
Dynamic Traffic Splitting to Parallel Wireless Networks

with Partial Information: A Bayesian Approach

S. Bhulai1,2, G.J. Hoekstra2,3, J.W. Bosman2, and R.D. van der Mei2,1

1VU University Amsterdam, Department of Mathematics, The Netherlands
2CWI, Probability and Stochastic Networks, Amsterdam, The Netherlands

3Thales, Innovation Research & Technology, Huizen, The Netherlands

Abstract

Contemporary wireless networks are based on a wide range of different technolo-
gies providing overlapping coverage. This offers users a seamless integration of
connectivity by allowing to switch between networks, and opens up a promising
area for boosting the performance of wireless networks. Motivated by this, we
consider a networking environment in which users are able to select between the
available wireless networks to minimize the mean processing times for file down-
loads in the presence of background traffic. The information available to the user
is only the total number of jobs in each network, rather than the per-network
numbers of foreground and background jobs. This leads to a complex partial
information decision problem which is the focus of this paper.
We develop and evaluate a Bayesian learning algorithm that optimally splits a
stream of jobs that minimizes the expected sojourn time. The algorithm learns
as the system operates and provides information at each decision and departure
epoch. We evaluate the optimality of the partial information algorithm by com-
paring the performance of the algorithm with the “ideal” performance obtained
by solving a Markov decision problem with full state information. To this end,
we have conducted extensive experiments both numerically and in a simulation
testbed with the full wireless protocol stack. The results show that the Bayesian
algorithm has close to optimal performance over a wide range of parameter values.

Key words: Traffic Splitting, Processor Sharing, Concurrent Access, Flow-level
Performance, Bayesian dynamic programming, Partial Information Model

1. Introduction

Many of today’s wireless networks have already closely approached the Shan-
non limit on channel capacity, leaving complex signal processing techniques room
for only modest improvements in the data transmission rate [8]. A powerful alter-
native to increase the overall data rate then becomes one in which multiple, likely

Preprint submitted to Performance Evaluation May 10, 2011



different, networks are used concurrently because (a) the spectrum is regulated
among various frequency bands and corresponding communication network stan-
dards, and (b) the overall spectrum usage remained to be relatively low over a
wide range of frequencies [10]. The concurrent use of multiple networks simultane-
ously has opened up enormous possibilities for increasing bandwidth, improving
reliability, and enhancing Quality of Service (QoS) in areas that are covered by
multiple wireless access networks. Currently, the efficient use of multiple net-
works concurrently is an active area of both research [32] and standardisation
efforts [11]. However, despite the enormous potential for quality improvement,
only little is known about how to fully exploit this potential. This raises the
need for new splitting algorithms for concurrent access that are simple, easy to
implement, yet effective.

In general, the more detailed information about the state of the system is known
(e.g., the number of flows, measured round-trip times and the network load),
the higher potential capacity improvements. However, in practice there is often
no such detailed information available, or at best only some coarse-grained and
aggregated statistics. Therefore, the challenge is to achieve efficient network uti-
lization levels and good end-user application performance, based on information
that is only partially available. To address this challenge, we propose a dynamic
Bayesian control algorithm that incorporates learning while optimally splits the
traffic to the different networks.

In this paper we study the splitting problem in a queueing-theoretical context.
We study a model consisting of N non-identical parallel networks that are mod-
eled as processor-sharing PS queues that serve N + 1 streams of jobs. Stream 0
is called the foreground stream, and streams 1, . . . , N are called the background
streams. Jobs of background stream i are served exclusively at PS node i. Each
job of the foreground stream has to be routed to one of the PS nodes on the
basis of information on the total number of (background and foreground) jobs at
each of the nodes. Job sizes are assumed to be exponentially distributed. The
goal is to develop a dynamic policy that minimizes the expected sojourn time of
foreground jobs. Motivated by practice, we assume that the decision maker is not
able to distinguish the number of foreground and background jobs in the network,
but instead only has information to the total number of jobs. The challenge is to
deal with this partial information problem. In this paper, we address this prob-
lem through a learning mechanism, where the decision maker makes a statistical
inference on the distribution of the numbers of foreground and background jobs
after the each decision. To this end, we model the system as a Bayesian decision
problem. In this context, the decision making involves learning on the partially
observed states while at the same time optimal actions are chosen. Experiments,
conducted both numerically and in a wireless simulation testbed, show that the
algorithm has a performance that is close to the case in which full information is

2



available. This makes the algorithm a promising first step towards efficient traffic
splitting in practice.

The main motivation for this paper stems from applications of traffic splitting
in the context of multiple overlapping wireless networks. This application do-
main leads to a number of model assumptions that are not covered by existing
papers in the literature. First, an important aspect is the presence of background

traffic (i.e., streams of jobs that are handled by one specific network only and
hence are not split), which may have a strong impact on the performance and
optimality of the splitting of the (foreground) stream of jobs; the inclusion back-
ground traffic adds an interesting complexity to the model. Second, in practice
background and foreground traffic can often not be separated, because the traffic
from multi-homed systems is difficult to distinguish from the traffic in networks of
single-homed systems, so that the only information available is the total number
of jobs in the networks. An optimal foreground-splitting algorithm ideally has
knowledge on the numbers of foreground and background jobs in the system. As
a consequence, we have to deal with the availability of partial information (at
best we only know the sum of the number of foreground and background jobs
for each network) only, which adds another level of complexity to the model, and
requires for smart methods to do so.

The contribution in this paper is two-fold. On the methodological side, it is
known that Bayesian learning algorithm are notoriously difficult to implement
and to derive optimal policies from. While the vast majority of papers (see,
e.g., [4, 6, 14, 29]) propose simplified structures of the optimal policy, we reduce
the dimensionality of the state space by using structural properties of the prob-
lem. In addition, we show that efficient discretization of the state space leads to
numerical tractability (see also Remark 2.1). On the practical side, the proposed
algorithm is new in the context of traffic splitting in the presence of concurrent
access for wireless networks. Such algorithms open up highly promising means to
boost bandwidth in the wireless networks. The algorithm is effective, yet easy to
apply in practical systems, and as such extremely useful for real wireless network
deployments.

