
Detecting Network Intrusion Beyond 1999:
Applying Machine Learning Techniques to a

Partially Labeled Cybersecurity Dataset
Jan Klein∗, Sandjai Bhulai‡, Mark Hoogendoorn‡, Rob van der Mei∗ and Raymond Hinfelaar§

∗Centrum Wiskunde & Informatica, Amsterdam. ‡Vrije Universiteit, Amsterdam. §Ministerie van Defensie, The Hague.
Email: ∗{j.g.klein,r.d.van.der.mei}@cwi.nl, ‡{s.bhulai,m.hoogendoorn}@vu.nl, §r.hinfelaar@mindef.nl

Abstract—This paper demonstrates how different machine
learning techniques performed on a recent, partially labeled
dataset (based on the Locked Shields 2017 exercise) and which
features were deemed important. Moreover, a cybersecurity
expert analyzed the results and validated that the models were
able to classify the known intrusions as malicious and that they
discovered new attacks. In a set of 500 detected anomalies,
50 previously unknown intrusions were found. Given that such
observations are uncommon, this indicates how well an unlabeled
dataset can be used to construct and to evaluate a network
intrusion detection system.

Index Terms—intrusion detection, cybersecurity, partially la-
beled, autoencoder, gradient boosting machine

I. INTRODUCTION

With the continuing rise in the presence of cyberattacks,
it becomes more and more important to protect computer
networks and data from unauthorized access. To discover mali-
cious activities, network intrusion detection systems (NIDSs)
have been developed. There are different types of systems:
for example, aimed at misuse detection or at anomaly detec-
tion [1]. The first relies on the properties of known attacks to
recognize these in new network traffic, while the second type
focuses on activities different from what is expected. Since
malicious activities are assumed to exhibit abnormal behavior,
anomaly detection is effective in discovering novel intrusions.
Both approaches to network intrusion detection have been
widely researched with the aid of machine learning (ML) [2].

However, in the operational setting, anomaly detection sys-
tems are highly underrepresented. Only recently the use of
these systems has moderately increased. It is argued in [1]
that this low popularity is due to “(i) a very high cost of
errors; [and] (ii) a lack of training data; [. . .]”. Especially
intrusions labeled as harmless (false negatives) are undesirable,
since they can result in serious damage to the network. There
are few publicly available cyber datasets that can be used to
evaluate NIDSs. In literature [3], [4], the NSL-KDD dataset
is usually used for validation. This is a refined version of a
dataset generated in 1999. Since it is almost 20 years old, it is
impossible for this dataset to resemble current network traffic.

The aim of this paper is, firstly, to study the performance
of different ML techniques on a semi-labeled recent dataset:
some observations are known to be malicious, but for the
rest it is unknown whether they are malicious or benign. We
apply both unsupervised and supervised ML techniques for

TABLE I
ADDITIONAL RAW FEATURES IN CONN.LOG

Name Description
subnet orig source subnet of connection
subnet resp destination subnet of connection
PCR bytes relative difference between #bytes sent and received
PCR pkts relative difference betw. #packets sent and received

PCR ip bytes relative difference betw. #IP bytes sent and received

anomaly detection and examine their results. Secondly, this
research explores the importance of each feature in detecting
cyberattacks. Thirdly, the cybersecurity expert (part of the
research team) analyzes two samples of observations which
the models have assigned either a high or low probability of
being malicious. He determines whether the models correctly
classified the samples, possibly resulting in the discovery of
previously unknown malicious activities. Fourthly, the results
are compared with a benchmark technique from literature.

II. LOCKED SHIELDS 2017
The unique and recent dataset used in this research is based

on the Locked Shields exercise of 2017 (LS’17), organized by
the NATO Cooperative Cyber Defence Centre Of Excellence.
In short, the participating teams were given control over a
fictional country and were expected to maintain its IT networks
and services. Information about the proceedings during the
LS’17 exercise can be found in [5].

