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Abstract

In many application areas such as airlines and hotels a large number of bookings are typically cancelled.
Explicitly taking into account cancellations creates an opportunity for increasing revenue. Motivated by
this we propose a revenue management model based on Talluri and van Ryzin [27] that takes cancellations
into account in addition to customer choice behaviour. Moreover, we consider overbooking limits as these
are influenced by cancellations. We model the problem as a Markov decision process and propose three
dynamic programming formulations to solve the problem, each appropriate in a different setting. We show
that in certain settings the problem can be solved exactly using a tractable solution method. For other
settings we propose tractable heuristics, since the problem faces the curse of dimensionality. Numerical
results show that the heuristics perform almost as good as the exact solution. However, the model without
cancellations can lead to a revenue loss of up to 20%. Lastly we provide a parameter estimation method
based on Newman et alii [24]. This estimation method is fast and provides good parameter estimates.
The combination of the model, the tractable and well-performing solution methods, and the parameter
estimation method ensures that the model can efficiently be applied in practice.

Keywords: Revenue Management, Dynamic Pricing, Customer Choice Models, Markov Decision
Processes, Cancellations, Overbooking

1. Introduction

Revenue management is the practice of deciding which products to sell to which customers at what
price under capacity constraints. Classic examples can be found in the aviation industry and the hotel
industry, where a limited number of aircraft seats and hotel rooms are available, respectively (e.g., Vinod
[29], Clarke [7]). However, the revenue management models can be applied to a wide range of fields,5

including but not limited to the car rental industry (Geraghty and Johnson [11]), theatres (Langeveld
[17]), golf courses (Kimes [15]), restaurants (Guerriero et alii [12]), and cruise ships (Maddah et alii [21]).
All application areas have in common that a limited number of perishable goods is sold, whether it is a
hotel room, a seat on an aircraft, a rental car, a seat in the theatre, or a timeslot on a golf course. The
revenue management models that have been developed exploit this fact such that the price of a product10

is dynamically adjusted according to the demand and availability of the products. Littlewood [19] is
considered a pioneer in the field. He introduced a capacity control model for two fare-classes on a single
flight leg. The natural extension of this model to multiple fare-classes is intractable, but Belobaba [2] [3]
[4] introduced two effective heuristics EMSR-a and EMSR-b that are still used in practice. From then
several extensions have been made; see McGill and van Ryzin [22] for an overview.15

All applications also have in common that customers choose a product among different products. For
example, a customer who is looking for a hotel room may compare rooms of different hotels before making
a decision. The seminal paper by Talluri and van Ryzin [27] incorporates customer choice behaviour in
revenue management models. Their idea lay the foundation for a new theory in revenue management:
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customer choice models. Since then the theory of customer choice models has been enriched with amongst20

others better solution methods (Strauss and Talluri [26], Meissner and Strauss [23]), network models to
take into account multiple night stays or multiple flight legs (Liu and van Ryzin [20]), and outstanding
methods to estimate the parameters of the model (Newman et alii [24]). However, an extension to
a model including cancellations has not been made. Modelling cancellations by taking into account
customer choice behaviour has been studied by Iliescu et alii [14], but the cancellation process is not25

integrated with the decision process. Examples of studies on models that include cancellations but do
not take into account customer choice behaviour are Subramanian et alii [18], Aydin et alii [1], and
Bertsimas and Popescu [6]. [18] provide an analysis of a revenue management model with cancellations
and overbooking, but customer choice behaviour is not considered. Moreover, a satisfactory solution
method for their intractable problem is not provided. Recently, [1] proposed a revenue management30

model with cancellations, but they also do not take customer choice behaviour into account. Erdely and
Topaloglu [10] and, more recently, Kunnumkal et alii [16] provide customer choice models that take into
account overbooking but no cancellations. A comment is made that the model can be extended to include
cancellations, but no suggestion is made how to do that.

The main contribution of this paper is including cancellations and overbooking in a revenue management35

model that also takes customer choice behaviour into account. Two other key contributions of this paper
are well-performing tractable solution methods and an accurate parameter estimation method with low
computation time. The combination of these three contributions makes the customer choice cancellation
model very suitable for practitioners.

Taking cancellations into account in the decision making process has a big impact on revenue. Numerical40

results (see Section 5) show that policies that do not take cancellations into account can lead to a
substantial revenue loss of 20%. So far the customer choice models in existing literature do not take
into account cancellations. However, in practice it is common that for example seats on an aircraft are
cancelled, hotel rooms are cancelled, theatre tickets are cancelled, reservations for rental cars are cancelled,
and reservations for spots on a golf course are cancelled. Therefore we stress that effective revenue45

management systems should take cancellation into account in the decision making process. Moreover,
overbooking makes more sense when taking cancellations into account.

We model the problem as a continuous-time Markov decision process and solve it using dynamic program-
ming. Some instances of the problem are too large to solve exactly because of the curse of dimensionality.
To overcome this problem we propose three tractable methods, each appropriate under different assump-50

tion. First we show that if the cancellation rates are equal and linear with respect to the number of
reservations the problem can be reduced to a one-dimensional problem and thus it can be solved exactly.
Second we propose an efficient heuristic which is appropriate in the case that the cancellation rates are
linear with respect to the number of reservations, but not equal. Third we propose a heuristic that can
be applied to general cancellation rates, under the only assumption that cancellations occur independent55

from each other. We also provide a heuristic which can be applied if we do not assume that all our
resources are identical. For example, if we have multiple room types in a hotel or multiple seat classes in
a theatre. Numerical results show that the heuristics perform well.

To apply this model in practice it is essential to estimate the parameters of the model accurately. The
estimation of parameters of customer choice models can be a real hassle. A common attempt is to60

use variations of the expectation maximisation algorithm. Talluri and van Ryzin [27] provide a basic
version, but also more sophisticated methods (e.g., Ryzin and Vulcano [28]) have the drawback of long
computation time and bad parameter estimates. Recently Newman et alii [24] proposed a different
parameter estimation method that shows great potential. The parameter estimation method that we
propose for our customer choice cancellation model is based on this model. We estimate the parameters65

of the continuous-time Markov chain, in contrast to most literature (e.g., van Ryzin and Vulcano [28]),
which estimate the parameters of the discretised Markov chain. Our estimation method has the advantage
that it has low computation time and it gives good estimates. The combination of the three effective
solution methods and the efficient estimation method ensures that the customer choice cancellation model
is well applicable in practice. The remainder of this paper is organised as follows. First we describe the70

customer choice cancellation model in Section 2. In this section we also describe several solution methods:
a dynamic programming formulation, which solves the problem exactly but is intractable; two heuristics,
which are appropriate in different settings; and a heuristic to solve the problem for a hotel with different
room types. Then in Section 4 describe methods to estimate the parameters of the model. Numerical
results of the model are presented in Section 5. Finally, in Section 7 we make some concluding remarks75
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and propose topics for further research.

2. Model Description

In this section we introduce the customer choice cancellation model. It is an extension of the customer
choice base model by Talluri and van Ryzin [27], which does not consider cancellations. First we provide
the model with no assumptions on the cancellation behaviour. Second we provide a first reformulation80

based on the assumption that cancellations only depend on the current number of reservations. Third
we provide a reformulation based on the additional assumption that cancellation rates are linear. Finally
we provide a reformulation based on the additional assumption that all cancellation rates are equal. In
Section 3 we provide effective solution methods for the models.

Consider a hotel with C ∈ N identical rooms. We sell the rooms for customer check-in at a fixed future85

time-unit such that revenue is maximised. The customer check-in is in T time units. A common time
unit is days, but some hotels sell rooms for a few hours to accommodate for short stays (e.g., at airport
hotels, see Hopman [13]). We allow overbooking up to Cmax rooms. A rate or fare product j is a room
in combination with a certain price rj , also called the reward for product j, and certain conditions, e.g.
cancellation conditions. Typical conditions in a hotel environment are refundable/non-refundable rooms,90

where a refundable room can be cancelled free of charge and a non-refundable not; or breakfast could be
included or excluded from the fare product. Let N be the set of all fare products. We assume that there
is a finite amount n of fare products, such that w.l.o.g. N = {1, . . . , n}. Let cj(t) be the costs if product
j gets cancelled in time period t. Note that cj(t) depends on the cancellation conditions.

We assume that cancellations only depend on the current number of reservations. This model can also
be used with time of booking dependent cancellations by including more fare products. We model this
problem as a finite-horizon continuous time Markov decision process over T time units. Define the state
space by

X :=

x ∈ Nn
∣∣∣∣∣∣x ≥ 0,

∑
j∈N

xj ≤ Cmax

 .

Each entry xj of x ∈ X corresponds to the pickup (number of reservations) for product j.95

There is a penalty q(x) involved if at the arrival day we are in state x and we have more reservations
than capacity, i.e., ∑

j∈N
xj > C.

Customers arrive according to a Poisson process with parameter λ. Continuously in time we decide
which subset S ⊂ N of products we offer. S is called an offer set. If S is offered the probability that an
arriving customer buys product j equals Pj(S). Furthermore, the probability that an arriving customer
buys nothing under offer set S equals P0(S). Finally, for all products j the cancellations of reservations
for product j are exponentially distributed with parameter γj(x). In accordance with Markov decision100

process literature we call a feasible solution π to our problem a policy. A policy π that optimises total
revenue is called an optimal policy. See Figure 1 for a visualisation of this model.

Discretisation

To solve the customer choice cancellation model we consider the discretised Markov decision process. We
divide time into T time periods, where the length of the intervals is such that the probability that more
than one event occurs is very small. Therefore we assume that only one event occurs per time period.
We denote λ as the probability that a customer arrives in a time period; and γj(x) as the probability
that product j is cancelled in state x. In each time period we decide which set S we offer. Note that
time has to be scaled such that

λ+ max
x∈X

∑
j∈N

γj(x)

 ≤ 1,

otherwise the probabilities are not well defined.
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Figure 1: Visualisation of the customer choice cancellation model. The arrival process is Poisson distributed
with parameter λ. Then we have control over the offer set S. Under this offer set an arriving customer
buys product j ∈ S with probability Pj(S). With probability P0(S) the customer buys nothing. Finally,
cancellations of product j follow an exponential distribution with parameter γj(x).