In the literature, a variety of fundamental and applied studies have been focused
to the splitting and scheduling jobs to multiple nodes. The available results and
techniques are briefly outlined below. In the context of telecommunication sys-
tems, the concurrent use of multiple network resources in parallel was already
described for a Public Switched Digital Network (PSDN) [9], where inverse mul-
tiplexing was proposed as a technique to perform the aggregation of multiple
independent information channels across a network to create a single higher-
rate information channel. Various approaches have appeared to exploit multiple
transmission paths in parallel. For example, by using multi-element antennas, as

3



adopted by the IEEE 802.11n standard [1], at the physical layer or by switching
datagrams at the link layer [7, 21], and also by using multiple TCP sessions in
parallel to a file server [31]. In the latter case, each available network transports
part of the requested data in a separate TCP session. Previous work has indi-
cated that downloading from multiple networks concurrently may not always be
beneficial [12], but in general significant performance improvements can be real-
ized [13, 17, 19]. Under these circumstances of using a combination of different
network types, in particular, the transport layer-approaches, have shown their
applicability [19] as they allow appropriate link layer adaptations for each TCP
session.

In a queueing-theoretical context, there is very little literature on partial in-
formation models. Bellman [3] was the first to study decision problems with a
transition law that is not completely known. He observed that the problem could
be transformed into an equivalent full observation problem by augmenting the
state space with the set of probability distributions defined on the domain of the
unknown quantity (i.e., the unobserved state, or the unknown parameter) and up-
dating it by Bayes’ rule. The transformation of the partial information problem
to the complete information model, however, comes with added computational
difficulties, since policies are defined over a continuum of states. This is the fun-
damental problem in developing algorithms for computing optimal policies [28].
There is some work in the theoretical domain to characterize the structure of the
optimal policy (see, e.g., [5, 2, 15, 24]). Even then, finding the optimal policy com-
putationally for a general Bayesian decision problem is intractable. Approaches
dealing with this are to be satisfied with suboptimal solutions or to develop algo-
rithms that can exploit problem characteristics (see, e.g., [23, 29, 34, 14, 4, 6]).
We refer to [25, 27, 33, 22] for some surveys on computational techniques.

The organization of the paper is as follows. In Section 2 we describe the model
and introduce the notation. Moreover, we discuss the full information model in
Section 2.1 and the Bayesian analysis in Section 2.2. In Section 3 we discuss the
numerical results, comparing the performance of our Bayesian approach to the
fully observable MDP, not only in a queueing-theoretical setting where networks
are modeled as PS nodes, but also in a simulation setting where the full wire-
less protocol stack is implemented. Finally, in Section 4 we address a number of
topics for further research.

2. Problem formulation

In this section we describe the concurrent access problem in greater detail.
We model N mobile networks as PS servers so that multiple jobs are served
simultaneously. Accordingly, in our model we consider server selection policies
instead of network selection policies. There are N + 1 streams of jobs in the

4



PS 1

PS 2

PS N

Foreground stream

Background stream 2

Background stream 1

Background stream N

λ0

λ1

λ2

λN

µ1

µ2

µN

x1, y1

x2, y2

xN , yN

Figure 1: The concurrent access network.

system. Stream i generates a stream of jobs for server i for i = 1, . . . , N . Stream 0
generates a stream of jobs for which the jobs can be sent to either server 1 up to
server N . Hence, streams 1 to N can be seen as background traffic, and stream 0
as foreground traffic. We assume that all streams are modeled by a Poisson
process with parameters λ0, . . . , λN , respectively. After a job enters the system,
it demands service from the system. We assume that the service times follow an
exponential distribution with mean service time 1/µi = βi for i = 0, . . . , N . Then,
the occupation rates ρi are defined by ρi = λiβi. Note that for stability we require
that the total load ρ := ρ1 + · · · + ρN < N . Based on the above information,
there is a central decision maker that has to decide on the distribution of the
foreground jobs over the N servers. Let N be the number of foreground jobs in
the system (at all servers). Then, the aim of the decision maker is to minimize
the expected average number of foreground jobs in the system. Note that this is
directly related to the sojourn times of the foreground traffic (see Figure 1).

In the sequel we will study two dynamic models: the optimal server selection
model with full and partial observability. We first describe the full information
model.

2.1. Full observation model

In this subsection we allow the decision maker to dynamically send the jobs
to any server. To find the optimal policy for making this decision, we model
this as a Markov decision problem. To this end, let the state space S = N

2N
0 =

{0, 1, 2, . . .}2N . A tuple s = (x1, . . . , xN , y1, . . . , yN) ∈ S denotes that there are xi

foreground jobs and yi background jobs at server i for i = 1, . . . , N . For each job,
the set of actions is given by A = {1, . . . , N}, where a ∈ A denotes sending the
job to server a. When action a is chosen in state s, there are two possible events
in the system; first, an arrival of a job can occur with rate λi or a job can finish

5



his service with rate µi for i = 0, . . . , N . The transition rates are thus given by
p = p(s, a, s′), when the system is in state s, action a is taken and the next state
is s′, as follows:

p(s, a, s′) =































λ0, if s′ = s + ea,

λi, if s′ = s + ei+N for i = 1, . . . , N,

µ0, if s′ = s − ei and xi > 0 for i = 1, . . . , N,

µi, if s′ = s − ei+N and yi > 0 for i = 1, . . . , N,

0, otherwise,

for s, s′ ∈ S and a ∈ A, where ei is the zero-vector with a one at the i-th entry.
The term λ0 represents an arrival of a foreground job that is assigned to node a,
λi represents an arrival of a background job at node i, µ0 represents the departure
rates at all node i in which foreground jobs are available, and µi represents the
departure rate of a background job at node i, if available. Since we are interested
in the number of foreground jobs in the system, we take the cost function c equal
to c(s) = x1+· · ·+xN . The tuple (S,A, p, c) defines the Markov decision problem.

Next, we uniformize the system (see Section 11.5 of [30]). To this end, we assume
that the uniformization constant λ0 + · · · + λN +

∑N
i=1

max{µ0, µi} = 1; we can
always get this by scaling. Uniformizing is equivalent to adding dummy transi-
tions (from a state to itself) such that the rate out of each state is equal to 1;
then we can consider the rates to be transition probabilities. Define a determin-

istic policy π as a function from S to A, i.e., π(s) ∈ A for all s ∈ S. Note that
the optimal policy can be found within this class (see [16]). Let uπ

t (s) denote the
total expected costs up to time t when the system starts in state s under policy π.
Note that for any stable and work-conserving policy, the Markov chain satisfies
the unichain condition, so that the average expected costs g(π) = limt→∞ uπ

t (s)/t
is independent of the initial state s (see Proposition 8.2.1 of [30]). The goal is to
find a policy π∗ that minimizes the long-term average costs, thus g = minπ g(π).

