
Modeling “Just-in-Time” Communication On the
Optimal Resource Utilization in Distributed

Real-Time Multimedia Applications
R. Yang∗†, R.D. van der Mei∗†, D. Roubos∗, F.J. Seinstra∗, G.M. Koole∗, and H.E. Bal∗

∗Vrije Universiteit Amsterdam, Faculty of Sciences
De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands

Email: ryang@few.vu.nl

†Centre for Mathematics and Computer Science
Kruislaan 413, 1098 SJ, Amsterdam, The Netherlands

Abstract—The applications of Multimedia content analysis
(MMCA) operating in real-time environments must run under
very strict time constraints, e.g. to analyze video frames at
the same time as a camera produces them. To meet these
requirements, largescale multimedia applications typically are
being executed on Grid systems consisting of large collections
of compute clusters. Therefore, first, it is essential to determine
the optimal number of compute nodes per cluster, properly
dealing with the perceived computation versus communication
ratio that depends on several characteristics of the system. This
issue is referred to as the problem of “Resource-optimization”.
Secondly, once the optimal number of resources are available,
it is important to assign video frames at the right times to the
server, so as to obtain the highest service utilization possible, and
to minimize the buffering time for individual video frames at the
server side. We refer to this issue as “Just-in-time” problem.

Motivated by these observations, in this paper we first de-
velop a simple and easy-to-implement method to determine the
“optimal” number of parallel compute nodes. The method is
based on the classical binary search method for non-linear
optimization, and does not depend on the, usually unknown,
specifics of the system. Second, we address the Just-in-time
problem by introducing an adaptive control method that reacts
to the continuously changing circumstances in Grid systems.1.

I. I NTRODUCTION

In recent years, the increasing role of multimedia data, in
the form of still pictures, audio, speech, video, has lead toa
demand for automatic collecting, comparing, processing and
features extracting from multimedia data source. One of such
applications is the automatic comparison technology used to
recognize the forensic video evidence [3] obtained from the
surveillance cameras in public locations.

Such applications using computerized technology to process
the multimedia data have become a problem worth ever-
increasing serious consideration as multimedia applications
produce high data rates. The amount of information produced
in the world increases by 30% every year. Print, film, magnetic,
and optical storage media produced about 5 exabytes (1018)

1A partial and preliminary version of this paper has been presented at [1],
[2]

of new information in 2002 [4]. The multimedia archives of a
data center (for instance, a large hospital) now has a petabyte-
scale (1015) database of stored data. As individual compute
clusters cannot satisfy the increasing computational demands,
distributed supercomputing on large collections of clusters
(Grids) is rapidly becoming indispensable.

Applications in Multimedia Content Analysis (MMCA)
often must run under strict time constraints. For example,
to avoid delays in queues of people waiting, a biometric
authentication system must identify a person’s identity within
several seconds. Largely autonomous applications, such asthe
automatic detection of suspect behavior in video data obtained
from surveillance cameras, may even need to work under real-
time restrictions. In this kind of services-based distributed
execution scenario, a client program (typically a local desktop
computer) connects to one or more remotemultimedia servers,
each running on a (different) compute cluster. At application
run-time, the client application sends video frames captured
by a camera to the server, which performs the analysis in a
data parallel manner.

For such applications executing on large collections of
compute clusters, the resource utilization must be firstly au-
tomatically optimized. Efficient methods must be availableto
determine the optimal number of nodes of the compute cluster.
This optimization problem generally depends on priori system
information includes the running application using the com-
pute cluster, and the specifics of the computation environment
(e.g., network characteristics, CPU power memory, I/O). In
this context, it is essential to properly balance the following
trade-off: if the number of compute nodes is too low, then
the processing power is insufficient to meet strict processing-
time requirements of real-time applications; if the numberof
compute nodes is too high, the parallelization overhead will
cause a degradation of the computational performance. This
problem is referred to as the resource-optimization problem
in this paper. Hence, there is an urgent need forsimpleand
easily implementable, yet effectivemethods (in terms of the
number of evaluation steps), to determine the optimal levelof



parallelism. Also, the method should beadaptableto system
variation.

Next to finding the optimal number of resources by solving
the resource-optimization problem, it is essential to make
use of the available resources efficiently by sending video
frames at the right times to the server, so as to obtain the
highest service utilization possible, and to minimize the service
response time for individual video frames. If the employed
multimedia server is keeping unoccupied, the analysis results
for a video frame can be obtained in the fastest possible way.
However, this arrangement is a waste of available compute
resources, because this server is not working on previously
submitted video data. If all video frames are sent immediately
to multimedia server when there is a long queue before they
can be processed, then the result data is not “up-to-date”.
This could be unbearable for some real time applications.
To optimize resource utilization, it is essential to tune the
transmission of video frames to the occupation of remote
multimedia servers. However, due to variations in transmission
latencies and other variabilities in the computing environment
(e.g., CPU power, memory, I/O), it is difficult to accurately
tune the sending of video frames to the variable response time
of a multimedia server. In this paper we refer to this issue as
the problem of “just-in-time” communication.

To solve the “just-in-time” communication problem, we
need prediction methods that react to the continuously chang-
ing circumstances in Grid systems. An immediate consequence
of a “just-in-time” communication approach is that a multime-
dia server always analyzes most recently generated (“up-to-
date”) video frames; the shortest server response delays are
introduced due to frame buffering at either the client side
or at the server. Clearly, this is an important, even critical
requirement in real-time applications.

The remainder of this paper is organized as follows. In Sec-
tion II we present related work, and indicate the limitationof
existing methods. Section III presents the proposed approach
in principle. Section IV presents the experimental setup, and
describes example applications. In Section V our methods
are formulated. Section VI discussed our experimental results.
Finally, in Section VII we present our conclusions. In all these
sections, the resource-optimization problem and the “just-in-
time” communication problem are respectively covered.

II. L IMITATION OF EXISTING METHODS

Previous work in this field can be categorized into two
groups. The first group that is relevant to our resource-
optimization problem, belongs to the performance optimiza-
tion problem of computer systems. In [5], Saavedra-Barrera
et al. provide an estimation technique to solve the problem of
the high complexity of complete analytical study of computer
systems. This approach depends on sufficient priori knowledge
of machine characterization and analysis of application pro-
gram, and the entire system must be stable enough according
the model we build. The drawback of the approach is that
system variance is almost completely ignored. For applications
working on extensive dense data fields (e.g., image data

structures) this is a too crude restriction as variations inthe hit
ratio of caches and system interrupts often have a significant
impact on performance [6], [7].

Many other performance estimation techniques that incorpo-
rate more detailed behavioral abstractions relating to themajor
components of a computer system [8], [9], however, need tens,
if not hundreds, of platform-specific machine abstractionsto
obtain truly accurate estimations. Consequently, the essential
requirements of simplicity and applicability are not satisfied.
To overcome this problem, Seinstra et al. [10] have designed
the Abstract Parallel Image Processing Machine (APIPM)
model that has been used in a large set of realistic image
processing applications to find the optimal number of compute
nodes. The main advantage of this model is that predictions
are based on the analysis of a small number of rather high
level system abstractions (i.e., represented by the APIPM
instruction set). The main limitation of this model, however, is
that the instruction set and its related performance valuesare
parameterized with a very large number of instruction behavior
and workload indicators. As such, the model does not meet our
requirements, as obtaining accurate performance values for all
possible parameter combinations is both costly and complex.

