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Abstract

Queueing networks are studied with two stations: either in tandem or in parallel, and
with a common service resource shared among the two stations. First, a necessary
and sufficient criterion, called adjoint reversibility, is provided to decide whether the
system possesses a product form or not. This criterion unifies both the parallel (a
reversible) and the tandem (a non-reversible) system in one product-form theorem.
Next, the criterion is applied separately for the parallel and tandem system to obtain
a number of new product-form examples which also includes non-balanced capacity
sharing. Despite of, but also due to, the different parallel and tandem mechanisms
we observe that for certain examples the product form has the same structure, while
for others there are essential differences. In addition, it is also proven that several
models can not have a product-form result. The results provide new insights and a
step forward in understanding the behavior of multi-layered queueing networks in
which resources are shared among stations.

Key words: Layered queueing networks, limited processor sharing, product forms,
adjoint reversibility.

1 Introduction

Over the past few decades queueing theory has been successfully applied to
solve performance problems in a wide variety of application areas. A common
assumption in most classical queueing models is that the servers are indepen-
dent, non-interacting entities that can serve incoming jobs at a fixed rate. How-
ever, in several modern application areas, such as computer-communication
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systems, the development of performance models naturally leads to the for-
mulation of queueing networks where the servers effectively share common
resources. In this type of models, the service rate at each station generally
depends on the state of the entire system. Today, despite the wide applica-
bility of queueing networks with shared resources, remarkably little is known
about their behavior. Motivated by this, in this paper we study perhaps the
simplest non-trivial class of queueing models in which resources are shared:
a two-station network of queues, either in tandem or in parallel, in which a
common resource is shared amongst the servers at both stations. For this class
of models, we derive a variety of product-form and non-product-form results,
leading to fundamental insight and understanding in the behavior of queueing
networks with shared resources.

Queueing networks with shared resources occur naturally in the modeling of
information and communication infrastructures, in which we observe a growing
diversity in distributed services in which different applications share parts of
the available infrastructure. In such environments, different applications com-
pete for access to shared resources, both at the software layer (e.g., mutex and
database locks, thread pools) and at the hardware layer (e.g., bandwidth, pro-
cessing power, disk access). To handle incoming requests, application servers
usually implement a number of thread pools, each of which is dedicated to
perform a specific sub-transaction. A Web server is an example of such an
application server. A particular feature of the Web server model proposed
in [16,31] is that at any moment in time the active (i.e., non-idling) threads
share a common CPU hardware in a processor sharing (PS) fashion. Other
examples of models in which software resources compete for access to shared
hardware resources are presented in [17,32]. In fact, due to the sharing of re-
sources the actual service rates of the applications competing for this resource
are dependent. An interesting line of research in which the service rates among
different network stations are also dependent is focused on bandwidth-sharing
networks [30,4], providing a natural modeling framework for describing the
dynamic flow-level interaction among elastic data transfers in communication
networks. Queueing models where resources are shared among the different
stations also occur naturally in the modeling of the flow-level performance in
wireline data networks where the capacity of different links are shared among
competing flows [3], or in wireless networks, where a limited amount of band-
width is shared among different users, and where users can communicate via
a cascade of intermediate hops [8].

In the literature, a variety of papers focuses on queueing networks with a
layered structure. In [37], Rolia and Sevcik propose the Method of Layers
(MoL), i.e., a closed queueing-network model based on the responsiveness of
client-server applications. Woodside et al. [41] propose the so-called Stochas-
tic Rendez-Vous Network (SRVN) model to analyze the performance of ap-
plication software with client-server synchronization. Ramesh and Perros [36]
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model a Web server system where the servers form a multi-tiered structure,
and where clients and servers communicate via synchronous and asynchronous
communication; they propose an approximate method for calculating the mean
response time based on a decomposition approach. Dilley et al. [13] describe
custom instrumentation to collect workload metrics and model parameters
from large-scale Web servers, and they develop a Layered Queueing Model
(LQM) of a Web server and use this model to predict the impact of a single
Web server thread pool size on the server and client response times. Franks et
al. [15] focus on the detection of bottlenecks in the context of LQMs. Another
interesting class of models in which the service rates at the different stations
are dependent are the so-called coupled-processor models, i.e., multi-server
models where the speed of a server at a queue depends on the number of
servers at the other queues (see for example [29,9,14]). A variety of papers are
focused on the so-called Limited Processor Sharing (LPS) model, a PS model
in which a newly incoming job is only accepted when the number of jobs in
the system is less than some threshold T ; customers that find the system full
are placed in an infinite-entrance buffer which is served on an First Come
First Served (FCFS) basis. For the LPS model, Avi-Itzhak and Halfin [1] give
a simple approximation for the expected sojourn time. Very recently, several
new results for the LPS queue have been obtained. Nuyens and Van der Weij
[34] derive stochastic monotonicity results of the sojourn time distribution
with respect to the admittance threshold T . Zhang et al. [42,43] investigate
the LPS queue, and describe the behavior of the queue in heavy traffic and
derive an approximation for the waiting probability. And in [44], Zhang and
Zwart derive an approximation for the steady-state queue length and response
time in heavy traffic. Van der Weij [39] proposes simple approximations for
the expected sojourn times for a tandem of queues with processor-shared re-
sources. A considerable amount of research has been dedicated to the stability
of layered queueing networks. Borst et al. [6] give a sharp characterization of
per-station stability for parallel stations with a decreasing service allocation.
Jonckheere et al. [26] derive more general results for the rate stability of net-
works with a general class of capacity allocation functions.

In this paper we study a class of queueing networks with a two-layered struc-
ture where the service rates of the different stations might depend on the com-
plete system; in particular, we characterize a number of product-form as well
as non-product form results. Extensive literature has appeared [24,25] provid-
ing product-form results for job-shop networks. The well known BCMP-paper
for computer applications [2] and other extensions of networks having a prod-
uct form can be found in [28]. Schassberger [38], Pittel [35] and Hordijk and
Van Dijk [22,23] also contribute in product-form extensions, including block-
ing and non work-conserving service disciplines. In [20] product-form results
are presented for the Coxian Processor Sharing queue with no initial blocking
but mid stage exit. Specific product-form results for processor sharing sys-
tems are presented, most notably, in [7] and [5]. Most essentially thought, in
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these references, the capacity allocation functions are assumed to be strictly
positive. In [5] Bonald and Prout̀ıere show that the stationary distribution
of a network is insensitive for the service-time distribution if and only if the
service capacities are balanced, considering networks with state dependent ser-
vice rates and state dependent arrival rates. In Van Dijk [10,12] are sufficient
and necessary conditions provided for a network to possess a product-form so-
lution. The focus in these references is on blocking. In this paper, in contrast,
the focus is on the sharing of the service capacity. In addition it is studied
whether or not the parallel and tandem models are equivalent with respect
to their product forms. In particular the product-form results are compared
for the tandem and parallel model with similar sharing functions. We spec-
ify the criterion in [10,12] to give both necessary and sufficient conditions for
the existence of a product-form solution to a general setting of service shar-
ing among two stations in either parallel or tandem. A theorem is provided
to unify models despite different routing mechanisms, leading to comparable
(and similar) product-form solutions. The product-form behavior of a range of
model examples will be analyzed. This covers the standard processor-sharing
mechanism in which the resource is fairly shared among the jobs in the sys-
tem; note that for this model the existence of a product form is well known,
but that we give an alternative approach to prove this. Moreover, both new
product-form and non-product form results for non-standard PS models are
concluded, e.g., where the resource sharing may be unproportional and where
service may be stopped. This analysis leads to a number of new product-form
and non-product form results that have not been reported explicitly before.

The set up of this paper is as follows. In Section 2 the models investigated in
this paper are described and relevant notation and definitions are introduced.
Also the general condition for models to possess a product-form solution or
not is given and specified. In Section 3 the parallel model is discussed in detail
and examples are given for several capacity allocations and state space trun-
cations leading to product-form solutions and non-product form solutions. In
Section 4 similar results are presented for the tandem model. After a discus-
sion in Section 5 we conclude with addressing a number of challenging topics
for further research.

2 The models and general product-form characterization

We restrict the presentation to queueing networks with two service stations
and investigate product-form properties of these queueing networks, where
the networks have the following specific features: (1) state-dependent service
sharing, where the per-station service rates depend on the state of the entire
system, (2) service can be fully stopped at a station, even if jobs are present
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at that station, and (3) incoming jobs can be denied access to the system. For
the networks we focus on the sharing of the capacity, more then on blocking,
which is motivated by the applications introduced in Section 1. We focus on
networks with only two stations since the complexities with respect to prod-
uct forms manifest themselves for these networks, while the behavioral insights
and intuition can be obtained by illustrations.

