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Abstract We consider a class of two-queue polling systems with exhaustive service,
where the order in which the server visits the queues is governed by a discrete-time
Markov chain. For this model, we derive an expression for the probability generating
function of the joint queue length distribution at polling epochs. Based on these results,
we obtain explicit expressions for the Laplace–Stieltjes transforms of the waiting-
time distributions and the probability generating function of the joint queue length
distribution at an arbitrary point in time. We also study the heavy-traffic behaviour of
properly scaled versions of these distributions, which results in compact and closed-
form expressions for the distribution functions themselves. The heavy-traffic behaviour
turns out to be similar to that of cyclic polling models, provides insights into the main
effects of the model parameters when the system is heavily loaded, and can be used
to derive closed-form approximations for the waiting-time distribution or the queue
length distribution.
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1 Introduction

In this paper, we study a class of queueing systems that consist of two queues, which
are attended by a single server. The server visits the queues in order to provide service
to customers there, and incurs positive random switch-over times when it moves from
one queue to the next. Such systems are commonly called polling systems, and find
their origin in a wealth of real-life applications, such as manufacturing environments
and computer-communication systems. For an overview of the literature on polling
systems, their applications and standard results on their analysis, we refer to surveys
such as [4,20,25,32].

Many studies in the literature assume that the server visits the queues in a cyclic (or
in the case of two queues, an alternating) order. This might in some cases, however, not
be a realistic assumption, as the queue to be visited next is determined by an external
random environment. As such, we study the case where the order in which the server
visits the queues is governed by a Markov chain. Note that as a consequence, after a visit
to a certain queue, it is now possible for the server to resume service at the same queue,
after having incurred a switch-over time. Polling models with this Markovian routing
mechanism occur for instance naturally in the modelling of cellular data services
that implement so-called opportunistic scheduling to profit from multi-user diversity
[16,31], which aims to utilise fading and shadowing of cellular users within a single
cell to optimise bandwidth efficiency [15]. The basic idea of opportunistic scheduling
is that a time slot (representing the right for transmission) is assigned to the user
with the highest instantaneous signal-to-noise ratio among all users in a cell. In this
way, access to the medium is randomly assigned to the multitude of users in a cell.
Another example can be found in the context of wireless random-access networks. So-
called Carrier-Sense Multiple-Access Collision-Avoidance (CSMA-CA) algorithms
provide a common mechanism for governing the use of such a shared wireless medium
in a distributed fashion. As is illustrated in [13], the dynamics of networks using
these algorithms are under certain assumptions probabilistically equivalent to polling
systems with a Markovian routing mechanism. Apart from many other applications that
can be found in the field of computer-communication systems (e.g., [18]), Markovian
polling systems may also be particularly useful in the modelling of production systems
with machines processing multiple product types. The type of product that a machine
should prioritise for processing at a certain point (equivalently, the queue that should
be visited by the server at that point), may be dependent on the levels of external
demand for each product type, and is thus better modelled by a random environment
than a round-robin assumption.

It is surprising that in the wide body of the literature on polling systems, hardly any
studies can be found that concern themselves with these so-called Markovian polling
models. The reason for this may lie in the fact that the analysis of Markovian polling
systems is generally considered to be much more complex than that of cyclic polling
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models. In particular, it is shown in [23] that the analysis of polling systems of which
the queue length vectors at appropriately chosen points in time do not constitute a
multi-type branching process with immigration (cf. [3]), is far less tractable than that
of systems which do satisfy this so-called branching property. The few studies that can
be found include [9], in which an expression for the expected amount of work in the
system at an arbitrary moment is derived for a few service disciplines. This work is
extended in [33], where expressions for the moments of the (joint) queue lengths for the
same service disciplines are found. More recently, these performance measures have
been derived for a much more general class of service disciplines in [13]. Results for a
slightly more general form of Markovian routing, where the routing probabilities may
depend on the event whether a queue is empty or not, are derived in [24]. The references
mentioned mostly restrict their attention to the analysis of the first few moments of
performance measures such as the waiting times or the joint queue length. Unlike these
papers, we consider the special setting of two-queue Markovian polling models, where
the queues are served exhaustively (i.e., the server will only start a switch-over period
if the current queue is completely empty). These assumptions have the advantage
that the system now actually does satisfy the branching property, which enables us to
analyse the complete distributions of the performance measures mentioned.

Initially, we will be concerned with the waiting-time and queue length distribu-
tions when the workload offered to the server is such that the queues are stable. The
analysis of studies on non-trivial two-queue polling systems, such as [7], oftentimes
includes a solution to a Riemann-Hilbert boundary value problem. We, however, fol-
low an approach similar to the analysis of [34], which uses a recursive iteration of a
functional equation for the probability generating function (PGF) of the joint queue
length distribution at moments the server starts a visit period, and therefore, avoids
such a boundary value problem.

We also study the behaviour of the system in a heavy-traffic regime, i.e., when the
workload offered to the server is scaled to such a proportion that the queues are on
the verge of instability. Many techniques have been proposed to obtain the heavy-
traffic behaviour of polling models. Initial studies for cyclic polling models can be
found in [10,11], where the occurrence of a so-called heavy-traffic averaging principle
is established. This principle implies that, although the total scaled workload in the
system tends to a Bessel-type diffusion in the heavy-traffic regime, the total workload
in the system may be considered as a constant during the course of a polling cycle,
while the loads of the individual queues fluctuate like a fluid model. In [27], several
heavy-traffic limits have been established by taking limits in known expressions for
the Laplace–Stieltjes transform (LST) of the waiting-time distribution. Alternatively,
[21] provides similar results, by studying the behaviour of the descendant set approach
(a numerical computation method, cf. [19]) in the heavy-traffic limit. Another tool in
the heavy-traffic analysis of polling models is branching theory, theorems of which led
to heavy-traffic results in [28]. Other methods for obtaining heavy-traffic behaviour
include perturbation techniques, which have been exploited in [5] to study a specific
class of non-branching polling models, and mean-value analysis (cf. [29]). In the
heavy-traffic analysis of this paper, we partly use the key ideas of [21].

The main contributions of this paper can be summarised as follows. Under the
assumption of a stable system, we obtain explicit expressions for several performance
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measures of the two-queue Markovian polling model with exhaustive service. In par-
ticular, we derive explicit expressions for (transforms of) the waiting-time distributions
and the joint queue length distribution. Although these expressions consist of infinite
products and are thus not in closed form, the products converge fast so that truncation
leads to accurate approximations. We also consider the behaviour of the waiting-time
and queue length distributions in a heavy-traffic regime. From a theoretical perspective,
these results are interesting, since unlike previous studies, the complete distributions
of the waiting times and queue lengths are analysed. The results in this paper are only
proved for the two-queue exhaustive case, and are not easily extendable to more gen-
eral assumptions. Nevertheless, they may offer some insights into the general case.
For instance, we will show that, except for some minor adjustments, the heavy-traffic
behaviour of two-queue Markovian polling models with exhaustive service is similar
to that of cyclic polling models as derived in the literature. It seems that this relation
also exists under more general assumptions, as we will conclude in Sect. 5. From
a practical perspective, the results are useful, as they not only provide closed-form
approximations for several performance measures that perform well when the system
is heavily loaded (as is usual in practice), but also give insights into the key effects of
the model parameters on the waiting times and queue lengths.

The remainder of this paper is structured as follows. In Sect. 2, we provide a detailed
model description and the necessary notation. Section 3 derives the expressions for the
mentioned performance measures under the assumption of a stable system, by taking a
functional equation for the PGF for the joint queue length distribution at polling epochs
as a starting point. Building on these results, we obtain the heavy-traffic behaviour of
the system in Sect. 4. Finally, we formulate our conclusions and provide directions
for further research in Sect. 5.

