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We study the expected delay in cyclic polling models with general ‘branching-type’
service disciplines. For this class of models, which contains models with exhaustive and
gated service as special cases, we obtain closed-form expressions for the expected delay
under standard heavy-traffic scalings. We identify a single parameter associated with the
service discipline at each queue, which we call the ‘exhaustiveness’. We show that the
scaled expected delay figures depend on the service policies at the queues only through the
exhaustiveness of each of the service disciplines. This implies that the influence of different
service disciplines, but with the same exhaustiveness, on the expected delays at the queues
becomes the same when the system reaches saturation. This observation leads to a new
classification of the service disciplines. In addition, we show monotonicity of the scaled
expected delays with respect to the exhaustiveness of the service disciplines. This induces a
complete ordering in terms of efficiency of the service disciplines. The results also lead to
new rules for optimization of the system performance with respect to the service disciplines
at the queues. Further, the exact asymptotic results suggest simple expected waiting-time
approximations for polling models in heavy traffic. Numerical experiments show that the
accuracy of the approximations is excellent for practical heavy-traffic scenarios.

Keywords: polling systems, heavy traffic, expected delay, exhaustiveness, monotonicity,
service disciplines, classification

1. Introduction

The basic polling system consists of a number of queues and a single server
that visits the queues in cyclic order to render service to the customers waiting at the
queues. Polling models find many applications in computer-communication systems,
and are also widely applicable in the areas of maintenance, manufacturing and pro-
duction. During the last three decades, the analysis of polling models has received
much attention in the literature. The reader is referred to [15] for an overview of the
applicability of polling models, and to [25] for a review of the state-of-the-art in the
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analysis of polling models. Some variations of polling models do not allow for an
exact detailed analysis, and the others usually require the use of numerical techniques
to determine performance measures of interest.

The ultimate goal of performance modeling and analysis is to obtain the ‘best’
possible system performance. The proper operation of the system is particularly critical
when the system is heavily loaded. However, the efficiency of each of the numerical
algorithms degrades significantly for heavily loaded, highly asymmetrical systems with
a large number of queues. Moreover, numerical techniques can only contribute to the
understanding of the behavior of the system to a limited extent. Exact closed-form
expressions provide much more insight into the dependence of the performance mea-
sures with respect to the system parameters. These observations raise the importance
of an exact asymptotic analysis of the performance of polling models in heavy traffic.

We will show that a general class of polling models allows for an exact analysis
under heavy traffic assumptions. The results generalize those obtained in [20] for
the special case of exhaustive and gated service at each of the queues. The analysis,
however, requires several substantial extensions of the analysis in [20]. Moreover, the
obtained results are much more general and provide new insights into the behavior of
polling systems in heavy traffic.

The literature on polling models reveals a striking difference in the complexity
between different polling models. Recently, this distinction in complexity has been
illuminated by Resing [23], who showed that for a class of polling models the joint
queue-length process embedded at polling instants at a fixed queue constitutes a multi-
type branching process (MTBP) with immigration. The theory of MTBPs leads to
expressions for the generating function of the joint queue-length process at polling in-
stants. For polling models satisfying an MTBP-structure several numerical algorithms
have been proposed to determine the moments of the delay at the queues by solv-
ing sets of linear equations (cf., e.g., [24] for references). Recently, the efficiency of
the numerical techniques has been considerably improved by the so-called descendant
set approach (DSA). The DSA is an iterative technique which explores the MTBP-
structure of the model by making use of the concept of so-called descendant sets
(cf. [13]). Choudhury and Whitt [7] use numerical transform-inversion to extend the
DSA for the determination of tail probabilities of the waiting times. The key element
in the identification of the class of polling models in [23] is that the service policies
at each of the queues should satisfy a certain ‘branching property’. This property is
satisfied by the classical exhaustive and gated service policies, but also by more flex-
ible fractional service disciplines like binomial-gated [18], fractional-exhaustive [17],
binomial-exhaustive [6] and Bernoulli-type [23]. Polling models with service disci-
plines that do not have a branching structure (e.g., limited-type service disciplines), are
usually not exactly analyzable and generally require much more computational effort
to obtain performance measures such as moments of the delay at each of the queues
(cf. [2,14]).

Although the number of papers on polling models is impressive, relatively few
papers have been devoted to the exact analysis of polling models in heavy traffic. An



R.D. van der Mei, H. Levy / Polling systems in heavy traffic 229

exception is made by Coffman et al. [8]. For a two-queue model with exhaustive service
at both queues and with zero switch-over times they show that, under standard heavy-
traffic assumptions and scalings, the total unfinished work converges to a reflected
Brownian motion (RBM), whereas the workloads of individual queues change at a
rate that becomes infinite in the limit. Based on a partial conjecture, they prove that
similar properties hold for systems with more than two queues. Moreover, in [9] they
show that for non-zero switch-over times the scaled process can be described by a
Bessel process. Based on these observations, exact expressions can be derived for
the main performance measures of interest. Assuming that the observations in [8,9]
also hold for non-exhaustive policies, Reiman and Wein [22] study the problem of
determining optimal dynamic scheduling problems for two-queue models with either
setup times or switch-over times under heavy-traffic assumptions, by approximating the
dynamic scheduling problems by diffusion control problems. Markowitz [19] extends
the results in [22] to the multi-class case.

We consider an asymmetrical polling model with general service disciplines that
satisfy the branching property [23]. We study the scaled expected delay at each of
the queues in heavy-traffic. All the queues become instable when the system load
(denoted by ρ) approaches 1 (cf. [11]). More precisely, the expected delay (considered
as function of ρ) at each of the queues possesses a first-order pole at ρ = 1. Therefore,
the main performance measure of interest will be the scaled expected delay, i.e., the
limit of (1−ρ) times the expected delay when ρ tends to 1. The scaled expected delay
indicates the rate at which the expected delay tends to infinity when ρ tends to 1.

