
Efficient Traffic Splitting in Parallel TCP-Based
Wireless Networks: Modelling and Experimental

Evaluation

G.J. Hoekstra1,2, R.D. van der Mei2,3 and J.W. Bosman2

1Innovation Research & Technology, Thales Nederland B.V., Huizen, The Netherlands
2CWI, Department of Stochastics, Amsterdam, The Netherlands

3VU University Amsterdam, Department of Mathematics, The Netherlands

Abstract—The concurrent use of networks provides a
powerful means to boost performance in areas covered by
multiple networks where only limited bandwidth is available.
However, despite its enormous potential for performance
improvement only little is known about how to effectively
exploit the potential for performance improvement in practical
deployments. This raises the need for traffic-splitting-and-
reassembly algorithms that are effective, yet simple and
easy-to-deploy. Motivated by this, we first propose a simple
analytic flow-level model, called the Concurrent Access Network
(CAN) model, that optimally splits traffic in the idealized
situation where there is full state information at infinitely
fine-grained time granularity, leading to zero synchronization
delay during the reassembly phase. Next, we present a new
splitting algorithm for TCP-based networks that uses a simple
score function to make on-the-fly decisions on the routing of
individual TCP segments, based on the measured per-connection
RTT, transmission-buffer content and throughput. Then, we use
the CAN-model as a benchmark to evaluate the effectiveness
and practical usefulness of the score-function based algorithm
on real TCP networks in a test-lab environment. Extensive lab
experimentation demonstrates that this score-function based
splitting of TCP traffic is extremely efficient, leads to close-to-
optimal response-time performance and is easily deployable.

Keywords—Traffic Splitting, Processor Sharing, Concurrent
Access, Flow-level Performance, File Splitting.

I. INTRODUCTION

Users in areas covered by a multitude of access networks
may benefit from the opportunity to combine the available
network resources to improve performance. This potential
benefit is particularly appealing in the context of wireless
networks, where the existing spectral efficiencies leave
room for only minor improvements in channel capacity [1].
Therefore, the concurrent use of multiple networks is a viable
alternative to better utilize a wider range of frequency bands
[2] and to improve on application performance. Concurrent
Access (CA) is not a new field of research, but a rather
dispersed one, primarily into the areas of queueing theory
and communication-protocol implementations. The literature
leaves a clear gap between theory and practice: The existing
theory (references are listed below) provides important
fundamental insight, but does not explicitly tell how the
application performance can be boosted by state-of-the-art

protocol implementations on CA for transferring files over
multiple networks in practical situations. Motivated by
this, the aim of this paper is to make a first step towards
filling this gap by proposing and evaluating a new, efficient,
yet easy-to-deploy algorithm for (near-)optimal TCP-level
splitting of traffic in areas covered by a multitude of networks.

The use of multiple fixed-line Public Switched Digital
Network (PSDN) channels in parallel can be viewed as an
early (1994) realization of CA [3]. Many different forms
of parallelism occur throughout different protocol layers in
communication systems to enhance reliability, e.g. protecting
working channels that transfer voice signalling using SCTP,
or to increase network performance for Wireless LANs
(WLAN) using multiple antennas in its most recent 802.11n
standard [4]. Many research efforts that are focused on
combining the capacity of multiple networks concentrate on
the link layer, the transport layer, and on the application
layer of communication systems. At the data link layer,
approaches have been proposed for switching between
several homogeneous networks [5] and scheduling over
heterogeneous networks [6], [7]. However, approaches at
this layer require modifications for each different network
interface that needs to be supported and, moreover, switching
the data segments of the same TCP session over different
network links, even in homogeneous networks, adversely
affects TCP performance [5], [8]. At the transport layer,
two main areas can be distinguished: one concentrating on
the use of SCTP (see [9], [10], [11]) and the other on using
or modifying TCP. Within the IETF the SCTP transport
protocol [12] has evolved from a transport protocol for
voice-signalling traffic into one that allows various types of
information to be transported over different network paths. It
needs to be pointed out that the functionality for efficiently
using concurrent paths is not considered by the standard,
meaning that distributing and re-sequencing the data should
be implemented separately, and that the flow- and congestion
control mechanism is the same for the possibly different
networks used in parallel, which is not in the interest of
overall efficient link utilization nor application performance
[8], [13]. Several proposals to modify, use and extend TCP
for exploiting multiple networks have appeared. The most
prominent being a modification of TCP, called pTCP [8], later



followed by mTCP [13] that both aimed at enhancing TCP to
be capable of using multiple networks concurrently. Finally,
at the application layer, another approach can be applied to
establish multiple connections to one or more endpoints for
transferring information in a distributed manner, as is done
by P2P techniques.
In this paper we concentrate on the transport layer to realize
CA, because it preserves existing applications, abstracts from
network particularities and seems the most promising layer
to operate on with respect to achieving high performance gains.

On the theoretical side, there is a wealth of literature
on performance models and analysis. Processor Sharing (PS)
models have been successfully applied to model TCP-based
file transfers over a wide range of different network standards
that are commonly used, from cellular [14], [15] to WLANs
[16], [17]. The complex dynamics of multiple protocol layers
can be modelled to obtain very accurate download response
time predictions over a single network [17]. Despite the
applicability of PS-based models to real communication
networks, there is little known on PS-based models suitable
for modelling the use of multiple networks concurrently. As an
exception, Key et al. investigate the efficiency of combining
multipath routing and congestion control in TCP-based
networks. In [18] they show that under certain conditions the
allocation of flows to paths is optimal and independent to the
flow control algorithm used. In [19] it is shown that with RTT
bias uncoordinated control can lead to inefficient equilibria,
while without RTT bias, both coordinated and uncoordinated
Nash equilibria correspond to desirable welfare maximizing
states. The distribution and re-assembly of tasks are typically
modelled by fork-join constructions [20], in many cases
embedded in so-called stochastic activity networks. In cases
where the processing times of the subtasks are independent,
exact or numerical analysis is relatively simple (e.g., [21]),
whereas the inclusion of dependent processing times (e.g., due
to queuing or job splitting) typically leads to very complex
analysis (e.g., [22], [23]) and no closed-form solution exists.
For PS-based nodes that process the tasks of a job in parallel,
the complex correlation structure between the sojourn times
at the PS nodes makes an exact detailed mathematical
analysis of the model impossible. In [24] and [25], the
author analyzes a similar model but with FCFS queues and
with probabilistic splitting. We further refer to Altman et al.
[26], who consider routing policies in a distributed versus
centralized environment. In general our queueing model
falls within the framework of fork-join queueing networks,
see [27] for an extensive overview. In a recent paper [28],
the theoretical foundation for a tail-optimal splitting rule is
provided for light foreground load that is shown to work well
with respect to both the tail asymptotics and the mean sojourn
times.

