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Abstract—The applications of Multimedia content analysis of new information in 2002 [4]. The multimedia archives of a
(MMCA) operating in real-time environments must run under  data center (for instance, a large hospital) now has a pietaby

very strict t_ime constraints, e.g. to analyze video frames at scale QOlE’) database of stored data. As individual compute
the same time as a camera produces them. To meet these

requirements, largescale multimedia applications typically are clusters cannot satisfy the increasing computational des)a

being executed on Grid systems consisting of large collectionsdistributed supercomputing on large collections of clisste
of compute clusters. Therefore, first, it is essential to determia (Grids) is rapidly becoming indispensable.

the optimal number of compute nodes per cluster, properly  Applications in Multimedia Content Analysis (MMCA)
dealing with the perceived computation versus communication often must run under strict time constraints. For example

ratio that depends on several characteristics of the system. T& t id del . f | iti bi i
issue is referred to as the problem of “Resource-optimization”. 0 avol €lays In queues or peopie wailing, a biometric

Secondly, once the optimal number of resources are available, 2uthentication system must identify a person’s identitghimi
it is important to assign video frames at the right times to the several seconds. Largely autonomous applications, sutifeas

server, so as to obtain the highest service utilization possible, and gutomatic detection of suspect behavior in video data oétai
to minimize the buffering time for individual video frames at the from surveillance cameras, may even need to work under real-

server side. We refer to this issue as “Just-in-time” problem. - . L . .
Motivated by these observations, in this paper we first de- time restrictions. In this kind of services-based distidob

velop a simple and easy-to-implement method to determine the €Xecution scenario, a client program (typica_lly a _|Oca|kﬂ513
“optimal” number of parallel compute nodes. The method is computer) connects to one or more remoigtimedia servers

based on the classical binary search method for non-linear each running on a (different) compute cluster. At applarati
optimization, and does not depend on the, usually unknown, .y time, the client application sends video frames cagtur

specifics of the system. Second, we address the Just-in-time0 a camera to the server. which performs the analvsis in a
problem by introducing an adaptive control method that reacts y ’ P y

to the continuously changing circumstances in Grid systems. ~ data parallel manner. . _
For such applications executing on large collections of

. INTRODUCTION compute clusters, the resource utilization must be firstly a

I matically optimized. Efficient methods must be availaiole
etermine the optimal number of nodes of the compute cluster

ﬁhis optimization problem generally depends on priori eyst

information includes the running application using the eom

applications is the automatic comparison technology used HUte cluster, Endhthe spe_cnflcs on:;hUe computation enV|Ir/a)(1)11m(|e
recognize the forensic video evidence [3] obtained from tf(g,'g" networ. ¢ aracter}stlcs, power memory, )- I
surveillance cameras in public locations. this context, it is essential to properly balance the foilmyv
Such applications using computerized technology to pﬂ)Cé ade-off. if 'the numbgr .Of co.m.pute nodes is _too low, th.en
the multimedia data have become a problem worth evdfl® processing power is insufficient to meet strict processi

increasing serious consideration as multimedia apptinati time requirements of real-time applications; if the numbkr

produce high data rates. The amount of information producgampme . IS too high, the paral!ehzatlon overheadl W'I.
in the world increases by 30% every year. Print, film, magmeticause a degradation of the computational performance. This

and optical storage media produced about 5 exabyies prob!em is referred to as th'e resource-optimization prable
P g P X in this paper. Hence, there is an urgent needsiarple and

1A partial and preliminary version of this paper has been preeskat [1], easily implementa_bleyet eﬁeCtivemethqu (in terms of the
[2] number of evaluation steps), to determine the optimal lefel

In recent years, the increasing role of multimedia data,
the form of still pictures, audio, speech, video, has lead to
demand for automatic collecting, comparing, processing al
features extracting from multimedia data source. One offi su