We derive closed-form expressions for the scaled expected delay at each of the
queues. A key role in the derivation is played by a new view on the concept of
descendant sets [20]. Based on the obtained expressions, we identify a single parameter
associated with the service discipline at each queue, referred to as the exhaustiveness of
the service policy at that queue. We show that the scaled expected delay at each of the
queues depends on the service disciplines at the queues only through the exhaustiveness
of the service disciplines at each of the queues. In other words, we show that the
influence of different service policies, but with the same exhaustiveness, becomes the
same when the system reaches saturation. This observation leads to a new classification
of the service disciplines. Further, we derive monotonicity of the scaled expected
delays: if queue i is served more exhaustively, then the scaled expected delay at
queue i decreases, whereas the scaled expected delays at all other queues increase.
The obtained monotonicity leads to a complete ordering in terms of efficiency of the
general class of service disciplines under consideration. We also obtain new results
on optimization of the system performance. It is shown that, in order to minimize
an arbitrary weighted sum of the (scaled) expected waiting times with respect to the
service disciplines at the queues, all queues with the highest weight/load ratio should
be served exhaustively. In addition, the obtained expressions for the scaled expected
delay suggest very simple approximations for the expected waiting times in stable
systems. Numerical results are presented to show that these approximations are very
accurate for practical heavy-traffic scenarios, for loads typically exceeding 80%.
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The remainder of the paper is organized as follows. In section 2 the model is
described in detail. In section 3 we review the principles of the DSA and discuss some
preliminary results. In section 4 these results are used to derive closed-form expressions
for the scaled expected waiting times. In section 5 we discuss the implications of the
expressions obtained. In section 6 numerical examples are presented to illustrate the
results. In section 7 we propose and test simple and fast-to-evaluate approximations
for the expected delays at the queues in stable systems. Finally, in section 8 we address
a number of topics for further research.

2. Model description and the basic result

We consider a system consisting of N infinite-buffer queues Q1, . . . ,QN and
a single server. Customers arrive at Qi according to a Poisson arrival process with
rate λi, and are referred to as type-i customers. The total arrival rate is denoted by
Λ =

∑N
i=1 λi. At each of the queues the customers are served on a first-come-first-

served basis. The service time of a type-i customer is a random variable Bi, with
Laplace–Stieltjes transform (LST) βi(·) and finite first and second moments bi and
b(2)
i . Denote b = (b1, . . . , bN ). The first two moments of an arbitrary service time are

denoted by

β1 =
N∑
i=1

λibi
Λ

and β2 =
N∑
i=1

λib
(2)
i

Λ
,

respectively. The load offered to Qi is ρi = λibi, and the total offered load is equal
to ρ =

∑N
i=1 ρi.

After completing service at Qi the server proceeds to Qi+1, typically incurring
a switch-over period whose duration is an independent random variable Ri. The first
two moments of Ri are finite and are denoted by ri and r(2)

i . Denote the first moment
of the total switch-over time per cycle of the server along the queues by r =

∑N
i=1 ri,

and the second moment by

r(2) =
N∑
i=1

r(2)
i +

N∑
i,j=1

∑
i6=j

rirj.

It is assumed throughout that r > 0.
The moments at which the server arrives at Qi are referred to as the polling

instants at Qi. The periods during which the server is working at Qi are called service
periods at Qi. The moments at which the server departs from Qi are referred to as
departure instants from Qi.

The service disciplines at the queues are assumed to satisfy the following property
(cf. [10,23]):

Branching property. If the server arrives at Qi to find ki customers present there, then
during the course of the server’s visit, each of these ki customers will be effectively



R.D. van der Mei, H. Levy / Polling systems in heavy traffic 231

replaced in an i.i.d. manner by a random population having probability generating
function (pgf) hi(s1, . . . , sN ).

In the general context of [23], the pgf hi(s1, . . . , sN ) may be any N -dimensional
pgf. For ease of the interpretation, we will only consider service disciplines which are
non-idling, i.e., the server is not allowed to idle (rest) while visiting a queue. The visit
period at Qi starting with ki customers Cj (j = 1, . . . , ki) present at Qi is considered
to consist of ki i.i.d. sub-busy periods, each characterized by joint pgf-LST

ψi(u, v) = E
[
e−uTivLi

]
, (1)

where Ti is the length of the sub-busy period and where Li is the so-called sub-busy
period residue. To define the latter, consider a sub-busy period at Qi initiated by a
type-i customer Cj (j = 1, . . . , ki). If Cj is served during the current service period, Li
is the number of type-i children of Cj residing in Qi at the end of the sub-busy period
(for a precise definition of the notion of ‘children’, see section 3.1); otherwise, Li = 1
(note that in this case the length of the sub-busy period equals 0). The assumption of
non-idling service implies the following relation between hi(·) and ψi(·, ·) (cf. [23]):

hi(s1, . . . , sN ) = ψi

(∑
j 6=i

λj(1− sj), si
)

(i = 1, . . . ,N ). (2)

For instance, in the case of gated service,

hi(s1, . . . , sN ) = βi

(
N∑
i=1

λj(1− sj)
)
.

In the case of exhaustive service,

hi(s1, . . . , sN ) = θi

(∑
j 6=i

λj(1− sj)
)

,

where θi(·) stands for the LST of the duration of a busy period in an M/G/1 system
with arrival rate λi and service-time LST βi(·). Under binomial-gated service [18],
where each of the type-i customers present at a polling instant at Qi is served with
probability pi (0 < pi 6 1), we have

hi(s1, . . . , sN ) = piβi

(
N∑
i=1

λj(1− sj)
)

+ (1− pi)si.

In the case of binomial-exhaustive service [6], where each of the type-i customers
present at a polling instant at Qi generates an M/G/1 busy period with probability qi
(0 < qi 6 1), we have

hi(s1, . . . , sN ) = qiθi

(∑
j 6=i

λj(1− sj)
)

+ (1− qi)si.
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Define the exhaustiveness of the service discipline at Qi by

fi := 1−E[Li] (i = 1, . . . ,N ). (3)

For the cases of gated, exhaustive, binomial-gated and binomial-exhaustive service,
the exhaustiveness is given by 1− ρi, 1, pi(1− ρi) and qi, respectively.

Based on the assumption that the service disciplines are non-idling, the following
relation between the expected values of Ti and Li holds:

E[Ti] =
(
1−E[Li]

) bi
1− ρi

(i = 1, . . . ,N ). (4)

To see this, consider a sub-busy period at Qi initiated by a type-i customer Cj . Then
it is readily verified that E[Li] equals 1, plus the expected number of type-i customers
arriving at Qi during the sub-busy period, minus the expected number of type-i cus-
tomers served during the sub-busy period. Evidently, the mean values of the latter two
quantities are equal to λiE[Ti] and E[Ti]/bi, respectively. These observations yield
E[Li] = 1 + λiE[Ti]−E[Ti]/bi, which directly implies the validity of (4).

All interarrival times, service times and switch-over times are assumed to be
mutually independent and independent of the state of the system.

A necessary and sufficient condition for the stability of the system is ρ < 1 (cf.
[11]). In the sequel, it is assumed that this condition is satisfied and that the system
is in steady state, unless indicated otherwise.

