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ABSTRACT 
Web technologies are currently being employed to provide end 
user interfaces in diverse computing environments. The core 
element of these Web solutions is a Web server that is based on 
the Hypertext Transfer Protocol (HTTP) running over TCP/IP. 
Web servers are required to respond to millions of transaction 
requests per day at an "acceptable" Quality of Service (QoS) level 
with respect to the end-to-end response time and the server 
throughput. In many applications, the server performs significant 
server-side processing in distributed, object-oriented (OO) 
computing environments. In these applications, a Web server 
retrieves a file, parses the file for scripting language content, 
interprets the scripting statements and then executes embedded 
code, possibly requiting a TCP connection to a remote application 
for data transfer. In this paper, we present an end-to-end model 
that addresses this new class of Web servers that engage in OO 
computing. We have implemented the model in a simulation tool. 
Performance predictions based on the simulations are shown to 
match v/ell with performance observed in a test environment. 
Therefore, the model forms an excellent basis for a Decision 
Support System for system architects, allowing them to predict the 
behavior of systems prior to their creation, or the behavior of 
existing systems under new load scenarios. 
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1. INTRODUCTION 
Over the past few years, the World Wide Web has experienced 
tremendous growth, which is not likely to slow down in the near 
future. The explosion of Internet Commerce service offerings [1] 
has insured that the "Web" will remain at the center of 
mainstream communications. Furthermore, the recent emergence 
of Intemet Telephony (IT) service offerings has brought the 
heretofore-separate world of the Internet into the realm of 

traditional telecommunications. IT services range from simple 
"click-to-dial" offerings that use the Internet for voice call setup 
[2] to end-to-end voice communications that use the Interact for 
packetized voice transport [3]. At the heart of these.Web solutions 
is a Web server that is based on the Hypertext Transfer Protocol 
(H'ITP) running over TCP/IP. Web servers are required to 
respond to millions of transaction requests per day at an 
"acceptable" QoS level with respect to the end-to-end response 
time and the server throughput. To cope with the increasing 
volume of transaction requests, as well as the increasing demands 
of real-time voice communications, a thorough understanding of 
the performance capabilities and limitations of Web servers is 
crucial. 

Web technologies are currently being employed to provide end 
user interfaces in distributed computing environments, possibly 
requiting a connection to a remote application for data transfer 
(see Figure 1). In many applications, the server performs 
significant server-side sctipting. To this end, many servers 
implement the Common Gateway Interface (CGI) standard. 
However, for each invocation of a CGI application a new process 
is forked and executed, causing significant performance problems 
on the server side. To overcome this, Web servers may 
implement an Application Programming Interface (API) to 
perform server-side processing without spawning a new process, 
either by interpreting embedded scripting on web pages, or by 
dynamically loading precompiled code. 

One approach to performing server-side scripting is to implement 
a script-engine dedicated to process server-side scripts. A typical 
example of a script engine implementation is the Active Server 
Pages (ASP) technology in Microsoft's Internet Information 
Server (IIS) running on Windows NT. In ASP applications, IIS 
retrieves a file, parses the file for scripting language content, and 
interprets the scripting statements. Since a script is interpreted, a 
complex script may slow down the script engine. Consequently, 
some script engines (e.g., VBScript, JavaScript) enable instances 
of objects (e.g., compiled C++ or Java code) to be created on the 
Web server. In an object-oriented (OO) Web environment, an 
object's methods, properties and events are directly accessible 
from the script. 

Web server performance in a distributed, OO environment is a 
complex interplay between a variety of components (e.g., 
hardware platform, threading model, object scope model, server 
operating system, network bandwidth, disk file sizes, caching). 
However, existing models [4,5] fail to address servers with 
significant server-side processing that participate in distributed, 
OO computing. In this paper, we present an end-to-end 

57 



client 

client 

client 

 rem°el 
[ distributed application I 

seWr;~r 

remote 
application 

environment 

Figure 1. I l lustration of  a Web  server in a distributed computing environment  

performance model for the communication between the client and 
the server performance that incorporates server-side processing in 
a distributed OO environment. In general, the transaction flows 
depend on the implementation of the Web server and on the 
Operating System. In this paper, we focus on the dynamics of the 
ASP technology for the Microsoft IIS server for Windows NT. 
However, we emphasize that analogous constructs are also 
applicable beyond the IIS server. We have implemented the model 
in a simulation tool. The model is validated by comparing 
performance predictions based on the model to performance 
observed in a test environment. The simulation tool forms an 
excellent basis for the development of a Decision Support System 
for evaluating the performance of Web servers in a distributed OO 
environment, allowing system architects to predict the behavior of 
systems prior to their creation, or the behavior of existing systems 
under new load scenarios. 

