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Abstract. We study the delay in asymmetric cyclic polling models with general mixtures of gated and
exhaustive service, with generally distributed service times and switch-over times, and in which batches
of customers may arrive simultaneously at the different queues. We show that (1 − ρ)Xi converges to a
gamma distribution with known parameters as the offered load ρ tends to unity, where Xi is the steady-
state length of queue i at an arbitrary polling instant at that queue. The result is shown to lead to closed-
form expressions for the Laplace–Stieltjes transform (LST) of the waiting-time distributions at each of
the queues (under proper scalings), in a general parameter setting. The results show explicitly how the
distribution of the delay depends on the system parameters, and in particular, on the simultaneity of the
arrivals. The results also suggest simple and fast approximations for the tail probabilities and the moments
of the delay in stable polling systems, explicitly capturing the impact of the correlation structure in the
arrival processes. Numerical experiments indicate that the approximations are accurate for medium and
heavily loaded systems.
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1. Introduction

Polling systems are multi-queue systems in which a single server visits the queues
in some order to serve the customers waiting at the queues, typically incurring some
amount of switch-over time to proceed from one queue to the next. Polling models
find a wide variety of applications in which processing power (e.g., CPU, bandwidth)
is shared among different types of users. During the past few decades polling mod-
els have received much attention in the literature. In the vast majority of the papers
on polling models it is assumed that the arrival processes at the different queues are
independent unit Poisson processes, i.e., where exactly one customer arrives at a par-
ticular queue at a time. However, in many applications customers arrive in batches and
batches of customers may arrive at different queues simultaneously. Neglecting the cor-
relation structure in the arrival processes may lead to strongly erroneous performance
predictions, and consequently, to improper decisions about the operation of the system,
in particular when the system load is significant. These observations raise the need to
get a better understanding of the impact of correlations between the arrival processes on
the delay incurred at each of the queues. This paper, in which we analyze the delay in
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polling models with a specific class of correlation structures in the arrival processes, is a
significant first step in that direction.

The possibility of simultaneous batch arrivals strongly enhances the modeling
and analysis capabilities of polling models. Many examples are found in computer–
communication systems. Consider, for example, a Web server that needs to respond to
numerous document-retrieval requests initiated by the end users. A Web document gen-
erally consists of a number of files (e.g., pieces of text, in-line images, audio files), each
of which generates a separate file-retrieval request to the Web server. The server typi-
cally implements a scheduling mechanism to determine the order in which the incoming
file-retrieval requests are handled. In many implementations the incoming file-retrieval
requests are buffered in separate queues, e.g., depending on the size of the requested
document. The Web server continuously polls the different queues to check for pending
file-retrieval request to be executed. In this application, the server represents the Web
server, the customers represent individual file-retrieval requests, and each document-
retrieval request is represented by a joint batch of customers. Another example is a
Local Area Network (LAN) in which the right for transmission, represented by a so-
called token, is circulated among the users. If a user wants to initiate a transaction over
the network, a transaction request is placed into an output buffer. However, the amount
of data that can be sent over the network at a time is limited, so that fragmentation may
be needed. When the user gets the right for transmission, a number of (possibly all)
fragments are transmitted over the network. In this application, the server represents the
right for transmission (token) and the queues represent the output buffers. The customers
represent the fragments, and as such, a transmission initiation request placed by a user
is represented by a (not necessarily joint) batch arrival of customers. Applications are
also found in the area of flexible manufacturing and production systems. Consider, for
example, a production facility that can produce different types of products, but only one
product type at a time. Wholesalers from time to time place joint replenishment orders
for different products. Incoming orders for a given product that can not be processed
immediately are placed into a buffer of pending orders for that product. After a number
of (possibly all) outstanding orders for a specific product have been processed, the pro-
duction facility is installed to process the next type of products. In this way, the facility
“visits” the buffers of pending orders for the different product types in a round-robin
fashion. In this example, the server represents the production facility, the customers rep-
resent replenishment orders of one unit of a product and joint replenishment orders are
represented by simultaneous batch arrivals.

In the literature, polling systems with correlated arrivals have received only little
attention. Levy and Sidi [15] study polling models with simultaneous batch arrivals. For
models with gated or exhaustive service, they derive a set of linear equations for the
expected delay at each of the queues. They also provide a pseudo-conservation law for
the system, i.e., an exact expression for a specific weighted sum of the expected waiting
times at the different queues. The moments of the delay in the model studied in [15] can
also be obtained by means of the Descendant Set Approach (DSA), an iterative technique
based on the concept of descendant sets [9] (see section 3 for more details). Boxma and
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Groenendijk [3] derive a pseudo-conservation law for discrete-time polling models with
batch arrivals. Langaris [12–14] studies several variants of polling models with corre-
lated batch arrivals and with so-called retrial customers. For this type of models, the
expected delay can be obtained by solving sets of linear equations. Recently, polling
models in heavy traffic have received attention in the literature. For a two-queue model
with exhaustive service and independent renewal arrival processes, Coffman et al. [6,7]
use the theory of diffusion processes to derive expressions for the joint workload distri-
bution and the waiting-time distributions under heavy traffic assumptions. For models
with independent unit Poisson arrivals, Kudoh et al. [11] give explicit expressions for
the second moment of the waiting time in fully symmetric systems with gated or exhaus-
tive service at each queue for models with two, three and four queues. They also give
conjectures for the heavy-traffic limits of the first two moments of the waiting times for
systems with an arbitrary number of queues. Kroese [10] studies continuous polling sys-
tems in heavy traffic with unit Poisson arrivals on a ring and shows that the steady-state
number of customers at each queue has approximately a gamma distribution.

