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Abstract—This paper is motivated by the increasing popularity
of streaming media applications that are offered via the Internet.
Packet streams generated by media application servers are
distorted due to variability in the available bandwidth; at the
receiving end, a play-out buffer compensates for the distortion.
We study the dynamics of this system in a queuing-theoretical
setting, using fluid analysis. To this end, we consider a model in
which a constant bit-rate (CBR) media application is streamed
over an unreliable network. Our model consists of a tandem of
two fluid queues. The first queue is a Markov Modulated fluid
queue that models the network congestion, and the second queue
represents the play-out buffer. For this model the distribution of
the total amount of fluid in the congestion and play-out buffers
corresponds to the distribution of the maximum attained level of
the first buffer. We show that the distribution of the total amount
of fluid converges to a Gumbel extreme value distribution. From
this result, we derive a simple closed-form expression for the
initial playout-buffer level that provides a probabilistic guarantee
for undisturbed playback.

I. INTRODUCTION

Over the past few years, the tremendous popularity of
smart mobile end devices and services (like YouTube) has
boosted the demand for streaming media applications offered
via the Internet. One of the key requirements for the success
of providers of such services is the ability to deliver ser-
vices at competitive price-quality ratios. However, the Internet
provides no more than best-effort service quality. Therefore,
the packet streams generated by streaming media applications
are distorted by fluctuations in the available bandwidth on
the Internet, which may be significant over the duration of
a typical streaming application (whose duration may range
from a few minutes to tens of minutes). To cope with these
distortions, play-out buffers temporarily store packets so as to
reproduce the signal with a fixed delay offset (see Figure 1).
For smooth reproduction of the packet stream the playout
buffer should not empty, as the stream will stall whenever
packets do not arrive in time. For that reason, it is beneficial
to start the play-out of a streaming media application only
when the playout buffer content exceeds some safety threshold
value. In this context, our main goal is to determine a proper
choice for the initial playout-buffer level, providing a given
probabilistic guarantee on undisturbed playback. Our objective
in this paper is to contribute to the understanding of the
performance implications of the playout-buffer settings for
streaming applications over unreliable networks such as the In-

ternet, by relating the proper buffer level to network variability
parameters. Congestion is modeled by a fluid queue with fixed
input rate and output rate determined by a stochastic process
that is modeled as a Continuous Time Markov Chain (CTMC).
This CTMC represents the IP network dynamics that causes
congestion and fluctuations in available bandwidth. If this
model is applied to a real network, the CTMC parameters must
be estimated in order to capture the network behavior. Our
approach relies on a queuing-theoretical fluid model analysis.
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Fig. 1. Tandem of fluid buffers representing video streaming at rate Rplay

through an IP-network with variable output rate O(t).

Fluid queues have proven to be a powerful modeling
paradigm in a wide range of applications and have therefore
received much attention in literature. On the one hand fluid
models often capture the key characteristics that determine
the performance of communication networks with complex
packet-level dynamics, while on the other hand they remain
mathematically tractable (hiding largely irrelevant details).
Many analytic results have been obtained, and we refer to
Scheinhardt [1] and Kulkarni [2] for excellent overviews of
results on fluid queues that are directly relevant to our analysis.
Asmussen and Bladt [3] propose a sample-path approach to
study mean busy periods in Markov Modulated fluid queues,
and derive a simple way of calculating mean busy periods
in terms of steady-state quantities. In [4], Asmussen shows
that the probability of buffer overflow within a busy cycle
is approximately exponential, gives an explicit expression
for the Laplace Transform of the busy period, and more-
over, derives several inequalities and approximations for the
transient behavior. Boxma and Dumas [5] study the busy



period of a fluid queue fed by N ON/OFF sources with
exponential OFF periods and heavy tailed activity durations
(more specifically, with regularly varying activity duration
distributions). Scheinhardt and Zwart [6] study a two-node
tandem with gradual input, and computer the steady-state
joint buffer-content distribution using martingale methods.
Kulkarni and Tzenova [7] study fluid queuing systems with
different fluid-arrival rates governed by a CTMC and constant
service rate. For this model, they derive a system of first-order
non-homogeneous linear differential equations for the mean
passage time. Sericola and Remiche [8] propose a method
to analyze the maximum level and the hitting probabilities
in a Markov driven fluid queue for various initial condition
scenarios, allowing for both finite and infinite buffers. Their
analysis leads to matrix differential Ricatti equations for which
there is a unique solution.