2 Model description and notation

In this section, we give a description of the polling system that we consider, and
we introduce the notation required. We study a queueing system that consists of two
infinite-buffer queues, Q1 and Q2, and a single server. Customers arrive at Qi accord-
ing to a Poisson process with intensity λi . We also refer to these customers as type-i
customers. The generic service requirement of a type-i customer is represented by the
random variable Bi , of which the LST is given by ˜Bi (s) = E[e−s Bi ] and the first two
moments E[Bi ] and E[B2

i ] are assumed to be finite. The workload that Qi brings to the
system is denoted by ρi = λi E[Bi ]. The aggregate workload offered to the server is
denoted by ρ = ρ1 +ρ2. Initially, we study the system in case the aggregate workload
is less than one, so that the queues are stable. After that, we study the system in the
so-called heavy-traffic regime: the case where ρ tends to one, i.e., the point at which
the queues are at the verge of instability.

The single server can only serve customers of one queue at a time. Hence, after
serving a given number of customers at one queue (a visit period), the server will
commence a switch-over period, also called a setup period, to initiate a new visit period
at any queue. Such a setup takes a random amount of time. In most studies on two-queue
polling systems, it is assumed that the server visits the queues in an alternating order.
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We, however, adopt a more general server routing mechanism. We assume that when
the server completes a visit period at Q1, it commences with probability p1 ∈ [0, 1)

a switch-over period to set up for yet another visit period at Q1. In the other case
(which occurs with probability 1 − p1), the server sets up for a visit to Q2. Similarly,
after visiting Q2, the server prepares for another visit period at Q2 with probability
p2 ∈ [0, 1), otherwise it will set up for service at Q1. This particular routing regime
captures the often-assumed alternating routing regime by taking p1 = p2 = 0.

Observe that this routing mechanism falls in the class of so-called Markovian rout-
ing mechanisms: the position of the server is governed by a two-state discrete-time
Markov chain of which the transition matrix has diagonal elements p1 and p2. By
calculating the limiting distribution of this Markov chain, one finds that a fraction
π1 = 1−p2

2−p1−p2
of the switch-overs correspond to setups to Q1, and the remaining

fraction π2 = 1−p1
2−p1−p2

are setups to Q2. The probability ri, j that, provided the server
is currently visiting Q j , the server visited Qi during the previous visit period follows
straightforwardly from these computations. It is trivial to see that r1,1 + r2,1 = 1
and r1,2 + r2,2 = 1. In particular, we have that r1,1 = p1π1

p1π1+(1−p2)π2
= p1,

r1,2 = (1−p1)π1
(1−p1)π1+p2π2

= 1 − p2, r2,1 = (1−p2)π2
p1π1+(1−p2)π2

= 1 − p1 and r2,2 =
(1−p1)π1

(1−p1)π1+p2π2
= p2.

Over the course of a visit period, the server serves the queues in an exhaustive man-
ner. In other words, the server will completely empty the queue, before it commences
a switch-over period. To gain more insight in the dynamics of the exhaustive service
discipline, let Pi denote the duration of a busy period in an M/G/1 queue with the
same arrival process and service-time distribution as Qi . This busy period consists
of the service of its first customer, the services of the customers arriving during the
service of the first customer (i.e., the children), the services of the customers arriving
during the service of the children (i.e., the grandchildren), and so forth. The LST of
Pi , denoted by ˜Pi (s) = E[e−s Pi ], is well known to satisfy the functional equation

˜Pi (s) = ˜Bi (s + λi (1 − ˜Pi (s))). (1)

We denote the number of customers that arrive at Q j over the course of a busy period
at Qi with Ki, j . Its PGF ˜Ki, j (z) = E[zKi, j ] is given by

˜Ki, j (z) =
∞
∑

k=0

zk

∞
∫

t=0

e−λ j t (λ j t)k

k! dP(Pi < t) = ˜Pi (λ j (1 − z)).

If a server starts a visit period at Qi when there are n customers in that queue, the
duration of that visit period is the n-fold convolution of Pi . It is important to note that
if the server sets up for service at the same queue afterwards, Qi is not necessarily
empty at the start of the new visit period, as customers may have arrived over the
course of the intermediate switch-over period.

We assume the distribution of the durations of the switch-over periods to depend
on the queue the server just visited as well as the destination queue. In particular, we
assume that a switch-over from Qi to Q j takes a continuously distributed stochastic
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amount of time Si, j , of which the LST is given by ˜Si, j (s) = E[e−sSi, j ], i, j ∈ {1, 2}.
The average duration of an arbitrary switch-over period incurred by the server is
given by σ = ∑2

i=1
∑2

j=1 ri, jπ j E[Si, j ]. Let M (k)
i, j be the number of arriving type-k

customers over a switch-over period from Qi to Q j . Similar to the computations above,

it can then be derived that the two-dimensional PGF ˜Mi, j (z1, z2) = E[∏2
k=1 z

M(k)
i, j

k ] is
given by

˜Mi, j (z1, z2) =
∞

∫

t=0

∞
∑

n1=0

∞
∑

n2=0

2
∏

k=1

(

znk
k e−λk t (λk t)nk

nk !
)

dP(Si, j < t)

= ˜Si, j (λ1(1 − z1) + λ2(1 − z2)).

We assume all interarrival times, service times and switch-over times to be indepen-
dent.

In the remainder of this article, we are interested in the waiting-time distributions
and the queue length distributions (including any customer in service) at several time
epochs. Let Fi, j be the number of customers present (waiting and in service) at Q j

when the server starts a visit period at Qi (i.e., a polling epoch at Qi ). The joint
distribution of Fi,1 and Fi,2 is represented by the two-dimensional PGF ˜Fi (z1, z2) =
E[zFi,1

1 z
Fi,2
2 ]. Similarly, Gi represents the number of type-i customers at a polling epoch

of Qi , provided that the previous visit period of the server was at Q3−i , and its PGF is
given by ˜Gi (z) = E[zGi ]. The random variable L j represents the number of customers
at Q j at an arbitrary point in time and the corresponding two-dimensional PGF is given

by ˜L(z1, z2) = E[zL1
1 zL2

2 ]. The waiting time of a type-i customer that arrives at an
arbitrary point in time is given by Wi , and its LST is given by ˜Wi (s) = E[e−sWi ].

We analyse the system under stability conditions (ρ < 1) and heavy-traffic con-
ditions (ρ ↑ 1). More specifically, in the latter regime we scale the total arrival rate
λ1 +λ2, while the ratio λ2

λ1
remains fixed. In this way, the heavy-traffic limit is uniquely

defined. It is, moreover, convenient, for any variable x that is a function of ρ, to denote
its value evaluated at ρ = 1 as x̂ . For example, ρ̂i = ρi

ρ
, so that ρ̂ = ρ̂1 + ρ̂2 = 1 and

λ̂i = ρ̂i
E[Bi ] . The waiting times and queue lengths tend to infinity in heavy traffic, and as

such their distributions are not well defined in the limiting case. Therefore, we study the
distributions of the scaled waiting times Wi = (1−ρ)Wi and the scaled queue lengths
Li = (1 − ρ)Li . The LST of the scaled waiting time is given by ˜Wi (s) = E[e−sWi ].
Likewise, the PGF of the scaled queue length is given by ˜Li (z) = E[zLi ].

Finally, we use λ(z) throughout this article as short-hand notation for λ1(1 − z1)+
λ2(1 − z2). Furthermore, 1{A} represents the indicator function of the event A. Any
expression for an LST ˜C(s) = E[e−sC ] that we derive in this paper corresponding
to any random variable C , holds for �(s) > 0. Likewise, any one-dimensional PGF
˜C(z1) = E[zC

1 ] or two-dimensional PGF ˜C(z1, z2) = E[∏2
k=1 zCk

k ] derived in this
paper holds for any z1 and z2 for which |z1| and |z2| do not exceed one. In both cases,
(cross-)moments of C can be computed by differentiation. In many cases, symbolic
inversion of the transforms to the original cumulative distribution functions is hard
when ρ < 1, due to the complex nature of the cumulative distribution functions.
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However, the cumulative distribution functions themselves can be obtained numeri-
cally by a wide array of methods (e.g., [1,2,12]).

