
Engineering Elastic Traffic in TCP-Based Networks:
Processor Sharing and Effective Service Time

G.J. Hoekstra1,2, R.D. van der Mei2,3 and N. Diaz-Feraren2

1Innovation Research & Technology, Thales Nederland B.V., Huizen, The Netherlands
2CWI, Department of Stochastics, Amsterdam, The Netherlands

3VU University Amsterdam, Department of Matlhematics, The Netherlands

Abstract—Today, a wide range of networks exist that
provide users with data services using TCP. For performance
engineering of such networks there is a need for simple but
accurate models to predict the performance under anticipated
load conditions. This is a challenging task, because the combined
packet-level dynamics of the network-protocol stack are highly
complicated. First, we explain how the packet-level dynamics and
protocol overhead of the multiple communication layers can be
successfully captured by a single parameter, called the effective
service time (EST), and give a full parameterization that explicitly
expresses the EST in terms of the network parameters. Second,
we show how the transfer-time performance can be modeled by
a classical M/G/1 Processor Sharing (PS) model, but where the
service time is replaced by the EST. Finally, extensive test-lab
experimentation shows that the model leads to highly accurate
predictions over a wide range of parameter combinations,
including light- and heavy-tailed file-size distributions and light-
and heavy-load scenarios. The simplicity and accuracy of the
model make the results of high practical relevance and useful
for performance engineering purposes.

Keywords—Processor Sharing, Flow-level Performance, Transfer
Times, Transmission Control Protocol, Parameterization.

I. INTRODUCTION

Processor Sharing (PS) models are frequently used to describe
the bandwidth sharing of elastic traffic in TCP-based networks
with notable contributions in this area from [1] for accounting
TCP bandwidth and [2] on the impact of user behavior. A
particularly attractive feature of PS models is that they abstract
from the complex packet-level details of the network, but at
the same time maintain the essential factors that determine
the data transfer-time performance of elastic data flows.
Moreover, the theory of PS models is well-matured and has
been successfully applied to model the flow-level behavior
of a variety of communication networks, including CDMA
1xEV-DO [3], WLAN [4], UMTS-HSDPA [5] and ADSL [6].
In this context we refer to two key contributions [7], [8] that
consider user-level performance in wireless data channels.
Despite the fact that PS models are often used to describe
the transfer-time behavior of TCP-based networks, hardly any
results are known about how to parameterize the model, i.e.,
how to translate the packet-level network parameters (e.g., at
the MAC, network, transport and application layer) into the
parameters of the corresponding PS model.

Motivated by this, the main goal of this paper is to
make a first step towards filling this gap between PS models

on the one hand and TCP-based networks on the other hand
by providing a full and explicit parameterization of the model.
Evidently, the transfer-time performance generally depends on
the specific protocols, and their parameter choices, used at the
different network layers. In this paper, we focus on the widely
used protocol stack FTP/TCP/IP/WLAN to exemplify the
modeling approach, but emphasize that the applicability of this
approach goes way beyond the protocol stack considered here.

In [4] a new analytic flow-level model was presented
that translates the complex and detailed dynamics of the
FTP/TCP/IP-stack over a WLAN (without admission control)
into an explicit expression for the EST of a file of a given size.
Based on the notion of the EST we can describe the flow-level
behavior of TCP-based file transfers as an M/G/1-PS model
where service time of a job of given size is replaced by the
EST. Extensive simulation results in [4] demonstrated that the
mean response times can be accurately predicted over a wide
range of parameter combinations.

In this paper we extend the results in [4] in three important
directions. First, we propose a refined model with a full
parameterization for the FTP/TCP/IP/WLAN protocol
stack that improves the performance of [4] for high-load
circumstances by explicitly taking into account the influence
of management traffic and frame encapsulation; these aspects
manifest themselves especially in high-load circumstances.
Experimental results show indeed a significant improvement
in accuracy of the refined model compared to the basic model
(see Section IV below). Second, to test the accuracy of the
model-based performance predictions, we have implemented
the system in a lab-test environment in order to compare the
transfer-time performance of the network with the analytical
results obtained from the corresponding PS model, while
the validation results in [4] were based on simulations only.
Third, we extend the validation experiments to the complete
transfer-time distribution, and the distribution of the number
of flows in the system. The experimental results for a wide
variety of parameter settings, including light- and heavy-tailed
file-size distributions and light- and heavy-load scenarios,
show an excellent match between the analytic results and the
test-lab experiments.

The remainder of this paper is organized as follows. In
Section II we briefly discuss the parameterization of the EST
model from [4], followed by model refinements suited for real
network deployments. In Section III we translate this model



to into analytic results for the transfer-time distributions using
results from the theory of M/G/1-PS systems. In Section IV
we validate the model by comparing testbed experiments
on the mean and the distribution of the file downloading
times against our proposed analytic model. Finally, Section
V contains concluding remarks and challenges for further
research.