parallelism. Also, the method should heaptableto system structures) this is a too crude restriction as variatiorthénhit
variation. ratio of caches and system interrupts often have a significan
Next to finding the optimal number of resources by solvingnpact on performance [6], [7].
the resource-optimization problem, it is essential to make Many other performance estimation techniques that incorpo
use of the available resources efficiently by sending videate more detailed behavioral abstractions relating tortapr
frames at the right times to the server, so as to obtain thbemponents of a computer system [8], [9], however, need tens
highest service utilization possible, and to minimize tbeviee if not hundreds, of platform-specific machine abstractitms
response time for individual video frames. If the employedbtain truly accurate estimations. Consequently, thentisse
multimedia server is keeping unoccupied, the analysislteesuequirements of simplicity and applicability are not skid.
for a video frame can be obtained in the fastest possible wdp overcome this problem, Seinstra et al. [10] have designed
However, this arrangement is a waste of available compute Abstract Parallel Image Processing Machine (APIPM)
resources, because this server is not working on previoustypdel that has been used in a large set of realistic image
submitted video data. If all video frames are sent immebjiateprocessing applications to find the optimal number of comput
to multimedia server when there is a long queue before thegdes. The main advantage of this model is that predictions
can be processed, then the result data is not “up-to-datafe based on the analysis of a small number of rather high
This could be unbearable for some real time applicatiorievel system abstractions (i.e., represented by the APIPM
To optimize resource utilization, it is essential to tune thinstruction set). The main limitation of this model, howe\s
transmission of video frames to the occupation of remotkat the instruction set and its related performance vadues
multimedia servers. However, due to variations in transiois parameterized with a very large number of instruction birav
latencies and other variabilities in the computing envinent and workload indicators. As such, the model does not meet our
(e.g., CPU power, memory, 1/O), it is difficult to accuratelyequirements, as obtaining accurate performance valuesdlfo
tune the sending of video frames to the variable response tippssible parameter combinations is both costly and complex
of a multimedia server. In this paper we refer to this issue asFor our “just-in-time” communication problem, we argue
the problem of “just-in-time” communication. that existing prediction methods (i.e., the adapted meaed
To solve the “just-in-time” communication problem, wemethod [11], the adapted median-based method [11], exponen
need prediction methods that react to the continuouslyghatial smoothing [12]-[15], and the Robbins-Monro Stochasti
ing circumstances in Grid systems. An immediate consequerfgoproximation method [16]) are not capable of adhering
of a “just-in-time” communication approach is that a mukim to the specific requirements of just-in-time communication
dia server always analyzes most recently generated (“up-@ne problem of existing methods is thaindom peak®xist
date”) video frames; the shortest server response delays iar the service processing time[Reference???]. These glelay
introduced due to frame buffering at either the client sideause accumulative errors in predicting the exact moments
or at the server. Clearly, this is an important, even ciiticaf the coming data, resulting in significant deviations from
requirement in real-time applications. the optimal rhythm in the transmission of frames. Another
The remainder of this paper is organized as follows. In Segroblem is that existing methods can not deal wpgriodic
tion Il we present related work, and indicate the limitatmin peaks very well either[Reference???]. We need additional
existing methods. Section Il presents the proposed approaolicies to amend these particular problems.
in principle. Section IV presents the experimental setuyg a
describes example applications. In Section V our methods
are formulated. Section VI discussed our experimentalitesu In practice, running CPU-intensive applications in large-
Finally, in Section VII we present our conclusions. In akk¢e scale distributed computing environments typically cstssi
sections, the resource-optimization problem and the -“jjust of two phases: (1) amnitialisation phaseto determine the
time” communication problem are respectively covered.  optimal number of compute nodés’, and (2) themain phase
to actually run the application on thie* parallel nodes. Here,
Il. LIMITATION OF EXISTING METHODS two proposed approaches are used during respective phase.
Previous work in this field can be categorized into tw& On resource-optimization problem
groups. The first group that is relevant to our resource-
optimization problem, belongs to the performance optimiza First, we propose a simple method to determine the “opti-
tion pr0b|em of computer systems. In [5], Saa\/edra_BarreP@al” level of parallelism, in which the number of evaluation
et al. provide an estimation technique to solve the problém $feps is small. Unlike the analytical methods, our parallel
the high complexity of complete analytical study of computéProgram together with the underlying execution platform is
systems. This approach depends on sufficient priori knayeedireated as a black box from the resource allocator's point
of machine characterization and analysis of applicatiom prof view. This is due to the following requirements that we
gram, and the entire system must be stable enough accordg looking for a general approach to solve the optimization
the model we build. The drawback of the approach is thBfoblem:
system variance is almost completely ignored. For apjpdinat  « without priori knowledge about the parallel behavior of
working on extensive dense data fields (e.g., image data the adaptable application,

Ill. PROPOSED APPROACHES



« do not rely upon system specific hardware and/or softthereT's is denoted as the service processing time of a video
ware characteristics of the applied cluster system. frame. Obviously, if the communication time increasesyiser

In this context, experimental observations for realidimge-  Ulilization decreases.

scale problems in multimedia content analysis have redeale

get frame 1 send frame 1 get frame 2 send frame 2

three important optimization properties. from camera 10 server from camera 10 server

First, in many situations the optimal number of parallel \—‘/ \ /
compute nodes is found to be a power of 2, i.e., of the f2fm client |
for somem = 0, 1,.... This observation is important because 1_'\ ;) \ /
it leads to a dramatic reduction of the set of possible smhgti \\ /’ \\ ,’
For example, if the number of available compute nodes is \ % \ !
Mmaz, the size of the solution space is reduced from,,.. sorver ' '
(i.e., the number of elements in the index §&t. .., mMuaz}) H_/
to |logy(Mmaz)] (i-€., the number of elements of the set start parallel send result 1 PROBLEM:
{2021, ... 25} where K = [logy(Mmaz)]). Here the sym- caleulations (0 cient T

bol | x| represents the largest integerz.

Second, on compute nodes consisting of multiple CPUs (and
potentially multiple cores), for a fixed number of compute
elements, using more compute nodes and less CPUs per nodd" alternative approach, referred to as the buffer storage
yields better performance. method (BSM), is to establish a buffer at the server side. As

Third, if the compute cluster processing time is denotd@"9 @s the buffer is not full, the client is allowed to keep

by S(L), with L the number of compute nodes, then thersending frames to the server. When the server is busy, the
exists a threshold valug* such thatS(L) decreases fast asframes will be stored in the buffer before being processed (s

a function of L for L < L*, whereasS(L) flattens out, and Figure 2). Using BSM, service utilization can reatb0%.
may even increase, fat > L*. L* is commonly referred to However, the drawback is that the data in the buffer may have
as theengineering kneeMoreover, in practice using too manybecome outdatedeforethe actual video content analysis even

compute nodes may be very costly: should be the smallest takes p_Iace, due to the long waiting time. A solutior_1 woulc_i
number that match the conditions specified above. be to simply remove outdated frames at the server side. This,

ever, leads to (a lot of) unnecessary traffic betweemtfclie
server, which should be avoided as resources are scarce.

Figure 1. BBM approach for video frame transmission

Based on these observations, our proposed method is airﬂgg/
at determiningL* as the optimal point of operation. Thed"
method takes the idea of the well-known classical binary
search method for non-linear optimization, and CONVEIGES i | fmamen | | tsne | osne | oo
the relative improvement of (L) with respect toL (on a
log scale) is close enough to O (s&y- 10%). To validate
the effectiveness of the proposed method, we have performed
extensive experimentation on a realistic distributed esyst
(DAS-3 [17], [18]) for both real-time and off-line appli¢ahs.