105

Remark. It is possible to incorporate no-shows and walk-ins into this model. Subramanian
et alii [18] do this by incorporating it in the penalty q(x). However, it is also possible to
incorporate the walk-in probability in the arrival probability and the no-show probability in
the cancellation probability in the last time step(s). We choose the latter method.

110

Reformulation under Assumptions on Cancellation Rates

It is reasonable to assume that cancellations occur independent of each other. Assumption 2.1 below states
that the probability that product j is cancelled only depends on the current number of reservations xj
for product j. The assumption is equivalent to Assumption 1 in Subramanian et alii [18].

115

Assumption 2.1. Independence of Cancellations (Assumption 1 in [18])

γj(x) = γj(xj) for all x ∈ X, for some function γj : N→ R+

To emphasize the fact that we work under the independence of cancellations assumption we write γj(xj)
instead of γj(x). Note that x is a vector and xj is a scalar.120

Assumption 2.2 below is even stronger than Assumption 2.1.

Assumption 2.2. Linear Cancellation Rates

1. γj(xj) = γjxj , for γj ∈ R+, for all j ∈ N

2. q(x1) = q(x2) for all x1, x2 ∈ X with
∑
j∈N x

1
j =

∑
j∈N x

2
j125

The second part of Assumption 2.2 states that the penalty for overbooking only depends on the total
number of products that are sold and is independent from the types of products that are sold. This
assumption is realistic because we are dealing with identical rooms, so relocation to a similar hotel
induces the same costs. This is also a very convenient step if we only want to keep track of the total
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number of reservations instead of the number of reservations per fare product. For x ∈ X, let y denote
the total number of reservations, i.e.,

y =
∑
j∈N

xj .

Then under the linear cancellation rates assumption we write q(y) = q(x) for all x with
∑
j∈N xj = y.

Assumption 2.3 below states that the cancellation probability is independent from the product j, but it
still depends on the number of reservations of product j.

130

Assumption 2.3. Linear and Equal Cancellation Rates

1. γj(x) = γxj , for γ ∈ R and for all j ∈ N

2. q(x) = q(y) with y =
∑
j∈N xj

Under the linear and equal cancellation rates assumption the state space of the problem is significantly135

reduced, as is shown in Theorem 3.1 in Section 3. However, this assumption is not realistic. Different
fare products are likely to have different cancellation probabilities. For example, a refundable room is
more likely to get cancelled than a non-refundable room.

Illustrative Example

An illustration of the model can be found in Example 2.1 below. This example is used throughout the140

paper.

Example 2.1. 1

Consider a hotel with C ∈ N rooms which offers three fare products. The reward for these
products is given by

r = (r1, r2, r3) = (160, 100, 90).

Both fare product 2 and 3 need to be purchased at least 21 days ahead. Furthermore, the
cancellation conditions are as follows: if a product of type j is cancelled, the customer receives
a refund of

cj =


r1 if j = 1,
1
2r2 if j = 2,

0 if j = 3.

In other words, product 1 is refundable, product 2 only refunds half the price, and product 3 is
non-refundable. Assume that overbooking is allowed but is bounded by 20% of the capacity,
such that Cmax = bC 6

5c. If we have
∑
j∈N xj − C > 0 overbookings, then

∑
j∈N xj − C

reservations are chosen at random and relocated to another hotel. The costs for relocating a
customer is 170. Hence the penalty for overbooking q(x) at the arrival day in state x equals170

( ∑
j∈N

xj − C

)
if
∑
j∈N xj − C > 0,

0 otherwise.

1This example is based on Example 1 from Talluri and van Ryzin [27]. We scaled the rewards to be representative values
for hotels. Moreover, we added cancellation conditions, cancellation probabilities, and an overbooking policy.
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S P1(S) P2(S) P3(S) P0(S)
∅ 0 0 0 1
{1} 0.3 0 0 0.7
{2} 0 0.4 0 0.6
{3} 0 0 0.5 0.5
{1, 2} 0.1 0.6 0 0.3
{1, 3} 0.3 0 0.5 0.2
{2, 3} 0 0.4 0.5 0.1
{1, 2, 3} 0.1 0.4 0.5 0

Table 1: Purchase probabilities under different offer sets.

The hotel wants to sell the rooms in a period of T days. The purchase probabilities Pj(S) are
given in Table 1. We assume that the purchase probabilities are the same for all time periods.
The probability that a reservation for product j is cancelled is

γj(x) = γjxj ,

with γj ∈ [0, 1] for all j.

145

3. Solution Methods

In this section we provide solution methods for the models derived in Section 2. First we provide an
exact solution method based on dynamic programming for the model with no restrictions on cancellation
behaviour. Unfortunately this problem faces the curse of dimensionality. To overcome this we provide
heuristics for each model described in Section 2. In particular we provide a tractable solution method150

that solves the model under the linear and equal cancellations assumption 2.3 exactly. Finally we provide
a heuristic that is applicable to a hotel with multiple room types.

3.1. General Solution Method: No Assumptions on Cancellation Behaviour

Let Vt(x) be the maximal expected revenue from time t to the arrival day. To solve this problem we use
the following Bellman equation:155

Vt(x) =



max
S⊂N

{
λ
∑
j∈S

Pj(S)
(
rj + Vt−1(x+ ej)

)
if t > 0,

+
∑
j∈N

γj(x)
(
− cj(t) + Vt−1(x− ej)

)
+

(
1− λ

∑
j∈S

Pj(S)−
∑
j∈N

γj(x)

)
Vt−1(x)

}
q(x) if t = 0,

(1)

for all x ∈ X with where ej ∈ Rn is the j-th unit vector. With dynamic programming we can find an
optimal strategy. Unfortunately, this solution methods bears the burden of the curse of dimensionality.
The size of the state space X is O(Cn), so it increases exponentially if the number of fare products
increases. For a small number of fare products the exact solution can be computed, like in Example
2.1. Obviously, in practice the number of fare products is larger than in our small example. Hence160

this problem can not be solved for all practical purposes. To overcome this problem we propose several
options. First we show in Theorem 3.1 that under certain conditions the problem can be solved exactly.
Second we propose several heuristics in case the conditions of Theorem 3.1 are not satisfied. It will turn
out that each heuristic has its own advantages and disadvantages and is appropriate in a different setting.

165
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Remark. In contrast to the dynamic programming formulation of Subramanian et alii [18]
the structure of an optimal policy is not clear beforehand. The main difference between
the models is that we also consider customer choice behaviour. However, if the purchase
probabilties follow an independent model, as described by Talluri and van Ryzin [27], we do
get similar admission control policies. More precisely, if the purchase probabilities are given
by

Pj(S) =

{
pj if j ∈ S,
0 otherwise,

then an optimal policy of Equation (1) will have the form

accept a fare-product j request if and only if rj + Vt−1(x+ ej) > Vt−1(x).

In the remainder of this paper we focus on dependent demand models.

Reformulation170

The customer choice cancellation model can be reformulated such that the costs are incorporated in the
rewards. We do this by adding the expected costs caused by cancellations to the value function. This
reasoning is borrowed from Subramanian et alii [18], who use it in their revenue management model
which does not take customer choice behaviour into account. We show in Theorem 3.1 below that under
certain conditions the customer choice cancellation model is equivalent to a one-dimensional problem.175

Let H(x, t) be the expected costs from cancellations from the reservations in state (x, t). The costs are
fixed because we do not have control over the reservations. Then H(x, t) is given by the recursive formula

H(x, t) =


∑
j∈N

γj(x)
(
cj(t) +H(x− ej , t− 1)

)
+

(
1−

∑
j∈N

γj(x)

)
H(x, t− 1) if t > 0,

0 if t = 0.

Define the value function Ṽt(x) by

Ṽt(x) := Vt(x) +H(x, t). (2)

The value function Ṽt(x) can be interpreted as the maximal expected revenue to go from reservations
without costs from current cancellations. These costs are unavoidable and have no influence on future
profits. Note that cancellations still occur, but it will turn out that this reformulation alters the cancel-
lation term in a preferable way.

Define ∆Hj(x, t) := H(x, t− 1)−H(x+ ej , t− 1) for all x ∈ X and for all t > 0. Then we can rewrite180

Ṽt(x) as follows:

Ṽt(x) =



max
S⊂N

{
λ
∑
j∈S

Pj(S)
(
rj + ∆Hj(x, t) + Ṽt−1(x+ ej)

)
if t > 0

+
∑
j∈N

γj(x)
(
Ṽt−1(x− ej)

)
+

(
1− λ

∑
j∈S

Pj(S)−
∑
j∈N

γj(x)

)
Ṽt−1(x)

}
,

q(x) if t = 0.

(3)

Equation (3) is equivalent to Equation (1) in the sense that it leads to the same policy. This follows from
Equation (2) and the fact that the policy to go has no influence on H(x, t).
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Efficient sets

The customer choice base model has some nice properties described in Talluri and van Ryzin [27] which185

reduce the action space and therefore the computation time. Unfortunately, these properties do not hold
in the customer choice cancellation model. To show this, we introduce the concept of efficient sets in
Definition 3.1 below (Definition 1 in [27]). We will show later on that some heuristics do satisfy some of
the nice properties described in [27].

190

Definition 3.1. For each S ⊂ N , x ∈ X and t ∈ {0, . . . , T} define Q(S) and R(S) by

Q(S) :=
∑
j∈S

Pj(S), R(S, x, t) :=
∑
j∈S

Pj(S)(rj + ∆Hj(x, t)).

A set S∗ is called inefficient at (x, t), with x ∈ X and t ∈ {0, . . . , T}, if there exist α(S) > 0
for all S ⊂ N with

∑
S⊂N α(S) = 1 such that both of the following inequalities hold:

Q(S∗) ≥
∑
S⊂N

α(S)Q(S),

R(S∗, x, t) <
∑
S⊂N

α(S)R(S, x, t).

Otherwise S∗ is called efficient at (x, t).

The intuition behind efficient sets is as follows. An offer set S∗ ⊂ N is efficient if there is no randomisation
of other offer sets S ⊂ N such that the expected reward is strictly greater than R(S∗, x, t) and the
probability of a purchase is at most Q(S∗). Efficient sets are on the efficient frontier of the trade-off195

between the expected revenue R(S∗, x, t) and the probability of purchase Q(S∗).