Despite the fact that the literature on analytic models
provides important and valuable insight in the performance
implications and efficiency of traffic-splitting algorithms, they
do not explicitly reveal how to exploit contemporary protocol
implementations on CA in practical deployments. Motivated
by this, the aim of this paper is to propose and evaluate a
simple, yet efficient and easily deployable traffic-splitting
algorithm for TCP-based networks. To this end, we first
propose a model that optimally splits traffic in a dynamic

Fig. 1: The concurrent access network model.

way based on full state information at infinitely fine time
granularity. This model is called the concurrent access network
(CAN) model and will be used as a benchmark. We show
that the expected response time under this optimal splitting
performance can be numerically calculated by solving a
continuous-time Markov chain. In practical deployments,
however, there is only limited and coarse-grained information
(e.g., measured RTTs, queue lengths and throughputs) is
available to base routing decisions on, so that this optimal
performance - which will be used as a benchmark - can
not be reached. Next, motivated by the work in [29], we
propose a simple and easily deployable method for TCP-level
traffic splitting, where TCP segments are routed based on a
score-function that dynamically adapts the routing decisions
to observed per-node RTTs, transmission-buffer contents and
measured throughput values. Then, we present the results of
extensive test-lab experiments to assess the effectiveness of
our approach. The results show that the score-function method
matches the performance of the benchmark model extremely
well for a wide range of parameter settings, and as such
provides a powerful means to effectively split TCP traffic in
the presence of concurrently available access networks.

The remainder of the paper is organized as follows. In
Section II we describe the CAN model and introduce the
notation. In Section III we assess the performance of the
CAN-model by simulations, and show that the expected
response time under the CAN-model is nearly insensitive
to the job-size distribution. This allows us approximate the
optimal response-time performance by solving the steady-
state distribution of a continuous-time Markov chain. In
Section IV we discuss a simple score-function based approach
to dynamically split traffic at the TCP-layer over different
parallel networks. In Section V we discuss the results of
extensive experimentation in a test-lab environment. Finally,
in Section VII we address a number of topics for further
research.

II. THE CONCURRENT ACCESS NETWORK MODEL

The analytic model consists of N parallel PS nodes (see
Figure 1). There are N + 1 traffic streams: a single stream
of foreground jobs (called class-0 jobs) and N streams of
background jobs (called class-i jobs, for i = 1, . . . , N ).
Class-i jobs arrive according to independent Poisson processes



with rates λi, the service times are generally distributed with
mean βi, and the corresponding load offered to the system is
ρi = λiβi, i = 0, 1, . . . , N . Foreground jobs use the capacity
of all N nodes simultaneously in a fluid-like manner, using the
(instantaneously) available capacity at all the N PS nodes; at
any moment in time the capacity available at node i is equally
shared amongst all foreground jobs in the system and with the
background jobs at node i. The splitting operates without delay
with infinitely small granularity and has perfect information
about the number of foreground and per-class background jobs
in the system. If upon arrival of a tagged foreground job
F there are k0 other foreground jobs in the system and ki
background jobs at node i, then F obtains a fraction

fi :=
1

k0 + 1 + ki
(1)

of the capacity of node i, for i = 1, . . . , N . Note that in
this way, the instantaneous total transmission speed that F
receives equals

∑N
i=1 fi, and that this speed changes during

the course of the sojourn time of F in the system, as other
jobs may come and go.

For the model under consideration, let Si be the sojourn
time of an arbitrary class-i job in the system. In this paper,
our focus is on their expected values, E[Si] (i = 0, 1, . . . , N).

Remark 1 (Optimality of the CAN model): The CAN-
model described above uses fluid-like splitting of foreground
jobs at infinitely fine time granularity. Therefore, the
performance of the CAN-model is optimal in the sense that
the synchronization delay in the reassembly phase (which is
usually encountered when splitting is done at coarse-grained
granularity or with non-perfect or delayed information) is
zero, while the foreground jobs receive no more than their
fair share of capacity at each of the nodes. It is evident
that from the viewpoint of the foreground traffic even better
performance for foreground jobs can be obtained by allowing
unfair capacity sharing at the PS nodes in favor of foreground
traffic (see also Section 6).

Remark 2 (Parameterization of TCP-based networks into
PS-models): The CAN-model is a flow-level performance
model that describes the elastic behavior of TCP-based
networks by PS-models, abstracting from the complex packet-
level dynamics at the TCP layer. To model the flow-level
behavior of TCP-based networks, the parameters of TCP
networks (e.g., RTTs, maximum window sizes, maximum
segmant sizes, etc.) need to be parameterized into the
parameters of the PS-models (e.g., service times). To this end,
in Hoekstra and Van der Mei [17] we propose the concept
of effective service time and give a full parameterization,
translating the TCP-parameters into PS-model parameters. In
doing so, the transfer time of a file over a TCP network is
modeled by the sojourn time of a job in the corresponding
PS-model.

