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Abstract—We investigate dynamic decision mechanisms for
composite web services maximizing the expected revenue for
the providers of composite services. A composite web service
is represented by a (sequential) workflow, and for each of
the tasks within this workflow, a number of service alter-
natives may be available. These alternatives offer the same
functionality at different price–quality levels. After executing
a sub-service, it is decided which alternative of the next sub-
service in the workflow is invoked. The decisions optimizing
expected revenue are based on observed response times, costs
and response–time characteristics of the alternatives as well
as end–to–end response–time objectives and corresponding
rewards and penalties. We propose an approach, based on
dynamic programming, to determine the optimal, dynamic
selection policy. Extensive numerical examples show significant
potential gain in expected revenues using the dynamic approach
compared to other, non–dynamic approaches.

Keywords-service oriented architecture; response time; ser-
vice level agreements; revenue maximization; dynamic pro-
gramming;

I. INTRODUCTION

Composite web services in a service oriented architecture
(SOA) aggregate web services that may be deployed and
executed within different administrative domains. The com-
posite web service provider typically runs an orchestrator
that invokes the aggregated services according to a pre–
defined workflow. The workflow is based on an unam-
biguous functionality description of a service (“abstract
service”), and several alternatives (“concrete services”) may
exist that match such a description [1]. With respect to
functionality, all concrete services that match the same
abstract service are identical.

A lot of attention in the literature has been paid to
the problem of QoS–aware optimal service composition of
SOA services (see, e.g. [2], [4], [5]). The main problem
addressed in these papers is how to select one concrete
service per abstract service for a given workflow. This
selection is made with the goal to guarantee the QoS of
the composite service (as expressed by the respective SLA)
while at the same time optimizing certain objectives like
cost minimization. Once established, this composition would
remain unchanged the entire life–cycle of the composite web

service. In reality, SLA violations occur relatively often,
leading to providers’ losses and customer dissatisfaction.
To overcome this issue, it is suggested in [3], [6], [7] that,
based on observations of the actually realised performance,
re–composition of the service may be triggered. During
the re–composition phase, new concrete service(s) may be
chosen for the given workflow. Once re–composition phase
is over, the (new) composition is used as long as there
are no further SLA violations. In particular, the authors of
[3], [6], [7] describe when to trigger such (re–composition)
event, and which adaptation actions may be used to improve
overall performance. The service re–composition solutions
usually take into account the costs of the re–composition as
well as the time scale and type of the adaptation involved.
Cardellini et al. [8] discuss the solution to dynamically adapt
the service composition at runtime. The search for a new
solution is triggered by the occurrence of events that make
a previously calculated solution void, and the selection is
driven by the goal of maximizing a certain utility function.
The problem is modelled as an optimization problem that
could be efficiently solved on–line.

We investigate full dynamic service selection (i.e. runtime
service composition) that maximizes revenues for the com-
posite service provider, while committing to the response–
time objective that is part of the agreed end–to–end SLA.
In contrast to Cardellini et al. [8], we take into account the
option to adapt the service composition during the execution
of the workflow, and on a per–request basis. The main
research question addressed in this paper is what is the
revenue potential of the proposed dynamic service selection
compared to non–dynamic, optimal service composition. We
use a dynamic programming approach in order to make an
optimal service selection at runtime.

To illustrate our dynamic service selection approach, we
observe the case of sequential workflows. Fig. 1 depicts
a sequential workflow consisting of four abstract services,
and each abstract service maps to a number of concrete
services (alternatives). The QoS parameters (e.g. service
respone–time) of concrete web services are modelled by
probability distributions. When the client’s request meets the
agreed end–to–end deadline, the composite service provider
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Figure 1. Composite web service depicted by a sequential work-
flow. Dynamic service composition is based on pre–calculated
response–time thresholds using dynamic programming.

is rewarded by the client. Otherwise, when the deadline is
not met (i.e. an event of an SLA violation) the provider
pays a penalty to the client. After the execution of a single
task within the workflow, the orchestrator decides on the
next concrete service to be executed. The decision taken
is based upon comparison among (1) the remaining time
to meet the end–to–end deadline and (2) the pre–calculated
response–time thresholds for each service. The response–
time thresholds are calculated before the first request is
admitted to the system, where the dynamic programming
takes the penalty, the reward, the concrete services’ level
objectives (SLOs) and the execution costs as input. These
thresholds are represented by e.g. a lookup table. Depending
upon the actual response–times and the thresholds, it is
possible that every client request may be served by a
different chain of alternatives.