Efficient sets can be identified using the largest marginal revenue procedure described by Talluri and van
Ryzin [27], which is the following: Initialise with the first efficient set S0 = ∅. Then iteratively proceed
as follows: Suppose Si is the i-th efficient set found by the procedure. Then the (i + 1)-th efficient set
Si+1 is equal to

Si+1 = arg max

S :
Q(S)≥Q(Si)

R(S,x,t)≥R(Si,x,t)

R(S, x, t)−R(Si, x, t)

Q(S)−Q(Si)
.

The complexity of this procedure is O(m2n), where m is the number of efficient sets, which is at most 2n.
For large instances of n this procedure is computationally intractable, so then we need to use heuristics.
One heuristic (proposed by [27]) is to use only a subset of all efficient sets and then use the largest
marginal revenue procedure. By looking at the specific instance we can rule out certain offer-sets. For200

example, if a hotel offers the same room under the same conditions at two different prices e80 and e120
at the same time, the price-sensitive customer would almost surely purchase the room for e80.

In the base model no cancellations exist, such that ∆Hj(x, t) = 0 for all (x, t). Hence, the set of efficient
sets is the same for each (x, t). In contrast, for the cancellation model the set of efficient sets is not
necessarily the same for all (x, t), as is shown in Example 3.1.205

Example 3.1. Consider Example 2.1. Let C = 5, T = 10, γ = (0.05, 0.0025, 0.001). Consider
the states (x, t1) and (x, t2), with t1 = 1, t2 = 10, and x = (0, 0, 0). The efficient sets of state
(x, t1) and (x, t1) are given in Table 2. Offer set {1, 3} is efficient in state (x, t1) but not in
state (x, t2), and offer set {1, 2} is not efficient in state (x, t1) but it is efficient in state (x, t2).210

An important property of the base model is that an inefficient set is never an optimal solution (see
Proposition 2 in [27]). Unfortunately, this property generally does not hold for the cancellation model.
To this end consider Example 3.2.

8



S Q(S) R(S, x, t1) R(S, x, t1) Efficient set for (x, t1) Efficient set for (x, t2)
∅ 0 0 0 Yes Yes
{1} 0.3 48 30 Yes Yes
{2} 0.4 40 40 No No
{3} 0.5 45 45 No No
{1, 2} 0.7 76 69 No Yes
{1, 3} 0.8 93 75 Yes No
{2, 3} 0.9 85 85 No No
{1, 2, 3} 1 101 95 Yes Yes

Table 2: Efficient sets for Example 2.1.

215

Example 3.2. Consider Example 3.1. In state x = (0, 0, 4) at time T offer set {1, 3} is an
optimal offer set. However, offer set {1, 2} is not efficient in state x at time T , as was shown
in Example 3.1.

3.2. Tractable Exact Solution: Linear and Equal Cancellations (LEC) Assumption220

The model under the linear and equal cancellation Assumption 2.3 turns out to have the nice property
that it can tractably be solved exactly. In order to see this we use some derivations similar to Subramanian
et alii [18].

First consider the model under the independence of cancellations Assumption 2.1. The statement in
Lemma 3.1 is taken from Subramanian et alii [18].225

Lemma 3.1. (Lemma 2 in [18])

Under Assumption 2.1 we have that

H(x, t) =
∑
j∈N

Hj(xj , t),

where the function Hj(xj , t), 1 ≤ j ≤ n, satisfy the following recursive equations:

Hj(xj , t) =


(1− γj(xj))Hj(xj , t− 1) if t > 0

+γj(xj)(cj(t) +Hj(xj − 1, t− 1))

if t = 0.

for all 0 ≤ t ≤ T .

Define ∆Hj(xj , t) by

∆Hj(xj , t) := Hj(xj + 1, t− 1)−Hj(xj , t− 1).

Lemma 3.2 below states that under the independence of cancellations assumption Equation (3) can be230

simplified.
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Lemma 3.2. Under Assumption 2.1 Equation (3) can be rewritten to

Ṽt(x) =



max
S⊂N

{
λ
∑
j∈S

Pj(S)
(
rj −∆Hj(x, t) + Ṽt−1(x+ ej)

)
if t > 0,

+
∑
j∈N

γj(xj)
(
Ṽt−1(x− ej)

)
+

(
1− λ

∑
j∈S

Pj(S)−
∑
j∈N

γj(xj)

)
Ṽt−1(x)

}
q(x) if t = 0.

where ∆Hj(xj , t) satisfies the following recursive formula

∆Hj(xj , t) =


(γj(xj + 1)− γj(xj))cj(t) if t > 1,

+(1− γj(xj + 1))∆Hj(xj , t− 1)

+γj(xj)∆Hj(xj − 1, t− 1)

0 if t = 1.

Now consider the linear cancellations Assumption 2.2. Lemma 3.3 below simplifies the calculations of
∆Hj(xj , t) even further. The statement is taken from [18].235

Lemma 3.3. (Lemma 3 in [18])

Under Assumption 2.2 ∆Hj(xj , t) is independent of the number of reservations xj such that
we can write ∆Hj(t) = ∆Hj(xj , t) for all j ∈ N . Moreover, ∆Hj(t) satisfies

∆Hj(t) =

{
γjcj(t) + (1− γj)∆Hj(t− 1) if t > 1,

0 if t = 1,

for all j ∈ N .

Finally, consider the model under the linear and equal cancellations Assumption 2.3. Theorem 3.1 below240

shows that the states of the problem is significantly reduced. The statement is an extension of Theorem
1 in Subramanian et alii [18] with customer choice behaviour.

Theorem 3.1.

Under Assumption 2.3 we have that Ṽt(x) = W̃t(y) for all (x, t), where y =
∑
j∈N xj and

W̃t(y) is given by the following formula:

W̃t(y) =



max
S⊂N

{
λ
∑
j∈S

Pj(S)
(
rj −∆Hj(t) + W̃t−1(y + 1)

)
if t > 0,

+γyW̃t−1(y − 1)

+

(
1− λ

∑
j∈S

Pj(S)− γy

)
W̃t−1(y)

}
q(y) if t = 0.

(4)

245

Proof. We proof that Ṽt(x) = W̃t(y) by induction to t. For t = 0 we have that Ṽ (x, 0) = q(x)
and W̃ (y, 0) = q(y). By Assumption 2.3 we have that

Ṽ (x, 0) = q(x) = q(y) = W̃ (y, 0),

10



so the statement holds for t = 0.

Suppose t > 0 and the statement holds for all values smaller than t. By Assumption 2.3,
Lemma 3.2, and Lemma 3.3 we have that

Ṽt(x) = max
S⊂N

{
λ
∑
j∈S

Pj(S)
(
rj −∆Hj(t) + Ṽt−1(x+ ej)

)
+ γ

∑
j∈N

xj
(
Ṽt−1(x− ej)

)
+

(
1− λ

∑
j∈S

Pj(S)− γ
∑
j∈N

xj

)
Ṽt−1(x)

}
.

Using the induction hypothesis we can rewrite this to

Ṽt(x) = max
S⊂N

{
λ
∑
j∈S

Pj(S)
(
rj −∆Hj(t) + W̃t−1(y + 1)

)
+ γyW̃t−1(y − 1) +

(
1− λ

∑
j∈S

Pj(S)− γy

)
W̃t−1(y)

}
,

and hence Ṽt(x) = W̃t(y).

Example 3.2 showed that in general inefficient sets can be optimal. However, under Assumption 2.3
ineffcient sets are never an optimal solution, as Proposition 3.1 below states. The set of efficient sets still
depends on (x, t), so unfortunately these efficient sets are not of much use to us.250

Proposition 3.1. An ineffcient set is never an optimal solution to Equation (4).

Proof. See AppendixA.

3.3. Independence of Cancellations Heuristic (IOC)255

The Independence of Cancellations heuristic is appropriate for the model under the independence of
cancellations Assumption 2.1. The goal of this heuristic is to find a solution under a model with general
assumptions. In this approach we reduce the state space by only keeping track of the total number of
reservations rather than the number of reservations per product. Again we make the assumption that
the probability that product j is cancelled depends only on the number of reservations for product j, i.e.,260

γtj(x) = γtj(xj) (see the independence of cancellations Assumption 2.1), but we make no further assump-
tions. The advantage of this heuristic is that it can be applied to problems with general cancellation
probability functions.

Define the one-dimensional state space Y by

Y := {y ∈ N |0 ≤ y ≤ Cmax } .

Each state y ∈ Y corresponds to the total number of reservations. Let γ(y, t) be the conditional prob-
ability that a reservation is cancelled in state (y, t). Let c(y, t) be the expected costs for a cancelled265

reservation in state (y, t). The Bellman equation corresponding to this problem is

Wt(y) =



max
S⊂N

{
λ
∑
j∈S

Pj(S)
(
rj +Wt−1(y + 1)

)
if t > 0,

+γ(y, t)
(
− c(y, t) +Wt−1(y − 1)

)
+

(
1− λ

∑
j∈S

Pj(S)− γ(y, t)

)
Wt−1(y)

}
,

q(y) if t = 0.

(5)
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The problem with using this one-dimensional state space is that we do not know the expected costs c(y, t)
and the conditional cancellation probability γ(y, t). This follows from the fact that we do not know the
mix of reservations on the books, since if we are in state y ∈ Y we could be in any state x ∈ X with

n∑
j=1

xj = y.

The current mix of reservations on the books depends on the past strategy and therefore c(y, t) and γ(y, t)
depend on the past strategy. To overcome this problem we propose the following procedure to estimate
c(y, t) and γ(y, t).

Let π be an arbitrary strategy. Let x̄(y, t) ∈ Rn be the expected mix of reservations on the books in270

state y at time t. Let p(y, t) be the probability that we are in state y at time t. Let pyt (xj = k) be the
probability that we have k reservations for product j in state (y, t). For strategy π we will explain a
recursive procedure to calculate x̄(y, t), p(y, t), pyt (xj = k), γ(y, t), and c(y, t).

Let y and t be arbitrary and suppose we know x̄(y′, t′), p(y′, t′), γ(y′, t′), py
′

t′ (xj = k), and c(y′, t′) for
all t′ < t, for all k and j, and for all y′. Then we can evaluate their values as stated in Lemma 3.4 and275

Lemma 3.5 below.