Let V (s) be a real-valued function defined on the state space. This function
will play the role of the relative value function, i.e., the asymptotic difference in
total costs that results from starting the process in state s instead of some refer-
ence state. The long-term average optimal actions are a solution of the optimality
equation (in vector notation) g +V = TV , where T is the dynamic programming

6



operator acting on V defined as follows

TV (s) =

N
∑

i=1

xi + λ0 min
a∈{1,...,N}

{V (s + ea)} +

N
∑

i=1

λiV (s + ei+N) +

N
∑

i=1

xi

xi+yi

µ0V (s − ei) +
N

∑

i=1

yi

xi+yi

µiV (s − ei+N ) +

(

1 − λ0 −

N
∑

i=1

[

λi + xi

xi+yi

µ0 + yi

xi+yi

µi

]

)

V (s).

(1)

The first term in the expression TV (s) models the direct costs, the second term
deals with the arrivals of foreground jobs, whereas the third term deals with
the background jobs. The fourth and fifth terms concern service completions for
foreground and background jobs, respectively. The last line is the uniformization
constant.

The optimality equation g + V = TV is hard to solve analytically in practice.
Alternatively, the optimal actions can also be obtained by recursively defining
Vl+1 = TVl for arbitrary V0. For l → ∞, the maximizing actions converge to
the optimal ones (for existence and convergence of solutions and optimal poli-
cies we refer to [30]). Note that for numeric computation the state space needs
to be truncated to obtain a finite state space. In practice, one determines the
truncation by systematically increasing the truncation bound until no significant
changes in the average costs occur.

2.2. Bayesian partial information model

The dynamic server selection model with full information uses a state de-
scription (x1, . . . , xN , y1, . . . , yN) with 2N entries. However, in practice, distin-
guishing the foreground traffic from the background traffic might not be feasible.
In these cases, one can only observe the state (z1, . . . , zN) with zi = xi + yi for
i = 1, . . . , N . Now, the dynamic control policy that we derived in the previ-
ous section cannot be applied straightforwardly. To apply the control policy one
needs to create a mapping from (z1, . . . , zN) to (x1, . . . , xN , y1, . . . , yN), so that
(an estimate of the) full information is recovered. Note that it is not sufficient
to create a mapping solely based on (z1, . . . , zN ) at each decision epoch, since
it does not use the information contained in the sample path, i.e., many sample
paths can lead to the same state (z1, . . . , zN). Therefore, we will use Bayesian
learning that takes into account the complete history of states in the estimation
procedure. We shall call z = (z1, . . . , zN ) ∈ N

N
0 the observation state. In order to

learn about the division between the number of foreground and background jobs,
we will denote by ui(n) the probability that at server i there are n foreground
jobs for i = 1, . . . , N . The probability distribution ui will serve the purpose of

7



information about the states that cannot be observed; hence, u = (u1, . . . , uN)
is called the belief state. Note that the belief state space is of high dimension,
namely

∏N
i=1

{ui ∈ [0, 1]N0 |
∑

x∈N0
ui(x) = 1}.

Based on the observation and belief states, we construct a state space for the
Bayesian dynamic program consisting of the vectors s = (z, u). Note that every
arrival and departure gives the system information on how to update the belief
state. Suppose that state s is given and that an arrival of foreground job that is
admitted to server i occurs. The new state safi

is then given by safi
= (z + ei, u

′)
where u′

i(x) = ui(x − 1) for x > 0 and u′
i(0) = 0, and where u′

j(x) = uj(x) for
j 6= i. In case of arrival of a background job to server i, we have a new state
sabi

= (z + ei, u).

In case of departures, we have a similar state transformation. When a fore-
ground job leaves server i, then we have corresponding states sdfi

= (z − ei, u
′)

with u′
i(x) = ui(x + 1) for x ≥ 0. Similarly, when a background job leaves server

i, then we have sdbi
= (z−ei, u). Naturally, these transitions cannot be observed,

so we take the expectation with respect to the probability distribution u to av-
erage over all sample paths. This gives a new dynamic programming operator in
which learning is incorporated. This is given by

TV (s) =
∑

x1∈N0

· · ·
∑

xN∈N0

u1(x1) · · ·uN(xN )
[

N
∑

i=1

xi +
N

∑

i=1

λiV (sabi
) +

λ0 min{V (saf1
), . . . , V (safN

)}+

N
∑

i=1

xi

zi

µ0V (sdfi
) +

N
∑

i=1

zi−xi

zi

µiV (sdbi
) +

(

1 − λ0 −

N
∑

i=1

[

λi + xi

zi

µ0 + zi−xi

zi

µi

]

)

V (s)
]

.

(2)

Note that the basic idea to transform Equation (1) into Equation (2) is to take
the conditional expectation with respect to the belief state distribution u. Under
this condition, the foreground and background jobs can be distinguished so that
the structure of the equation resembles the one of the fully observed problem.
However, only the transitions to the new belief state need to be adjusted so that
the information that has been learned is taken into account. These transitions
are provided above.

We end this section with two remarks.

Remark 2.1 (Complexity): Note that the dynamic programming operator for
the Bayesian model (2) resembles the dynamic programming operator of the full

8



observation model (1). However, the state space of the Bayesian model is of
significantly higher dimension as the state variables for the background traffic are
continuous. Hence, solving the optimality equation g + V = TV is notoriously
hard, both analytically and numerically. In general, the Bayesian updates result
in posterior distributions that cannot be captured by a nice structural form.
In our problem, however, the decision maker can distinguish foreground and
background upon arrival leading to an arrival process with deterministic state
transitions. It is only the departures that carry uncertainty with them. This leads
to a state transition function, as described above, which keeps the dimensionality
of the state space at reasonably low levels. In this way, the structure of the
problem makes the Bayesian model a tractable approach (after discretization of
the state space). Also note that for arbitrary nodes i and j, the decision as to
whether an incoming foreground job should join node i or j, does not depend on
the other nodes. Hence, in the decision making one can compare node 1 and 2,
take the best node and compare it to node 3, take the best of that comparison
and compare it to node 4, and so forth. This leads to a sequence of N − 1
comparisons. Therefore, the Bayesian approach scales linearly in running time
with the number of nodes N .