2. TRANSACTION FLOWS 
Each HTrP transaction proceeds through a Web server along four 
successiye phases: (1) TCP connection setup, (2) H'ITP layer 
processing, (3) script-engine processing, and (4) network I/O 
processing. The different phases (see Figure 2) are discussed in 
more detail in sections 2.1 to 2.4. 

2.1 TCP Connection Setup Phase 
Before information can be exchanged between the client and 
server, a two-way connection (a TCP socket) must be established. 
The TCP sub-system consists of a TCP Listen Queue (TCP-LQ) 
served by a server daemon. A TCP connection is established by 
the well-known three-way handshake procedure (see [6] for 
details). Immediately after the TCP socket has been established, 
the transaction request is forwarded to the H'ITP sub-system for 
further processing. If all slots in the TCP-LQ are occupied upon 
arrival of a connection request, then the request is rejected and the 
client must resubmit a connection setup request. 

The TCP connection setup phase is modeled by a multi-server 
blocking model and zero waiting buffer space. Each "server" 
represents a slot in the TCP-LQ, and the number of servers equals 
the size of the TCP-LQ. Each customer represents a connection 
request. If an incoming customer finds all servers busy (i.e., all 
slots are occupied by other pending connection requests), then the 
customer is rejected; otherwise, the customer is taken into service 
immediately. A service time represents the time between the 
arrival of the connection request at the TCP-LQ and the time at 
which the three-way handshake is completed. In this way, the 
service time of a customer corresponds to one round-trip time 
(RTT) between the server and the client. 

2.2 HTTP Layer Processing Phase 
The HTFP sub-system consists of an HTrP Listen Queue (HTFP- 
LQ) and a number of multi-threaded HTI'P daemons that 
coordinate the processing performed by a number of (worker) 
threads. The dynamics of the H'ITP sub-system are described as 
follows: 

1. If an HTrP thread is available, then the thread retrieves the 
requested file. If the file requires script processing, then the 
transaction is forwarded to the script engine for further 
processing (see section 2.3); otherwise, the file content is 
forwarded to the I/O sub-system (see section 2.4). 

2. If all I/O buffers are occupied at that time, then the HTrP 
thread remains idling until an I/O buffer becomes available. 

3. If there is no H'ITP thread available, then the transaction 
request enters the HTFP-LQ (if possible), and waits until it 
gets assigned a thread to handle the request. 

4. If the HTFP-LQ if full, then the transaction request is 
rejected, the TCP connection is torn down, and the clients 
receives a "connection refused" message. 

The HTFP sub-system can be modeled by a multi-server finite- 
buffer blocking system. The servers represent the H'ITP threads, 
the customers represent transaction requests, and the buffer 
represents the HTTP-LQ. The number of servers equals the 
number of threads, and the buffer size is the length of the HTTP- 
LQ. If a server is available, then the customer is taken into service 
immediately. Otherwise, the customer enters the HTrP-LQ; if the 
queue is full, then the customer is rejected. The customer occupies 
the thread from the time at which a thread starts to handle the 
transaction request until the thread becomes available for handling 
another transaction request. 

2.3 Script Engine Processing Phase 
The dynamics of a script-engine (SE) generally depend on the 
Web server implementation and on the Operating System. In this 
section, we focus on the dynamics of the Active Server Pages 
(ASP) technology for the IIS Web server xunning on Microsoft 
Windows NT. However, the constructs discussed below are also 
applicable beyond the IIS server. We emphasize that the aim of 
discussion is to give the reader a general understanding of the type 
of performance issues related to different SE implementations, not 
to discuss the ASP technology in great detail. To this end, the 
terminology used will be generic and may deviate from the ASP- 
specific terminology. The reader is referred to Microsoft 
documentation for extensive discussions of the ASP internals and 
the ASP terminology. 
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Figure 2. Model of the transaction flows within Web server 

The SE sub-system is equipped with a SE Listen Queue (SE-LQ) 
and a pool of threads dedicated to interpreting scripting 
statements and executing embedded code (e.g., C++, Java). 
During object execution, communication with a remote backend 
server may be needed (e.g., to perform a database query), possibly 
requiring a TCP/IP connection to the backend server to be 
established and subsequently torn down. The transaction flows 
related to the SE depend on the object scoping and threading 
models. Below we outline the basic ideas of object threading and 
scoping models (for the ASP technology), and their impact on the 
performance of the SE sub-system. 