Our approach leads to a dimensioning rule for the play-out
buffer, based on an extreme value distribution approximation.
The analysis was strongly motivated by the classical papers of
Berman [9] and Iglehart [10]. Berman [9] studies the limiting
distribution of the maximum in sequences of random variables
satisfying certain dependence conditions. Iglehart [10] derived
asymptotic distributions for the extreme value of the buffer
content and the number of customers in the GI/G/1 queue. We
refer to Asmussen [11] for an excellent survey on extreme-
value theory for queues. Our paper provides an alternative
approach for the analysis in Asmussen [4] specified to our
model. Through our approach, we obtain more explicit results
for the targeted dimensioning rules.

The precise object of study in this paper is a fluid model for
constant bit-rate streaming media applications in the presence
of bandwidth that varies over time. More specifically, we
consider a tandem model consisting of two fluid queues. The
first queue is a Markov Modulated fluid queue that models the
congestion in the network caused by bandwidth fluctuations.
The second buffer represents the play-out buffer. For this
model, we first show that the distribution of the total amount
of fluid in the congestion and play-out buffer corresponds to
the distribution of the maximum level of the first buffer. We
then prove that the distribution of the total amount of fluid
converges to a Gumbel extreme value distribution. Based on
this result, we derive an explicit expression for the initial
level of the playout-buffer at which the playout can best be
started to guarantee undisturbed playback with sufficiently
high probability.

Our analysis proceeds as follows: We use results from [8]
for the analysis of the maximum in a busy period. Furthermore,
we show that the busy period maximum has an exponential
tail and the maximum grows logarithmically. We apply a result
on mean busy periods from [7] to obtain the mean expected
cycle time. Next we apply an approach similar to [10] in
order to show that the maximum buffer level converges to a
Gumbel extreme value distribution. From this result the correct
initial playout buffer level can be estimated. As mentioned
previously, our paper shows strong similarities with [4]. Like
us, Asmussen shows that the maximum fluid level grows

logarithmically over time and under proper scaling converges
to random variable with a Gumbel extreme value distribution.
In this paper we independently establish this result in a more
intuitive manner. Furthermore we provide an explicit recipe to
calculate the asymptotic behavior of the maximum level in the
Markov Modulated fluid queue. This can directly be applied
to dimension the initial playout buffer size.

The organization of this paper is as follows. In Section II we
describe the fluid more in detail, introduce the proper notation
and formulate the problem. In Section III we discuss the details
of a fluid-queue analysis, and in Section IV we translate the
results in Section III to derive a simple rule for the proper
value of the initial buffer content at which the playout should
be started. In Section V, we provide a numerical validation
of the model by means of simulations. Section VI contains a
discussion of the results and looks out to future work.

II. MODEL AND PROBLEM STATEMENT

In our model we mimic a video stream that has fixed data
rate Rplay. Video is streamed through an IP network with
fluctuating speed. From the IP network packets arrive to the
play-out buffer with a rate that can take values from a finite
set {si, i = 1, 2, . . . , n}. The actual output rate of the network
is determined by a stochastic process ϕ(t) that is modeled by
an n-state CTMC. The CTMC has generator matrix T and
state-space S = {1, . . . , n}. States are arranged in increasing
order such that s1 > · · · > sn. State-space S can be separated
into two subsets:

S− = {i : si > Rplay, i = 1, . . . , n−},
S+ = {i : si < Rplay, i = n− + 1, . . . , n− + n+}.