Denote by Wk the delay incurred by an arbitrary customer at Qk. Our main
interest is in the behavior of E[Wk], the expected delay at Qk, in heavy traffic.
Throughout, E[Wk] will be considered as function of ρ. To be specific, we assume
that the arrival rates are parametrized as λi = aiρ, where the relative arrival rates
ai (= λi/ρ) remain fixed. It is known that when ρ ↑ 1, all queues become instable
and hence, E[Wk] tends to infinity for all k (cf. [11]). More precisely, E[Wk] has a
first-order pole at ρ = 1. Therefore, we may write

E[Wk] =
ωk

1− ρ + o
(
(1− ρ)−1) (k = 1, . . . ,N ), (5)

where o((1 − ρ)−1) stands for a function of ρ which becomes negligible compared
to (1 − ρ)−1 when ρ ↑ 1. Based on (5), the analysis will be oriented towards the
determination of

ωk = lim
ρ↑1

(1− ρ) E[Wk] (k = 1, . . . ,N ), (6)

referred to as the scaled expected delay at Qk. In words, ωk indicates the rate at which
E[Wk] tends to infinity as ρ ↑ 1.

The basic result of the paper is the following closed-form expression for the
scaled expected delay at each of the queues.
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Theorem 1. For i = 1, . . . ,N ,

ωi =
(1− ρi)((2/fi)− 1)∑N

j=1 ρj(1− ρj)((2/fj )− 1)

β2

2β1
+

1
2
r(1− ρi)

(
2
fi
− 1

)
, (7)

where the right-hand side is evaluated at ρ = 1.

Sections 3 and 4 will be focused on the derivation of theorem 1.
Finally, we introduce some notation. All vectors are N -dimensional, and all

matrices are N by N , unless indicated otherwise. A vector v consists of components
(v1, . . . , vN ). Define

|v| :=
N∑
i=1

vi.

The vector ei stands for the ith unit vector, i = 1, . . . ,N . Each entry of the vector
1 equals 1. Let the norm of a matrix A = (ai,j) be defined as ‖A‖ := maxi,j |ai,j|.
Indices corresponding to queue numbers are cyclic: index i should be read as ((i −
1) mod N ) + 1 notation. Denote by IE the indicator function on the event E.

3. The Descendant Set Approach (DSA)

Let Xk be the number of type-k customers present in the system at a polling
instant at Qi, when the system is in equilibrium.

Then the expected waiting time at Qk can be expressed in terms of the first two
moments of Xk as follows (cf. [3]): for k = 1, . . . ,N ,

E[Wk] =
λkb

(2)
k

2(1 − ρk)
− E[Lk(Lk − 1)]

2λk(1−E[Lk])

+
Var[Xk] + (E[Xk])2 −E[Xk]

2λkE[Xk]

(
1 +E[Lk]

)
. (8)

The quantities E[Xk] can be derived in closed form. To this end, it is readily verified
that

E[Xk] = λkr + λk
∑
j 6=k

E[Xj ]E[Tj] +E[Xk]E[Lk].

This implies

E[Ti]
ρi

E[Xi] =
E[Tj]
ρj

E[Xj ] for all i, j = 1, . . . ,N ,

so that E[Xk] can be expressed in closed form as follows: for k = 1, . . . ,N ,

E[Xk] =
r

1− ρ
ρk

E[Tk]
. (9)
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However, the variables Var[Xk] can not generally be obtained in closed form. In
the literature, there are various techniques available to determine Var[Xk]. We will
focus on the recently developed Descendant Set Approach (DSA). The DSA provides
a means to compute the quantities Var[Xk] very efficiently, and moreover, will appear
to be particularly useful for obtaining ωk, our main performance measures of interest.

3.1. Terminology

All customers of a polling system can be classified into two classes: (1) orig-
inators, and (2) non-originators. An originator is a customer which arrives at the
system during a switch-over period. A non-originator is a customer who arrives at
the system during the service of another customer. For a customer C, let the chil-
dren set be the set of customers arriving during the service of C; the descendant set
of C is recursively defined to consist of C, its children and the descendants of its
children.

The DSA is focused on the determination of the moments of the delay for a fixed
Qk. To this end, the DSA concentrates on the determination of Xk(P ), defined as the
number of customers at Qk present at an arbitrary fixed polling instant P at Qk. P is
referred to as the reference point at Qk. The main idea is the observation that each of
these Xk(P ) customers belongs to the descendant set of exactly one originator.

Therefore, the DSA concentrates on an arbitrary tagged customer T that arrived
at Qi in the past and on calculating the number of type-k descendants it has at P .
Summing up these numbers over all past originators yields Xk(P ) and hence Xk,
because P is chosen arbitrarily.

The DSA considers the Markov process embedded at the polling instants of
the system. To this end, we number the successive polling instants as follows (see
figure 1). Let PN ,0 be an arbitrary polling instant at QN , and for i = N − 1, . . . , 1, let
Pi,0 be recursively defined as the first polling instant at Qi prior to Pi+1,0. In addition,
for c = 1, 2, . . . , we define Pi,c to be the last polling instant at Qi prior to Pi,c−1,
i = 1, . . . ,N . We define an (i, c)-customer to be a type-i customer present at Qi at
Pi,c. Moreover, for a tagged (i, c)-customer T , we define A(i,c),k to be the number of
type-k descendants it has at Pk,0. In this way, A(i,c),k can be viewed as the contribution

Figure 1. Conribution of an (i, c)-customer to Xk(Pk,0).
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of T to Xk(Pk,0). Denote by A(i,c),k(z) the probability generating function (pgf) of
A(i,c),k, and define the first two (factorial) moments of A(i,c),k by

α(i,c),k = E[A(i,c),k] and α(2)
(i,c),k = E

[
A(i,c),k(A(i,c),k − 1)

]
.

The variables α(i,c),k and α(2)
(i,c),k play a key role in DSA. The mean and the variance of

Xk can be expressed in terms of the variables α(i,c),k and α(2)
(i,c),k as follows (cf. [13]):

for k = 1, . . . ,N ,

E[Xk] =
N∑
i=1

ri

∞∑
c=0

[
N∑

j=i+1

λjα(j,c),k +
i∑

j=1

λjα(j,c−1),k

]
, (10)

and

Var[Xk] =
N∑
i=1

(
r(2)
i − r2

i

) ∞∑
c=0

[
N∑

j=i+1

λjα(j,c),k +
i∑

j=1

λjα(j,c−1),k

]2

+
N∑
i=1

ri

∞∑
c=0

[
N∑

j=i+1

λjα
(2)
(j,c),k +

i∑
j=1

λjα
(2)
(j,c−1),k

]
. (11)

Based on relations (10) and (11), E[Wk] can be expressed in terms of the variables
α(i,c),k and α(2)

(i,c),k. The remainder of section 3 we discuss how the variables α(i,c),k

and α(2)
(i,c),k can be computed recursively.