II. EFFECTIVE SERVICE TIME MODEL

For completeness, in Section II-A we outline the basic effective
service time model (described in detail [4]). In Section II-B,
we present the refined model.

A. Basic model

We consider a network consisting of several WLAN stations
and one access point (AP), in which the stations are down-
loading files from an FTP server that is located close (with
negligable propagation delay) to the AP. Each station generates
FTP download requests according to a Poisson process and
may have multiple file transfers in progress because there is no
admission control mechanism on the number of file transfers
per station or in total. All file transfers are carried over TCP
connections that use delayed acknowledgments. The model
accounts for all overhead associated with a file download; the
file transfer itself, the FTP commands and TCP handshake for
opening and closing sessions on a WLAN network operating
in basic access mode, using the Distributed Coordination
Function (DFS). For further details on the assumptions of the
effective service time model, we refer the reader to [4]. One
can express the time spent by a WLAN station on transmitting
a TCP data segment (including the IEEE 802.11 MPDU,
IP and TCP overhead) of x bits and its associated MAC
acknowledgment by Td(x) and Tc respectively:

Td(x) = PHY +
MAC +Xhloh + x

TS
, (1)

Tc = PHY +
ack

TSc
, (2)

where TS represents the WLAN transmission rate (in bps)
for data segments and TSc for the WLAN acknowledgments.
The overhead associated with the higher-layer protocols of
the IEEE 802.11 MAC is represented by Xhloh. In the case
of using TCP and IP as higher-layer protocols Xhloh is
set to Xtcp/ip bits. When WLAN stations operate in basic
access mode, source and destination stations should wait for
certain inter-frame spacing times (DIFS and SIFS) between
the transmission of WLAN MAC data and acknowledgment
frames. Time Tda(x) is defined as the time needed for MAC-
acknowledged reception of a TCP segment consisting of x bits,
taking into account a propagation delay of Tp seconds:

Tda(x) = DIFS + Td(x) + Tp + SIFS + Tc + Tp. (3)

Note that the expressions for Td(x) and Tc from respectively
(1) and (2) depend on the IEEE 802.11 standard used (see [4]).
The total expected time of a transmission cycle of two TCP
data segments and one TCP ACK segment can be written as
follows:

Tcycle = 2Tda(XMSS) + Tda(0) (4)

+
Cwmin (7Cwmin + 8) τ

6(Cwmin + 1)
+

Tcol
Cwmin + 1

,

where

Tcol = Td(XMSS) + Tp + EIFS, (5)

where Tcycle is the expected time of an entire transmission
cycle during the file transfer, and Tcol is the time involved
in a collision on the medium. The remaining parameters are
Cwmin (minimum contention window), τ (slot time), XMSS

(TCP Maximum Segment Size (MSS)).

Parameter 802.11a 802.11b 802.11g 802.11n
Cwmin(slots) 15 31 15 15

MAC(bits) 246 224 246 246
τ 9µs 20µs 9µs 9µs

SIFS 16µs 10µs 10µs 16µs
DIFS 34µs 50µs 28µs 34µs
EIFS 90µs 364µs 342µs 90µs
PHY 20µs 192µs 26µs 20µs

ack(bits) 134 112 134 134
Tp 1µs 1µs 1µs 1µs

TS(bps) 54 · 106 11 · 106 54 · 106 54 · 106
TSc, TSm(bps) 24 · 106 106 24 · 106 24 · 106

STT 4µs NA 4µs 4µs

TABLE I: Key parameters in IEEE 802.11 protocols.

The total time spent on average in a TCP set-up is:

Ttcp setup = 3Tda(0) +
Cwmin(2Cwmin + 1)τ

6(Cwmin + 1)
(6)

+
(2Tshortcol + Tcol)

Cwmin + 1
,

where

Tshortcol = Td(0) + Tp + EIFS. (7)

The average time spent on using the medium for the FTP GET
request equals:

TFTPget = Tda(XFTPget) +
Tcol

Cwmin + 1
. (8)

The file transfer is concluded by the transmission of the last
data segment, which is immediately followed by an FTP close
command of size XFTPclose. The expected size of the last
data segment of the file approximately equals XMSS/2, and
hence:

Tlastcycle = Tda(XFTPclose) + Tda

(XMSS

2

)
(9)

+Tda(0) +
ThalfMSSCol

Cwmin + 1
+
Cwmin (7Cwmin + 8) τ

6(Cwmin + 1)

+
1

2

(
Tda(0) + TshortCol +

Cwmin(2Cwmin + 1)τ

6(Cwmin + 1)

)
,

where

ThalfMSSCol = Td

(XMSS

2

)
+ Tp + EIFS. (10)

After sending the last TCP data segment, the AP will contend
with the station that attempts to transmit its last TCP ACK



and later sending its TCP FIN. The expected time to close the
TCP connection can then be expressed as:

TTCP close = 4Tda(0) +
2Cwmin(4Cwmin + 5)τ

6(Cwmin + 1)
(11)

+
2Tshortcol
Cwmin + 1

.