We summarize the main contributions of this paper as
follows:

1) Modeling dynamic service composition as a dynamic
programming problem. It is shown that this approach
yields an optimal service selection policy which can
be expressed in terms of a response–time thresholds
that are calulated before the service is deployed. At
runtime, service selection decisions are not compu-
tationaly intensive, enabling fast service selection. In
practice, service selection can be implemented as a
simple lookup function, e.g. lookup-table or database
query.

2) Numerical investigation of our full dynamic approach
as well as a comparison to the optimal a–priori static
selection, which shows significant potential gain in
expected revenue.

3) Analysis of the impact of the number of available
alternatives (and their QoS properties) for each ab-
stract service (“stage”) within the sequential workflow.

These results show that the expected revenue increases
as the number of alternatives increases, especially to-
wards the end of the workflow. In fact, selecting faster
but more expensive alternatives occasionaly helps to
optimize profit.

In Section II we describe the model of the system under
consideration and in Section III we describe the dynamic
programming approach we abridged for our purposes. We
explain the procedure and derive formulae used to determine
response time thresholds. Simulation results are presented
and discussed in Section IV. We illustrate the influence of
different system parameters, e.g. the number of concrete ser-
vices that match an abstract service, etc. Also, we quantify
the significant revenue increase when our approach is used.
We conclude the paper, in Section V, with directions for
further research.

II. SEQUENTIAL WORKFLOW DECISION MODEL

In this section we describe our model based on a com-
posite web service represented by a sequential workflow.

Remark (non sequential workflows)
Our solution is applicable to any workflow that could be

aggregated and mapped into a sequential one. We show in
Appendix A how to aggregate an example workflow into a
sequential one. The aggregation is illustrated for some of
basic workflow patterns in case of stochastic (probabilistic)
models of services’ QoS parameters. The end result is a
sequential workflow pattern, in which each service (aggre-
gated or not) has a number of alternatives. However, the
aggregation leads to coarser control, since decisions could
not be taken for a single service within the aggregated
workflow, but rather for the aggregated workflow patterns
themselves.

Per single composite service request, the orchestrator
executes services one–by–one as indicated by the workflow.
There are in total N abstract services in the workflow
and the abstract service sequential position is indexed by
i, i = 1, 2, . . . , N . Each abstract service i maps onto
Mi ≥ 1 concrete services (alternatives). Before service
i ≤ N is executed, the orchestrator makes a decision which
one of the Mi service alternatives to choose. The decision
is made based upon e.g. a lookup table that contains pre–
calculated response–time decision thresholds. These thresh-
olds are compared to the time that remains for the workflow
execution. The detailed explanation of the procedure and an
example of a lookup table are given in Section III.

Once calculated, the decision thresholds are not likely
to change as long as agreed SLAs are “static”, i.e. time–
invariant. The composite service response–time SLO is
specified as a “hard” objective, i.e. as a guarantee that all
requests would have a response time smaller than a certain
deadline. The response–time SLOs of the concrete services
are specified as “soft” ones, and in general, “soft” SLOs
are expressed as a response–time probability distribution



function (PDF) [13], or alternatively, as the cummulative
distribution function (CDF).

The response time of alternative service j for abstract
service i is denoted as Di,j ≥ 0, where i = 1, 2, . . . , N, j =
1, . . . ,Mi. From the perspective of the response–time, we
model each concrete service as a black box, which means
that Di,j is a random variable for which respective PDF (or
CDF) is given. The PDFs and CDFs for concrete services
are denoted by fi,j(t) and Fi,j(t), respectively. From the
given PDF fi,j(t), it is easy to determine the expected
value µi,j , variance σ2

i,j , etc. The realisation of the response
time di,j (i = 1, 2, . . . , N, j = 1, . . . ,Mi) is a single
value drawn from the respective PDF. The response times of
concrete service alternatives are mutually independent. The
realisation of end–to–end response time D is represented by
d, and pe2e := P {D ≤ δp} represents the probability that
D is smaller than the given end–to–end deadline δp that
composite service provider agreed to the clients.