For our “just-in-time” communication problem, we argue
that existing prediction methods (i.e., the adapted mean-based
method [11], the adapted median-based method [11], exponen-
tial smoothing [12]–[15], and the Robbins-Monro Stochastic
Approximation method [16]) are not capable of adhering
to the specific requirements of just-in-time communication.
One problem of existing methods is thatrandom peaksexist
in the service processing time[Reference???]. These delays
cause accumulative errors in predicting the exact moments
of the coming data, resulting in significant deviations from
the optimal rhythm in the transmission of frames. Another
problem is that existing methods can not deal withperiodic
peaks very well either[Reference???]. We need additional
policies to amend these particular problems.

III. PROPOSED APPROACHES

In practice, running CPU-intensive applications in large-
scale distributed computing environments typically consists
of two phases: (1) aninitialisation phaseto determine the
optimal number of compute nodesL∗, and (2) themain phase
to actually run the application on theL∗ parallel nodes. Here,
two proposed approaches are used during respective phase.

A. On resource-optimization problem

First, we propose a simple method to determine the “opti-
mal” level of parallelism, in which the number of evaluation
steps is small. Unlike the analytical methods, our parallel
program together with the underlying execution platform is
treated as a black box from the resource allocator’s point
of view. This is due to the following requirements that we
are looking for a general approach to solve the optimization
problem:

• without priori knowledge about the parallel behavior of
the adaptable application,



• do not rely upon system specific hardware and/or soft-
ware characteristics of the applied cluster system.

In this context, experimental observations for realistic,large-
scale problems in multimedia content analysis have revealed
three important optimization properties.

First, in many situations the optimal number of parallel
compute nodes is found to be a power of 2, i.e., of the form2m

for somem = 0, 1, . . .. This observation is important because
it leads to a dramatic reduction of the set of possible solutions.
For example, if the number of available compute nodes is
mmax, the size of the solution space is reduced frommmax

(i.e., the number of elements in the index set{1, . . . ,mmax})
to ⌊log2(mmax)⌋ (i.e., the number of elements of the set
{20, 21, . . . , 2K} whereK = ⌊log2(mmax)⌋). Here the sym-
bol ⌊x⌋ represents the largest integer≤ x.

Second, on compute nodes consisting of multiple CPUs (and
potentially multiple cores), for a fixed number of compute
elements, using more compute nodes and less CPUs per node
yields better performance.

Third, if the compute cluster processing time is denoted
by S(L), with L the number of compute nodes, then there
exists a threshold valueL∗ such thatS(L) decreases fast as
a function ofL for L < L∗, whereasS(L) flattens out, and
may even increase, forL > L∗. L∗ is commonly referred to
as theengineering knee. Moreover, in practice using too many
compute nodes may be very costly.L∗ should be the smallest
number that match the conditions specified above.

Based on these observations, our proposed method is aimed
at determiningL∗ as the optimal point of operation. The
method takes the idea of the well-known classical binary
search method for non-linear optimization, and converges if
the relative improvement ofS(L) with respect toL (on a
log scale) is close enough to 0 (say5 − 10%). To validate
the effectiveness of the proposed method, we have performed
extensive experimentation on a realistic distributed system
(DAS-3 [17], [18]) for both real-time and off-line applications.
The results show that our method is indeed highly effective.

B. On “just-in-time” communication problem

A simple execution approach to solve “just-in-time” com-
munication problem, which we refer to as the back-to-back
method (BBM), is to perform the sending of a newly generated
video frame exactly after a result has been received from the
same server (see Figure 1). Using the BBM method, any video
frame processed by a multimedia server is guaranteed to be
most up-to-date. A drawback of BBM, however, is that the
server is idle when it has processed a frame and is waiting
for the next one. In a bottleneck situation, the video frame
transmission time from the client to the server (Tc1) and the
time to send a result back (Tc2) may be long. For simplicity,
we assumeTc1 = Tc2 = Tc. Then, the service utilization
(SU ) using BBM is given by

SU =
Ts

Ts + 2 · Tc
,

whereTs is denoted as the service processing time of a video
frame. Obviously, if the communication time increases, service
utilization decreases.

client

server

PROBLEM:

server is idle!

get frame 1

from camera

send frame 1

to server

send frame 2

to server

get frame 2

from camera

start parallel

calculations

send result 1

to client

Figure 1. BBM approach for video frame transmission

An alternative approach, referred to as the buffer storage
method (BSM), is to establish a buffer at the server side. As
long as the buffer is not full, the client is allowed to keep
sending frames to the server. When the server is busy, the
frames will be stored in the buffer before being processed (see
Figure 2). Using BSM, service utilization can reach100%.
However, the drawback is that the data in the buffer may have
become outdatedbeforethe actual video content analysis even
takes place, due to the long waiting time. A solution would
be to simply remove outdated frames at the server side. This,
however, leads to (a lot of) unnecessary traffic between client
and server, which should be avoided as resources are scarce.

client

server

get frame 1

from camera

send frame 1

to server

send frame 3

to server

send frame 2

to server

start parallel

calculation 1

send result 1

to client

start parallel

calculation 2

buffer

frame 2&3

send result 3

to client

send result 2

to client

start parallel

calculation 3

Figure 2. BSM approach for video frame transmission

Given the previous two methods, the optimal strategy would
be to send each (i+1)-th frame with a delay after sending
the i-th frame. The delay is exactly the processing time of
the i-th frame. For instance, if the service processing time of
the current frame equalsTsi, sending the next frame after
a period of Tsi will give an optimal solution. With this
strategy, the server gets the most up-to-date frame and the
service utilization is unity (see Figure 3). Unfortunately, Tsi

is unknown before the result of the current frame is returned
back to the client side. It is therefore essential to have an
accurate prediction of the processing time of video frame data.

We have observed that existing predictive methods (i.e.,



client

server

t t+Ts
i

Tc
1

Ts
i

Tc
2

Figure 3. An optimal solution for video frame transmission

the adapted mean-based method [11], the adapted median-
based method [11], exponential smoothing [12]–[15], and the
Robbins-Monro Stochastic Approximation method [16]), are
all capable of generating an accurate trend line based on
the processing time of previous frames. However, for our
just-in-time communication problem, these methods are not
sufficiently optimized for particular cases. The first problem
appears, when the processing time of certain frames suddenly
become much longer (e.g., a peak) than the expectedTs
obtained from a trend line. The sudden change breaks the
rhythm of frame transmission and causes accumulative waiting
times for all subsequent frames, even when the processing time
returns back to the expectedTs (see Figure 4).

client

server

Ts
peak

t+E[Ts]

E[Ts]

t t+2E[Ts]

buffering buffering

Figure 4. All frames are affected continuously by sudden longprocess times

Apart from random peaks, a second problem is that one can
observe processing times to have periodic peaks. If the service
processing time of framei is predicted as a peak, then the
sending of frame(i + 1) should be delayed to prevent a long
buffering time. None of the prediction methods mentioned
above can deal with random peaks very well, nor do these
pay attention to periodic characteristics.

In this paper we propose two policies to amend these
particular problems. The first, referred to as theone-before-
last-measurement(BLM) policy, is to restore the rhythm of
transmission by removing the extra delay observed at an earlier
moment. The second, referred to as thepeak-prediction(PP)
policy, is to find the periodic characteristics of the peaks in
processing times and then to predict occurrence of subsequent
peaks. Our proposed prediction methods, including the BLM
and PP policies, provides good solutions for our just-in-time
communication problem.