Remark 2.2 (Accuracy): In a general Bayesian setting, the belief state rep-
resents a probability distribution that represents the likelihood that the process
is in a particular state. The accuracy of this estimate, generally, tends to de-
teriorate as the process progresses due to accumulated errors. In our problem
setting, the accuracy of the estimates tends to improve as jobs leave the system.
As more jobs leave the system, the support of the posterior distribution reduces
to a smaller set of states, limiting the possibilities for errors. In fact, upon depar-
ture of the last job in a particular node, the posterior distribution of that node is
independent of the past, since the state is exactly known. Thus, all probability
mass is concentrated on having 0 jobs in that node. Hence, an empty node leads
to a belief state that corresponds to the true state for that node. This observation
increases the accuracy of our algorithm due to stability of the system.

3. Numerical Experiments

To assess the performance of our Bayesian algorithm for efficiently assigning
downloads with concurrent access, we have performed extensive numerical ex-
perimentation, comparing the results of the Bayesian algorithm to the results of
the fully observable MDP in which the foreground and background jobs can be
distinguished. The comparison is done in two settings. Section 3.1 compares
the performance of the full observation MDP with the Bayesian MDP under the
model described in Section 2. Section 3.2 evaluates the performance of the al-
gorithms in a state-of-the-art wireless network simulation package in which the
full wireless protocol stack is implemented. We have performed a large number

9



of experiments with a wide range of parameter settings. The results are outlined
below.

The number of model parameters is significantly large for already moderate num-
bers of nodes, prohibiting extensive numerical experiments over the full spectrum
of parameter combinations. To highlight the main effects of parameter changes,
we considered two-node scenarios, motivated by the fact that in the context of
wireless networks, at most a few parallel networks will be used simultaneously per
user. Moreover, the file-size distributions were taken to be exponential (see also
the remarks in Section 4) with means β0 = β1 = β2 = 1. To allow for asymmetric
network settings, we scale the job-size distribution in node i by Ci, i.e., the ef-
fective job size is therefore βi/Ci for node i = 1, 2. To include scenarios for light
and heavy foreground traffic, the foreground traffic ρ0 = λ0β0/ min{C1, C2} was
varied as 0.1 and 0.9, and the background loads ρ1 = λ1β1/C1 and ρ2 = λ2β2/C2

were varied between 0.1 and 0.9.

3.1. Comparison of the fully observed MDP against the Bayesian algorithm

To compare the quality of the Bayesian approach discussed above to the fully
observed MDP approach, we have calculated the mean of the sojourn time S of
an arbitrary job for both policies, under a variety of parameter settings. To this
end, for each scenario we have calculated the mean number of jobs, following
the lines of Sections 2.1 and 2.2, and then used Little’s formula to obtain ES.
Denoting by E [S|Bayes] and E [S|full MDP] the expected sojourn times under
the Bayesian approach and the full MDP approach, respectively, the relative
difference is defined as follows

∆% =
E [S|Bayes] − E [S|full MDP]

E [S|full MDP]
× 100%. (3)

Note that the simulations have been run with 107 foreground jobs resulting in
a 99% confidence interval of approximately 0.1% with respect to the point esti-
mates.

Equal network capacities

Table 1 shows the results for light foreground load (with ρ0 = 0.1) and for a vari-
ety background-load values (ρ1, ρ2) for the case of symmetric networks, and where
the network capacities are equal (normalized to C1 = C2 = 1). More specifically,
for each scenarios, Table 1 shows the triple (E [S|Bayes] , E [S|full MDP] , ∆%),
where ∆% is defined in (3). Note that, due to symmetry, only the results for
ρ2 ≥ ρ1 are shown. Table 2 and Figure 2 show the results for medium to heavy
foreground load (with ρ0 = 0.9).

10



ρ2
H

H
Hρ1 0.1 0.3 0.5 0.7 0.9
0.1 (1.073, 1.072, 0.2%) (1.116, 1.115, 0.1%) (1.165, 1.164, 0.1%) (1.210, 1.210, 0.0%) (1.245, 1.241, 0.4%)
0.2 (1.196, 1.195, 0.1%) (1.273, 1.271, 0.2%) (1.352, 1.350, 0.1%) (1.416, 1.409, 0.5%)
0.3 (1.282, 1.277, 0.4%) (1.393, 1.390, 0.2%) (1.516, 1.514, 0.1%) (1.628, 1.625, 0.2%)
0.4 (1.522, 1.519, 0.2%) (1.715, 1.711, 0.2%) (1.918, 1.911, 0.3%)
0.5 (1.674, 1.665, 0.5%) (1.958, 1.952, 0.3%) (2.318, 2.308, 0.4%)
0.6 (2.260, 2.255, 0.3%) (2.910, 2.897, 0.5%)
0.7 (2.654, 2.641, 0.5%) (3.878, 3.858, 0.5%)
0.8 (5.735, 5.705, 0.5%)
0.9 (11.064, 11.020, 0.4%)

Table 1: Comparison of (E [S|Bayes] , E [S|full MDP] , ∆%) for foreground load ρ0 = 0.1.

ρ2
H

H
Hρ1 0.1 0.3 0.5 0.7 0.9
0.1 (1.59, 1.55, 2.3%) (1.93, 1.88, 2.6%) (2.53, 2.46, 2.9%) (3.76, 3.70, 1.7%) (8.90, 8.89, 0.2%)
0.2 (2.21, 2.15, 2.9%) (3.08, 2.99, 2.8%) (5.31, 5.23, 1.5%) unstable
0.3 (2.60, 2.51, 3.5%) (3.99, 3.86, 3.4%) (9.74, 9.63, 1.1%) unstable
0.4 (5.67, 5.60, 1.3%) unstable unstable
0.5 (10.87, 10.62, 2.4%) unstable unstable

Table 2: Comparison of (E [S|Bayes] , E [S|full MDP] , ∆%) for foreground load ρ0 = 0.9.