The results show that our method is indeed highly effective. ;o } % ¥ 3
. . . . . d It 1 d It 2
B. On “just-in-time” communication problem cortparallel | buffer | tochent | toclent || sendresuli3

calculation 1 frame 2&3 start parallel start parallel to client
calculation 2 calculation 3

A simple execution approach to solve “just-in-time” com-
munication problem, which we refer to as the back-to-back
method (BBM), is to perform the sending of a newly generated
video frame exactly after a result has been received from the _. . .
same server (see Figure 1). Using the BBM method, any vid oleen the prevpus two methods_, the optimal strategy V\.'OUId
frame processed by a multimedia server is guaranteed to e tp send eachit1)-th f“’?‘me with a delay afte_r ser_1d|ng
most up-to-date. A drawback of BBM, however, is that th € .Hh frame. Thg delay |s_exactly the processing “T“e of
server is idle when it has processed a frame and is waiti i-th frame. For instance, if the service processing time of
for the next one. In a bottleneck situation, the video frame current frame equalf's;, sending the next frame after

transmission time from the client to the servéic() and the ztrgteemd tELTSén\/'::l gel\tls tﬁz r?ﬁntlsrpil Stgllgg?g' fr\z/avrﬁz :}'}3 the
time to send a result back’¢;) may be long. For simplicity, gy, 9 P

we assumel'c; — Te, — Te. Then, the service utilization service utilization is unity (see Figure 3). Unfortungtéﬁsi

(SU) using BBM is given by is unknown before the result of the current frame is returned
back to the client side. It is therefore essential to have an

Ts accurate prediction of the processing time of video franta.da

T Ts+2-Te We have observed that existing predictive methods (i.e.,

Figure 2. BSM approach for video frame transmission

SU



client | | resources and their load continuously vary with time, the
repeatability of the experimental results is hard to guen
under different scenarios in a real Grid environment. Atke,
experimental results are very hard to collect and to observe
server '\/\ Hence, it is wise to perform experiments on a testbed that
Y4 /\/ contains the key characteristics of a Grid environment on
Tc Ts, Tc, the one hand, and that can be managed easily on the other
hand. To meet these requirements, we perform all of our
Figure 3. An optimal solution for video frame transmission experiments on the recently installed DAS-3 (the Distielolut
ASCI Supercomputer 3) Grid test bed [17].

the adapted mean-based method [11], the adapted median-

based method [11], exponential smoothing [12]-[15], arel th

Robbins-Monro Stochastic Approximation method [16]), are G
all capable of generating an accurate trend line based ¢
the processing time of previous frames. However, for ou
just-in-time communication problem, these methods are ni
sufficiently optimized for particular cases. The first pevbl
appears, when the processing time of certain frames suddel
become much longer (e.g., a peak) than the expeGted |
obtained from a trend line. The sudden change breaks tl % | NS et
rhythm of frame transmission and causes accumulativenvggiti 2 ektlinedat)
times for all subsequent frames, even when the processingg i

returns back to the expectdts (see Figure 4).
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Apart from random peaks, a second problem is that one cx... L
observe_proc_essmg tlmes_ '[_O have_pe”OdIC peaks. If thecgiErVFigure 5. The Distributed ASCI Supercomputer 3 with the Star® wide-
processing time of frame is predicted as a peak, then theyea optical interconnect.
sending of framei + 1) should be delayed to prevent a long
buffering time. None of the prediction methods mentioned DAS-3, see Table | and Figure 5, is a five-cluster wide-
above can deal with random peaks very well, nor do theaeea distributed system, with individual clusters locatetbur
pay attention to periodic characteristics. different universities in The Netherlands: Vrije Univeesi

In this paper we propose two policies to amend thegensterdam (VU), Leiden University (LU), University of Am-
particular problems. The first, referred to as thee-before- sterdam (UvA), and Delft University of Technology (TUD).
last-measurementBLM) policy, is to restore the rhythm of The MultimediaN Consortium (UvA-MN) also participates
transmission by removing the extra delay observed at aieearlvith one cluster, located at the University of Amsterdam. As
moment. The second, referred to as geak-prediction(PP) one of its distinguishing features, DAS-3 employs a novel
policy, is to find the periodic characteristics of the peaks internal wide-area interconnect based on optical 10G links
processing times and then to predict occurrence of subaequ&tarPlane [20]), causing DAS-3 sometimes to be referred to
peaks. Our proposed prediction methods, including the BLAS "the world’s fastest Grid” [21].
and PP policies, provides good solutions for our just-ineti
communication problem.

A. Example applications

In our experiments, we use the DAS-3 system to run a real-
IV. EXPERIMENTAL SETUP time multimedia application (referred to as “Aibo”), as wel
In a Grid environment, resources have different capacitias an off-line application (referred to as “TRECVID").
and many fluctuations exist in load and performance of The “Aibo” application demonstrates real-time object iggco
geographically distributed nodes [19]. As the availapilif nition performed by a Sony Aibo robot dog [22] (see Figure 6).
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TRECVID DATABASE

Figure 6. Our example real-time (left) and off-line (rightstlibuted multimedia applications, which are capable of dpeirecuted on a world-wide scale.
The real-time application constitutes a visual object redogn task performed by a robot dog (Aibo). The off-line apation constitutes our TRECVID
system.

Table |
OVERVIEW DAS-3 CLUSTER SITES
Cluster Nodes Type Speed Memory | Storage | Node HDDs Network
VU 85 dual dual-core 2.4 GHz 4 GB 10 TB 85 x 250 GB | Myri-10G and GbE
LU 32 dual single-core | 2.6 GHz 4 GB 10 TB 32 x 400 GB | Myri-10G and GbE
UVA 41 dual dual-core 2.2 GHz 4 GB 5TB 41 x 250 GB | Myri-10G and GbE
TUD 68 dual single-core | 2.4 GHz 4 GB 5TB 68 x 250 GB | GbE (no Myri-10G)
UvA-MN 46 dual single-core | 2.4 GHz 4 GB 3TB 46 x 1.5 TB Myri-10G and GbE