Lemma 3.4. Define p̂yt (xj = k) by

p̂yt (xj = k) = p(y + 1, t+ 1)

[
py+1
t+1 (xj = k + 1)γt+1

j (k + 1)

+ py+1
t+1 (xj = k)

∑
i6=j

y+1−k∑
k′=0

py+1
t+1 (xi = k′)γt+1

i (k′)

]

+ p(y, y + 1)pyt+1(xj = k)

[
1− λ

∑
i∈S

P (S, i)

−
∑
i6=j

y−k∑
k′=0

pyt+1(xi = k′)γt+1
i (k′)− γt+1

j (k)

]

+ p(y − 1, t+ 1)

[
py−1
t+1 (xj = k − 1)λPj(S)

+ py−1
t+1 (xj = k)λ

∑
i∈S\{j}

Pj(S)

]
,

for all k. Then pyt (xj = k) is given by

pyt (xj = k) =
p̂yt (xj = k)∑y

k′=0 p̂
y
t (xj = k′)

.

Proof. See Appendix AppendixA.

280
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Lemma 3.5. x̄(y, t), p(y, t), γ(y, t), and c(y, t) can be found via the following formulas:

x̄j(y, t) =

y∑
k=0

pyt (xj = k)k,

p(y, t) = p(y + 1, t+ 1)γ(y + 1, t+ 1) + λ
∑
j∈S

Pj(S)p(y − 1, t+ 1)

+

1− λ
∑
j∈S

Pj(S)− γ(y, t+ 1)

 p(y, t+ 1),

γ(y, t) =

n∑
j=1

y∑
k=0

pyt (xj = k)γtj(k),

c(y, t) =

∑n
j=1

∑y
k=0 p

y
t (xj = k)γtj(k)rj(t)

γ(y, t)
.

Moreover, under the linear and equal cancellation rates Assumption 2.3 we have that

γ(y, t) =

n∑
j=1

γtj x̄j(y, t),

c(y, t) =

∑n
j=1 rj(t)γ

t
j x̄j(y, t)

γ(y, t)
.

Proof. See Appendix AppendixA.

We can use the equations from Lemma 3.4 and Lemma 3.5 to iteratively calculate the conditional can-
cellation probability γ(y, t) and the expected costs c(y, t) of a cancelled product in state (y, t) under a
policy π.285

The Independence of Cancellations algorithm iterates the following procedure until we hit a stopping
criterion, for example after a fixed number of iterations. First we start with an arbitrary expected costs
ĉ(y, t) and cancellation probability γ̂(y, t) for each state (y, t). A good initial solution would be to use
the linear and equal cancellation rates Assumption 2.3 and evaluate ĉ(y, t) and γ̂(y, t) according to the
obtained strategy. Then we solve the problem using dynamic programming with Equation (5), where290

we use ĉ(y, t) as an approximation of the expected costs c(y, t) and γ̂(y, t) as an approximation of the
conditional cancellation probability γ(y, t). Then we find an optimal strategy π which we use to calculate
the expected costs ĉ(y, t) and the c cancellation probability γ̂(y, t) corresponding to π, using the equations
in Lemma 3.4 and Lemma 3.5. See Algorithm 3.1 for a summary of this heuristic.

295

Algorithm 3.1. Independence of Cancellations Heuristic (IOC)

1. Start with initial expected costs ĉ(y, t) and cancellation probability γ̂(y, t).

2. Find an optimal strategy π with dynamic programming on Equation (5) using ĉ(y, t) as
an approximation for c(y, t) and γ̂(y, t) as an approximation for γ(y, t).

3. Use π and the equations in Lemma 3.4 and Lemma 3.5 to calculate ĉ(y, t) and γ̂(y, t).300

4. Go to step 2 unless we hit a stopping criterion.

We now investigate the complexity of Step 2 of this algorithm.

Efficient Sets

Another nice property of the Independence of Cancellations (IOC) algorithm is that only efficient offer305

sets are potential optimal sets and the others are never optimal. Moreover, this set of potential offer-sets

13



is the same for all states (y, t). In Proposition 2 of Talluri and van Ryzin [27] it is shown that in the
customer choice base model inefficient sets are never optimal. We show in Proposition 3.2 that inefficient
sets are never optimal for the IOC algorithm and that the set of efficient sets is the same for all (y, t).

310

Proposition 3.2. An inefficient set is never an optimal solution to Equation (5). Moreover,
the set of efficient sets is the same for all (x, t).

Proof. In Equation (5) we have that ∆Hj(y, t) = 0 for all j and (y, t), so the set of efficient
sets is the same for all (y, t).315

The proof that inefficient sets are never an optimal solution to Equation (5) is analoguous to
the proof of Proposition 3.1.

3.4. Linear Cancellation Rates Heuristic (LCR)

The goal of the second heuristic is to be fast and efficient. To accomplish this we do the following:

− We work under the linear cancellation rates Assumption 2.2. This way the model is restricted, but320

we gain computation time.

− We only keep track of the total number of reservations. We loose the information that we have if
we keep track of the number of reservations per product, but we gain computation time.

− We only consider efficient sets in our policy. Then the computation time is reduced because we
need to consider less solutions, but we loose some potential better solutions.325

− We use the same set of efficient sets in each state. We gain computation time because we do not
have to evaluate the efficient sets for each state, but we loose some potential better solutions.

In the second heuristic we work under the linear cancellation rates, i.e., we assume that γj(xj) = γjxj
for all j. The heuristic can also be applied if we work under the linear and equal cancellation rates
Assumption 2.3, since this assumption is a special case of the linear cancellation rates assumption. We
solve a one-dimensional problem, where we only keep track of the total number of reservations and not
of the reservations per product. We reformulate the problem such that the costs of cancellations are
incorporated in the maximisation term of the Bellman equation, as described in Theorem 3.1. Only this
time we only consider offer sets that are efficient. In particular, we choose the efficient sets that result
from taking R(S, x, t) = 0 for all (x, t). The motivation for choosing only these efficient sets is that the
numerical results in Section 5 show that (a) leaving out inefficient solutions does not have a great impact
on performance; and (b) choosing among the efficient sets is better than choosing among an equal number
of arbitrary sets. The Bellman equation that we have to solve is given by

W̃t(y) =



max
S⊂N

efficient

{
λ
∑
j∈S

Pj(S)
(
rj −∆Hj(t) + W̃t−1(y + 1)

)
if t > 0,

+γyW̃t−1(y − 1) +

(
1− λ

∑
j∈S

Pj(S)− γy

)
W̃t−1(y)

}
q(y) if t = 0.

(6)

However, we assume that the cancellation probabilities differ per product. We do not know the cancella-
tion probability γ if we are in state y, since we do not know what the mix of reservations on the books is.
This problem is similar to the problem we described in Section 3.3. We could use Lemma 3.5 to approxi-
mate γ iteratively, but this is computationally expensive. Moreover, numerical results show that simpler
approximations outperform this method (see also Section 5). An example of a simple approximation of
γ is taking the average of all γ’s:

γ :=
1

n

∑
j∈N

γj . (7)

The advantage of using this method over the Independence of Cancellations algorithm is that it is com-
putationally faster and performs better under the linear cancellation rates assumption. However, the
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downside of this method is that it can not be applied to general cancellation probabilities. See Algorithm330

3.2 for an overview of the heuristic.

Algorithm 3.2. Linear Cancellation Rates Heuristic (LCR)

1. Estimate γ̂ by using (γj), for example by Equation (7).

2. Find an optimal strategy of Equation (6).335

3.5. Multiple Room Types Heuristic (MRT)

In practice hotels often have multiple room types. However, we made the assumption that the hotel has
C rooms of the same type. Expanding the solution space with multiple room types leads to an intractable
problem. To solve this problem we combine the Linear Cancellation Rates heuristic of Section 3.4 with340

one-step improvement, i.e., one step of the well know policy iteration (see also Puterman [25]). In this
approach we first find an approximation of the value function, and then use one maximisation step of
policy iteration to find a better solution.

First we consider the different room types separately. Let I be the set of room types. For each room
type i ∈ I we have a certain capacity Ci. For each room type we only keep track of the total number345

of reservations for that room type. Under the linear and equal cancellation rates Assumption 2.3 this
gives the exact solution; see Theorem 3.1. Let Si be the offer set of products for room type i and let Ni
be the set of products for room type i. We solve the problem per room type, as if it would be the only
room type we have, using the Linear Cancellation Rates heuristic described in Section 3.4. The Bellman
equation per room type i ∈ I is given by350

W̃ i
t (y) =



max
Si⊂Ni
efficient

{
λ
∑
j∈Si

Pj(Si)
(
rj −∆Hj(t) + W̃ i

t−1(y + 1)
)

if t > 0

+γiyW̃ i
t−1(y − 1) +

(
1− λ

∑
j∈Si

Pj(Si)− γiy

)
W̃ i
t−1(y)

}
q(y) if t = 0.

(8)

Let u be the vector containing the number of reservations per room type, such that ui represents the
number of reservations for room type i ∈ I. Then we want to solve the following recursive formula:

Ut(u) =



max
S⊂N

{
λ
∑
i∈I

∑
j∈Si

Pj(Si)
(
rj −∆Hj(t) + Ut−1(u+ ei)

) if t > 0,

+
∑
i∈I

∑
j∈Ni

γjujUt−1(u− ei)


+

(
1− λ

∑
j∈S

Pj(S)−
∑
j∈N

γjuj

)
Ut−1(u)

}
q(u) if t > 0.

However, this problem is still too large to solve, even if we use a small number of room types. Therefore
we use one-step improvement to solve this problem. Suppose u is the current state and we wish to decide
which products to offer. We approximate Ut−1(u) by the following formula:

Ũt−1(u) :=
∑
i∈I

W̃ i
t−1(ui) (9)

Ũt−1(u+ ei) and Ũt−1(u− ei) can be approximated similarly. Then we do one maximisation step to find
an approximation Ūt(u) for Ut(u):
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Ūt(u) =



max
S∈N

{
λ
∑
i∈I

∑
j∈Si

Pj(Si)
(
rj −∆Hj(t) + Ũt−1(u+ ei)

) if t > 0,

+
∑
i∈I

∑
j∈Ni

γjxjŨt−1(u− ei)


+

(
1− λ

∑
j∈S

Pj(S)−
∑
j∈N

γjxj

)
Ũt−1(u)

}
q(u) if t = 0.