In this paper we consider an asymmetric cyclic polling model with general mixtures
of gated and exhaustive service and general service-time and switch-over time distribu-
tions. The correlation structure in the arrival processes is modeled as follows. Arrival
points are generated according to a Poisson process. At each arrival point, batches of
customers may arrive simultaneously at the different at the queues, according to a gen-
eral joint batch-size distribution. We study the heavy-traffic behavior of the distribution
of the delay at each of the queues. We derive closed-form expressions for the Laplace–
Stieltjes transform (LST), and hence also the moments, of the limiting distribution of
the delay when the load tends to unity (under proper scalings), in a general parame-
ter setting. The expressions explicitly reveal how the distribution of the delay depends
on the system parameters, and in particular, how the correlation structure between the
arrival processes impacts the delay incurred at each of the queues. In addition, the re-
sults reveal a variety of asymptotic insensitivity properties of the delay with respect to
specific system parameters. These observations give new fundamental insights into the
heavy-traffic behavior of polling systems that have not been observed before. Finally, the
results suggest simple and fast approximations for the tail probabilities and the moments
of the delay in stable polling systems. Numerical results indicate that the approximations
are accurate for medium and heavily loaded systems, which demonstrates the practical
usefulness of the results.

The motivation for this paper is two-fold. First, we have a queueing-theoretical
interest in explicitly quantifying the impact of correlations between the arrival processes
at the different queues on the delay incurred at each of the queues. The results presented
in this paper, where we consider a specific class of correlation structures, form a signif-
icant step in that direction. Second, in many applications of polling models the arrival
processes at the different queues are correlated (see the examples above). In view of
those applications it is important to be able to predict the queueing behavior accurately,
in particular when the system load is significant. However, the effectiveness of the ex-
isting numerical techniques (e.g., [4,9]) tends to degrade strongly when the system is
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heavily loaded. This raises the need for the development of simple and fast approxi-
mations for the delay incurred at each of the queues, explicitly capturing the impact of
correlated arrivals.

The results presented in this paper generalize the results in [19–22]. In [22] we
derived closed-form expressions for the first moments of the delay in the model with si-
multaneous batch arrivals considered in the present paper (see section 2 for more details).
In [19–21] we derived closed-form expressions for LST of the waiting-time distribution
for the special case of independent unit Poisson arrival processes. The methodology
developed in those papers, based on exploring the so-called Descendant Set Approach
(DSA), has been shown to be highly effective for deriving heavy-traffic results. There-
fore, in this paper we adopt the same methodological steps to derive heavy-traffic results
for the model under consideration. We emphaszie that the contribution of the present
paper is fairly limited from a purely methodological point of view. However, the results
presented in this paper contain a significant number of new elements. First, we obtain
closed-form expressions for the LST of the (scaled) waiting-time distribution at each of
the queues in heavy traffic, in a general parameter setting. As a by-product, we also
obtain closed-form expressions for the moments of the delay. The results explicitly show
how the delay figures depend on the system parameters, and particular, on the correla-
tion structure between the arrival processes. In this context, we emphasize that exact
results on the individual delay figures in polling models are scarce, making the results
particularly interesting from a queueing-theoretical perspective. Second, the results lead
to a number of asymptotic properties of the waiting-time distributions with respect to
the system parameters, and in particular the simultaneity of the arrivals. These results
provide new fundamental insights in the behavior of polling models. Third, the results
lead to simple and fast approximations for the tail probabilities and the higher moments
of the delay in stable polling systems, explicitly capturing the impact of the simultaneity
of the arrivals. The approximations are particularly accurate when the system is heavily
loaded (see section 6), whereas the efficiency of the existing numerical techniques to
obtain the higher moments and the tail probabilities of the delay tends to degrade signif-
icantly when the system is heavily loaded. In this way, the approximations proposed in
the present paper complement the applicability of the existing numerical techniques. To
summarize, although the methodological contribution is rather limited, the added value
of the present paper is evident.

The remainder of this paper is organized as follows. In section 2 the model is
described. In section 3 we give some preliminary results and discuss the use of the
Descendant Set Approach (DSA) for the present model. In section 4 we derive closed-
form expressions for the LST of the distribution of the delay in heavy traffic, based
on the use of the DSA. In section 5 a variety of asymptotic insensitivity properties is
discussed. In section 6 we propose and test new, simple and fast approximations for
the tail probabilities and the moments of the delay in stable polling systems. Finally, in
section 7 we address a number of topics for further research.
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2. Model

Consider a system consisting of N � 2 infinite-buffer stations Q1, . . . ,QN that are
served by a single server that visits and serves the queues in cyclic order. Arrival points
are generated according a Poisson process with rate λ. At each arrival point, a random
batch of size K = (K1, . . . , KN) arrives at the queues, where Ki stands for the number
of customers arriving at Qi at an arrival point. The random vector K is assumed to be
independent of previous or future arrival points. Denote the joint batch-size distribu-
tion by π(k1, . . . , kN) := Prob{K1 = k1, . . . , KN = kN }, and denote the corresponding
probability generating function (PGF) of K by K∗(z). The PGF of the marginal batch-
size distribution at Qi is denoted by K∗

i (z) := K∗(1, . . . , 1, z, 1, . . . , 1), |z| � 1, where
the z occurs at the ith entry. Denote the arrival rate at Qi by λi := λE[Ki], and let
Ki,i := E[Ki(Ki − 1)] for i = 1, . . . , N and Ki,j := E[KiKj ] for i 
= j . Denote
the total arrival rate by � := ∑N

i=1 λi . The service time of a customer at Qi is a ran-
dom variable Bi with Laplace–Stieltjes transform (LST) B∗

i (·), and finite kth moment
b
(k)
i , k = 1, 2, . . . . The load offered to Qi is defined by ρi = λib