We consider two models, both with two stations, a model with two stations
in parallel (PM), and a model with two stations in tandem (TM). For these
models we first introduce some common notation. Denote the state of the sys-
tem by n = (n1, n2), where ni denotes the number of jobs present (i.e., waiting
or in service) at station i (i = 1, 2). The state space is denoted by C. Let
the total amount of service capacity offered to all jobs in service at station i
denoted by fi(n) ≥ 0, for i = 1, 2. We assume that an empty station does not
receive service capacity (i.e., fi(n) = 0 if ni = 0). The service times at station
i are exponentially distributed with mean βi = μ−1

i . Given this notation, we
now define the two different models.

2.1 Parallel Model (PM)

Consider a network of two stations in parallel, we denote this model the par-
allel model (PM). Jobs arrive at station i according to a Poisson process with
rate λi (i = 1, 2). After completion of service at station i a job leaves the net-
work. Upon arrival at station i, an incoming job is either accepted or blocked,
depending on the state of the system, n. This admission policy, denoted by the
blocking function bi(n) ∈ {0, 1} (i = 1, 2), is defined as follows: If bi(n) = 1
then a job arriving at station i is accepted, and if bi(n) = 0 the job is blocked.
In Section 3 we focus on product forms for this model, given a function fi(n),
for i = 1, 2. A first example of this model is presented in Figure 1. In this ex-
ample, which will be discussed in detail in Section 3.5 the state space n equals
(4, 2). The capacity assignment is based on a processor sharing discipline, jobs
in service receive a fair share of the total capacity, and in this example three
jobs are in service in the first station, and two jobs in the second station, all
receiving a fifth of the total capacity of the commonly shared resource.

2.2 Tandem Model (TM)

For the tandem model (TM) we consider a network consisting of two stations
in tandem. The jobs arrive at station 1 according to a Poisson process with
rate λ. After completion of service at this station jobs are forwarded to station
2; after receiving service at station 2 jobs depart from the network. There are
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l1

l2

station 1

station 2

PS

Fig. 1. The Parallel Model.

no external arrivals to the second station. Upon arrival at the system, an in-
coming job is either accepted or blocked, depending on the state of the system.
To this end, we again denote an admission policy, for the tandem model by
b1(n),n ≥ 0, where b1(n) := 1 if an arriving job is accepted, and b1(n) := 0
otherwise. Note that we assume that no blocking exists on station 2. In Sec-
tion 4 this model and its product-form results are presented and discussed.

Figure 2 illustrates an example of this model where the capacity assignment
is again based on a processor sharing discipline. Note that in this figure, as
well as in Figure 1; n = (4, 2), with three jobs in service at the first station
and two at the second station.

station 1 station 2

l1

PS

Fig. 2. The Tandem Model.

We note that the three features addressed above are included in both model
descriptions. State-dependent service sharing is captured in the function fi(n),
which includes the possibility to provide no service to station i by taking
fi(n) := 0 for some ni > 0. Access blocking is included in the definition of
bi(n).
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2.3 A unifying product-form characterization

Under natural ergodicity assumptions for its existence, let π(n) denote the
corresponding steady-state distribution. In this section we present a general
criterion that gives both necessary and sufficient conditions for π(n) to possess
a product-form solution. Here the standard perception of a product form is
used in that it factorizes in structure to the stations, as specified by:

A product form is defined as the factorization of the steady-state joint station
distribution to the steady-state single station distribution, up to normalization
and its state space [10].

2.3.1 Station balance

As will be shown below, the existence of a product form can be character-
ized by the so-called notion of reversibility, not necessarily of the underlying
Markov chain itself but of a special constructed Markov chain that will be
called the adjoint Markov chain. This notion of reversibility reflects the phe-
nomenon that a chain would stochastically evolve in the same way if we could
reverse time (see [28] for an elegant and extensive exposure of this concept).

The construction of the adjoint Markov chain depends on the specific ap-
plication of interest in order for a notion of station balance to be satisfied, i.e.

The rate out of a state n due to a departure at a station i =

the rate into that state n due to an arrival at that station i.
(1)

Whether this station balance is indeed satisfied, which in turn appears to be
directly related to a product form, then remains to be seen and is one-to-one
related to the reversibility of the adjoint Markov chain (defined in Section
2.3.2). The reversibility of the adjoint Markov chain requires the existence of
a stationary distribution π̄, such that π̄(i)q̄i,j = π̄(j)q̄j,i, where q̄i,j are the
transition rates of the adjoint Markov chain.

Once again, it is important to observe that reversibility appears as a key char-
acterization for a product form. However, it does not imply that the model
itself needs to be reversible. Furthermore, in that case the stationary distri-
bution {π(i)} of the original chain coincides with that of the adjoint Markov
chain {π̄(i)} up to scaling factors of the mean service times. This will be
made precise by Theorem 2.1. First let us make the constructions of the ad-
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joint chain explicit for the parallel and tandem model. For the parallel model
the construction of the adjoint transition rates appears to be identical up to
service scaling, as of the original model. For the tandem model, in contrast,
the construction of the adjoint Markov chain is necessary and different as the
model itself is not reversible. It is obtained by the transition rates of the orig-
inal model supplemented with transition rates in the opposite direction.

From here on we adopt the state notation n = (n1, n2) as in Section 2, with ni

the number of jobs at station i = 1, 2, and we assume the existence of a sta-
tionary distribution π(n) at some set of admissible states C. Hence, π(n) = 0
for n /∈ C. The following notation is convenient throughout. Let ei denote the
ith unit vector, for i = 1, 2, and let 0 := (0, . . . , 0). Finally, denote by E the
indicator function for an event E, i.e. E = 1 if event E is satisfied and 0 if
not. We recall Sections 2.1 and 2.2 for the model descriptions.

For the parallel model the Kolmogorov or global balance equations for a
state n ∈ C, become:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

π(n)λ1b1(n) +

π(n)λ2b2(n) +

π(n)μ1f1(n) +

π(n)μ2f2(n)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

(2.2)

(2.3)

(2.4)

=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

π(n + e1)μ1f1(n + e1) +

π(n + e2)μ2f2(n + e2) +

π(n − e1)λ1b1(n − e1) +

π(n − e2)λ2b2(n − e2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1′)

(2.2′)

(2.3′)

(2.4′)

(2)

For the tandem model the global balance equations are, for n ∈ C:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π(n)λb1(n) +

π(n)μ1f1(n) +

π(n)μ2f2(n)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.1)

(3.2)

(3.3)

=⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π(n + e2)μ2f2(n + e2) +

π(n + e1 − e2)μ1f1(n + e1 − e2) +

π(n − e1)λb1(n − e1)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.1′)

(3.2′)

(3.3′)

(3)
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We cannot expect to obtain analytic solutions for equations (2) and (3), unless
these equations are satisfied by the more detailed equations (2.i)=(2.i)′ for
i = 1, 2, 3, 4 for the parallel model and (3.i)=(3.i)′ for i = 1, 2, 3 for the
tandem model. These more detailed relations will be referred to as station
balance relations.

2.3.2 Adjoint Markov chains

In this section we will define the adjoint transition rates q̄ for the parallel and
the tandem model. For the parallel model, as the routing itself can be seen
as reversible, the transition rates of the adjoint Markov chain can be chosen
as for the original Markov chain, up to service scaling by:

q̄(n,n + e1) := λ1b1(n),

q̄(n,n + e2) := λ2b2(n),

q̄(n,n − e1) := f1(n),

q̄(n,n − e2) := f2(n),

q̄(n1,n2) := 0, otherwise.

(4)

For the tandem model the routing has a triangular form and is not reversible
itself, since transitions only take place in one direction. In line with the detailed
equations (3.i)=(3.i)′ for i = 1, 2, 3, therefore, define the adjoint Markov
chain by constructing transition rates in opposite direction as follows:

q̄(n,n + e1) := λb1(n),

q̄(n,n − e1 + e2) := f1(n),

q̄(n,n − e2) := f2(n),

supplemented with

q̄(n + e1,n) := f1(n − e1 + e2),

q̄(n − e1 + e2,n) := f2(n − e2),

q̄(n − e2,n) := λb1(n),

q̄(n1,n2) := 0, otherwise.