The expected time consumed by the FTP commands and the
TCP session opening/closing as defined by (6), (8) and (11),
can be expressed as:

TtcpftpOH = Ttcp setup + TFTP get + TTCP close. (12)

Now, we obtain the EST of the transfer time of a file of
size Xfile (in bits) as observed at the application-layer by
combining (4), (9), and (12):

EST (Xfile) (13)

=

(
Xfile − XMSS

2

)
Tcycle

2XMSS
+ Tlastcycle + TtcpftpOH ,

Note that in our modeling approach, we have assumed the use
of TCP with delayed acknowledgments.

B. Refined model

In the previous section, the main aspects for modeling
file transfers over a WLAN network have been accounted
for. In practice, however, the WLAN network also carries
management traffic and applies frame encapsulation that is
not commonly accounted for due to the limited impact this is
considered to have on the overall network performance [9].
Moreover, the FTP application is in reality more sophisticated
than described in the previous section. Although the model
described previously closely matches the behavior of real
networks for most purposes and for the simulation studies
conducted, further model enhancements are proposed in
this section to improve the analytic model specifically for
testbed experiments that expose the network to high traffic
loads. Exactly in these circumstances certain aspects that
may seem of minor importance turn out to have a noticeable
performance impact. In the following subsections the model
enhancements for use in practical deployments are presented.

Frame encapsulation overhead
The Logical Link Control (LLC) layer as defined by the IEEE
802.2 standard can be used by underlying protocol (sub)layers,
therefore the use of LLC is optional; some implementations
of the IEEE 802.11 standard do not use the LLC layer
(such as the OPNET modeler implementation), whereas other
implementations (i.e., from equipment manufacturers like
Cisco and Linksys) do use the LLC layer. In the latter case,
two encapsulation methods may be applied, one method
described in RFC 1042 [10] and the other in the IEEE
802.1H standard [11], both are derivatives of the IEEE 802.2
Subnetwork Access Protocol (SNAP) and introduce eight
bytes of additional header information to the WLAN MAC
payload. In the context of the presented performance model,
there are no implications of the LLC/SNAP encapsulation as a
higher-layer protocol other than a reduced medium efficiency.
Since IEEE 802.11-based WLANs are capable of transmitting
MAC frames with payloads up to 2304 bytes per frame, IP

packets may still have a size of 1500 bytes, in accordance
with RFC 1191 that defines the Path Maximum Transmission
Unit (MTU) discovery for IP networks. Therefore, the
overhead due to the LLC/SNAP encapsulation adds to the
other encapsulation overhead and can be accounted for by
using Xhloh = Xtcp/ip + 64 in (1).

FTP modeling
The current File Transfer Protocol (FTP) is standardized since
1985 in RFC 959 [12]. The first file transfer mechanisms
were already proposed in 1971 and implemented on hosts at
MIT, followed by many RFCs and other implementations.
As opposed to the implementation in the OPNET network
simulation environment, practical deployments operate in
accordance with the methods outlined in RFC 959 as is done
in the widely used ProFTPD [13]. To obtain more accuracy
in modeling experimental deployments, more detailed FTP
interactions are added to the analytic model that are outlined
below. As we assume that all users have logged in to the
FTP server already, the message sequences needed to setup a
file download involve (cf. [14]) the transmission of an FTP
passive command (PASV) with size Xftp−pasv by the station,
followed by a 227 (entering passive mode) response from the
server (with a piggy-backed TCP ACK) of size Xftp−227 by
the FTP server (and hence the AP) to confirm the passive file
download mode. This two-way handshake is modeled similar
to the first two sequences of the TCP setup in (6), but with
the appropriate TCP segment payload values for the PASV
request and the 227 response.

Tftp setup = Tda(Xftp−pasv) + Tda(Xftp−227) (14)

+
Cwmin(2Cwmin + 1)τ

6(Cwmin + 1)
+

(Tshortcol + Tcol)

Cwmin + 1
.