(1)
i , and the total offered

load is equal to ρ = ∑N
i=1 ρi . Denote the kth moment of the service time of an arbitrary

customer by b(k) := (1/�)
∑N

i=1 λib
(k)
i , k = 1, 2. A polling instant at Qi is defined

as the epochs at which the server arrives at a queue to serve customers waiting at Qi .
Similarly, a departure instant at Qi is defined as an epoch at which the server departs
from Qi . Denote by Ii an intervisit time of Qi , i.e., the duration of the time between a
departure of the server from Qi and its successive visit to Qi . The corresponding LST
is denoted by I ∗

i (·). Similarly, define the cycle time Ci to be the time between two suc-
cessive polling instants at Qi , and denote the corresponding LST by C∗

i (·). We consider
two types of service disciplines: gated and exhaustive. Under the gated policy only the
customers that were present at the polling instant at Qi are served; customers that arrive
atQi while it is being served are served during the next visit toQi . Under the exhaustive
policy the server visits Qi until it is empty. We allow general mixtures of exhaustive and
gated service, but the service policy at each queue remains the same for all visits. Define
E := {i: Qi is served exhaustively} and G := {i: Qi is served according to the gated
policy}. At each queue the customers are served on a FIFO basis. After completing
service at Qi the server immediately proceeds to Qi+1, incurring a switch-over period
whose duration is an independent random variable Ri , with LST R∗

i (·) and with mean ri .
Denote the first moment of the total switch-over time per cycle by r = ∑N

i=1 ri . All
interarrival times and service times are assumed to be mutually independent and inde-
pendent of the state of the system. It is assumed that the system is stable (i.e., ρ < 1)
and that the system is in steady state.

Let Wi be the steady-state delay incurred by an arbitrary customer at Qi . We focus
on the probability distribution of the delay in heavy traffic, under proper scalings. More
precisely, we are interested in the probability distribution of

W̃i := lim
ρ↑1

(1 − ρ)Wi, i = 1, . . . , N. (1)
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Here, the random variable (1 − ρ)Wi is considered as a function of ρ, where λ (i.e., the
rate at which the arrival points occur) is variable, whereas the service-time and batch-size
distributions remain fixed. The main result of this paper is the derivation of a closed-
form expression for W̃ ∗

i (s) := E[e−sW̃i ](Re s > 0), the LST of W̃i .
For each variable that is a function of ρ, we use the hat-notation to indicate its

value at ρ = 1. Let IE denote the indicator function on the event E. The notation →d

stands for convergence in distribution.

3. Preliminaries

Denote by Xi the number of customers present at Qi at a polling instant at Qi when
the systen is in steady-state, and denote the corresponding PGF by X∗

i (z) := E[zXi ],
|z| � 1, i = 1, . . . , N . The waiting-time distribution at Qi can be expressed in terms of
the distribution of Xi as follows.

Lemma 1. For i ∈ G, Re s > 0,

W ∗
i (s) (2)

= 1 − ρ

r
· X

∗
i (K

∗
i (B

∗
i (s)))−X∗

i (1 − s/λ)

s − λ(1 −K∗
i (B

∗
i (s)))

· 1 −K∗
i (B

∗
i (s))

E[Ki](1 − B∗
i (s))

. (3)

For i ∈ E, Re s > 0,

W ∗
i (s) (4)

= 1 − ρ

r
· 1 −X∗

i (1 − s/λ)

s − λ(1 −K∗
i (B

∗
i (s)))

· 1 −K∗
i (B

∗
i (s))

E[Ki](1 − B∗
i (s))

. (5)

Proof. Consider a tagged customer Ti that arrives at Qi in a joint batch BTi of cus-
tomers, and let Ui be the number of customers in BTi that are served at Qi before Ti .
Then the waiting time of Ti can be expressed as

Wi = W
(s)
i +W

(b)
i , (6)

where W(s)
i is the waiting time of the first customer in BTi and where W(b)

i is the to-
tal service time of all Ui customers in BTi that are served at Qi before Ti . First,
it is readily seen that W(s)

i is stochastically identical to the waiting time at Qi in a
system with where each batch of customers is considered as a single super-customer,
where the LST of the (marginal) service-time distribution of a super-customer at Qj is
K∗
j (B

∗
j (s)), j = 1, . . . , N . The first two factors in (2)–(5) then follow directly from

equations (4.32) and (5.45) in [17]. Second, the PGF of the number of customers in
Ui is given by (1 − Ki(z))/(E[Ki](1 − z)) (cf., e.g., [18, equation (3.8a)]), which im-
plies that the LST of the total amount of waiting time caused by those Ui customers is
(1 − K∗

i (B
∗
i (s)))/(E[Ki](1 − B∗

i (s))). The proof is completed by observing that W(s)
i

and W(b)
i are mutually independent. �
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Lemma 1 implies that the distribution of Wi is completely characterized by the
distribution of Xi . The distribution of Xi , in turn, can be characterized by means of
the Descendant Set Approach (DSA), exploring the branching structure of the evolution
of the system (cf. [9]). The DSA is focused on the determination of the distribution
of X1 (without loss of generality), the number of customers at Q1 present at an arbi-
trary polling instant P ∗ at Q1, referred to as the reference point. Define a cycle as the
elapsed time between two successive polling instants at Q1. The key observation is that
we can evaluate X1(P