3.2. Recursion via immediate children of predecessor

The DSA is based on recursive relations between the variables α(i,c),k and α(2)
(i,c),k

which we review next.
To this end, fix k and consider a tagged (i, c)-customer, present at Qi at Pi,c,

denoted by Ti(Pi,c). We want to find the contribution of Ti(Pi,c) to Xk(Pk,0). We
observe that this contribution is equal to the total contribution to Xk(Pk,0) of all
immediate children of Ti(Pi,c), i.e., the customers which arrive during the service
of Ti(Pi,c). To be precise, if Ti(Pi,c) has not yet been served at Pk,0, then Ti(Pi,c)
contributes 1 to Xk(Pk,0) if i = k and 0 if i 6= k. The DSA is based on computing
α(i,c),k and α(2)

(i,c),k from the contribution of the children of Ti(Pi,c). The type-j (j 6= i)
children of Ti(Pi,c) are exactly the customers which arrived at Qj during the sub-busy
period generated by Ti(Pi,c); the type-i children of Ti(Pi,c) are the residue of the
sub-busy period initiated by Ti(Pi,c). It is easily verified that we obtain the following
expression for Ai,c(z): for i, k = 1, . . . ,N , c = 0, 1, . . . ,
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A(i,c),k(z) =ψi

(
N∑

j=i+1

λj
(
1−A(j,c),k(z)

)
+

i−1∑
j=1

λj
(
1−A(j,c−1),k(z)

)
,A(i,c−1),k(z)

)
. (12)

Differentiating once with respect to z and substituting z = 1 leads to the following
equation: for i, k = 1, . . . ,N , c = 0, 1, . . . ,

α(i,c),k = E[Ti]

[
N∑

j=i+1

λjα(j,c),k +
i−1∑
j=1

λjα(j,c−1),k

]
+E[Li]α(i,c−1),k, (13)

and differentiating two times with respect to z and substituting z = 1 yields: for
i, k = 1, . . . ,N , c = 0, 1, . . . ,

α(2)
(i,c),k = E[Ti]

[
N∑

j=i+1

λjα
(2)
(j,c),k +

i−1∑
j=1

λjα
(2)
(j,c−1),k

]
+E[Li]α

(2)
(i,c−1),k + ξ(i,c),k, (14)

where

ξ(i,c),k :=E[T 2
i ]

[
N∑

j=i+1

λjα(j,c),k +
i−1∑
j=1

λjα(j,c−1),k

]2

+E
[
Li(Li − 1)

]
α2

(i,c−1),k

+ 2E[LiTi]α(i,c),k

[
N∑

j=i+1

λjα(j,c),k +
i−1∑
j=1

λjα(j,c−1),k

]
. (15)

The initial conditions are as follows (cf. [13]): A(k,0),k(z) := z; A(i,0),k(z) := 1 (i =
k + 1, . . . ,N ); A(i,−1),k(z) := 1 (i = 1, . . . , k − 1). Differentiating once and twice
and substituting z = 1 gives the initial conditions for the variables α(i,c),k and α(2)

(i,c),k,
respectively: for k = 1, . . . ,N ,

α(k,0),k := 1; α(i,0),k := 0 (i = k + 1, . . . ,N );

α(i,−1),k := 0 (i = 1, . . . , k − 1),

and

α(2)
(k,0),k := 1; α(2)

(i,0),k := 0 (i = k + 1, . . . ,N );

α(2)
(i,−1),k := 0 (i = 1, . . . , k − 1).

Starting with these initial values, all coefficients α(i,c),k and α(2)
(i,c),k can be recursively

determined according to (13) and (14), respectively.1 In this way, for fixed k the

1 To be precise, relations (13) and (14) are only defined for c = 0, 1, . . . , for i = 1, . . . , k − 1, and for
c = 1, 2, . . . , for i = k, . . . ,N .
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variables α(i,c),k (and α(2)
(i,c),k) can be computed in the order α(i,0),k (α(2)

(i,0),k), for i =

k− 1, k− 2, . . . , 1, followed by α(i,c),k (α(2)
(i,c),k), i = N ,N − 1, . . . , 1, for c = 1, 2, . . . .

3.3. Recursion via immediate parents of descendants

The recursive equations in (13)–(14) relate the variables α(i,c),k and α(2)
(i,c),k for

a fixed k, thus leading to the derivation of the expected delay in a single queue.
However, for our analysis we need the interaction between the queues and thus it
requires relations between the variables α(i,c),k (α(2)

(i,c),k) and α(i,c),l (α(2)
(i,c),l) for l 6= k.

The derivation of such relations requires to conduct the recursion in a different way:
rather than carrying it out via the children of the predecessor (see figure 2), we carry
it out via the parents of the descendants (see figure 3).

We consider a tagged (i, c)-customer Ti(Pi,c), a type-i customer present at Qi at
Pi,c, and try to find the contribution of Ti(Pi,c) to Xk(Pk,0). To this end, we consider
the most recent polling instants of Qj (j = 1, . . . ,N ), prior to Pk,0, denoted by P ∗j (see
figure 3), and derive the contribution of Ti(Pi,c) to Xk(P0,k) by conditioning on the
contribution of Ti(Pi,c) to Xj(P ∗j ). A crucial observation is that the distribution of the

Figure 2. Recursion via immediate children of predecessor.

Figure 3. Recursion via immediate parents of descendants.
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contribution of Ti(Pi,c) to Xj(P ∗j ) is identical to that of A(i,c),j for j = 1, . . . , k−1, and
to A(i,c−1),j for j = k, . . . ,N . Moreover, we observe that each descendant of Ti(Pi,c)
at Pk,0 has arrived during the service period generated by exactly one customer present
at P ∗j (j = 1, . . . ,N ), referred to as the immediate parent. The following result follows
then directly from the fact that the expected number of type-k customers at Pk,0 whose
immediate parent is of type-j, is given by λkE[Tj] if j 6= k, and by E[Lk] if j = k
(cf. [20]): for i, k = 1, . . . ,N , c = 0, 1, . . . ,

α(i,c),k = λk

[
N∑

j=k+1

E[Tj ]α(i,c),j +
k−1∑
j=1

E[Tj ]α(i,c−1),j

]
+E[Lk]α(i,c−1),k. (16)

The initial conditions are (see also section 3.2): α(k,0),k := 1; α(i,0),k := 0 (k =
1, . . . , i); α(i,−1),k := 0 (k = i + 1, . . . ,N ).2 Using these initial conditions, for
fixed i, the variables α(i,c),k can be computed recursively in the order α(i,0),k for
k = i+ 1, . . . ,N , followed by α(i,c),k (α(2)

(i,c),k) for c = 1, 2, . . . , for k = 1, . . . ,N . We
emphasize that for computational purposes the recursive scheme discussed in section
3.2 is preferred to the scheme given here, because the former allows for the computa-
tion of individual expected waiting times (i.e., for specific queues). However, relation
(16) will play a key role in the derivation of theorem 1.