(5)

In the above Equations (4) and (5) the μi rates are not shown due to the
scaling up to multiples of the service rate in the product form result. Note
furthermore that this adjoint Markov chain coincides with the parametrization
of the original tandem network up to exponential service parameters in the
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natural station flow direction from station i to station i+1. In contrast though,
also a flow in opposite direction has been constructed. The general definition
of the transition rates of the adjoin Markov chain are as follows. Consider a
queue i and a transition rate γ from queue i to some queue i + 1, then

q̄(n + ei,n + ei+1) := γ (as original Markov chain),

and

q̄(n + ei,n + ei−1) := γ (as new).

2.3.3 Product-form result

Both the parallel and the tandem model can now be characterized by one
unifying theorem. To the best of the authors knowledge, this seems to be new
in the literature. It characterizes the existence of a product-form solution by
means of reversibility of the adjoint Markov chain, which we will refer to as
adjoint reversibility.

Theorem 2.1 There exists a product-form steady-state distribution of the
form

π(n) = cH(n)
∏
i

[
1

μi

]ni

, for all n ∈ C (6)

with c a normalizing constant, if and only if the adjoint Markov chain is
reversible. That is for some steady-state distribution H(n) and for all pairs of
states n1,n2 ∈ C:

H(n1)q̄(n1,n2) = H(n2)q̄(n2,n1). (7)

Proof: The proof is concluded directly by substitution of Equation (4) in
Equation (2) and showing that (2.i) = (2.i′) for i = 1, 2, 3, 4 for the parallel
model, and similarly, by substitution (5) in (3) showing that (3.i) = (3.i′) for
i = 1, 2, 3 for the tandem model. �

When we consider the first case, start with the state (0,0). The total rate in and
rate out can then be considered by showing that (2.1)=(2.1′). Next consider
state (1,0) and first assume that the system does allow not more than one job,
then we find the relation from state (0,0) to (0,1) and (1,0). This relation can
be used when relaxing the constraint from one job in the system to two jobs
and need to be filled in Equation (2). Continue this recursive method and find
the proof of the theorem.
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2.3.4 Reversibility characterization

The major advantage of Theorem 2.1 is that it enables one to verify the exis-
tence of a product form (6), by simply investigating the existence of a reversible
solution H(n). This in turn, can be verified by the so-called Kolmogorov cri-
terion (see for example [33]) as based upon just the transition rates as defined
by (4) and (5).

Below we present the detailed reversibility conditions in more detail, for two
reasons:

1. For the readability of the paper, and
2. To use these reversibility characterizations explicitly later on in the proofs

for product-form and non-product form results for the parallel and tandem
model.

To verify reversibility of the adjoint Markov chain, we need to verify if one of
the two conditions below, (8) or (11) holds.

Lemma 2.2 (Equivalent adjoint reversibility conditions)
Either of the following two conditions are equivalent for the reversibility of the
adjoint Markov chain as in (7). The Kolmogorov equations are verified (7)
and the product-form solution (6) exists, if and only if:

1. For any cycle of the form p of any length t and its reverse cycle of the form
p̄:

θ(p) = θ(p̄), (8)

where,

p := n0 → n1 → . . . → nt → nt+1 = n0,

p̄ := n0 = nt+1 → nt → . . . → n1 → n0,
(9)

with their products of transitions rates:

θ(p) := q̄(n0,n1)q̄(n1,n2) . . . q̄(nt,n0),

θ(p̄) := q̄(n0,nt)q̄(nt,nt−1) . . . q̄(n1,n0).
(10)

2. There exists a function H(n) such that for any fixed n0 ∈ C and any state
n ∈ C it holds that

H(n) = H(n0)
K−1∏
k=0

[
q̄(nk,nk+1)
q̄(nk+1,nk)

]
, for any path n0 →

. . . → nK = n, for which the denominator is positive.
(11)

This means that H(n) is independent of the path n1 → . . . → nK−1; it only
depends on n0 and nK.
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Proof: This can be concluded from substitution of Equation (11) in (7) or
indirectly as by [28] for the characterization of reversibility. �

Either one of the two checks above in turn can generally be reduced to basic
cycles or short paths that directly suggest a necessary form of the function
H(n) and a decomposition in a service and routing component, satisfying:

H(n + ei)

H(n + ej)
=

fi(n + ei)

fj(n + ej)

bi(n)

bj(n)
. (12)

Note that for n ∈ C if n + ej /∈ C then bj(n) = 0. This equation appears to
be the most explicit form to find a suggestion for the function H(n).

Remark 2.3 From the condition given in Equation (12) it follows that the
structure of the product form does not depend on the routing mechanism,
whether parallel or in tandem.

For the applications in Sections 3.5 and 4.5 also the following corollary will
appear to be usefull.

Corollary 2.4 A product form does not exist if for some pair of states ns and
nt for some paths p1 and p2 and their reversed paths p̄1 and p̄2:

Θ(p1) �= Θ(p2) (13)

with

Θ(pi) :=
θ(pi)

θ(p̄i

, (14)

and where p1 and p2 are paths defined as follows:

p1 := ns → n1 → . . . → nK−1 → nK = nt

p2 := ns → n′
1 → . . . → n′

K′−1 → n′
K′ = nt

(15)

Remark 2.5 (Literature) The concept of an adjoint (artificial) Markov chain
to characterize the existence of a product form has first been introduced and
exploited in [22] and extended in [23]. For the case of a single job-class this
characterization has been explored extensively in [10]. A somewhat related
product-form characterization as by an invariance condition has also been pro-
vided in [7] under the condition that there is no blocking and that the service
rates are strictly positive. Its result is included by the current one as a special
case. More specifically, the most closely related results for processor sharing
mechanisms are those from [5] and [7]. In these references though the implicit
but essential condition is assumed for the existence of a function q (see [7])
or Φ (in [5]) to be seen as the function H(n) in Theorem 2.1. However, these
are hard to find in general. The present setting, in contrast, does lead to a
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construction or check of this function by means of reversibility, as will be il-
lustrated in Sections 3 and 4 for the models of our interest.

Remark 2.6 (Reversed Compound Agent Theorem (RCAT)) The RCAT the-
orem as presented in [18,20,19] generate the reversed process and the prod-
uct form. In the most general conditions in [21], an element of local state-
dependency is allowed for the active shared rates in the systems. Some of the
examples given in the next sections do therefore overlap with results of the
RCAT papers. However, we provide a very rigorous and clear way to derive
the product forms., which gives intuitive results. Furthermore, in this paper
some product-forms that may not be possible with the RCAT given the state-
dependency in the rate functions.

2.3.5 Examples

In the next two sections the theorem presented in this section is used to
investigate product-form results for the following six examples for both parallel
and tandem models. The parallel case is given Section 3, and the tandem case
in Section 4:

(1) The proportional PS-model,
(2) An unproportional PS-model with full capacity to one station,
(3) An α-unproportional PS-model,
(4) A state-space reduction,
(5) A two-station limited PS-model,
(6) A truncated two-station limited PS-model.

The first model is well known to possess a product form. However, it is included
to illustrate Theorem 2.1. The results for the second and third model seem to
be new in literature, unbalanced sharing of the service capacity is captured in
these examples. The results for the fourth model are known for the parallel
model, but new for the tandem model; it illustrates the differences that appear
between tandem and parallel routing mechanisms for truncation of the state
space. The fifth model example was already introduced [1,39], but the non-
product form proof is new as is the product-form truncation in the tandem
case (Example 6). None of the examples did appear this detailed in literature,
and therefore also contributes to the insights of product-form results.

3 Parallel Model

In this section we apply Theorem 2.1 to show and prove the existence of
product-form solutions for the parallel model with shared resources as de-
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scribed in Section 2.3. To this end, we write,

fi(n) = Φ(n1 + n2)si(n), for i = 1, 2, (16)

where Φ(k) > 0 represents the total service capacity of the shared resource
when the total number of jobs n1+n2 equals k, and where the sharing function
si(n) is the fraction of this capacity allocated to station i (i = 1, 2). Note
that fi(n) is uniquely defined by Φ(n1 +n2) and si(n) up to a scaling constant
and note that in general Φ(·) is not necessarily equal to 1. We now consider
the examples presented in Section 2.3.5.