∗) by considering, recursively, contributions to X1 from waiting
customers at all queues of the past polling epochs, working backward from the reference
point. Let Ti,c be a customer served at Qi during the cth cycle. Define the children set
of Ti,c to be the set of customers arriving during the service of Ti,c; the descendant set
of Ti,c is recursively defined to consist of Ti,c, its children and the descendants of its
children. Let Ai,c be the number of customers at Q1 at the reference point (at Q1) that
are descendants of Ti,c, and let A∗

i,c(·) denote its PGF. In this way, Ai,c can be viewed
as the contribution of Ti,c to X1(P

∗). Denote by Ri,c the switch-over time (from Qi to
the next) immediately after the visit starting at Pi,c. Let Si,c be the total contribution
to X1(P

∗) of all (original) customers that arrive in the system during Ri,c, and denote
the corresponding PGF by S∗

i,c(·). Then X1 can be expressed as the independent sum

X1 = ∑N
i=1

∑∞
c=0 Si,c, or equivalently, for |z| � 1,

X∗
1(z) =

N∏
i=1

∞∏
c=0

S∗
i,c(z), (7)

where for i = 1, . . . , N , c = 0, 1, . . . , |z| � 1,

S∗
i,c(z) (8)

= R∗
i

(
λ− λK∗(A∗

1,c−1(z), . . . , A
∗
i,c−1(z), A

∗
i+1,c(z), . . . , A

∗
N,c(z)

))
. (9)

The descendant set (DS) variables satisfy the following set of relations, based on the
observation that the contribution to X1(P

∗) of a tagged customer Ti,c is equal to the total
contribution to X1(P

∗) of the children of Ti,c: for i ∈ G, c = 0, 1, . . . , |z| � 1,

A∗
i,c(z) (10)

= B∗
i

(
λ− λK∗(A∗

1,c−1(z), . . . , A
∗
i,c−1(z), A

∗
i+1,c(z), . . . , A

∗
N,c(z)

))
, (11)

and for i ∈ E,

A∗
i,c(z) (12)

= B∗
i

(
λ− λK∗(A∗

1,c−1(z), . . . , A
∗
i−1,c−1(z), A

∗
i,c(z), . . . , A

∗
N,c(z)

))
. (13)

Since we focus on the number of customers at Q1 at the reference point, the initial
conditions are A∗

1,−1(z) = z and A∗
i,−1(z) = 1, for i = 2, . . . , N , |z| � 1. Notice that

relations (7)–(13) give a complete, but not explicit, characterization of the probability
distribution of X1. This characterization is useful to obtain properties of the limiting
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distribution of X1. Using equations (2)–(5) these properties, in turn, will be used to
derive properties of the distribution of W̃i (i = 1, . . . , N), defined in (1).

4. Analysis

In this section we derive closed-form expressions for the LST of the waiting-time dis-
tributions at each of the queues. The derivation of the results proceeds along a num-
ber of steps, according to the DSA-based methodology developed in [19–21] for the
case of independent unit Poisson arrivals. Define the kth factorial moment of the DSA-
variables Ai,c as follows: for i = 1, . . . , N , c = 0, 1, . . . , k = 1, 2, . . . ,

α
(k)
i,c := E

[
Ai,c(Ai,c − 1) · · · (Ai,c − k + 1)

]
. (14)

To start the derivation of the results, we decompose the sequences of DSA-variables
{α(k)i,c , c = 0, 1, . . .} in a dominant and a recessive part, in a sense to be specified (the-
orem 1). The decomposition is then used to obtain an expression for the quantities
h̃
(k)

1 := limρ↑1 (1−ρ)k ∑N
i=1

∑∞
c=0 λiα

(k)
i,c (theorem 2). This result, in turn, is used to ob-

tain explicit expressions for the limiting moments x̃(k)i := limρ↑1 (1 − ρ)kE[Xk
i ], which

are shown to match the moments of a gamma distribution with known parameters (theo-
rem 3). Then, the so-called method of moments is applied to show that (1−ρ)Xi →d 'i ,
where 'i is a gamma distribution with known parameters (theorem 4). Finally, lemma 1
then leads to closed-form expressions for the LST of W̃ ∗

i (s) (see (1)), which is the main
result of the paper (theorem 5). The proofs of the various intermediate results proceed
along similar lines as the proofs for the case of independent unit Poisson arrivals, elabo-
rated in [19–21]. To avoid duplication of derivations, only a brief sketch of the proofs is
given.

It is convenient to define the following quantities:

δ := 1

2

(
1 −

∑
m∈E

ρ̂2
m +

∑
m∈G

ρ̂2
m

)
, (15)

and

ϕ := b(2)

b(1)
+ λ̂

N∑
l=1

N∑
m=1

b
(1)
l b(1)m Kl,m. (16)

We are now ready to focus on the heavy-traffic behavior of the sequences {α(k)i,c , c =
0, 1, . . .} . To start, we obtain the following result for the case k = 1.

Lemma 2. For i = 1, . . . , N , c = 0, 1, . . . , we can write

α
(1)
i,c = ξ c+1viw + si,c, (17)

where

(1) ξ < 1 if and only if ρ < 1; ξ = 1 if and only if ρ = 1,
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(2) limρ↑1 ξ = 1,

(3) v̂i := b
(1)
i /δ (i = 1, . . . , N),

(4) ŵ := λ1(1 − ρ̂1I{1∈E}),
(5) limρ↑1(1 − ξ)/(1 − ρ) = δ−1,

(6) |si,c| < Cξc∗ for some C (0 < C < ∞) and ξ∗(0 < ξ∗ < ξ).