Irrespective of the application of a robot, the general [@ob computer easily can take over one year of processing.
of object recognition is to determine which, if any, of a give

repository of objects, appears in an image or video streamBoth applications have been implemented using the Parallel
It is a computationally demanding problem that involves Rorus software architecture, that allows programmers ftewr
non-trivial trade-off between specificity of recognitioa.d., parallel and distributed multimedia applications in a yull
discrimination between different faces) and invariance.(e sequential manner [22]. The automatic parallelization and
to shadows, or to differently colored light sources). Due figistribution of both applications results in servicesdzhex-
the rapid increase in the size of multimedia repositorieS @Eution: a client program (typ|ca||y a local desktop maehin
'known’ objects [23], state-of-the-art sequential congIstNo connects to one or mormultimedia serverseach running
longer can live up to the computational demands, making-higbn a (different) compute cluster. Each multimedia server is
performance computing (potentially at a world-wide scaé® executing in a fully data parallel manner, thus resulting in
also Figure 6) indispensable. (transparentjask parallel execution of data parallel services

The “TRECVID” application represents a multimedia com-
puting system that has been applied successfully in the,2004More specifically, in both applications, before any proeess
2005, and 2006 editions of the international NIST TRECVIIng takes place, a connection is established between thet cli
benchmark evaluation for content-based video retrievd], [2 application and a multimedia server. As long as the conoecti
[25]. The aim of the “TRECVID” application is to find seman-is available, the client can send video frames to this server
tic concepts (e.g., vegetation, cars, people, etc.) in tedsd Every received video frame is scattered by this server into
of hours of news broadcasts, a.o., from ABC and CNN. Thmany pieces over the available compute nodes. Normally eac
TRECVID concept detection task is, in general terms, definedmpute node receives one partial video frame for procgssin
as follows: Given the standardized TRECVID video data set,Tdne computations at all compute nodes take place in parallel
common shot boundary reference for this data set, and & lisMdhen the computations are completed, the partial results are
feature definitions, participants must return for each eph@ gathered by the communication server again and the final
list of at most 2000 shots from the data set, ranked accotdingesult is returned to the client. In this paper, the time tcpss
the highest possibility of detecting the presence of thatase a single video frame in this manner is defined as sbevice
tic concept. Our “TRECVID” application is computationallyprocessing timé's. The individual values of's; are collected
intensive; for thorough analysis it easily requires abo6t las data source for a trace-driven simulation. In our sirarat
seconds of processing per video frame on the fastest ségjuerthe service utilization and total waiting times are caltedbby
machine at our disposal [26]. Consequently, the requimaeé ti using different prediction methods in combination with our
for participating in the TRECVID evaluation using a singl8LM and PP policies.



V. METHOD FORMULATION

Average service processing time of object recognition application
This section describes our newly proposed modeling ap- T ‘ T
proaches in detail. The approaches are based on the result
of extensive experimentation performed on DAS-3 (see Sec-
tion V).
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A. On resource-optimization problem 1000
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In our example applications, video frames are being pro-
cessed on a per-cluster basis, using a varying number of
compute nodes on each cluster, each consisting of multiple
CPUs. The compute cluster (@ervicg processing time is
defined as a functionS(L,n) of the number of compute
nodesL = 1,...,Mmq, and the number of CPUs per node L ‘ o
n =1,2,....0ur goal is to minimize the cost functidf(L, n) BB A0 otcompuenodes . T 20
over the set of possible values(df, n); thus, we are searching
for the point (,7) where the functionS(L,n) attains its
minimum. In this context, it is important to note that the (a) Aibo application
set of possible combinationd.,n) may be very large, and
that in practice, finding the optimuifi, 7)) may be very time
consuming. Therefore, our goal is to develop a simple but 2500,
effective heuristic method to obtain a nearly-optimal solu
within a short time frame. To this end, we first discuss a
number of observations that we collected during our extensi
experiments, leading to a dramatic reduction of the set of
possible value of L, n). Subsequently, the method to approach
the optimal(L,n) is described in detail.

1) Reduction of solution spacédany combinationgL, n)
lead to the same total numb&r= L -n of CPUs. The follow-
ing observations, made for our particular example apptioat
rule out many possibilities:

(22
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a) The optimal number of CPUs often is a power of %6 32 o '

128 256
2: In our experiments, we consistently observed that the Number of compute nodes
optimal number of CPUs is found to be a power 2. For
example, Figure 7 shows the average processing times for (b) TRECVID application

our two example applications: (a) Aibo, and (b) TRECVID.
The results show that bottocal and global minima are . I

. . igure 7. Average service processing time v.s. number of campodes.
consistently found when the total number of CPUs is a power
of 2. This observation leads to a dramatic reduction of the

set of possible splutlons. Namely, if the number of avada}thA). This is explained by the fact that the compute nodes
compute nodes id,,.., the number of available CPUs in. ; . .
‘ . : n DAS-3 are linked by a fast local Myrinet interconnect,
each compute node is,,.., then the solution set is reduce . . :
whereas the CPUs within a single node communicate over
to X := {(2,29),p = 0,...,P,q = 0,...,Q}, where T -
P = [10gy(Lmns )|, Q = 108y (nmas)] a shqred memory bus, WhICh is less .eff|C|'ent. I\!ote that' the
' 2\ mar)h e 2V max) 3t ‘burstiness’ of the perceived processing times is expthine
b) Using more compute nodes, yet less CPUs per nody, random ope_rating system interference, _and by aut_omatic
is generally better: Another important observation from ourdarbage collection performed by the Java virtual machine.
experimental results is that for the same total number of €PU Based on these observations, the solution set can be re-
T = L -n, using more compute noddsand fewer CPUs per duced drastically. For instance, for a system having 85 siode
noden provides better performance. That is, for the same to@hd 4 CPUs per node, the reduced solution spack is
number of CPUSI" = 2, where the solution set should be{(2?,1),p =0...6} U{(64,2),(64,4)}.
X := {(2?,29),p + ¢ = m}, among themyg should be as In a general form, to determine the optimal number of com-
small as possible. This observation is illustrated by Feg8y pute nodes and CPUs per node, the solution space is reduced to
where we consider the cage = 64 for three combinations the combinationsX = {(27,1),p =0... P} U {(2F,27),q =
(L,n) € {(64,1),(32,2),(16,4)}; the results show that thel...Q}, where P := |logy(Lmaz)], @ = |logs(Mmaz)]-
combination (64,1) has better performance than (32,2) aRdr simplicity, we usg2("'+9) 1) instead of(2,29) for our



notation, although2("*+% 1) does not exist.

