. Heavy Traffic Approximation (HTA)

In this section we will use heavy-traffic (HT) asymptotics for multi-class PS
models to develop an approximation for E[S

α
0 ], and hence of α∗, that meets these

asymptotic HT-properties. To formulate these HT properties, recall that node i
considered in isolation can be modeled as a two-class M/G/1 PS model, where
class-1 jobs (representing background jobs at node i) arrive according to a Poisson
process with rate λ0 and service times αiB, and where class-2 jobs (representing
foreground jobs) arrive according to a Poisson process with rate λi and service
times B. Let Si(τ) denote the sojourn time of an arbitrary job of size τ at node
i (regardless of its class). Zwart and Boxma [22] show that for τ > 0, i ∈ U ,
α ∈ A,

(1− ξ)Si(αiτ) →d Θ(αiτ) (ξ ↑ 1), (6)

where Θ(ζ) is an exponentially distributed random variable with mean ζ . More-
over, in [22] it is shown also that moment-wise convergence holds: For τ > 0,
i ∈ U , α ∈ A and k = 1, 2, . . .,

lim
ξ↑1

(1− ξ)kE[Si(αiτ)
k] = k!αk

i τ
k. (7)

To this end, it is important to observe that the conditional results in (6)-(7)
were proven for the classical single-class M/G/1 PS node, but are also directly
applicable to multi-class M/G/1 PS nodes. Then, removing the conditioning
with respect to the distribution of the size of the foreground tasks at node i in
(6) leads to the following result for Si, the unconditional sojourn time for a job
at node i: For τ > 0, i ∈ U , α ∈ A,

(1− ξ)Si →d Θ(αi)B (ξ ↑ 1), (8)
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where Θ(αi) is exponentially distributed with mean αi, B is the job size, and
where the random variables Θ(αi) and B are independent. Moreover, the k-th
moment of the unconditioned sojourn time of an arbitrary foreground job at node
i has the following limiting HT-behavior: For i ∈ U , α ∈ A, k = 1, 2, . . .,

lim
ξ↑1

(1− ξ)kE[Sk
i ] = k!αk

i β
(k). (9)

We are now ready to use the HT-asymptotics (6)-(9) to develop a simple approx-
imation for E[Sα

0 ] that works well under HT-circumstances, i.e. where ξ ↑ 1. In
the absence of an exact analysis, we will construct a simple approximation for
the joint probability distribution of

S
α

HTA(τ) = (S
α

HTA,1(α1τ), . . . , S
α

HTA,N(αNτ)), (10)

where Sα
HTA,i(αiτ) is the sojourn time of the i-th fragment of an arbitrary fore-

ground job of size τ (note that this fragment itself is of size αiτ). To this end, note
that (6) implies the following limiting behavior for the marginal distributions of
the conditional sojourn times Sα

HTA,i(α1τ): For i ∈ U , α ∈ A, t > 0,

lim
ξ↑1

Pr{(1− ξ)SHTA,i(αiτ) > t} = exp

{

−
t

αiτ

}

. (11)

Note that (11) is only valid for i ∈ U , because if i /∈ U then node i will not be-
come unstable so that (1−ξ)SHTA,i(αiτ) → 0 (a.s.), when ξ ↑ 1 (see also Remark
3.2).

Next, we develop an approximation for E[Sα
0 ] which satisfies the known heavy-

traffic properties of the marginal per-task sojourn-time distributions formulated
in (10)-(11). Regarding the correlations, recall from Observation 1 (formulated
in Section 3) that E[Sα

0 ] at best weakly depends on the correlations between
the per-task sojourn times. Therefore, although the per-task conditional sojourn
times Sα

HTA,1(α1τ), . . . , S
α
HTA,N(αNτ) are clearly not independent, we assume that

they are. Based on this assumption, we approximate the distribution of S
α

HTA(τ)
(defined in (10)) by assuming that Sα

HTA,1(α1τ), . . . , S
α
HTA,N(αNτ) (a) are expo-

nentially distributed with mean αiτ/(1 − ξi), so that the marginal distributions
satisfy the known HT behavior in (11) for i ∈ U (see also Remark 3.2), and (b)
are mutually independent: For t1, . . . , tN > 0, α ∈ A, τ > 0,