Proof. For k = 1, it is readily verified by differentiating relations (10)–(13) once that
the recursive relations for α(1)i,c are identical to those in the case of cyclic polling systems
with independent unit Poisson arrivals. Hence, the proof of lemma 2 follows directly
from [20]. �

The following result extends lemma 2 to the higher moments of Ai,c.

Theorem 1. For i = 1, . . . , N , c = 0, 1, . . . , k = 1, 2, . . . ,

α
(k)
i,c = f

(k)
i,c + g

(k)
i,c , with f (k)

i,c = ξ c
k−1∑
j=0

π
(k)
i,j ξ

jc, (18)

where for j = 0, 1, . . . , k − 1,

(a) lim
ρ↑1
(1 − ρ)k−1π

(k)
i,j (19)

= (−1)j
(
k − 1

j

)
k!

2k−1

λ̂k1(1 − ρ̂1I{1∈E})k

δk
ϕk−1b

(1)
i , (20)

(b)
∞∑
c=0

g
(k)
i,c = O

(
(1 − ρ)−(k−1)

)
, ρ ↑ 1. (21)

Proof. Consider the case i ∈ G. For notational convenience, define for i = 1, . . . , N ,
c = 0, 1, . . . , k = 1, 2, . . . ,

α
(k)
j,c{i} := α

(k)
j,c (j > i), α

(k)
j,c{i} := α

(k)
j,c−1 (j � i) (22)

and

γ
(k)
i,c :=

N∑
j=i+1

λjα
(k)
j,c +

i∑
j=1

λjα
(k)
j,c−1 =

N∑
j=1

λjα
(k)
j,c{i}. (23)

Then by repeatedly differentiating (10)–(11) we obtain the following recursive relations
for the DS variables α(k)i,c (defined in (14)): for c = 0, 1, . . . ,

α
(1)
i,c = b

(1)
i γ

(1)
i,c , α

(2)
i,c = b

(1)
i γ

(2)
i,c + b

(2)
i

(
γ
(1)
i,c

)2
. (24)

Similarly, for k = 3, 4, . . . and c = 0, 1, . . . ,

α
(k)
i,c = b

(1)
i γ

(k)
i,c + (

b
(2)
i '

(k)
i,c + b

(1)
i 3

(k)
i,c

) +4
(k)
i,c , (25)
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with

'
(k)
i,c :=

k−2∑
l=1

ζl,kγ
(l)
i,c γ

(k−l)
i,c , (26)

and

3
(k)
i,c := λ

k−2∑
l=1

ζl,k

N∑
m=1

N∑
n=1

Km,nα
(l)
m,c{i}α(k−l)m,c {i}. (27)

4
(k)
i,c in (25) is a linear combination of terms of the form

∏k
l=1(α

(pl)

j,c {i})ql , where pl
and ql are non-negative integers satisfying

∑k
l=1 plql = k and

∑k
l=1 ql � 2. The coeffi-

cients ζk,l in (26) are defined by the following recursive relations: for k = 3, 4, . . . and
l = 0, 1, . . . , k − 3,

ζ0,k := 1, ζk−2,k := 3, ζj,k := ζj,k−1 + ζj−1,k−1. (28)

We make the following three observations. First, one may show by induction in k

that all terms in 4
(k)
i,c are lower order in the sense that

∑∞
c=0 4

(k)
i,c has a pole of order∑k

l=1(pl − 1)ql + 1 < k at ρ = 1. Second, in the special case of independent unit Pois-
son arrivals we have Km,n = 0 for m,n = 1, . . . , N , so that 3(k)

i,c vanishes in (25). Third,

one may prove by induction that the terms '(k)i,c and 3(k)
i,c are of the same order, in the

sense that
∑∞

c=0 '
(k)
i,c and

∑∞
c=0 3

(k)
i,c have a pole of the order k at ρ = 1. With these

observations, the derivation of the result can be obtained along the lines as discussed
in [20]. The details are omitted for compactness of the paper. The results for i ∈ E can
be obtained along similar lines. �

Theorem 1 is a fundamental and powerful result, decomposing the sequences
{α(k)i,c , c = 0, 1, . . .} in a dominant part and a recessive part. The dominant part can
be exactly analyzed, whereas the impact of recessive part becomes negligible for ρ ↑ 1,
and hence does not play a role in the limiting case. A key role will be played by the
quantities h(k)1 and h̃(k)1 , defined as follows: for k = 1, 2, . . . ,

h
(k)

1 :=
N∑
i=1

∞∑
c=0

λiα
(k)
i,c , h̃

(k)

1 := lim
ρ↑1

(1 − ρ)kh
(k)

1 . (29)

The following result gives an explicit expression for h̃(k)1 .

Theorem 2. For k = 1, 2, . . . ,

h̃
(k)
1 = (k − 1)!

2k−1

λ̂k1(1 − ρ̂1I{1∈E})k

δk−1
ϕk−1. (30)

Proof. The result can be obtained by combining theorem 1 and the properties listed in
lemma 2. We refer to [22] for the details of the proof for the case k = 2, and to [20]
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for details on the proof of the result for k � 1 for the special case independent Poisson
arrival processes (i.e., Ki,j = 0 for all i, j ). �

Next, we define the kth moment of Xi , and its heavy-traffic residue, as follows: for
i = 1, . . . , N , k = 1, 2, . . . ,

x
(k)
i := E

[
Xk
i

]
, x̃

(k)
i := lim

ρ↑1
(1 − ρ)kx

(k)
i . (31)

Then the following result gives an explicit expression for x̃(k)i .