 

 

E
[S

0
]

(ρ1, ρ2)

JSQ

Full MDP

BAYES

ρ1
ρ1 ρ1

ρ1 ρ1

ρ2 = 0.1 ρ2 = 0.2

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

ρ2 = 0.3 ρ2 = 0.4 ρ2 = 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.5

Figure 2: Comparison of (E [S|Bayes] , E [S|full MDP] , E [S|JSQ]) for foreground load ρ0 = 0.9.

11



Tables 1 and 2 reveal that the Bayesian algorithm has very good performance
that is close to a system with full information for a wide range of parameter
combinations of background loads (ρ1, ρ2). This is remarkable since the Bayesian
algorithm has less information available than the full observation MDP, but learns
sufficiently to make good decisions. Note that Table 1, with ρ0 = 0.1, has a perfor-
mance that is extremely close to the full observation model, with errors typically
less than 0.5%. Table 2, with ρ0 = 0.9, has a slightly degraded performance,
with errors typically less than 3.5%, over a broad range of parameters settings.
Nonetheless, the Bayesian algorithm clearly outperforms the widely used Join
the Shortest Queue (JSQ) algorithm, see Figure 2. The slightly degraded perfor-
mance of the Bayesian algorithm is due to the fact that the Bayesian algorithm
has estimates of the probability distribution on the foreground and background
traffic with high accuracy as more and more jobs leave the system. When the load
moves from 0.1 to 0.9 the time it takes to return to more accurate estimates is
longer, which explains the slightly degraded performance (see also Remark 2.2).
Unequal network capacities

To assess the usefulness of the Bayesian approach to the case of unequal network
capacities, we have also performed experiments for the case C1 6= C2. Table 3
below shows the results of the model considered in Table 1, but with the (nor-
malized) network capacities for C1 = 1 and C2 = 4. Similarly, Table 4 shows the
results for the models considered in Table 2, with network capacities C1 = 1 and
C2 = 4.

ρ2
H

H
Hρ1 0.1 0.3 0.5 0.7 0.9
0.1 (0.286, 0.286, 0.0%) (0.370, 0.370, 0.0%) (0.514, 0.513, 0.2%) (0.742, 0.741, 0.2%) (1.067, 1.062, 0.5%)
0.2 (0.286, 0.286, 0.0%) (0.370, 0.370, 0.0%) (0.516, 0.516, 0.1%) (0.767, 0.766, 0.1%) (1.167, 1.162, 0.4%)
0.3 (0.286, 0.286, 0.0%) (0.370, 0.370, 0.0%) (0.519, 0.519, 0.0%) (0.792, 0.792, 0.1%) (1.286, 1.281, 0.4%)
0.4 (0.286, 0.286, 0.0%) (0.370, 0.370, 0.0%) (0.521, 0.521, 0.1%) (0.816, 0.815, 0.1%) (1.424, 1.419, 0.3%)
0.5 (0.286, 0.286, 0.0%) (0.370, 0.370, 0.0%) (0.523, 0.523, 0.0%) (0.838, 0.837, 0.1%) (1.593, 1.587, 0.4%)
0.6 (0.286, 0.286, 0.0%) (0.370, 0.370, 0.0%) (0.525, 0.525, 0.0%) (0.858, 0.858, 0.1%) (1.800, 1.794, 0.3%)
0.7 (0.286, 0.286, 0.0%) (0.370, 0.370, 0.0%) (0.525, 0.525, 0.0%) (0.875, 0.874, 0.1%) (2.050, 2.044, 0.3%)
0.8 (0.286, 0.286, 0.0%) (0.371, 0.371, 0.0%) (0.526, 0.526, 0.0%) (0.891, 0.891, 0.0%) (2.366, 2.360, 0.2%)
0.9 (0.285, 0.285, 0.0%) (0.371, 0.371, 0.0%) (0.526, 0.526, 0.0%) (0.901, 0.901, 0.0%) (2.773, 2.769, 0.1%)

Table 3: Comparison of (E [S|Bayes] , E [S|full MDP] , ∆%) for foreground load ρ0 = 0.1 with
C1 = 1 and C2 = 4.

Tables 3 and 4 show again that the Bayesian algorithm has excellent per-
formance, doing much better than JSQ (see Figure 3). Under light foreground
traffic load (ρ0 = 0.1), the error is extremely small (0.5% or far less). When
the foreground traffic load is increased to ρ0 = 0.9 the error remains small with

12



 

 

E
[S

0
]

(ρ1, ρ2)

JSQ

Full MDP

BAYES

ρ1 ρ1 ρ1 ρ1 ρ1 ρ1 ρ1 ρ1 ρ1

ρ2 = 0.1 ρ2 = 0.2 ρ2 = 0.3 ρ2 = 0.4 ρ2 = 0.5 ρ2 = 0.6 ρ2 = 0.7 ρ2 = 0.8 ρ2 = 0.9

0.0

1.0

2.0

3.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

Figure 3: Comparison of (E [S|Bayes] , E [S|full MDP] , E [S|JSQ]) for foreground load ρ0 = 0.1
with C1 = 1 and C2 = 4.

ρ2
H

H
Hρ1 0.1 0.3 0.5 0.7 0.9
0.1 (0.369, 0.366, 0.8%) (0.498, 0.493, 1.0%) (0.704, 0.701, 0.39%) (1.127, 1.115, 1.00%) (2.867, 2.745, 4.4%)
0.2 (0.369, 0.367, 0.6%) (0.501, 0.498, 0.6%) (0.734, 0.722, 1.61%) (1.208, 1.197, 0.90%)
0.3 (0.369, 0.368, 0.3%) (0.511, 0.504, 1.3%) (0.754, 0.745, 1.20%) (1.300, 1.290, 0.80%)
0.4 (0.370, 0.369, 0.3%) (0.514, 0.509, 0.9%) (0.775, 0.769, 0.81%)
0.5 (0.370, 0.369, 0.2%) (0.516, 0.514, 0.5%) (0.797, 0.792, 0.60%)
0.6 (0.370, 0.370, 0.1%) (0.521, 0.518, 0.6%)
0.7 (0.370, 0.370, 0.1%) (0.522, 0.521, 0.3%)
0.8 (0.370, 0.370, 0.0%)
0.9 (0.370, 0.370, 0.0%)

Table 4: Comparison of (E [S|Bayes] , E [S|full MDP] , ∆%) for foreground load ρ0 = 0.9 with
C1 = 1 and C2 = 4.