Pr{Sα
HTA,1(α1τ) > t1, . . . , S

α
HTA,N(αNτ) > tN} ≈

N
∏

i=1

exp

{

−
1 − ξi
αiτ

ti

}

. (12)

We will now use the approximation in (12), which covers the known HT-limiting
behavior from (6)-(7), to derive a simple approximation for E[Sα

0 ] that works well
when ξ ↑ 1. To this end, for τ > 0, α ∈ A, define

Sα
HTA,0(τ) := max{Sα

HTA,1(α1τ), . . . , S
α
HTA,N(αNτ)}. (13)
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Then using (12), the distribution of Sα
HTA,0(τ) can be approximated as the dis-

tribution of the maximum of N independent exponentially distributed random
variables with known parameters (given in (12)). See Property 1 in Appendix A
for an expression for the mean value of such random variable. Using this result,
the conditional cost function E[Sα

HTA,0(τ)] can be readily obtained from Prop-
erty 1 simply by making following substitutions in (21) from Appendix A: For
i = 1, . . . , N ,

Xi := Sα
HTA,i(αiτ), and 1/µi := E[Sα

HTA,i(αiτ)]
αiτ

1 − ξi
. (14)

Note that it is readily verified that the so-obtained approximation of E[S
α

HTA,0(τ)]
is linear in τ , so that the unconditioned cost function E[Sα

HTA,0] can be directly

obtained by replacing τ by β(1) in (14). In this way, the cost function E[Sα
HTA,0]

can be approximated by using equations (12)-(14) and (21), which leads to the
following approximation for E[Sα

HTA,0]:

E[S
α

HTA,0] ≈ β(1)
N
∑

k=1

(−1)k+1
∑

(i1,...,ik)∈Sk

1
1−ξi1
αi1

+ · · ·+
1−ξiN
αiN

, (15)

where

Sk := {(i1, . . . , ik) : i1, . . . , ik ∈ {1, . . . , N}, i1 < i2 < · · · < ik}. (16)

Note that the approximate expression for E[Sα
HTA,0] in (15) is explicit, and hence,

the computation time is negligible. Notice also that the right-hand side of (15) is
(fully) insensitive to the job-size distribution, which is in line with Observation
1 discussed in Section 3.1.

Next, denote by α∗
HTA = (α∗

HTA,1, . . . , α
∗
HTA,N) the splitting rule that minimizes

E[Sα
HTA,0] among all α ∈ A, i.e.,

E[Sα∗

HTA,0] = min
α∈A

E[Sα
HTA,0]. (17)

The optimal split α∗
HTA can then be approximated by evaluating (15) over all

α ∈ A, or by some non-linear optimization method. In practice, this causes no
problem as N is not too large. Note that in the context of concurrent access
for wireless networks, which was the main motivation for this study, N is indeed
small, say 2 or 3. We refer to Remark 4.2 for a brief discussion on the complexity
of the optimization.

3.4. Composed Split Approximation (CSA)

Now we combine both approaches in the following to obtain the composed-
split approximation (CSA), denoted α∗

CSA = (α∗
CSA,1, . . . , α

∗
CSA,N), where for

i = 1, . . . , N ,

α∗
CSA,i = (1− κi)α

∗
RLA,i + κiα

∗
HTA,i, with κi := max{ρ1, . . . , ρN}, (18)
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and where α∗
RLA,i is given in (5), and where α∗

HTA,i can be obtained from (15)-
(17). The interpolation factor κi is taken such that κi is independent of α (and
of i, see also Remark 3.3), while for light-traffic scenarios the RLA is dominant
and for heavy-load scenarios the HTA is dominant. We refer Remark 3.3 below
for a discussion on the choice of the interpolation factor.

Remark 3.1: A complicating factor of the model is the complex correlation
structure between the sojourn times of the individual tasks after a job has been
split. In this context, we observe that the reduced load approximation (RLA)
can be thought of as implying that there is “perfect” correlation in the sojourn
times of the different tasks, and thus gives a lower bound on the mean sojourn
times. To this end, note that under “perfect correlation”, for all i, j = 1, . . . , N ,
α ∈ A and τ > 0,

E[Sα
i |B = τ ] = E[Sα

j |B = τ ]. (19)

Using (4), this set of equations (19) is readily seen to lead to the RLA defined in
(5). In this way, the RLA can be seen as optimizing a lower bound for E[Sα

0 ].