States in S− imply a decreasing number of packets in flight,
while for states in S+ this number increases. We write n− :=
|S−| and n+ := |S+|. We assume that ϕ(t) can modeled such
that there exists a stationary distribution π = (π1, . . . , πn).
Furthermore we partition the generator matrix T of ϕ(t) as an
(n− + n+)× (n− + n+) matrix according to:

T =

(
T−− T−+
T+− T++

)
.

The combination of network congestion and play-out buffering
is represented by a tandem of two fluid queues (see Figure 2).
The first fluid buffer models the network congestion (packets
on flight), and has corresponding fluid level X(t). The second
fluid buffer models the play-out buffering process at the client
with corresponding fluid level Y (t). Process V (t) represents
the video output rate of the play-out buffer. For the first fluid
buffer we define rates of change by ri := Rplay − si (i =
1, . . . , n), when ϕ(t) = i. Also for ϕ(t) = i, the rate of
change in the second fluid buffer is exactly −ri whenever
Y (t) > 0. Indeed, if Y (t) > 0, the play-out buffer can sustain
output rate V (t) = Rplay. On the contrary, when Y (t) = 0 and
si < Rplay the play-out buffer stays empty and V (t) = si. In
this case the video stream is disturbed. We define the following



(n−+n+)×(n−+n+) rate-of-change-matrix that is partitioned
like generator matrix T :

R :=

(
R− 0
0 R+

)
.

The entries are defined by:

R− := diag(ri), i ∈ S−,
R+ := diag(ri), i ∈ S+.

So that the model represents a stable system, we assume that
the average throughput Sres satisfies:

Sres =

n∑
i=1

siπi > Rplay,

which is equivalent to requiring a negative drift d < 0 defined
by:

d :=

n∑
i=1

riπi = Rplay − Sres.

Fig. 2. Tandem of fluid buffers representing streaming video through an
IP-network.

Due to congestion the play-out buffer level Y (t) fluctuates.
When the play-out buffer is empty video playback will be
disturbed as only a rate of V (t) < Rplay is supported. We
consider a video stream of length Tplay and assume that the
network has an average throughput Sres > Rplay. Due to
fluctuations in traffic volumes the bit-rate Rplay may not be
guaranteed at all times during Tplay. At periods with high
traffic, congestion builds up resulting in temporary throughput
si < Rplay. Therefore the video needs to be buffered at client
side. When the play-out buffer is empty, video playback will
be disturbed as the play-out rate of Rplay can not be sustained.
The result is that the video is quickly alternating between
buffering and playback. This is commonly experienced as
being very disturbing. We want to guarantee a certain Quality
of Service (QoS) on the video playback. The QoS objective is
to find an initial buffer level binit such that the probability of
disturbed playback during Tplay is smaller than a given value
pempty:

P{ min
0≤s≤t

V (s) < Rplay | Y (0) = binit} < pempty.

Of course the probability that play-out will be disturbed equals
zero pempty = 0 if a stream is fully buffered. However
the larger the play-out pre-buffering, the larger loading time
are. We want the play-out buffer to strike the right balance
between both objectives, so that we aim for the minimal
buffering threshold that guarantees undisturbed play-back with
probability at least 1 − pempty . To do so, we develop a

guideline that maps video parameters Tplay, Rplay, network
characteristics (captured in generator matrix T and si), and
QoS objective pempty to an initial buffer level binit.

III. ANALYSIS

We are interested in a mapping from network, video charac-
teristics and distortion probability pempty to a minimal buffer
level binit:

P{ min
0≤s≤t

V (s) < Rplay | X(0) = 0,

Y (0) = binit} < pempty. (1)

To this end we analyze the interaction between the network
congestion buffer level X(t) and the play-out buffer level
Y (t). In our analysis four different scenarios can be identified.
These are depicted in Figure 3. Each scenario is represented
by a time interval ti:

1) During interval t1 the network achieves a transfer rate
lower than the video bit-rate ri < 0 (si < Rplay), while
the play-out buffer level is positive Y (t) > 0. In this case
the level of X increases while the level of Y decreases.

