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Abstract—Frequent variations in throughput make mobile
networks a challenging environment for video streaming. Current
video players deal with those variations by matching video
quality to network throughput. However, this adaptation strategy
results in frequent changes of video resolution and bitrate, which
diminishes the users’ streaming experience. Alternatively, keeping
the video quality constant would improve the experience, but puts
an additional demand on the network. Downloading high quality
content when channel quality is low requires extra resources,
because data transfer efficiency is linked to channel quality.
In this paper, we present a predictive Channel Quality based
Buffering Strategy (CQBS), that grows the video buffer when
channel quality is good, and relies on this buffer when channel
quality decreases. Our strategy is the outcome of a Markov
Decision Process. The underlying Markov chain is conditioned on
377 real-world LTE channel quality traces that we have collected
using an Android mobile application. With our strategy, mobile
network providers can deliver constant quality video streams,
without sacrificing additional network resources.

Index Terms—Video streaming; HTTP Adaptive Streaming,
Markov model, Markov Decision Process, Buffering strategy

I. INTRODUCTION

Online video streaming is one of the most popular ap-
plications on fixed and mobile networks. Network traffic
predictions, such as Sandvine’s Internet phenomena report
[1], not only show an increase in data volume but also
show that on-demand video streaming is the dominant driver
for this increase. Currently, around 70% of downlink traffic
accounts for video streaming. However, mobile networks are
a challenging environment to deliver high-quality video. A
shared radio-based medium combined with user movement
creates high variability in channel quality from eNodeB to
User Equipment (UE). The effective throughput to an UE is
strongly dependent on cell load and radio channel conditions.

Dynamic Adaptive Streaming over HTTP (DASH) is the
primary video streaming technique [2]. It has shown to
effectively deal with throughput variations [3], [4]. DASH
players adapt the video quality to match network throughput.
On the one hand, lowering the video quality when network

conditions decrease reduces annoying playback interruptions.
On the other hand, increasing the video quality when
throughput increases provides a benefit for the user. However,
temporarily streaming at low quality and too many quality
switches negatively impact the viewers’ Quality of Experience
(QoE) [5]. It could even lead to users stopping the stream [6].

The next generation of mobile networks potentially offers
better support for video streaming. In 5G networks, so-called
network slices can be used to optimize the network for
delivery of video streams. Having the 5G architecture in
mind, we investigate the potential of a network slice that
requests network resources such that a constant video quality
can be maintained. Instead of having video players adapting
their quality to the mobile network conditions, we propose a
strategy that adjusts the number of network resources to let
players stream at constant video quality.

Streaming at a constant video quality is possible but requires
more network resources. In LTE terms this means increasing
usage of Resource Blocks (RBs). The effective data rate per
RB strongly depends on the quality of the radio channel
between eNodeB to UE. When the channel quality decreases,
the eNodeB uses modulation settings with more redundancy,
thus effectively reducing the throughput per RB to the UE.
Maintaining a constant video quality means using a relatively
large number of RBs when channel quality is low.

Traditional adaptation algorithms are efficient because they
lower the video quality when the channel quality decreases,
thus relieving the network when it’s needed. In this paper,
we propose a downloading strategy that also relieves the
network when channel quality is low, but it maintains constant
video quality. The intuition behind our predictive Channel
Quality based Buffering Strategy (CQBS) is to grow the
video buffer when channel quality is high (bandwidth is
thus relatively cheap), and consume this buffer when channel
quality decreases (relieve the network when bandwidth be-
comes expensive). To determine when the buffer should grow
or shrink, we compose a Markov chain that represents the



changes and behavior of LTE channel quality. The Markov
chain is conditioned on an extensive set of 377 5-minute LTE
channel quality traces containing measurements in different
environments and under different speeds. We define a Markov
Decision Process (MDP) based on this model and the current
play-out buffer level in the video player to obtain the optimal
downloading strategy. With CQBS we can deliver constant
video quality for the same price as the varying video quality
from traditional adaptation algorithms. We summarize the
contribution in this paper as follows:
• A Markov chain that describes the behavior of LTE

channel quality. The model is conditioned on an extensive
set of LTE channel quality traces that we have collected
in the real word using an Android application.