On the contrary, the HTA can be viewed as optimizing an upper bound for
E[Sα

0 ]. To this end, note that the simulation results shown in Figure 3 suggest
that for fixed α ∈ A the per-task sojourn times are positively correlated. Loosely
speaking, the maximum of positively correlated random variables is stochasti-
cally dominated by the maximum of independent random variables with identi-
cal marginal distributions. Hence, such a dominance also holds for the expected
values, so that the HTA defined in (15) gives an upper bound for E[Sα

0 ], defined
in (3). In that sense, the HTA is optimizing an upper bound.

Remark 3.2: Recall that the HT behavior in (11) holds if and only if i ∈ U , i.e.
for those nodes i for which ξi = ξ, defined in (1). For i ∈ U , equation (11) shows
that the conditional sojourn time for node i converges (both in distribution and
moment-wise) to an exponential distribution with known mean. In contrast, the
nodes i /∈ U do not become unstable for ξ ↑ 1. However, note that in the HTA
in (15) the marginal conditional sojourn-time distributions are approximated by
(independent) exponential distributions for all i = 1, . . . , N . Nonetheless, note
that under HT circumstances (i.e., ξ ≈ 1) the impact of the per-task sojourn
times of nodes i for i /∈ U on E[Sα

0 ] tends to vanish under HT-scalings.

Remark 3.3: The choice of the interpolation factor κi in (18) only depends
on the background-load values. The benefit is its simplicity and the fact that κi

does not depend on α, the parameter which is to be optimized. The drawback
of this choice is that it does not accurately cover the HT behavior when ξ ↑ 1
while ρ1, . . . , ρN are close to 0; this may happen when the foreground load ρ0 is
large. One way to overcome this problem is to take as the interpolating factor

12



κi := ξi, defined in (1). The problem is that in this way, the interpolation factor
itself depends on αi which leads to a fixed-point equation to solve for αi. We
have checked the accuracy of the approximations based on κi = ξi; note that con-
vergence of such fixed-point iteration can easily be shown to hold. Our results
show that no significant improvement of the accuracy of the approximations is
obtained.

4. Numerical results

To assess the accuracy of the approximations for the optimal splitting rule α, we
have performed extensive numerical experimentation, comparing the approxima-
tion results with simulations. To cover a wide range of parameter combinations
in a structured manner, we have varied the file-size distributions (deterministic,
exponential, hyper-exponential, Pareto), and the load values of the foreground
traffic (high, medium, low) and the background traffic (high, medium, low).

In our experiments various parameters scenarios were considered. For these pa-
rameter combinations, we calculated the following:

1. the optimal split rule α∗ = (α∗
1, . . . , α

∗
N−1, 1− α∗ − · · · − α∗

N−1),

2. approximations for α∗, denoted
α∗
app = (α∗

app,1, . . . , α
∗
app,N−1, 1− α∗

app,1 − · · · − α∗
app,N−1), and

3. the relative difference in the mean foreground traffic processing times, de-
fined by

∆% := abs

(

E[S
α∗

app

0 ]− E[Sα∗

0 ]

E[S
α∗

0 ]

)

× 100%. (20)

First, we assume N = 2 and β(1) = 1. The file-size distributions were var-
ied as deterministic (to cover the case c2B = 0), exponential (c2B = 1), H2 with
c2B = 16 (with balanced means) and Pareto-2 (with c2B = ∞). The load of the
foreground traffic ρ0 was varied as 0.1, 0.5, 0.9 and 1.8, and the background loads
ρ1 and ρ2 were varied as 0.1, 0.3, . . . , 0.9. To search for the optimal splitting rule
α∗ = (α, 1 − α), we evaluated all feasible values of α with a step size 0.01, and
more finely if needed. Below we will present the results of the evaluations. Tables
1 to 5 show for each feasible combination of ρ1 and ρ2 the corresponding values of
the optimal split determined by simulation α∗ = (α∗, 1 − α∗), the approximated
optimal split α∗

app = (α∗
app, 1 − α∗

app) for app ∈ {RLA,HTA,CSA}, and the rel-
ative error in the cost function ∆%, defined in (20). To obtain highly accurate
simulation results, experiments were run with extremely many jobs, up to 1010 if
needed, leading to very narrow confidence intervals (CIs), such that all digits in
the Table 1 to 5 below are significant. For compactness of the presentation the
CIs are not shown. Also, note that because of the symmetry in the model for
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N = 2 only the results for ρ1 ≤ ρ2 are shown.