Here, the idle time of the medium due to backoff is expected
to be the minimum of two backoff observations because the
AP and the station have both a packet to transmit. The PASV
request may collide with a TCP data segment from the AP
with the probability of both stations drawing the same backoff
interval, whereas the 227 response by the AP may only collide
with the smaller packets from the stations. After receiving the
227 (entering passive mode) response from the FTP server, the
station initiates a new TCP connection for the data transfer and
issues an FTP retrieve command (RETR) with size Xftp−retr
to obtain a certain file. As soon as the TCP connection is
established, the station issues the FTP RETR command and
will receive a 150 (opening binary mode data connection)
response message of size Xftp−150 from the FTP server. Since
the station’s backoff time does not inhibit the AP from using
the medium, the backoff time is in this case not modeled
explicitly. Hence, the average time spent on using the medium
for the FTP RETR Request and Response (RR) equals:

Tftp rr = Tda(Xftp−retr) + Tda(Xftp−150) (15)

+
Cwmin(2Cwmin + 1)τ

6(Cwmin + 1)
+
Tcol + 3Tshortcol
2(Cwmin + 1)

.

Directly after the 150 response (opening binary mode data
connection) is transmitted by the FTP server, the TCP trans-
mission cycle is repeated up to the point where the last cycle is
transmitted. Unlike the model in Section II-A we assume in the
present model that the user’s FTP session remains active and



does not require the transmission of an FTP closure command.
Hence the last transmission cycle may consist of one or two
TCP data segments, with equal probability, and the size of
the last TCP data segment will on average be XMSS/2 bits.
We therefore conclude that the last TCP transmission cycle
transports on average XMSS bits in an expected time equal
to:

T̃lastcycle =
Tda (XMSS)

2
+ Tda

(
XMSS

2

)
(16)

+Tda(0) +
ThalfMSSCol

Cwmin + 1
+
Cwmin (11Cwmin + 13) τ

12(Cwmin + 1)
.

In (16) the last term of T̃lastcycle represents the idle time of
the medium due to backoff and accounts for the fact that
the last cycle may consist of one or two TCP segments.
As a result, two or three backoff periods may occur during
the last cycle with equal probability. After the station has
acknowledged the last TCP data segment, it will close the
TCP data connection by transmitting a TCP FIN that is
acknowledged by the FTP server, followed by an FTP 226
(transfer complete) response of size Xftp−226 to indicate that
the transfer has completed. Finally, the station acknowledges
this response, which concludes the data transfer. Similar to
the TCP connection setup (6) and the FTP retrieve request
(15) the AP contends with at least one station for the medium,
causing the medium idle time to be equal to the minimum of
two backoff windows and possible collisions occur with small
packets. Accordingly, the station’s backoff does not inhibit the
medium from being used and the transmissions may collide
with the larger TCP data segments from the AP. The expected
time to close the FTP data transfer can be approximated by:

T̃TCP close = 3Tda(0) + Tda(Xftp−226) (17)

+
2Cwmin(2Cwmin + 1)τ

6(Cwmin + 1)
+

2Tshortcol + 2Tcol
Cwmin + 1

.

The time consumed by transmitting the FTP overhead and TCP
session opening/closing as defined by (6), (14), (15) and (17)
is calculated by:

T̃tcpftpOH = Tftp setup + Ttcp setup + Tftp rr (18)

+ T̃TCP close.

Now, we obtain the EST of the transfer of a file of size Xfile

(in bits) as observed at the application-layer for the enhanced
analytic model by combining (4), (16), and (18):

˜EST (Xfile) (19)

=

(
Xfile − XMSS

2

)
Tcycle

2XMSS
+ T̃lastcycle + T̃tcpftpOH .

Recall that in our modeling approach, we have assumed the
use of TCP with delayed acknowledgments.

WLAN beacon frames
Many performance models have appeared in the literature
that are validated by simulations (cf. [15], [16], [17], [18])
and have concentrated on the main aspects of the medium
access control protocol. In [9] the authors observed that other
performance models ignored the impact of among others the
Timing Synchronization Function (TSF). In an infrastructure

network, the APs are responsible for performing the power
management function by distributing the time in certain
management frames, called beacons. When APs are about
to transmit a beacon frame, their local time is inserted into
the beacon. The IEEE 802.11 standard mandates that the
AP periodically transmits the beacons and that the receiving
stations always accept the timing information received.
Another purpose of the beacon frame is to announce the
presence of an IEEE 802.11 network and its capabilities
at regular intervals, called Beacon Intervals (BI). These
time intervals are expressed in Time Units (TU) of 1.024
microseconds. Typically, beacon intervals are set to 100 TUs.
The beacon frame is based on an IEEE 802.11 management
frame, and requires for the transmission of a MAC MPDU of
x bits at rate TSm an amount of time equal to:

Tm(x) = PHY +
x

TSm
. (20)