• CQBS: a predictive downloading strategy for video
streaming (grow-, maintain-, shrink the video buffer) that
reduces network resources while streaming in a constant
video quality. We formulate the strategy as an MDP.

• Performance evaluation of CQBS, comparing it to tra-
ditional adaptation algorithms. We cross-validate CQBS
using our real-world channel quality traces.

The remainder of this paper is as follows. Section II
discusses related work. In Section III we describe our Markov
model for LTE channel quality, which we use in Section IV
to compute the optimal downloading strategy. In Section V
evaluate the performance of our CQBS algorithm. Sections
VI discusses our findings and concludes this paper.

II. RELATED WORK

Dynamic Adaptive Streaming over HTTP (DASH) is the
dominant video streaming technology for the Internet [7].
In DASH, a video file is encoded at multiple bitrates
and resolutions. Each representation is then split into small
segments of a few seconds. A manifest file describes the
characteristics of each representation and contains URLs
where to find each segment [2]. A DASH player downloads the
video segments one-by-one adapting the video quality to the
network conditions. This process is challenging [8], especially
in mobile networks that show large variations in throughput.
The resulting fluctuations in video quality are distracting for
the viewers [5], and may lead to users stopping the stream [6].

To improve the stability of video streams, so called
DASH Aware Network Elements (DANEs) are introduced [9].
DANEs are a cross-utilization solution where DASH players
exchange information with network elements, such as routers,
Wi-Fi access points, and potentially mobile base stations. Most
DANEs (or comparable solutions) are targeting wired or Wi-
Fi networks. Bouten et al. use proxy servers to guide DASH
players [10]. Cofano et al. [11] and Kleinrouweler et al. [12]
both presented implementations that employ WebSockets for
information exchange and apply traffic shaping to guarantee
that enough bandwidth is available for video streaming.

DANEs also show to be useful in mobile networks, where
they primarily focus on reducing video freezes. In [13], With
et al. present a cross-layer solution where the LTE eNodeB
has access to the information in the DASH manifest. It

allows the eNodeB to better schedule resources and reduce the
number of freezes. Essaili et al. present a pro-active resource
scheduler for DASH [14]. Based on the clients’ buffer levels,
the scheduler determines the best streaming rate. This reduces
video freezes and is more fair among clients. Zahran et al.,
present a solution with a comparable goal and effect [15].

In this paper, we assume the existence of a DANE
implementation that can exchange information about channel
quality, videos stream, and player state (i.e. play-out buffer
level) between mobile base station and client. Instead of only
looking at the current state of network and video player, we
also predict the evolution of channel quality while determining
our buffering strategy. Wang et al. present a channel quality
predictor based on machine learning techniques [16]. They
target real-time applications but not consider a specific appli-
cation. We look alter the buffering process of DASH based
video streaming based a Markov chain that is conditioned on
real-word data.

III. MODELING CHANNEL QUALITY BEHAVIOR

The data transmission efficiency in mobile networks de-
pends on the channel quality. We anticipate on this by down-
loading more video content into the buffer when efficiency is
high, and play video from the buffer when efficiency decreases.
To determine when to start growing/consuming the video
buffer, we have to understand the evolution of channel quality.
We follow the next three steps:

A) collect an extensive set of real-word channel quality
measurements with a mobile application;

B) fit a Markov chain on the collected traces and determine
data transmission efficiency for each state;

C) predict data transmission efficiency.

A. Collecting channel quality traces

In LTE networks, UEs determine the channel quality using
a reference signal that is broadcasted by the eNodeB. This
process is known as channel estimation. One of the parameters
that the UE obtains during channel estimation is the so-
called Reference Signal Received Quality (RSRQ). The RSRQ
reporting range is defined by the 3GPP from -20 dB (very poor
channel quality) to -3 dB (excellent channel quality) [17].