3 Analysis for arbitrarily loaded systems

In this section, we derive explicit expressions for the waiting-time distributions of
either queue and the joint queue length distribution. In Sect. 3.1, we first obtain
expressions for ˜Fi (z1, z2), the joint queue length PGF at a polling epoch at Qi . These
results ultimately lead in Sect. 3.2 to expressions for the quantities ˜W1(s), ˜W2(s) and
˜L(z1, z2). Throughout this section, we assume that ρ < 1, i.e., the case where the
queues are stable. In Sect. 4, we will study the limiting case ρ ↑ 1, the case where the
system becomes critically loaded.

3.1 Joint queue length at polling epochs

To obtain explicit expressions for the PGF ˜Fi (z1, z2), we start with a functional equa-
tion for this function. Such a functional equation has already been derived in [13,33]
for a setting consisting of multiple queues and a wide class of service disciplines.
Applying these results to our case, we obtain

˜F1(z1, z2) = r1,1 ˜F1(˜K1,2(z2), z2) ˜M1,1(z1, z2) + r2,1 ˜F2(z1, ˜K2,1(z1)) ˜M2,1(z1, z2).

(2)
This equation can be seen to hold by the following observations. With probability ri,1,
a visit to Q1 is preceded by a visit period at Qi , during which each type-i customer
initially present and all of its offspring is served (i.e., not only the customer himself, but
also his children, grandchildren, and so on). Over the course of each service of a type-
i customer, a number of type- j customers, represented by the PGF ˜Ki, j (z j ), arrives
at Q j . During the switch-over period Si,1 between the two visits, the population of
customers in the system grows with a number of arriving customers that is represented
by ˜Mi,1(z1, z2). By similar observations, we have that

˜F2(z1, z2) = r1,2 ˜F1(˜K1,2(z2), z2) ˜M1,2(z1, z2) + r2,2 ˜F2(z1, ˜K2,1(z1)) ˜M2,2(z1, z2).

(3)
We now develop explicit expressions for ˜F1(˜K1,1(z2), z2) and ˜F2(z1, ˜K2,1(z1)), so
that (2) and (3) in turn offer explicit expressions for ˜F1(z1, z2) and ˜F2(z1, z2). To this
end, we note that substituting z1 = ˜K1,2(z2) in (2) leads to

˜F1(˜K1,2(z2), z2) = r2,1 ˜M2,1(˜K1,2(z2), z2)

1 − r1,1 ˜M1,1(˜K1,2(z2), z2)
˜F2(˜K1,2(z2), ˜K2,1(˜K1,2(z2))). (4)

Similarly, a substitution of z2 = ˜K2,1(z1) in (3) leads to

˜F2(z1, ˜K2,1(z1)) = r1,2 ˜M1,2(z1, ˜K2,1(z1))

1 − r2,2 ˜M2,2(z1, ˜K2,1(z1))
˜F1(˜K1,2(˜K2,1(z1)), ˜K2,1(z1)). (5)
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A combination of (4) and (5) gives

˜F1(˜K1,2(z2), z2) = a1(z2)˜F1(˜K1,2( f1(z2)), f1(z2)), (6)

where

a1(z2) = r2,1 ˜M2,1(˜K1,2(z2), z2)

1 − r1,1 ˜M1,1(˜K1,2(z2), z2)

r1,2 ˜M1,2(˜K1,2(z2), f1(z2))

1 − r2,2 ˜M2,2(˜K1,2(z2), f1(z2))
and

f1(z2) = ˜K2,1(˜K1,2(z2)). (7)

Observe that (6) constitutes an expression for ˜F1(˜K1,2(z2), ·) in terms of
˜F1(˜K1,2(z2), ·) itself. Therefore, iteration of (6) leads to

˜F1(˜K1,2(z2), z2) = ˜F1(˜K1,2( f (∞)
1 (z2)), f (∞)

1 (z2))

∞
∏

j=0

a1( f ( j)
1 (z2)), (8)

where f (0)
1 (z2) = z2 and f ( j)

1 (z2) = f1( f ( j−1)
1 (z2)). By repeating the analysis above

for ˜F2(z1, ˜K2,1(z1)), we obtain that

˜F2(z1, ˜K2,1(z1)) = ˜F2( f (∞)
2 (z1), ˜K2,1( f (∞)

2 (z1)))

∞
∏

j=0

a2( f ( j)
2 (z1)), (9)

where

a2(z1) = r1,2 ˜M1,2(z1, ˜K2,1(z1))

1 − r2,2 ˜M2,2(z1, ˜K2,1(z1))

r2,1 ˜M2,1( f2(z1), ˜K2,1(z1))

1 − r1,1 ˜M1,1( f2(z1), ˜K2,1(z1))
and

f2(z1) = ˜K1,2(˜K2,1(z1)), (10)

f (0)
2 (z1) = z1 and f ( j)

2 (z1) = f2( f ( j−1)
2 (z1)).

Now that we have derived two explicit expressions for ˜F1(˜K1,2(z2), z2) and
˜F2(z1, ˜K2,1(z1)), we show in the following two lemmas that ˜F1(˜K1,2( f (∞)

1 (z2)),

f (∞)
1 (z2)) and ˜F2( f (∞)

2 (z1), ˜K2,1( f (∞)
2 (z1))) are well-defined constants and that the

infinite products actually converge.

Lemma 3.1 For z1, z2 ∈ {z ∈ C : |z| ≤ 1}, ˜F1(˜K1,2( f (∞)
1 (z2)), f (∞)

1 (z2)) and
˜F2( f (∞)

2 (z1), ˜K2,1( f (∞)
2 (z1))) are well-defined constants equal to one.

Proof See Appendix 1. ��
Lemma 3.2 For z1, z2 ∈ {z ∈ C : |z| ≤ 1}, the products

∏∞
j=0 a1( f ( j)

1 (z2)) and
∏∞

j=0 a2( f ( j)
2 (z1)) converge.

Proof See Appendix 2. ��
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Based on the analysis of ˜F1(˜K1,2(z2), z2) and ˜F2(z1, ˜K2,1(z1)), we can now derive
expressions for ˜F1(z1, z2) and ˜F2(z1, z2) as follows.

Theorem 3.3 Explicit expressions for ˜F1(z1, z2) and ˜F2(z1, z2) involving converging
infinite products are given by

˜F1(z1, z2) = r1,1 ˜M1,1(z1, z2)

∞
∏

j=0

a1( f ( j)
1 (z2)) + r2,1 ˜M2,1(z1, z2)

∞
∏

j=0

a2( f ( j)
2 (z1))

(11)
and

˜F2(z1, z2) = r1,2 ˜M1,2(z1, z2)

∞
∏

j=0

a1( f ( j)
1 (z2)) + r2,2 ˜M2,2(z1, z2)

∞
∏

j=0

a2( f ( j)
2 (z1)).

(12)

Proof The theorem follows by combining (2), (3), (8), (9), Lemmas 3.1 and 3.2. ��
We use the expressions of Theorem 3.3 to obtain the (PGF of the) joint queue length

distribution at an arbitrary point in time in Sect. 3.2. We conclude this section with a
couple of remarks.