The LS’17 data consists of several log files collected by
network security monitor Bro (developed by Vern Paxson).
One of the largest files is conn.log, which contains general
information on TCP/IP, UDP, and ICMP traffic of one of
the teams. A description of the standard variables in this
log file can be found in [6], while Table I describes the
features that we added beforehand. After this preliminary
exploration, conn.log consisted of 22 relevant variables with
N = 15,369,736 observations. Lastly, some IP addresses
appearing in this dataset were indicated as malicious, allowing
us to label the corresponding observations as intrusions.

III. METHODS

As mentioned before, the LS’17 dataset is semi-labeled:
8,442 (≈ 0.055%) observations are indicated as malicious,
while the categories of the remaining 15,361,294 (≈ 99.945%)
connections are not known.

A. Pre-processing

Firstly, an adequate target dataset had to be assembled by
extracting the appropriate features from the raw LS’17 data.

1) Feature extraction: For some of the considered ML
algorithms solely numerical values are permitted. Therefore,
one-hot encoding was used on the categorical variables sub-
net orig and subnet resp and on the features which indicate
the protocol and service of the connection. However, the four
features representing the source and destination IP addresses
(hosts) and port numbers all have a large number of possible
categories, and therefore, are called overcategorized variables.
It would be inefficient to introduce a binary feature for every
category. The overcategorized variables were replaced by
extracting new features from them. The previously mentioned
NSL-KDD dataset, described in [4], was taken as an example
for this process. For instance, a variable was constructed which
counts the number of connections in the last τ seconds going to
the same destination host as connection i ∈ {1, . . . , N}. Next,
several new features were extracted from conn state. The
categories in this variable indicate whether observation i raised
an error. Now, fractional error variables were constructed
which indicate the fraction of connections inside some count
feature of connection i that have an error state. Going further
beyond the scope of the NSL-KDD dataset, the constructed
count variables were also paired with each other. More details
about this procedure can be obtained from the corresponding
author upon request.

Since relevant information from the categorical variables
had been extracted, they were removed from the dataset.
Also, the features ts and history were discarded, since most
of their added value was already captured by the variables
mentioned before. The extracted features were aggregated over
time windows of τ = 2 and τ = 120 seconds giving rise to a
short-term and long-term analysis of the data. After the process
of one-hot encoding and feature extraction, the transformed
LS’17 dataset consisted of P = 142 variables.

2) Data preparation: Next, the first 120 seconds of data
were removed, because the aggregated temporal variables
were skewed at the start of the exercise. This resulted in
the removal of 614 instances (≈ 0.004%). Furthermore, the
dataset was randomly split into a training, validation and
test set with allocation percentages 70%/15%/15%, such that
Ntrain = 10,758,386 and Nval = Ntest = 2,305,368. Of the
total of 8,442 labeled malicious observations, Mtrain = 6,004
ended up in the training set, Mval = 1,221 in the validation
set and Mtest = 1,217 in the test set. Moreover, Ptrain = Pval =
Ptest = 142.

B. Autoencoder

The first model considered was an unsupervised ML method
called the autoencoder. This technique works well for anomaly
detection and feature dimensionality reduction [7], [8], but this
has not yet been shown in network intrusion detection.

The number of layers L ≥ 3 in the network, the number
of neurons in the middle layer P(L+1)/2 ∈ N and the
Ridge regularization shrinkage parameter λ ∈ R+ were the

hyperparameters, and therefore, had to be determined before
the training procedure could start. The activation function used
was the hyperbolic tangent function. The numbers of neurons
in the other layers were determined by the geometric pyramid
rule, which simplifies the structure of the model. This rule
defines the number of neurons Pl in layer l ∈ {1, . . . , L} by

Pl = P(L+1)/2 ·
(

Ptrain

P(L+1)/2

) |2l−(L+1)|
L−1

.

The optimal values of the three hyperparameters were de-
termined with the aid of the validation set. This set was
fed to a trained autoencoder and for every observation i
the mean squared difference (MSEi) between its input and
output was calculated. The assumption is that a malicious
observation cannot be correctly reconstructed, and hence,
results in a relatively high MSEi. The hyperparameter combi-
nation (L,P(L+1)/2, λ) chosen was the one that maximized
the Discounted Cumulative Gain (DCG). A large value of
DCG indicates that the known malicious observations obtained
relatively high MSEs. In a ‘perfect’ MSE ranking all known
malicious instances obtain the highest MSEs and in the worst
ranking they obtain the lowest, implying that DCG is bounded.
Hence, for convenience, the normalized DCG (nDCG) was
considered. This is a linearly scaled version of DCG such
that it takes values in [0, 1]. Additionally, when the MSE
ranks are randomly assigned, then E(nDCG) ≈ 0.0532 and
Var(nDCG) ≈ 3.68× 10−6.