To the best of our knowledge, a large and consistent dataset
that includes RSRQ parameters does not exist. Therefore, we
developed a smartphone application for the Android platform
to measure LTE downlink channel quality. The app uses
the Android 8.0 Telephony API1 to gather LTE statistics at
intervals of two seconds. This interval is the lowest update
frequency that the platform provides. RSRQ is subject to
frequent small changes as a result of interference and multi-
path fading. Therefore, UEs internally determine RSRQ (and
other parameters) every two milliseconds. Nevertheless, the
Telephony API gives a good summary of the last two seconds.
Small changes would have little to no effect on downloading

1https://developer.android.com/reference/android/telephony/package-
summary.html (accessed March 20, 2018)



video segments of a few seconds. The Telephony API reports
RSRQ as discrete values within the RSRQ reporting range.

We used two Google/LG Nexus 5X2 smartphones for
collecting the traces. We measured LTE channel quality in
traces of five minutes in several different environments, under
different speed profiles and with a varying number of people
around us. In total, we have collected real-world 377 traces.

B. Modeling channel quality and data rate behavior

Through analysis of the channel quality traces we obtained
how RSRQ evolves over time. Based on this information, we
construct a Markov chain to fit this process. The state space, S ,
is defined as eighteen states representing the RSRQ reporting
range in steps of one decibel. Transitions in the Markov chain
express changes in RSRQ. We observed in our traces that
RSRQ can change between any two levels. Therefore, we use
a fully connected Markov chain. The transition probability
matrix is denoted by P . We opt for a transition interval of
1/3 second. The two-second intervals from our channel quality
traces are too coarse to express the download process of DASH
video segments at different buffering speeds. A too small
transition interval would cause long execution times when
solving the MPD.

For each state in the Markov chain, the data transmission
efficiency that corresponds with the RSRQ is computed. We
follow a process that is similar to how the modulations settings
(modulation settings determine the efficiency) in LTE network
are established. In the first step, we map RSRQ to Signal to
Noise and Interference Ratio (SINR). A theoretical mapping
between RSRQ and SINR exists, and is approximated using
the following function [17], [18]:

SINR =
1

1
12−RSRQ − ρ

, (1)

where ρ is the load of the serving cell. We use ρ = 1/6,
which indicates a lightly loaded cell. Given the SINR, we use
a lookup table to obtain the Channel Quality Indicator (CQI)
and corresponding data rate. The data rate is the fraction of
bits in a Resource Block (RB) that remains after demodulation
(i.e. the actual data). Table I lists the mapping from RSRQ
to the data rate. The function d(x) applies this mapping and
provides the effective data for state x.

C. Predicting transmission efficiency

Given the RSRQ Markov chain and the mapping to effective
data rate, we can make predictions on how the data will
evolve. We will use those predictions to estimate how many
resources will be required to download the next video segment
at a certain speed (i.e. grow, maintain, or shrink the video
buffer). Depending on download speed, the downloading a
video segment may to take longer than one interval in our
model. We compute the multi-step transition probabilities to
determine how RSRQ and data rate change while downloading
this video segment. Given transition probability matrix P , we

2http://www.lg.com/in/lg-nexus-5x/specification.jsp (accessed January 23,
2018)

Table I
MAPPING RSRQ TO EFFECTIVE DATA RATE

RSRQ (dB) SINR (dB) CQI Eff. data rate

-20 -9.12 0 0.000
-19 -8.10 0 0.000
-18 -7.07 0 0.000
-17 -6.03 1 0.026
-16 -4.98 1 0.026
-15 -3.92 2 0.039
-14 -2.85 2 0.039
-13 -1.75 3 0.063
-12 -0.06 3 0.063
-11 0.54 4 0.101
-10 1.76 4 0.101
-9 3.05 5 0.147
-8 4.45 6 0.198
-7 6.00 6 0.198
-6 7.82 7 0.248
-5 10.13 9 0.404
-4 13.70 10 0.459
-3 INF 15 0.930

obtain the n-step transition probabilities by multiplying P . We
denote the probability that our RSRQ model transitions from
state x to y in n steps as Pn

x,y .
Driven by the changes in RSRQ that can occur during

one segment download, the effective data rate may also
vary. To get the expected network resources needed for one
video segment we need to estimate the data rate during that
download. Therefore, we average the data rates for each
possible path between two states, weighing each path by its
probability of taking it. We compute the expected data rate
when transitioning from state x to y in n steps as follows:

Dn
x,y =

1

n

n∑
i=1

∑
z∈S

dPn−i
z,y eP i

x,z∑
w∈S
dPn−i

w,y eP i
x,w

d(z). (2)

For every of the n steps, we compute the expected data rate
in that step. The expected data rate for a step is the average
data rate of all states, weighted by the probabilities that a route
from x to y traverses a state in the given step. However, not
all paths provide a viable route x → y, especially when the
number of steps becomes small. Therefore, we only consider
transitions that after a transition have enough steps left to reach
destination state y. For each sub-state z in Equation 2, we only
include z when the probability of transitioning z → y in n− i
steps is non-zero. Since not all states are included, we adjust
the weights accordingly.