Theorem 3. For i = 1, . . . , N , k = 1, 2, . . . ,

x̃
(k)
i = λ̂ki

(
1 − ρ̂iI{i∈E}

)k k−1∏
j=0

(
r + jϕ

2δ

)
. (32)

Proof. The result can be obtained from by repeatedly differentiating (7), using lemma 1
and theorems 1 and 2 along the lines similar to the proof for the case of independent
Poisson arrival processes (cf. [21]), and the observation that we assumed i = 1 without
loss of generality. �

A random variable 'α,µ with a gamma distribution with scale parameter α > 0 and
rate parameter µ > 0 has the following probability density function: for t > 0,

f'α,µ(t) := 1

'(α)
e−µtµαtα−1, where '(α) :=

∫ ∞

0
e−t tα−1 dt. (33)

It is readily verified that the LST and the moments of 'α,µ are given by

'∗
α,µ(s) =

(
µ

µ+ s

)α

(Re s > 0), (34)

and

E['kα,µ] =
∏k−1

j=0(α + j)

µk
(k = 1, 2, . . .), (35)

respectively.

Theorem 4. For i = 1, . . . , N , k = 1, 2, . . . ,

(1 − ρ)Xi →d 'α,µi/λ̂i (ρ ↑ 1), (36)

where

α := 2rδ

ϕ
, µi := 2δ

(1 − ρ̂iI{i∈E})ϕ
, (37)

where δ and ϕ are defined in (15) and (16), respectively.
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Proof. Notice that the expression at the right-hand side of (32) corresponds to the kth
moment of the gamma distribution with scale parameter α and rate parameter µi/λ̂i. The
result then follows directly from theorem 3 and application of the method of moments
(cf., e.g., [5]), which provides sufficient conditions under which convergence in moments
implies convergence in distribution. �

We are now ready to present the main result of the paper.

Theorem 5 (Main result). For i = 1, . . . , N ,

(1 − ρ)Wi →d W̃i (ρ ↑ 1), (38)

where the Laplace–Stieltjes transform of W̃i is given by the following expressions: for
i ∈ G, Re s > 0,

W̃ ∗
i (s) = 1

(1 − ρ̂i)rs

{(
µi

µi + sρ̂i

)α

−
(

µi

µi + s

)α}
, (39)

and for i ∈ E, Re s > 0,

W̃ ∗
i (s) = 1

(1 − ρ̂i)rs

{
1 −

(
µi

µi + s

)α}
, (40)

with

α := r(1 − ∑
m∈E ρ̂

2
m + ∑

m∈G ρ̂
2
m)

b(2)/b(1) + λ̂
∑N

l=1

∑N
m=1 b

(1)
l b

(1)
m Kl,m

, (41)

and

µi := 1 − ∑
m∈E ρ̂

2
m + ∑

m∈G ρ̂
2
m

(1 − ρ̂iI{i∈E})(b(2)/b(1) + λ̂
∑N

l=1

∑N
m=1 b

(1)
l b

(1)
m Kl,m)

. (42)

Proof. The result is obtained directly by combining lemma 1 and theorem 4 and several
straightforward manipulations. �

Remark 4.1. By repeatedly differentiating relations (39) and (40), and substituting
s = 0, it is readily seen that the moments of the limiting delay distribution, defined
as ω(k)i := limρ↑1(1 − ρ)kE[Wk

i ], are given by the following closed-form expressions:
for k = 1, 2, . . . ,

ω
(k)
i = 1 + ρ̂i + · · · + ρ̂ki

k + 1

k∏
j=1

(
r + jϕ

2δ

)
(i ∈ G), (43)

ω
(k)
i = (1 − ρ̂i)

k

k + 1

k∏
j=1

(
r + jϕ

2δ

)
(i ∈ E), (44)
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where ϕ and δ are defined in (15) and (16), respectively. The results in (43)–(44) gen-
eralize those in [19], where we considered the special case of independent unit Poisson
arrival processes corresponds to the case Kl,m = 0 for all l, m = 1, . . . , N . This implies
that the simultaneity of the arrivals leads to an increase of the kth moment of the delay
(in the limiting case) at each of the queues, for all k = 1, 2, . . . . These asymptotic re-
sults can be used to obtain simple approximations for the moments of the waiting times
in stable polling systems (i.e., with ρ < 1). See section 6 for more details.

Remark 4.2. Relation (29) indicates that both the (scaled) intervisit times and the cycle
times converge to a gamma distribution with known parameters. More precisely, for
i ∈ E, the customers present at a polling instant at Qi are exactly those who arrived
during the preceding intervisit period. Hence, for |z| � 1, X∗

i (z) = I ∗
i (λ(1 − K∗

i (z))),
which is readily seen to imply that, for i ∈ E,

(1 − ρ)Ii →d 'α,µi (ρ ↑ 1), (45)

where α and µi are defined in (37). Similarly, for i ∈ G, we have X∗
i (z) = C∗

i (λ(1 −
K∗
i (z))), which implies that

(1 − ρ)Ci →d 'α,µi (ρ ↑ 1). (46)

Thus, relations (45), (46) and (36) show that the (scaled) intervisit times, cycle
times and queue lengths at polling instants converge to gamma distributions with known
parameters when the system tends to saturate.

5. Asymptotic properties

The results discussed in the previous section reveal several asymptotic properties of the
distribution of the delay in heavy traffic.