13



typical values of 1% up to a maximum of 4.4% for an unbalanced system.

Comparing the results with the results of the symmetric network capacity settings
in Tables 1 and 2, we observe that the relative performance in the asymmetric
case of the Bayesian algorithm is even better, especially when the foreground load
is significant. This may be explained by the fact that in the asymmetric system
with C2 = 4, the Bayesian algorithm has more observations to learn from due
to the increased number of departures in the node 2, and because an erroneous
decision has little impact due to short busy periods in node 2. Only when node
2 is heavily loaded, the system performance is extremely sensitive to the proper
scheduling actions, which explains the maximum error in Table 4.

In conclusion, the results in this section show that the Bayesian algorithm has a
performance extremely close to the performance of a fully observed MDP both
under symmetric and asymmetric systems.

3.2. Comparison of the fully observed MDP against the Bayesian algorithm in

wireless networks

To evaluate the accuracy of the Bayesian approach in a realistic wireless net-
working environment, we have performed extensive experimentation in OPNET
Modeler [20] that implements the full protocol stack of wireless equipment. We
emphasize that this is not a trivial experiment, because the Bayesian learning
and decision functionality must be embedded in the network terminals and the
complex mapping of the physical and medium access control layer parameters to
the PS node parameters must be performed. In this context, it was shown in [18]
based on extensive network simulations how the download performance of TCP-
based wireless networks can be modeled by PS nodes, by using the proper pa-
rameter mapping. In our experiments, the simulated response-time performance
of TCP-based networks under traffic splitting under the Bayesian approach was
benchmarked against the simulated response-time performance under the fully
observable MDP traffic splitting. The results are outlined below.

3.2.1. Experimental configuration

Figure 4 shows the network topology in which the traffic splitting solution is
supposed to operate. All wireless terminals download files from an application
server, which may also be a dispatcher in front of several application servers (not
shown). The application server has information about the number of ongoing
downloads over each of the WLAN access networks, AP1 and AP2, but is unable
to distinguish between the multi-homed and the single homed terminals, because
there is no binding between both network addresses of the multi-homed terminals.
Both WLAN access points operate on non-overlapping frequency channels to
establish two non-interfering parallel paths to the application server from the
multi-homed systems. The transmission links from the access points towards the

14



Figure 4: The simulated concurrent access network.

application server are considered to incur a negligible delay and loss to packets
from and to the access points. This assumption is motivated by the much higher
capacities and reliability offered in contemporary fixed-line carrier-grade Internet
connections in comparison to the IEEE 802.11b access networks.

The analytic model from [18] captures the combined dynamics and protocol
overhead of the 802.11 MAC, IP, TCP and application-layer into an explicit ex-
pression for the effective service time of a file download. Based on the effective
service time, the effective load can be determined of the file transfers in our sim-
ulated WLAN networks with a flow-level M/G/1 Processor Sharing (PS) model.

In the simulated network there are ten multi-homed terminals (named FG 01−
FG 10) that generate download requests (that are considered foreground jobs in
the queuing model) with arrival rate λ0. These foreground terminals are po-
sitioned between both access points in a circle with a radius of 15 meter. In
addition there are ten single-homed terminals (named with prefix BG AP1 )
that generate background traffic in network 1 with file downloads arriving with
rate λ1 to the first network. The remaining ten single-homed terminals (named
with prefix BG AP2 ) generate background traffic at rate λ2 in network 2 in a
similar fashion. All background terminals are positioned at an equal distance of
15 meter from their respective access point. The file download requests arrive
according to an independent Poisson process and may have multiple file transfers
in progress.

15



The MAC/PHY parameters of the WLAN stations are set in accordance to the
widely deployed IEEE 802.11b standard amendment as it relies on the same MAC
protocol basis as the contemporary higher rate (IEEE 802.11 a/g/n) amendments
and has lower computational requirements for high-load network simulations.

Table 5 summarizes the IEEE 802.11 MAC parameters used in our analytic
model to calculate the effective load values for the simulation runs.

parameter value parameter value

mac 224 bits ack 112 bits
difs 50 µs Rb {1, 11} · 106 bps
sifs 10 µs Cwmin 31 slots
eifs 364 µs phy 192 µs
δ 1 µs τ 20 µs
Rc 106 bps

Table 5: IEEE 802.11b MAC parameters

In this table, mac is the number of bits of overhead bits associated to a MAC
data frame. The difs, sifs, eifs are the DCF, short and extended interframe
spacing times, respectively. The δ is the propagation delay that is assumed in
our analytic model. Rc is the transmission rate for WLAN acknowledgments of
size ack bits, and Rb is the WLAN transmission rate for MAC data frames that
is set to 1 or 11 Mbps. Cwmin corresponds to the minimum contention window
in slots. Phy is the physical layer overhead, and τ is the slot time. In addition
to the WLAN MAC, specific settings apply to the higher protocol layers and are
outlined in Table 6.

variable setting
XFTPget 4096 bits
XFTPclose 64 bits
TCPstack Full-Featured
XMSS 11584 bits
Xtcp/ip 416 bits
w 70080 bits (8760 bytes)
Xfile 1.6 · 106 bits

Table 6: Network and application settings

In Table 6, XFTPget is the size of the FTP GET-command that is issued for
initiating a file download, XFTPclose is the size of the FTP CLOSE-command
that concludes the file transfer at the application. The TCP stack used in our
experiments is characterized in OPNET as ‘Full-Featured’, which is an enhanced
version of TCP Reno that uses Selective Acknowledgments (SACK) [26] and has

16



a slightly smaller MSS, XMSS (in bits), due to the use of timestamps to fit in
the 1500 bytes that are used as the WLAN data frame payload. The number of
TCP/IP overhead bits per segment is Xtcp/ip bits. The maximum TCP receiver
window size is indicated as w (in bits), and the file size as Xfile (in bits).

Based on the parameter setting from Table 5 and 6 and respecting the engi-
neering guidelines from [18] we can assume that the mean download response
times in our simulation model can be accurately predicted from the effective load
of the network using the M/G/1 PS model.