IV. CHANNEL QUALITY BASED BUFFER STRATEGY

The number of network resources that are required for
downloading one segment can be estimated with Dn

x,y and the
current channel conditions. How many intervals are needed
to download one segment depends on how fast it should be
downloaded. Assuming a segment with a duration of two
seconds, downloading it in two seconds would maintain the
buffer level. Downloading faster increases the buffer, while
downloading slower than two seconds (or not at all) would



shrink the buffer. We define six different buffering actions
(denoted as Bxxx) for our CQBS strategy:
• Growing the buffer: Downloading video segments two

(B200) or three (B300) times faster than playing segments
out.

• Maintaining the buffer: Download of one video segment
takes the same time as playing one segment (B100). This
action will be chosen over B200/300 when the buffer
reaches its maximum level.

• Shrinking the buffer: Relieving the network when band-
width becomes expensive. We download video segments
either at 1

3 (B033) or 1
2 (B050) of the playback speed.

• Not downloading: Data transmission are sometimes not
possible because channel quality it too low. During those
periods, no video segments will be downloaded and no
resources are required (B000).

Depending on the buffering action, downloading one two-
second segment will take between two and eighteen intervals
of 1/3 second. The channel quality of the client and the current
buffer fill level determine the best buffer action at each time.
We formulate this problem, which is the core of CQBS, as
an MDP. Let (S ′, A, P ′, R, γ) be our MDP. The state space
S ′, describes the state of a single video player instance. A
state is defined as a two-tuple (c, b) combining the current
channel quality (indicated by RSRQ) with the current buffer
level. Buffer fill levels are modeled as the number of video
units of 1/3 second, aligned with the transitions intervals in
our Markov chain. As such, one video segment of two seconds
consists of six video units. The buffer is limited to 60 seconds
or 180 video units.

The set of actions, A, covers the six buffering actions, B000
to B300. Based on the buffering action, and the download time
of one segment given that action, certain transitions within S ′
are possible. For example, downloading a two-second segment
at speed B200 takes three steps. While downloading six video
units, the video player plays out three units. The buffer grows
with three units. For buffering action B200, transitions are
possible to all states in S ′, such that b → b + 3. The
probabilities for these transitions are obtained from the 3-
step transition probability matrix of the RSRQ model, P 3

x,y .
Following this principle, the transition matrix P ′ is build for
each combination of RSRQ and buffer level.

The rewards for each transition, R, are in general linked
to the expected cost in the network. For each action and
transition, we compute the expected load on the network as the
percentage of resource blocks allocated for the video player.
We calculate the expected load as follows:

ld(x, y, n) =
B · 3Tsegment

Dn
x,y

· 1
1
3Rbs · n

(3)

where B is the video bitrate, Tsegment the duration of a video
segment in seconds, Rbs the number of resource blocks that
is available per second, and n the number of steps that the
segment download takes. Whether the load is used in the
reward depends on the following three step process:

1) Check if the buffering action is possible. Only ac-
tions that do not cause an overload on the system
(ld(x, y, n) > 1) are accepted. Also the B000 action
is restricted to only being used when channel quality is
too low for data transmission. A high negative reward
(-10000) to ensure invalid actions.

2) Check if the buffering action would lead to an empty
buffer. In case the buffer becomes empty, a penalty of
-50 times the duration of the freeze (in ticks) is assigned
as a reward for the transitiotns

3) When 1) and 2) do not apply the inverse load (1 −
ld(x, y, n)) is used as reward.