Average service processing time of object recognition application
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Figure 8. More compute nodes and less CPUs per node is better. ! 2 :lumber of Cfmpu[e nodéﬁ 8 64
2) Steps to approach the optim@l, n): From the reduced
solution space, we iteratively increase the total number of

CPUs to find the optimalL, n). When the number of applied
compute nodes becomes larger, the parallelization ovdrhea
increases, and may even become dominant. Our experimentg
results show that there exists a threshold vahiesuch that
S(2™,1) decreases fast forn < m*, whereasS(2™,1)
flattens out, and may even increase, for > m*. As an
illustration, Figure 9 shows the average service procgssin
times for the Aibo- and TRECVID-applications for different
values of L = 2. In both cases, we observe that there
exists somesaturation pointL* = 2™" such that increasing
the number of parallel nodes beyond L* does not lead
to a significant reduction of the service processing times.
Throughout,L* = 2" will be referred to as thengineering
kneeand is regarded as the (near-)optimal point of operation.
3) LDS method:To find the engineering knek*, we have ) ) ) : )
developed arLogarithmic dichotomy searc(LDS) method. ¢ 8 Nomber of campute nodee 28 26
The LDS method follows the idea of a well-known con-
ventional binary search (CBS) algorithm [27] which aims
to find a particular value in a sorted list. Compared to the
CBS strategy, the LDS method makes progressively better
guesses, and proceeds closer to the optimal value. Let the
elements in the solution séf be denoted byey,...,ex),
with K = P+@Q, P and@ are defined in Section V-Alb. Theis named as parallel LDS strategy. In this paper, we will not
LDS strategy selects the median element in theéSsetenoted give further discussion on this possible improvement.
by emig. Definee as the desired improvement in the service

processing time by increasing the number of compute nodgs. On “just-in-time” communication problem
S(eMld)7S(6M|d+l) H H
[f M2 Md ¢, then we repeat this procedure with a

(a) Aibo application.

Average service processing time of TRECVID application
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(b) TRECVID application

Figure 9. Engineering knee of Aibo and TRECVID applications

smallersl(iesh?d)and we keep only the elemefig: ex). If Our real-time multimedia “Aibo” application is run to
S(enia)—S () P only th . id+1y .- -s CK - enerate data that are used in our trace-driven simulation f
S Se then the list in which we search become\%alidating our approach

(e1,--.,ewmid)- Pursuing this strategy iteratively, it narrows the '

A i - The notations used here are defined as follows.
search by a factor of two each time, and finds the minimum

value that satisfies our requirement afteg,(K) iterations. ~ * 1 si* the processing time of theth frame.
The pseudo code for our LDS method for the solution space® 1 ¢i: the communication time of sending thieh frame
X is given in Algorithm 1. from thg chent. to the server.

It is worth noting that there is still room for improvement. | ¢ t:: the time point when the client sends théh frame to
our implementation, we obtain the runtime information gsin ~ the server. _ _
individual number of compute nodes by sequential measure~ " the time point when the client receive¢h frame from
ments. Actually, if there are enough processors, we can do the server.
several measurements simultaneously by parallel techniu 1) Preliminary:



Low =0

High := K
While (Low < High) {
iy .— | Low+High
Mid := | Low-High

if S (emia) < 25421 {High = Mid;}
else{Low = Mid +1;}
end if;

}

Optimal number of compute nodes := High.

Algorithm 1: Pseudo code of LDS strategy.

a) Trend line: As shown in Figure 3, if we can predict
the service processing time of the current frame accurately
then sending the next frame after the predicted time unit
should provide an optimal solution. Therefore we inveséda
several conventional prediction methods (i.e., adaptednme

based methods, adapted median-based methods, exponenti

smoothing methods, and Robbins-Monro Stochastic Approx-
imation methods) for predicting the service processingetim
We found that, based on the earlier service processing times
and by using any of these prediction methods, an accurate
trend line can be generated. Figure 10 gives an illustration
of the predicted service processing time versus the medsure
value of running the Aibo application using one compute node
using a single CPU only.

b) Periodicity of the peaks:Another important obser-
vation from our experimental results is the occurrence of
periodic peaks using large numbers of compute nodes. Becaus
our multimedia application is partially implemented in dav
the Java garbage collectof28] has an influence on the
service processing time. In case of large service proogssin
times, the effect of garbage collection generally is ingigant
and can be ignored. This is the situation as depicted in
Figure 10. In contrast, when the service processing time is
small compared to the garbage collection time, the periodic
peaks are significant. We ran the Aibo application using 64
compute nodes (using one CPU per node) on three different
moments in time. From these data sets, we notice that there
is a deterministic period of the occurrences of certain ifipec
peaks (see Figure 11).

2) Method: Based on the experimental results, we conclude
that an effective prediction method for our application mus
have the following characteristics: (1) it must be able to
generate an accurate trend line of the service processimg ti
(2) it should be able to deal with outliers in the observed
processing time as soon as possible, and (3) it must be able tc
predict when the next peak occurs. In this section, we dgscus
the applied prediction methods and our BLM and PP policies
in detail.

a) Prediction methodsAmong existing predictive meth-
ods there is a huge difference in the way previously obtained
data are handled. In some cases one wants to adapt very
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Figure 11. Service processing time taken at different times
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Figure 10. Trend line generated by different prediction rad¢h

quickly to observed changes in the data, while there are alsdn exponential smoothing [12]-[15] earlier measurements
cases in which this behavior is not desired. The adapted-meare not weighted equally as in the case of a mean-based
based method [11] uses arithmetic averages over somemporticethod, but with exponentially decreasing weights as the
of the measurement history to predict the next measuremeneasurements get older. More specifically, denoteulfy)