Remark 3 (Case of exponential job-size distribu-
tions): In the special case where the service-time
distributions are all exponentially distributed, with rates
µi := 1/βi (i = 0, 1, . . . , N ), then the evolution of the system
can be described as a continuous-time Markov chain (CTMC)
with state space S = N0

N+1, where each state is of the form

s = (k0, k1, . . . , kN ) ∈ S, with k0 the number of foreground
jobs in all N PS nodes and ki (i = 1, . . . , N) the number of
background jobs in PS node i. For each arriving foreground
job, a task is assigned to each PS node of which the processing
demand will be adjusted to complete the service of all tasks
corresponding to the same job simultaneously. It is readily
verified that the state-transition rates of the CTMC are as
follows:

q(s, s+ ei) = λi (i = 0, 1, . . . , N), (2)

q(s, s− e0) =

N∑
i=1

k0

k0 + ki
µ0, (3)

q(s, s− ei) =
ki

k0 + ki
µi (i = 1, . . . , N), (4)

for all possible state combinations in S; here, ei stands for
the unit vector that has zeros on all dimensions except the
dimension that corresponds to the total number of foreground
jobs (by taking i = 0) or number of background jobs (for
i = 1, . . . , N ) respectively. Equation (2) represents the external
arrivals of class-i jobs, for i = 0, 1, . . . , N . Equations (3)
and (4) represent the departure of a foreground job, and a
class-i job, respectively. Given the stationary distribution of
the CTMC, π(·), the expected number of foreground and
background jobs in the system is, for k = 0, 1, . . . , N ,

E [Nk] =

∞∑
i0=0

∞∑
i1=0

. . .

∞∑
iN=0

ikπ(i0, i1, . . . , iN ). (5)

Using Little’s formula, we obtain the expected sojourn time of
the foreground and background jobs:

E [Sk] =
E [Nk]

λk
(k = 0, 1, . . . , N). (6)

III. PERFORMANCE OF THE CAN-MODEL AND
NEAR-INSENSITIVITY

In general, the job-size distributions are not exponential
and the analytic model does not allow for exact analysis (see
also Remark 3 above). Therefore, we have used simulations
to assess the performance under the CAN-model in terms of
the mean sojourn times of the foreground traffic streams (i.e.,
E[S0]) and the background traffic (i.e., E[Si], i = 1, . . . , N ).
To this end, we have performed extensive simulations to obtain
the expected response times for a wide variety of scenarios.
The job-size distributions were varied as deterministic
(with squared coefficient of variation c2B = 0), exponential
(c2B = 1), two-phase hyperexponential (with balanced means
and squared coefficient of variation c2B = 16), Pareto-3 (i.e.
with Pr{B > x} = (1 + x/2)−3, x ≥ 0, and hence c2B = 3)
and Pareto-2 (i.e., with Pr{B > x} = 1

4x2 , x ≥ 1
2 , and

hence c2B = ∞), all with mean 1. To limit durations of
the simulation runs, we considered scenarios with N = 2
networks, which is the most common CA-scenario in practical
deployments. Also, to limit the number of scenarios, in all
cases considered the squared coefficients of variation of the
job-size distributions were taken to be the same for all classes
(i.e., c2Bi

= c2B for i = 0, 1, . . . , N ). The foreground load ρ0

was varied as 0.1, 0.9 and 1.8 to cover load values ranging
from light to heavy foreground load. The background-load
combinations (ρ1, ρ2) were varied such that ρ1 and ρ2 take



TABLE I: E[S0] under lightly loaded foreground traffic
(ρ0 = 0.1).

job-size distribution c2B
ρ1
H

HH
ρ2 0.1 0.3 0.5 0.7 0.9

deterministic 0 0.1 0.57
exponential 1 0.1 0.57
Pareto-3 3 0.1 0.57
hyper-exponential 16 0.1 0.57
Pareto-2 ∞ 0.1 0.57
deterministic 0 0.3 0.63 0.70
exponential 0 0.3 0.63 0.70
Pareto-3 3 0.3 0.63 0.70
hyper-exponential 0 0.3 0.63 0.70
Pareto-2 ∞ 0.3 0.63 0.70
deterministic 0 0.5 0.70 0.80 0.94
exponential 1 0.5 0.70 0.81 0.95
Pareto-3 3 0.5 0.71 0.81 0.95
hyper-exponential 16 0.5 0.71 0.82 0.96
Pareto-2 ∞ 0.5 0.71 0.81 0.96
deterministic 0 0.7 0.80 0.95 1.16 1.53
exponential 1 0.7 0.81 0.95 1.17 1.55
Pareto-3 3 0.7 0.81 0.96 1.18 1.57
hyper-exponential 16 0.7 0.82 0.97 1.20 1.59
Pareto-2 ∞ 0.7 0.82 0.97 1.19 1.58
deterministic 0 0.9 0.99 1.23 1.64 2.51 6.51
exponential 1 0.9 1.00 1.24 1.65 2.53 6.55
Pareto-3 3 0.9 1.00 1.24 1.66 2.55 6.60
hyper-exponential 16 0.9 1.00 1.25 1.67 2.57 6.63
Pareto-2 ∞ 0.9 1.00 1.25 1.67 2.57 6.67

values 0.1, 0.3, 0.5, 0.7 and 0.9 (of course, only for the
parameter combinations for which the system is stable), hence
covering scenarios with both light- and heavy-traffic and
varying degrees of asymmetry. The results of our experiments
are outlined in Tables I, II, and III.