We solve the MDP using the value iteration algorithm
with discount factor γ = 0.999 from the Python-based
mdptoolbox3. The resulting policy is the optimal buffering
strategy. For each channel quality and buffer level the strategy
provides the buffering action (B000 to B300) to take. A
visualization of our strategy is shown in Figure 1. The
lighter the color is in the visualization the faster should be
downloaded. The strategy reflects the intuition behind CQBS.
When the network resources becomes expensive, the buffering
actions that shrink the buffer are selected. Only when the
buffer level is low, the buffer has to grow, or has to be
maintained as a minimum. As such, the strategy avoids the
penalty for an empty buffer. When network traffic becomes
cheaper, the strategy lets the buffer grow. The maximum
fill level of the buffer grows with the channel quality. This
means that the strategy stops filling the buffer at some point.
Only when the channel quality further increases the strategy
continues to grow the buffer.

Figure 1. Buffering strategy for constant video quality (1458 Kbit/s), best
buffering action for each channel quality and buffer level.

Figure 2 shows an example streaming session with the
channel quality and the buffer level overlaid in the same plot.
Initially, CQBS grows the buffer when channel quality is good.
Around, t = 60, the signal quality decreases and more video
from the buffer is used. The buffer level is restored when signal
quality restores. Around t = 350, the signal quality becomes
excellent. This triggers CQBS to fill the buffer to a higher
level than it did before.

3http://pymdptoolbox.readthedocs.io/en/latest/api/mdptoolbox.html
(accessed March 12, 2018)
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Figure 2. Example operation of CQBS: interaction between channel quality
and buffer level.

V. PERFORMANCE EVALUATION

In this section, we evaluate CQBS’s performance in terms
of video quality and required network resources. We compare
CQBS to two traditional adaptation algorithms and to a naive
strategy that maintains a constant quality. We start with a
description of the simulation setup. Then we evaluate the
performance of CQBS with traces that are based on random
walks in the RSRQ Markov chain. Last, we cross-validate
CQBS agains our real-world channel quality traces.

A. Simulation setup

In a real LTE network, a moving client would roam between
cells with different characteristics and loads. However, as a
first step into this type of buffering strategies, we will look
into the performance of CQBS from the perspective of a single
client (i.e. how many resources would be required to execute
the strategy) in a heterogeneous environment. We assume that
the video streaming client gets the resources assigned that it
needs. We use discrete event simulations to simulate an LTE
network and a video streaming application. For simplicity,
the simulation covers a single video node that is associated
to one LTE base station. The LTE base station is configured
with 15 MHz bandwidth, which has 75 RBs available every
millisecond. In this section, we denote the network load as the
fraction of those RBs that are used by our video streaming
application. The simulation of channel quality between the
LTE base station and mobile client are obtained by random
walks in the RSRQ Markov chain, or from our real-world
channel quality traces. Even though we use a single LTE base
station, the RSRQ behavioris consistent with a roaming client.

The video player that runs on the client node simulates the
download of a DASH video stream. A video clip is taken
from the movie Sintel4 and encoded in ten representations5

(i.e. combinations of bitrate and resolution). The video is
segmented for DASH with a segment size of two seconds. The
video player inform the LTE base station about it its current

4https://durian.blender.org (last accessed: February 20, 2017)
5296Kbit/s@240p, 395Kbit/s@240p, 493Kbit/s@360p, 732Kbit/s@360p,

971Kbit/s@480p, 1.458Kbit/s@480p, 1.934Kbit/s@720p, 2.878Kbit/s@720p,
3.779Kbit/s@1080p, 5.544Kbit/s@1080p

buffer level and channel quality. The player signals the base
station every time before downloading the new video segment.
The base station executes our CQBS strategy by combining the
buffer level with the current channel quality, selecting the best
buffer action and allocating appropriate resources.

As part of this evaluation, we compare four different
adaptation and buffering strategies:

1) Conventional: The conventional algorithms uses the
download speed of previous video segments to estimate
future bandwidth. The video quality will be the highest
bitrate that is below this estimation.

2) BOLA: An implementation of the Buffer Occupancy-
based Lyapunov Algorithm from Spiteri et al. [4]. We
use a version that reduces video quality oscillations,
comparable to the reference implementation in the
DASH.js6 player.