To start, we compare the performance of the RLA (discussed in Section 3.2),
the HTA (discussed in Section 3.3) and the CSA (discussed in Section 3.4). As
an illustrative example, Table 1 shows the results for the case with ρ0 = 0.1 and
exponential job-size distributions, for a variety of background-load combinations
of (ρ1, ρ2).

Reduced Load Approximation (RLA)
α∗ α∗

RLA
∆% α∗ α∗

RLA
∆% α∗ α∗

RLA
∆% α∗ α∗

RLA
∆% α∗ α∗

RLA
∆%

ρ2

H
H

H
ρ1 0.1 0.3 0.5 0.7 0.9

0.1 0.50 0.50 0.00 0.55 0.56 0.03 0.70 0.64 1.92 0.85 0.75 8.79 0.97 0.90 24.88

0.3 0.50 0.50 0.00 0.63 0.58 0.69 0.80 0.70 6.19 0.96 0.88 23.39

0.5 0.50 0.50 0.00 0.70 0.63 2.58 0.94 0.83 19.65

0.7 0.50 0.50 0.00 0.86 0.75 10.76

0.9 0.50 0.50 0.00

Heavy-traffic approximation (HTA)
α∗ α∗

HTA
∆% α∗ α∗

HTA
∆% α∗ α∗

HTA
∆% α∗ α∗

HTA
∆% α∗ α∗

HTA
∆%

ρ2

H
H

H
ρ1 0.1 0.3 0.5 0.7 0.9

0.1 0.50 0.50 0.00 0.55 0.63 2.29 0.70 0.78 2.79 0.85 0.91 3.01 0.97 0.99 1.71

0.3 0.50 0.50 0.00 0.63 0.67 0.66 0.80 0.85 1.50 0.96 0.98 1.54

0.5 0.50 0.50 0.00 0.70 0.73 0.32 0.94 0.96 0.93

0.7 0.50 0.50 0.00 0.86 0.87 0.12

0.9 0.50 0.50 0.00

Composed-split approximation (CSA)
α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆%

ρ2

H
H

H
ρ1 0.1 0.3 0.5 0.7 0.9

0.1 0.50 0.50 0.00 0.55 0.59 0.42 0.70 0.72 0.07 0.85 0.87 0.15 0.97 0.98 0.72

0.3 0.50 0.50 0.00 0.63 0.63 0.00 0.80 0.81 0.03 0.96 0.97 0.50

0.5 0.50 0.50 0.00 0.70 0.70 0.01 0.94 0.95 0.22

0.7 0.50 0.50 0.00 0.86 0.86 0.01

0.9 0.50 0.50 0.00

Table 1: Comparison of the RLA, the HTA and the CSA for the case of expo-
nential job-size distributions and ρ0 = 1, and N = 2.

We observe that the CSA indeed performs much better than both the RLA and
the HTA. In fact, the RLA performs very well if ρ1 ≈ ρ2, but tends to degrade
significantly if ρ1 and ρ2 are far apart. This degradation in the accuracy becomes
most apparent if ρ1 ≈ 0 and ρ2 ≈ 1, showing double-digit error percentages. This
was to be expected, since the RLA (5) simply splits traffic proportional to the
relative amounts of capacity not used by the background traffic, while one may
suspect that the absolute values of the background traffic have a large impact on
the sensitivity of the choice of the splitting rule with respect to the background-
load values. As expected, the HTA is doing much better in those asymmetric
heavy-load scenarios, but tends to degrade somewhat when PS1 is lightly loaded
(ρ1 = 0.1) and PS2 is moderately loaded (ρ2 = 0.7), leading to errors up to 3%.
We observe that the CSA overall performs significantly better than the RLA and
the HTA, in most cases leading to an error percentage less than 0.5%.