Remark (probability density functions)
In practice, probability density functions may either be

estimated from the measurements carried out by the com-
posite service provider, or the third-party domains may pub-
lish, or otherwise make available, such information. Since
we investigate the potential of our approach, we assume
time-invariant SLAs and the PDFs (which are part of the
SLAs) do not change either. In case of time–variant PDFs,
a recalculation of the response–time thresholds may be
occasionally necessary. The recalculation may be triggered
when there is a long–term SLA violation, i.e. when the
observed PDF differs “significantly” from the initial one.
This is beyond the scope of this paper.

The SLA agreed between the individual service provider
(ISP) for the j-th concrete service of the i-th abstract service
and the composite service provider (CSP) has the following
elements:
• The response-time probability distribution function,
fi,j(t).

• The cost ci,j [money unit] that the CSP pays to ISP
for the execution of a single request. No penalties are
imposed. From the ISP viewpoint, this value represents
reward.

The SLA between the CSP and its clients has the follow-
ing elements:
• The end–to–end response time penalty deadline δp

[time unit].
• The reward R [money unit] that the CSP gets for

executing a single request within penalty deadline δp.
• The penalty V [money unit] that the CSP pays to the

end customer when the agreed end–to–end deadline is
not met.

III. ALGORITHM DESCRIPTION

In this section we describe how to optimise expected
CSP revenue by formulating the dynamic service selection

as a dynamic programming (DP) problem, [14]. Dynamic
refers to the fact that decisions taken at certain moment of
time have impact on decisions that are taken afterwards.
Since the decisions within DP depend on future behaviour,
a “backward recursion” method is needed for optimisation.
This means that optimisation of decisions takes the (possi-
ble) subsequent decisions into account, and the optimisation
process results in a decision policy, eventually. The decision
policy indicates which service alternatives should be chosen
in order to optimize the CSP’s expected revenue per compos-
ite service request. The policy is determined by the current
position within the sequential workflow i and the remaining
time ∆ (“time budget”) till the overall deadline δp will be
violated.

The recursion for a set of expected rewards E[Ri | ∆ =
δ∗] is given by:

E[Ri | ∆ = δ∗] = max
j

{
− ci,j + E[Ri,j | ∆ = δ∗]−

−E[Vi,j | ∆ = δ∗]
}
, (1)

where i = 1, . . . , N , j = 1, . . . ,Mi.
For j = 1, . . . ,Mi, we have

E[Ri,j | ∆ = δ∗] =


P(DN,j ≤ δ∗)R, i = N,
δ∗∫
0

fi,j(t)E[Ri+1 | ∆ = δ∗ − t]dt,

for i = 1, . . . , N − 1.
(2)

E[Vi,j | ∆ = δ∗] =


P(DN,j > δ∗)V, i = N,

P(Di,j > δ∗)E[Ri+1 | ∆ = 0],
for i = 1, . . . , N − 1.

(3)

Here fi,j(t) represents the response time PDF of concrete
service alternative j for abstract service i, while the term
E[Ri,j | ∆ = δ∗] represents the expected reward, when
concrete service j (corresponding to abstract service i) is
executed for the given time budget value δ∗. The term
E[Vi,j | ∆ = δ∗] represents the expected penalty for
exceeding the overall deadline at abstract service i while
executing concrete service j for the given time budget value
δ∗. The expected reward and penalty functions take into
account the impact of future decisions as represented by
terms relating to Ri+1 in equations (2) and (3). Once the
end of the workflow is reached (i = N ) we stop.

The integrals in equation (2) can become rather compli-
cated and will generally not result in tractable expressions.
By discretising the distributions the problem can be solved
numerically. For the discretisation we split the time interval
over which the response–time PDF is defined in segments of
the same size h. The number of segments is m∗ and the size
of h corresponds to the accuracy of the discretisation. The



discretised versions of the PDF (pi,j,k) and CDF (Pi,j,k) are
therefore defined as the following:

m∗ =
⌈δ∗
h

⌉
,

pi,j,k =P
(
Di,j ≤ h[k + 0.5]

)
− P

(
Di,j ≤ h[k − 0.5]

)
,

Pi,j,k =
k∑
l=0

pi,j,l,

where i =1, . . . , N, j = 1, . . . ,Mi, k = 0, . . . ,m∗.

The larger the number of segments m∗ the more accurate
the discretisation would be, but it would take longer time to
calculate the respective PDF and/or CDF.