Remark 3.1 The infinite products that arise in (11) and (12) have a clear interpretation.
To see this, observe that when substituting z2 = 1 in (11), one obtains ˜F1(z1, 1) =
E[zF1,1

1 ], the PGF of the type-1 customers currently present at a polling epoch of Q1.
This yields

˜F1(z1, 1) = r1,1 ˜M1,1(z1, 1) + r2,1 ˜M2,1(z1, 1)

∞
∏

j=0

a2( f ( j)
2 (z1)), (13)

since a1(1) = f1(1) = 1. This expression can be interpreted as follows. At the end of
the previous visit period at Q1, there are no type-1 customers in the system. Thus, with
probability r1,1, the number of type-1 customers that have arrived since the previous
visit period at Q1, did so over the course of a switch-over period S1,1. This number of
customers is represented by the PGF ˜M1,1(z1, 1). With probability r2,1, the previous
visit period was at Q2, so that ˜F1(z1, 1) equals G1 in this case, i.e., the number of type-
1 customers present at a polling epoch of Q1 given that the server’s previous visit was
at Q2. This number of type-1 customers present not only consists of type-1 customers
that arrived during a switch-over period S2,1, but also type-1 customers that arrived
between the end of the previous visit period at Q1 and the end of the latest visit period
at Q2. As the former number of customers is evidently represented by ˜M2,1(z1, 1), the

infinite product
∏∞

j=0 a2( f ( j)
2 (z1)) must be the PGF of the latter category of customers.

From this it also follows that ˜G1(z) = ˜M2,1(z, 1)
∏∞

j=0 a2( f ( j)
2 (z)).

Another way to see that the infinite product
∏∞

j=0 a2( f ( j)
2 (z1)) represents the num-

ber of arriving type-1 customers between the last visit period end at Q1 and subse-
quently the last visit period end at Q2 is the following. Any type-1 customer currently
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present (i.e., at a polling epoch of Q1) is a customer that either arrived during a
switch-over period (an ancestor) or belongs to the offspring of another type-1 or type-
2 customer that arrived during a switch-over period in the past (a descendant). The
currently present type-1 customers that are (descendants of) ancestors that arrived dur-
ing a particular period in the past are referred to as the contribution of that period to the
current polling epoch. The expression a2(z1) (cf. (10)) now represents the complete
contribution of the period that lasted until the end of the last visit to Q2, and started
at the most recent visit to Q2 before that time that directly preceded a Q1 visit. This
period starts with a switch-over period S2,1, of which the contribution is easily seen
to be given by ˜M2,1( f2(z1), ˜K2,1(z1)). After that, a geometric number of switch-over
periods from Q1 to Q1 occur, of which the (PGF of the) contribution is given by

∞
∑

k=0

r2,1rk
1,1

˜Mk
1,1( f2(z1), ˜K2,1(z1)) = r2,1

1 − r1,1 ˜M1,1( f2(z1), ˜K2,1(z1))
.

Similarly, the contribution of the succeeding switch-over period ˜S1,2 and the geometric
number of switch-over periods from Q2 to Q2 are given by ˜M1,2(z1, ˜K2,1(z1)) and

r1,2

1−r2,2 ˜M2,2(z1,˜K2,1(z1))
, respectively. The product of these expressions forms a2(z1) =

a2( f (0)
2 (z1)), the contribution of the latest ‘inter visit-end period’ of Q2. Based on

this, it is not hard to see, by the nature of f2(z1), that a2( f (1)
2 (z1)) represents the

contribution of the inter visit-end period preceding the latest inter visit-end period.
Extending this observation, a2( f ( j)

2 (z1)) represents the contribution of the j-th to last
inter visit-end period of Q2. As the customers currently present at Q1 can be the
contribution of any inter visit-end period of Q2 in the past, the number sought is given
by

∏∞
j=0 a2( f ( j)

2 (z1)), which represents the contribution of all inter visit-end periods

that have past. An interpretation for a1( f ( j)
1 (z2)) can be derived in a similar way.

Remark 3.2 Views similar to the contribution interpretation as presented in Remark 3.1
have in the past led to numerical methods for several systems, such as the descendant
set approach as developed in [19] for cyclic polling systems. It is shown there that
by truncating the infinite products, accurate approximations of (the PGFs of) the mar-
ginal queue length distribution arise. This supports numerical observations that the
infinite-product expressions as derived in this paper give rise to efficient numerical
means of computing queue length distributions.

3.2 Expressions for the waiting-time distribution and the joint queue length
distribution

Based on the derived expression for the PGF ˜Fi (z1, z2) pertaining to the queue length
at a polling epoch of Qi , we now derive ˜Wi (s), the LST of the waiting-time distribution
of type-i customers, and ˜L(z1, z2), the PGF of the joint queue length at an arbitrary
point in time.
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3.2.1 Analysis of ˜Wi (s)

To extract an expression for ˜Wi (s) from the expressions found in Sect. 3.1, we use
the observation given in [33, pp. 90–91] that the analysis found in [25, Section 4.3]
applied to Markovian polling systems leads to

˜W1(λ1(1 − z)) = π1(1 − ρ)(1 − ˜F1(z, 1))

σλ1(˜B1(λ1(1 − z)) − z)
and

˜W2(λ2(1 − z)) = π2(1 − ρ)(1 − ˜F2(1, z))

σλ2(˜B2(λ2(1 − z)) − z)
, (14)

where σ , as defined in Sect. 2, denotes the average duration of an arbitrary switch-
over period. This observation leads to expressions for ˜Wi (s) as stated in the following
theorem.

Theorem 3.4 An explicit expression for ˜W j (s) involving converging infinite products
is given by

˜W j (s) = π j (1 − ρ)

σ(s − λ j (1 − ˜B j (s)))

(

1 −
2

∑

i=1

ri, j˜Si, j (s)

(

1{i= j}

+1{i 	= j}
∞
∏

k=0

ai

(

f (k)
i

(

1 − s

λ j

))

))

. (15)

Proof By substituting s = λ1(1 − z) and s = λ2(1 − z), respectively, in (14), we
obtain

˜W1(s) =
π1(1 − ρ)

(

1 − ˜F1

(

1 − s
λ1

, 1
))

σ(s − λ1(1 − ˜B1(s)))
and

˜W2(s) =
π2(1 − ρ)

(

1 − ˜F2

(

1, 1 − s
λ2

))

σ(s − λ2(1 − ˜B2(s)))
. (16)

Combining these expressions with (13) and its equivalent for ˜F2(1, z2) leads to the
theorem. ��

3.2.2 Analysis of ˜L(z1, z2)

To obtain ˜L(z1, z2), we use an approach that is introduced in [8] and already applied
in [13] to Markovian polling systems with an arbitrary number of queues. Before we
derive a PGF of the joint queue length at an arbitrary point in time, we first regard
˜Xi (z1, z2) = E[zXi,1

1 z
Xi,2
2 ], the PGF of the queue lengths Xi,1 and Xi,2 of Q1 and Q2

at an arbitrary point during a visit period at Qi . By applying the results of [13, Section
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3.2] to our setting, we obtain that

˜X1(z1, z2) = π1(1 − ρ)

ρ1σ

z1(˜F1(z1, z2) − ˜F1(˜K1,2(z2), z2))

z1 − ˜B1(λ(z))

1 − ˜B1(λ(z))
λ(z)

(17)

and

˜X2(z1, z2) = π2(1 − ρ)

ρ2σ

z2(˜F2(z1, z2) − ˜F2(z1, ˜K2,1(z1)))

z2 − ˜B2(λ(z))

1 − ˜B2(λ(z))
λ(z)

. (18)

Furthermore, the results of [13, Section 3.2] reveal that ˜Yi, j (z1, z2) = E[zYi, j,1
1 z

Yi, j,2
2 ],

the PGF of the queue lengths Yi, j,1 and Yi, j,2 of Q1 and Q2 at an arbitrary point during
a switch-over period from Qi to Q j is given by

˜Y1, j (z1, z2) = ˜F1(˜K1,2(z2), z2)
1 − ˜M1, j (z1, z2)

λ(z)E
[

S1, j
] (19)

and

˜Y2, j (z1, z2) = ˜F2(z1, ˜K2,1(z1))
1 − ˜M2, j (z1, z2)

λ(z)E
[

S2, j
] . (20)

We now combine the expressions (17)–(20) into one expression for ˜L(z1, z2), the PGF
of the joint queue length at an arbitrary point in time. Observe that the server serves
Qi a fraction ρi of the time. In the remaining fraction 1 − ρ of the time, the server
is setting up for service at another queue. Of the time the server is in a switch-over

period, he spends a fraction
ri, j π j E[Si, j ]

σ
setting up from Qi to Q j . Therefore, we have

that

˜L(z1, z2) =
2

∑

i=1

⎛

⎝ρi ˜Xi (z1, z2) + 1 − ρ

σ

2
∑

j=1

ri, jπ j E
[

Si, j
]

˜Yi, j (z1, z2)

⎞

⎠ . (21)

This leads to the following theorem.