IV. EXPERIMENTAL SETUP

In a Grid environment, resources have different capacities
and many fluctuations exist in load and performance of
geographically distributed nodes [19]. As the availability of

resources and their load continuously vary with time, the
repeatability of the experimental results is hard to guarantee
under different scenarios in a real Grid environment. Also,the
experimental results are very hard to collect and to observe.
Hence, it is wise to perform experiments on a testbed that
contains the key characteristics of a Grid environment on
the one hand, and that can be managed easily on the other
hand. To meet these requirements, we perform all of our
experiments on the recently installed DAS-3 (the Distributed
ASCI Supercomputer 3) Grid test bed [17].

Figure 5. The Distributed ASCI Supercomputer 3 with the StarPlane wide-
area optical interconnect.

DAS-3, see Table I and Figure 5, is a five-cluster wide-
area distributed system, with individual clusters locatedat four
different universities in The Netherlands: Vrije Universiteit
Amsterdam (VU), Leiden University (LU), University of Am-
sterdam (UvA), and Delft University of Technology (TUD).
The MultimediaN Consortium (UvA-MN) also participates
with one cluster, located at the University of Amsterdam. As
one of its distinguishing features, DAS-3 employs a novel
internal wide-area interconnect based on optical 10G links
(StarPlane [20]), causing DAS-3 sometimes to be referred to
as ”the world’s fastest Grid” [21].

A. Example applications

In our experiments, we use the DAS-3 system to run a real-
time multimedia application (referred to as “Aibo”), as well
as an off-line application (referred to as “TRECVID”).

The “Aibo” application demonstrates real-time object recog-
nition performed by a Sony Aibo robot dog [22] (see Figure 6).



Figure 6. Our example real-time (left) and off-line (right) distributed multimedia applications, which are capable of being executed on a world-wide scale.
The real-time application constitutes a visual object recognition task performed by a robot dog (Aibo). The off-line application constitutes our TRECVID
system.

Table I
OVERVIEW DAS-3 CLUSTER SITES

Cluster Nodes Type Speed Memory Storage Node HDDs Network
VU 85 dual dual-core 2.4 GHz 4 GB 10 TB 85 × 250 GB Myri-10G and GbE
LU 32 dual single-core 2.6 GHz 4 GB 10 TB 32 × 400 GB Myri-10G and GbE
UvA 41 dual dual-core 2.2 GHz 4 GB 5 TB 41 × 250 GB Myri-10G and GbE
TUD 68 dual single-core 2.4 GHz 4 GB 5 TB 68 × 250 GB GbE (no Myri-10G)
UvA-MN 46 dual single-core 2.4 GHz 4 GB 3 TB 46 × 1.5 TB Myri-10G and GbE

Irrespective of the application of a robot, the general problem
of object recognition is to determine which, if any, of a given
repository of objects, appears in an image or video stream.
It is a computationally demanding problem that involves a
non-trivial trade-off between specificity of recognition (e.g.,
discrimination between different faces) and invariance (e.g.,
to shadows, or to differently colored light sources). Due to
the rapid increase in the size of multimedia repositories of
’known’ objects [23], state-of-the-art sequential computers no
longer can live up to the computational demands, making high-
performance computing (potentially at a world-wide scale,see
also Figure 6) indispensable.

The “TRECVID” application represents a multimedia com-
puting system that has been applied successfully in the 2004,
2005, and 2006 editions of the international NIST TRECVID
benchmark evaluation for content-based video retrieval [24],
[25]. The aim of the “TRECVID” application is to find seman-
tic concepts (e.g., vegetation, cars, people, etc.) in hundreds
of hours of news broadcasts, a.o., from ABC and CNN. The
TRECVID concept detection task is, in general terms, defined
as follows: Given the standardized TRECVID video data set, a
common shot boundary reference for this data set, and a list of
feature definitions, participants must return for each concept a
list of at most 2000 shots from the data set, ranked accordingto
the highest possibility of detecting the presence of that seman-
tic concept. Our “TRECVID” application is computationally
intensive; for thorough analysis it easily requires about 16
seconds of processing per video frame on the fastest sequential
machine at our disposal [26]. Consequently, the required time
for participating in the TRECVID evaluation using a single

computer easily can take over one year of processing.

Both applications have been implemented using the Parallel-
Horus software architecture, that allows programmers to write
parallel and distributed multimedia applications in a fully
sequential manner [22]. The automatic parallelization and
distribution of both applications results in services-based ex-
ecution: a client program (typically a local desktop machine)
connects to one or moremultimedia servers, each running
on a (different) compute cluster. Each multimedia server is
executing in a fully data parallel manner, thus resulting in
(transparent)task parallel execution of data parallel services.

More specifically, in both applications, before any process-
ing takes place, a connection is established between the client
application and a multimedia server. As long as the connection
is available, the client can send video frames to this server.
Every received video frame is scattered by this server into
many pieces over the available compute nodes. Normally, each
compute node receives one partial video frame for processing.
The computations at all compute nodes take place in parallel.
When the computations are completed, the partial results are
gathered by the communication server again and the final
result is returned to the client. In this paper, the time to process
a single video frame in this manner is defined as theservice
processing timeTs. The individual values ofTsi are collected
as data source for a trace-driven simulation. In our simulation,
the service utilization and total waiting times are calculated by
using different prediction methods in combination with our
BLM and PP policies.



V. M ETHOD FORMULATION

This section describes our newly proposed modeling ap-
proaches in detail. The approaches are based on the results
of extensive experimentation performed on DAS-3 (see Sec-
tion IV).

A. On resource-optimization problem

In our example applications, video frames are being pro-
cessed on a per-cluster basis, using a varying number of
compute nodes on each cluster, each consisting of multiple
CPUs. The compute cluster (orservice) processing time is
defined as a functionS(L, n) of the number of compute
nodesL = 1, . . . ,mmax and the number of CPUs per node
n = 1, 2, . . .. Our goal is to minimize the cost functionS(L, n)
over the set of possible values of(L, n); thus, we are searching
for the point (̂L, n̂) where the functionS(L, n) attains its
minimum. In this context, it is important to note that the
set of possible combinations(L, n) may be very large, and
that in practice, finding the optimum(L̂, n̂) may be very time
consuming. Therefore, our goal is to develop a simple but
effective heuristic method to obtain a nearly-optimal solution
within a short time frame. To this end, we first discuss a
number of observations that we collected during our extensive
experiments, leading to a dramatic reduction of the set of
possible value of(L, n). Subsequently, the method to approach
the optimal(L, n) is described in detail.