C. Gradient Boosting Machine

The second ML method considered is called the gradient
boosting machine (GBM), which can also be applied for
anomaly detection purposes [9]. GBM requires labeled training
data, therefore all unknowns were classified as benign: making
the malicious class highly underrepresented (≈ 0.056%).

Here, the hyperparameters were the number of trees T ∈ N
to be constructed and the zero-class sampling factor α0 ∈
(0, 1), which indicates the fraction of benign labeled observa-
tions to sample during training such that the two classes can
be balanced. The optimal values for the hyperparameters were
determined by the validation set similar to what was done for
an autoencoder. Each observation i in the validation set was
fed to the trained GBM (given some parameter combination)
and nDCG was calculated.

IV. RESULTS

The procedures described in the Section III were conducted
in R. Both ML techniques are available in the h2o package. In
the benchmark evaluation the C5.0 algorithm was used, which
is available in the C50 package.

A. Results Autoencoder & Gradient Boosting Machine

To construct an autoencoder network, the training set was
used without the 6,004 (0.056%) known intrusions. These
observations were assumed to be abnormal and go against
the purpose of an autoencoder to design a representation of
normal behavior. Note that there were still possibly many

TABLE II
OPTIMAL HYPERPARAMETER COMBINATIONS AUTOENCODER AND GBM

(L,P(L+1)/2, λ) (T, α0) nDCG s2(DCG)

auto. (9, 15, 10−4) − 0.230 0.00139
GBM − (300, 8ctrain) 0.992 9.38× 10−6

Fig. 1. mean MSE of test observations

unknown intrusions in the training set. For gradient boosting
the complete training set was used with the assumption that
the unknown observations were benign.

1) Hyperparameter tuning: Since the training procedure
is a stochastic process, 60 models were trained to obtain an
acceptable estimate for the expected value of nDCG per hy-
perparameter combination and for each method. The relatively
optimal hyperparameters for both techniques are shown in
Table II, with ctrain =Mtrain/(Ntrain−Mtrain) the ratio between
the number of labeled malicious and unlabeled observations
in the training set.

2) Evaluation on known intrusions: The test set was used
for the evaluation. For the autoencoder technique this re-
sulted in a reconstruction MSE for each test observation.

Fig. 2. log mean intrusion probability of test observations

TABLE III
TEST RESULTS AUTOENCODER AND GBM

intr. inf intr. sup mean unk. mean intr. nDCG
auto. 0.0323 0.104 0.0230 0.0607 0.176

74.90% 99.89% 62.01% 95.02%

GBM 2.5 · 10−5 1.000 2.4 · 10−4 0.98 0.993
98.59% 100.00% 99.46% 99.95%

TABLE IV
FIVE MOST IMPORTANT FEATURES BY AUTOENCODER

feature share
subnet orig 8.14%

srv 6.74%
resp p same srv rate 120s 4.88%
resp p same srv rate 2s 3.70%

subnet resp 3.69%

TABLE V
FIVE MOST IMPORTANT FEATURES BY GBM

feature share
resp p same srv rate 120s 52.89%

resp p same resp h rate 120s 16.19%
srv 8.00%

subnet orig 7.69%
srv same resp p rate 120s 1.89%

This procedure was repeated 50 times to obtain 50 MSEs
for each test instance. The mean was taken over all these
repetitions to estimate the expected reconstruction MSE. The
same procedure was done for the GBM, which resulted in 50
intrusion probabilities per test observation. However, each run
yielded a different threshold probability θ ∈ (0, 1) representing
the border between the predicted labels 0 (benign) and 1
(malicious). To allow for comparison, each time the threshold
θ was transformed to be 0.5 and the probabilities were
changed accordingly. This was done by applying the function
fθ : [0, 1]→ [0, 1] given by