Theorem 3.5 An explicit expression for ˜L(z1, z2) involving converging infinite prod-
ucts is given by

˜L(z1, z2) = 1 − ρ

λ(z)σ

2
∑

i=1

2
∑

j=1

π j

(

z j (1 − ˜B j (λ(z)))

z j − ˜B j (λ(z))
(ri, j ˜Mi, j (z1, z2) − 1{i= j})

+ ri, j
(

1 − ˜Mi, j (z1, z2)
)

) ∞
∏

k=0

ai ( f (k)
i (z3−i )).

Proof The theorem follows by combining (8), (9), Lemma 3.1 and Theorem 3.3 with
(17)–(21). ��
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4 Heavy-traffic asymptotics

In Sect. 3, we have derived expressions for the LSTs of the waiting-time distributions
and the PGF of the joint queue length distribution. These expressions are suitable for
computational purposes, as theoretical and numerical evidence shows that the infinite
products contained in these expressions converge very fast. However, the expressions
are not in closed form, and the PGFs and the LSTs may be hard to invert symbolically.
In an effort to obtain closed-form expressions for the distributions themselves, we
consider the heavy-traffic asymptotics of the system, i.e., the behaviour of the system
when ρ ↑ 1. Recall that we study the case where the heavy-traffic limit ρ ↑ 1 is
taken by scaling the total arrival rate λ1 + λ2 such that the ratio λ2

λ1
remains fixed, so

that λ̂2

λ̂1
= λ2

λ1
, with λ̂i as defined in Sect. 2. In this regime, the waiting times and the

queue lengths tend to infinity. Therefore, we now study the scaled waiting times Wi

as well as the scaled queue lengths Li , and obtain closed-form expressions directly
for their distributions. These expressions are not only easy to implement, but they also
give insight into the primary effects of the model parameters on the waiting times and
queue lengths, when the system operates under a heavy load. In Sect. 4.1, we derive
the heavy-traffic behaviour of the waiting times and queue lengths incurred by the
customers based on previous results for cyclic polling systems and some insightful
observations. Subsequently, we rigorously prove these results in Sect. 4.2.

4.1 Initial study of the heavy-traffic behaviour

Before we study the heavy-traffic behaviour of the model in its full generality, we first
consider the degenerate case p1 = p2 = 0 of our model. Note that for p1 = p2 = 0,
the server always switches from Q1 to Q2 or from Q2 to Q1. Thus, in this particular
case, the server follows a fixed alternating (or cyclic) routing mechanism. The heavy-
traffic behaviour of cyclic polling models that are of a branching type and consist
of an arbitrary number of queues has already been established in e.g., [21,27,28].
Translating this to our setting with two queues, exhaustive service and cyclic routing
(p1 = p2 = 0), these results readily imply the following.

Proposition 4.1 For p1 = p2 = 0, the LST of the limiting scaled waiting-time distri-
bution is given by

lim
ρ↑1

˜Wi (s) = 1

s(1 − ρ̂i )(E
[

S1,2
] + E

[

S2,1
]

)

(

1 −
(

μi
cyc

μi
cyc + s

)αcyc)

,

where

αcyc = 2ρ̂1ρ̂2
(

E
[

S1,2
] + E

[

S2,1
])

λ̂1E
[

B2
1

] + λ̂2E
[

B2
2

] and μi
cyc = 2ρ̂i

λ̂1E
[

B2
1

] + λ̂2E
[

B2
2

] .
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Equivalently,
lim
ρ↑1

P(Wi ≤ t) = P(U I ≤ t),

where U is a uniformly [0, 1] distributed random variable and I is a gamma distributed
random variable with shape parameter αcyc + 1 and scale parameter μ

cyc
i , and U

and I are independent.

The given distribution function immediately follows from inversion of the limiting
LST. We observe that for the cyclic system, the complete heavy-traffic distribution of
the waiting time only depends on the switch-over times through their first moments.
In fact, the scaled waiting-time distribution only depends on E[S1,2] + E[S2,1], the
first moment of the total switch-over time incurred between two polling epochs at Q1.

Next, we observe for the general case (i.e., 0 ≤ p1, p2 < 1) the following. A period
between two polling epochs at Q1 can be divided in a number of subperiods:

(i) The first visit period at Q1 after having visited Q2;
(ii) A geometric (p1) number of switch-over periods from Q1 to Q1 and subsequent

‘revisit’ periods at Q1;
(iii) The switch-over period from Q1 to Q2;
(iv) The first visit period at Q2 after having visited Q1;
(v) A geometric (p2) number of switch-over periods from Q2 to Q2 and subsequent

‘revisit’ periods at Q2; and
(vi) The switch-over period from Q2 to Q1.

The support of the geometric random variables associated with subperiods (ii) and (v)
is {0, 1, 2, . . .}. In this view, we can draw a connection between the general case and
the cyclic polling model as described above. In particular, we do so by reordering the
subperiods as follows:

(a) All visit periods between a polling epoch at Q1 and the first polling epoch at Q2
to occur afterwards;

(b) A geometric (p1) number of switch-over periods from Q1 to Q1;
(c) The switch-over period from Q1 to Q2;
(d) All visit periods between the polling epoch at Q2 and the first polling epoch at

Q1 to occur afterwards;
(e) A geometric (p2) number of switch-over periods from Q2 to Q2; and
(f) The switch-over period from Q2 to Q1.

Thus, the ‘revisit’ periods from the subperiods (ii) and (v) are shifted to the subpe-
riods (a) and (d). In the heavy-traffic regime, the additional customers served in the
subperiods (a) and (d) with respect to those in the original subperiods (i) and (iv) are
negligible. This is the case since they are finite in number (they constitute arrivals
during finitely long switch-over times), whereas the customers served in the original
subperiods are infinite in number. As a result, the limiting waiting-time distribution
of the customers served in the periods (a) and (d) coincides with that of the customers
served in the reordered subperiods (i) and (iv), respectively. Note that in this reordered
scheme, the polling system can be interpreted as a cyclic model, as the subperiods
(b) and (c) together form a switch-over period from Q1 to Q2, and the subperiods (e)
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and (f) together form a switch-over period from Q2 to Q1. The switch-over period
from Q1 to Q2 in this cyclic equivalent then consists of a geometric (p1) number of
original switch-over periods from Q1 to Q1 and an original switch-over period from
Q1 to Q2 of the Markovian model. Similarly, the switch-over period from Q2 to Q1
in the cyclic equivalent consists of a geometric (p2) number of switch-over periods
from Q2 to Q2 and a subsequent switch-over period from Q2 to Q1.

Finally, we observe that the first moment of the total switch-over time incurred
between two polling epochs at Q1 in the Markovian polling model is given by

E
[

Stot ] =
∞
∑

i=0

∞
∑

j=0

(

iE
[

S1,1
]+E

[

S1,2
]+E

[

S2,1
]+ jE

[

S2,2
])

(1 − p1)pi
1(1 − p2)p j

2

= p1

1 − p1
E

[

S1,1
] + E

[

S1,2
] + E

[

S2,1
] + p2

1 − p2
E

[

S2,2
]

. (22)

Combining all of the observations above, it is reasonable to assume that the heavy-
traffic behaviour of the general case is similar to the heavy-traffic behaviour as derived
in Proposition 4.1 for the cyclic case, except that the term E[S1,2] + E[S2,1] should
be replaced by E[Stot ]. We formulate this result below; a rigorous proof will be given
in Sect. 4.2.