It will be useful to express relations (13), (14) and (16) in matrix notation. To
this end, define by α(·,c),k (α(2)

(·,c),k) to be the vector whose ith component equals α(i,c),k

(α(2)
(i,c),k), c = 0, 1, . . . . Moreover, let M̂i be the matrix whose (j, k)th element equals

I{j=k} for j 6= i, and whose (i, k)th element equals λkE[Ti] for k 6= i and E[Li] for
k = i. Define M := M̂1M̂2 · · · M̂N , and let ψk be the vector whose ith component is
α(i,0),k (i, k = 1, . . . ,N ). It will be convenient to write equations (13) in the following
form:

α(·,0),k = ψk; α(·,c),k = Mα(·,c−1),k = Mcψk
(k = 1, . . . ,N , c = 1, 2, . . .). (17)

To rewrite (14) in matrix notation, define ψ(2)
k to be the vector whose ith component

equals α(2)
(i,0),k (i, k = 1, . . . ,N ). This leads to the following set of equations:

α(2)
(·,0),k = ψ(2)

k ; α(2)
(·,c),k = Mα(2)

(·,c−1),k + χc,k = Mcψ(2)
k +

c−1∑
j=0

Mjχc−j,k

(k = 1, . . . ,N , c = 1, 2, . . .), (18)

2 To be precise, relations (16) are only defined for c = 0, 1, . . . , for k = i+1, . . . ,N , and for c = 1, 2, . . . ,
for k = 1, . . . , i.
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where

χc,k :=
N∑
j=1

ξ(j,c),kM̂1 · · · M̂j−1ej (k = 1, . . . ,N , c = 1, 2, . . .). (19)

Finally, to rewrite (16) in matrix notation, define by α(i,c),· the vector whose kth
component equals α(i,c),k (i, k = 1, . . . ,N , c = 0, 1, . . .). Moreover, let N̂k be the
matrix whose (i, j)th element equals I{i=j} for i 6= k, and whose (k, j)th element
equals λkE[Tj ] for j 6= k and E[Lk] for j = k, and let N = N̂N · · · N̂1. If we
define ψ̂i to be the vector whose kth component equals α(i,0),k (i, k = 1, . . . ,N ), then
equations (16) can be expressed as follows:

α(i,0),· = ψ̂i; α(i,c),· = Nα(i,c−1),· = Ncψ̂i (i = 1, . . . ,N , c = 1, 2, . . .). (20)

4. Analysis

In this section we use the concept of descendant sets to derive theorem 1. From
relations (8) and (9) it remains to find an expression for Var[Xk] under heavy-traffic
assumptions. Recall that Var[Xk] is related to the descendant set variables α(i,c),k and
α(2)

(i,c),k according to relation (11). Since Var[Xk] tends to infinity for ρ ↑ 1, the rate
of tendency to infinity of Var[Xk] is determined by the tail behavior of the sequences
{α(i,c),k, c = 0, 1, . . .} and {α(2)

(i,c),k, c = 0, 1, . . .}.
The derivation of theorem 1 consists of two parts. First, by using the concept of

descendant sets we obtain an expression for the ratios between the values of Var[Xk] for
ρ ↑ 1. Then, the expression for the scaled expected delay is obtained by substituting the
ratios into the so-called pseudo conservation law, i.e., a known closed-form expression
for a specific weighted sum of the expected waiting times.

The variables α(i,c),k are completely determined by the recursive schemes (17)
or (20). Both recursive schemes (which determine the same values of α(i,c),k, but
in a different order) constitute a set of first-order homogeneous difference equations.
From the theory of difference equations it is known that the recursive equations can be
solved explicitly if the eigenvalues and eigenvectors of M or N are known. However,
the eigenvalues and the eigenvectors are generally unknown for ρ < 1. Nevertheless,
to analyze the system behavior in heavy traffic we do not need to solve the eigenvalues
and eigenvectors explicitly for general ρ < 1 and then letting ρ ↑ 1. Instead, it will be
sufficient to obtain the eigenvectors of M and N at ρ = 1, which will be shown to be
rather simple.

The following lemma states that Mc and Nc can be decomposed into two parts,
one of which becomes dominant when c gets large.

Lemma 1 (decomposition). The matrix M has a unique, strictly positive eigen-
value γmax, with multiplicity 1, with associated right and left eigenvectors u and v. If
u and v are normalized such that uT1 = uTv = 1, then: for c = 0, 1, . . . ,
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Mc = γcmaxuvT + Rc, (21)

where ‖Rc‖ < Kγc for some K < ∞ and γ (0 < γ < γmax). Similarly, Nc can be
decomposed as follows: for c = 0, 1, . . . ,

Nc = γ̂cmaxûv̂T + R̂c, (22)

where ‖R̂c‖ < K̂γ̂c for some K̂ <∞ and γ̂ (0 < γ̂ < γ̂max).

Proof. The results follow from the Frobenius theorem for strictly positive matrices
(cf., e.g., [1]). We refer to [20] for more details. �

From (17) and (21) it follows that α(i,c),k can be rewritten as follows: for i, k =
1, . . . ,N , c = 0, 1, . . . ,

α(i,c),k = eT
i Mcψk = γcmaxuiv

Tψk + r(c)
i,k (23)

with r(c)
i,k < Kγc for some K < ∞ and γ (0 < γ < γmax). Alternatively, using (22)

we may write: for i, k = 1, . . . ,N , c = 0, 1, . . . ,

α(i,c),k = eT
kNcψ̂k = γ̂cmaxûkv̂Tψ̂i + r̂(c)

i,k, (24)

with r̂(c)
i,k < K̂γ̂c for some K̂ < ∞ and γ̂ (0 < γ̂ < γ̂max). Relations (23) and (24)

will be useful in the remainder of this section.
The eigenvalues γmax and γ̂max are referred to as the maximal eigenvalues of the

matrices M and N, respectively. The following lemma gives properties of the maximal
eigenvalues.