Similar to the transmission of data frames, the AP follows the
procedure described in the standard, [19], for the transmission
of beacon frames. However, the receiving stations do not
acknowledge the reception of the beacons that are broadcast
by the AP. To this end, the transmission cycle of a beacon
frame, Tbc, is approximated by using (20) as follows:

T̃bc = DIFS + Tm(Xbeacon) + Tp +
Cwminτ

2
, (21)

where Xbeacon is the size of the entire management frame in-
cluding the beacon specific fields, as defined at page 45 of [19].
Although the transmission of beacons may be delayed due to
CSMA deferrals, subsequent beacons have to be scheduled
by the AP at the nominal interval, even on a busy network.
Consequently, the effective service time of the file transfer as
observed at the application-layer is stretched. The EST in the
absence of beacon frames denoted EST ′(Xfile) that may be
obtained from either (13) or (19) is treated as follows to obtain
the EST ′′(Xfile) that accounts for the presence of beacon
frames:

EST ′′(Xfile) = EST ′(Xfile)
(
1 +

Tbc
BI

)
. (22)

III. PS MODELS AND EFFECTIVE LOAD

To model the flow-level behavior of file transfers, we consider
a classical M/G/1-PS model, with flow-arrival rate λ, and
where the service time B is generally distributed with mean
β (in time units). In this model, incoming jobs immediately
enter the system, thereby receiving a fair share of the available
capacity. The load of the system is ρ := λβ < 1. For this
classical model, a number of analytic results are known. For
later reference, we formulate a number of analytical results.
Let M denote the number of jobs in the system, and S
denote sojourn time of an arbitrary job. Then the steady-state
distribution of M is, for m = 0, 1, . . .,

Pr{M = m} = (1− ρ) ρm. (23)

Moreover, using Little’s formula we obtain the unconditional
mean sojourn times

E[S] =
E[M ]

λ
=

β

1− ρ
. (24)



Furthermore, it is known that the conditional mean sojourn
time of a job of size τ equals:

E[S|τ ] = τ

1− ρ
. (25)

Note that (23)-(25) are insensitive to the service-time dis-
tribution, in the sense that they depend on the service-time
distribution through its mean β. Furthermore, for the case
of exponential service-time distributions (normalized so that
β = 1, without loss of generality), the sojourn-time distribution
is (cf. [20]): For t > 0,

Pr{S > t} = 2

∫ π

0

{exp{(−x[2√ρ− (1 + ρ)cos(x)]

/[(1− ρ)sin(x)]− ((1− ρ)2t/(1 + ρ− 2
√
ρcos(x))}})

{(1− ρ)
(1 + exp{−π[2√ρ− (1 + ρ)cos(x)]/(1− ρ)sin(x)})}−1

sin(x)dx. (26)

To translate the flow-level performance for WLAN file down-
loads (discussed above) into an M/G/1-PS model, we define the
unconditional mean EST of an arbitrary flow (for the refined
model) by

βeff :=

∫ ∞
0

EST ′′(τ)dXfile(τ), (27)

where EST ′′(τ) is defined in (22). Moreover, define the
effective load as follows:

ρeff := λ · βeff . (28)

Similarly, the effective load is obtained for TCP implementa-
tions that use non-delayed acknowledgments or are based on a
model enhancement suited for experimental purposes by using
the EST definitions from (19) and (22). The quantity ρeff can
be viewed as the effective medium utilization resulting from
the load introduced by processing λ file download requests
per second. Since the file download in the WLAN network
encompasses the file transfer and the introduced overhead of
FTP and TCP, the expected (unconditional) file transfer time
is modeled as the expected (unconditional) sojourn time in an
M/G/1-PS model with mean service time βeff and load ρeff :

E[R] =
βeff

1− ρeff
. (29)

Thus, to apply the analytic model, the average file
unconditional file-transfer time E[R] is obtained from
(29), where βeff and ρeff are given by (27) and (28).

Similarly, the distribution of the number of flows in the
WLAN-system can be obtained using (23). If N denotes the
number of file transfers in progress, then for n = 0, 1, . . .,

Pr{N = n} = (1− ρeff ) ρneff , (30)

where ρeff is defined in (28).

IV. MODEL VALIDATION BY TESTBED EXPERIMENTS

To validate whether the (parameterized) M/G/1-PS model
accurately predicts the transfer-time performance in TCP-based
networks, we have performed extensive test-lab experimenta-
tion. The results are outlined below.