fθ(p) =
(1− θ)p

(1− 2θ)p+ θ

to all probabilities. This function has desirable properties:
(i) it is continuously differentiable, (ii) fθ(0) = 0, (iii)
fθ(θ) = 0.5, (iv) fθ(1) = 1 and (v) f ′θ(p) ≥ 0. The results
are shown in Figures 1 and 2. In the first figure the mean
MSE (MSE) of every test observation for the autoencoder is
plotted, while in the second the mean (transformed) intrusion
probabilities (p(1)) for the GBM are shown. Note that the
natural logarithm of the probabilities was taken to enhance the
amount of information the plot conveys. In both figures, the
black points are the unknown instances, while the red points
are the labeled intrusions. The lowest orange line indicates
the intrusion infimum: the level such that all known intrusions
are above this line. Likewise, the highest orange line is the
intrusion supremum: the level such that all labeled malicious
instances are below this line. Moreover, the blue line indicates
the mean MSE or mean p(1) of the unknown instances and the
red line that of the labeled observations. The green dashed line
in Figure 2 corresponds to probability 0.5 (99.99th percentile)
and represents the border between the predicted classes. The
corresponding percentiles of these lines and the nDCGs of the
two expected models are presented in Table III.

3) Feature Analysis: For the autoencoder, the per feature
squared errors were obtained for each test observation. To
determine which variables were important for the autoencoder,
the share of each feature in the total squared error sum

TABLE VI
ANALYSIS BY THE EXPERT

benign malicious unknown
high 65.4% (327) 10.8% (54) 23.8% (119)
low 98.6% (986) 0.1% (1) 1.3% (13)

class total 87.53% (1,313) 3.67% (55) 8.80% (132)

was calculated. For the GBM, the function h2o.varimp was
used to determine the relative predictive strength of each
variable. The features which were partitioned into binary
variables during one-hot encoding were unified again in both
computations. The five most important variables per technique
for the average known intrusion are shown in Tables IV and
V. A complete explanation of these features can be obtained
from the corresponding author upon request.

4) Evaluation by expert: The cybersecurity expert analyzed
two samples of test observations. The ‘high sample’ contained
500 random observations from the top 6% which yielded the
largest MSEs. The (relatively) ‘low sample’ was a random
set of 1,000 observations excluding the top 6%. Table VI
shows the expert classification of the two samples. For the
autoencoder, the precision (0.142), recall (0.982) and F1 score
(0.248) were all maximal when α = 5.76% of the data was
assumed to be anomalous. This threshold value α had to be
imposed, because the technique is unsupervised. The GBM
classified α = 0.0668% of the records as malicious, resulting
in precision 1.00, recall 0.0727 and F1 score 0.136.

B. Results Benchmark

One of the classification techniques that Dhanabal et al. [4]
used on the NSL-KDD dataset was the C4.5 decision tree
algorithm. Here, the improved C5.0 algorithm [10] was applied
to the LS’17 dataset with the subset of variables that matched
the set used by Dhanabal as best as possible. Their feature
set does not contain the variables in Table I, the features
aggregated over 120 seconds, and the variables paired with
the constructed count variables. This reduced the number of
features from P = 142 to Pbench = 39.

1) Evaluation on known intrusions: Since C5.0 is a super-
vised ML technique, all unknown observations were consid-
ered to be benign. The hyperparameters were based on those
selected for the GBM. The expected performance measure
nDCGbench ≈ 0.956 was estimated by training 50 models.

2) Evaluation by expert: The performance of the C5.0
method was also evaluated by the cyber analyst. This technique
classified α = 0.403% of the test observations as malicious
with precision 0.571, recall 0.0727 and F1 score 0.129.

V. DISCUSSION

At first glance, the GBM seems better, because all known
attacks were present in the top 1.42% of the data and the means
of the two classes vastly differed (Figure 2 and Table III).
Figure 1 shows that the autoencoder was able to notice that
the labeled malicious activities do not conform to the normal
behavior of the network traffic, because all test intrusions
yielded MSEs in the top 25.10%. Unfortunately, this result

TABLE VII
ACCURACY MEASURES ON TEST SAMPLES

nDCG α precision recall F1 score
autoencoder 0.176 5.76% 0.142 0.982 0.248

GBM 0.993 0.0668% 1.00 0.0727 0.136
benchmark 0.956 0.403% 0.571 0.0727 0.129

is not desirable when dealing with millions of observations.
There was a clear distinction between the means of both
classes, however.