3) Static: A naive implementation that produces static
video quality. Until the buffer is full, resources for twice
the video bitrate are allocated to quickly growing the
buffer and prevent freezes. When the buffer is full,
resources matching the video bitrate are allocated. When
the video bitrate exceeds the networks capacity (e.g.
when signal quality is very low), the maximum amount
of resources are allocated.

4) CQBS: Maintains a constant video quality but adjusts its
buffer based on the current channel quality. Resources
between one third- and three times the video bitrate are
allocated, depending on the selected buffering action.
When the video buffer drops below four seconds (i.e.
two video segments), and the channel quality does not
permit streaming in the target quality, the video player
temporarily lowers its video quality, as part of a failover
mechanism to ensure uninterrupted playback.

For the conventional and BOLA adaptation algorithms we
limited the number of resources so that these algorithms
would on average yield the desired video quality. As such,
we can compare these traditional algorithms to a naive static
video quality strategy and our CQBS strategy. The maximum
allocated resources for each of the evaluated quality levels
are listed in Table II. The allocation settings are specified
as the maximum fraction of RBs that can be used by our
video streaming client. Based on the allocation settings, we
can already observe that BOLA yields the same average video
quality while the maximum allocation is at least 20% lower.

B. Performance evaluation

In the first part of the evaluation we use model-based
simulations. Per setting, we generated 25.000 channel quality
traces by randomly walking the RSRQ Markov chain from
Section III. As such, we assume that our strategy perfectly
knows channel quality evolution. Given those ideal settings,
our CQBS will perform at its maximum, providing a good
indication of the potential of this solution. In each instance we

6https://github.com/Dash-Industry-Forum/dash.js/wiki (accessed: March 5,
2018)



Table II
RESOURCE RESERVATION SETTINGS

Target quality 3 4 5 6 7 8 9 10
Target bitrate 493 732 971 1458 1934 2878 3779 5544

Conventional adaptation allocation 0.063 0.095 0.140 0.200 0.280 0.400 0.650 1.00
BOLA allocation 0.045 0.072 0.110 0.156 0.216 0.305 0.435 1.00

stream a ten minute video, while measuring the video quality
and load on the network. A video quality level, ranging from
1 to 10, is used instead of the video bitrate. The encoding
settings of our video are chosen such that every step gives
a comparable increase in quality. However, the bitrate that
is needed for each step increases with the video quality.
Averaging over video bitrate would give skewed results.

First, we look into the differences in video quality between
the traditional adaptation algorithms and the constant video
strategies. The target video quality is level five. For each
instance we computed the mean video quality. The distribution
of mean video qualities is shown in Figure 3. For the static
and CQBS strategies, this figure reveals that the overall video
quality matches the target quality in almost all instances. The
exceptional run suffered from either low channel quality at
the startup or long periods of low channel quality during the
run. As result, the fallback mechanism temporarily lowered
the video quality. For the conventional and BOLA algorithms
the mean video quality lies within one and a half video quality
levels around the target.
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Figure 3. Distribution of overall video quality, target video quality level five.

The video quality during playback is also not constant
for the conventional and BOLA algorithms. These adaptation
algorithms adapt the video quality to match the network
conditions. Because the network conditions change (as a result
of the channel condition chaning), the video quality changes
as well. The distribution of video quality during the runs is
shown in Figure 4. The figure shows that the video qualities
are spread out over all levels, as can be seen by comparing
the dashed lines to the solid lines in Figure 4.

When using the conventional and BOLA algorithm, the
video is streamed in the target quality only a relatively small
fraction of the time. The broad spread of video qualities during
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Figure 4. Distribution of video quality during the runs, target video quality
level five.
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Figure 5. Number of quality switches as a function of video quality.

each run indicates that the video quality changes from time
to time. In Figure 5, we observe that both the conventional
algorithm and BOLA show many video quality switches. The
conventional algorithm performs worst, resulting in more than
12 quality switches per minute for most of the target quality
levels. BOLA perform better, but the switching frequency is
still high. A big difference can be observed from target quality
level 10. In this case, all algorithms had the full spectrum
available for streaming. In the case of BOLA, it meant that it
could maintain large buffers. Due to the nature of BOLA, an
almost full buffer will result in video segments of the highest
quality. Even when the signal quality decreased, the buffer
levels were still sufficient for BOLA to request video quality
level 10. As the result, BOLA worked similar (except during
the startup phase) to the naive static strategy. This resulted in
little quality switches, but to an increased network load as we
will discuss next in this section.