All simulation runs are based on at least 108 (and 109

for very high load values) foreground observations, leading to
accurate predictions of E[S0], such that all digits shown below
are significant; confidence intervals have been omitted for
compactness of the presentation. Note that as an alternative to
the simulations, E[S0] can also be calculatied numerically for
the special case of exponential job-size distributions by using
Equations (1)-(6); truncation of the state space was done at
a sufficiently large size in order no to influence the results.
Table I shows the results for lightly loaded foreground traffic,
with ρ0 = 0.1. To avoid duplication due to symmetry, the
results are shown for ρ1 ≤ ρ2. The results in Table I reveal
two interesting observations. First, we see that in all cases the
expected foreground sojourn time E[S0] is nearly insensitive
to the job-size distribution, and only slightly increases for
larger values of c2B . We reemphasize that the results in
Table I cover a wide variety of scenario’s, ranging from
light to heavy background loads, from symmetric to strongly
asymmetry load values, and from deterministic to highly
variable job-size distributions. In addition, we observe that the
”exact” values based on (1)-(6) match the simulation results
very closely, as it should. Tables II and III below show the
results for medium-loaded (with ρ0 = 0.9) and heavily-loaded
foreground traffic (with ρ0 = 1.8), respectively. They confirm
that the results for the light foreground traffic in Table I
are also valid for medium- and heavily-loaded foreground
traffic. Again, we observe the E[S0] is nearly insensitive to
the job-size distribution, and that the CAN-model predictions
from (1)-(6) are highly accurate.

TABLE II: E[S0] under medium-loaded foreground traffic
(ρ0 = 0.9).

job-size distribution c2B
ρ1
H

HH
ρ2 0.1 0.3 0.5

deterministic 0 0.1 1.06
exponential 1 0.1 1.07
Pareto-3 3 0.1 1.07
hyper-exponential 16 0.1 1.07
Pareto-2 ∞ 0.1 1.07
deterministic 0 0.3 1.29 1.69
exponential 1 0.3 1.30 1.72
Pareto-3 3 0.3 1.31 1.74
hyper-exponential 16 0.3 1.32 1.76
Pareto-2 ∞ 0.3 1.32 1.76
deterministic 0 0.5 1.67 2.59 6.98
exponential 1 0.5 1.69 2.63 7.06
Pareto-3 3 0.5 1.72 2.68 7.18
hyper-exponential 16 0.5 1.74 2.71 7.15
Pareto-2 ∞ 0.5 1.74 2.73 7.45
deterministic 0 0.7 2.52 6.46
exponential 1 0.7 2.56 6.55
Pareto-3 3 0.7 2.60 6.71
hyper-exponential 16 0.7 2.63 6.70
Pareto-2 ∞ 0.7 2.66 7.05
deterministic 0 0.9 6.71
exponential 1 0.9 6.76
Pareto-3 3 0.9 6.84
hyper-exponential 16 0.9 6.83
Pareto-2 ∞ 0.9 7.04

TABLE III: E[S0] under heavy-loaded foreground traffic
(ρ0 = 1.8).

job-size distribution c2B
ρ1
HHH

ρ2 0.00 0.05
deterministic 0 0.05 6.52 9.55
exponential 1 0.05 6.52 9.57
Pareto-3 3 0.05 6.54 9.60
hyper-exponential 16 0.05 6.54 9.60
Pareto-2 ∞ 0.05 6.55 9.65
deterministic 0 0.10 9.51 18.62
exponential 1 0.10 9.53 18.64
Pareto-3 3 0.10 9.57 18.75
hyper-exponential 16 0.10 9.57 18.78
Pareto-2 ∞ 0.10 9.62 18,85

To summarize, the results in Tables I to III demonstrate
that (a) E[S0] is nearly insensitive to the job-size distribution
for a wide variety of parameter settings, and (b) calculations
of the optimal performance based can be calculated very
accurately based on (1)-(6).

IV. SCORE-FUNCTION BASED SPLITTING METHOD

Our splitting-and-merging method the functionality is im-
plemented between the transport layer and the application



layer, and is based on the following score function (which
was introduced in [29]) that is repeatedly measured for each
of the N parallel TCP-connections: for i = 1, . . . , N ,

scorei =
Qi
Gi

+
sRTTi

2
. (7)

Here, Q represents the length in bytes of the data that has
to be transmitted, and sRTT is the smoothed RTT that each
TCP implementation estimates. G is the smoothed throughput
(which is calculated for each individual connection), that is
repeatedly estimated from the following update scheme: G0 :=
0, and for t = 1, 2, . . .,

Gt = α×Gt−1 + (1− α)× Tt, (8)

where the smoothing parameter α (0 < α < 1) is a constant,
and Tt is the measured throughput (for each individual
connection) which is continuously measured every τ
milliseconds. The parameter τ balances the trade-off between
computational resources for calculating the score-function
periodically and the responsiveness to changes in the RTT
and the throughput. The score function (7) estimates the time
of arrival of TCP segments at the receiver re-sequencing point
by accounting for its major delay factors at node i: (a) the
queueing delay at the sender, estimated by the ratio Qi/Gi,
and (b) the transmission delay in the network, estimated by
sRTTi/2; in this way, the variations of the RTTs on the
networks are accounted for implicitly.

Using the iterative scheme in (7) and (8), the method
simply works as follows: After calculating the score function
scorei for each connection i = 1, . . . , N , the method
assigns the packet to the connection having the lowest
score, effectively choosing the connection that has the lowest
estimated delay up to point where all traffic is merged back.

The score-function method (7)-(8) was introduced earlier by
Hasegawa et al. [29], called the Arrival-Time matching Load-
Balancing (ATLB) method. However, our implementation of
the method leads to a number of important benefits. First,
the authors in [29] propose to modify the TCP protocol and
to deploy the implementation in a separate gateway to avoid
the difficulties of replacing parts of the operating system.
Instead, our implementation overcomes these difficulties by
executing the scheduling functionality in application-space
of a Linux operating system with the same API towards the
existing applications and using the standard TCP sockets
interface for the multi-path sessions. Second, as pointed
out in [29] TCP througput degradation may occur in real
network environments because the receiving buffer for sorting
the data segments is of limited size. As described in [8]
high data rate differences between multiple networks may
cause the advertised window of the faster TCP session to
reach zero because the packets from the faster connection
will fill the buffer and force TCP to slow-down. Although
our implementation uses a limited receiving buffer, the
aforementioned TCP throughput degradations do not occur.
Third, the ATLB implementation [29] requires a network
proxy, which raises the need for having a separate proxy
for each access network. This is undesirable because the
very goal of traffic splitting is to optimize performance over
those access networks. Our method, instead, overcomes this
problem because it does not require a network proxy, and

hence can be installed both in an end-node device and in a
network proxy. These observations make our method much
more easy-to-deploy in real networking environments.