(10)

The multiple room type heuristic is summarised in Algorithm 3.3 below.

Algorithm 3.3. Multiple Room Types355

1. Fix state u.

2. Evaluate W̃ i
t−1(ui), W̃

i
t−1(ui + 1), and W̃ i

t−1(ui − 1) using Equation (8) for all i ∈ I.

3. Define Ũt−1(u), Ũt−1(u+ ei), and Ũt−1(u− ei) using Equation (9).

4. Use Equation (10) to find an improved approximation Ūt(u) of Ut(u).

360

Remark. The action space of this problem is still large, even though we only use efficient
sets per room type. The concept of efficient sets is only defined for single-resource problems.
In the context of multiple room types it is worth looking into a generalisation of efficient sets
to multiple-resource problems. However, this is beyond the scope of this paper.365

4. Estimating Parameters

In this section we propose a method to estimate the parameters of the model from real data. Ideally
we use an estimation model under perfect knowledge, i.e., we assume we know (a) which products were
offered at what time, (b) when customers arrived, (c) when they made a purchase, and (d) when they370

cancelled their reservation. A maximum-likelihood estimation model under perfect knowledge is described
in AppendixB. In practice not all information is available, unfortunately. For example, the no-purchase
option is rarely observed. To overcome this problem we need to consider methods that deal with cen-
sored data. One method is the well-known expectation-maximisation algorithm, which is described in
AppendixB. However, the expectation-maximisation algorithm is unattractive for practical purposes for375

two reasons. First, the computation time is notoriously long. Second, the method estimates the pa-
rameters of the discretised model instead of the continuous model, which may lead to estimation errors.
To overcome these problems we propose an estimation model that is based on the excellent estimation
method proposed by Newman et alii [24]. The proposed method assumes the linear cancellation rates
Assumpton 2.2 and that the purchase probabilties are modelled by the multinomial logit model (MNL),380

which is briefly explained in AppendixB.

In what follows the purchase probabilities and the offer set depend on the time period. Therefore we
introduce the following notation. Let Ztj be the variable containing values of the attributes of product
j in time period t and let Zt = {Ztj}j . Let St be the set of products that is offered in time period t.
Let α be the utility of the no-purchase alternative. For convenience we introduce some notation. Let
Ptj(α, β, St, Zt) be the probability that product j is purchased in time period t under α, β, St, and Zt,
i.e.,

Ptj(α, β, St, Zt) :=
exp(β>Zjt)

exp(α) +
∑
i∈St exp(β>Zit)

.
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Define the probability Pt0(α, β, St, Zt) that the no-purchase option is chosen as

Pt0(α, β, St, Zt) :=
exp(α)

exp(α) +
∑
i∈St exp(β>Zit)

.

It is convenient to use the probability Pt∗(α, β, St, Zt) that a product is purchased, i.e., the probability
that the no-purchase alternative is not chosen. Hence Pt∗(α, β, St, Zt) is given by

Pt∗(α, β, St, Zt) :=
∑
j∈St

Ptj(α, β, St, Zt)

=

∑
j∈St exp(β>Zjt)

exp(α) +
∑
i∈St exp(β>Zit)

= 1− Pt0(α, β, St, Zt).

Finally, let Ptj|∗(β, St, Zt) be the probability that product j is purchased under the condition that the
customer made a purchase, i.e.,

Ptj|∗(β, St, Zt) :=
exp(β>Zjt)∑
i∈St exp(β>Zit)

.

We divide time into T time periods and assume that the parameters to be estimated are constant within
these periods. Note that we allow more than one event to happen in one time period. The parameters that
we need to estimate are: the no-purchase utility α; the weights β of the attributes of the MNL model; the
parameters γj of the exponential distributions that model the cancellations; and the parameter λ of the385

Poisson process that models the arriving customers. We do this by using maximum likelihood estimation.

Assume that the offer set St does not change within this time period. Suppose we observe zjt purchases
for product j in time period t. Let ζj(y) be the total number of cancellations for product j when there
were y reservations for product j, measured over all time periods. Suppose that we observe that for a
period of tj(y) there were y reservations for product j, again measured over all time periods. Note that390

tj(y) might be 0.

The maximum likelihood function L(z, ζ|α, β, γ, λ) is the probability that we observe z and ζ under given
α, β, γ, and λ. Since the arrival process is independent from the cancellation process we can write

p(z, ζ|α, β, γ, λ) = p(z|α, β, γ, λ)p(ζ|α, β, γ, λ),

with p(z|α, β, γ, λ) the probability that we observe z given α, β, γ, and λ; and p(ζ|α, β, γ, λ) the prob-
ability that we observe ζ given α, β, γ, and λ. Since the cancellations are only dependent on γ we can
even write

p(ζ|α, β, γ, λ) = p(ζ|γ),

with p(ζ|γ) the probability that we observe ζ given γ. This also follows from the derivations below.

The cancellation processes are independent from each other, so we can write

p(ζ|γ) =
∏
j∈N

p(ζj |γj),

with p(ζj |γj) the probability that we observe ζj given γj . Moreover, if we consider the time intervals
tj(y) we can write

p(ζj |γj) =

Cmax∏
y=0

p
(
ζj(y)

∣∣γj).
Since the cancellations follow a Poisson process with parameter γjytj(y) the probability p(ζj(y)|γj) that
we observe ζj(y) cancellations in time period t conditional on γj is equal to

p
(
ζj(y)

∣∣γj) =
(
γjytj(y)

)ζj(y) e−γjytj(y)

ζj(y)!
.
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If we take the natural logarithm of p(ζj(y)|γj) we get

log
(
p(ζj(y)|γj)

)
= ζj(y) log(γj) + ζj(y) log

(
ytj(y)

)
− γjytj(y)− log

(
ζj(y)!

)
.

Combining all equations we find

log
(
p(ζ|γ)

)
=
∑
j∈N

Cmax∑
y=0

[{
ζj(y) log(γj)− γjytj(y)

}
+
{
ζj(y) log

(
ytj(y)

)
− log

(
ζj(y)!

)}]
If we want to maximise this with respect to γ we can solve the following equations separately for each
j ∈ N :

Cmax∑
y=0

ζj(y) log(γj)− γjytj(y) (11)

If we take the first derivative with respect to γj we find

1

γj

Cmax∑
y=0

ζj(y)−
Cmax∑
y=0

ytj(y).

The optimum can be found by setting this equation to zero. This gives

γj =

∑Cmax

y=0 ζ(y)∑Cmax

y=0 ytj(y)
.

Let ζj :=
∑Cmax

y=0 ζ(y), i.e., ζj is the total number of cancellations for product j. Then we have that

γj =
ζj∑Cmax

y=0 ytj(y)
. (12)

By taking the second derivative of Equation (11) we find

− 1

γ2
j

Cmax∑
y=0

ζj(y),

which is negative, such that the optimum found in Equation (12) is a maximum.

For completeness we below present the derivations of the results by Newman et alii [24], which can directly
be applied to our model.395

The expression for p(z|α, β, γ, λ) does not depend on γ so we can write p(z|α, β, λ). Conditioning to the
number of reservations mt in time period t gives

p(z|α, β, λ) = p(z|m,β, λ)p(m|α, β, λ),

where m = (m1, . . . ,mT ). Note that p(z|m,β, λ) does not depend on the no-purchase alternative pa-
rameter α. The probability p(z|m,β, λ) that we observe z under the conditions that we observe mt

reservations with parameter β and λ is equal to

p(z|m,β, λ) =

T∏
t=1

(
mt

z1t, . . . , znt

) ∏
j∈N

[
Ptj|∗(β, St, Zt)

]zjt
.

Note that since
∑
j∈N zjt = mt and zjt = 0 for j /∈ St we have that

∏
j∈N

[
Ptj|∗(β, St, Zt)

]zjt
=
∏
j∈St

[
exp(β>Zjt)∑
i∈St exp(β>Zit)

]zjt
=

∏
j∈St

[
exp(β>Zjt)

]zjt[∑
i∈St exp(β>Zit)

]mt .
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By taking the natural logarithm we find

log
(
p(z|m,α, β, λ)

)
=

T∑
t=1

log

(
mt!

z1t! · . . . · znt!

)
+
∑
j∈St

zjtβ
>Zjt −mt log

(∑
i∈St

exp(β>Zit)

)
.

If we want to maximise this with respect to β we only have to consider

T∑
t=1

∑
j∈St

zjtβ
>Zjt −mt log

(∑
i∈St

exp(β>Zit)

) . (13)

On the other hand, mt follows a Poisson distribution with parameter λ
∑
i∈S Pt∗(α, β, St, Zt). Therefore

the probability p(m|α, β, λ) that we observe mt reservations in time period t is given by

p(m|α, β, λ) =

T∏
t=1

[
λ
∑
i∈S Pt∗(α, β, St, Zt)

]mt
e−λPt∗(α,β,St,Zt)

mt!
.

Taking the logarithm gives

log
(
p(m|α, β, λ)

)
=

T∑
t=1

mt

[
log
(
λPt∗(α, β, St, Zt)

)]
− λPt∗(α, β, St, Zt)− log(mt!). (14)

Note that if we maximise Equation (14) with respect to α and λ we can ignore the last term. The first
partial derivative with respect to λ equals

1

λ

T∑
t=1

mt −
T∑
t=1

Pt∗(α, β, St, Zt).

The optimum is attained at

λ =

∑T
t=1mt∑T

t=1 Pt∗(α, β, St, Zt)
, (15)

where
∑T
t=1mt is the total number of observed reservations. The second partial derivative with respect

to λ equals

− 1

λ2

T∑
t=1

mt,

which is negative for λ 6= 0, so the optimum from Equation (15) is a maximum. We can replace λ in
Equation (14) by Equation (15), which gives

log
(
p(mt|α, β, λ)

)
=

T∑
t=1

mt log

( ∑T
t=1mt∑T

t=1 Pt∗(α, β, St, Zt)
Pt∗(α, β, St, Zt)

)

−
∑T
t=1mt∑T

t=1 Pt∗(α, β, St, Zt)
Pt∗(α, β, St, Zt)− log(mt!).