Next, two samples were thoroughly analyzed. As Table VI
shows, one new malicious activity was discovered in the low
sample and no fewer than 54 intrusions were found in the high
sample (four of them were already known). Table VII gives
a summary of the results obtained in this research. It shows
that the autoencoder was able to discover almost all of the real
attacks in the two samples (recall = 0.982), while the GBM
found almost none of the actual intrusions (recall = 0.0727).
Yet, only a small fraction of the found anomalies by the
autoencoder were in fact malicious (precision = 0.142), while
all predicted intrusions by the GBM were correctly classified
(precision = 1.00).

The results of the benchmark C5.0 algorithm justified the
addition of the new features, since Table VII shows that
nDCGbench < nDCGGBM. This is a statistically significant
difference according to a one-sided Mann-Whitney test on the
two samples of DCGs (p-value < 2.2 × 10−16). Moreover,
the feature analyses of the autoencoder and the GBM showed
that the features introduced here are important in detecting
and discovering intrusions (Tables IV and V). The variables
aggregated over a time horizon of 120 seconds, the variables
added by the expert, and the extra variables which were not
present in [4] all had a large influence on the classification.

REFERENCES

[1] R. Sommer and V. Paxson, “Outside the Closed World: On Using
Machine Learning For Network Intrusion Detection” IEEE Symposium
on Security and Privacy, 2010.

[2] M. Zamani and M. Movahedi, “Machine Learning Techniques for
Intrusion Detection”, 2015.

[3] S. Revathi and A. Malathi, “A Detailed Analysis on NSL-KDD Dataset
Using Various Machine Learning Techniques for Intrusion Detection,”
International Journal of Engineering Research & Technology, vol. 2, no.
12, 2013, pp. 1848–1853.

[4] L. Dhanabal and S.P. Shantharajah, “A Study on NSL-KDD Dataset for
Intrusion Detection System Based on Classification Algorithms,” Inter-
national Journal of Advanced Research in Computer and Communication
Engineering, vol. 4, no. 6, 2015, pp. 446–452.

[5] K. Maennel et al., “Improving and Measuring Learning Effectiveness at
Cyber Defense Exercises,” Springer 2017, pp. 123–138.

[6] The Bro Platform, “base/protocols/conn/main.bro”, https://www.bro.org/
sphinx/scripts/base/protocols/conn/main.bro.html

[7] S. Zhai et al., “Deep Structured Energy Based Models for Anomaly
Detection,” Proc. 33rd International Conference on Machine Learning,
2016.

[8] S. Glander, “Autoencoders and anomaly detection with machine learning
in fraud analytics”, https://shiring.github.io/machine learning/2017/05/
01/fraud, 2017.

[9] M. Reif et al., “Anomaly detection by combining decision trees and para-
metric densities,” 19th International Conference on Pattern Recognition,
2008.

[10] RuleQuest, “Is See5/C5.0 Better Than C4.5?”, http://www.rulequest.
com/see5-comparison.html, 2017.

https://www.bro.org/sphinx/scripts/base/protocols/conn/main.bro.html
https://www.bro.org/sphinx/scripts/base/protocols/conn/main.bro.html
https://shiring.github.io/machine_learning/2017/05/01/fraud
https://shiring.github.io/machine_learning/2017/05/01/fraud
http://www.rulequest.com/see5-comparison.html
http://www.rulequest.com/see5-comparison.html

	Introduction
	Locked Shields 2017
	Methods
	Pre-processing
	Feature extraction
	Data preparation

	Autoencoder
	Gradient Boosting Machine

	Results
	Results Autoencoder & Gradient Boosting Machine
	Hyperparameter tuning
	Evaluation on known intrusions
	Feature Analysis
	Evaluation by expert

	Results Benchmark
	Evaluation on known intrusions
	Evaluation by expert

	Discussion
	References