1) Reduction of solution space:Many combinations(L, n)
lead to the same total numberT = L ·n of CPUs. The follow-
ing observations, made for our particular example applications,
rule out many possibilities:

a) The optimal number of CPUs often is a power of
2: In our experiments, we consistently observed that the
optimal number of CPUs is found to be a power 2. For
example, Figure 7 shows the average processing times for
our two example applications: (a) Aibo, and (b) TRECVID.
The results show that bothlocal and global minima are
consistently found when the total number of CPUs is a power
of 2. This observation leads to a dramatic reduction of the
set of possible solutions. Namely, if the number of available
compute nodes isLmax, the number of available CPUs in
each compute node isnmax, then the solution set is reduced
to X := {(2p, 2q), p = 0, . . . , P, q = 0, . . . , Q}, where
P := ⌊log2(Lmax)⌋, Q := ⌊log2(nmax)⌋.

b) Using more compute nodes, yet less CPUs per node,
is generally better:Another important observation from our
experimental results is that for the same total number of CPUs
T = L · n, using more compute nodesL and fewer CPUs per
noden provides better performance. That is, for the same total
number of CPUsT = 2m, where the solution set should be
X := {(2p, 2q), p + q = m}, among them,q should be as
small as possible. This observation is illustrated by Figure 8,
where we consider the caseT = 64 for three combinations
(L, n) ∈ {(64, 1), (32, 2), (16, 4)}; the results show that the
combination (64,1) has better performance than (32,2) and

12 4 8 16 20 32 56 64 72 76 80
0

200

400

600

800

1000

1200

1400

1600

Average service processing time of object recognition application

Number of compute nodes

A
ve

ra
ge

 s
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

Local minimum
Minimum

(a) Aibo application

4 16 32 64 128 256
0

500

1000

1500

2000

2500
Average service processing time of TRECVID application

Number of compute nodes

A
ve

ra
ge

 s
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

MinimumLocal minimum

(b) TRECVID application

Figure 7. Average service processing time v.s. number of compute nodes.

(16,4). This is explained by the fact that the compute nodes
in DAS-3 are linked by a fast local Myrinet interconnect,
whereas the CPUs within a single node communicate over
a shared memory bus, which is less efficient. Note that the
’burstiness’ of the perceived processing times is explained
by random operating system interference, and by automatic
garbage collection performed by the Java virtual machine.

Based on these observations, the solution set can be re-
duced drastically. For instance, for a system having 85 nodes
and 4 CPUs per node, the reduced solution space isX =
{(2p, 1), p = 0 . . . 6} ∪ {(64, 2), (64, 4)}.

In a general form, to determine the optimal number of com-
pute nodes and CPUs per node, the solution space is reduced to
the combinationsX = {(2p, 1), p = 0 . . . P} ∪ {(2P , 2q), q =
1 . . . Q}, where P := ⌊log2(Lmax)⌋, Q := ⌊log2(nmax)⌋.
For simplicity, we use(2(P+q), 1) instead of(2P , 2q) for our



notation, although(2(P+q), 1) does not exist.

0 20 40 60 80 100
200

220

240

260

280

300

320

340

360

380

400
Service processing time by using 64 CPUs measured at 15−May−2007 

Job number

Se
rv

ic
e 

pr
oc

es
si

ng
 ti

m
e 

(m
s)

 

 
64 compute nodes, 1 CPU per node
32 comupte nodes, 2 CPUs per node
16 comupte nodes, 4 CPUs per node

Figure 8. More compute nodes and less CPUs per node is better.

2) Steps to approach the optimal(L, n): From the reduced
solution space, we iteratively increase the total number of
CPUs to find the optimal(L, n). When the number of applied
compute nodes becomes larger, the parallelization overhead
increases, and may even become dominant. Our experimental
results show that there exists a threshold valuem∗ such that
S(2m, 1) decreases fast form < m∗, whereasS(2m, 1)
flattens out, and may even increase, form > m∗. As an
illustration, Figure 9 shows the average service processing
times for the Aibo- and TRECVID-applications for different
values of L = 2m. In both cases, we observe that there
exists somesaturation pointL∗ = 2m∗

such that increasing
the number of parallel nodesL beyond L∗ does not lead
to a significant reduction of the service processing times.
Throughout,L∗ = 2m∗

will be referred to as theengineering
kneeand is regarded as the (near-)optimal point of operation.

3) LDS method:To find the engineering kneeL∗, we have
developed anLogarithmic dichotomy search(LDS) method.
The LDS method follows the idea of a well-known con-
ventional binary search (CBS) algorithm [27] which aims
to find a particular value in a sorted list. Compared to the
CBS strategy, the LDS method makes progressively better
guesses, and proceeds closer to the optimal value. Let the
elements in the solution setX be denoted by(e0, . . . , eK),
with K = P +Q, P andQ are defined in Section V-A1b. The
LDS strategy selects the median element in the setX, denoted
by eMid . Define ǫ as the desired improvement in the service
processing time by increasing the number of compute nodes.
If S(eMid)−S(eMid+1)

S(eMid)
> ǫ, then we repeat this procedure with a

smaller list, and we keep only the elements(eMid+1, . . . , eK). If
S(eMid)−S(eMid+1)

S(eMid)
≤ ǫ then the list in which we search becomes

(e1, . . . , eMid). Pursuing this strategy iteratively, it narrows the
search by a factor of two each time, and finds the minimum
value that satisfies our requirement afterlog2(K) iterations.
The pseudo code for our LDS method for the solution space
X is given in Algorithm 1.

It is worth noting that there is still room for improvement. In
our implementation, we obtain the runtime information using
individual number of compute nodes by sequential measure-
ments. Actually, if there are enough processors, we can do
several measurements simultaneously by parallel technique. It

1 2 4 8 16 32 64
0

200

400

600

800

1000

1200

1400

1600

Average service processing time of object recognition application

Number of compute nodes

A
ve

ra
ge

 s
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

 

 

L*

(a) Aibo application.

4 8 16 32 64 128 256
0

500

1000

1500

2000

2500
Average service processing time of TRECVID application

Number of compute nodes

A
ve

ra
ge

 s
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

L*

(b) TRECVID application

Figure 9. Engineering knee of Aibo and TRECVID applications.

is named as parallel LDS strategy. In this paper, we will not
give further discussion on this possible improvement.

B. On “just-in-time” communication problem

Our real-time multimedia “Aibo” application is run to
generate data that are used in our trace-driven simulation for
validating our approach.

The notations used here are defined as follows.

• Tsi: the processing time of thei-th frame.
• Tci: the communication time of sending thei-th frame

from the client to the server.
• ti: the time point when the client sends thei-th frame to

the server.
• ri: the time point when the client receivesi-th frame from

the server.

1) Preliminary:



Low := 0
High := K
While (Low < High) {

Mid :=
⌊

Low+High
2

⌋

if S (eMid) ≤ S(eMid+1)
1−ǫ

{High = Mid;}
else{Low = Mid +1;}
end if;

}
Optimal number of compute nodes := High.

Algorithm 1: Pseudo code of LDS strategy.

a) Trend line: As shown in Figure 3, if we can predict
the service processing time of the current frame accurately,
then sending the next frame after the predicted time unit
should provide an optimal solution. Therefore we investigated
several conventional prediction methods (i.e., adapted mean-
based methods, adapted median-based methods, exponential
smoothing methods, and Robbins-Monro Stochastic Approx-
imation methods) for predicting the service processing time.
We found that, based on the earlier service processing times,
and by using any of these prediction methods, an accurate
trend line can be generated. Figure 10 gives an illustration
of the predicted service processing time versus the measured
value of running the Aibo application using one compute node,
using a single CPU only.

b) Periodicity of the peaks:Another important obser-
vation from our experimental results is the occurrence of
periodic peaks using large numbers of compute nodes. Because
our multimedia application is partially implemented in Java,
the Java garbage collector[28] has an influence on the
service processing time. In case of large service processing
times, the effect of garbage collection generally is insignificant
and can be ignored. This is the situation as depicted in
Figure 10. In contrast, when the service processing time is
small compared to the garbage collection time, the periodic
peaks are significant. We ran the Aibo application using 64
compute nodes (using one CPU per node) on three different
moments in time. From these data sets, we notice that there
is a deterministic period of the occurrences of certain specific
peaks (see Figure 11).