In particular, the extent of the history taken into accourhe weight for thei-th previous measurement. Then,is the
depends on a paramet&r, specifying the number of previousfollowing function

measurements for the arithmetic average. The paranietisr w(i) = a(l — @),

changed by-1, 0, or +1 over time based on the prediction

error. In our experiments, the initial value &f is set to 20. With o a parameter determining the rate of decay of the
function. In our experiments, we set = 0.5. As in the

Adapted median-based methods [11] use a portion of theevious methods, the paramet&r determines the number
measurement history defined by the paraméfeio calculate of earlier measurements that we intend to use. In désge
the median which is used for the prediction. The parametg#t available previous measurementand in caseK < oo
K is adapted in the same way as in the mean-based methagl made sure, by scaling of the weights, that the sum of the
above. Note that the prediction of this method is not infleshc weights used sum up to 1.
much by asymmetric outliers (e.g., a peak in the processingThe Robbins-Monro approximation method [16] is a
time), since this does not affect the median greatly. stochastic approximation method. If we denote By, the



estimation of thei-th processing time, then the estimation is  Combining Equations 1, 2, and 3, the optimal sending
updated according to the following relation time of i-th frame is given by

Tsitr =Tsi+ei(Ts; — Ts;), t; = min(r;—1, max(r;_a,ti—1 + E[Ts],

ri—o + E[Ts] — 2E[Tc])). @

whereg; is a parameter possibly dependingiofhe intuition
behind the update rule is the following. In case the observed
processing time is higher than estimated, the prediction fo

the next processing time is increased by a small amount of Chentf Lt +E[TS

the difference, and vice versa. When = 1 for all 7, then
the prediction for the next processing time is equal to tisé la
observation. We set; = 0.5 for our experiments. Quffering

b) BLM Policy: Our first policy to deal with peaks server
is called “one-before-last-measurement” (BLM) policy.i§h
policy follows the following steps.

« Thei-th job will not be sent until the result of thg— & )- _ -
th job becomes available to the client. Because we must (@) The optimal sending time in case B%5; > > E[T's]
take care that the server has enough jobs to process, we

Tsl._2 Ts, —E Ts]

can not use the last measurement data as a predictor (also ‘, =t,_,+E[Ts] rl._ i .
indicated by Harchol-Balter and Downey [29]). Therefore Chem

k must be larger or equal to 2. Throughout this paper, we

focus on the case thdf[Tc] < @ Here E[T's] and

E[Tc] represent the expected service processing time and

the communication time respectively. In this case, we set server
k = 2. This implies that at most one job is waiting in the

buffer at the server side. As a result, the occurrence of
cumulative waiting times can be prevented. In the case
thatTc > [TS] , we only need to enlarge the value /af (b) The optimal sending time in case BS; > <E[T's]
Hence, fork = 2 we have the following equation,

Ts,, waiting Ts_=E[T5]

t; > 1rio. Q) Figure 12. BLM Policy

This equation implies that théth video frame is sent
after the result of théi — 2)-th frame is received by the
client. Figure 12 gives an illustration.

« Obviously, if the result of thé; —1)-th frame is received,
the i-th frame must be sent immediately. Therefore,
have

¢) PP Policy: Our second method, called peak-policy,
tries to predict the next outlier based on historical obstons.
We define an outlier (i.e., a peak) as significantly different
Wféom the average processing time if the observation is much
larger than the average (say 1.2 times larger). Based on
the occurrences of peaks in the previous observations, we
try to predict when the next peak will occur. Motivated by
« The sending time of théth frame is also decided by theexperiments, we observe that there is a deterministic gerfio
relationship between the expected service processing titheé occurrences of peaks. See Figures 11(a), 11(b), anyl 11(c
and measured service processing time of the 2)-th for the experimental results. Denofe = {i[T's; is peak as
frameT's;_o. If T's;_o > E[T's], then itis optimal to send the set of peaks and denote py the j-th element ofP. Let
the i-th frame atr; _» + E[T's] — 2 - E[Tc|. Figure 12(a) k be an integer number. if; —p; 1 = =p; (xy1)—Pj—k
gives an example. In casBs; , < E[T's], the optimal then we say that there is a deterministic period of length
sending moment is at;_; + E[Ts]. See Figure 12(b). d = p; — pj—1, and we expect the next peak to occur at
Hence we get the following equation, job number;j + d. Note thatk defines the number of previous
. peaks that should have occurred equidistantly with lenrgth
p {Ti—2 + E[T's| =2 E[Tc] if T'si—2 > E[Ts],  such that we consider the peaks as periodical events. The
’ ti—1 + E[T's] otherwise optimal k£ is not known beforehand. Therefore, we will start
(3) with an arbitrary value and adjust it as time evolves. Suppos
Note that using the receiving time of tlie— 2)-th frame thatk = 3, and we observe three peaks each having distance
to determine the sending time @fth frame indirectly d, then the method predicts that the next peak occurs after
takes into account the variation of the communicatioprocessing ofd frames. If it turns out that the prediction is
time between the client and the server. Therefore, tgong, then we increask by 1, since probablyt = 3 was
assumptionT'c; = Tco IS not necessary any longer.too low. In case the prediction is correct, then we decréase

ti < Ti—1- (2)
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Table I
AVERAGE SERVICE PROCESSING TIME OFRECVID APPLICATION.