Theorem 4.2 For 0 ≤ p1, p2 < 1, the LST of the limiting scaled waiting-time distri-
bution is given by

lim
ρ↑1

˜Wi (s) = 1

s(1 − ρ̂i )E
[

Stot
]

(

1 −
(

μi

μi + s

)α)

, (23)

where

α = 2ρ̂1ρ̂2E
[

Stot
]

λ̂1E
[

B2
1

] + λ̂2E
[

B2
2

] , μi = 2ρ̂i

λ̂1E
[

B2
1

] + λ̂2E
[

B2
2

] (24)

and E[Stot ] is given in (22). Equivalently,

lim
ρ↑1

P(Wi ≤ t) = P(U I ≤ t), (25)

where U is a uniformly [0, 1] distributed random variable, I is a gamma distributed
random variable with shape parameter α + 1 and scale parameter μi , and U and I
are independent.

Based on this theorem concerning the scaled waiting-time distribution, we can also
derive the heavy-traffic behaviour of the scaled queue length distribution. From Little’s
law, it is immediate that E[Li ] = λ̂i E[Wi ]. Furthermore, in many queueing models
under heavy-traffic conditions, the scaled virtual waiting time processes and queue
length processes exhibit so-called state-space collapse: the one process is in heavy
traffic essentially the same as the other process multiplied by a scalar constant (cf.
[22]). It is thus reasonable to assume that in heavy traffic the distribution of Li equals
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the distribution of Wi scaled by a factor λ̂i . This leads to the following statement, for
which, again, a rigorous proof will be given in Sect. 4.2.

Theorem 4.3 For 0 ≤ p1, p2 < 1, the limiting scaled marginal queue length distri-
bution is given by

lim
ρ↑1

P(Li ≤ t) = P(U I ≤ t),

where U is a uniformly [0, 1] distributed random variable, I is a gamma distributed
random variable with shape parameter α + 1 and scale parameter μi

λ̂i
(α and μi as

defined in (24)). Furthermore, the random variables U and I are independent.

Remark 4.1 Besides the distribution of a uniform times a gamma random variable,
the limiting distribution of (1 − ρ)Wi as given in Theorem 4.2 can also be interpreted
as the residual (overshoot) of a gamma distribution. To see this, observe that (23) can
be rewritten as

lim
ρ↑1

˜Wi (s) =
1 −

(

μi
μi +s

)α

s α
μi

.

As (
μi

μi +s )
α is the LST of a gamma (α, μi ) distribution with first moment α

μi
, the limit-

ing distribution constitutes the residual of a gamma distribution with shape parameter
α and scale parameter μi . A similar observation holds for the limiting distribution of
(1 − ρ)Wi in the cyclic case as provided in Proposition 4.1.

Remark 4.2 Theorems 4.2 and 4.3 can immediately be used as approximations for the
marginal waiting-time distributions and queue length distributions in stable systems
with a load ρ̄ < 1:

P

(

Wi <
t

1 − ρ̄

)

≈ lim
ρ↑1

P(Wi < t) and P

(

Li <
x

1 − ρ̄

)

≈ lim
ρ↑1

P(Li < x).

As shown in [21], approximations of this type are reasonably accurate for heavily
loaded polling models (i.e., a load close to one). This is not surprising, as the approx-
imation becomes exact by construction as ρ̄ tends to one. Moreover, it is interesting
to note that the limiting distributions of the scaled waiting times and queue lengths
only depend on the first two moments of the service-time distribution as well as the
first moment of the total switch-over time between two polling epochs at Q1. They do
not require higher moments, and are thus useful for practical purposes, as in reality,
information about third- and higher-order moments is often hard to get.

4.2 Proofs of Theorems 4.2 and 4.3

In this section, we prove Theorems 4.2 and 4.3. For the former theorem, we rely in
part on the results found in [21]. That paper provides an analysis of the heavy-traffic
behaviour of periodic polling systems, of which the marginal queue length distribution
at polling epochs can be (numerically) computed by the descendant set approach (cf.
[19]), by analysing the mechanics of this technique in the heavy-traffic regime. The
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results that we particularly rely on are [21, Theorems 3 and 4], which give the limiting
behaviour of a marginal queue length H of Q1 observed at predefined epochs in time,
of which the PGF ˜H(z) = E[zH ] can be written as

˜H(z) =
∞
∏

c=0

˜R1
(

λ1(1 − ˜A1,c−1(z)) + λ2(1 − ˜A2,c(z))
)

˜R2
(

λ1(1 − ˜A1,c−1(z))

+λ2(1 − ˜A2,c−1(z))
)

, (26)

where ˜R1(s) and ˜R2(s) are LSTs of two arbitrary positive random variables R1 and
R2,

˜A1,c(z) = ˜P1(λ2(1 − ˜A2,c(z))) = ˜K1,2(˜A2,c(z)), ˜A1,−1(z) = z,

˜A2,c(z) = ˜P2(λ1(1 − ˜A1,c−1(z))) = ˜K2,1(˜A1,c−1(z)), ˜A2,−1(z) = 1, (27)

and ˜Pi (s) as defined in Sect. 2. The results of [21] state that under these conditions,
(1 − ρ)H converges in distribution, as ρ ↑ 1, to a gamma distribution with shape
parameter 2ρ̂1ρ̂2(E[R1]+E[R2])

λ̂1E[B2
1 ]+λ̂2E[B2

2 ] and scale parameter 2ρ̂i

λ̂i (λ̂1E[B2
1 ]+λ̂2E[B2

2 ]) . Furthermore, it

is stated that limρ↑1 E[(1−ρ)k Hk] coincides with the k-th moment of this distribution.
We have now only stated the results of [21] applied to two-queue polling systems

with alternating and exhaustive service. A more general statement for polling systems
with a general number of queues and periodic routing is shown to hold in [21] by
exploiting several useful observations based on the descendant set approach.

As noted in Remark 3.2, however, the expressions that we obtained for the PGF of
the queue length distribution in Sect. 3 allow for an interpretation in the spirit of the
descendant set approach. As such, the results of [21] as stated above almost directly
lead to the following lemma pertaining to Gi , the number of type-i customers in the
system at a polling epoch of Qi that follows a visit period at Q3−i .

Lemma 4.4 The distribution of (1 − ρ)Gi converges, as ρ ↑ 1, in distribution to a
gamma distribution with shape parameter α and scale parameter μi

λ̂i
, where α and μi

are defined in (24). Furthermore, we have that limρ↑1 E[(1 − ρ)k Gk
i ] coincides with

the k-th moment of this distribution.

Proof We focus on the limiting distribution of (1 − ρ)G1. In Remark 3.1, we already
concluded that ˜G1(z) = ˜M2,1(z, 1)

∏∞
j=0 a2( f ( j)

2 (z)). With some effort, it is straight-
forward to see that alternatively this can be written as

˜G1(z) = ˜H(z)
1 − r1,1 ˜M1,1(z, 1)

r2,1 ˜M2,1(z, 1)
, (28)

with ˜H(z) as in (26), where

˜R j (s) = ˜S j,3− j (s)
r j,3− j

1 − r3− j,3− j˜S3− j,3− j (s)
,
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i.e., R j is chosen to be the convolution of a switch-over time from Q j to Q3− j and a
geometric (r3− j,3− j ) number of switch-over times from Q3− j to Q3− j . From this def-
inition, it is easily verified that E[R1]+E[R2] = E[Stot ]. As limρ↑1 ˜M1,1(z1−ρ, 1) =
limρ↑1 ˜M1,2(z1−ρ, 1) = 1, it is clear by (28) that the PGF of the scaled distribution
˜G1(z1−ρ) = E[z(1−ρ)G1] satisfies limρ↑1 ˜G1(z1−ρ) = limρ↑1 ˜H(z1−ρ). Thus, the
distributions of the scaled versions of G1 and H coincide in the heavy-traffic limit.
For i = 1, the lemma now follows from the results of [21] as described above. For
i = 2, the lemma follows by interchanging indices. ��

Now that we have established the heavy-traffic behaviour of Gi , we are able to prove
Theorem 4.2 by making use of (16).