3.1 Example: Proportional PS-model

Consider the two-station extension of the standard single-station PS queue
where the total capacity equals Φ(n1 + n2) and where the fraction of this
capacity allocated to the stations equals:

si(n) :=
ni

n1 + n2

, for i = 1, 2, (17)

for n ∈ C, with

C = {n | n1, n2 ≥ 0}. (18)

Thus, for given state n station i gets a fraction si(n) of the capacity Φ(n1+n2);
in words, si(n) represents the proportion of jobs that are at station i. The
admission policy is given by bi(n) := 1 for i = 1 2 and all n ∈ C, i.e.,
all arriving jobs are accepted for all n ∈ C. Note that the classical PS-case
occurs as a special case by taking Φ(k) = 1 for all k ≥ 0. Furthermore, we
define:

P (n) :=

[
n1+n2∏
k=1

Φ(k)

]−1

, (19)

which we will from now on use in the remainder of the paper.

Result 3.1 The proportional parallel PS-model possesses a product-form so-
lution of the form (6), with

H(n) =

[
2∏

i=1

λni
i

]
P (n)

(
n1 + n2

n1

)
, for n ∈ C. (20)

Proof: We first use Theorem 2.1 to prove the existence of the product form,
and then, to prove that the product-form solution has the form (20). To con-
struct a proof based on Theorem 2.1, it suffices to show that the reversibility
condition (8), i.e. θ(p) = θ(p̄), is satisfied for each path p. To this end, note
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that for the model under consideration, the transition rates are as follows: For
n ∈ C,

q̄(n,n + e1) = λ1,

q̄(n,n + e2) = λ2,

q̄(n,n − e1) = n1

n1+n2
Φ(n1 + n2),

q̄(n,n − e2) = n2

n1+n2
Φ(n1 + n2).

(21)

Based on these transition rates one may verify that the transition matrix of
the adjoint Markov chain Q̄ equals the transition matrix Q of the original
Markov chain. Note that for this model it suffices to consider only two basic
cycles, since all other cycles are constructed similarly. Thus, we only need to
show that θ(p) = θ(p̄) for the following two paths:

p = n → n + e1 → n + e1 + e2 → n + e2 → n,

p̄ = n → n + e2 → n + e1 + e2 → n + e1 → n.
(22)

To this end, substitution of Equations (21) into Equation (10) leads to

θ(p) = q̄(n,n + e1)q̄(n + e1,n + e1 + e2) ·
q̄(n + e1 + e2,n + e2)q̄(n + e2,n)

= λ1 · λ2 · (n1+1)
n1+n2+2

Φ(n1 + n2 + 2) ·
(n2+1)

n1+n2+1
Φ(n1 + n2 + 1),

and

θ(p̄) = q̄(n,n + e2)q̄(n + e2,n + e1 + e2) ·
q̄(n + e1 + e2,n + e1)q̄(n + e1,n)

= λ2 · λ1 · (n2+1)
n1+n2+2

Φ(n1 + n2 + 2) ·
(n1+1)

n1+n2+1
Φ(n1 + n2 + 1),

which immediately implies θ(p) = θ(p̄). Hence, the reversibility condition (8)
applies, and thus, there exists a product-form solution (6). Next, we show
that the product-form solution has the form (20). To this end, we observe
that using Equation (7) in Theorem 2.1 and the equations in (21) imply the
following recursive relations for n ∈ C:

H(n)λ1 = H(n)q̄(n,n + e1)

= H(n + e1)q̄(n + e1,n)

= H(n + e1)
(n1+1)

n1+n2+1
Φ(n1 + n2 + 1).

(23)
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Similarly by (7) and (21) we find that,

H(n)λ2 = H(n)q̄(n,n + e2)

= H(n + e2)q̄(n + e2,n)

= H(n + e2)
(n2+1)

n1+n2+1
Φ(n1 + n2 + 1),

(24)

and

H(n)μ1
n1

n1+n2
Φ(n1 + n2) = H(n)q̄(n,n − e1)

= H(n − e1)q̄(n − e1,n)

= H(n − e1)λ1,

(25)

H(n)μ2
n1

n1+n2
Φ(n1 + n2) = H(n)q̄(n,n − e2)

= H(n − e2)q̄(n − e2,n)

= H(n − e2)λ2.

(26)

Note that Equation (23) equals Equation (25), since for (n1, n2) = (0, 0) tran-
sition rates to states (n1 − 1, n2) = (−1, 0) and (n1, n2 − 1) = (0,−1) are zero,
which forces that Equation (23) and Equation (25) are equivalent. Similarly,
we conclude that Equation (24) equals Equation (26). Thus, the recursive
relation can be rewritten as,

H(n−e1)
H(n)

= 1
λ1

n1

n1+n2
Φ(n1 + n2), n1 > 0, (27)

H(n−e2)
H(n)

= 1
λ2

n2

n1+n2
Φ(n1 + n2), n2 > 0. (28)

Equation (20) can now be easily obtained by recursively solving (27) and (28),
starting with H(0) := Φ(0). �

Remark 3.2 (Alternative approaches) Instead of by the proof presented above,
Result 3.1 can also be concluded:

(1) Directly by substituting (7) in (6).
(2) From [7]. To this end, consider the system as a single processor. Let a

class-r job have a service with respective parameters μri
for class ri. This

has a one to one correspondence with the two station parallel model, since
each class corresponds to a station.

(3) From [5] directly for a processor sharing disciplines and indirectly for
arbitrary disciplines as in this reference it is implicitly assumed that each
station itself (also) has a PS-discipline. However, as the effective service
rates at station 1 and 2 are independent of the service discipline in order
provided the services are assumed to be exponential, in the exponential
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case the product form can be concluded for arbitrary disciplines at each
station.

By this reference as well as by [7] it can also be concluded that the product
form is insensitive with respect to the service-time distributions.

Remark 3.3 (Special PS-case and insensitivity) The standard type processor
sharing function, that assigns an equal (fair) share 1/(n1 + n2) of the total
capacity Φ(n1 + n2) to each job in service, is included by assuming that each
station itself also has a PS-discipline; that, at both stations, all jobs present
equally share a fraction ni/(n1 + n2) of the total capacity. For this particular
case, it can also be concluded directly from [5] or indirectly from [7] or [22,23],
that the product form (6) also applies to arbitrary non-exponential service
requirements with means 1/μi at station i. This property is well known in the
literature as insensitivity.

3.2 Example: Unproportional PS-model with full capacity to one station

A first most extreme type example in which an unproportional processor shar-
ing is effectuated is obtained by always allocating the full capacity to one sta-
tion, and to fairly share this capacity among all jobs at that station. Consider
the model with access blocking functions

b1(n) = E1 with E1 := {n ∈ C : n1 = n2 or n1 = n2 + 1},
b2(n) = E2 with E2 := {n ∈ C : n1 = n2 or n1 = n2 − 1}, (29)

and with sharing functions

s1(n) = E3 with E3 := {n ∈ C : n1 = n2 + 1 or n1 = n2 + 2},
s2(n) = E4 with E4 := {n ∈ C : n1 = n2 or n1 = n2 − 1}. (30)

The access blocking function only allows arrivals to station 1 if n1 = n2 or
n1 = n2 + 1, and similarly, station-2 arrivals are accepted only if n1 = n2 − 1
or n1 = n2. The sharing function forces to assign all capacity to station 1 if
n1 = n2 + 1 or n1 = n2 + 2, and to station 2 if n1 = n2 − 1 or n1 = n2. In
words, if n1 > n2 then station 1 gets the full capacity, and station 2 gets the
full capacity otherwise. This model will be referred to as the unproportional
parallel PS-model. Using Equations (29) and (30) it is readily verified that the
state space for this model is given by

C = {n | n1 ∈ {n2 − 1, n2, n2 + 1, n2 + 2}, with n1, n2 ≥ 0}. (31)

Figure 3 illustrates the non-zero transitions at the state space of this model.

17



n1

n2

Fig. 3. Parallel Model: Transitions in the state space C for which the product form
(6) applies with positive transition rates (in both directions) indicated by arrows
(all other rates are equal to 0).

Result 3.4 The unproportional parallel PS-model possesses a product-form
solution of the form (6), with

H(n) =

[
2∏

i=1

λni
i

]
P (n), for n ∈ C, (32)

where C is defined in (31).

Proof: First we show that the model possesses a product form by checking
Equation (8) for all paths within the state space C, defined in (31). To this
end, note that the transition rates for the adjoint Markov chain (which are
again equal to the transition rates for the original Markov chain) are as follows:

q̄(n,n + e1) = λ1,

q̄(n,n + e2) = λ2,

q̄(n,n − e1) = Φ(n1 + n2),

q̄(n,n − e2) = Φ(n1 + n2).

(33)

Note that we only need to verify Equation (8) for the following two basic
cycles:

p1 =n → n + e1 → n,

p2 =n → n + e2 → n.