A. Experimental setup

The experimental setup consists of two connected Ubuntu
Linux-based PCs: one functioning as FTP server, and the other
as FTP clients. These PCs are interconnected by two indepen-
dent and similar access networks to measure the download
response times of file transfers in each network separately and
compare the obtained values with the expected file-download
time from the analytic model. In the experimental setup, the
PC with the FTP clients generates all download requests,
according to independent Poisson processes. It is important
to state that with a larger number of WLAN client devices
there is, in addition to the AP, typically only one station
contending for the medium at the same time, as reported
in [16] and observed during the experiments in [21]. This
justifies the choice of using one client device for our downloads
rather than a large population. At the PC operating as FTP
server, files are generated according to the following file-size
distributions, with different values of the squared coefficient
of variation of the job sizes (denoted c2B): deterministic (1
Mbytes, c2B = 0), exponential (c2B = 1), two-phase hyper-
exponential with c2B = 4 with (balanced means), and Pareto-2
(with Pr (B > x) = 1

4x2 for x > 1/2 and hence c2B =∞). All
non-deterministic distributions consisted of 40.000 different
files with mean size 200 kbytes that are retrieved in a random
order by the FTP clients. In our testbed environment, the
wireless access network consists of a Linksys (WAP54G)
AP and a router (TP-Link 1043ND) that is transformed into
an Ethernet bridge. Both devices are connected by a Mini-
Ciruits power splitter (ZB8PD-4-S) to obtain a reproducible
radio frequency environment with low interference and small
propagation delay, Tp. The AP and the ethernet bridge use a
modified firmware program, called OpenWrt, that is specifi-
cally designed for embedded devices such as residential gate-
ways and routers. This firmware offers detailed WLAN-MAC
configuration options. Table II summarizes the parameters that
are specific for our testbed configuration.

Variable Setting
Xftp−pasv 48 bits
Xftp−227 392 bits
Xftp−retr 272 bits
Xftp−150 704 bits
Xftp−226 184 bits
Xbeacon 584 bits
XMSS 11680 bits
Xtcp/ip 320 bits
w 70080 bits (8760 bytes)
Xfile

{
2× 105, 1× 106

}
bytes

1
λ200kb

{0.48, 0.46, 0.44, 0.42, 0.40, 0.38, 0.36, 0.35} seconds
1

λ1Mb
{2.34, 2.22, 2.12, 2.02, 1.93, 1.85, 1.77, 1.70} seconds

Tc 11 · 106 bps
BI 100 Time Units (TUs)
Tp 10−9 seconds

TABLE II: Testbed environment and model parameters.

In Table II it is shown that the TCP stack in our testbed envi-
ronment is configured to use an MSS, indicated as XMSS , of
1460 bytes and a window-size, w, of 8760 bytes. The standard
TCP implementation from our Ubuntu Linux is used, that is an
implementation of the TCP protocol defined in RFC-793, RFC-
1122 and RFC-2001 with the NewReno and SACK extensions.
The TCP stack is configured accordingly to support the 8760-
byte window-size and an MSS of 1460 bytes. Therefore we



Fig. 1: Normalized mean transfer time E[R] as a function of
ρeff , for different file-size distributions.

use in the analytic model 40 bytes of TCP/IP overhead of the
higher-layer protocols, represented by variable Xtcp/ip. With
regard to the IEEE 802.11 MAC parameters, slightly different
settings are used in our experiments; (1) the AP is configured
to broadcast beacon frames at a transmission rate, TSm, equal
to 106 bps (specified in Table I) with a commonly-used interval
of 100 time units of 1.024 microseconds each, and (2) control
frames (WLAN acknowledgments) are transmitted at a rate,
Tc, equal to the transmission of data frames, 11 · 106 bps.
In addition, the FTP commands and responses introduced in
Section II-B are also specified in Table II.

B. Experimental results

Next we give an outline of the validation results.

B.1 Expected transfer-time and near-insensivity
Let us first look at the mean transfer time E[R], given by
(29). Recall from Section III that in the M/G/1-PS model the
mean sojourn time is insensitive to the job-size distribution,
which suggests that in the real network the mean transfer
time is at least near-insensitive to the file-size distribution.
The check the accuracy of the model and the (in)sensitivity of
the transfer-time performance with respect to the distribution
of the file size, test-lab runs were performed for four different
file-size distributions and eight different load values. Runs
have been executed until a sufficiently small 95%-CI was
obtained (with width less than 2.8% of the mean), requiring
durations of over 140 hours to gather up to 1.450.000
observations per run. Figure 1 shows the experimental values
of E[R] as a function of the effective load ρeff for the
different job-size distributions, and the analytic results based
on the basic model described in Section II.A and on the
refined model discussed in Section II.B.