Using the discretisation, the backward recursion can be
transformed into a scheme that can be evaluated numerically.
For given number of segments m∗, let terms R∗i,m∗ , R∗i,j,m∗ ,
and V ∗i,j,m∗ represent discretised versions of E[Ri | ∆ = δ∗],
E[Ri,j | ∆ = δ∗], and E[Vi,j | ∆ = δ∗], respectively. The
backward recursion formulae are then as follows:

R∗i,m∗ = max
j

{
− ci,j +R∗i,j,m∗ − V ∗i,j,m∗

}
, (4)

where i = 1, . . . , N, j = 1, . . . ,Mi,

R∗i,j,m∗ =


PN,j,m∗R, i = N,
m∗∑
k=0

pi,j,kR
∗
i+1,m∗−k, i = 1, . . . , N − 1,

(5)

and

V ∗i,j,m∗ =

{
(1− PN,j,m∗)V, i = N,

(1− Pi,j,m∗)R∗i+1,0, i = 1, . . . , N − 1,
(6)

where j = 1, . . . ,Mi, k = 0, . . . ,m∗.

While applying formulae (4)–(6), the corresponding deci-
sions (actions) A∗ can be obtained by storing the maximum
arguments evaluated as

A∗i,m∗ = argmax
j=1,...,Mi

{
−ci,j+R∗i,j,m∗−V ∗i,j,m∗

}
, i = 1, . . . , N.

The optimal decisions could be represented by a lookup-
table, and a graphical example of a lookup-table for the
sequential workflow with N = 4 tasks is shown in Figure
2. The horizontal axis corresponds to the time budget left
until the overall deadline is breached, while the vertical axis
corresponds to the position of the abstract service within the
chain. The colour corresponds to the decision that has to be
taken, e.g. proceed with the alternative j. We illustrate the
lookup table with the following examples:

1) We start handling a new request and the overall
deadline equals δp = 13.5. The decision is marked
by an asterisk ∗ at the lookup table shown in Figure
2, and alternative 1 is to be selected.

2) We have 4.9 time units remaining the decision is made
for the abstract service at position 3. The decision is
marked by a cross ×, and points that concrete service
alternative 3 should be selected.

Policy
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{
{
{
{
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Figure 2. Graphical example of a decision table. The vertical dashed line
represents the overall deadline δp.

∗ : Decision at start of request (abstract service 1) for δp = 13.5,
×: Decision for remaining time budget δ∗ = 4.9 at abstract service 3.

IV. EXPERIMENTS

A. Setup description

The workflow considered is sequential and there are Mi

concrete services that match abstract service i. There are

in total K =
N∏
i=1

Mi possible concrete service composition

“paths”. In order to evaluate the performance of the dynamic
service selection approach, we compare it to the strategy we
call “fixed path” (FP). The FP strategy selects the “static”
optimal path, i.e. path with the highest expected revenue by
exhaustive search for all K possible paths.

Our model leaves a lot of freedom for the selection
of response–time distributions and parameter values. These
are summarized by Table I. We have selected log–normal

Table I
DEFINITION OF PARAMETERS USED IN THE EXPERIMENTS

Parameter Definition Value
i Abstract service index 1, . . . , N
j Concrete service alternative index 1, . . . ,Mi

Fi,j Response–time distribution lognormal(µi,j , σ
2
i,j)

µi,j Response time mean scenario dependent
σ2

i,j Response time variance scenario dependent
ci,j Service cost scenario dependent
δp End–to–end deadline scenario dependent
pe2e Fraction of required successful re-

sponses within the overall deadline
pe2e := P(DF P < δp)

0.9

R Reward per successful request
within deadline δp

scenario dependent

V Penalty per request not completed
within deadline

scenario dependent

CV R Penalty/reward ratio 8
E[RFP ] Expected optimal FP revenue 0.01

response–time distributions, as these distributions are de-
fined only for positive values of response–time, and their
parameters can be easily tuned to obtain any desired (finite)
mean µ and variance σ2. The selection of distribution is
not restrictive, as our solution approach works well for any
probability distribution.

We consider a service workflow illustrated at Fig. 3 for our
experiments. This sequential workflow consists of N = 4
abstract services. For each abstract service i, there are Mi



Table II
CONCRETE SERVICE ALTERNATIVES SYMMETRIC SCENARIO

Abstract service → Service 1, Service 2,
Service 3, Service 4

Concrete service↓ c µ σ
Alternative 1 1 5 2
Alternative 2 5 2.5 2
Alternative 3 10 1.25 4
Alternative 4 50 0.5 0.03

concrete service alternatives, where Mi could take one of the
values {1, 2, 3, 4}, and Mi 6= Mj whenever i 6= j. The no-
tation (M1,M2,M3,M4) depicts the particular experiment
setup, and represents one of the possible permutations of
the set {1, 2, 3, 4}. Therefore, there are in total 24 different
compositions (experimental setups) to be considered.
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Figure 3. Example workflow where number of alternative concrete services
are represented by permutation (M1,M2,M3,M4) = (3, 4, 1, 2).