2) Within interval t2 the network transfer rate is lower
than video bit-rate ri < 0, while the play-out buffer
level is zero Y (t) = 0. Now the video playback will
be disturbed and the play-out buffer remains empty
Y (t) = 0 while the back-log in the network X(t)
continues to grow.

3) Next, in interval t3 we have a network transfer rate
higher than the video bit-rate ri > 0 (si > Rplay),
while X(t) > 0. The level X(t) decreases while Y (t)
increases.

4) Finally, during interval t4 there is a network transfer
rate higher than the video bit-rate ri > 0, without any
back-log in the network, X(t) = 0. Although a higher
transfer rate ri > 0 is supported, an effective network
rate of Rplay will be achieved as the fluid entering X
directly flows to the play-out buffer Y .

Fig. 3. Different behaviors of the stochastic processes.

Observe that in Figure 3 for intervals t1, t3 and t4 X(t)+Y (t)
will remain constant. Therefore, in these cases an imagi-
nary symmetry axis can be drawn between X(t) and Y (t).
Moreover, within these intervals V (t) = Rplay and the
CTMC determines how the constant level X(t) + Y (t) is
distributed over the first and second fluid buffer. In scenario



2 (corresponding to t2 in Figure 3) the second buffer will
remain empty (Y (t) = 0) while the first buffer continues
to grow. In that case X(t) attains a new maximum, and
obviously X(t) = X(t) + Y (t) since Y (t) = 0. Because
X(t)+Y (t) grows whenever X(t) attains a new maximum, we
can conclude that the total fluid buffer contents X(t)+Y (t) is
a not stationary process. However the growth of the maximum
becomes an increasingly rare event each time a new maximum
level is reached.

Definition We define the maximum level process as

M∗(t) := sup
0≤s≤t

X(s). (2)

Lemma 3.1: Let
(
X(t), Y (t)

)
be the stochastic process

describing fluid levels in the tandem system. Then

X(t) + Y (t) = sup
0≤s≤t

X(s) = M∗(t). (3)

Proof: Unless Y (t) = 0 and ϕ(t) ∈ S+ the total amount
of fluid in X(t) +Y (t) remains constant. Only de partition of
fluid between X(t) and Y (t) changes as the rates of change for
the two buffers have the same magnitude but opposite signs.
Whenever Y (t) = 0 and ϕ(t) ∈ S+ the amount of fluid in
X(t) will grow while the the second buffer remains Y (t) = 0.
In fact this is the moment where a new maximum level M∗(t)
for X(t) will be reached. Therefore we can conclude that the
total amount X(t)+Y (t) must be equal to the maximum level
M∗(t).

Using Lemma 3.1 we can rewrite equation (1) to:

P{M∗(Tplay) > binit} < pempty. (4)

Lemma 3.1 focuses our problem on identifying the maximum
level of packets on flight. Therefore we may neglect Y (t)
and consider the process X(t) only. This process is driven by
a CTMC and the process has negative drift. This results in
a behavior where semi regenerative busy cycles are formed
consisting of a busy period where X(t) > 0 that is followed
by an idle period with X(t) = 0. In the special case n− =
n+ = 1 when a busy period is initiated, the CTMC must be in
the single state in S+, and when the busy period is terminated,
the CTMC must be in the single state in S−. Therefore, in that
special case the busy cycles constitute a regenerative process.
This property is not restricted to this special case only, and we
will assume it to hold when applying extreme value analysis
in the next subsection. The analysis can be extended without
this assumption, but is not contained in this paper.