(16)

If β is given we can find α by maximising Equation (16) with respect to α. Then we can find λ by using
Equation (15).

The estimation procedure is summarised in Algorithm 4.1.400

Algorithm 4.1. Three-Step Continuous

1. Find γ̂ using Equation (12).

2. Find β̂ using Equation (13).
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3. Use the estimate β̂ to find α̂ using Equation (16). Then use β̂ and α̂ to find λ̂ using405

Equation (15).

Theorem 4.1 below states that Algorithm 4.1 provides consistent estimators. Moreover, the estimator for
the cancellation parameters γ is an unbiased estimator.

410

Theorem 4.1. As the sample size increases, Algorithm 4.1 leads to consistent estimators.
Moreover, the estimator for γ found by Equation (12) is unbiased.

Proof. Theorem 1 and Theorem 2 in Newman et alii [24] show that the estimators of β and
(α, λ) are consistent, respectively.415

To show that the estimator γ̂ of the cancellation parameter found by Equation (12) is a con-
sistent estimator, we consider the cancellation parameters separately per product. Consider
a product j ∈ N . Let γ∗j be the true parameter and let γkj be the parameter obtained using
Equation (12) with sample size k. In other words,

γkj =

Cmax∑
y=0

ζkj (y)

Cmax∑
y=0

ytkj (y)

,

with ζkj (y) the observed number of cancellations in state y and tkj (y) the observed time spend
in state y with k observations. We can think of one observation as an arrival day with all
booking history. The expected number of cancellations when the state is y is equal to γ∗j yt

k
j (y).

Note that tkj (y) is the sum of k i.i.d. random variables tj(y), where tj(y) is the time spend in
state y for one observation. As the sample size increases, we have that

lim
k→∞

ytkj (y)

k
= γ∗j yE[tj(y)].

On the other hand, ζkj (y) is the sum of k i.i.d. random variables ζj(y), where ζj(y) is the
number of cancellations for one observation. As the sample size increases, we have that

lim
k←∞

ζkj (y)

k
= E[ζj(y)] = E[E[ζj(y)|tj(y)]] = E[γ∗j ytj(y)] = γ∗j yE[tj(y)].

Hence we have that

lim
k→∞

γkj = lim
k→∞

1

k

Cmax∑
y=0

ζkj (y)

1

k

Cmax∑
y=0

ytkj (y)

=

γ∗j

Cmax∑
y=0

yE[tj(y)]

Cmax∑
y=0

yE[tj(y)]

= γ∗j ,

so Equation (12) provides a consistent estimator. Moreover, using conditional expectation it
follows that

E[γkj ] = E

E


Cmax∑
y=0

ζkj (y)

Cmax∑
y=0

ytkj (y)

∣∣∣∣∣∣∣∣∣∣∣
tkj (·)



 = E


Cmax∑
y=0

γ∗j yt
k
j (y)

Cmax∑
y=0

ytkj (y)

 = γ∗,

so Equation (12) provides an unbiased estimator.
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5. Numerical Results

In this section numerical results are provided to validate the customer choice cancellation model. The
four main results that are provided are: 1) the fast computation time of the estimation method described
in Section 4; 2) the fast computation time of the heuristics; 3) the good performance of the heuristics;
and 4) the performance of the heuristics under estimated parameters. The parameters that are used are
based on Simulation Example 2 in Talluri and van Ryzin [27]. Let n = 10 be the number of products
sold with corresponding price vector

r = (240, 220, 190, 160, 120, 112, 96, 80, 74, 70).

Demand, cancellation rates, and purchase probabilities are independent from the time period t. To allow
the study of the effect of high volume in demand and low volume in demand the load factor l is introduced.
In our studies we use l ∈ {0.6, 0.8, 1, 1.2, 1.4}. Demand λ per time unit is then defined as

λ(C, l, T ) =
Cl

T
.

A low value of l implies a low demand relative to the capacity C and a high value of l implies a high
demand relative to the capacity C.

Purchase probabilities are modelled by the MNL model. The only attribute that we consider is price,
but we assume that there exist high price-sensitive and low price-sensitive customers which have different
parameters βH = −0.005 and βL = 0.0015, respectively (as in [27]). The no-purchase parameter is set
to α = 0 such that the MNL model is the same as in [27]. We allow overbooking up to 20% of the total
capacity C. Cancellation rates are assumed linear and the parameters γ ∈ Rn depend on l and T in the
following way:

γ = (0.720, 0.320, 0.560, 0.280, 0.200, 0.360, 0.160, 0.080, 0.008, 0.040)
l

T

= (18/25, 8/25, 14/25, 7/25, 1/5, 9/25, 4/25, 2/25, 1/125, 1/25)
l

T
.

The policies that follow from the heuristics need to be compared using the corresponding revenue. For420

small problem instances the exact solution method can be used, but for larger instances the problem
instance is intractable. In that case simulation is used to estimate the revenue corresponding to a policy.
The estimation errors are between 0.1% and 0.4%.

5.1. Computation Time of Estimation Methods

An estimation method only has value for practical applications if it can finish in reasonable time. The425

three-step continuous estimation method (3SC) described in Section 4 has this property.

In Table 3 the computation time of 3SC is compared with the computation time of EM for different
sample sizes. The results show that the computation time of the EM-algorithm increases drastically
when the sample size increases, while the computation time of the 3SC-method does not. This is only
for a small example with C = 20 rooms, so the results will be worse for practical instances. Fortunately,430

the 3SC-method can be used also for larger instances, with more capacity. In Table 4 the computation
time of 3SC is given for a hotel with C = 200 rooms for different sample sizes. The computation time
increases but it stays reasonable.

Computation time
Observation days EM 3SC

10 219.357 42.611
20 650.314 34.159
50 2869.260 39.311
100 9446.129 34.075

Table 3: Computation times (in seconds) for estimating parameters using EM and 3SC for C = 20, T = 100,
n = 10, and different number of observation days.
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Observation days Computation time
10 50.47
20 55.39
50 64.52
100 81.22
200 112.98

Table 4: Computation time for 3SC estimation method for different number of observation days, using C = 200,
T = 1000, n = 10.

5.2. Computation Time: Heuristics vs. Exact solution

In the analysis of the cancellation model it was stated that the model suffers from the curse of dimension-435

ality. The state space of the Markov decision process is too large, such that solving the exact problem
takes too much time. In Table 5 the computation times of the solution methods are presented for a small
example, where C = 10, T = 20, l = 1, and the number of products n varies from 2 to 10. Evaluating
instances with n > 6 using the exact solution method causes system to be out of memory and the exact
solution can therefore not be computed.440

This example shows that when the number of products increases the computation time increases dras-
tically, while the computation times for the heuristic stay more or less constant. In Table 6 below the
computation times of the heuristics are presented for a larger instance, where C = 200, T = 1000, and
n = 10. Even in this case the computation time is very small.

Computation Time
n Exact IOC LCR TvR
2 0.229 0.295 0.013 0.009
3 1.020 0.292 0.013 0.008
4 4.293 0.327 0.011 0.008
5 15.041 0.309 0.011 0.008
6 49.082 0.309 0.010 0.009
7 - 0.318 0.010 0.011
8 - 0.318 0.011 0.009
9 - 0.327 0.012 0.010
10 - 0.333 0.012 0.012

Table 5: Computation times heuristics vs. exact solution method, using C = 10, T = 20, load factor l = 1,
n = 2, . . . 10.

5.3. Performance of Solution Methods445

The cancellation model is only useful if the tractable heuristics outperform the base model indeed. To
this end, consider a large instance, with C = 200 rooms and T = 1000 time periods. The load factors l
that are considered are {0.6, 0.8, 1, 1.2, 1.4}. In Table 6 the results are presented.

load factor IOC LCR TvR random ∆IOC/TvR ∆LCR/TvR ∆LCR/random

0.6 16,878 17,014 16,904 11,981 -0.15% 0.65% 42.00%
0.8 21,390 21,691 21,252 15,492 0.65% 2.06% 40.01%
1.0 25,297 25,949 24,169 18,818 4.67% 7.37% 37.90%
1.2 27,732 29,859 26,154 21,972 6.03% 14.17% 35.89%
1.4 29,386 33,225 27,848 24,969 5.52% 19.31% 33.06%

Comp. time 7.10 0.58 0.47

Table 6: Performance of the heuristics over the base model, using C = 200, T = 1000, n = 10, and
l ∈ {0.6, 0.8, 1, 1.2, 1.4}.

There are several noteworthy observations from Table 6. First and foremost, using the policies found by
the IOC and LCR heuristics lead to solutions with higher revenue compared the TvR solution method450

(except for the case that l = 0.6, when LCR still outperforms TvR, but IOC is slightly outperformed
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by TvR). Therefore it is reasonable to consider cancellations in the decision making process. Taking
cancellation into account leads to a revenue gain of up to 20%.

Second, the IOC algorithm performs better than the TvR algorithm, but worse than the LCR algorithm.
This is the motivation for choosing LCR over IOC if we work under the linear cancellation rates Assump-455

tion 2.2, but choosing IOC over TvR if we work with general probability rates under the independence
of cancellations Assumption 2.1.

Third, the effects of taking cancellations into account increase when the arrival volume increases. This
is intuitively clear: if the arrival rate is higher, the gap caused by a cancelled reservation will be filled
quickly. If you do not take cancellations into account, the gap caused by the cancelled reservation will460

not be filled, which implies a loss in revenue.

5.4. Estimation Accuracy vs. Performance of Solution Methods

Estimation errors potentially lead to bad performance of the optimisation model. Depending on the
sample size the estimation error might be small or large. In the next simulation the performance of the
solution method using estimated parameters is measured. Again a large instance is considered, where465

C = 200, T = 1000, and n = 10. The load factor l is given different values, namely {0.6, 0.8, 1, 1.2, 1.4},
to consider the effect of different demand volumes. For each load factor a dataset of size 100 (arrival days)
is created, from which the parameters are estimated. The estimated parameters are used by all heuristics
to find the corresponding policy and revenue. In Table 8 the results of the estimation are presented. The
true values as well as the estimated values are presented.470

Load factor
0.6 0.8 1 1.2 1.4

IOC
True 16,843 21,408 25,316 27,748 29,406
Est. 17,168 20,198 24,277 26,764 30,039

LCR
True 16,996 21,685 25,964 29,905 33,186
Est. 17,212 20,222 24,356 27,876 33,590

TvR
True 16,872 21,270 24,138 26,173 27,862
Est. 17,162 20,080 23,151 24,758 28,432

Table 7: Performance heuristics under estimated values. Variables: same as 1, except for load factor = 1. Use
estimates from estimation method example. Note the difference between the other table. This is due to the
difference in cancellation factors, which is constant in the other table!