2) Method: Based on the experimental results, we conclude
that an effective prediction method for our application must
have the following characteristics: (1) it must be able to
generate an accurate trend line of the service processing time,
(2) it should be able to deal with outliers in the observed
processing time as soon as possible, and (3) it must be able to
predict when the next peak occurs. In this section, we discuss
the applied prediction methods and our BLM and PP policies
in detail.

a) Prediction methods:Among existing predictive meth-
ods there is a huge difference in the way previously obtained
data are handled. In some cases one wants to adapt very

0 100 200 300 400 500 600 700
120

140

160

180

200

220

240

260

280

300
Service processing time measured at 17−July−2007

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

(a) 17-July-2007

0 100 200 300 400 500 600 700
120

140

160

180

200

220

240

260

280

300
Service processing time measured at 16−Aug−2007

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

(b) 16-August-2007

0 100 200 300 400 500 600 700
120

140

160

180

200

220

240

260

280

300
Service processing time measured at 14−Sept−2007

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

(c) 14-September-2007

Figure 11. Service processing time taken at different times



0 100 200 300 400 500 600
1200

1300

1400

1500

1600

1700

1800

1900
Service processing by using 1 CPU

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

Measured value
Adapted mean−based method

(a) adapted mean-based method

0 100 200 300 400 500 600
1200

1300

1400

1500

1600

1700

1800

1900
Service processing by using 1 CPU

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

Measured value
Adapted median−based method

(b) adapted median-based method

0 100 200 300 400 500 600
1200

1300

1400

1500

1600

1700

1800

1900
Service processing by using 1 CPU

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

Measured value
Exponential smoothing method

(c) exponential smoothing method

0 100 200 300 400 500 600
1200

1300

1400

1500

1600

1700

1800

1900
Service processing by using 1 CPU

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

Measured value
Robbins−Monro approximation method

(d) Robbins-Monro approximation method

Figure 10. Trend line generated by different prediction methods

quickly to observed changes in the data, while there are also
cases in which this behavior is not desired. The adapted mean-
based method [11] uses arithmetic averages over some portion
of the measurement history to predict the next measurement.
In particular, the extent of the history taken into account
depends on a parameterK, specifying the number of previous
measurements for the arithmetic average. The parameterK is
changed by−1, 0, or +1 over time based on the prediction
error. In our experiments, the initial value ofK is set to 20.

Adapted median-based methods [11] use a portion of the
measurement history defined by the parameterK to calculate
the median which is used for the prediction. The parameter
K is adapted in the same way as in the mean-based method
above. Note that the prediction of this method is not influenced
much by asymmetric outliers (e.g., a peak in the processing
time), since this does not affect the median greatly.

In exponential smoothing [12]–[15] earlier measurements
are not weighted equally as in the case of a mean-based
method, but with exponentially decreasing weights as the
measurements get older. More specifically, denote byw(i)
the weight for thei-th previous measurement. Then,w is the
following function

w(i) = α(1 − α)i,

with α a parameter determining the rate of decay of the
function. In our experiments, we setα = 0.5. As in the
previous methods, the parameterK determines the number
of earlier measurements that we intend to use. In caseK >
{# available previous measurements} and in caseK < ∞
we made sure, by scaling of the weights, that the sum of the
weights used sum up to 1.

The Robbins-Monro approximation method [16] is a
stochastic approximation method. If we denote byT̂ si the



estimation of thei-th processing time, then the estimation is
updated according to the following relation

T̂ si+1 = T̂ si + εi(Tsi − T̂ si),

whereεi is a parameter possibly depending oni. The intuition
behind the update rule is the following. In case the observed
processing time is higher than estimated, the prediction for
the next processing time is increased by a small amount of
the difference, and vice versa. Whenεi = 1 for all i, then
the prediction for the next processing time is equal to the last
observation. We setεi = 0.5 for our experiments.

b) BLM Policy: Our first policy to deal with peaks
is called “one-before-last-measurement” (BLM) policy. This
policy follows the following steps.

• Thei-th job will not be sent until the result of the(i−k)-
th job becomes available to the client. Because we must
take care that the server has enough jobs to process, we
can not use the last measurement data as a predictor (also
indicated by Harchol-Balter and Downey [29]). Therefore
k must be larger or equal to 2. Throughout this paper, we
focus on the case thatE[Tc] ≤ E[Ts]

2 . HereE[Ts] and
E[Tc] represent the expected service processing time and
the communication time respectively. In this case, we set
k = 2. This implies that at most one job is waiting in the
buffer at the server side. As a result, the occurrence of
cumulative waiting times can be prevented. In the case
thatTc > E[Ts]

2 , we only need to enlarge the value ofk.
Hence, fork = 2, we have the following equation,

ti ≥ ri−2. (1)

This equation implies that thei-th video frame is sent
after the result of the(i− 2)-th frame is received by the
client. Figure 12 gives an illustration.

• Obviously, if the result of the(i−1)-th frame is received,
the i-th frame must be sent immediately. Therefore, we
have

ti ≤ ri−1. (2)

• The sending time of thei-th frame is also decided by the
relationship between the expected service processing time
and measured service processing time of the(i − 2)-th
frameTsi−2. If Tsi−2 > E[Ts], then it is optimal to send
the i-th frame atri−2 + E[Ts]− 2 ·E[Tc]. Figure 12(a)
gives an example. In caseTsi−2 ≤ E[Ts], the optimal
sending moment is atti−1 + E[Ts]. See Figure 12(b).
Hence we get the following equation,

ti =

{

ri−2 + E[Ts] − 2 · E[Tc] if Tsi−2 > E[Ts],

ti−1 + E[Ts] otherwise.
(3)

Note that using the receiving time of the(i−2)-th frame
to determine the sending time ofi-th frame indirectly
takes into account the variation of the communication
time between the client and the server. Therefore, the
assumptionTc1 = Tc2 is not necessary any longer.

Combining Equations 1, 2, and 3, the optimal sending
time of i-th frame is given by

ti = min(ri−1,max(ri−2, ti−1 + E[Ts],

ri−2 + E[Ts] − 2E[Tc])).
(4)

client

server

t
i-2

t
i

Ts
i-2

Ts
i-1
=E[Ts]

buffering

t
i-1
=t
i-2
+E[Ts] r

i-1
r
i-2

(a) The optimal sending time in case ofTSi−2 > E[Ts]

client

server

t
i-2

t
i

Ts
i-2

Ts
i-1
=E[Ts]

t
i-1
=t
i-2
+E[Ts] r

i-1r
i-2

waiting

(b) The optimal sending time in case ofTSi−2≤E[Ts]