A. Maximum of busy period in a Markov Modulated fluid
queue

In Sericola and Remiche [8] the distribution of the maxi-
mum level reached in a busy period is derived using matrix
exponential analysis. The resulting equations are rewritten
such that they can be transformed into matrix differential
Riccati equations. Recall that we have state space S, generator
matrix T with corresponding rate matrix R. To determine the

distribution of the maximum level in a busy period, fluid rates
are uniformized resulting in a modified (n−+n+)×(n−+n+)
matrix:

Q = R−1T =

(
Q−− Q−+
Q+− Q++

)
where the entries are defined by:

Q−− = R−1− T−−,

Q−+ = R−1− T−+,

Q+− = R−1+ T+−,

Q++ = R−1+ T++.

We use M+ to denote the maximum level of the process X(t)
in the first busy period after time t = 0 and will determine its
distribution through

Ψi,j(x) := P
{
ϕ
(
τ0
)

= j,M+ ≤ x | ϕ(0) = i,

X(0) = 0
}
, (5)

τ0 := inf{t > 0 : X(t) = 0},

This is the joint distribution for the maximum M+ and the final
state of the environment ϕ(τ0) at the end of a busy period,
given that the process starts empty at time t = 0 and ϕ(0) =
i. This joint distribution is determined by solving a matrix
differential Riccati equation. For the solution, the modified
matrix Q is transformed into matrix exponential form:

eQx = exp

[(
Q−− Q−+
Q+− Q++

)]
=

(
A(x) B(x)
C(x) D(x)

)
. (6)

The expression for Ψ(x) is given by:

Ψ(x) = C(x)A(x)−1. (7)

In general, the maxima in consecutive busy periods are not
independent, because the starting states of the environment
may induce correlation. For the two-state model with n− =
n+ = 1, busy cycles constitute regenerative sequences, imply-
ing that maxima in consecutive busy periods are independent.
The non-regenerative nature of the general case implies several
technical complications that, while we can handle them largely
analogously using semi-regenerative processes, the technical
details are not part of the scope of this paper. Instead, we
specialize only for the two-state model and refer to future
work for details on extensions to the semi-regenerative case.

For a system with a two-state environment process with
transmission rates s1 > Rplay and s2 < Rplay, generator
matrix:

T =

[
−α1 α1

α2 −α2

]
,

rate matrix:

R =

[
r1 0
0 r2

]
,

and generator matrix with uniformized fluid rates:

Q =

[−α1

r1
α1

r1
α2

r2
−α2

r2

]
.



For a system with two rates r1, r2 the solution is given by:

Ψ(x) = 1− r2α1 + r1α2

r2α1 + r1α2e
x(
α1
r1

+
α2
r2

)
.

The maximum of a busy cycle is given by:

P{M+ ≤ x} = Ψ(x), (8)

where M+ represents the stochastic variable corresponding
to the maximum in a busy cycle. The distribution of the
maximum of a busy period for the two-state model has an
exponential decaying tail, and when x→∞:

1−Ψ(x) =
r2α1 + r1α2

r2α1 + r1α2e
x(
α1
r1

+
α2
r2

)
(9)

∼
(r1α2 + r2α1

r1α2

)
e−x(

α1
r1

+
α2
r2

).

Similar to Iglehart [10, Lemma 1] we obtain an expression for

P{M+ > x} ∼ be−κx, x→∞. (10)

In our case b =
(r1α2 + r2α1

r1α2

)
and κ = (α1

r1
+ α2

r2
).

Let M+(k) be the maximum of the kth busy cycle. Using
similar arguments as in Iglehart [10, Lemma 2] we obtain

lim
n→∞

P{κ max
1≤k≤n

M+(k)− log(bn) ≤ x} = Λ(x), (11)

where

Λ(x) = exp[−e−x]. (12)

Here, we use the following extreme value theorem argument:

P{ max
1≤k≤n

M+(k) ≤ x+ log(bn)

κ
}

= Pn{M+(1) ≤ x+ log(bn)

κ
}

=
[
1− b exp[−(x+ log(x+ bn))]

+ o(exp[−(x+ log(n))])
]n
.