Property 1 (Insensitivity). For i = 1, . . . , N , the distribution of W̃i :

(1) depends on the second-order moments of the joint batch-size distribution Kj,k

(j, k = 1, . . . , N) only through
∑N

j=1

∑N
k=1 b

(1)
j b

(1)
k Kj,k;

(2) is independent of the third and higher-order moments of the joint batch-size distrib-
ution;

(3) depends on the second moments of the service-time distributions only through b(2),
i.e., the second moment of the service time of an arbitrary customer;

(4) is independent of the third and higher moments of the service-time distributions;

(5) depends on the switch-over time distributions only through r, the total expected
switch-over time per cycle;

(6) is independent of the visit order.
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Remark 5.1. Theorem 5 implies that the asymptotic waiting-time distribution depends
on the correlation structure in the arrival process (represented by

∑N
l=1

∑N
l=1 b

(1)
l b(1)m Kl,m)

and the variability in the service times (represented by b(2)) only through the linear com-
bination, ϕ, defined in (16). This observation implies that in heavy traffic the impact
of the correlation structure in the arrival process and the variability in the service times
on the waiting-time distributions are to some extent interchangeable. Notice that equa-
tions (2) and (4) imply that this interchangeability property is not generally true for stable
polling systems (i.e., with ρ < 1). In addition, we observe that the limiting waiting-time
distribution is independent of the third and higher cross-moments of the joint batch-size
distribution. This observation is caused by the fact that all terms related to those higher-
order cross-moments are in 4(k)

i,c in (25), and hence are lower-order terms.
The asymptotic insensitivity results listed in property 1, and remark 5.1, are gen-

erally not true for stable systems (i.e., with ρ < 1). Apparently, the impacts the higher
moments of the joint batch-size distribution and the higher moments of the service-time
and switch-over time distributions and the visit order on the delay incurred at each of the
queues vanish when the system tends to saturate, and as such can be viewed as lower-
order effects in this context. We emphasize that these findings have not been observed
before in the general context of the present paper and provide new fundamental insights
into the heavy-traffic behavior of polling systems with correlated arrival streams.

6. Approximation

Theorem 5 and equations (43) and (44) suggest the following simple approximations for
the distribution and the moments of the delay at each of the queues: for i = 1, . . . , N ,
ρ < 1, x > 0,

Prob{Wi > x} ≈ Prob
{
W̃i > x(1 − ρ)

}
, (47)

and for i ∈ G, k = 1, 2, . . . ,

E
[
Wk
i

] ≈ 1

(1 − ρ)k

{
1 + ρ̂i + · · · + ρ̂ki

k + 1

k∏
j=1

(
r + jϕ

2δ

)}
, (48)

and for i ∈ E, k = 1, 2, . . . ,

E
[
Wk
i

] ≈ 1

(1 − ρ)k

{
(1 − ρ̂i)

k

k + 1

k∏
j=1

(
r + jϕ

2δ

)}
, (49)

where δ and ϕ are defined in (15) and (16), respectively. The tail probabilities of W̃i at the
right-hand side of (47) can be obtained very efficiently by applying (one-dimensional)
numerical transform inversion to the expressions given in theorem 5. The approxima-
tions for the moments of Wi , which follow directly from (43) and (44), are even given in
closed form by expressions (48) and (49). Hence, the approximations in (47)–(49) are
not only simple, but also very fast-to-evaluate. Notice also that theorem 5 indicates that
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Figure 1. Simulated and approximated values of (1 − ρ)E[Wk
1 ] as a function of the load (k = 1, 2, 3).

the approximations are asymptotically exact when the load tends to unity. To assess the
accuracy of the approximations for ρ < 1, we have performed numerical experiments,
comparing the approximations with simulations. The results are outlined below.

Consider a symmetric 5-queue model in which all queues are served exhaustively,
the service times are exponentially distributed with mean 0.10 and the switch-over
times are exponentially distributed with mean 0.05. The joint batch-size distribution
is as follows: π(1, 1, 0, 0, 0) = 1/5, π(0, 1, 1, 0, 0) = 1/5, π(0, 0, 1, 1, 0) = 1/5,
π(0, 0, 0, 1, 1) = 1/5 and π(1, 0, 0, 0, 1) = 1/5, or equivalently K∗(z1, z2, z3, z4, z5)=
(z1z2 +z2z3 +z3z4 +z4z5 +z1z5)/5. It is readily verified the mean batch sizes (including
the possibility of batches of size 0) are given byE[Ki] = 2/5 (i = 1, . . . , 5), thatK1,2 =
K2,3 = K3,4 = K4,5 = K5,1 = K2,1 = K3,2 = K4,3 = K5,4 = K1,5 = 1 and Ki,j = 0
in all other cases, and that ρ̂i = 0.2 (i = 1, . . . , 5), b(1) = 0.10, b(2) = 0.02, r = 0.25
and λ̂ = 5. Substituting these parameters in (44) is easily verified to imply that for all i
we have ω(1)i = 9/40, ω(2)i = 4/3 and ω(3)i = 11/100. Figure 1 shows the exact and ap-
proximated values of (1 − ρ)kE[Wk

1 ] as a function of ρ, for k = 1, 2, 3.1 The solid lines
indicate the simulated results and the approximations are indicated by the dotted lines.
The approximations have been obtained from (48) and (49). To asses the quality of the
approximations, let us qualify the quality of the approximation “fair” when the (absolute
value of the) relative error is less than 20%, “good” when the relative error is 5–10% and
“very good” when the error is less than 5%. Close examination of the results plotted in
figure 1 shows that overall the approximations are “good” to “very good” when the load