In short, the results in Table 1 indeed show that the usefulness of refining the
simple and explicit RLA (introduced in [12]) into the CSA, leading to extremely
accurate results for most of the parameter combinations.
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In the remainder of this section, we will further evaluate the accuracy of the CSA
for a broad range of service-time distributions and combinations of foreground
and background loads. Table 2 shows the results for light foreground load, with
ρ0 = 0.1. The results show that the approximations are highly accurate over a

deterministic
α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆%

ρ2

H
H

H
ρ1 0.1 0.3 0.5 0.7 0.9

0.1 0.50 0.50 0.00 0.55 0.59 0.43 0.71 0.72 0.03 0.86 0.87 0.10 0.97 0.98 0.70

0.3 0.50 0.50 0.00 0.63 0.63 0.01 0.80 0.81 0.03 0.96 0.97 0.49

0.5 0.50 0.50 0.00 0.71 0.70 0.00 0.94 0.95 0.05

0.7 0.50 0.50 0.00 0.86 0.86 0.03

0.9 0.50 0.50 0.00

exponential
α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆%

ρ2

H
H

H
ρ1 0.1 0.3 0.5 0.7 0.9

0.1 0.50 0.50 0.00 0.55 0.59 0.42 0.70 0.72 0.07 0.85 0.87 0.15 0.97 0.98 0.72

0.3 0.50 0.50 0.00 0.63 0.63 0.00 0.80 0.81 0.03 0.96 0.97 0.50

0.5 0.50 0.50 0.00 0.70 0.70 0.01 0.94 0.95 0.22

0.7 0.50 0.50 0.00 0.86 0.86 0.01

0.9 0.50 0.50 0.00

hyper-exponential

α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆%

ρ2

H
H

H
ρ1 0.1 0.3 0.5 0.7 0.9

0.1 0.50 0.50 0.00 0.55 0.59 0.76 0.70 0.72 0.22 0.85 0.87 0.12 0.97 0.98 0.76

0.3 0.50 0.50 0.00 0.63 0.63 0.07 0.80 0.81 0.04 0.96 0.97 0.57

0.5 0.50 0.50 0.00 0.70 0.70 0.02 0.94 0.95 0.23

0.7 0.50 0.50 0.00 0.86 0.86 0.13

0.9 0.50 0.50 0.00

Pareto
α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆%

ρ2

H
H

H
ρ1 0.1 0.3 0.5 0.7 0.9

0.1 0.50 0.50 0.00 0.55 0.59 0.52 0.70 0.72 0.15 0.85 0.87 0.23 0.97 0.98 0.73

0.3 0.50 0.50 0.00 0.62 0.63 0.03 0.79 0.81 0.01 0.96 0.97 0.57

0.5 0.50 0.50 0.00 0.70 0.70 0.01 0.94 0.95 0.25

0.7 0.50 0.50 0.00 0.86 0.86 0.03

0.9 0.50 0.50 0.00

Table 2: Simulation results for light foreground load (ρ0 = 0.1), N = 2.

wide range of background-load combinations and service-time distributions, with
errors significantly less than 1%. The least favorable results from our approxi-
mation were consistently found when the background load is highly asymmetric
(ρ1 = 0.1 and ρ2 = 0.9), but even in those cases the results are highly accurate,
with errors below 0.8%.

Tables 3 and 4 show the results for moderate foreground load values of ρ0 = 0.5
and ρ0 = 0.9, respectively. The results again show that the CSA performs ex-
tremely well in all cases considered, with errors significantly less than 1%, even for
Pareto-2 distributed job sizes (thus with infinite variance) and highly asymmetric
background-load scenarios. Note that in Tables 3 and 4 several combinations of
(ρ1, ρ2) are omitted because they violate the stability conditions.
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deterministic
α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆%