Proof of Theorem 4.2 Again, we focus on the case i = 1 with the understanding that
the proof for the case i = 2 follows by interchanging indices. By (13) and (16), we
have that

lim
ρ↑1

˜W1((1 − ρ)s) = lim
ρ↑1

π1(1 − ρ)

σ((1 − ρ)s − λ1(1 − ˜B1((1 − ρ)s)))

× lim
ρ↑1

(

1 − r1,1 ˜M1,1

(

1 − (1 − ρ)s

λ1
, 1

)

−r2,1 ˜G1

(

1 − (1 − ρ)s

λ1

))

. (29)

By applying L’Hôpital’s rule and observing that π1
σ

= (r2,1E[Stot])−1, we obtain that

lim
ρ↑1

π1(1 − ρ)

σ((1 − ρ)s − λ1(1 − ˜B1((1 − ρ)s)))
= lim

ρ↑1

−π1

σ s(−1 + λ1E
[

B1e−(1−ρ)s B1
]

)

= 1

r2,1s(1 − ρ̂1)E[Stot] .

Furthermore, it is clear that limρ↑1 ˜M1,1

(

1 − (1−ρ)s
λ1

, 1
)

= 1. Deriving limρ↑1 ˜G1(1−
(1−ρ)s

λ1
), however, takes a bit more effort. By invoking a Taylor expansion in G1, we

have that

lim
ρ↑1

˜G1

(

1 − (1 − ρ)s

λ1

)

= lim
ρ↑1

E

[

(

1 − (1 − ρ)s

λ1

)G1
]

= lim
ρ↑1

E

⎡

⎣

∞
∑

k=0

logk
(

1 − (1−ρ)s
λ1

)

Gk
1

k!

⎤

⎦ .
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To further reduce this expression, observe that a Taylor expansion around ρ = 1 yields

log(1 − (1 − ρ)c) = − ∑∞
j=1

(1−ρ) j c j

j for any c ∈ R. As such,

lim
ρ↑1

˜G1

(

1 − (1 − ρ)s

λ1

)

= lim
ρ↑1

E

⎡

⎢

⎣

∞
∑

k=0

(−1)k
(

∑∞
j=1(1 − ρ) j s jλ

− j
1 /j

)k
Gk

1

k!

⎤

⎥

⎦
.

(30)

Note, however, that due to Lemma 4.4, we have for any j > k that limρ↑1 E[(1 −
ρ) j Gk

1] = limρ↑1(1−ρ) j−k limρ↑1 E[(1−ρ)k Gk
1] = 0. Therefore, second and higher

order terms of the inner sum of (30) disappear in the limit, so that the expression as a
whole reduces to

lim
ρ↑1

˜G1

(

1 − (1 − ρ)s

λ1

)

= lim
ρ↑1

E

[ ∞
∑

k=0

(−1)k(1 − ρ)kskλ−k
1 Gk

1

k!

]

= lim
ρ↑1

E

[

e
−(1−ρ) s

λ1
G1

]

=
(

μ1

μ1 + s

)α

,

where the last equality follows from Lemma 4.4. By combining the limits found above,
we can reduce (29) to

lim
ρ↑1

˜W1(s) = 1

r2,1s(1 − ρ̂1)E
[

Stot
]

(

1 − r1,1 − r2,1

(

μ1

μ1 + s

)α)

,

which is equivalent to (23). Equation (25) then follows by inversion of the LST. ��
Now that Theorem 4.2 is proved, Theorem 4.3 follows almost immediately by the
proof below.

Proof of Theorem 4.3 We make use of the distributional form of Little’s law (cf. [17]),
which states that

˜Li (z) = ˜Wi (λi (1 − z))˜Bi (λi (1 − z)).

As such, we have that

lim
ρ↑1

˜Li (z) = lim
ρ↑1

˜Li (z
1−ρ) = lim

ρ↑1
˜Wi (λi (1 − z1−ρ))˜Bi (λi (1 − z1−ρ))

= lim
ρ↑1

˜Wi

(

λi (1 − z1−ρ)

1 − ρ

)

. (31)

As limρ↑1
λi (1−z1−ρ)

1−ρ
= −λ̂i log(z), a combination of Theorem 4.2 and (31) now

implies that

lim
ρ↑1

˜Li (z) = 1

−λ̂i log(z)(1 − ρ̂i )E
[

Stot
]

(

1 −
(

μi

μi − λ̂i log(z)

)α)

.
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The latter expression is the PGF of the distribution mentioned in the theorem and this
concludes the proof. ��
Remark 4.3 The striking similarity between the heavy-traffic asymptotics of cyclic
polling systems and those of the class of systems that we consider may in part be
explained by the following. Despite the fact that Markovian polling systems generally
do not satisfy the branching property as introduced in Sect. 1, the subset of two-queue
exhaustive models does actually satisfy this property. More specifically, in the model
that we consider in this paper, the joint queue length process observed at Qi polling
epochs constitutes a multi-type branching process with immigration (see e.g., [3]). As
a consequence, this model fits in the framework considered in [28], and Lemma 4.4
follows alternatively from [28, Theorem 5] by taking the particle offspring functions
f (i)(z1, z2) and the immigration function g(z1, z2) as introduced in [28, Equations
(3) and (4)] equal to f (1)(z1, z2) = ˜K1,2(˜K2,1(z1)), f (2)(z1, z2) = ˜K2,1(z1) and

g(z1, z2) = a2(z1)
˜M2,1(z1,z2)

˜M2,1( f2(z1),˜K2,1(z1))
.

5 Conclusions and topics for further research

In this paper, we have obtained expressions for (the LSTs of) the waiting-time dis-
tributions of type-i customers and (the PGF of) the joint queue length distribution
for two-queue Markovian polling systems with exhaustive service. Although these
expressions are of independent interest and are suitable for implementation purposes,
we have also used these expressions as a basis to obtain the heavy-traffic behaviour
of the system. The established heavy-traffic asymptotics provide insights into the key
effects of the model parameters when the system is heavily loaded and turn out to be
very similar to the heavy-traffic asymptotics of cyclic polling models. This analysis
provides closed-form heavy-traffic approximations directly for the distribution func-
tions of the waiting times and the queue lengths.

The results obtained give rise to a variety of directions for further research. These
avenues of further research include the study of the model with more than two queues.
Although an equivalent of Theorem 3.3 seems hard to find for this case, functional
equations similar to (2) and (3) exist for a larger number of queues. A heavy-traffic
analysis may be found by carefully inspecting the behaviour of this functional equation
under heavy-traffic scalings.

Another assumption that one might wish to relax is the assumption of exhaustive
service at both queues. Although an analysis in the spirit of Sect. 3 also seems hard to
perform when steering away from the exhaustive assumption, preliminary investiga-
tions of the authors suggest that the heavy-traffic limits of the waiting times and queue
lengths still allow for compact and closed-form expressions. For instance, in the case
of two-queue Markovian models with gated service (where, during a visit period, the
server only serves the customers that were present at the start of it), the heavy-traffic
limits seem to coincide with the heavy-traffic limits of a cyclic polling model in a
similar way as established in this paper for the exhaustive case. The service discipline
of this cyclic model, however, amounts to the κ-gated discipline as introduced in [30],
but where κ is a geometric random variable rather than a constant. As this ‘geometric
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gated’ service discipline defies the branching property, heavy-traffic asymptotics for
the cyclic equivalent are not readily available in the literature, and thus require more
study.