3.2.2. Experimental results

To assess the performance of the Bayesian algorithm in practice, we have per-
formed simulations with the OPNET Modeler [20] with the full wireless protocol
stack implemented for both the fully observable MDP and the Bayesian model.
The OPNET simulations for the experimental results have been run with approx-
imately 322, 000 foreground jobs and the background jobs ranging from roughly
644, 000 jobs to 5.1 million jobs depending on the load. In our simulation study
we have considered two scenarios. One simulation scenario considers equal capac-
ity networks in which all terminals are configured to use a WLAN transmission
rate of 11 Mbps. For simulating a scenario in which the network capacity of both
access network is unequal, the WLAN transmission rate used in AP2 is lowered
to 1 Mbps, which reduces the medium capacity for processing file transfers by a
factor of 5.79. In this scenario, the background load applied to AP2 is based on
the lower capacity, whereas the foreground traffic intensity remains the same as
for the equal capacity network.

We have executed 48 runs for the equal capacity scenario (24 runs for the
fully observed MDP and 24 runs for the Bayesian MDP) and 80 runs for the
unequal capacity scenario. All runs have completed a total simulation time of
300 hours per run of which 1 hour is the warm-up time leading to a wall clock
time of approximately 75 hours per run. This experimental setup is sufficient
to derive a 99% confidence interval of approximately 0.7% with respect to the
point estimates. The results of the experiments for both scenarios are outlined in
Table 7 and Table 8 for ρ0 = 0.1 and a number of combinations ρ1 and ρ2. Note
that the load values in this setting are obtained following the parameterization
as defined and validated in [18].

The results in Table 7 and 8 show that the Bayesian approach again closely
matches the performance of the full observation MDP model in a real networking
environment for equal and non-equal capacity networks. This is most remark-
able, since the OPNET Modeler is a packet-level simulator implementing the full
protocol stack including TCP, IP, MAC, and PHY layers, whereas both the fully
observable and the Bayesian MDP is based on a processor-sharing model for the
networking environment. The results also illustrate that the Bayesian approach
is a very powerful means that is practically applicable.

17



ρ2
H

H
Hρ1 0.1 0.3 0.5 0.7 0.8
0.1 (0.355, 0.354, 0.31%) (0.370, 0.369, 0.30%) (0.385, 0.385, 0.05%) (0.402, 0.400, 0.49%) (0.408, 0.406, 0.46%)
0.2 (0.396, 0.395, 0.21%) (0.420, 0.420, 0.10%) (0.446, 0.446, 0.05%) (0.456, 0.455, 0.11%)
0.3 (0.421, 0.421, 0.18%) (0.460, 0.458, 0.33%) (0.502, 0.498, 0.65%) (0.521, 0.519, 0.48%)
0.4 (0.503, 0.501, 0.35%) (0.565, 0.564, 0.18%) (0.601, 0.599, 0.37%)
0.5 (0.551, 0.547, 0.61%) (0.643, 0.639, 0.68%) (0.700, 0.696, 0.53%)
0.6 (0.742, 0.737, 0.68%) (0.831, 0.828, 0.29%)
0.7 (0.867, 0.865, 0.20%) (1.028, 1.018, 1.01%)
0.8 (1.322, 1.319, 0.23%)

Table 7: Comparison of (E [S|Bayes] , E [S|full MDP] , ∆%) in OPNET for ρ0 = 0.1.

ρ2
H

H
Hρ1 0.1 0.3 0.5 0.7 0.8
0.1 (0.417, 0.415, 0.4%) (0.415, 0.415, 0.0%) (0.416, 0.416, 0.0%) (0.416, 0.416, 0.0%) (0.415, 0.415, 0.0%)
0.2 (0.476, 0.474, 0.4%) (0.477, 0.475, 0.3%) (0.479, 0.476, 0.6%) (0.475, 0.475, 0.0%) (0.475, 0.475, 0.0%)
0.3 (0.556, 0.555, 0.2%) (0.556, 0.555, 0.3%) (0.553, 0.551, 0.4%) (0.557, 0.556, 0.2%) (0.555, 0.555, 0.0%)
0.4 (0.663, 0.660, 0.4%) (0.665, 0.664, 0.3%) (0.667, 0.666, 0.2%) (0.667, 0.666, 0.1%) (0.667, 0.664, 0.4%)
0.5 (0.807, 0.806, 0.1%) (0.819, 0.818, 0.1%) (0.827, 0.826, 0.1%) (0.830, 0.829, 0.1%) (0.835, 0.833, 0.2%)
0.6 (1.016, 1.013, 0.3%) (1.052, 1.047, 0.5%) (1.068, 1.065, 0.3%) (1.083, 1.081, 0.2%) (1.100, 1.099, 0.0%)
0.7 (1.322, 1.305, 1.3%) (1.410, 1.390, 1.4%) (1.482, 1.476, 0.4%) (1.546, 1.543, 0.2%) (1.597, 1.595, 0.1%)
0.8 (1.817, 1.777, 2.3%) (2.057, 2.013, 2.2%) (2.299, 2.273, 1.2%) (2.675, 2.610, 2.5%) (2.876, 2.862, 0.5%)

Table 8: Comparison of (E [S|Bayes] , E [S|full MDP] , ∆%) in OPNET for ρ0 = 0.1 with C1 = 1
and C2 = 0.17.

4. Conclusions

In this paper we study a model in which the sojourn time of foreground traffic
is minimized in the presence of background traffic with the restriction that the
different traffic types cannot be distinguished. We propose to adopt a Bayesian
methodology to control the system. Our results shows that even though the
system has fewer information than a fully observed system, the partial observ-
ability does not significantly compromise foreground sojourn times. Practically,
the Bayesian setting is better applicable to a multi-network environment as full
system observability cannot be assumed. The Bayesian method is very robust
under different parameter settings.

The results raise a number of interesting questions for further research. First,
in the current model we assume that the job sizes are exponentially distributed.
An interesting question is how the Bayesian algorithm performs under more gen-
eral job size distributions. For this purpose, our MDP approach could be extended
by modeling the job size distributions by phase-type distributions, adding more
challenges to the computational burden. Note that this comes with additional
questions regarding the observability of the number of jobs in the different phases.
Second, despite the fact that in practical deployments N is likely to be small,
it is of theoretical interest to evaluate the performance and complexity of the
Bayesian algorithm for larger N . Third, in this paper we primarily focused on
the optimization of the foreground traffic, whereas in reality the performance of
the background traffic may also be subject to QoS requirements. Inclusion of

18



such QoS constraints addresses an interesting and practically important topic.