Figure 12. BLM Policy

c) PP Policy: Our second method, called peak-policy,
tries to predict the next outlier based on historical observations.
We define an outlier (i.e., a peak) as significantly different
from the average processing time if the observation is much
larger than the average (say 1.2 times larger). Based on
the occurrences of peaks in the previous observations, we
try to predict when the next peak will occur. Motivated by
experiments, we observe that there is a deterministic period of
the occurrences of peaks. See Figures 11(a), 11(b), and 11(c)
for the experimental results. DenoteP = {i|Tsi is peak} as
the set of peaks and denote bypj the j-th element ofP . Let
k be an integer number. Ifpj −pj−1 = · · · = pj−(k+1)−pj−k

then we say that there is a deterministic period of length
d = pj − pj−1, and we expect the next peak to occur at
job numberj + d. Note thatk defines the number of previous
peaks that should have occurred equidistantly with lengthd
such that we consider the peaks as periodical events. The
optimal k is not known beforehand. Therefore, we will start
with an arbitrary value and adjust it as time evolves. Suppose
that k = 3, and we observe three peaks each having distance
d, then the method predicts that the next peak occurs after
processing ofd frames. If it turns out that the prediction is
wrong, then we increasek by 1, since probablyk = 3 was
too low. In case the prediction is correct, then we decreasek



0 20 40 60 80 100
700

750

800

850

900

950

1000
Service processing time by using 2 CPUs measured at 15−May−2007 

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

 

 
2 compute nodes, 1 CPUs per node
1 comupte nodes, 2 CPUs per node

(a) 2 CPUs

0 20 40 60 80 100
400

450

500

550

600

650

700

750
Service processing time by using 4 CPUs measured at 15−May−2007 

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

 

 
4 compute nodes, 1 CPU per node
2 comupte nodes, 2 CPUs per node
1 comupte nodes, 4 CPUs per node

(b) 4 CPUs

0 20 40 60 80 100
250

300

350

400

450

500

550
Service processing time by using 8 CPUs measured at 15−May−2007 

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

 

 
8 compute nodes, 1 CPU per node
4 comupte nodes, 2 CPUs per node
2 comupte nodes, 4 CPUs per node

(c) 8 CPUs

0 20 40 60 80 100
200

250

300

350

400

450
Service processing time by using 16 CPUs measured at 15−May−2007 

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

 

 
16 compute nodes, 1 CPU per node
8 comupte nodes, 2 CPUs per node
4 comupte nodes, 4 CPUs per node

(d) 16 CPUs

0 20 40 60 80 100
200

250

300

350

400

450
Service processing time by using 32 CPUs measured at 15−May−2007 

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

 

 
32 compute nodes, 1 CPU per node
16 comupte nodes, 2 CPUs per node
8 comupte nodes, 4 CPUs per node

(e) 32 CPUs

0 20 40 60 80 100
200

220

240

260

280

300

320

340

360

380

400
Service processing time by using 64 CPUs measured at 15−May−2007 

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

 

 
64 compute nodes, 1 CPU per node
32 comupte nodes, 2 CPUs per node
16 comupte nodes, 4 CPUs per node

(f) 64 CPUs

0 20 40 60 80 100
200

250

300

350

400

450

500

550
Service processing time by using 128 CPUs measured at 15−May−2007 

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

 

 
64 compute nodes, 2 CPUs per node
32 comupte nodes, 4 CPUs per node

(g) 128 CPUs



Table II
AVERAGE SERVICE PROCESSING TIME OFTRECVID APPLICATION.

(L, n) (16, 1) (8, 2) (4, 4) (64, 1) (32, 2) (16, 4) (64, 2) (32, 4)
S(L, N) ms 669.28 682.44 736.56 241.62 244.90 263.01 190.70 218.27

by 1, such as to try a smaller number. To prevent meaningless
values fork, we restrictk to be in [3,∞).

By combining the BLM and PP policies with one of the pre-
diction methods to predict service processing times, we obtain
our final model to deal with the just-in-time communication
problem in real-time applications.

VI. N UMERICAL RESULTS

In this section we present the results of our experiments per-
formed on the DAS-3 system. The detailed experiments results
are achieved on the largest cluster at the Vrije Universiteit, that
consists of 85 compute nodes with 4 CPUs per node.

A. On resource-optimization problem

Here, we show the numerical results of the average service
processing times versus a varying total number of compute
nodes. In addition, the simplicity of LDS strategy to determine
the optimal number of compute nodes is validated.

First, denote the possible solution space of the compute
nodes and the number of CPUs per node asO, where
O = {(L, n), L ∈ [1, . . . , 85] and n ∈ [1, . . . , 4]}. To show
that using more compute nodes and less CPUs per node
provides better performance in general, we ran our real-time
“Aibo” application on a varying numbers of CPUs (2, 4, 8, 16,
32, 64, and 128 CPUs). We compared the obtained service
processing times for a fixed total number of CPUs, while
varying the number of CPUs per nodes. The results are shown
in Figure 13. In this figure we notice that for small numbers
of CPUs (say,≤ 16), the service processing time is largely
independent of the ratio between the total number of employed
CPUs and the number of employed CPUs per node. As the
number of CPUs increases, it becomes obvious that wider
distribution of the CPUs, that is, using less CPUs per node
and more compute nodes, provides better performance.

We also compared the service processing time for our off-
line “TRECVID” application, on a varying total number of
CPUs (16, 64 and 128 CPUs). The results are tabulated in
Tabel II. For this application we have a similar conclusion:
more compute nodes and less CPUs per node provides the
best performance results.

In Paragraph V-A1a, we mentioned that the optimal number
of compute nodes is consistently found to be a power of
2. Combining this result and the observations above, we
reduced the original spaceO with 85 × 4 = 340 possible
solutions to the spaceX with 9 possible solutions, where
X = {(2i, 1), i ∈ [0, . . . , 6]} ∪ (64, 2) ∪ (64, 4). Based on
X, we apply our LDS method to find the minimum value
after ⌊log2 9⌋ = 3 steps. We use Table III to explain the three
steps taken in AIBO application whenǫ = 0.1. We continue
to approach the optimal number of compute nodesL∗ by
doubling the total number of compute nodes, until the relative

improvement is less than 10%. Here the index of the elements
of X is denoted as[0, 1, . . . , 8]. Then the LDS method is
applied. In the first step, we haveLow = 0 and High = 8,
and thus

Mid =

⌊

Low + High

2

⌋

= 4.

Therefore, we measure the service processing time using24 =
16 and 25 = 32 compute nodes and 1 CPU per node. The
related average service processing times are shown in the first
row of Table IV. Because the relative improvement using 32
compute nodes compared to 16 compute nodes is 0.27 (> ǫ),
we conclude that 16 compute nodes is not optimal. Therefore,
we continue searching for the optimal. In the second step, the
index value 5 (= 32 compute nodes) is set as the value of Low.
The value of High remains the same. ThereforeMid = 6.
When calculating the relative improvement using 64 compute
nodes and 2 CPUs per node compared to26 compute nodes,
we find that the improvement (-0.15) is less thanǫ. Therefore,
in the third step, the value of High is reset to 6, and Low
remains the same. In this case,Mid = 5. The improvement of
using26 compute nodes compared to25 is more thanǫ. Thus,
Low is reset to 6, such that Low is equal to High, and the
whole procedure is finished. The LDS method returns index 6
as the optimal solution. This means, forǫ = 0.1, the optimal
number of CPUs is26 = 64 compute nodes.

For differentǫ (0.1, 0.2 and 0.3), the(L, n) to be evaluated
and the corresponding average service processing time of both
applications are reported in Table IV and Table V, respectively.
The optimal L∗ that we found for both applications for
different values ofǫ are listed in Table VI. In this table, we
notice that with largerǫ, theL∗ remains the same or decreases.