V. EXPERIMENTAL EVALUATION OF SCORE-FUNCTION
BASED APPROACH

To assess the effectiveness and ease-of-use of the proposed
approach, we have conducted test-lab experiments under rep-
resentative circumstances, where the RTT is usually small and
packet loss as observed by the transport layer is negligable
[30]. This section summarizes the results of extensive lab
experiments in which two independent access networks form a
CA network, which represents the most common scenario. Our
aim is to demonstrate that (a) optimal traffic splitting can be
closely approached using real networks with a contemporary
traffic splitting solution, and (b) our model can be applied for
predicting the flow-level performance of contemporary traffic
splitting solutions. To this end, we have implemented the score-
function method in a realistic test-lab environment. Using
this implementation, the experimental results were validated
against the benchmark results obtained from (1)-(6). In Sec-
tion V-A we discuss the experimental setup, and in Section V-B
we give an outline of the results.

A. Experimental setup

To perform lab experiments, we have connected two
powerful multi-homed PCs by two independent and similar
access networks to measure the download response times
of foreground file transfers in the presence of (file transfer)
background traffic and compare the obtained values with the
expected file download time from the model. The experimental
setup is depicted in Figure 2, where the PC with the FTP
clients generates all FTP-download requests according to
independent Poisson processes, for the foreground and both
background streams. It is important to state that, even with
a larger number of WLAN client devices in addition to the
access point (AP), only one station is contending for the
medium at the same time, as reported in [31] and observed
during the experiments in [17]. Therefore, the use of only
one client device yields outcomes that are representative for
larger client populations.

At the PC serving as FTP server, 40,000 files have been
generated according to an exponential distribution (with mean
size 1 × 106 bytes) that is superimposed on a deterministic
one 1 × 106 bytes to obtain a total mean file size of 2 × 106

bytes. The motivation to have at least a file size of 1 × 106

bytes is that it takes some time (and bytes) to have the
splitting method operating properly and thus a bias against
short files can be expected that is stronger than the one from
a single TCP connection. Finally, during the experiments the
files to be downloaded are randomly selected by the client
PC during the experiments.

In [17] a PS-model was validated that was able to accurately
model the file transfer response time over a WLAN. In this
PS-model the highly complex dynamics of the FTP/TCP/
IP/MAC-stack, and their interactions, are translated into a
single parameter, called the effective load. The effective load,
denoted ρeff , is subsequently used to describe the flow-level



Fig. 2: Experimental setup.

TABLE IV: Test-lab environment and model parameters.

Parameter Value Parameter Value
mac 224 bits ack 112 bits
τ 20µs difs 50µs
Cwmin 31 (slots(τ )) sifs 10µs
phy 192µs eifs 364µs
δ 1µs rwlan 11Mbps
XFTPget 4096 bits XFTPclosure 64 bits
XMSS 11680 bits Xtcp/ip 320 bits
w 8760 bytes Xfile 2× 106 bytes

behavior of FTP-based file transfers over WLANs without
admission control as an M/G/1 Processor Sharing (PS) -
model. Hence, we use the model from [17] to parameterize
both our test-lab environment and the model to assess the
efficiency of a TCP-based traffic splitting solution in the
test-lab using real (WLAN) networks. In accordance to the
model conditions in [17] we have configured our test-lab
environment similarly with the same TCP window size, a
sufficiently large AP buffer to avoid overflows, and restricted
the maximum load per network (to values below ρeff = 0.88).
Under these circumstances, it was shown that the model leads
to highly accurate predictions over a wide range of parameters
combinati ons, including light- and heavy-tailed file-size
distributions and light- and heavy-load scenarios. In addition,
the observed mean download response times are under these
circumstances fairly insensitive to the file-size distribution, as
suggested by the PS-model.

In our test-lab, each wireless access network consists of
a Linksys (WAP54G) access point and a wireless Ethernet
bridge (WET54G) of the same hardware and firmware version
connected by a power splitter to avoid interference. The
AP uses a modified firmware program, called OpenWrt,
that is specifically designed for embedded devices such
as residential gateways and routers. This firmware offers
detailed WLAN-MAC configuration options, combined with
a sufficiently large AP buffer necessary for our experiments.
Table IV summarizes the WLAN configuration that is used
in our test-lab, and the corresponding model to assess the
performance of our practical solution. In Table IV the MAC
overhead bits, mac, the acknowledgment overhead bits, ack,
the minimum congestion window size, Cwmin, the slot
time, τ , and the inter-frame spacing times (sifs, difs,eifs)
match with a default IEEE 802.11b MAC operating in basic
access mode. The WLAN transmission rate of the data and

acknowledgment frames is represented by rwlan and set to
11Mbit/s. Furthermore, the preamble of the Physical Layer
Convergence Protocol (PLCP), indicated phy, was set to
long. Subsequently, the TCP stack in our test-lab environment
was configured to use an MSS, indicated as XMSS , of 1460
bytes and a window size, w, of 8760 bytes. Therefore we use
in our model 40 bytes of TCP/IP overhead, represented by
variable Xtcp/ip. Moreover, the FTP application is assumed
to use an FTP GET command (assumed equally sized as
trivial ftp (tftp) requests) with a size of 512 bytes or 4096
bits(XFTP ) and an FTP closure command, XFTPclosure, of
64 bytes. Finally, Xfile denotes the average file size used in
our experiments. Based on the parameters in Table IV, we
obtain from the model in [17] an overall effective throughput,
rdwnld, of 5.28Mbps. In the effective throughput all protocol
(MAC/IP/TCP/FTP) overhead and dynamics is accounted
and (validated under respresentative circumstances) and
corresponds to the expected throughput rate received by the
file download. Based on the overall effective throughput, the
expected service time of a file in one network is equal to
β = rdwnld/Xfile and in our case β = 3.03 seconds.