We have conducted simulations for two general scenarios,
symmetric and asymmetric. These scenarios are defined
based on the selection of cost parameters, as well as µ and
σ2 for a concrete service. The goal of symmetric scenario
simulations is to illustrate the importance of the position
of, and number of, service alternatives within the workflow.
The choice of parameters for symmetric scenario is given
in Table II; here the parameters of the concrete service
alternatives are the same for all abstract services. When
the number of alternatives for abstract service is e.g. 2,
we always consider alternative 1 and alternative 2 in our
experiments.

In the asymmetric scenario which corresponds to param-
eter Table III, the concrete services have different mean
response times for abstract services at different positions
in the service composition chain. For example at position 2,
alternative j = 1 has cost c2,1 = 5, mean µ2,1 = 10 and
variance σ2

2,1 = 16 while alternative j = 2 is cheaper, i.e.
c2,2 = 1, has a lower mean µ2,2 = 9.5 but higher variance
σ2

2,2 = 64. Furthermore at position 3 an expensive service
with zero variance is added. The goal of the asymmetric

Table III
CONCRETE SERVICE ALTERNATIVES ASYMMETRIC SCENARIO

Abstract service → Service 1 Service 2
Concrete service↓ c µ σ c µ σ

Alternative 1 1 5 2 5 10 4
Alternative 2 5 2.5 2 1 9.5 8
Alternative 3 10 1.25 4 10 1.5 0.5
Alternative 4 50 0.5 0.03 50 1 0.05

Abstract service → Service 3 Service 4
Concrete service↓ c µ σ c µ σ

Alternative 1 1 0.5 0.2 1 2.5 1
Alternative 2 5 0.4 0.2 5 2.45 1.5
Alternative 3 10 0.3 0.05 10 1 2
Alternative 4 100 0.05 0 50 0.25 0.02

scenario is to illustrate the importance of the variance in
addition to mean and cost for the service selection, which
is usually neglected in state of the art service composition
solutions.

Let (j1, j2, j3, j4) represent the service composition for
the FP strategy, where 1 ≤ jk ≤ Mk, k = 1, 2, 3, 4. We
want to compare the FP and DP strategies when the penalty-
to-reward ratio CV R = V

R is set to 8. The expected reward
per request for the FP strategy E[RFP ] is given by

E[RFP ] = pe2e ·R− (1− pe2e) · V −
4∑
k=1

ck,jk . (7)

We use the FP strategy for the benchmarking, so we set the
value E[RFP ] = 0.01. Taking into account (7) the values
for parameters R and V satisfy the following equations:

R =
E[RFP ] +

∑4
k=1 ck,jk

(CV R + 1)pe2e − CV R
, (8)

V = CV RR.

The calculated values for reward and penalty parameters
(and given pe2e = 0.9) are then used for the simulations
of the DP strategy, for both symmetric and assymetric
scenarios.

B. Results

For all possible permutations of number of concrete ser-
vice alternatives (see Table IV) the expected revenue E[R] is
calculated for both symmetric and asymmetric scenarios and
DP and FP algorithms. The results are summarized in Figure
4 (symmetric scenario) and Figure 5 (asymmetric scenario).
For both figures, the alternative count configurations are
ranked on expected revenue for the DP algorithm.

In Figure 4 we observe that DP solution achieves the
lowest revenue for the permutation (M1,M2,M3,M4) =
(4, 3, 2, 1). In this case there are many alternatives at the first
position and no alternatives at the end of the workflow result-
ing in no possibility to recover from (possible) large service
response time accumulated at the begin of the workflow.
Further, DP–based solution makes always the same choice
for the first service in the workflow, not taking any advantage