1 Notice that for fully symmetric systems a closed-form expression for the case k = 1 follows immediately
from the pseudo-conservation law derived in [15].
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is 80% or more. When the load drops about 70%, the accuracy of the approximations
tends to become “fair”. The accuracy is also found to decrease further when the load
is 60% or less. We also observe that the quality of the approximations for given load
tends to degrade for higher values of k. This observation was to be expected, because
the differences between the tail probabilities of actual waiting-time distribution and the
approximations based on the exact asymptotic results are magnified by taking higher
moments. We have also performed numerical experiments with asymmetric model in-
stances. The quality of the approximations was found to be only slightly worse than in
the fully symmetric case (except for extremely asymmetric model instances, in which
cases the approximations are only accurate when ρ is close to 1). The quality of the ap-
proximations of the first few (say k = 1 to 4) moments by (48)–(49) was still found to be
“good” to “very good” when the load is 75–90% or more. On the other hand, for k � 5
the accuracy of the approximations tends to degrade (for fixed ρ), and is only consid-
ered good when the load is very close to 1. Hence, the approximations for the moments
in (48) and (49) are particularly useful for approximating the first few moments of the
delay. By the time of writing of this paper, we are also performing extensive simulation
experiments to asses the quality of the approximations for the tail probabilities in (47).
Initial results suggest that the approximation (visually) converges to the limiting distri-
bution rather rapidly, except for the very small tail probabilities, which are beyond the
scope of this paper.

Remark 6.1. The importance of the approximations (47)–(49) is raised by the fact that
the efficiency of simulations or existing numerical techniques (cf. [4,9]) to evaluate the
tail probabilities and the moments of the delay works well for lightly and medium loaded
systems, but tends to degrade significantly when the system is heavily loaded. In fact,
during the simulation experiments we found that extremely long simulation runs had to
be run to obtain reliably and estimations (especially for the higher moments of the delay),
which addresses exactly the importance of the approximations proposed in (47)–(49):
the applicability of the approximations discussed above complement the applicability of
the existing numerical techniques.

To summarize, the numerical examples discussed above demonstrate that (a) the
approximations (47)–(49), covering the impact of both batched and simultaneous ar-
rivals, are accurate for medium and heavily loaded systems, (b) the approximations in
(48)–(49) are particularly useful for approximating the first few moments of the delay,
and (c) the applicability of the approximations in (47)–(49) complements the applicabil-
ity of the existing numerical techniques.

7. Topics for further research

A fundamental property of the model considered in the paper is that the joint queue-
length processes at polling instants at a fixed queue can be described as a multi-type
branching process (MTBP) with immigration in each state [16]. In this paper, we ex-
plored the DSA to obtain heavy-traffic results, showing the occurrence of the gamma in
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the limiting case. Interestingly, in the theory of MTBPs (cf. [8]) the gamma distribution
occurs as the limiting distribution in the so-called critical case (which in the context of
the present model corresponds to the case ρ = 1), for a general class of MTBPs. In the
context of polling models, the results in [8] suggest that the results in this paper may be
generalized to a much broader class of polling models, including models with non-cyclic
periodic server routing, general branching-type service disciplines (e.g., binomial gated,
fractional exhaustive), polling models with customer routing, amongst others. Extension
of the results to more general branching-type polling models is a challenging topic for
further research.

In this paper it is assumed that all moments of the service times, switch-over times
and the (cross-)moments of the joint batch-size distributions are finite. However, the-
orem 5 (see also property 1) shows that the limiting waiting-time distributions depend
only on the first moment of the switch-over times and on the first two moments of the ser-
vice times and batch-size distributions. This observation suggests that the heavy-traffic
results in this paper may be obtained under weaker assumptions about the finiteness of
the moments mentioned. This suggestion is supported by the results obtained by Coff-
man et al. [7] for the case of two-queue models with exhaustive service and independent
renewal arrival processes. Derivation of such results in the context of correlated batch
arrivals is an interesting topic for further research.

A related area for further research is to analyze the impact of heavy-tailed (say,
with infinite variance) batch-size distributions, service-time distributions and switch-
over time distributions on the distributions of the delay in heavy traffic. In this context,
interesting results have been obtained by Boxma et al. [2], who study the tail behavior of
the waiting times in polling systems with so-called regularly varying service times and
switch-over times, and by Boxma and Cohen [1], who derive the heavy-traffic limiting
distribution for the waiting times in the single-server queue with a class of heavy-tailed
service-time distributions.

An interesting feasibility problem is “Can the system be operated such that
Prob{Wi > xi} < αi (i = 1, . . . , N)?”, for given values of xi and αi . To the best of the
author’s knowledge, this type of problems has not been studied before in the literature
on polling models. The results in this paper open possibilities for obtaining (approxima-
tive) solutions for solving feasibility problems under heavy-traffic assumptions, which
is a challenging new area for further research.

Experimental studies have demonstrated that in many applications the arrival
processes are non-Poisson. Therefore, it would be interesting to investigate whether
exact expressions can still be obtained for the waiting-time distribution when the Pois-
son assumption is relaxed. In this context, notice that the joint arrival process considered
in the present paper is (although not independent unit Poisson) still of “Poisson-type”,
and that the model fits within the realm of multi-type branching processes, so that the
DSA-based approach discussed in section 3 applies. However, for non-Poisson-type ar-
rival processes, the branching structure of the evolution of the joint queue-length process
is generally violated, so that the solution method in section 3 is no longer applicable. In
this context, encouraging results are obtained by Coffman et al. [7], who derive sim-
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ple expressions for the heavy-traffic limit of the waiting-time distribution for a class of
non-Poisson arrival processes.

An interesting extension to the standard polling model is the feature of retrial cus-
tomers. For various variants of this type of models, Langaris [12–14] shows that the
expected delay can be obtained by solving sets of linear equations. In this context, it
is an interesting topic for further research to investigate whether explicit heavy-traffic
results can be obtained for polling models with retrial customers.
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