Substitution of (33) in (10) leads to the following two equations, for n ∈ C,

θ(p1) = q̄(n,n + e1)q̄(n + e1,n) = λ1 · Φ(n1 + n2),

θ(p2) = q̄(n,n + e2)q̄(n + e2,n) = λ2 · Φ(n1 + n2).

Next, notice that the paths in the opposite directions, denoted by p̄1 and p̄2,
are equal to the paths p1 and p2, respectively. Hence, for i = 1, 2 we have
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θ(pi) = θ(p̄i), so that the reversibility condition (8) is satisfied, which implies
that the model has a product-form solution. Then, to show that (32) holds,
note that arguments similar to those in Result 3.1 hold and that it is easily
verified that ni > 0,

H(n − ei)

H(n)
=

1

λi

Φ(n1 + n2), for i = 1, 2, (34)

supplemented with the starting condition H(0) := Φ(0) gives H(n) in Equa-
tion (32). Thus the steady-state distribution has the product form (6), where
H(n) is given by Equation (32). This completes the proof of the result. �

3.3 Example: α-Unproportional PS-model

Also unproportional and non-zero sharing functions over both stations might
still retain the necessary invariance (11), or equivalently (8). Consider the
complete state space,

C = {n | n1, n2 ≥ 0}, (35)

and a sharing function si(n) in which a fraction of the capacity is assigned to
station 1, and a fraction of the capacity is assigned to station 2, as follows for
n ∈ C:

(s1(n), s2(n)) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − α, α) if n1 > n2,

(α, 1 − α) if n1 < n2,

(α, α) if n1 = n2,

(36)

for an arbitrary 0 < α < 1/2. The fraction of the total capacity Φ(n1 + n2)
a station receives is dependent on the state space. The sharing function si(n)
partitions the state space in three regions, namely in the region where the
number of jobs in the station 1 is greater than the number of jobs present at
station 2 (i.e. n1 > n2), the region where the number of jobs at station 1 is
smaller than the number of jobs at station 2 (i.e. n1 < n2), and the region
where the number of jobs is equal in both stations (i.e., n1 = n2). We refer
this model as the α-unproportional processor sharing model.

Result 3.5 A product-form solution applies for the α-unproportional proces-
sor sharing model of the form (6), with

H(n) =

[
2∏

i=1

λni
i

]
P (n)

(
α

1 − α

)max(n1,n2) ( 1

α

)n1+n2

, for n ∈ C. (37)
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Proof: To show that this model possesses a product-form solution we need
to investigate in verifying condition (8) or equivalently (11) so that Theorem
2.1 applies. For this model it suffices to investigate in the following cycles to
verify the condition:

p = n → n + e1 → n + e1 + e2 → n + e2 → n,

p̄ = n → n + e2 → n + e1 + e2 → n + e1 → n.
(38)

These cycles need to be considered for the following five scenarios: n1 = n2,
n1 + 1 = n2, n1 − 1 = n2, n1 + 1 > n2 and n1 − 1 < n2, respectively. For
these scenarios the transition rates differ, due to the specific sharing function
defined in Equation (36). For the three state space regions where the sharing
function differs the products of the transition rates for the paths p and p̄, as
in Equation (38), equal:

θ(p) = q̄(n,n + e1)q̄(n + e1,n + e1 + e2)q̄(n + e1 + e2,n + e2)q̄(n + e2,n)

= α2(1 − α)2Φ(n1 + n2 + 2)Φ(n1 + n2 + 1),

θ(p̄) = q̄(n,n + e2)q̄(n + e2,n + e1 + e2)q̄(n + e1 + e2,n + e1)q̄(n + e1,n)

= α2(1 − α)2Φ(n1 + n2 + 2)Φ(n1 + n2 + 1).

Thus Equation (8) is fulfilled since for all scenarios θ(p) = θ(p̄). Next note that
Equation (37) is obtained following the same lines as in the example given in
Section 3.1 or equivalently by Equation (7). The result (37) then follows by
substitution of Equations (4) and (36) in Equation (7), with H(n) as defined
in Equation (37) and proper scaling. This completes the proof. �

Remark 3.6 Note that for this example the station with the highest workload
receives more capacity than the other station. When the stations have equal
workload, both receive an equal share of the total capacity. But since α can
be arbitrarily close to 0, not all capacity needs to be used if the workloads are
equal. Thus, as a price to pay to satisfy the invariance condition (11) note that
a capacity of α is lost when n1 = n2. It is remarkable that this model possesses
a product-form solution, since it is not work-conserving in the state n1 = n2.

3.4 Example: State space restriction

In general, state space restrictions of a model that possesses a product-form
solution do not necessary possesses a product-form solution itself. However, it
is known from [27] that a model, which is reversible itself, possesses a product
form at any state space C also possesses a product form at any coordinate
convex state space, where coordinate convex is defined by:
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n ∈ C ⇒ n − ei ∈ C, for i = 1, 2. (39)

The proof is stated in Theorem 1 of In [27], namely that the state distribution
holds for arbitrary resource sharing policies.

We give an example of a coordinate convex state space restriction for forward
reference, since comparing a similar state space restriction for the parallel and
the tandem model (see Section 4.4 below) leads to remarkable observations.
To this end, consider in this example the service and blocking functions as
given in Section 3.1. We restrict the state space of this model by elimination
of all states n with n1 ≤ n2, which can be enforced by b1(n) = 0 for n1 ≤ n2.
This leads to the following coordinate convex state space:

C = {n | n1 ≥ n2 − 1, n2 ≥ 0}. (40)

This state space restriction is presented in the left figure of Figure 4. We
illustrate that the product-form solution indeed holds by verifying Equation
(8) for the paths

p = (0, 2) → (1, 2) → (1, 3) → (0, 3) → (0, 2),

p̄ = (0, 2) → (0, 3) → (1, 3) → (1, 2) → (0, 2).

And, indeed θ(p) = θ(p̄) holds, since with (for convenience) Φ(n1 + n2) = 1
for all n ∈ C and λi = 1, for i = 1, 2;

θ(p) = 1 · 1 · (3/4) · (1/3) = 1/4,

θ(p̄) = 1 · 1 · (3/4) · (1/3) = 1/4.

3.5 Example: Two-station limited PS-model

Now we consider the two-station extension of the limited processor sharing
(LPS) queue, recently studied in [34,26,42–44], which works as follows: Instead
of taking all jobs immediately in service and share the capacity among all these
jobs, we consider that ki(n) jobs receive service and that ki(n) is bounded by
ci. If there are more than ci jobs in station i these jobs has to wait until one of
the ki(n) jobs its service is completed. This is defined by the following sharing
function:

s1(n) = k1(n)/(k1(n) + k2(n)), k1(n) = min(n1, c1),

s2(n) = k2(n)/(k1(n) + k2(n)), k2(n) = min(n2, c2).
(41)

Note that each station receives a fraction of the capacity based on the number
of jobs in both stations, and not as in recently studied LPS models shared
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among only jobs in one station. Let c1 and/or c2 be finite and let the state
space be defined as all non-negative integer values for n1 and n2 which is:

C = {n | 0 ≤ ni, i = 1, 2}, (42)

This model is illustrated in Figure 1 where ci = 3 for i = 1, 2 and where
n1 = 4 and n2 = 2. Thus one job in the first station is not in service, but is in
the queue, and remains in the queue until one of three jobs in service leaves
the station.

Result 3.7 The two-station limited parallel PS-model violates a product-form
solution.

Proof: The proof is based on a counter-example, so that Equation (13) holds,
and equivalent, Equation (8) or Equation (11) does not hold. For this, let
Φ(k) = 1 for all k ≥ 1. Note that the routing is again reversible, and we verify
if the products of the transition rates of the cycles satisfy Equation (13) such
that the adjoint model is reversible. Consider the limited processor sharing
model with c1 = 2 and c2 = 3. Based on verifying Equation (13) we construct
the following paths p1 and p2:

p1 = (4, 3) → (4, 2) → (4, 1) → (3, 1) → (2, 1) → (1, 1),

p̄1 = (1, 1) → (2, 1) → (3, 1) → (4, 1) → (4, 2) → (4, 3),

p2 = (4, 3) → (3, 3) → (2, 3) → (1, 3) → (1, 2) → (1, 1),

p̄2 = (1, 1) → (1, 2) → (1, 2) → (2, 3) → (3, 3) → (4, 3).