2.3.1 Object Threading Model 
Objects can be classified as single-threaded or multi-threaded. 1 A 
single-threaded object has so-called thread affinity. That is, the 
object's methods can only be executed by a dedicated thread, so 
that the object can never be accessed concurrently. If another 
thread needs to access the object's methods, it will have to request 
the thread that owns the object to access the object on its behalf• 
Hence, all method calls to a single-threaded object must be 
serialized on a specific thread. In contrast, a multi-threaded object 
is not owned by a specific thread, and can be accessed 
concurrently by multiple threads, with no guarantee concerning 
which thread will execute a given method invocation. 

In ASP terminology, an object can live in a so-called apartment, 
which can be single-threaded or multi-threaded. An object can 
be "Single-", "Apartment-", "Free-" or "Both-" threaded. 

Implementers must therefore protect resources (e.g•, shared static 
variables) used by a single instance of the object against 
concurrent access. We refer to [7] (and references therein) for 
more details on threading models. 

2.3.2 Object Scope 
Objects are also classified according to their so-called scope. The 
scope of an object is associated with the lifetime of the object. 
Two extreme examples are Transaction Scope Objects 2 (TSOs) 
and Application Scope Objects (ASOs). A TSO lives only for the 
duration of a single object request• A TSO is created, executed, 
and dereferenced over the course of the request. Multiple TSO 
object requests result in multiple instances of the object. In 
contrast, an ASO lives for the complete duration of the 
application. An ASO is created when the application is started. 
Only a single instance of the object will exist for the duration of 
the application. Session Scope Objects (SSOs) fall in between 
TSOs and ASOs in the sense that they live only for the duration of 
a user's session. The reader is referred to [9,10] (and references 
therein) for more information on object scoping models. 

2.3.3 Performance Modeling 
The object scoping and threading models may have a strong 
impact on the performance of the Web server. The dynamics of 
the SE sub-system depend on the seoping and threading models, 
which lead to different performance models, depending on the 

2 Also referred to as Page Scope Objects. 
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implementation of the Web server. Several possible performance 
modeling approaches are addressed below. 

The simplest model is obtained in the case when all objects are 
TSOs. A TSO is created, executed, and dereferenced over the 
course of a request by a specific thread. Because the TSO only 
lives during the course of a single request, there is no concurrency 
in accessing the TSO by other threads. Therefore, this scenario 
can be modeled by a multi-server queueing model, where the 
servers represent the threads, the customers represent transaction 
requests entering the SE sub-system, and the time needed to 
create, execute, and dereference the TSO is incorporated into the 
service time. 

A different performance model is obtained for single-threaded 
ASOs (and SSOs), which are owned by a specific thread, T*, but 
which are not dereferenced after execution. In this case, the 
ASO's methods can only be accessed by T* and transaction 
requests handled by other threads that need to execute the ASO 
are serialized through T* to execute the object. These dynamics 
can be modeled by a single-server queue, where the server 
represents T*, the customers represent transaction requests owned 
by other threads that need to access the ASO, and the service 
times represent the CPU time required to serialize a transaction 
and to execute the ASO. Note that it may be possible (although 
not desirable) that T* owns multiple ASOs, which leads to a 
similar model. 

Another situation arises for multi-threaded ASOs (or SSOs), 
which are not owned by a specific thread, and can be accessed 
concurrently by multiple threads. This type of situation may be 
modeled by a multiple- (possibly infinite-) server queueing model, 
where the servers represent the access ports to the concurrently 
accessible ASO, and the customers represent transactions or 
thread~-that need to access the ASO. The speed at which the 
active servers work generally depends on the amount of "critical 
sections" in the ASO object code. In the extreme case where all 
sections are critical, the server node may be a Processor Sharing 
node, i.e., where the speed of the active servers is inversely 
proportional to the number of active servers (see for example 
[11]). In the other extreme case where the amount of critical 
sections is negligible, the server speed may be assumed to be 
independent of the number of active servers. 

We reemphasize that the discussion of the modeling of different 
combinations of threading and scoping models is intended only to 
give a global idea of the type of performance issues related to 
different threading and scoping models in an t O  environment. 
Clearly, refinement of the models may be required in specific 
implementations. 

2.4 I/O Processing Phase 
The I/O sub-system consists of a number of parallel I/O buffers, 
an I/O controller (IOC), and the connection from the server to the 
network. The contents of the I/O buffers are "drained" over the 
network connection to the network. The draining of the different 
I/O buffers over the network connection is scheduled by the IOC. 