Table III
THREE STEPS TO APPROACH THE OPTIMAL(L, n).

Step Low High Mid compare relative Action
to improvement

1 0 8 4 5 0.27 keep high half
2 5 8 6 7 -0.15 keep low half
3 5 6 5 6 0.15 finish, return index 6

Table IV
AVERAGE SERVICE PROCESSING TIME OFA IBO APPLICATION.

(L, n) (16, 1) (32, 1) (64, 1) (64, 2)
ǫ = 0.1

S(L, N) ms 152.26 110.64 93.58 108.55

(L, n) (16, 1) (32, 1) (64, 1) (64, 2)
ǫ = 0.2

S(L, N) ms 152.26 110.64 93.58 108.55

(L, n) (4, 1) (8, 1) (16, 1) (32, 1)
ǫ = 0.3

S(L, N) ms 448.57 247.72 152.26 110.64

As shown above, we notice that our method is very simple
to implement. Besides this, it is very effective because of the



Table V
AVERAGE SERVICE PROCESSING TIME OFTRECVID APPLICATION.

(L, n) (16, 1) (32, 1) (64, 1) (64, 2) (64, 4)
ǫ = 0.1

S(L, N) ms 669.28 395.79 241.62 190.70 222.61

(L, n) (16, 1) (32, 1) (64, 1) (64, 2) (64, 4)
ǫ = 0.2

S(L, N) ms 669.28 395.79 241.62 190.70 222.61

(L, n) (16, 1) (32, 1) (64, 1) (64, 2)
ǫ = 0.3

S(L, N) ms 669.28 395.79 241.62 190.70

Table VI
THE VALUE OF ENGINEERING KNEE.

ǫ L∗

0.1 64 (64,1)
0.2 32 (32,1)
0.3 16 (16,1)

(a) Aibo application

ǫ L∗

0.1 128 (64,2)
0.2 128 (64,2)
0.3 64 (64,1)

(b) TRECVID applica-
tion

small number of steps required to find the optimal number of
compute nodes. In addition, by varyingǫ, we are able to obtain
the optimal result related to the desired improvement in the
service processing time by increasing the number of compute
nodes.

B. On “just-in-time” communication problem

In this section we present the results of our experiments
performed on the DAS-3 system. The results are also used as
the input for a trace-driven simulation in order to validateour
final model for determining the exact transmission moments
of video frames. In our experiments, the object recognition
application is ran on 64 compute nodes using 1 CPU per node.

First, we apply the BBM method (Figure 1) to our Aibo ap-
plication. In our experiment, we found that the average service
processing time (E[Ts]) and the average communication time
(E[Tc]) between client and server amount to 143.629msand
11.694 ms, respectively. In this case, the server utilization
is about 85%, and the average waiting time per frame is 0.
Consider that the service utilization using the BBM method is
given byE[Ts]/(E[Ts] + 2 · E[Tc]). This implies that when
Tc is negligible, the BBM method approaches the optimal
strategy. However, in a bottleneck situation whereE[Tc] is
long relative toE[Ts], the BBM method performs badly.

Server utilization can be increased by sending frames with
smaller intervals. However, if a sudden change (a peak) in
service processing time takes place, all incoming frames are
affected. A particularly difficult situation is when a series of
long service times occurs, such that the waiting time of frames
increases rapidly due to the accumulation of perceived gaps.
In our experiments, we used simulation to evaluate the impact
of changing the time interval between sending subsequent
frames. The time interval is reduced in 5 steps according to
Table VII. E[Ts] and E[Tc] in Table VII are adjusted by
one of the prediction methods. Since Figure 10 shows that all
prediction methods are capable of generating accurate trend
lines, in this paper, we only choose one of these (i.e. the

exponential smoothing method) as a representative prediction
method. In Figure 14, it is shown that the average waiting time
increases significantly as the service utilization approaches
100%. Hence, the prediction methods are not sufficient for
our just-in-time communication problem.

Table VII
TIME INTERVAL BETWEEN SENDING TWO SEQUENTIAL FRAMES.

Simulation index Time interval
1 TsBBM

2 2E[Tc] + E[Ts]
3 1.5E[Tc] + E[Ts]
4 E[Tc] + E[Ts]
5 0.5E[Tc] + E[Ts]
6 0.375E[Tc] + E[Ts]
7 0.25E[Tc] + E[Ts]
8 E[Ts]

0.8 0.85 0.9 0.95 1
0

200

400

600

800

1000

1200

1400
Average waiting time using 64 compute nodes

Service utilization

A
ve

ra
ge

 w
ai

tin
g 

tim
e 

(m
s)

Figure 14. Average waiting time using 64 compute nodes

In our final model, in which one of the prediction methods
is combined with the BLM and PP policies, we can achieve
high service utilization while keeping the average waitingtime
low. By using the exponential smoothing method with our
policies, we obtain service utilization of about 98%, and an
average waiting time per frame of around 7ms. If we define
the waiting time percentage (WP) as

WP =
total waiting time

total waiting time + total service processing time
,

then we obtain a WP of around 3.5%. Because of the lower
value of WP, we can compare the performance of our final
model to the BBM method by looking at the service utilization.
Define the gain in service utilizationGain(SU) as follows,

Gain(SU) =
service utilization using final model

service utilization using BBM method
. (5)

Figure 15 shows the gain of our final model related to the
BBM method for different values ofTc

Ts
.

In this figure, we notice that the gain in utilization is almost
linear in Tc

Ts
. This can be explained by the fact that the

service utilization in the final model is very close to1 and



0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
Gain in service utilization

E[TC]/E[TS]

G
ai

n 
in

 s
er

vi
ce

 u
til

iz
at

io
n

Figure 15. Gain in the service utilization

the service utilization belonging to the simple strategy can be
approximated byE[Ts]/(E[Ts]+2 ·E[Tc]). Hence, based on
Equation 5, we have

Gain(SU)≈
1

Ts/(Ts + 2 · Tc)
= 1 + 2

Tc

Ts
.

Therefore, the gain in the service utilization is nearly increas-
ing linearly with Tc/Ts.

0 0.2 0.4 0.6 0.8 1
1

50

100

150

200

250

Gain in the average waiting time

E[TC]/E[TS]

G
ai

n 
in

 th
e 

av
er

ag
e 

w
ai

tin
g 

tim
e

Figure 16. Gain in the average waiting time

The last comparison is done to evaluate the benefit brought
by our policies. For the prediction method of exponential
smoothing, we compare the performance of our final model
to the prediction method by looking at the average waiting
time. Define the gain in the average waiting timeGain(w) as
follows,

Gain(w)=
average waiting time using the prediction method

average waiting time using final model
.

The results of this comparison are shown in Figure 16. The
reason why the final model can gain so much, can be explained
by the following example. Assume that during processing,
only one peak takes place and that, after that peak, there

are still 100 frames to be processed. In this situation the
use of prediction methods causes all following 100 frames
to be delayed by the peak. But using our final model, there
is only 1 following frame affected by the peak. Thereafter,
the sending times of the next 99 frames are corrected. Thus
no error accumulation occurs. Therefore, we conclude that our
final model, incorporating BLM and PP, are indispensable and
effective for just-in-time communication.