Take λ1 = 1 and λ2 = 1. This brings us to the following values of Θ(pi) as in
(13),

Θ(p1) = θ(p1)/θ(p̄1) = (2/5) · (2/5) · (3/4) · (3/4) · (2/3) = 3/50,

Θ(p2) = θ(p1)/θ(p̄1) = (3/5) · (3/5) · (2/4) · (2/3) · (2/3) = 4/50.

Thus note that Θ(p1) �= Θ(p2). Hence, the necessary reversibility condition
(13) is violated, and thus no product form exists. �

Remark 3.8 Most remarkably, a single-station limited processor sharing queue
obviously has a product form, but the structure of the network, in which the
sharing depends on the state of the entire model, does not. Because of the lim-
iting number of jobs in service, the order of arrival of the jobs becomes leading,
since a job not into service can not be exchanged for a job in service, due to
the fact that the service speed does not only depend on that station itself, but
also on the other station. This dependency of stations results in the stringent
order of the jobs, which results in violation of the reversibility conditions.
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3.6 Example: Truncated two-station limited PS-model

A way to retain the product form for the two-station limited processor sharing
parallel model is to restrict the state space artificially such that there can never
be more than ci jobs in station i for i = 1, 2. The following access blocking
functions give a proper state space restriction with respect to the existence of
a product-form solution:

b1(n) = 0 if n1 ≥ c1, (43)

b2(n) = 0 if n2 ≥ c2. (44)

These access blocking functions limit the state space to

C = {n | 0 ≤ ni ≤ ci, i = 1, 2}. (45)

Thus, if a job arrives at a station i while there are already ci jobs present,
then this job is blocked. This model is referred to as the truncated two-station
limited parallel PS-model.

Result 3.9 The truncated two-station limited parallel PS-model possesses a
product form of the form (6) with H(n) as in Equation (20).

Proof: We again rely on Theorem 2.1 to prove the existence of the product
form and its specific form (20). Observe that si(n) is equally defined as in the
natural processor sharing form (17) for the state space C in Equation (45) and
that also on the boundaries the routing remains reversible and transitions are
similarly defined as in Section 3.4. This leads immediately to the conclusion
that the product form (6) applies, since Equation (20) suffices, which can be
verified analogue to the proof in Section 3.4. The form of the product form,
(20), follows due to the previous observation, following the lines in Section
3.4. This completed the proof. �

The state space restriction of Section 3.4 in Equation (40) and the state space
truncation (45) of the example in this section are illustrated by Figure 4.

Remark 3.10 Results for showing that a product form cannot hold appear
to be rare in the literature. From [7] such results can be deducted if a proper
transformation is made, however in the present setting it follows directly. The
observation that a model does not have a product form is very important, and
can lead to adjustments of the model such that a product form still applies.
Note that these adjusted models can be used to develop approximations for the
steady-state distribution of non-product form models and can be used to derive
error bounds (which falls beyond the scope of the present paper).
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Fig. 4. Parallel Model: The left figure illustrates state space (40) and the right figure
illustrates state space (45). For both truncations the product form (6) applies. In
the right figure the state (c1, c2) is marked for further reference in Section 4.4.

4 Tandem Model

In this section we apply Theorem 2.1 to the tandem model, by using similar
examples as for the parallel model. In this model the arrivals at the second
station are fed by departures from the first station as described in Section 2.2.
We show the similarities and differences for the parallel and tandem models
with respect to product-form solutions.

4.1 Example: Proportional PS-model

Consider the following two-station tandem model with the total capacity
equals Φ(n1 + n2), and the fraction si(n) of this capacity allocated to the
stations as given in Equation (17), and thus the capacity is shared propor-
tional the number of jobs in each of the stations. Let the state space C be as
in Equation (18). We refer to this model as the proportional tandem PS-model.

Result 4.1 The proportional tandem PS-model possesses a product-form so-
lution of the form (6), with

H(n) = λn1+n2P (n)

(
n1 + n2

n1

)
, for n ∈ C. (46)

Proof: To prove this result we show that Theorem 2.1 applies, by verifying
Equation (8). Therefore we construct the adjoint Markov chain. The transition
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rates of the original Markov chain are as follows:

q(n,n + e1) = λ,

q(n,n − e1 + e2) = n1

n1+n2
Φ(n1 + n2),

q(n,n − e2) = n2

n1+n2
Φ(n1 + n2).

(47)

Note that the routing of this model is not reversible, and thus we construct
the adjoint Markov chain transition rates according to Equation (5), which
results in the following rates:

q̄(n,n + e1) = λ,

q̄(n,n − e1 + e2) = n1

n1+n2
Φ(n1 + n2),

q̄(n,n − e2) = n2

n1+n2
Φ(n1 + n2),

q̄(n + e1,n) = n1

n1+n2
Φ(n1 + n2),

q̄(n − e1 + e2,n) = n2

n1+n2
Φ(n1 + n2),

q̄(n − e2,n) = λ.

(48)

Similar to the parallel model, for the tandem model any cycle can be built from
just two basic cycles, and therefore, it suffices to consider only the following
two basic cycles:

p1 =n → n + e1 → n − e1 + e2 → n,

p2 =n → n + e2 → n + e2 − e1 → n. (49)

Substituting the expressions in Equation (48) in Equation (10) we obtain:

θ(p1) = q̄(n,n + e1)q̄(n + e1,n − e1 + e2)q̄(n − e1 + e2,n)

= λ · (n1+1)
n1+n2+1

Φ(n1 + n2 + 1) · (n2+1)
n1+n2

Φ(n1 + n2 + 1),

θ(p̄1) = q̄(n,n − e1 + e2)q̄(n − e1 + e2,n + e1)q̄(n + e1,n)

= λ · (n2+1)
n1+n2

Φ(n1 + n2 + 1) · (n1+1)
n1+n2+1

Φ(n1 + n2 + 1),

and verifying Equation (8), indeed θ(p1) equals θ(p̄1). Using similar arguments
we show that θ(p2) = θ(p̄2). Thus, θ(pi) = θ(p̄i) for i = 1, 2, and since from
these two cycles any other cycles can be constructed, the reversibility applies
(i.e. Equation (8)) and there exists a product-form solution (6). Next, we
prove that H(n) has the form (46). This can be obtained by solving Equation
(7) recursively starting with H(0) = Φ(0), which leads to Equation (27) and
Equation (28), where λ2 is replaced by λ. Next, since the solution of the
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recursive scheme also satisfies the third recursive relation

H(n + e1)
(n1+1)

n1+n2+1
Φ(n1 + n2 + 1) = H(n + e2)

(n2+1)
n1+n2+1

Φ(n1 + n2 + 1),

the local balance equations are satisfied. This completes the proof. �

Remark 4.2 This result may be surprising since the model can be seen as a
single processor sharing model with 2 classes of jobs where after completion
of service of a class 1 job it becomes a class 2 job, see in [7]. However, it
illustrates how to apply the theorem with the use of the adjoint Markov chain
which is different from the original Markov chain due to the non-reversible
routing of the original chain.

Remark 4.3 Note that the function H(n) differs only in the routing part from
the form given in Equation (20), due to the fact that λ feds both, station 1,
and station 2 after completion of service at station 1. Contrary, for the parallel
model station 2 is fed by its own arrival process with rate λ2. The service part
in H(n), based on si(n), is similar for the parallel and tandem model which
was expected since si(n) is equally defined, for i=1, 2.

Remark 4.4 (Expression for the total population) In the particular propor-
tional case we can also obtain a simple standard geometric-type expression for
the steady-state distribution π(ν) for the total number of jobs ν = n1 + n2. To
this end, by (6) and (46) we obtain:

π(ν) = c
∑

n1,n2:n1+n2=ν

λn1+n2

(
n1 + n2

n1

)[
ν∏

k=1

Φ(k)

]−1 (
1

μ1

)n1
(

1

μ2

)n2

= cλν

[
ν∏

k=1

Φ(k)

]−1 (
1

μ1

+
1

μ2

)ν

= c(λτ)ν

[
ν∏

k=1

Φ(k)

]−1

,

with τ =
(

1
μ1

+ 1
μ2

)
the total mean service time.

For the parallel model from Section 3.1, we similarly find by (6) and (20):

π(ν) = c(λτ)ν

[
ν∏

k=1

Φ(k)

]−1

, (50)

with
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τ =

(
λ1

λ1 + λ2

1

μ1

+
λ2

λ1 + λ2

1

μ2

)
,

λ = λ1 + λ2.

Hence, for both the parallel and the tandem model under proportional sharing
and c a normalizing constant we obtain:

π(ν) = cρν

[
ν∏

k=1

Φ(k)

]−1

, (51)

with ρ the mean workload with ρ = λ(β1 + β2) for the tandem model, and
ρ = λ1β1 + λ2β2 for the parallel model and with βi = 1

μi
.