5. Acknowledgments

The work reported in this paper was supported by the Netherlands Organisation
for Scientific Research (NWO) under the Casimir project: Analysis of Distribu-
tion Strategies for Concurrent Access in Wireless Communication Networks.

References

[1] IEEE Standard 802.11n. Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer specifications Enhancements for Higher Through-
put. October 2009.

[2] S.C. Albright. Structural results for partially observable Markov decision
processes. Operations Research, 27:1041–1053, 1979.

[3] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton Univer-
sity Press, 1961.

[4] R.I. Brafman. A heuristic variable grid solution method for POMDPs. In
Proceedings of the Fourteenth National Conference on Artificial Intelligence,
pages 727–733, 1997.

[5] A.N. Burnetas and M.N. Katehakis. Optimal adaptive policies for Markov
decision processes. Mathematics of Operations Research, 22:222–255, 1997.

[6] A.R. Cassandra. Exact and Approximate Algorithms for Partially Observable

Markov Decision Processes. PhD thesis, Brown University, 1998.

[7] R. Chandra, P. Bahl, and P. Bahl. Multinet: Connecting to multiple IEEE
802.11 networks using a single wireless card. In Proceedings of IEEE INFO-

COM, 2004.

[8] D. Cox. Fundamental limitations on the data rate in wireless systems. IEEE

Communications Magazine, 46(12):16–17, 2008.

[9] J. Duncanson. Inverse multiplexing. IEEE Communications Magazine,
32(4):34–41, 1994.

[10] FCC. Report of the spectrum efficiency working group. Technical report,
Federal Communications Commission Spectrum Policy Task Force, Novem-
ber 2002.

[11] Internet Engineering Task Force. Multipath tcp (mptcp) charter, April 2011.
http://datatracker.ietf.org/wg/mptcp/charter/.

19



[12] C. Gkantsidis, M. Ammar, and E. Zegura. On the effect of large-scale de-
ployment of parallel downloading. In WIAPP ’03: Proceedings of the Third

IEEE Workshop on Internet Applications, page 79, Washington, DC, USA,
2003.

[13] Y. Hasegawa, I. Yamaguchi, T. Hama, H. Shimonishi, and T. Murase. De-
ployable multipath communication scheme with sufficient performance data
distribution method. Computer Communications, 30(17):3285–3292, 2007.

[14] M. Hauskrecht. Planning and Control in Stochastic Domains with Imperfect

Information. PhD thesis, Massachusetts Institute of Technology, 1997.

[15] K.M. van Hee. Bayesian Control of Markov Chains. PhD thesis, Technical
University of Eindhoven, 1978.

[16] O. Hernández-Lerma and J.B. Lasserre. Discrete-Time Markov Control Pro-

cesses: Basic Optimality Criteria. Springer-Verlag, 1996.

[17] G.J. Hoekstra and F.J.M Panken. Increasing throughput of data applica-
tions on heterogeneous wireless access networks. In Proceedings 12th IEEE

Symposium on Communication and Vehicular Technology in the Benelux,
2005.

[18] G.J. Hoekstra and R.D. van der Mei. Effective load for flow-level perfor-
mance modelling of file transfers in wireless lans. Computer Communica-

tions, 33(16):1972–1981, 2010.

[19] H.Y. Hsieh and R. Sivakumar. A transport layer approach for achieving
aggregate bandwidths on multi-homed mobile hosts. Wireless Networks,
11(1):99–114, January 2005.

[20] OPNET Technologies Inc. Opnet modeler, May 2009. http://www.opnet.
com/solutions/network rd/modeler.html.

[21] G.P. Koudouris, R. Agüero, E. Alexandri, J. Choque, K. Dimou, H.R.
Karimi, H. Lederer, J. Sachs, and R. Sigle. Generic link layer function-
ality for multi-radio access networks. In Proceedings 14th IST Mobile and

Wireless Communications Summit, 2005.

[22] P.R. Kumar. A survey of some results in stochastic adaptive control. SIAM

Journal of Control and Optimization, 23:329–380, 1985.

[23] M. Littman, A. Cassandra, and L. Kaelbling. Learning policies for partially
observable environments: Schaling up. In A. Prieditis and S. Russell, editors,
Proceedings of the Twelfth International Conference on Machine Learning,
pages 362–370, 1995.

20



[24] J.A. Loeve. Markov Decision Chains with Partial Information. PhD thesis,
Leiden University, 1995.

[25] W.S. Lovejoy. A survey of algorithmic methods for partially observed Markov
decision processes. Annals of Operations Research, 28:47–66, 1991.

[26] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowl-
edgment Options. RFC 2018, Internet Engineering Task Force, October
1996.

[27] G.E. Monahan. A survey of partially observable Markov decision processes:
Theory, models, and algorithms. Management Science, 28:1–16, 1982.

[28] C.H. Papadimitriou and J.N. Tsitsiklis. The complexity of Markov decision
processes. Mathematics of Operations Research, 12(3):441–450, 1987.

[29] R. Parr and S. Russell. Approximating optimal policies for partially observ-
able stochastic domains. In Proceedings of the International Joint Conference

on Artificial Intelligence, pages 1088–1094, 1995.

[30] M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley & Sons, 1994.

[31] P. Rodriguez, A. Kirpal, and E. Biersack. Parallel-access for mirror sites in
the internet. In INFOCOM, pages 864–873, 2000.

[32] D. Sarkar, P.D. Amer, and R. Stewart. Guest editorial: Concurrent multi-
path transport. Computer Communications, 30(17):3215–3217, 2007.

[33] C.C. White III. A survey of solution techniques for the partially observed
Markov decision process. Annals of Operations Research, 32:215–230, 1991.

[34] N.L. Zhang and W. Liu. Region-based approximations for planning in
stochastic domains. In Proceedings of the Thirteenth Annual Conference

on Uncertainty in Artificial Intelligence, pages 472–480, 1997.

21