ρ2

H
H

H
ρ1 0.1 0.3 0.5 0.7 0.9

0.1 0.50 0.50 0.00 0.57 0.58 0.11 0.68 0.68 0.03 0.81 0.81 0.02 0.95 0.96 0.25

0.3 0.50 0.50 0.00 0.61 0.61 0.03 0.75 0.75 0.04 0.92 0.92 0.05

0.5 0.50 0.50 0.00 0.65 0.65 0.02 0.85 0.85 0.20

0.7 0.50 0.50 0.00

exponential
α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆%

ρ2

H
H

H
ρ1 0.1 0.3 0.5 0.7 0.9

0.1 0.50 0.50 0.00 0.57 0.58 0.13 0.68 0.68 0.04 0.81 0.81 0.01 0.95 0.96 0.28

0.3 0.50 0.50 0.00 0.61 0.61 0.03 0.75 0.75 0.06 0.92 0.92 0.06

0.5 0.50 0.50 0.00 0.65 0.65 0.04 0.85 0.85 0.22

0.7 0.50 0.50 0.00

hyper-exponential
α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆%

ρ2

H
H

H
ρ1 0.1 0.3 0.5 0.7 0.9

0.1 0.50 0.50 0.00 0.57 0.58 0.35 0.68 0.68 0.16 0.81 0.81 0.05 0.95 0.96 0.48

0.3 0.50 0.50 0.00 0.61 0.61 0.00 0.75 0.75 0.07 0.92 0.92 0.15

0.5 0.50 0.50 0.00 0.65 0.65 0.09 0.85 0.85 0.36

0.7 0.50 0.50 0.00

Pareto
α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆%

ρ2

H
H

H
ρ1 0.1 0.3 0.5 0.7 0.9

0.1 0.50 0.50 0.00 0.57 0.58 0.19 0.67 0.68 0.05 0.81 0.81 0.04 0.95 0.96 0.22

0.3 0.50 0.50 0.00 0.60 0.61 0.01 0.74 0.75 0.00 0.92 0.92 0.18

0.5 0.50 0.50 0.00 0.65 0.65 0.07 0.85 0.85 0.06

0.7 0.50 0.50 0.00

Table 3: Simulation results for moderate foreground load (ρ0 = 0.5), N = 2.

deterministic
α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆%

ρ2

H
H

H
ρ1 0.1 0.3 0.5 0.7 0.9

0.1 0.50 0.50 0.00 0.57 0.57 0.02 0.66 0.66 0.02 0.77 0.77 0.06 0.91 0.91 0.63

0.3 0.50 0.50 0.00 0.59 0.59 0.02 0.71 0.71 0.38

0.5 0.50 0.50 0.00

exponential
α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆%

ρ2

H
H

H
ρ1 0.1 0.3 0.5 0.7 0.9

0.1 0.50 0.50 0.00 0.57 0.57 0.07 0.66 0.66 0.04 0.77 0.77 0.17 0.91 0.91 0.11

0.3 0.50 0.50 0.00 0.59 0.59 0.05 0.71 0.71 0.06

0.5 0.50 0.50 0.00

hyper-exponential
α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆%

ρ2

H
H

H
ρ1 0.1 0.3 0.5 0.7 0.9

0.1 0.50 0.50 0.00 0.57 0.57 0.11 0.66 0.66 0.09 0.77 0.77 0.12 0.91 0.91 0.07

0.3 0.50 0.50 0.00 0.59 0.59 0.01 0.71 0.71 0.36

0.5 0.50 0.50 0.00

Pareto
α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆%

ρ2

H
H

H
ρ1 0.1 0.3 0.5 0.7 0.9

0.1 0.50 0.50 0.00 0.57 0.57 0.08 0.66 0.66 0.05 0.77 0.77 0.00 0.91 0.91 0.00

0.3 0.50 0.50 0.00 0.59 0.59 0.00 0.71 0.71 0.53

0.5 0.50 0.50 0.00

Table 4: Simulation results for moderate foreground load (ρ0 = 0.9), N = 2.
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Finally, to assess the accuracy of the approximation for heavily loaded fore-
ground traffic, additional simulation runs were conducted for ρ0 = 1.8. Note that
in this case, the set of α-values for which the system is still stable is limited to
α ∈ (4/9; 1/2). To obtain an accurate estimate for α∗, we simulated E[S

(α,1−α)
0 ]

for different α-values with step size 0.001.

α∗ α∗
CSA ∆%

deterministic 0.473 0.47312 0.03
exponential 0.473 0.47312 0.06
hyper-exponential 0.474 0.47312 0.05
Pareto 0.474 0.47312 0.06

Table 5: Simulation results for heavy foreground load (ρ0 = 1.8), with N = 2,
ρ1 = 0.1 and ρ2 = 0.0.

The results shown in Table 5 demonstrate that the CSA is also extremely accu-
rate for heavy foreground load scenarios. Note that the mean sojourn times and
the optimal split are indeed remarkably insensitive with respect to the job-size
distributions, which supports the validity of Observation 1 in Section 3.