(L, n) (16, 1) [ (82) | (4,4) [ (64,1) | (32,2) | (16,4) || (64,2) | (32, 4)
S(L,N) ms || 669.28 | 682.44 | 736.56 || 241.62 | 244.90 | 263.01 || 190.70 | 218.27

by 1, such as to try a smaller number. To prevent meaninglesgprovement is less than 10%. Here the index of the elements

values fork, we restrictk to be in[3, c0). of X is denoted ag0,1,...,8]. Then the LDS method is
By combining the BLM and PP policies with one of the preapplied. In the first step, we haveow = 0 and High = 8,

diction methods to predict service processing times, wainbt and thus .

our final model to deal with the just-in-time communication Mid — {LOU’ + HZQhJ _a

problem in real-time applications. 2

VI. NUMERICAL RESULTS Therefore, we measure the service processing time 2Sing

. . _ 5 _

In this section we present the results of our experiments p&f and2° = 32 compute nodes and 1 CPU per node. The
formed on the DAS-3 system. The detailed experiments wsUflated average service processing times are shown |n'ﬂne fir
are achieved on the largest cluster at the Vrije Univetsiteat W of Table IV. Because the relative improvement using 32

consists of 85 compute nodes with 4 CPUs per node. compute nodes compared to 16 compute nodes is 0:27, (
o we conclude that 16 compute nodes is not optimal. Therefore,
A. On resource-optimization problem we continue searching for the optimal. In the second step, th

Here, we show the numerical results of the average serviodex value 54 32 compute nodes) is set as the value of Low.
processing times versus a varying total number of computée value of High remains the same. Therefdtgd = 6.
nodes. In addition, the simplicity of LDS strategy to det@ren When calculating the relative improvement using 64 compute
the optimal number of compute nodes is validated. nodes and 2 CPUs per node compare@ta@ompute nodes,

First, denote the possible solution space of the compwe find that the improvement (-0.15) is less thaiTherefore,
nodes and the number of CPUs per node @s where in the third step, the value of High is reset to 6, and Low
0 = {(L,n),L € [1,...,85] andn € [1,...,4]}. To show remains the same. In this cagd,d = 5. The improvement of
that using more compute nodes and less CPUs per nating2° compute nodes compared2d is more thare. Thus,
provides better performance in general, we ran our rea-tirhow is reset to 6, such that Low is equal to High, and the
“Aibo” application on a varying numbers of CPUs (2, 4, 8, 16)xhole procedure is finished. The LDS method returns index 6
32, 64, and 128 CPUs). We compared the obtained serviaethe optimal solution. This means, foe= 0.1, the optimal
processing times for a fixed total number of CPUs, whileumber of CPUs i2° = 64 compute nodes.
varying the number of CPUs per nodes. The results are showror differente (0.1, 0.2 and 0.3), théL, n) to be evaluated
in Figure 13. In this figure we notice that for small numberand the corresponding average service processing timetiof bo
of CPUs (say,< 16), the service processing time is largelyapplications are reported in Table IV and Table V, respebtiv
independent of the ratio between the total number of employ&he optimal L* that we found for both applications for
CPUs and the number of employed CPUs per node. As ttifferent values ofe are listed in Table VI. In this table, we
number of CPUs increases, it becomes obvious that widwatice that with largee, the L* remains the same or decreases.
distribution of the CPUs, that is, using less CPUs per node
and more compute nodes, provides better performance.

We also compared the service processing time for our off-
line “TRECVID” application, on a varying total number of  [stp [Low [Hgh [ Mid | compare | refative Action
CPUs (16, 64 and 128 CPUs). The results are tabulated in o s la & D e Figh i
Tabel II. For this application we have a similar conclusion: |25 % |5 L7 e o L
more compute nodes and less CPUs per node provides the
best performance results.

In Paragraph V-Ala, we mentioned that the optimal number Table IV
of compute nodes is Consistenﬂy found to be a power of AVERAGE SERVICE PROCESSING TIME OAIBO APPLICATION.
2. Combining this result and the observations above, we

Table Il
THREE STEPS TO APPROACH THE OPTIMALL, n).

-

. : . I, 16,1) (32,1) (64,1) (64,2
reduged the original spac@ with 85 x 4 = 34Q possible e=0.1 (S(;)N) ms (152.225 (110.e24 (93.52; (108.)55
solutions to the spac& with 9 possible solutions, where D) @610 Gz 6L 1 (64,2
X = {(2%,1),i € [0,...,6]} U (64,2) U (64,4). Based on €=02 g(I,N)ms 15226 110.64 9358  108.55
X, we apply our LDS method to find the minimum value (L, n) @10 @1 @61 @21

after |log, 9] = 3 steps. We use Table Il to explain the three _* > S(L,N)ms 44857 24772 15226 11064

steps taken in AIBO application when= 0.1. We continue

to approach the optimal number of compute nodés by As shown above, we notice that our method is very simple
doubling the total number of compute nodes, until the netatito implement. Besides this, it is very effective becausehef t




Table V

AVERAGE SERVICE PROCESSING TIME OF RECVID APPLICATION. exponential §moothing methOd) as a representative prenhct
method. In Figure 14, it is shown that the average waitingtim
c—o1 & 161 (321) (641 (642 (644 increases significantly as the service utilization appneac
_© SWLN)ms 66928 $9579 24162 19070 22281 14094 Hence, the prediction methods are not sufficient for
@) 6, 10) (G210 64 1) (642 (6449 70. TIENLE, predictio
€=02 g(L,N)ms 66928 39579 24162 190.70 222.61 our just-in-time communication problem.
@) @6, 1) (2 1) 641 (642
€=03 (L ,N)ms 66928 39579 24162 190.70 Table VII
TIME INTERVAL BETWEEN SENDING TWO SEQUENTIAL FRAMES
Table VI
THE VALUE OF ENGINEERING KNEE Simulation index | Time interval
1 Tspm
2 2E[Tc] + E[T's]
€ L* € L* 3 1.5E[Tc] + E[Ts]
0.1 64 (64,1) 0.1 128 (64,2) 4 E[Tc] + E[T's]
0.2 32 (32.1) 0.2 128 (64,2) 5 0.5E[Tc] + E[T's]
0.3 16 (16,1) 0.3 64 (64,1) 6 0.375E[Tc] + E[T's]
7 0.25E[Td + E[Ts]
(a) Aibo application (b) TRECVID applica- 8 ETs]
tion

Average waiting time using 64 compute nodes
1400 T T T

small number of steps required to find the optimal number of |
compute nodes. In addition, by varyiagwe are able to obtain 12007
the optimal result related to the desired improvement in the _ 1
service processing time by increasing the number of compute £
nodes. £ so0f
B. On “just-in-time” communication problem i 6001
In this section we present the results of our experiments 2 400l 1
performed on the DAS-3 system. The results are also used a
the input for a trace-driven simulation in order to validate 2001
final model for determining the exact transmission moments ) )
of video frames. In our experiments, the object recognition bs 0.85 0.9 0.95 1