To make the adjustment to changing network conditions
very responsive, in our experiments the smoothing parameter
α of the score-function, presented in (8) was set to 0.4.
Hasegawa et al. [29] argue that the measurement interval τ
should be fixed and set to a value of 100ms for network with
an RTT of 20 ms. However, test-lab experimentation (results
are not presented here) shows that it is better to adapt τ to
changing RTT values in the network. More precisely, a best
practice rule-of-thumb is to set τ equal to 4 × RTT because
a shorter period does not give a good performance estimation
(as fast retransmissions and the OS scheduling accounted for
sufficiently).

B. Experimental results

In this section we report on the experiments conducted
on our test-lab environment to determine efficiency of the
TCP-based splitting solution in a real networking environment.
The model for predicting the file download times consists of
two components; the first component is the WLAN PS-model
from [17] that is able take the WLAN specific parameters
into account to determine the effective load of the network
and the expected download time in one PS node. Secondly,
based on the effective service time of a file download, we
obtain the optimal dynamic splitting performance over two
networks by parameterizing the splitting model presented in
Section 2 (see also Remark 2 above).

For our experiments we have varied the effective load
according to Tables V and VI for the foreground traffic ρ0,
and the background traffic in network one and two, ρ1 and
ρ2, respectively. From the effective loads we determined the
download request arrival rates for the FTP clients. In Tables V
and VI, the 15 runs that we have performed are shown
with their respective effective load values. To obtain the
specified 95% confidence intervals for the measured average
download response time, denoted E[Si]exp, the experiments
required an execution time from 2-10 days per run. Several
representative results are shown in Tables V and VI. More
precisely, for a variety of (ρ0, ρ1, ρ2) combinations Table V



TABLE V: Experimental and analytical values for E[S0] for
different foreground and background load combinations.

E[S0]
ρ0 ρ1 ρ2 exp opt ∆%
0.1 0.1 0.5 2.268 2.145 5.7%
0.1 0.2 0.3 2.051 2.029 1.1%
0.1 0.3 0.7 3.008 2.914 3.2%
0.1 0.4 0.5 2.693 2.646 1.8%
0.1 0.4 0.6 3.053 2.913 4.8%
0.1 0.5 0.5 3.043 2.881 5.6%
0.5 0 0.8 3.965 3.787 4.7%
0.5 0.1 0.2 2.559 2.419 5.8%
0.5 0.2 0.3 2.932 2.788 5.2%
0.5 0.3 0.7 5.259 4.922 6.9%
0.5 0.5 0.5 4.994 4.900 2.0%
0.5 0.5 0.6 6.069 5.975 1.6%
0.9 0.2 0.3 4.782 4.526 5.7%
0.9 0.3 0.4 6.589 6.426 2.5%
1.2 0 0 3.952 3.870 2.1%

TABLE VI: Experimental and analytical values for E[S1] and
E[S2] for different foreground and background load

combinations.

E[S1] E[S2]
ρ0 ρ1 ρ2 exp opt ∆% exp opt ∆%
0.1 0.1 0.5 3.614 3.575 1.1 6.622 6.422 3.1
0.1 0.2 0.3 4.049 4.006 1.1 4.561 4.578 -0.4
0.1 0.3 0.7 4.763 4.714 1.0 11.061 11.036 0.2
0.1 0.4 0.5 5.437 5.438 0.0 6.435 6.524 -1.4
0.1 0.4 0.6 5.535 5.481 1.0 8.484 8.216 3.3
0.1 0.5 0.5 6.619 6.569 0.8 6.676 6.568 1.6
0.5 0 0.8 0.00 0.000 0.0 23.007 23.721 -3.0
0.5 0.1 0.2 4.496 4.439 1.3 5.101 4.979 2.5
0.5 0.2 0.3 5.330 5.219 2.1 5.985 5.946 0.7
0.5 0.3 0.7 7.809 7.539 3.6 17.103 17.297 -1.1
0.5 0.5 0.5 10.529 10.399 1.3 10.620 10.400 2.1
0.5 0.5 0.6 11.734 11.537 1.7 14.254 14.369 -0.8
0.9 0.2 0.3 8.194 8.154 0.5 9.637 9.241 4.3
0.9 0.3 0.4 11.866 11.759 0.9 13.565 13.598 -0.3

shows the experimental and the simulated values of E[S0]
(denoted E[S0]exp and E[S0]opt, respectively), and their
relative difference, defined as by

∆% :=
E[S0]exp − E[S0]opt

E[S0]opt
× 100%. (9)

The width of the 95% confidence intervals is less than 5% in all
cases. Note that to obtain the model outcomes for the expected
foreground and background download response time, E[S0],
the Markov model from Section II (Remark 3) is numerically
solved for the corresponding effective-load values, with mean
processing time β1 = β2 = 3.03 seconds. Similarly, Table VI
shows the results for the performance of the background traffic
streams, E[S1] and E[S2].

Based on the outcomes in Tables V and VI, it can be
concluded that near-optimal performance can be achieved by
our score-function based algorithm for routing TCP segments.
The differences between the benchmark and the measured
performance are very small, and typically no more than a
few percent. The smallest difference between the benchmark
performance and performance in practice is obtained for the
smallest traffic intensity, which may be explained by the
smaller number of adaptations required of the splitting method
in comparison to other runs in which one of the networks has
a higher effective load.

One run that exemplifies the good performance of CA
is the one in the third row of Table V, where ρ0 = 0.1,
ρ1 = 0.3 and ρ2 = 0.7. Here, the measured average download
response time is even lower than its service demand of 3.03
seconds, even in the presence of an effective load of 1.1 on a
total system capacity of 2.