In Table 7 the revenues corresponding to load factor l, heuristic, and estimated or true parameter set is
given. From this table several observations can be made. Firstly, the heuristics outperforms the TvR
method in all cases: for all load factors, for all parameter sets, true or estimated. This fact suggests that
choosing a heuristic that takes cancellations into account is prefered over the TvR model, even if the
parameters are estimated and thus contain errors.475

Second, the model using the estimated parameters might outperform the model with the true parameters,
or it might not. It seems that in this instance the extreme load factors (l = 0.6 and 1.4) lead to a better
performance of the model under estimated parameters for all heuristics, while with the other load factors
the model under the true parameters performs better.

6. Discussion480

In this paper we analysed the customer choice cancellation model in Section 2, including simplified
versions that result from Assumptions 2.1, 2.2, and 2.3. Moreover, we introduced several solution methods
in Section 3 and estimation methods in AppendixB. In this section we briefly describe some guidelines
for selecting a model, a solution method, and an estimation method. Moreover, we briefly discuss an
extension of the cancellation model to a more realistic choice-based network cancellation model.485
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6.1. Selecting an Appropriate Model, Solution Method, and Estimation Method

In practice one needs to make a choice which model to use before deciding about the solution method and
estimation method. To this end, a balance must be established for the trade-off between a good model,
a good estimation method, and a good solution method. If little restriction is put on the cancellation
probabilities, heuristics need to be used unless the problem is small. Subsequently, complex cancellation490

rate functions need to be estimated. On the other hand, under the linear and equal cancellation rates
Assumption 2.3 the problem can be solved exactly in an efficient way, if the action space small. However,
the assumption that cancellation probabilities are equal for all products is rather strong and not realistic
in many cases.

For different model instances different solution methods and estimation methods may be appropriate.495

There are three dimensions that have to be considered when choosing a solution method: the model
choice, the size of the state space, and the size of the action space. When choosing an estimation method
we need to consider the model choice and in particular the model choice for the purchase probabilities
and cancellation rates.

The efficient three-step estimation Algorithm 4.1 can only be applied to a model that satisfies Assumption500

2.2 or 2.3 and the purchase probabilities are modelled by the multinomial logit model. In all other cases
the expectation-maximisation algorithm described in AppendixB can be used.

If none of the Assumptions 2.1, 2.2, or 2.3 is satisfied, we can only use the exact solution method to solve
the problem. The computation time of this method may be prohibitively long if the state space or the
action space is large.505

Under the independence of cancellations Assumption 2.1 only (the reformulation of) the exact method
described by Equation (3) or the Independence of Cancellations heuristic (IOC) described by Algorithm
3.1 are appropriate. If the state space or the action space is large we use the IOC heuristic and if the
state space and the action space are small we can use the exact solution method.

Under the linear cancellation rates Assumption 2.2 we can apply the exact method, the IOC heuristic, and510

the Linear Cancellation Rates heuristic (LCR). However, numerical results show that LCR outperforms
IOC under the linear cancellation rates assumption, so we will not consider IOC here. If both the action
space and the state space are small, we will use the exact method. If however either the action space is
large or the state space is large we prefer LCR because the exact method is intractable. The action space
can be small when the state space is large if n is small but C is large.515

Under the linear and equal cancellation rates assumption the problem can be solved exactly using Equa-
tion 4. However, if the action space is too large we have to use the LCR heuristic.

6.2. Future Directions: Choice-Based Network Cancellation Model

In practice it is common that fare products consist of multiple night stays/multiple flight legs, so it
is worth looking at network revenue management problems. The theory described in this paper is not520

sufficient to solve these complex problems. However, we provide an outline of a way to approach this
problem. The choice-based network model by Liu and van Ryzin [20] could be extended to include
cancellations. The network consists of m legs and n fare products, where a fare product is now not only
a combination of a price rj and conditions, but also a combination of legs consumed by the product, e.g.
several nights for a hotel stay.525

As in the single-resource case we can write the dynamic programming formulation to solve the problem.
In the network base model (without cancellations) we have to keep track of the available resources, which
is at most a vector of size m. [20] argue that this problem is intractable and provide a choice-based
linear programming heuristic (CDLP) to solve the problem in reasonable time. Now if we also consider
cancellations we have to keep track of the number of reservations per product. This is a vector of size at530

most 2m − 1, so we need to consider heuristics. One heuristic is to use state space reduction techniques
similar to methods described in this paper. Instead of keeping track of purchases of all products we
can keep track of the availability of each resource, which reduces the state-space to an m-dimensional
vector, as in the network base model. A heuristic similar to CDLP could be used to solve the remaining
problem. However, cancellations contribute to the complexity of modelling and solving such heuristic.535

More research is necessary to investigate an efficient method to model and solve the choice-based network
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cancellation model. This topic would enrich the choice-modelling literature, but this is beyond the scope
of this paper.

7. Concluding Remarks

Cancellations have a big impact on revenue. Our model incorporates cancellations in the customer choice540

behaviour setting of revenue management. Policies that are optimal in a setting where cancellations are
not considered can lead to a revenue loss of up to 20% compared to an optimal policy in our setting
where cancellations are considered.

The exact solution can not be evaluated for all practical purposes because of the curse of dimensionality.
To overcome this problem we introduced three heuristics: (1) the Independence of Cancellations heuristic545

3.1, which reduces the state space and can be applied to models with general cancellation rates; (2) the
Linear Cancellation Rates heuristic 3.2, which also reduces the state space and is appropriate under the
linear cancellations Assumption 2.2; and (3) heuristic 3.3, which is an extension of the Linear Cancellation
Rates algorithm and can be used for a hotel with several room types.

Two key results in this paper ensure that the customer choice cancellation model can be an effective550

method for practitioners. First, the Linear Cancellation Rates heuristic from Section 3.4 is fast and gives
a solution close to optimal. Second, the parameters of the model can be estimated in a consistent and
fast way using Algorithm 4.1.

The results of this paper can function as a foundation for several topics of further research. First of
all, the effects of cancellation conditions and overbooking policies in combination with customer choice555

behaviour can now be studied with our customer choice cancellation model. Second, our customer choice
cancellation model can be extended to include group bookings and multiple night stays/multiple flight
legs, which are also very common in practice. Finally, cancellations can be embedded in other revenue
management models to improve performance.
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AppendixA. List of Proofs

Proof of Proposition 3.1.565

First we rewrite Equation (3) by taking all terms that do not depend on S out of the max-
imisation part. This gives us the following equation:

W̃t(y) = max
S⊂N

{
λ
(
R(S, y, t)−Q(S)∆W̃t−1(y)

)}
+ γy∆W̃t−1(y − 1) + W̃t−1(y)

(A.1)

with ∆W̃t−1(y) := W̃t−1(y)− W̃t−1(y + 1).

Let S∗ ⊂ N be an inefficient set, i.e., there exist α(S) ≥ 0 for all S ⊂ (N) with
∑
S⊂N α(S) = 1

and

Q(S∗) ≥
∑
S⊂N

α(S)Q(S), R(S∗, y, t) <
∑
S⊂N

α(S)R(S, y, t).
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Then we have that

λ
(
R(S∗, y, t)−Q(S∗)∆W̃t−1(y)

)
< λ

(∑
S⊂N

α(S)R(S, y, t)−
∑
S⊂N

α(S)Q(S)∆W̃t−1(y)

)
=
∑
S⊂N

α(S)λ
(
R(S, y, t)−Q(S)∆W̃t−1(y)

)
.

Since α(S) defines a probability, there is at least one S ⊂ N such that

R(S∗, y, t)−Q(S∗)∆W̃t−1(y) < R(S, y, t)−Q(S)∆W̃t−1(y).

Hence S∗ is not optimal.

Proof of Lemma 3.4. The probability that xj ∈ {0, . . . , y} in state (y, t) is equal to 1.
Therefore the probability pyt (xj = k) that xj = k for some k ∈ {0, . . . , y} if we are in state
(y, t) is equal to the probability p̂yt (xj = k) that xj = k and we are in state y if we are at time
t divided by the probability that we are in state y at time t. The latter is equal to

y∑
k=0

p̂yt (xj = k),

so we only have to find p̂yt (xj = k) for all k ∈ {0, . . . , y}.570

There are three ways to get to state (y, t). First, we could come from state (y + 1, t+ 1) and
a product was cancelled. The probability that we get to state (y + 1, t+ 1) is p(y + 1, t+ 1).
There are two possible values for xj at time t + 1 that can lead to xj = k at time t, namely
xj = k+ 1 at time t+ 1 and product j is cancelled or xj = k at time t+ 1 and product i 6= j
is cancelled. The probability that the former event occurs is equal to

p(y + 1, t+ 1)py+1
t+1 (xj = k + 1)γt+1

j (k + 1).

The probability that the latter event occurs is equal to

p(y + 1, t+ 1)py+1
t+1 (xj = k)

∑
i6=j

y+1−k∑
k′=0

py+1
t+1 (xi = k′)γt+1

i (k′).

The second possible state that we could come from to end up in state (y, t) is state (y, t+ 1)
and neither a product was cancelled nor a product was bought. The probability that we
get to state (y, t + 1) is equal to p(y, t + 1). The only possibility to get to xj = k in state
(y, t) if nothing happens is that xj = k in state (y, t + 1). The probability for this event is
pyt+1(xj = k). The probability that nothing happens in state (y, t + 1) under the condition
that xj = k is then equal to

1− λ
∑
j∈S

Pj(S)−
∑
i6=j

y−k∑
k′=0

pyt+1(xi = k′)γt+1
i (k′)− γt+1

j (k).