A final suggestion for further research is the refinement of the closed-form approx-
imations as given in Remark 4.2. These approximations perform very well for heavily
loaded models due to their exact behaviour in the heavy-traffic limit, but their perfor-
mance degrades when the load offered to the system is only moderate. To this end,
one may consider to construct approximations by interpolating between the found
heavy-traffic asymptotics and light-traffic behaviour based on the actual offered load
in the spirit of [6,14].
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Appendix 1: Proof of Lemma 3.1

Proof We first focus on the value of
∣

∣

∣1 − f (∞)
1 (z2)

∣

∣

∣ = lim j→∞
∣

∣

∣1 − f ( j)
1 (z2)

∣

∣

∣. For

arbitrary j > 0, we have for any z2 in the unit circle that

∣

∣

∣1 − f ( j)
1 (z2)

∣

∣

∣ =
∣

∣

∣1 − f1( f j−1
1 (z2))

∣

∣

∣

=
∣

∣

∣

∣

∣

∣

∞
∫

t=0

(1 − e−λ1(1−˜K1,2( f ( j−1)
1 (z2)))t )dP(P2 < t)

∣

∣

∣

∣

∣

∣

≤
∞

∫

t=0

∣

∣

∣1 − e−λ1(1−˜K1,2( f ( j−1)
1 (z2)))t

∣

∣

∣ dP(P2 < t),

where the inequality constitutes the triangle inequality. Note that
∣

∣1 − e−x
∣

∣ ≤ |x | for
any x ∈ {z ∈ C : �(z) > 0}, so that

∣

∣

∣1 − f ( j)
1 (z2)

∣

∣

∣ ≤
∞

∫

t=0

λ1t
∣

∣

∣1 − ˜K1,2( f ( j−1)
1 (z2))

∣

∣

∣ dP(P2 < t)

= λ1E [P2]
∣

∣

∣1 − ˜K1,2( f ( j−1)
1 (z2))

∣

∣

∣

≤ λ1E [P2]

∣

∣

∣

∣

∣

∣

∞
∫

t=0

(1 − e−λ2(1− f ( j−1)
1 (z2))t )dP(P1 < t)

∣

∣

∣

∣

∣

∣

≤ λ1E [P2] λ2E [P1]
∣

∣

∣1 − f ( j−1)
1 (z2)

∣

∣

∣ . (32)
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Iteration of (32) leads to

∣

∣

∣1 − f ( j)
1 (z2)

∣

∣

∣ ≤ (λ1E [P2] λ2E [P1]) j |1 − z2| . (33)

By (1) we have that E[Pi ] = E[Bi ](1 − ρi )
−1, so that

λ1E [P2] λ2E [P1] = ρ1

1 − ρ2

ρ2

1 − ρ1
< 1. (34)

The inequality follows since the queues are assumed to be stable, i.e., 0 ≤ ρ < 1.
Therefore, ρ1 = ρ − ρ2 < 1 − ρ2, and similarly ρ2 < 1 − ρ1. A combination of (32)
and (34) now leads to

0 ≤ lim
j→∞

∣

∣

∣1 − f ( j)
1 (z2)

∣

∣

∣ ≤ lim
j→∞ (λ1E [P2] λ2E [P1]) j |1 − z2| = 0.

Since lim j→∞
∣

∣

∣1 − f ( j)
1 (z2)

∣

∣

∣ = 0, we must have that f (∞)
1 (z2) = lim j→∞ f ( j)

1 (z2)

= 1.
By similar arguments, it can be shown that f (∞)

2 (z1) = 1 for any z1 in the unit
circle. Finally, it is evident that ˜K1,2(1) = ˜K2,1(1) = ˜F1(1, 1) = ˜F2(1, 1) = 1. The
lemma now follows. ��

Appendix 2: Proof of Lemma 3.2

Proof We initially focus on the product
∏∞

j=0 a1( f ( j)
1 (z2)). By the theory of infinite

products (see e.g., [26, Chapter 1]), we have that
∏∞

j=0 a1( f ( j)
1 (z2)) converges iff

∑∞
j=0(1 − a1( f ( j)

1 (z2))) converges. To establish the latter, it is enough to prove that
∑∞

j=0

∣

∣

∣1 − a1( f ( j)
1 (z2))

∣

∣

∣ converges. We observe that

∣

∣

∣1 − a1( f ( j)
1 (z2))

∣

∣

∣

=
∣

∣

∣

∣

∣

1 − r2,1 ˜M2,1(˜K1,2( f ( j)
1 (z2)), f ( j)

1 (z2))

1 − r1,1 ˜M1,1(˜K1,2( f ( j)
1 (z2)), f ( j)

1 (z2))

r1,2 ˜M1,2(˜K1,2( f ( j)
1 (z2)), f ( j)

1 (z2))

1 − r2,2 ˜M2,2(˜K1,2( f ( j)
1 (z2)), f ( j)

1 (z2))

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∑2
i=1 A1,i ( f ( j)

1 (z2))(1 − ˜Mi,1(˜K1,2( f ( j)
1 (z2)), f ( j)

1 (z2)))

D(z2)

+
∑2

i=1 A2,i ( f ( j)
1 (z2))(1 − ˜Mi,2(˜K1,2( f ( j)

1 (z2)), f ( j)
1 (z2)))

D(z2)

∣

∣

∣

∣

∣

, (35)
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where

A1,1(z2) = r1,1(1 − r2,2),

A1,2(z2) = (1 − r1,1)(1 − r2,2),

A2,1(z2) = (1 − r1,1)(1 − r2,2) ˜M1,2(˜K1,2(z2), z2),

A2,2(z2) = r2,2(1 − r1,1 ˜M1,1(˜K1,2(z2), z2)) and

D(z2) = (1 − r1,1 ˜M1,1(˜K1,2( f ( j)
1 (z2)), f ( j)

1 (z2)))

×(1 − r2,2 ˜M2,2(˜K1,2( f ( j)
1 (z2)), f ( j)

1 (z2))).

Using the triangle inequality and similar arguments as those in the proof of Lemma 3.1,
we note that for 1 ≤ i, k ≤ 2 and j > 0,

|1− ˜Mi,k(˜K1,2( f ( j)
1 (z2)), f ( j)

1 (z2))

∣

∣

∣

≤
∞

∫

t=0

∣

∣

∣1 − e−(λ1(1−˜K1,2( f ( j)
1 (z2)))+λ2(1− f ( j)

1 (z2)))t
∣

∣

∣ dP(Si,k < t)

≤ E
[

Si,k
]

(

λ1

∣

∣

∣1 − ˜K1,2( f ( j)
1 (z2))

∣

∣

∣ + λ2

∣

∣

∣1 − f ( j)
1 (z2)

∣

∣

∣

)

≤ E
[

Si,k
]

λ2(λ1E [P1] + 1)

∣

∣

∣1 − f ( j)
1 (z2)

∣

∣

∣ .

Moreover, it is trivially seen that
∣

∣Ai,k(z2)
∣

∣ ≤ 1 for 1 ≤ i, k ≤ 2 and any z2 in
the unit circle. Furthermore, since

∣

∣ ˜Mi,k(˜K1,2(z2), z2)
∣

∣ ≤ 1, we have that |D(z2)| ≥
(1 − r1,1)(1 − r2,2). Therefore, a combination of (33) and (35) with the triangle
inequality leads to

∣

∣

∣1 − a1( f ( j)
1 (z2))

∣

∣

∣ ≤ E
[

S1,1
] + E

[

S1,2
] + E

[

S2,1
] + E

[

S2,2
]

(1 − r1,1)(1 − r2,2)

× λ2(λ1E [P1] + 1) (λ1E [P2] λ2E [P1]) j |1 − z2|

This result obviously shows, in combination with (34), that
∑∞

j=0

∣

∣

∣1 − a1( f ( j)
1 (z2))

∣

∣

∣ is

bounded from above by a converging geometric sum. As such,
∑∞

j=0

∣

∣

∣1 − a1( f ( j)
1 (z2))

∣

∣

∣

converges, so that
∏∞

j=0 a1( f ( j)
1 (z2)) converges. The convergence of the product

∏∞
j=0 a2( f ( j)

2 (z1)) can be established similarly. ��
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