Some comments are due. First, it should be noted that
the splitting model used as the basis for the performance
benchmark assumes exponentially distributed service times,
whereas the test-lab uses a slightly different file-size
distribution. However, taking the results into account from
Section III the error due to this can be regarded limited in
view of the small differences between sojourn times obtained
from the Pareto-2 and deterministic distributions. Second,
given the limited sensitivity of the sojourn time to the job-size
distribution, the test-lab results are also representative for
other file-size distributions, as long as a minimum size is
respected that is comparable to the one we used in our
experiments. Third, for experiments in which one of the
networks was heavily loaded ρ1, ρ2 ≥ 0.8, the differences are
getting large. This may be explained by the higher number
of capacity fluctuations that may be perceived by the TCP
sessions to which the traffic distribution may need to respond.
Another cause of this larger difference may be the inaccuracy
of the WLAN PS-model from [17] that was validated up to an
effective load of 0.88, and shown to gradually underestimate
the download response times for such high load values and
beyond.

Hasegawa et al. [29] also report valuable but quite limited
experimental results on the score-function method. However,
there are some important differences. First, in our experiments
the background traffic is assumed to be highly dynamic.
In our experiments background jobs arrive according to
Poisson processes, and the the job-size distributions may
be highly variable, whereas the background streams in [29]
are persistent and hence do not require a highly adaptable
traffic-splitting algorithm. Second, the experiments in [29]
are focused on capacity aggregation and on optimizing
throughput over parallel networks. On the contrary, our
analysis and experiments are oriented towards minimizing
expected response times. Moreover, our measurements allow
us to quantify the efficiency of our splitting algorithm by
comparing the results with the benchmark results from our
analytical model.

VI. CONCLUSIONS

This paper describes an analytic model that can be used to
determine the optimal traffic splitting performance by solving
a CMTC. It is shown that this optimal performance can be
closely approached with a remarkably simple and easy-to-
deploy score-function based algorithm that dynamically splits
TCP segments based on on-the-fly measurements on the per-
node RTT, the sending-buffer contents and the estimated
throughput. We believe that this forms a significant step
towards filling the gap between the theoretical modelling and
analysis of traffic splitting among multiple network paths and
practice.



VII. TOPICS FOR FURTHER RESEARCH

The results presented in this paper lead to a variety of
challenges for follow-up research. First, as pointed out in [17],
the accuracy of PS models becomes questionable under high
traffic loads or system under-dimensioning so that (bursty)
packet loss has a significant impact on the results. It needs
further exploration how the parameterizations in (7) and (8)
need to be adjusted, e.g. by adapting the smoothing parameter
α and the measurement interval τ , in response to bursty packet
loss patterns.

Second, the CAN-model is based on the assumption that
the traffic is elastic, in the sense that the available bandwidth
changes over time caused by fluctuations in the number of
simultaneous flows in the network. However many applications
(such as streaming applications) are not elastic, and instead
require fixed amounts of network bandwidth. To incorporate
smart traffic splitting for mixtures of elastic and streaming
applications, the model should be extended to mixtures of fixed
and elastic traffic streams. Optimal splitting in such multiclass
models opens up a challenging area for follow-up research.

Third, the fluid-based dynamic splitting of foreground jobs
(as discussed in Section 2) has the attractive property that the
synchronization delay is zero, while at the same time the policy
is fair in the sense that foreground jobs receive no more than
their fair share of the capacity at each of the individual nodes. It
seems obvious that even better performance for the foreground
traffic can be obtained by dropping the restriction of PS-
based fair sharing of capacity for each node, and allowing
for the possibility of some kind of weighted sharing of the
capacity of the nodes in favor of the foreground traffic, which
obviously comes at a price to be paid by the background traffic
streams. Further optimization of the performance of foreground
streams, and balancing the trade-off with the degradation of the
performance of the background streams opens up an interesting
direction for further research.

Fourth, in [28] a tail-optimal traffic splitting rule was
formulated for static (i.e. the file is split once, according
to fixed portions upon arrival) traffic distribution under light
foreground load. For dynamic traffic splitting, the splitting
ratio is an output variable rather than an input. It remains an
interesting topic for further research how the splitting ratios
obtained from dynamic traffic splitting relate to a splitting rule
that performs well for a static splitting policy.

Finally, another topic of further research is to study the
impact of the arrival process on the download response times,
if for instance an MMPP arrival process is applied instead of
Poisson. Our study has so far concentrated on the foreground
traffic performance. One may expect that also the background
traffic may benefit from the dynamic splitting of foreground
traffic, as it will send less traffic to the networks with the
highest instantaneous loads.

VIII. ACKNOWLEDGMENTS

This work was performed within the project RRR
(Realisation of Reliable and Secure Residential Sensor Plat-
forms) of the Dutch program IOP Generieke Communicatie,
number IGC1020, supported by the Subsidieregeling Sterktes
in Innovatie. The contribution of R.D. van der Mei has been

partially funded by the Dutch Ministry of Economic Affairs,
project ”Service Optimization and Quality” (IGC0820).

REFERENCES

[1] D. Cox, “Fundamental limitations on the data rate in wireless systems,”
IEEE Communications Magazine, vol. 46, no. 12, pp. 16–17, 2008.

[2] FCC, “Report of the spectrum efficiency working group,” Federal
Communications Commission Spectrum Policy Task Force, Tech. Rep.,
November 2002.

[3] J. Duncanson, “Inverse multiplexing,” IEEE Communications Magazine,
vol. 32, no. 4, pp. 34–41, 1994.

[4] I. S. 802.11n, “Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer specifications Enhancements for Higher Through-
put,” October 2009.

[5] R. Chandra, P. Bahl, and P. Bahl, “Multinet: Connecting to multiple
IEEE 802.11 networks using a single wireless card,” in Proceedings
IEEE INFOCOM 2004, 2004.