Remark 4.5 Note that Equation (51) can be in fact be seen as a simple insen-
sitivity result, i.e. that the expression does not depends on the routing mech-
anism but only on the average workload ρ. As such this insensitivity result is
in line (though somewhat different) with more standard insensitivity results
from processor sharing systems, e.g. [5,7]. Note, however, that the (insensi-
tivity expression (51) also applies without assuming a strict processor sharing
discipline, i.e. in which the service at a station is equally spread over all jobs.
We know that such an insensitivity result for examples as in Sections 4.2 to
4.6 does not seem to can be concluded since expression (51) essentially uses
the multinomial coefficient.

4.2 Example: Unproportional PS-model with full capacity to one station

As for the parallel model, for the tandem model we also continue with unpro-
portional processor sharing examples. First we consider the example where
the full capacity is always allocated to one station by setting the capacity
of the other station at value 0, and in the next section we consider the α-
unproportional model. For the model considered in this section, the model
where the full capacity is assigned to the station with the highest workload,
recall the sharing function si(n) as in Equation (30) and let the blocking
function b1(n) be equal to the blocking function for the station 1 as given
in Equation (29). This model is referred as the unproportional tandem PS-
model. Because of sharing and blocking functions the state space C is defined
as in Equation (31). Note that blocking can not occur at the second station,
however, we obtain the same state space as for the tandem model. In the left
figure of Figure 5 this state space is illustrated.

Result 4.6 The unproportional tandem PS-model possesses a product-form

27



solution of the form (6), with

H(n) = λn1+n2P (n), for n ∈ C. (52)

Proof: We construct the adjoint Markov chain according to Equation (5) so
that we can verify Equation (8) and rely on Theorem 2.1. The transition rates
of the adjoint Markov chain are as follows:

q̄(n,n + e1) = λ,

q̄(n + e1,n + e2) = Φ(n1 + n2),

q̄(n + e2,n) = Φ(n1 + n2),

q̄(n + e1,n) = Φ(n1 + n2),

q̄(n + e2,n + e1) = Φ(n1 + n2),

q̄(n,n + e2) = λ,

(53)

where the transition rates only exist for given C as stated in Equation (31).
Along the lines of the previous proof, we again need to verify for only two
cycles if Equation (8) is satisfied, because the other cycles can be constructed
with these cycles. Consider the cycles

p =n → n + e1 → n + e2 → n,

p̄ =n → n + e2 → n + e1 → n.

For these cycles we use Equation (53) in Equation (10) which results in the
following:

θ(p) = q̄(n,n + e1)q̄(n + e1,n + e2)q̄(n + e2,n),

= λ · Φ(n1 + n2 + 1) · Φ(n1 + n2 + 1),

θ(p̄) = q̄(n,n + e2)q̄(n + e2,n + e1)q̄(n + e1,n),

= λ · Φ(n1 + n2 + 1) · Φ(n1 + n2 + 1).

And indeed θ(p) = θ(p̄) for these two cycles and thus for all cycles p in C.
Notice that Equation (52) can be obtained recursively solving Equation (7),
starting with H(0) = Φ(0), which results in Equation (34) with λ2 replaced
by λ. This recursion leads to the form given in Equation (52). This completes
the proof. �

The left figure in Figure 5 illustrates the state space restrictions as in Equa-
tion (31), however, also other state-space restrictions for which (52) applies
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are possible, an example is illustrated in the right figure. Note the triangular
structure of the cycles.

n1

n2 n2

n1

Fig. 5. Tandem Model: Figures for state space C for which the product form (6)
applies with positive transition rates indicated by an arrow (all other rates are equal
to 0).

4.3 Example: α-Unproportional PS-model

Now, we consider again unproportional and non-zero sharing functions si(n)
over both stations, as in Equation (36) on the state space C (18). This model
is called the α-unproportional tandem PS-model. This model is presented
in [12], and for a special value of α some results are presented. However,
in this Section we explain explicitly how to obtain the product form and
compare this with the parallel version of the model. To this end, we observe
that the α-unproportional tandem model still retains the necessary invariance
(11) or equivalently (8) to secure a product form, for example with arbitrary
0 < α < 1/2. This model is illustrated in Figure 6, wherein only a few cycles
are presented, representing the different rates depending on the state (n1, n2).
Since there are no limitations on the state space, the complete state space is
filled with these triangular structured transition rates.

1−α

α

1−α

1−α

1−α

α

n2

n1

n1=n2

Fig. 6. Tandem Model: The α-unproportional PS-model. In this figure in each of the
regions (n1 < n2, n1 = n2, and n1 > n2) the transition rates of a cycle are given.
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Result 4.7 The α-unproportional tandem PS-model possesses a product-form
solution with the fraction of capacity allocated according to Equation (36) of
the form (6), with

H(n) = λn1+n2P (n)
(

α

1 − α

)max(n1,n2) ( 1

α

)n1+n2

, for n ∈ C. (54)

Proof: For the proof we follow similar lines as the proof given in Section 3.3.
To this end, we construct the adjoint Markov chain according to Equation (5)
to verify condition (8). The adjoint transition rates become:

q̄(n,n + e1) = λ,

q̄(n + e1,n) = (1 − α), if n1 + 1 < n2,

q̄(n + e1,n) = α, if n1 + 1 ≥ n2,

q̄(n + e2,n) = α, if n2 + 1 ≤ n1,

q̄(n + e2,n) = (1 − α), if n2 + 1 > n1,

q̄(n,n + e2) = λ,

q̄(n + e1,n + e2) = (1 − α), if n1 + 1 > n2,

q̄(n + e1,n + e2) = α, if n1+1 ≤ n2,

q̄(n + e2,n + e1) = α, if n2 + 1 ≤ n1,

q̄(n + e2,n + e1) = (1 − α), if n2 + 1 > n1.

(55)

The adjoint transition rates differ, depending on n1 and n2. We only verify
Equation (8) for the three cycles illustrated in Figure 6, noting that using
these cycles, all cycles in the state space C can be constructed. Let

p =n → n + e1 → n + e2 → n,

p̄ =n → n + e2 → n + e1 → n.

The product of the transition rates for these paths are as follows; for n1 > n2,

θ(p) = λ · αΦ(n1 + n2 + 1) · (1 − α)Φ(n1 + n2 + 1),

θ(p̄) = λ · (1 − α)Φ(n1 + n2 + 1) · αΦ(n1 + n2 + 1),

and for n1 < n2,

θ(p) = λ · (1 − α)Φ(n1 + n2 + 1) · αΦ(n1 + n2 + 1),

θ(p̄) = λ · αΦ(n1 + n2 + 1) · (1 − α)Φ(n1 + n2 + 1),
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and for n1 = n2,

θ(p) = λ · (1 − α)Φ(n1 + n2 + 1) · (1 − α)Φ(n1 + n2 + 1),

θ(p̄) = λ · (1 − α)Φ(n1 + n2 + 1) · (1 − α)Φ(n1 + n2 + 1).

And thus indeed θ(p) = θ(p̄) for all paths in C. This leads to the conclusion
that for this model the product-form solution exists and is given with H(n) as
in Equation (37). Since the state space equals the state space of the parallel
model, and the model has the same sharing function, we immediately conclude
that H(n) has the same form as the parallel model up to the routing part,
as already can be seen in the proof given in Section 4.1. Thus the proof is
completed. �

Remark 4.8 Note that for this model less cycles need to be checked as for
the parallel model, due to the routing structure. But the results are equivalent,
both examples lead to a product-form solution.

4.4 Example: State space restriction

As we have seen in previous sections for the tandem model, the tandem model
and the parallel have many similarities with respect to the obtained product
form for the same sharing functions and blocking functions. In the following
examples of the tandem model we observe that differences occur. Consider the
sharing function as in Equation (17) and state space C (40). For the tandem
model, with proportional sharing of the capacity, the sharing function needs
to be supplemented with:

s2(n) = 0, for n1 = n2 − 2, (56)

and similarly the following additionally to the blocking functions in Equation
(40) is needed:

b1(n) = 1, for n1 ≥ n2. (57)

In the left figure of Figure 8 the transitions for this particular proportional
sharing model in the state space C defined in (40) are illustrated.

Result 4.9 The standard PS model has a product form

π(n) = cλn1+n2P (n)

(
n1 + n2

n1

)
, (58)
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for state space C as given in (40), supplemented with the sharing function in
Equation (56) and the blocking function in Equation (57).