The IOC visits the different I/O buffers in a round-robin fashion, 
checks whether the I/O buffers have any data to send, and if so, 
places a chunk of data onto the network connection. The 
communication between the server and the client is based on the 
TCP flow control mechanism (see [6] for details). The 
transmission unit for the TCP/IP-based network connection is the 
Maximal Segment Size (MSS), i.e., the largest amount of data that 
TCP will send to the client at a time. Therefore, the files residing 
in the I/O buffers are (virttually) partitioned into blocks of 1 MSS 
(except for the trailing part of the file). The window mechanism 
implies that a block of a file residing in an output buffer can only 
be transmitted if the TCP window is open. Notice that the arrival 
of acknowledgments generally depends on the congestion on the 
network. Therefore, the rate at which I/O buffers can drain their 
contents may be affected by congestion on the network. 

The dynamics of the I/O subsystem can be modeled as a single- 
server multi-queue polling model with finite buffers. Each queue 
represents an I/O buffer. The server represents the IOC, and the 
service times represent the time to transmit a file block. When the 
server arrives at a (non-empty) queue, it transmits one or more file 
blocks (depending on the TCP window size); if the window is 
closed, then the server immediately proceeds to the next queue. 
We assume that the time for the server to proceed from one queue 
to the next is negligible. The dynamics of the TCP flow control 
mechanism can be modeled along the lines of Heidemann et al. 
[4] for a variety of slow-start algorithms. 

To understand the end-to-end performance of the Web server, it is 
important to understand the interactions between the different 
sub-systems discussed in sections 2.1-2.4. To this end, let us 
consider what happens if the network connection between the 
Web server and the client is congested for some time period. Then 
the network WIT increases, so that the TCP acknowledgments 
(from the client to the server) of the receipt of file blocks by the 
client are delayed, implying that the "drain rate" of the I/O buffers 
decreases. This, in tum, implies that I/O buffers become available 
to the H'ITP and SE threads at a slower rate, so that these threads 
may have to wait for a longer time period to get access to an I/O 
buffer to "dump" the output content. Since the threads are idling 
as long as they are waiting for an I/O buffer to become available, 
the availability of the threads will go down, and the H'FFP and SE 
LQs will tend to fill up and overflow, which may lead to blocking 
of incoming transaction requests. In this way, performance 
problems in the network may imply performance problems in the 
Web server itself. 

3. IMPLEMENTATION 
To obtain and validate performance predictions based on the 
model discussed in the previous section, we have implemented the 
model in a simulation tool called Q+. The tool provides a GUI for 
debugging and demonstration purposes. In addition, we have 
implemented a C Programming Interface (CPI) to the model. The 
CPI allows the user to disable the GUI and run the model in the 
background, which is significantly faster. The GUI 
implementation of the model (see Figure 3) is outlined below. 
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Figure 3. Implementation of the model 

To implement the dynamics of the model, we have used a token- 
pool mechanism. Each entry in the TCP-LQ, each buffer spot in 
the H'ITP-LQ or SE-LQ, each HTrP or SE thread, and each I/O 
buffer corresponds to a unique token. Free tokens reside in the 
TOKEN_POOL node, and occupied tokens reside in the 
USED_TOKENS node. Each transaction enters the system at the 
ARRIVAL node and leaves in the sink, either via the 
REL_TOKEN node (when the transaction has been performed 
successfully) or via the BLOCK_PROB node (when the 
transaction has failed). A transaction that needs to allocate a token 
(e.g., to reserve a buffer spot, to access a thread, or to reserve an 
I/O buffer), enters the ALLOC_TOKEN node. If no token of the 
type required is available (e.g., when a buffer is full, when all 
threads are occupied, or when all I/O buffers are occupied), then 
the transaction may either wait (idle) in the ALLOC TOKEN 
node until a token becomes available (e.g., when allocating an I/O 
buffer), or the transaction may enter the REATFEMPT node (for 
reattempts) or the BLOCK_PROB node (when the transaction is 
rejected). When a transaction is assigned a thread, the transaction 
is executed on one of the processors (P1 to P4). A token is 
released by entering the REL_TOKEN node. The I/O buffers and 
IOC are implemented in the I/O_PROC node, the TCP flow 
control is implemented in the INET node, and baekend 
communication is implemented in the BACKEND node (not 
shown in Figure 3). 