The results in Figure 1 lead to a number of interesting
observations. First, they demonstrate that the analytic results
closely match the outcomes from the experimental testbed

for a broad range of model parameters. Second, we observe
that there is no significant dependence of the mean transfer
time in our experiments on the file-size distribution, which
confirms the (near-)insensitivity result (29) suggested by the
M/G/1-PS model. Third, the results show that the refined
model indeed outperforms the basic model, particularly under
heavy load scenarios, as it should. We re-emphasize the
importance of these observations, which extend the results in
[4] to real network equipment and underlines the usefulness
of PS models to predict the transfer-time performance of
elastic traffic streams.

B.2 Probability distribution of the file-transfer times
For the special case of exponential job sizes, an exact
expression for the tail probability of the M/G/1-PS model is
given in (III). This result suggests that we can approximate
the Pr{R > t} in the real network by using (III), where
ρ is replaced by ρeff , defined in (28). To validate this,
Figure 2 shows the tail probabilities, both by using (III) and
by lab experiments, for a system with exponential file-size
distributions with mean βeff = 0.312 and effective load
ρeff = 0.78.

Fig. 2: Tail probabilities for transfer-time distribution:
analytic vs. experimental results (for exponential job sizes).

Figure 2 shows again the model-based results are extremely
close to those obtained in the test-lab setting.

B.3 Tail probabilities for non-exponential service times
For the case of non-exponential service times, the complete
probability distribution of the sojourn time for the M/G/1-PS
model is generally unknown, and is not insensitive to the
distribution of the job sizes. Therefore, to validate the
accuracy of the PS model (with effective service time) for
predicting the transfer-time distributions in real systems, we
have implemented the M/G/1-PS model in a discrete-event
simulator. This enables us to obtain the ’exact’ values of the
tail probabilities of the sojourn times and compare them to
the tail probabilities of the transfer times in the real system.



Fig. 3: Tail probabilities of the file-transfer times (mean
file-size of 200kBytes) for hyper-exponential and Pareto-2

job-size distribution: analytic vs. experimental results.

Fig. 4: Tail probabilities of the file-transfer times (constant
file-size of 1MByte) for deterministic job-size distribution:

analytic vs. experimental results.

Figure 3 and 4 show both the simulated (‘exact’) distribution
and the experimentally obtained tail probabilities, and where
the job-size distribution is varied as deterministic, two-phase
hyper-exponential with squared coefficient of variation 4 and
Pareto-2 (with infinite variance). The results in Figure 3
and 4 show again that the results based on the analytic model
closely match the ones obtained in the test-lab setting. We
also see that the influence of the file-size distribution on the
distribution of the transfer times is nicely covered by the
model.

B.4 Tail probabilities of number of flows
The results in (23) for the M/G/1-PS model suggest that the
number of jobs in the real system has a (nearly) geometric
probability distribution with parameter ρeff , and moreover,
is nearly insensitive to the job-size distribution. To validate
whether this is indeed the case for the real system, Figure 5
shows the tail probabilities of N on a log-scale for different
job-size distributions (similar to the ones in Figure 1) for a
system with βeff = 0.312 and ρeff = 0.78.

Fig. 5: Tail probabilities of number of jobs: analytic vs.
experimental results.

The results in Figure 5 show again the model-based precistions
closely match with the lab-test results. Moreover, the results
also confirm the near-insensitivity of the number of jobs with
respect to the file-size distribution.

V. CONCLUDING REMARKS AND FURTHER RESEARCH

The main contribution of this paper is that it is an
important first step towards bridging the gap between the
powerful class of PS models for which a wealth of analytic
results are known and complicated TCP-based communication
networks on the other hand. This makes it possible for
performance engineers to answer what-if questions under
anticipated load scenarios.

The results suggest a number of challenges for follow-
up research. First, the modeling approach presented in this
paper was exemplified for the FTP/TCP/IP/WLAN protocol
stack, but can be extended to other protocol stacks, including
both wireless and wired networks. This requires in-depth
analysis of the protocol details, similarly to the analysis in
Section II. The development of similar models for other
protocol stacks, and the evaluation of their accuracy, is a
challenging topic for follow-up research. Currently, we are
studying the parameterization for LTE networks. Second, a
promising means to boost the performance of wireless and



wired networks is to make use of the fact that the densely
populated areas are usually covered by a multitude of access
networks. This phenomenon, often called Concurrent Access
(CA), opens up tremendous possibilities for performance
improvement by using multiple access networks at the same
time. To fully exploit the possibilities of CA, smart algorithms
are needed to efficiently split traffic among the different
access networks. To this end, the ability to use parameterized
PS-models to describe the flow-level performance at individual
access networks (as discussed in this paper) is a crucial step
in that direction.

VI. ACKNOWLEDGMENTS

This work was performed within the project RRR (Realisation
of Reliable and Secure Residential Sensor Platforms) of
the Dutch program IOP Generieke Communicatie, number
IGC1020, supported by the Subsidieregeling Sterktes in Inno-
vatie. The contribution of R.D. van der Mei has been partially
funded by the Dutch Ministry of Economic Affairs, project
”Service Optimization and Quality” (IGC0820).