[6] G. Koudouris, R. Agüero, E. Alexandri, J. Choque, K. Dimou,
H. Karimi, H. Lederer, J. Sachs, and R. Sigle, “Generic link layer
functionality for multi-radio access networks,” in Proceedings 14th IST
Mobile and Wireless Communications Summit, 2005.

[7] F. Berggren and R. Litjens, “Performance analysis of access selection
and transmit diversity in multi-access networks,” in MobiCom ’06:
Proceedings of the 12th Annual International Conference on Mobile
Computing and Networking, New York, NY, U.S.A., 2006, pp. 251–
261.

[8] H. Hsieh and R. Sivakumar, “A transport layer approach for
achieving aggregate bandwidths on multi-homed mobile hosts,”
Wireless Networks, vol. 11, no. 1, pp. 99–114, 2005. [Online].
Available: http://dx.doi.org/10.1007/s11276-004-4749-6

[9] J. Iyengar, P. Amer, and R. Stewart, “Concurrent multipath transfer
using sctp multihoming over independent end-to-end paths,” IEEE/ACM
Transactions on Networking, vol. 14, no. 5, pp. 951–964, 2006.

[10] J. Iyengar, “End-to-end concurrent multipath transfer using transport
layer multihoming,” Ph.D. dissertation, University of Delaware, 2006.

[11] C. Huang and C. Tsai, “The handover control mechanism for multi-
path transmission using stream control transmission protocol (SCTP),”
Computer Communications, vol. 30, no. 17, pp. 3239–3256, 2007.

[12] R. Stewart, “Stream control transmission protocol,” Internet Engineering
Task Force, RFC 2960, October 2000.

[13] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R. Wang, “A
transport layer approach for improving end-to-end performance and
robustness using redundant paths,” in ATEC ’04: Proceedings of the
annual conference on USENIX Annual Technical Conference, Berkeley,
CA, U.S.A., 2004, pp. 99–112.

[14] S. Borst, O. Boxma, and N. Hegde, “Sojourn times in finite-capacity
processor-sharing queues,” in Proceedings NGI 2005 Conference, 2005.

[15] Y. Wu, C. Williamson, and J. Luo, “On processor sharing and its appli-
cations to cellular data network provisioning,” Performance Evaluation,
vol. 64, no. 9-12, pp. 892–908, 2007.

[16] R. Litjens, F. Roijers, J. van den Berg, R. Boucherie, and M. Fleuren,
“Performance analysis of wireless LANs: an integrated packet/flow level
approach,” in Proceedings of the 18th International Teletraffic Congress
- ITC18, Berlin, Germany, 2003, pp. 931–940.

[17] G. Hoekstra and R. van der Mei, “Effective load for flow-level per-
formance modelling of file transfers in wireless LANs,” Computer
Communications, vol. 33, no. 16, pp. 1972–1981, 2010.

[18] P. Key, L. Massoulié, and D. Towsley, “Combining multipath routing
and congestion control for robustness,” in Proceedings Conference on
Information Sciences and Systems, 2006.

[19] ——, “Path selection and multipath congestion control,” in Proceedings
IEEE INFOCOM 2007, 2007, pp. 143–151.

[20] S. Ko and R. Serfozo, “Response times in M/M/s fork-join networks,”
Advances in Applied Probability, vol. 36, no. 3, pp. 854–871, 2004.

[21] G. Choudhury and D. Houck, “Combined queuing and activity network
based modeling of sojourn time distributions in distributed telecommu-
nication systems,” in Proceedings of the 14th International Teletraffic
Congress - ITC14, Antibes, France, 1994, pp. 525–534.



[22] L. Flatto and S. Hahn, “Two parallel queues created by arrivals
with two demands,” SIAM Journal on Applied Mathematics,
vol. 44, no. 5, pp. 1041–1053, 1984. [Online]. Available:
http://link.aip.org/link/?SMM/44/1041/1

[23] J. Lui, R. Muntz, and D. Towsley, “Computing performance bounds
for fork-join queueing models,” The Chinese University of Hong Kong,
Tech. Rep., 1994.

[24] M. Lelarge, “Packet reordering in networks with heavy-tailed delays,”
Mathematical Methods of Operations Research, vol. 67, no. 2, pp. 341–
371, 2008.

[25] ——, “Tail asymptotics for discrete event systems,” in Proceedings
Valuetools ’06: 1st international conference on Performance evaluation
methodolgies and tools, 2006, pp. 563–584.

[26] E. Altman, U. Ayesta, and B. Prabhu, “Load balancing in processor
sharing systems,” in Proceedings of the 3rd International Conference
on Performance Evaluation Methodologies and Tools, ser. ValueTools
’08, 2008, pp. 12:1–12:10.

[27] F. Baccelli, W. Massey, and D. Towsley, “Acyclic fork-join queuing
networks,” Journal of the ACM, vol. 36, no. 3, pp. 615–642, 1989.

[28] G. Hoekstra, R. van der Mei, Y. Nazarathy, and A. Zwart, “Optimal file
splitting for wireless networks with concurrent access,” Lecture Notes
in Computer Science, vol. 5894, pp. 189–203, 2009.

[29] Y. Hasegawa, I. Yamaguchi, T. Hama, H. Shimonishi, and T. Murase,
“Deployable multipath communication scheme with sufficient perfor-
mance data distribution method,” Computer Communications, vol. 30,
no. 17, pp. 3285–3292, 2007.

[30] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rock-
ell, T. Seely, and C. Diot, “Packet-level traffic measurements from the
Sprint IP backbone,” IEEE Network, vol. 17, pp. 6–16, 2003.

[31] F. Roijers, J. van den Berg, and X. Fang, “Analytical modelling of TCP
file transfer times over 802.11 wireless LANs,” in Proceedings of the
19th International Teletraffic Congress - ITC19, Beijing, China, 2005.