The high number of quality switches when using the
traditional algorithms are noticeable for the user and can be
perceived as annoying. In comparison, the naive static quality
strategy and CQBS maintain an almost perfectly constant
video quality. Although providing a constant video quality
may be more beneficial for the end-user, it could increase
cost for the network operator. Figure 6 shows the distribution
of network load (percentage of RBs that were used for video
streaming) per instance. For most of the instances, the network
load for the conventional algorithm and BOLA is comparable.
Nevertheless, BOLA shows some instances that have relatively
high load. Comparing the medians of the traditional algorithms
with the naive static quality strategy, we observe and increase
in network load of almost three percent points. This 25%
increase in network load takes up resources that cannot be
used by other clients in the same cell. The increase makes a
difference over ten minutes, from up to 2 Mbit/s bandwidth
for clients with good signal quality, to about 330 Kbit/s for
an average client. This bandwidth cannot be used anymore for
several web-browsers, a high quality music stream, or a low
quality video stream.
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Figure 6. Distribution of overall network load per instance

Our CQBS strategy is designed to reduce the load on the
network. It consumes video from the buffer when network
bandwidth is expensive. When channel quality becomes better
and bandwidth comparatively cheap, it re-fills the video buffer.
Figure 6 shows the impact of this strategy on the network load.
On average, the use of network resources for video streaming
is on the same level as the traditional adaptation algorithms.
In 23% to 64% of the cases, CQBS requires less resources
than the conventional and BOLA algorithms.

Over the whole range of target video quality levels, we
observe similar behavior. Figure 7 shows the median network
load for the four different implementations. CQBS signifi-
cantly reduces the network load compared to non-optimized
static quality implementation. On average, the network load is
19% lower when using CQBS. When comparing CQBS to the
conventional algorithm and BOLA, we see overall a similar
network load for the three strategies.

For quality level nine, the conventional algorithm yields

a high network load. The conventional algorithm bases the
quality of future video segments on the network throughput in
the near past. Given the high variation in LTE networks, past
performance is not a good indicator for the future. In case, the
conventional algorithm overestimated the quality and had to
recover the buffer afterwards. The reason for the higher load
for BOLA at quality level 10, is given earlier this section.
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Figure 7. Median network load as a function of video quality.

C. Validation against real-world traces

In the second part of the evaluation, we validate our CQBS
algorithm agains the real-world LTE traces that we have
collected. We use the cross-validation technique, where our
strategy was trained on 4

5 of the traces and then tested against
the remaining 1

5 of the LTE traces. The results in this section
are combination of five rounds, every round changing the
fraction of traces that are used in the simulation. This leads
up to 377 instances per setting. The DASH player streams
a 8:20 minutes clip from the movie Sintel using the same
encoding settings as before. The LTE channel qualitt traces
have a duration of five minutes. Therefore, we repeat a trace
to cover the full length of the video.

In general, the performance of CQBS and the other
algorithms is similar when using the real-world traces instead
of the model-based traces. Therefore, we will focus on the
differences that we have observed, starting with the stability
of the streams’ qualities. Figure 8 shows the distribution of
mean video quality for each instance. Given target quality
level seven, the constant video strategies perform well, having
almost all runs at the target video quality. For the conventional
algorithm and BOLA the spread of average video quality is
larger. With video resolutions ranging between SD (360p)
and Full-HD (1080p) the differences between runs are large,
indicating that reserving a fixed portion of network resources
cannot provide guarantees on the video quality.

With regards to the number of quality switches, we do not
observe a difference for the conventional algorithm and BOLA
(the video was slightly shorter, but the number of switches is
consistently lower). In contrast, our CQBS strategy produces
a higher switching frequency, especially for the high target
qualities. In CQBS, quality switches only occur when channel
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Figure 8. Distribution of overall video quality, target video quality level seven.
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Figure 9. Mean number of quality switches as a function of video quality.

quality is bad and the buffer level is too low to guarantee
uninterrupted streaming. This indicates that buffers levels get
lower more often because the duration and severity of low
channel quality is underestimated by our model. Our model is
thus not entirely accurate at low channel qualities. However,
even though there is a slight increase in quality switches,
CQBS still greatly outperforms the traditional algorithms.