To assess the accuracy of the approximation for N > 2, we also consider a model
with N = 3 with Pareto-2 distributed service times with β(1) = 1. Table 6 shows
the results for this system with ρ0 = 1.5 where ρ1, ρ2 and ρ3 are varied as 0.3, 0.5,
and 0.7. For each feasible parameter setting, the table shows α∗ = (α∗

1, α
∗
2, α

∗
3)

⊤

obtained via simulation, α∗
CSA = (α1

∗
CSA, α2

∗
CSA, α3

∗
CSA)

⊤, and the relative error
defined in (20).

The results in Table 6 show that the accuracy of the CSA is again excellent for
N = 3.
To summarize, the results in Tables 1 to 6 show that the CSA, which combines
the benefits of the RLA and the HTA, leads to extremely accurate approxima-
tions for α∗ over a wide range parameter settings.

We end this section with a number of remarks.

Remark 4.1: In Section 3.1 we observed on the basis of preliminary simula-
tion experiments that the mean sojourn times, and the optimal α-values, are
remarkably insensitive with respect to the service-time distributions (Observa-
tion 1), even for extremely variable job-size distributions. In this context, notice
that the results shown in Tables 1 to 5 unanimously confirm this observation.
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ρ3 = 0.3

α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆%

ρ2

H
H

H
ρ1 0.1 0.3 0.5 0.7 0.9

0.366 0.362 0.399 0.394 0.437 0.435 0.484 0.482 0.536 0.535

0.1 0.366 0.362 0.39% 0.301 0.303 0.13% 0.230 0.233 0.42% 0.144 0.150 0.89% 0.051 0.053 0.47%

0.268 0.276 0.300 0.303 0.333 0.332 0.372 0.368 0.413 0.412

0.333 0.334 0.370 0.370 0.415 0.414

0.3 0.333 0.333 0.00% 0.260 0.261 0.27% 0.170 0.172 0.34% unstable

0.334 0.333 0.370 0.369 0.415 0.414

0.292 0.293

0.5 0.292 0.293 0.24% unstable unstable

0.416 0.414

ρ3 = 0.5

α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆%

ρ2

H
H

H
ρ1 0.1 0.3 0.5 0.7 0.9

0.400 0.396 0.437 0.435 0.485 0.480 0.538 0.535

0.1 0.400 0.395 1.03% 0.333 0.332 0.42% 0.257 0.260 0.40% 0.170 0.172 0.50% unstable

0.200 0.209 0.230 0.233 0.258 0.260 0.292 0.293

0.370 0.370 0.416 0.414

0.3 0.370 0.369 0.27% 0.292 0.293 0.24% unstable unstable

0.260 0.261 0.292 0.293

ρ3 = 0.7

α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆% α∗ α∗

CSA
∆%

ρ2

H
H

H
ρ1 0.1 0.3 0.5 0.7 0.9

0.440 0.435 0.484 0.482 0.538 0.535

0.1 0.440 0.434 1.60% 0.372 0.368 0.89% 0.292 0.293 0.50% unstable unstable

0.120 0.131 0.144 0.150 0.170 0.172

0.415 0.414

0.3 0.415 0.414 0.34% unstable unstable unstable

0.170 0.172

Table 6: Simulation results for moderate foreground load (ρ0 = 1.5), N = 3.

Remark 4.2: Despite the fact the RLA for α∗ in (5) is explicit, the HTA is
not, and can only be calculated numerically. This generally requires numerical
optimization of α over the set A. When N is not too large this causes no prob-
lem, because the evaluation of E[S

α

HTA,0] for given α is explicit, and the set of
α-values is within the bounded set A for which standard non-linear optimization
techniques are available. Note that discretization of the set A and then enumer-
ation over all α can also be done for small N . However, when N is large, the
computation times may become significant. In those cases, a further simplifi-
cation of the HTA seems to be needed. In this context, recall that in general
not all queues become unstable as ξ ↑ 1 (namely only those for which i ∈ U ,
see also Remark 3.2). Therefore, only the proper choice of αi for i ∈ U may be
crucial, whereas the cost function E[S

α
0 ] may be expected to be fairly insensitive

to the choice of αi for i /∈ U as ξ ↑ 1, i.e., becomes negligible in heavy traffic.
This observation may lead to a dramatic reduction of the dimension of the op-
timization problem. Furthermore, for N → ∞ one may use asymptotic results
from the powerful extreme-value theory to develop approximations for the HT
behavior of E[S