Lemma 2 (maximal eigenvalues).

(1) If ρ < 1 then γmax, γ̂max < 1.

(2) If ρ = 1 then γmax, γ̂max = 1.

(3) If ρ = 1 then u = |b|−1b.

(4) If ρ = 1 then û = |w|−1w, where wi := ρi/E[Ti] (i = 1, . . . ,N ).

(5) limρ↑1 γmax = limρ↑1 γ̂max = 1; limρ↑1 u = |b|−1b; limρ↑1 û = |w|−1w.

Proof. The validity of parts 1 and 2 for γmax is shown in [23]. The validity of parts
1 and 2 for γ̂max follows then directly from (23) and (24). To proof part 3, note that
for ρ = 1 we have

E[Ti]
N∑

j=1,j 6=i
λjbj +E[Li]bi = E[Ti](1− ρi) +E[Li]bi = bi
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(where the latter equality follows from (4)), which implies M̂ib = b (i = 1, . . . ,N )
and hence, Mb = b. Similarly, part 4 follows from the fact that for ρ = 1 we have

λk
∑
j 6=k

E[Tj ]wj +E[Lk]wk = λk(1− ρk) +
E[Lk]ρk
E[Tk]

= wk

(where the latter equality follows from (4)), so that N̂kw = w for all k = 1, . . . ,N ,
and hence, Nw = w. Part 5 follows from the continuity of the eigenvectors and
eigenvalues in the entries of M and N (cf. [12]) which, in turn, are continuous in ρ. �

Remark 4.1. Lemma 2 implies that the sequence {α(i,c),k, c = 0, 1, . . .} converges to 0
for ρ < 1 and converges to a constant for ρ = 1. Moreover, from (23) and (24) and
lemma 2 it follows that for i, j, k, l = 1, . . . ,N ,

lim
ρ↑1

lim
c→∞

α(i,c),k

α(j,c),l
=
bi
bj

ρk/E[Tk]
ρl/E[Tl]

, (25)

where the right-hand side is evaluated at ρ = 1. To give an intuitive interpretation for
(25), it is clear that for ρ = 1 the expected total number of type-k descendants of each
of the original customers on the long run is proportional to λk, regardless of the type of
the original customer and of the service disciplines at the queues. However, for ρ = 1,
during the service-period generated by a type-k customer which is present at a polling
instant at Qk, on the average E[Tk]/bk customers are served, while none of other
customers served the service period was present as the polling instant. Hence, on the
average a fraction bk/E[Tk] of the customers is actually present at a polling instant at
Qk. These observations indicate that α(i,c),k becomes proportional to λkbk/E[Tk] for
c→∞. To explain why α(i,c),k is also proportional to bi (in the limiting case ρ = 1) we
observe that each type-i customer has on the average λjbi type-j children, regardless
of the service discipline at Qi. To see this, note that it does not matter whether its
children at Qi are served during the same visit or not, because the numbers of type-k
descendants in the infinite future of each of these children tends to a constant.

Remark 4.2. From (4) one may verify that
∑∞

c=0 α(i,c),k possesses a first-order pole
at ρ = 1. Moreover, it is easy to verify by using (23) and (24) that: for i, j, k, l =
1, . . . ,N ,

lim
ρ↑1

∑∞
c=0 α(i,c),k∑∞
c=0 α(j,c),l

=
bi
bj

ρk/E[Tk]
ρl/E[Tl]

, (26)

where the right-hand side is evaluated at ρ = 1.

Lemma 3. For k, l = 1, . . . ,N ,

lim
ρ↑1

Var[Xk]
Var[Xl]

= lim
ρ↑1

∑N
i=1 ri

∑∞
c=0

[∑N
j=i+1 λjα

(2)
(j,c),k +

∑i
j=1 λjα

(2)
(j,c−1),k

]∑N
i=1 ri

∑∞
c=0

[∑N
j=i+1 λjα

(2)
(j,c),l +

∑i
j=1 λjα

(2)
(j,c−1),l

] . (27)
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Proof. First, we observe that Var[Xk] has a second-order pole at ρ = 1. This is
an immediate consequence of equations (8) and (9) and the fact that E[Wk] has
a first-order pole at ρ = 1. Substituting (23) into (10), it follows from (9) that∑∞

c=0[
∑N

j=i+1 λjα(j,c),k +
∑i

j=1 λjα(j,c−1),k] possesses a first-order pole at ρ = 1
for i, k = 1, . . . ,N . Using (23), this implies that the first summation in (11) also
possesses a first-order pole at ρ = 1. To this end, note that the term (1 − γmax)−1

corresponds to a first-order pole at ρ = 1, which implies that the term (1 − γ2
max)−1

(which would occur by substituting (23) into the first summation in (11)), which equals
(1− γmax)−1(1 + γmax)−1, also possesses a first-order pole at ρ = 1.

Hence, the second summation in (11) must possess a second-order pole at ρ = 1.
This motivates why the second summation dominates the first summation in (11) in
the limiting case ρ ↑ 1. �

Based on lemma 3, we focus on the limiting behavior of the sequence
{α(2)

(i,c),k, c = 0, 1, . . .}. To this end, note that it follows from (28) and (21) that
we may write: for i, k = 1, . . . ,N , c = 0, 1, . . . ,

α(2)
(i,c),k = γcmaxuiv

Tψ(2)
k + eT

i Rcψ(2)
k +

c−1∑
j=0

[
γjmaxuiv

Tχc−j,k + eT
i Rjχc−j,k

]
. (28)

Note that from lemma 2 and (28) it follows that the sequence {α(2)
(i,c),k, c = 0, 1, . . .}

tends to 0 for ρ < 1 and tends to a linearly increasing sequence for ρ = 1. Moreover,
one may verify that the series

∑∞
c=0 α

(2)
(i,c),k converges for ρ < 1, and diverges for

ρ = 1.

Lemma 4. For i, k, l = 1, . . . ,N ,

lim
ρ↑1

∑∞
c=0 α

(2)
(i,c),k∑∞

c=0 α
(2)
(i,c),l

= lim
ρ↑1

∑∞
c=0 vTχc,k∑∞
c=0 vTχc,l

= lim
ρ↑1

(
ûk
ûl

)2

=

(
ρk/E[Tk]
ρl/E[Tl]

)2

, (29)

where the right-hand side is evaluated at ρ = 1.