In Figure 10 the median networks loads for the different
target quality levels are shown. Compared to the model-based
traces, the network loads for the real-world LTE traces show
small differences. There is a slightly smaller difference in
network load between the naive static strategy and CQBS. The
naive static strategy seems to perform slightly more efficient
given the real-world traces. Nevertheless, our CQBS strategy
is able to decrease the network load by on average 15%. In
terms of network load, CQBS performs slightly better than the
conventional algorithm, and on average as good as BOLA.

Although BOLA performs overall best when it comes to
network load, we did observe a high number of freezes when
using BOLA. In Figure 11, it can be seen that BOLA has a
structural problem and that freezes occur in most of the runs.
In a large number of runs, the number of freezes can even be
considered as very high. A high number of freezes is disastrous
for the user experience, and will lead to abandonment of the
video stream [6]. The other algorithms, including CQBS, do
no have playback interruptions in almost all the runs. Only in
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exceptional cases freezes might occur. This shows that even
though CQBS actively reduces the buffer level, it does not
compromise the continuity of the stream.

Overall, we can conclude that CQBS can maintain a
constant video quality, per video stream and during the video
stream. It outperforms the traditional adaptation algorithms
that show fluctuations in video quality as a result of variations
in LTE channel quality. Compared to high number of freezes
in BOLA, CQBS is able to stream without interruptions in
almost all runs. As such, CQBS provides the best experience
to the user. When looking at network load, CQBS performs
on par with the traditional algorithms, but outperforms the
non-optimized static quality strategy.

VI. CONCLUSION & FUTURE WORK

Online video streaming is one of the biggest contributors
to data consumption on mobile networks. Because of the
high data volumes and the mobile networks’ high throughput
variations, it is a difficult practice to deliver high quality
video to the end-user. Video streaming players adapt the video
quality to the networks’ conditions. However, the common
variations in LTE channel quality can cause large fluctuations
in video quality during playback, which may be perceived
by users as annoying. In this paper we present CQBS, a
strategy that eliminates quality switches by keeping the video
quality constant, with the overall goal to improve the users’



streaming experiences. By smartly adapting the video buffer
to the channel quality, we were able to reduce the load on
the mobile network, that would otherwise be inflicted upon
when keeping the video quality constant. As such, network
operators can deliver the user a better Quality of Experience
without compromising their network resources.

CQBS is based on a relatively simple Markov chain that
describes channel quality behavior. That method that we
use to derive the optimal buffering strategy is quite elegant.
At its base, the state space of our MDP only consists of
two dimensions: RSRQ level and buffer level. The results
show that this relatively simple model already yields good
performance, and thus models the environment reasonably
well. Furthermore, RSRQ and buffer can both be measured
by the client device, which is important when implementing
CQBS in practice.

In a practical deployment, the channel quality, video quality
and buffer level have to be communicated to the mobile base
station. Exchanging channel quality indicators (CQI) is already
part of the LTE protocol and will continue to exists in future
5G networks. Exchanging information about video quality
and buffer level is not default in DASH-based streaming.
To realize our strategy we rely on DASH Aware Network
Elements. These network elements coordinate DASH players
and manages network resources. In our case, the DANE will
be located in the mobile base station where it executes our
CQBS strategy. Communication between DANE and DASH
player should follow the standardized interactions as described
in the Server and Network Assisted DASH standard [9], [19].

In future work, we will look into realistic heterogeneous
LTE deployments and investigate the impact of heterogeneity
on the performance of CQBS. Furthermore, we will profile the
network load required by CQBS in more detail. In some of
our simulations, CQBS used significantly less resources than
the other algorithms. In other runs, CQBS required a higher
network load. During a streaming session, the network load
also showed some peaks. When a mobile cell is lightly loaded,
there is enough resources available to withstand such a peak.
In a crowded cell, it might be more beneficial to temporarily
lower the video quality. Determining what is best action to
take in a crowded cell is a challenging exercise that we will
work on as part of future work.
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