α
0 ]. These observations open up possibilities for further reducing

the computational complexity of the calculation of α∗
HTA. Finally, note that from

an application point of view, in the context of wireless networks with concurrent
access (a) N is rather small, say N ≤ 3, and (b) the job-split ratio does not have
to be (re)calculated in real time, so that the computational requirements are not
very strict.
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5. Topics for further research

The results presented in this paper raise a number of challenging topics for fur-
ther research. First, the simulation results in Figures 2 and 3 show that E[Sα

0 ] is
at least near-insensitive with respect to the distribution of the job size B. The
question arises whether E[Sα

0 ] is fully insensitive to the distribution of B, similar
to the marginal distributions of the per-task sojourn times (see (4)). Even ex-
tremely long simulation runs do not give a definite answer whether E[Sα

0 ] is fully
insensitive to the distribution of B. Obtaining rigorous proofs of insensitivity
properties, possibly under additional requirements on the job-size distribution, is
a challenging topic for further research. Second, an intriguing observation made
in Figures 3a and 3b is that the differences in correlations over different job-size
distributions are evident but seem to have no impact on E[S

α
0 ]. The impact of

the correlations between the per-task sojourn times seems to cancel out when
evaluating E[Sα

0 ]. Currently, a full understanding of this phenomenon is lacking,
and is left as a topic for follow-up research. Third, the Poisson assumption may
be relaxed. In fact, we suspect that both the RLA and the HTA can be quite
easily extended for example to renewal arrival processes, but it is unclear to what
extent they can be further generalized to more realistic arrival processes that in-
clude correlations between job arrivals. Derivation of such approximations is a
challenging subject for further research. Finally, the job-split model assumed a
fixed splitting rule α. However, it is likely that much better performance can
be obtained if the splitting ratios are allowed to depend on the actual state of
the system. Derivation and evaluation of such dynamic splitting policies address
another appealing topic for follow-up research.
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Appendix A

For self-containedness of the paper, in this appendix we formulate a known result
giving the expected value of maximum of a arbitrary number of exponentially
distributed random variables.

Property 1: If X1, . . . , XN are i.i.d. exponentially distributed random variables
with means 1/µ1, . . . , 1/µN respectively, then

E [max{X1, . . . , XN}] =
N
∑

k=1

(−1)k+1
∑

(i1,...,ik)∈Sk

1

µi1 + · · ·+ µik

, (21)

where Sk (k = 1, . . . , N) is defined in (16).

Proof: The derivation of Property 1 is trivial and requires only standard al-
gebraic manipulations, and is left as an exercise to the reader. �

To illustrate Property 1, let us work out (21) for the cases N = 2, 3 and 4.
For N = 2, we have S = {1, 2}, S1 = {1, 2}, and S2 = {(1, 2)}, so that

E [max{X1, X2}] =
1

µ1

+
1

µ2

−
1

µ1 + µ2

. (22)

For N = 3, we have S = {1, 2, 3}, S1 = {1, 2, 3}, S2 = {(1, 2), (1, 3), (2, 3)} and
S3 = {(1, 2, 3)}, so that

E [max{X1, X2, X3}] =

(

1

µ1

+
1

µ2

+
1

µ3

)

(23)

−

(

1

µ1 + µ2
+

1

µ1 + µ3
+

1

µ2 + µ3

)

+
1

µ1 + µ2 + µ3
.

Finally, it is readily verified that for N = 4 we have S = {1, 2, 3, 4}, S1 =
{1, 2, 3, 4}, S2 = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)},
S3 = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)} S4 = {(1, 2, 3, 4))}, so that

E [max{X1, X2, X3, X4}] =

(

1

µ1

+
1

µ2

+
1

µ3

+
1

µ4

)

(24)

−

(

1

µ1 + µ2
+

1

µ1 + µ3
+

1

µ1 + µ4
+

1

µ2 + µ3
+

1

µ2 + µ4
+

1

µ3 + µ4

)

+

(

1

µ1 + µ2 + µ3
+

1

µ1 + µ2 + µ4
+

1

µ1 + µ3 + µ4
+

1

µ2 + µ3 + µ4

)

−
1

µ1 + µ2 + µ3 + µ4
.
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