Proof. The first equality follows from (28) and using lemmas 1 and 2. The second
equality follows from definitions (19) and (15), and relation (24). The third equality
follows from lemma 2. �

Theorem 2 (ratios between variances). For k, l = 1, . . . ,N ,

lim
ρ↑1

Var[Xk]
Var[Xl]

=

(
ρk/E[Tk]
ρl/E[Tl]

)2

, (30)

where the right-hand side is evaluated at ρ = 1.

Proof. The result follows directly from equation (27) and lemma 4. �
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We are now ready to derive expressions for the ratios between the scaled expected
delays.

Theorem 3 (ratios between scaled expected delays). For k, l = 1, . . . ,N ,

ωk
ωl

=
(1− ρk)((2/fk)− 1)
(1− ρl)((2/fl)− 1)

, (31)

where the right-hand side is evaluated at ρ = 1.

Proof. The result is obtained by substituting (8) and (9) into (30) and some straight-
forward manipulations. �

From theorem 3, ωk is known up to a yet unknown scaling factor.
The latter can be obtained from the following expression (cf. [5]): for ρ < 1,

N∑
i=1

ρiE[Wi] =
ρ

1− ρ
β2

2β1
+ ρ

r(2)

2r
+

r

2(1 − ρ)

[
ρ2 −

N∑
i=1

ρ2
i

]
+

N∑
i=1

E[Mi], (32)

where Mi is the amount of work at Qi at a departure instant at Qi. Multiplying both
sides by (1− ρ) and letting ρ ↑ 1 yields the following relation between the ωk’s:

N∑
i=1

ρiωi =
β2

2β1
+
r

2

[
1−

N∑
i=1

ρ2
i

]
+ r

N∑
i=1

ρi(1− ρi)
1− fi
fi

=
β2

2β1
+
r

2

N∑
i=1

ρi(1− ρi)
(

2
fi
− 1

)
. (33)

To verify this, note that it follows from (9) and (3) that

E[Mi] = biE[Xi]E[Li] = rρi(1− ρi)(1− fi)/fi(1− ρ).

Combining (31) and (33) directly yields the basic result (theorem 1):

ωi =
(1− ρi)((2/fi)− 1)∑N

j=1 ρj(1− ρj)((2/fj )− 1)

β2

2β1
+

1
2
r(1−ρi)

(
2
fi
−1

)
, i = 1, . . . ,N. (34)

5. Discussion and implications of the results

Equation (34) forms a closed-form expression for the scaled expected delay in a
polling system with a cyclic server and arbitrary branching-type service policy. Several
properties of these systems can be concluded from this equation.
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5.1. Equivalence and classification of policies via exhaustiveness factor

The scaled expected delay at Qi depends on the service policy of all queues
only via their exhaustiveness factor fj , j = 1, . . . ,N . Thus, systems which differ
in their service policies but equal in their exhaustiveness factors will have identical
performance (in terms of scaled expected delay). This implies equivalence of the
service policies in the sense that one service policy can be used to imitate another policy
by a proper adaptation of policy parameters to match the exhaustiveness factors. For
example, in a system with binomial gated service [18] we have f bin−gate

i = pbin−gate
i (1−

ρi) and in a system with binomial exhaustive service [6] we have f bin−exh
i = pbin−exh

i .
Thus, the binomial exhaustive system can imitate the performance of the binomial
gated system by setting pbin−exh

i = pbin−gate
i (1− ρi).

For this reason one may classify and order various policies simply by their ex-
haustiveness factors. Two policies will be equivalent (in terms of their scaled delays)
if their exhaustiveness factors are identical, regardless of the specific service policies
implemented at the stations. This holds for systems with identical service policies in
all stations as well as systems with mixed services. The exhaustiveness factor can be
used as a single parameter to classify and compare policies (instead of conducting the
comparison by a full analysis of the policies).

5.2. Monotonicity of the performance in the exhaustiveness parameters

Differentiation of (34) shows the following properties: for i = 1, . . . ,N ,

(1) ωi monotonically decreases in fi,

(2) ωi monotonically increases in fj , j 6= i.

In other words, the greater the exhaustiveness of the service discipline at Qi, the lower
the delay experienced by its customers and the higher the delay experienced by the
customers of the other queues.

Note that despite being quite intuitive such monotonicity property has not been
proved (to the knowledge of the authors) in other settings of polling systems. For
similar monotonicity properties see: (1) Borst et al. [4], where a semi-conjectured
result is obtained regarding the optimal setting of the k-limits in a polling system
with limited-k service, and (2) Levy et al. [16], where path-wise monotonicity of the
total work in the exhaustiveness of the service policies is established. However, none
of those works established the monotonicity of the (expected) delay of an individual
queue in the parameter settings of any of the queues.

5.3. Sensitivity and insensitivity to station specific parameters

The scaled expected delay depends on the system parameters only through specific
system parameters and is insensitive to others. The following properties follow directly
from (34):
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1. ωk depends on the specific parameters of the stations only through their utilizations,
ρi = λibi (i = 1, . . . ,N ). It depends on the service time distributions at the queues
only through the first two moments of the service time of an arbitrary customer,
rather than on the (first two) moments of the individual service times.

2. ωk depends on the switch-over times only through the first moment of the total
switch-over time per cycle of the server along the queues.

3. ωk is independent of the service order of the stations.

Note that these observed insensitivities are generally not valid for general ρ < 1.
Apparently, these dependencies ‘die out’ when the system reaches saturation.

5.4. Optimization of operation

A reasonable performance measure which encapsulates the performance of the
system as a whole is the weighted scaled delay:

C =
N∑
i=1

ciωi, (35)

where ci are arbitrary strictly positive cost parameters. Consider the problem of min-
imizing (35) with respect to the service disciplines. The solution of the problem is
believed to be a good estimate for the optimal static assignment of service disciplines
to the queues in heavily-loaded systems. Theorem 1 implies that the problem is equiv-
alent to the problem of finding a vector (f∗1 , . . . , f∗N ) which minimizes (35). Note that
optimization with respect to service order is irrelevant due to insensitivity to service
order. Theorem 4 below gives a explicit partial solution to the optimization problem.

Theorem 4. If ck/ρk = maxNj=1{cj/ρj}, then fk = 1.3

Proof. The following equations show that the cost function (35) is decreasing in fk
for all (f1, . . . , fN ):

∂

∂fk

N∑
j=1

cjωj =
ck
ρk

∂

∂fk
ρkωk +

∑
j 6=k

cj
ρj

∂

∂fk
ρjωj 6

ck
ρk

∂

∂fk
ρkωk +

ck
ρk

∑
j 6=k

∂

∂fk
ρjωj

=
ck
ρk

∂

∂fk

N∑
j=1

ρjωj 6 0. (36)

The first inequality follows from the definition of k (in theorem 4), and the second
inequality follows from (33). �
3 In case the (fully) exhaustive service discipline is technically infeasible, Qk should be served ‘as

exhaustively as possible’.
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The problem of finding the values of f∗i for queues which are not covered by
theorem 4 is more involved, and generally requires the use of numerical techniques.
We leave this as a topic for future research.