Table IV
INDICES OF ALTERNATIVE CONFIGURATIONS

label a b c d e f g h i j k l
position 1 4 4 4 4 4 4 3 3 3 3 3 3
position 2 3 3 2 2 1 1 4 4 2 2 1 1
position 3 2 1 3 1 2 3 2 1 4 1 2 4
position 4 1 2 1 3 3 2 1 2 1 4 4 2

label m n o p q r s t u v w x
position 1 2 2 2 2 2 2 1 1 1 1 1 1
position 2 3 3 4 4 1 1 3 3 2 2 4 4
position 3 4 1 3 1 4 3 2 4 3 4 2 3
position 4 1 4 1 3 3 4 4 2 4 3 3 2

of available alternatives for this service. On the other hand,
the highest revenue for the DP solution is achieved for
permutation (M1,M2,M3,M4) = (1, 2, 3, 4). The most
alternatives are then available at the last service within the
wofkflow, thus increasing the possibility to recover from
(possible) large response times accumulated at the beginning
of the workflow.

We also see from Figure 4 that six configurations with the
highest revenue are those when the number of alternatives
for abstract service 4 is the highest, i.e. 4. Configurations r, u
perform better than configurations n, j, k, s as the number
of alternatives for abstract service 3 for the former config-
urations is 3, and for the latter configurations is either 1 or
2. Additionally, the revenue “jump” between configurations
v and n is due to the number of alternatives (3 and 4,
respectively) for abstract service 4. The largest DP revenue
improvement is when for the abstract service i = 4, concrete
service alternative 4 is considered (see Table II). When
this alternative with low mean and variance is considered,
enough certainty to proceed with the workflow execution
exists and the high price of concrete alternative 4 will be
compensated by the increase in expected revenue. Another
(smaller) revenue increase can be observed when concrete
service alternative 3 becomes available for abstract service
at position 3. This can be explained by the fact that the 90–
th percentile for alternative 3 is still lower than 1 and 2 (see
Table V) despite its higher variance.

Table V
CONCRETE SERVICE ALTERNATIVE 90TH PERCENTILE.

Alternative 1 2 3 4
Percentile 7.61 4.81 2.74 0.54

µ 5 2.5 1.25 0.5
σ 2 2 4 0.03

In Figure 5 the results are given for the asymmetric
scenario. For the asymmetric scenario it is harder to observe
structure, because the different alternatives have different
impact on the response time and the DP takes advantage
of the properties of all available concrete service alterna-
tives. For alternative configurations (M1,M2,M3,M4) =
(4, 3, 2, 1) and (M1,M2,M3,M4) = (1, 2, 3, 4) the lowest
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Figure 4. Expected revenues per request in case of symmetric scenario;
comparison between FP and DP for different configurations.
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Figure 5. Expected revenues per request in case of asymmetric scenario;
comparison between FP and DP for different configurations.

expected and the highest revenue are achieved, respectively.
The largest revenue increase is achieved when the near–zero
variance service alternative is considered at position 4 and
when the cheaper second alternative at position 2 is included
despite its higher variance.

In Figure 6 we show the comparison of the rewards for
the symmetric and asymmetric scenarios. The comparison is
done when the same service configuration is used for both
scenarios. The indices of service configuration are shown in
Table IV.

The main conclusions and some “rules of a thumb” that
could be drawn from the Figures 4 - 6 are as the following:

• Dynamic, on–the–fly service composition results in
higher revenues for the CSP, compared to optimal
“static” service composition (Figures 4, 5). While the
expected reward per request for the FP strategy is
0.01, for the symmetric and asymmetric DP scenarios,
the expected rewards per request, depending of the
configuration, may be greater than 40 or greater than
60, respectively.

• It is more beneficial to have higher number of concrete
service alternatives closer to the end of the sequential
workflow, (Figures 4, 5).



• The variability of the response–times may have sig-
nificant impact to the revenues achieved. When the
end–to–end deadline is in jeopardy, it may be better
to have more expensive service with small response–
time variability (and smaller mean) than less expensive
one with large response–time variability (Figure 5).

• It is in general, better to have more response–time
versatility with respect to mean and variance, (Figure
6). However, this needs to be investigated further.
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Figure 6. Revenue comparison between symmetric and asymmetric
scenarios.

V. CONCLUSIONS

In this paper, we investigated the problem of revenue max-
imization for runtime service composition with end–to–end
response–time commitments. We used the dynamic program-
ming approach for dynamic, on–the–fly service selection
during the execution of the composite service workflow. The
(selection) decisions to be executed are calculated during the
service composition, and may be implemented as a lookup
table.