The model is rather complex and has a fairly large number of 
input parameters. The main input parameters are the transaction 
request rate, the TCP-LQ size, the HTTP-LQ size, SE-LQ size, 
the number of HTI'P threads, the number of SE threads, the HTI'P 
thread CPU-time, the SE thread CPU time, the percentage of 
transactions that require script processing, the number of I/O 
buffers, the I/O buffer size, the average file size, the number of 
CPUs, the MSS, the network connection speed, the modem speed, 
the client-server acknowledgment Round Trip Time (RTI') 
distribution, the maximum TCP window size, the fraction of 
transactions that require backend communication, the server- 
backend R'IT distribution, the reattempt probability, the 
distribution of the reattempt time interval, amongst others. 

The output parameters in the current implementation are (a) the 
effective server throughput, (b) the end-to-end response time 
(mean and standard deviation), and (c) the fraction of transactions 
that are blocked at the TCP, HTrP and SE sub-systems, 
respectively. 

Figure 4. Test configuration 

4. VALIDATION 
To validate the simulation model, we compared model predictions 
with observed measurements taken on IIS under load test for a 
variety of datasets. The results are outlined below. 

4.1 Test Environment 
The Web Server test configuration is shown in Figure 4. The top 
left machine in the first row represents the Web Server under Test 
(SUT) executing on an HP LX Pro workstation. The SUN-FE4000 
shown in the top row on the right was used as a load generator 
machine for simulating client requests and as a backend-eud 
server running an application that participated in distributed OO 
computing. The other workstations were used as load generators, 
while the leftmost machine in the bottom row also stored 
performance test data. The servers were connected via a 
100Mbit/s Fast Ethernet LAN. 

4.2 Results 
We have performed experiments with a variety of datasets. The 
details are omitted for compactness of the paper. In all cases, the 
SUT was exposed to different transaction request rates, and the 
responsiveness of the SUT was measured in terms of the 
throughout (i.e., the number of transactions per time unit) and the 
residence time (defined as the time between the transaction 
entering service at the HT'FP sub-system until the output file was 
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entirely placed into an I/O buffer). Figure 5 shows the predicted 
and empirical residence times for several transaction request rates 
for dataset IV, and Table 1 shows the maximum throughput (TP), 
both the measured values and the values predicted by the 
simulation model, for the different datasets. 

Dataset Measured TP Predicted TP 

I 125 123 

II 54 55 

III 13 13 

IV 177 179 

Table 1. Measured and predicted maximum throughput for 
different datasets 

The results in Figure 5 and Table 1 indicate that the simulation 
model results are consistent with the empirical test results. 

5. MODEL EXTENSIONS 
The model can be extended in several directions. First, in the 
current model a separate TCP connection is established and tom 
down for each individual file, which is known to degrade the 
server performance. To overcome this, one may use the concept of 
persistent connections, where multiple files are transmitted over 
the same TCP connection. It would be interesting to incorporate 
the concept of persistent connections into the model and study its 
impact of the end-to-end performance of the Web server. Second, 
in the current implementation of the model the objects are 
assumed to be of transaction° scope. To study the impact of the 
object scoping models in more detail, we are currently 
implementing the dynamics of session scope and application 
scope objects into the model (see section 2.3 for more details on 
the modeling). Third, in this paper the modeling of the script- 
engine node has been focused on the dynamics of the Active 
Server Component (ASC) of the Microsoft's IIS server. It is a 
challenging topic for further research to incorporate other script 
engine implementations, such as servlet technology, into the 
model and study its impact on the end-to-end performance of the 
server. 

6. CONCLUDING REMARKS 
The final objective for both testing and modeling Web Server 
performance is to identify appropriate configuration guidelines for 
deploying Web Servers. Although TESTING is an important 
technique for assessing Web Server performance, it has several 
severe drawbacks: 

1. load/stress testing is extremely time-consuming and tedious 

2. testing alone is of limited applicability beyond the test 
workload and is not generalizable 

3. testing alone cannot predict the performance tradeoffs in 
advance of major new software releases. 

Hence, MODELING is critical to further understand the 
performance capabilities and limitations of Web servers. We 
reemphasize that a simulation model of a Web server is extremely 
useful as a Decision Support System for system architects, 
allowing them to predict the behavior of systems prior to their 
creation, or the behavior of existing systems under new load 
scenarios. 

For Web servers that engage in OO computing, it is important to 
analyze factors that affect threads responsible for script and object 
execution. These factors include whether the scripting thread pool 
is synchronous versus asynchronous [8], whether objects are 
single or multi-threaded, whether the object executes within the 
Web server's process space, thread affinity, and thread message 
filtering. Note that these factors can be contrasteed with factors 
previously investigated in Web server performance studies (e.g., 
file-size distribution, transaction request arrival process, TCP 
window control algorithms, different versions o f  HTrP). A 
simulation model offers an ideal tool for such an investigation. 
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