B. Maximum over time

Rather than the asymptotics for the busy cycles, we are
interested in the evolution of the maximum over time. For
this we use a result in Kulkarni and Tzenova [7]. In this paper
an expression is derived for the joint mean first passage time
in a Markov Modulated fluid queue:

E[τS− | X(0) = x, ϕ(0) = i], i ∈ S, (13)
τS− := inf{t > 0 : X(t) = 0, ϕ(t) ∈ S−}.

The joint mean first passage time will be represented by the
function fi(x):

fi(x) := E[τS− | X(0) = x, ϕ(0) = i], i ∈ S. (14)

An expression for the joint mean first passage time can be
obtained by solving the system of differential equations

R
df(x)

dx
+ Tf(x) + e = 0, (15)

with boundary condition

fi(x) = 0, ∀i ∈ S−, (16)

where R = diag(r1, . . . , rn) is the diagonal matrix of rates of
change, T is the generating matrix and where e is a column
vector of ones. Here eigenvalues λj are the solution to

det[R− λT ] = 0, (17)

and the corresponding right eigenvectors φj satisfy:

λiRφj = Tφj . (18)

According to Kulkarni [2, Theorem 11.5] the eigenvalues can
be ordered as follows:

Re(λ1) ≤ Re(λ2) ≤ . . . ≤ Re(λn+
) < 0

< Re(λn++2) ≤ Re(λn++n−). (19)

There are n solutions to Equation (17) of which there are
n− − 1 eigenvalues with positive real part, one eigenvalue
has real part equal to 0 and there are n+ eigenvalues with
negative real part. In Kulkarni and Tzenova [7, Theorem 4.2]
the solution for (15) is given by:

f(x) =

n++n−∑
j=n++1

ajφje
−λjx − ex

d
+ g. (20)

In this expression g is a solution to

Tg = −(cR+ I)e. (21)

Note that rank(T ) = n− 1 therefore we fix one free variable
gn = 0 in order to get a unique solution to (21). The
coefficients aj are obtained as a solution to:

n++n−∑
j=n++1

ajφij + gi = 0, ∀i ∈ S−, ri < 0, (22)

where φij is the ith entry of eigenvector φj . We are interested
in the solution for the two-state model where n− = n+ = 1.
Plugging in T and R into the results of Kulkarni [2, Example
1] gives:

d =
α2r1 + α1r2
α1 + α2

,

λ1 = 0, λ2 =
α2r1 + α1r2

r1r2
,

φ1 =
[
1, 1
]t
, φ2 =

[
−α1r2
α2r1

, 1
]t
,

g1 =
r2 − r1

α1r2 + α2r1
, g2 = 0,

which gives[
f1(x)
f2(x)

]
=

[
0

−r2 − r1
δ

]
+

−α1 + α2

δ

−α1 + α2

δ

x, (23)

with
δ :=r2α1 + r1α2.



In the two-state model the only way that a busy period can be
initiated is whenever X(t) = 0 and the state with r2 > 0 is
reached. The expected length of this busy period is equal to
the first mean passage time:

f2(0) = E[τB | X(0) = 0, ϕ(0) = 2]

= − r2 − r1
r2α1 + r1α2

, (24)

τB : = inf{t > 0 : X(t) = 0, ϕ(t) = 1}.

There is only one state that can end a busy period and that is
ϕ(t) = 1 when X(t) = 0. This initiates an idle period that
continues until the state ϕ(t) = 2 with rate r2 is reached. The
duration until the initiation of a consecutive busy period is
exponentially distributed with mean 1/α1. By combining the
expected busy cycle with the expected idle period we obtain
an expression for the total expected busy cycle:

E[C] =E[τB | X(0) = 0, ϕ(0) = 2]

+E[τI | X(0) = 0, ϕ(0) = 1] (25)

=− r2 − r1
r2α1 + r1α2

+
1

α1

=
( r1
α1

)
· α1 + α2

r2α1 + r1α2
,

with:
τB := inf{t > 0 : X(t) = 0, ϕ(t) = 1},
τI := inf{t > 0 : ϕ(t) = 2}.