Significant amount of extra revenues are generated by
our dynamic programming approach compared to the static
optimal service composition. These revenues are mainly due
to the following scenarios:

• When services at the beginning of the chain are per-
forming better than expected it may be possible to
select one of the cheaper but tardy services as the
workflow is further traversed, therefore reducing the
cost of the invocation.

• When services at the beginning of the chain are per-
forming worse than expected it may be possible to
select one of the more expensive but fast services as
the workflow is further traversed. Such decisions make
end–to–end deadline achievable, however at higher ex-
ecution costs. Therefore the dynamic service selection
results in revenue for CSP in such scenarios. Without
the dynamic service selection in place, CSP would have
to pay the penalties.

In principle, the number of concrete services consid-
ered for service composition becomes more significant as
the workflow is traversed. Further, the variability of the
response–times has significant impact to the revenues as
well.

We have considered the case when SLAs are time–
invariant, i.e. once established, response–time SLOs (rep-
resented by respective probability density functions) do
not change. The possible extensions of this paper would
discuss the practical scenarios when such objectives (i.e.
PDFs) deviate from values indicated by the SLAs. The
re–calculation of the lookup table in optimal way (w.r.t.
scalability, frequency of updates) may be necessary in such
a case. Further, the dynamic programming solution may
tend to slow down when number of services is extremely
large. This suggests the development of fast yet efficient
heuristic solutions, and opens up a challenging area for
further research.

APPENDIX A.
AN EXAMPLE OF THE WORKFLOW AGGREGATION FOR

PROBABILISTIC SLAS

We illustrate some basic aggregation rules using an exam-
ple workflow (represented by Fig. 7) and show how it can be
mapped into the (relatively simple) sequential workflow. The
proposed aggregation could be done as long as there is no
data dependence among the services. The aggregation rules
are given for the case when probabilistic (i.e. stochastic) QoS
models are used for different web service QoS parameters,
e.g. response–time. The calculation of the composite service
QoS has been analysed in many papers, e.g. [9]–[13]. How-
ever, none of these papers considered stochastic QoS models,
except [13], in which the authors calculate the composite
service QoS parameters using Monte–Carlo simulations.

The workflow in Figure 7 consists of four elementary
but frequently used workflow composition patterns, namely
sequential, flow, switch and loop. There are two alternatives
for services 1, 2 and 5, three alternatives for service 3,
and services 4 and 6 have one alternative. The flow pattern
represents (part of a) workflow in which all services are
executed in parallel, and the response is not available till all
services finish their execution (services 2 and 3 at Figure 7).
The switch statement represents workflow that executes one
of the services with given probabilities. Referring back to
Figure 7 we identify the switch pattern for services 4 and 5,
which are executed with probabilities p4 and p5, respectively,
where p4 + p5 = 1. In general, the loop control statement
consists of K consecutive invocations of the single service
(service 6 in Figure 7). Every service within the workflow
is represented by an probabilistic response–time SLO, i.e.
the response–time probability density function (PDF) and/or
response–time cummulative distribution function (CDF). For
concrete service j of abstract service i within the given
workflow, the PDF and CDF are fi,j and Fi,j , respectively.
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Figure 7. Example workflow reduced and aggregated into the sequential
workflow.

The execution cost in this case is ci,j , and response–time
random variable is Di,j . The aggregation rules for concrete
services depicted in Figure 7 are as follows:
• The resulting response–time PDF for the flow pattern

is expressed by fAWS2,3 = F2,1 · f3,1 + f3,1 ·F2,1. The
execution cost is given as cAWS2,3 = c2,1 + c3,1.

• The resulting response–time PDF for the switch pattern
(services 4 and 5) is given as fAWS4,5 = p4 ·f4,1 +p5 ·
f5,1. The execution cost is cAWS4,5 = p4 ·c4,1+p5 ·c5,1.

• The resulting response–time PDF of the loop pattern
is expressed as K-fold convolution of the PDF f6,1,
i.e. fAWS6 = f6,1 ∗ f6,1 ∗ · · · ∗ f6,1 = f∗K6,1 , where
∗ represents convolution operator. The CDF FAWS6 is
calculated similarily, and the execution cost is K · c6,1.

In case of aggregation of the services with multiple
alternatives the aggregation should take place for each
combination of the alternatives for considered services.
Therefore, aggregation of services 2 and 3, AWS2,3 has
6 alternatives, AWS4,5 has 2 alternatives, and so on. The
response–time PDFs for the aggregation of more complex
workflow patterns could be efficiently numerically calculated
using the methods described in [15].
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