Proof: For the proof of this result we refer to Section 4.1. We only have
to verify if Equation (8) is satisfied for the cycles in the admissible state
space C (40). Note that we block service at the second station for the states
n1 = n2 − 2 to obtain the local balance for the second station (which can
be verified by substitution of the transition rates (48) of the adjoint Markov
chain in the Kolmogorov equations (3)). We now conclude similarly to the
example in Section 4.1 that the product-form solution applies with the same
H(n), wherein H(n) can be obtained following the lines of the proof of Result
4.1). �

Remark 4.10 Note that these results cannot be concluded from product-form
results by simply restricting the state space under reversibility conditions such
as in [35], since transition rates in the coordinate convex state space need to
be changed such that reversibility of the adjoint Markov chain remains.

Remark 4.11 Most remarkable is the following: to obtain a product form for
the tandem model similarly to the parallel model different sharing functions are
necessary such that the station balance equations are verified. For the tandem
model additionally the service from the second station needs to be blocked in
the state space, for the case n1 = n2−2, which results in function H(n) similar
up to the routing part, the part containing the λ’s.

4.5 Example: Two-station limited PS-model

Now, we consider the limited tandem PS-model, with sharing function si(n)
as in Equation (41). This function shares the capacity similar to the model
in the previous section in the inner region of the state space C, and differs as
soon as the boundaries are reached, namely if n1 = c1 or n2 = c2. We consider
the state space

C = {n | n1, n2 ≥ 0}. (59)

Result 4.12 A product form is necessarily violated for the two-station limited
tandem PS-model.

Proof: This can be proved by verification of Equation (8). To this end, let
Φ(n1 +n2) = 1 and let λ = 1. The transitions of the adjoint Markov chain are
shown in Figure 7 and, more precisely, in formula as follows:
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q̄(n,n + e1) = q̄(n,n + e2) = 1,

q̄(n + e1,n + e2) = q̄(n + e1,n) = s1(n + e1),

q̄(n + e2,n + e1) = q̄(n + e2,n) = s2(n + e2).

(60)

Using a counter-example, we show that Equation (8) is necessarily violated.
Consider c1 = 2 and c2 = ∞ as also presented in Figure 7 and consider the
following cycles:

p = (1, 1) → (2, 1) → (3, 1) → (3, 2) → (2, 2) → (1, 2) → (1, 1),

p̄ = (1, 1) → (1, 2) → (2, 2) → (3, 2) → (3, 1) → (2, 1) → (1, 1),

and the products of these paths according to Equation (10) equal

θ(p) = 1 · 1 · 1 · (1/2) · (1/2) · (2/3) = 1/6,

θ(p̄) = 1 · 1 · 1 · (1/2) · (2/3) · (2/3) = 2/9,

and indeed θ(p) �= θ(p̄). As a consequence, condition (8) and thus also the
necessary reversibility condition is violated so that the product form (6) fails.
Similar (counter) examples can be given for any finite c1 and/or c2. �

n1

c1=2

n2

Fig. 7. Tandem Model: The adjoint transition rates for the limited processor sharing
model.

4.6 Example: Truncated two-station limited PS model

In line with Section 4.4 and as an extension to station interdependent processor
sharing services of a product-form modification result in [10] for independent
services, a way to retain the product form for the case where ki(n) (the num-
ber of jobs in service at station i) is limited, is to restrict the state space such
that there can be no more than c1 jobs at station 1 and c2 at station 2. This
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idea is already introduced for the parallel model.

However, to secure the necessary reversibility for the adjoint Markov chain
additional boundary conditions are required, namely,

s1(n) = 0, if n2 = c2,

s2(n) = 0, if n1 = c1,

b1(n) = 0, if n1 = c1 or n2 = c2. (61)

These additional boundary conditions limit the state space to

C = {n | 0 ≤ ni ≤ ci i = 1, 2}. (62)

Result 4.13 The truncated two-station limited tandem PS-model possesses a
product form (6), with H(n) as in (46).

Proof : To prove that the model possesses a product form we rely on the
proof in Section 4.1. The model, as defined above, implies reversible routing
of the adjoint Markov chain, which can be easily verified by checking the
station balance equations (3). Next verifying Equation (8) leads to the same
products as in Section 4.1, and similarly to Section 4.1 we obtain H(n). Thus
we conclude immediately that the product form exists with H(n) as by (46).
�

n1

n2 n1=n2

c2

c1

n1

n2

n1=n2−1

n1=n2

Fig. 8. Tandem Model: The left figure illustrates state space (40), and the right
figure illustrates state space (62). For both truncations a product form (6) applies.

Remark 4.14 In this example we adjusted the sharing function to satisfy the
station balance equations. This adjustment leads to a smaller state space then
the state space of the parallel model, since the upper-right corner (c1, c2) can
not be reached, because this upper-right corner will ruin the reversibility of
the adjoint Markov chain. Thus, the product form has the same form as the
parallel model up to the routing part, but the state space differs to let the model
possess a product-form solution.
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5 Conclusion and further research

In this paper we extended the product-form results of [10] to a general set-
ting wherein blocking is allowed, as well as state dependent service and fully
stopped service. We present an approach for showing whether a model pos-
sesses a product form or not, unifying the tandem and parallel model. Illustra-
tive and new examples are presented, wherein remarkable results are presented.

The results presented in Sections 3 and 4 lead to a number of remarkable
observations, which will be discussed in more detail below.

First we observe that the product-form results for the parallel and the tandem
model have the same form for some examples up to the routing part (λ, versus
λ1 and λ2). The routing part can be easily explained due to the fact that the
input to the second station is fed by λ2 in the parallel model, and by λ in the
tandem model. For equivalent sharing functions and state spaces C, with C
as defined in Equation (18) this is the case. However, the product forms do
not have the same structure if the state space is truncated, due to blocking
of arrivals or stopping of service, such as in the examples in Sections 3.4, 4.4,
and 3.6, 4.6. For some examples similar functions of H(n) are obtained, due to
proper choice of the state space and stopping some transitions such that the
reversibility, and the station balance equations are verified. Thus, although
the models are fundamentally different the function H(n) is the same (except
the routing part) for both models.

Second, it is remarkable that the two station version of the limited PS-model
does not lead to a product form, for the tandem as well as for the parallel
model. Since if the service discipline is independent of the station a simple
product-form solution applies and even when the capacity is evenly shared
among all jobs a product form will suffice. However, if the number of jobs that
simultaneously receive service is bounded the structure is ruined. We suspect
that this is due to the effect of queueing, which not only depends on the sta-
tion where the job is served, but also on the other station.

Third, to verify the reversibility condition, we rely on the adjoint Markov
chain. It is interesting to observe that this is necessary for the tandem model,
but not for the parallel model. To this end, note that the transitions for the
tandem model are not reversible, whereas the transition rates of the paral-
lel model are reversible. This illustrates the additional value of defining the
adjoint Markov chain, since many model instances fit in the framework pre-
sented in Theorem 2.1 to prove that a model does or does not possesses a
product-form solution.
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The results lead to a number of directions for further research. First, in this
paper we focused on networks with two stations, which led to the analysis
of two-dimensional state spaces. An interesting area for further research is
to investigate to what extent the results can be generalized to models with
an arbitrary number of stations. We suspect that this type of generalizations
is possible under assumptions about the symmetry of the capacity assign-
ment function si(n). For non-symmetrical capacity assignment functions (see
for example (17)), additional assumptions are likely to be needed to obtain
product-form results. Derivation of this type of generalizations is a challenging
area for further research.

Second, the results form an excellent basis for the development of simple
yet accurate approximations for the mean sojourn times in case there is no
product form. In this context, we may also derive error bounds for these ap-
proximations, based on the value-function techniques for related product-form
networks [11].

Third, the results provide possibilities for optimization, both for models with
and without product-form solutions. We may be able to derive monotonicity
and convexity properties of mean sojourn times with respect to the limita-
tions on the number of jobs in service, and with respect to the limitations on
the state space. In this context, encouraging monotonicity results have been
obtained for the single-station case in [34]. Extensions of these results to the
more general setting of the present paper is an interesting area for follow-up
research. Another area of interest is the development of efficient strategies for
the dynamic assignment of capacities to the stations. To this end, we may
study the performance of a control scheme in a Markov decision framework,
and consider multi-modularity properties of the value functions. Initial results
presented in [40] show that significant performance gains can be obtained by
these dynamic schemes compared to state-independent schemes.
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