VII. C ONCLUSIONS

In this paper we explored firstly the relation between the
service processing time of distributed multimedia applications
and the number of compute nodes for a varying number of
CPUs. We observed that there exists a threshold valueL∗

(referred to as theengineering knee) such that the service
processing time decreases fast as a function ofL for L < L∗,
whereas the service processing time flattens out, and may even
increase, forL > L∗. To find L∗, first we reduce the possible
solution set. Then we apply our LDS method to findL∗.
Extensive validation has shown that our method is fast and
effective.

Specifically, we have found that our method can find optimal
resource utilization for an average sized cluster system inno
more than three evaluation steps. As a result, we conclude that
our method adheres to all requirements as stated in the intro-
duction: it is simple, easily implementable, and effective. In
addition, our method takes into account system variation. Even
though our focus was on the MMCA domain, our approach is
general enough to be applicable in other domains as well.

For “just-in-time” communication problem, we have ex-
plored that we have to trade off between high service utiliza-
tion and short service response time. Using a BBM method,
the waiting time is zero. However, service utilization decreases
when the communication time between client and server
increases. By applying existing prediction methods to this
problem, service utilization can be increased. However, at
the same time, the average waiting time of video frames
increases even faster. This can be explained by the fact that
existing prediction methods do not pay attention to peaks
in the service processing time. For this reason, we have
developed two innovative policies, BLM and PP. Using the first
policy, cumulative waiting times are avoided by postponing
transmission of a new job when a peak is detected. The
second policy is used to predict possible peaks. If we can
predict the moment when a peak occurs, then we can send
new jobs at the right time. Combining these two policies
with any of the existing prediction methods described in this
paper, we achieve our final model to solve the just-in-time
communication problem.

Our final model is validated in our experiments. Moreover,
we have extensively investigated the gain of our final model
related to the BBM method, as well as the prediction methods
without incorporating our newly developed policies. From
our experimental results we conclude that our final model
significantly outperforms the other methods. Specifically,we
have observed that, in comparison to other methods, our final



model improves server utilization from 85% to 98%, and
reduces the average waiting time per frame by factor 250.

REFERENCES

[1] R. Yang, R. van der Mei, D. Roubos, F. Seinstra, and G. Koole, “On
the Optimization of Resource Utilization in Distributed Multimedia
Applications,” inProceedings of the 8th IEEE International Symposium
on Cluster Computing and the Grid, 2008, pp. 358–365.

[2] R. Yang, R. van der Mei, D. Roubos, F. Seinstra, G. Koole, and
H. Bal, “Performance model for ”Just-in-Time” Problem in Real-Time
Multimedia Applications,” pp. 518–525, 2008.

[3] C. G. Snoek, M. Worring, J.-M. Geusebroek, D. C. Koelma, F.J.
Seinstra, and A. W. Smeulders, “The semantic pathfinder: Usingan
authoring metaphor for generic multimedia indexing,”IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1678–
1689, 2006.

[4] online, “http://privacy.cs.cmu.edu/dataprivacy/projects/explosion/index.html,”
2009.

[5] R. Saavedra-Barrera, A. Smith, and E. Miya, “Machine characteriza-
tion based on an abstract high-level language machine,”IEEE Trans.
Computers, vol. 38, no. 12, pp. 1659–1679, 1989.

[6] C. Grelck, “Array Padding in the Functional Language SAC,” in Proc.
International Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA), vol. 5, pp. 2553–2560, 2000.

[7] K. Schutte and G. van Kempen, “Optimal cache usage for separable
image processing algorithms on general purpose workstations,” IEEE
Trans. Signal Process, vol. 59, no. 1, pp. 113–122, 1997.

[8] R. Jain, The Art of Computer Systems Performance Analysis. John
Wiley & Sons, 1991.

[9] B. Maggs, L. Matheson, and R. Tarjan, “Models of parallelcomputation:
a survey and synthesis,”in Proc. International Conference on System
Sciences, vol. 2, pp. 61–70, 1995.

[10] F. Seinstra, D. Koelma, and J. Geusebroek, “A software architecture for
user transparent parallel image processing,”Parallel Computing, vol. 28,
no. 7-8, pp. 967–993, 2002.

[11] R. Wolski, “Forecasting network performance to supportdynamic
scheduling usingthe network weather service,”in Proc. International
Conference on High Performance Computing (HiPC), pp. 316–325,
1997.

[12] R. Brown, Statistical forecasting for inventory control. McGraw-Hill
New York, 1959.

[13] ——, Smoothing, Forecasting and Prediction of Discrete Time Series.
Prentice-Hall, 1963.

[14] C. Holt, “Forecasting Trends and Seasonals by Exponentially Weighted
Moving Averages,”ONR Memorandum, vol. 52, 1957.

[15] P. Winters, “Forecasting Sales by Exponentially Weighted Moving
Averages,”Management Science, vol. 6, no. 3, pp. 324–342, 1960.

[16] H. Kushner and G. Yin,Stochastic Approximation and Recursive Algo-
rithms and Applications. Springer-Verlag, 2003.

[17] online, “http://www.cs.vu.nl/das3/,” 2007.
[18] ——, “http://www.asci.tudelft.nl,” 2007.
[19] M. Dobber, G. Koole, and R. van der Mei, “Dynamic Load Balancing

for a Grid Application,” in Proc. International Conference on High
Performance Computing (HiPC), vol. 1, pp. 342–352, 2004.

[20] online, “http://www.starplane.org/,” 2007.
[21] M. Feldman, “Grid Envy,”ClusterVision News, pp. 6–7, 2006.
[22] F. Seinstra, J. Geusebroek, D. Koelma, C. Snoek, M. Worring, and

A. Smeulders, “High-Performance Distributed Image and Video Content
Analysis with Parallel-Horus,”IEEE Multimedia, vol. 14, no. 4, pp. —,
2007.

[23] J. Geusebroek, G. Burghouts, and A. Smeulders, “The Amsterdam
library of object images,”International Journal of Computer Vision,
vol. 61, no. 1, pp. 103–112, 2005.

[24] A. Hauptmann, R. Baron, M. Chen, M. Christel, P. Duygulu,C. Huang,
R. Jin, W. Lin, T. Ng, N. Moravejiet al., “Informedia at TRECVID 2003:
Analyzing and searching broadcast news video,” inProc. of TRECVID,
2003.

[25] C. Snoek, J. van Gemert, J. Geusebroek, B. Huurnink, D. Koelma,
G. Nguyen, O. De Rooij, F. Seinstra, A. Smeulders, C. Veenmanet al.,
“The MediaMill TRECVID 2005 semantic video search engine,” in
Proceedings of the 3rd TRECVID Workshop, 2005.

[26] F. Seinstra, C. Snoek, D. Koelma, J. Geusebroek, and M. Worring, “User
transparent parallel processing of the 2004 NIST TRECVID data set,”
in Proceedings of the International Parallel & Distributed Processing
Symposium (IPDPS 2005).

[27] D. Knuth, The art of computer programming, volume 3: sorting and
searching. Addison Wesley Longman Publishing Co., Inc. Redwood
City, CA, USA, 1998.

[28] online, “http://www.artima.com/underthehood/gc.html,” 2007.
[29] M. Harchol-Balter and A. Downey, “Exploiting process lifetime distri-

butions for dynamic load balancing,”ACM Trans. Computer Systems,
vol. 15, no. 3, pp. 253–285, 1997.