In Equation (11) we stated that the asymptotic distribution
of the maximum of a sequence of busy cycles converges to
an extreme value distribution. We now derive the asymptotic
distribution over time. Define {c(t) : t ≥ 0} as the counting
process of busy cycles. Then M∗(t) satisfies:

max
0≤k≤c(t)

{M+(k) ≤ x} ≤M∗(t)

≤ max
0≤k≤c(t)+1

{M+(k) ≤ x}. (26)

According to the weak law of large numbers we have:

c(t)

t
→ 1

E[C]
, t→∞. (27)

Using Berman [9, Theorem 3.2] and equation (11) the limiting
distribution becomes:

lim
t→∞

P{κM∗(t)− log(bt) ≤ x} = Λ
1

E[C] (x). (28)

In equation (28) the term 1
E[C] from (27) represents the

expected number of busy cycles per time unit (this corresponds
to the c in Berman [9, Theorem 3.2]). The expression for the
asymptotic distribution for the maximum of the two-state fluid
queue

P{M∗(t) > binit} < pempty (29)

can now be expressed as:

P{κM∗(t)− log(bt) > x} ≈ 1− Λ
1

E[C] (x), (30)

P{M∗(t) > binit} ≈ 1− Λ
1

E[C] (κbinit − log(bt)), (31)

whenever we have a sufficiently large binit such that at least
binit >

log(bt)
κ .

Using the fact that when t → ∞ the distribution of the
maximum M∗(t) converges to a Gumbel distribution, we can
also establish the following asymptotic expectation of the
maximum level:

E[M∗(t)]→
log
(
bt

E[C]

)
+ γ

κ
, t→∞, (32)

where γ ≈ 0.577215665 is the Euler-Mascheroni constant.
The behavior with respect to the real process is illustrated in
Figure 6. Observe that E[M∗(t)] grows logarithmically over
time with logarithmic slope 1

κ .

IV. DIMENSIONING THE INITIAL BUFFER SIZE

In section III we showed that the probability of an empty
playout buffer corresponds to the maximum level reached by
the first fluid buffer representing the number of packets in
flight. Given the parameters that capture the network behavior
(s and T ) for a video stream with bit-rate Rplay and duration
Tplay the initial buffer level binit can be determined. Given
the video playback QoS parameter pempty , that represents the
maximum probability a video is disturbed during Tplay, the
initial buffer size binit should be chosen such that:

binit >
− log[− E[C]

bTplay
log(1− pempty)]

κ
. (33)

This holds when we have Tplay sufficiently large such that

− log[− E[C]
bTplay

log(1− pempty)]

κ
> 0.

This is a reasonable assumption, since we are considering
video streams that have typically long durations (minutes and
longer) compared to the time scale of fluctuations in the
network transmission speed (typically in the order of seconds).

V. NUMERICAL EVALUATION

In the previous sections we derived a mapping from the QoS
parameter pempty and streaming video duration Tplay to min-
imal initial buffer level binit. We will now run simulations in
order to evaluate the accuracy of our mapping. Our parameter
setting is as follows:

T =

[
−α1 α1

α2 −α2

]
,

α1 = 0.1, α2 = 0.2,

s1 = 8Mbps, s2 = 2Mbps,

Rplay = 4Mbps,

r1 = −4, r2 = 2

R = diag(
[
r1 r2

]
).

The simulation consists of 10.000.000 sample paths. Figure 4
represents the relative difference between target tail probability
pempty and the actual fraction of sample paths that exceed the
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Fig. 4. Relative difference of buffer under-run probability to simulation.
The gray bands around the lines are the 95% confidence intervals of the
simulation.

buffer level approximation. We define the relative difference
of approximation (app) and simulation (sim) by:

diffrelative(app, sim) =

∣∣∣∣app− simsim

∣∣∣∣ . (34)

From Figure 4 it can be observed that the error of the tail prob-
ability P{M(Tplay) > binit} quickly approaches the region
below 5%. Figure 5 represents the actual fraction of sample
paths that exceeds the theoretical asymptotic percentiles. The
theoretical percentiles are based on equation (33). The straight
thin dashed lines represent the desired tail probability.