6. Illustration

Equation (34) suggests that the scaled expected delay figures depend on the
service disciplines of the queues only through their exhaustiveness factors, fj (j =
1, . . . ,N ). Thus, two different systems with the same sets of exhaustiveness parameters
should have identical scaled expected delays.

To demonstrate this property, we consider an example of a polling system with
10 queues, whose parameters are: b1 = 5.5, b2 = · · · = b10 = 0.5, b(2)

1 = 100,
b(2)

2 = · · · = b(2)
10 = 1, ri = 5, r(2)

i = 25 (i 6= 6 and i 6= 8), r(2)
6 = 1025, r(2)

8 = 225.
The arrival rate of all queues is the same; we vary the arrival rate as to affect the total
load and to examine (1− ρ)E[Wi] as function of the load. As can be seen the system
is very asymmetric.

We examine this system under two different service disciplines, the gated service
and the fractional-exhaustive service [17]. In the latter system we select the fractional
exhaustive parameters (pi) as to match the exhaustiveness of the gated system. This
is done by noting that under gated service we have fi = 1 − ρi and under fractional-
exhaustive service we have fi = pi(1−ρi)/(1−piρi) and thus selection pi = 1/(1+ρi)
for the fractional exhaustive system yields identical exhaustiveness systems.

In figure 4 we depict the scaled expected delay (1− ρ)E[Wi] for Q1 and Q6 in
these systems as function of ρ. The figure demonstrates that the expected delays under
the two systems are very close to each other and converge towards each other as ρ

Figure 4. Scaled expected delay and exhaustiveness.
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approaches 1. For comparison we also plot the expected delay of Q1 in the fractional-
exhaustive system where the pi parameters are not selected to match the gated system
(rather, they are all set to 1); note that this delay is significantly different from that in
the gated system.

7. Approximation

Equation (34) suggests the following approximation for the expected waiting time
at Qi in stable systems (i.e., for ρ < 1):

E[Wi] ≈
1

1− ρ

[
(1− ρi)((2/fi)− 1)∑N

j=1 ρj(1− ρj)((2/fj)− 1)

β2

2β1
+

1
2
r(1− ρi)

(
2
fi
− 1

)]
,

i = 1, . . . ,N. (37)

This approximation provides a closed-form approximation for the expected delays in
stable systems as function of the system parameters and the exhaustiveness of the
service disciplines at the queues. Note that the analysis provided in this paper implies
that this expression is exact when ρ ↑ 1.

To evaluate the quality of this proposed approximation, we numerically examine
several typical cases. First, we consider a system with binomial gated service (recall
that the exhaustiveness factor of this policy is given by fi = pi(1 − ρi)). The system
consists of 10 queues whose parameters are: b1 = 5.5, b2 = · · · = b10 = 0.5,
b(2)

1 = 100, b(2)
2 = · · · = b(2)

10 = 1, ri = 5, r(2)
i = 25. The binomial probabilities are:

p1 = p3 = p5 = p7 = · · · = p10 = 1.0, p2 = 0.5, p4 = 0.3, p6 = 0.1. The arrival rate
of all queues is the same; we vary the arrival rate as to affect the total load and to
examine the approximation quality as function of the load. As can be seen the system
is very asymmetric.

We examine the quality of the approximation (37) as function of the system
load. Further, since the second moment of the switch-over periods does not serve as
a parameter in equation (37), we examine the effect of its value on the quality of the
approximation. This is done by considering two cases: (1) r(2)

i = 25 (i = 1, . . . , 10),
and (2) r(2)

i = 25, i ∈ {1, 2, 3, 4, 5, 7, 9, 10}, r(2)
6 = 1025, r(2)

8 = 225. To assess the
quality of the approximation, we evaluate the expected delay in each of the 10 queues
both by the approximation (denoted by zi(app)) and exactly (denoted by zi(exact)).
For each of the 10 queues the relative error of the approximation of the expected
waiting time at Qi is defined as the absolute value of

zi(app)− zi(exact)
zi(exact)

. (38)

Figure 5 below depicts the maximal relative error (over the 10 queues) of the
approximation as function of the system load. Figure 5 demonstrates, as expected,
that as we approach ρ = 1 the quality of the approximation improves. Further, it
demonstrates that for most practical cases of high load (range of ρ > 0.8) the quality
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Figure 5. Quality of approximation: binomial gated service.

Figure 6. Quality of approximation: fractional exhaustive service.

of the approximation is very good (relative error less than 10%). This is the case
for systems with either low or high value of switch-over variation (the approximation
quality is somewhat better in the low variation case).

Next we conduct a similar comparison for a system with fractional exhaustive
service (in all queues). Recall that the exhaustiveness factor of this policy is given
by fi = pi(1− ρi)/(1− piρi). We consider the system under the same parameter sets
chosen for the binomial-gated case. Evaluation of this system is depicted in figure 6.
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We observe that, although the expected waiting times differ between the two systems
drastically, the quality of the approximation in this case is quite similar to that of the
binomial-gated system.

8. Topics for further research

The monotonicity property stated in section 5.2 provides new insights into the
behavior of polling systems heavy traffic. One may investigate whether a similar
monotonicity property also holds for stable, medium and lightly-loaded, systems. Such
qualitative results would contribute strongly to the understanding of the stochastic
behavior of polling systems. Analysis of the system for ρ < 1, however, would not
only require properties of the tail behavior, but also of the heading part of the sequences
{α(i,c),k, c = 0, 1, . . .} and {α(2)

(i,c),k, c = 0, 1, . . .}. In general, for ρ < 1 the expected
delay no longer depends on the service disciplines only through their exhaustiveness.
Instead, the second moments of Li and Ti should also be taken into account.

The analysis might be extended to obtain higher moments of the scaled delay.
For the special case of mixtures of gated and exhaustive service at all queues, and
with zero switch-over times, expressions for the kth moment of the delay at each of
the queues have been obtained in [21].

The closed-form expressions obtained in this paper open possibilities for op-
timization purposes. For instance, in systems in which the load can be (statically)
balanced, equations (34) may be useful for solving load-balancing problems in a heavy-
traffic environment. Moreover, as indicated in section 5.4, the problem of minimizing
(35) with respect to the service disciplines at the queues, should be pursued further.
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