Service utilization

application is ran on 64 compute nodes using 1 CPU per node.
First, we apply the BBM method (Figure 1) to our Aibo ap-
plication. In our experiment, we found that the averageiserv

processing timelE[J_“s]) and the average communication time ¢ fjng| model, in which one of the prediction methods
(E[Tc]) between client and server amount to 143.828and is combined with the BLM and PP policies, we can achieve

11.694 ms respectively. In this case, the server utilizatimﬂigh service utilization while keeping the average waitiinge

is about 85%, and the average waiting time per frame is (I, ' gy ysing the exponential smoothing method with our
Consider that the service utilization using the BBM methed bolicies, we obtain service utilization of about 98%, and an

given by E[T's|/(E[T's| + 2 - E[T]). This implies that when 5y eraq6 \waiting time per frame of aroundvi If we define
Tc is negligible, the BBM method approaches the optim e waiting time percentage (WP) as
strategy. However, in a bottleneck situation whé?gl'c| is T
long relative toF[T's], the BBM method performs badly. WP — total waiting time

Server utilization can be increased by sending frames with total waiting time + total service processing time

smaller intervals. However, if a sudden change (a peak) tifen we obtain a WP of around 3.5%. Because of the lower
service processing time takes place, all incoming frames &ajue of WP, we can compare the performance of our final
affected. A particularly difficult situation is when a sexief model to the BBM method by looking at the service utilization

long service times occurs, such that the waiting time of #8mpefine the gain in service utilizatioain(SU) as follows,
increases rapidly due to the accumulation of perceived.gaps
)

In our experiments, we used simulation to evaluate the itnpac Gain(SU) = h — - .
of changing the time interval between sending subsequent service utilization using BBM method
frames. The time interval is reduced in 5 steps according figure 15 shows the gain of our final model related to the
Table VII. E[Ts] and E[Tc] in Table VIl are adjusted by BBM method for different values of:<.

one of the prediction methods. Since Figure 10 shows that allln this figure, we notice that the gain in utilization is alrhos
prediction methods are capable of generating accuratel tréimear in % This can be explained by the fact that the
lines, in this paper, we only choose one of these (i.e. tervice utilization in the final model is very close toand

Figure 14. Average waiting time using 64 compute nodes

service utilization using final model




Gain in service utiization ‘ are still 100 frames to be processed. In this situation the
use of prediction methods causes all following 100 frames
to be delayed by the peak. But using our final model, there
is only 1 following frame affected by the peak. Thereafter,
the sending times of the next 99 frames are corrected. Thus
no error accumulation occurs. Therefore, we conclude that o
final model, incorporating BLM and PP, are indispensable and
effective for just-in-time communication.
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VIl. CONCLUSIONS
In this paper we explored firstly the relation between the

taf ] service processing time of distributed multimedia appies
1 02 04 o o8 1 and the number of compute nodes. for a varying number of
E[TCYELTS] CPUs. We observed that there exists a threshold vélte
(referred to as theengineering kndesuch that the service
Figure 15. Gain in the service utilization processing time decreases fast as a functioh &dr L < L*,

whereas the service processing time flattens out, and may eve
increase, for, > L*. To find L*, first we reduce the possible
solution set. Then we apply our LDS method to fild.
Extensive validation has shown that our method is fast and

the service utilization belonging to the simple strategy ba
approximated byF[T's|/(E[T's]+2- E[Tc]). Hence, based on
Equation 5, we have

effective.
Gain(SU)~ 1 14 2@ Specifically, we have found that our method can find optimal
T Ts/(Ts+2-Tc) Ts’ resource utilization for an average sized cluster systemoin

more than three evaluation steps. As a result, we concluate th
our method adheres to all requirements as stated in the intro
duction: it is simple, easily implementable, and effectiire
addition, our method takes into account system variatioenE
% though our focus was on the MMCA domain, our approach is
general enough to be applicable in other domains as well.
For “just-in-time” communication problem, we have ex-
plored that we have to trade off between high service utiliza
tion and short service response time. Using a BBM method,
the waiting time is zero. However, service utilization dexges
when the communication time between client and server
increases. By applying existing prediction methods to this
problem, service utilization can be increased. However, at
the same time, the average waiting time of video frames
increases even faster. This can be explained by the fact that
‘ ‘ ‘ ‘ existing prediction methods do not pay attention to peaks
0 02 o4 s 08 L in the service processing time. For this reason, we have
developed two innovative policies, BLM and PP. Using the firs
policy, cumulative waiting times are avoided by postponing
transmission of a new job when a peak is detected. The

The last comparison is done to evaluate the benefit broug§cond Policy is used to predict possible peaks. If we can
by our policies. For the prediction method of exponentidredict the moment when a peak occurs, then we can send
smoothing, we compare the performance of our final mod&fW jobs at the right time. Combining these two policies
to the prediction method by looking at the average Waitin‘ﬁ'th any of the existing prediction methods described irs thi

time. Define the gain in the average waiting tiiein(w) as paper, we achieve our final model to solve the just-in-time
follows communication problem.

Our final model is validated in our experiments. Moreover,
- _ i i e have extensively investigated the gain of our final model
average waiting time using final model related to the BBM method, as well as the prediction methods
The results of this comparison are shown in Figure 16. Théthout incorporating our newly developed policies. From
reason why the final model can gain so much, can be explairmg experimental results we conclude that our final model
by the following example. Assume that during processingignificantly outperforms the other methods. Specificadlg,
only one peak takes place and that, after that peak, théave observed that, in comparison to other methods, our final

Therefore, the gain in the service utilization is nearlyraas-
ing linearly with Tc/T's.
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Figure 16. Gain in the average waiting time

Gain(w) average waiting time using the prediction metho%




model improves server utilization from 85% to 98%, anfl3] ——, Smoothing, Forecasting and Prediction of Discrete TimeieSer

reduces the average waiting time per frame by factor 250.
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