The tail probabilities in Figure 5 indicate that the buffer
level, derived from asymptotics, gives a conservative estimate,
i.e., an overestimation of the tail probability. So using the
asymptotics, depending on the duration of the video stream,
the estimated buffer level is slightly higher than strictly
needed.

In Section III-B we derived the asymptotic mean in Equation
(32). We compare the asymptotic mean to the simulation
results in Figure 6. This figure has a logarithmic time scale
because we expect the mean maximum level to asymptotically
converge to logarithmic growth with respect to time. From
Figure 6 we observe that this is indeed the case.

In Figure 7 percentiles from simulation are compared to
the theoretical asymptotic percentiles. Black lines represent
simulation percentiles while gray lines represent the theoretical
percentiles as expressed in Equation (33). On a linear time
scale, simulation and asymptotic percentiles coincide quite
closely.

Figure 8 presents the percentiles on logarithmic time scale.
On small time scale we observe a ”notch” in the simulation
percentiles. This is caused by the fact that the figure is
presented in logarithmic time scale. From the buffer process
we can derive a coarse upper bound. A percentile at time t
can not exceed tmax(R− si) as max(R− si) is the maximal
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Fig. 5. Tail probabilities using empirical distribution based on simulation,
evaluated on theoretical asymptotic percentiles.
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Fig. 6. Simulated and theoretical (asymptotic, see Equation (32) ) expectation
of the maximum level M∗(t) on logarithmic time-scale.

possible growth rate of X(t)+Y (t). The ”notch” corresponds
to the upper bound (which is curved due to logarithmic time
scale).

VI. DISCUSSION

We studied a model for a constant bit-rate video stream
over an IP network with a play-out buffer at the client side.
The network is modeled as a Markov Modulated fluid queue
in which a CTMC determines the actual transmission rate
through the network. For the play-out buffer an initial buffer
level binit was determined such that the probability that the
video will stall during play-out will not exceed an agreed
service level probability pempty . We have shown that the prob-
ability of this event corresponds to the event of the maximum
congestion level M(t) exceeding the initial buffer level binit.
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Fig. 7. Black lines represent simulation percentiles, gray lines represent
theoretical asymptotic percentiles.
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Fig. 8. Percentiles on logarithmic time scale. Black lines represent percentiles
from simulation, gray lines represent theoretical asymptotic percentiles.

As a by-product, we found that the asymptotic distribution of
the maximum level M(t), t → ∞ has a Gumbel distribution,
which is in agreement with earlier results in [4]. For smaller
t the expression of the asymptotic distribution can be used to
approximate the tail probability P{M(T ) > binit}. From this
expression we derived a formula that maps pempty , Tplay and
the network and video parameters to a minimal buffer level
binit. Simulation results indicate that the buffer level that is ob-
tained from the asymptotic analysis is a conservative estimate,
i.e., it overestimates the true minimal required buffer level.
The longer the video stream the more accurate the asymptotic
prediction is. In adaptive media streaming, streaming servers
tend to adapt Rplay to the fluctauting available bandwidth. Our
analysis facilitates proper parameter selection with respect to

the altered network parameters.
In continuation of this work we have extended our analysis

to networks with more than two throughput ”modes” and
general modulating Markov chains. Our results indicate that
the convergence to the extreme value distribution depends
on the rate of transitions in the modulating CTMC. In the
examples we observe that for small time-scales the model is
less accurate. An improvement could be achieved by adding
an approximation for the behavior on shorter time-scales. We
know that when t ≈ 0 the distribution quantiles grow linearly
with respect to transmission rate and initial distribution. We
expect a mix of the small time-scale linear behavior model
and the long time-scale extreme value model to be accurate
across all time scales.
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