REFERENCES

[1] S. Ben Fredj, T. Bonald, A. Proutiere, G. Régnié, and J. W. Roberts,
“Statistical bandwidth sharing: a study of congestion at flow level,” in
Proceedings of ACM SIGCOMM, 2001, pp. 111–122.

[2] T. Bonald and J. W. Roberts, “Congestion at flow level and the impact
of user behaviour,” Computer Networks, vol. 42, no. 4, pp. 521–536,
July 2003.

[3] S. C. Borst, O. J. Boxma, and N. Hegde, “Sojourn times in finite-
capacity processor-sharing queues,” in Proceedings NGI 2005 Confer-
ence, 2005.

[4] G. J. Hoekstra and R. D. van der Mei, “Effective load for flow-level
performance modelling of file transfers in wireless LANs,” Computer
Communications, vol. 33, no. 16, pp. 1972–1981, 2010.

[5] Y. Wu, C. Williamson, and J. Luo, “On processor sharing and its appli-
cations to cellular data network provisioning,” Performance Evaluation,
vol. 64, no. 9-12, pp. 892–908, 2007.

[6] J. V. L. Beckers, I. Hendrawan, R. E. Kooij, and R. D. van der
Mei, “Generalized processor sharing models for internet access lines,”
in Proceedings of IFIP Conference on Performance Modelling and
Evaluation of ATM and IP networks, Budapest, 2001, pp. 101–112.

[7] T. Bonald and A. Proutière, “Wireless downlink data channels: user
performance and cell dimensioning,” in Proceedings of ACM MobiCom,
2003, pp. 339–352.

[8] S. Borst, “User-level performance of channel-aware scheduling algo-
rithms in wireless data networks,” IEEE/ACM Transactions on Network-
ing, vol. 13, no. 3, pp. 636–647, 2005.

[9] A. Heindl and R. German, “The impact of backoff, EIFS, and bea-
cons on the performance of IEEE 802.11 wireless LANs,” in IPDS
’00: Proceedings of the 4th International Computer Performance and
Dependability Symposium, Washington, DC, U.S.A., 2000, p. 103.

[10] J. Postel and J. Reynolds, “Standard for the transmission of IP data-
grams over IEEE 802 networks,” Internet Engineering Task Force, RFC
1042, February 1988.

[11] IEEE Standard 802.1H, “IEEE Standards for Local and Metropolitan
Area Networks: Recommended Practice for Media Access Control
(MAC) Bridging of Ethernet V2.0 in IEEE 802 Local Area Networks,”
1995.

[12] J. Postel and J. Reynolds, “File transfer protocol (FTP),” Internet
Engineering Task Force, RFC 959, October 1985.

[13] ProFTPD Project, “Professional FTP Daemon,” November 2012, http:
//www.proftpd.org/.

[14] W. Stevens, TCP/IP Illustrated, Volume 1: The Protocols, 4th ed. New
York, NY, U.S.A.: Addison-Wesley Professional, 1993.

[15] R. Litjens, F. Roijers, J. L. van den Berg, R. J. Boucherie, and
M. J. Fleuren, “Performance analysis of wireless LANs: an integrated
packet/flow level approach,” in Proceedings of the 18th International
Teletraffic Congress - ITC18, Berlin, Germany, 2003, pp. 931–940.

[16] F. Roijers, J. van den Berg, and X. Fang, “Analytical modelling of TCP
file transfer times over 802.11 wireless LANs,” in Proceedings of the
19th International Teletraffic Congress - ITC19, Beijing, China, 2005.

[17] D. Miorandi, A. A. Kherani, and E. Altman, “A queueing model for
HTTP traffic over IEEE 802.11 WLANs,” Computer Networks, vol. 50,
no. 1, pp. 63–79, 2006.

[18] T. Sakurai and S. Hanley, “Modelling TCP flows over an 802.11
wireless LAN,” in Proceedings of European Wireless Conference, 2005.

[19] ANSI/IEEE Standard 802.11, “Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) specifications,” 1999.

[20] S. F. Yashkov, “Processor-sharing queues: some progress in analysis,”
Queueing Syst. Theory Appl., vol. 2, no. 1, pp. 1–17, Jun. 1987.
[Online]. Available: http://dx.doi.org/10.1007/BF01182931

[21] G. J. Hoekstra and R. D. van der Mei, “On the processor sharing of file
transfers in wireless LANs,” in Proceedings of the 69th IEEE Vehicular
Technology Conference, VTC Spring 2009, Barcelona, Spain, 2009.