The third possible state that we could come from to end up in state (y, t) is state (y−1, t+1)
and a product was bought. The probability that we get to state (y − 1, t + 1) is equal to
p(y − 1, t+ 1). There are two possible values for xj at time t+ 1 that can lead to xj = k at
time t, namely xj = k − 1 at time t+ 1 and product j is bought or xj = k at time t+ 1 and
product i 6= j is bought. The probability that the former event occurs is equal to

py−1
t+1 (xj = k − 1)λPj(S).

The probability that the latter event occurs is equal to

py−1
t+1 (xj = k)λ

∑
i∈S\{j}

P (S, i).

Combining all events shows that p̂yt (xj = k) is equal to the stated formula for all k.
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Proof of Lemma 3.5.

x̄j(y, t) is the expected number of reservations for product j in state (y, t), which is equal to

x̄j(y, t) =

y∑
k=0

pyt (xj = k)k.

γ(y, t) is the probability that a product is cancelled in state (y, t). This is a combination of
the cancellation probabilities of individual products. The cancellation probability of product
j is equal to

y∑
k=0

pyt (xj = k)γtj(k).

Therefore γ(y, t) is equal to

γ(y, t) =

n∑
j=1

y∑
k=0

pyt (xj = k)γtj(k).

Moreover, under the linear and equal cancellation rates Assumption 2.3 we have that

γ(y, t) =

n∑
j=1

γtj

y∑
k=0

pyt (xj = k)k =

n∑
j=1

γtj x̄j(y, t).

c(y, t) are the costs of a cancellation in state (y, t). If xj = k then the expected costs are
rj(t). The expected costs for product j are thus

y∑
k=0

pyt (xj = k)γtj(k)rj(t).

The expected costs for all products are thus

n∑
j=1

y∑
k=0

pyt (xj = k)γtj(k)rj(t).

If we condition to the event that a cancellation occurs in state (y, t) we see that the expected
costs for a cancellation are equal to

c(y, t) =

∑n
j=1

∑y
k=0 p

y
t (xj = k)γtj(k)rj(t)∑n

j=1

∑y
k=0 p

y
t (xj = k)γtj(k)

=

∑n
j=1

∑y
k=0 p

y
t (xj = k)γtj(k)rj(t)

γ(y, t)
.

Moreover, under the linear and equal cancellation rates Assumption 2.3 we have that

c(y, t) =

∑n
j=1 rj(t)γ

t
j x̄j(y, t)

γ(y, t)
.

Finally, p(y, t) is the probability that we are in state (y, t) at time t. First, we could come
from state (y+ 1, t+ 1) and we have a cancellation. The probability that this occurs is equal
to

p(y + 1, t+ 1)

n∑
j=1

y+1∑
k=0

py+1
t (xj = k)γtj(k) = p(y + 1, t+ 1)γ(y + 1, t+ 1)

Second, we could come from state (y, t+ 1) and there was no event. This occurs with proba-
bility 1− λ

∑
j∈S

Pj(S)− γ(y, t+ 1)

 p(y, t+ 1).
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Third, we could come from state (y − 1, t + 1) and we have a reservation. This occurs with
probability

λ
∑
j∈S

Pj(S)p(y − 1, t+ 1).

Combined this gives

p(y, t) = p(y + 1, t+ 1)γ(y + 1, t+ 1) + λ
∑
j∈S

Pj(S)p(y − 1, t+ 1)

+

1− λ
∑
j∈S

Pj(S)− γ(y, t+ 1)

 p(y, t+ 1).

AppendixB. Estimating Parameters

AppendixB.1. Multinomial Logit Model575

The multinomial logit model (MNL) is a method to describe a discrete probability distribution, given
a set of independent variables. It is commonly used to predict the outcome of statistical classification
problems, such as political elections (see for example Dow and Endersby [9]).

Assume that customers can choose among n products and the no-purchase alternative. Each product j
provides a utility Uj for each customer, i.e., the value of product j to the customer. The no-purchase
alternative provides a utility U0. Each customer chooses alternative j ∈ N ∪ {0} such that his utility is
maximised. The MNL assumes that the utilities are random variables of the form

Uj = uj + ξj ,

where uj is the expected value of Uj and ξj is a random draw from the Gumbel distribution2 with
location equal to Euler’s constant and scale equal to one, such that the expected value is zero. Under
these assumptions it can be shown (see Ben-Akiva and Lerman [5]) that the choice probabilities are equal
to

Pj(S) =
euj∑

i∈S e
ui + eu0

.

The mean utility uj of a product or the no-purchase option depends on k ∈ N different attributes. The
values of the attributes are stored in the k-dimensional vector Zj . The corresponding weights of each
attribute are stored in the k-dimensional vector β. Hence the mean utility uj for product j is given by

uj = β>Zj .

AppendixB.2. Complete Knowledge

Suppose that we have complete knowledge on arrivals, purchases and no-purchases, offer sets, and can-
cellations. Then we can estimate the parameters in the following way. Define aλ(t), {aj(t)}j∈N , and a(t)
by

aλ(t) =

{
1 arrival at time t,
0 otherwise.

a(t) =

{
1 no arrival or cancellation at time t,
0 otherwise.

aj(t) =

{
1 product j cancelled at time t,
0 otherwise.

= (1− aλ(t))
∏
j∈N

(
1− aj(t)

)
.

2The cumulative distribution function of the Gumbel distribution is given by

F (x|µ, β) = e−e−(x−µ)/β
,

where µ is called the location and β is called the scale parameter. The expected value is equal to µ+ γβ, where γ ≈ 0.5772
is Euler’s constant.
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The parameters defined above are indicators to specify which event happened in time period t. Note that
exactly one indicator is equal to 1 at time t and that this is in agreement with the assumption that only
one event happens in each time period. In order to ensure a unique solution we set α = 0 for convenience.
Let j(t) be the product that is purchased at time t under the condition that a customer arrived and
j(t) = 0 if we observed an arrival but no purchase. Then λPtj(t)(0, β, St, Zt) is the probability that j(t)
is purchased at time t, or the probability that a customer arrived and purchased nothing if j(t) = 0. If
product j was cancelled at time t then the probability that this occurs is γj(xj). If no event took place
this occurs with probability 1− λ−

∑
j∈N γj(xj). Let D be the set of time periods. Then the likelihood

function L is given by

L(β, γ, λ|a, x, St, Zt) =
∏
t∈D

[
λPtj(t)(0, β, St, Zt)

]aλ(t) ∏
j∈N

γj(xj)
aj(t) ·

1− λ−
∑
j∈N

γj(xj)

a(t)

The log-likelihood function LL is then

LL(β, γ, λ|a, x, St, Zt) = log(L) =
∑
t∈D

[
aλ(t) log

(
Ptj(t)(α, β, St, Zt)

)
+ aλ(t) log(λ)

+
∑
j∈N

aj(t) log
(
γj(xj)

)
+ a(t) log

1− λ−
∑
j∈N

γj(xj)

].
Note that LL is separable in β and (γ, λ). Maximising the separated log-likelihood functions with respect580

to β and (γ, λ) gives estimates β̂ and (γ̂, λ̂), respectively.

AppendixB.3. Incomplete Knowledge: Expectation Maximisation Algorithm

Suppose we can not observe the event that a customer arrives but does not make a purchase. Then we
do not know the values of aλ(t) and a(t). One way to overcome this problem is to apply the well known
expectation maximisation algorithm (see Dempster et alii, 1977 [8]). Define P as the set of time periods
where a purchase is observed and Cj the set of time periods where a cancellation for product j is observed.
Then we can rewrite LL to

LL(β, γ, λ|x, St, Zt) =
∑
t∈P

[
log(λ) + log

(
Ptj(t)(0, β, St, Zt)

)]
+
∑
j∈N

∑
t∈Cj

log
(
γj(xj)

)

+
∑

t/∈P,t/∈Cj

log

1− λ−
∑
j∈N

γj(xj)


+ aλ(t)

log(λ) + log
(
Pt0(0, β, St, Zt)

)
− log

1− λ−
∑
j∈N

γj(xj)

 .
We know the values for aλ(t) for t ∈ P and t ∈ Cj for all j. However, we do not know the values for aλ(t)

for t /∈ P and t /∈ Cj for all j. If we have estimates β̂, γ̂, and λ̂ we can use Bayes theorem to calculate
âλ(t) (similar to Talluri and van Ryzin [27]):585

âλ(t) = E[aλ(t)|t /∈ P, t /∈ Cj , β̂, λ̂, γ̂]

= P[aλ(t) = 1|t /∈ P, t /∈ Cj , β̂, λ̂, γ̂]

=
P[t /∈ P, t /∈ Cj |aλ(t) = 1, λ̂, β̂, γ̂] · P[aλ(t) = 1|λ̂, β̂, γ̂]

P [t /∈ P, t /∈ Cj |λ̂, β̂, γ̂]

=
Pt0(0̂, β̂, St, Zt) · λ̂

1− λ̂Pt∗(0̂, β̂, St, Z)−
∑
j∈N γ̂j(xj)

.

(B.1)

With âλ we can approximate a(t) by

â(t) = (1− âλ(t))
∏
j∈N

(
1− aj(t)

)
=

{
0 if a product was cancelled in time period t,
1− âλ(t) otherwise.
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Under âλ(t) the expected log-likelihood function is

E[LL|β̂, λ̂, γ̂] =
∑
t∈P

[
log(λ) + log

(
Ptj(t)(β, Z, St)

)]
+
∑
j∈N

∑
t∈Cj

log
(
γj(xj)

)

+
∑

t/∈P,t/∈Cj

log

1− λ−
∑
j∈N

γj(xj)


+ âλ(t)

log(λ) + log
(
Pt0(β, Z, St)

)
− log

1− λ−
∑
j∈N

γj(xj)

 .
(B.2)

Maximising this function with respect to (β, λ, γ) gives new estimates (β̂, λ̂, γ̂). These values in turn can
be used to find a new estimate âλ(t), etc. The algorithm is summarised in Algorithm AppendixB.1.

Algorithm AppendixB.1. Expectation-Maximisation590

1. Start with initial parameters (λ̂, β̂, γ̂).

2. Expectation Estimate âλ(t) using Equation (B.1).

3. Maximisation Estimate (λ̂, β̂, γ̂) using âλ(t) and Equation (B.2).

4. Go to step 2 unless we hit a stopping criterion.

595
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