
A Decision Support System for Tuning Web Servers
in Distributed Object Oriented Network Architectures

R.D. van der Mei
AT&T Labs

Middletown, N J, USA
+1 732 420 3716

rvandermei @ att .com

W.K. Ehrlich
AT&T

Red Hill, N J, USA
+1 732 615 5721

weh rlich @ att.com

P.K. Reeser
AT&T Labs

Middletown, N J, USA
+1 732 420 3693

preeser@ att.com

J.P. Francisco
AT&T

Red Hill, N J, USA
+1 732 615 4132

shemp @ att.com

ABSTRACT
Web technologies are currently being employed to provide end
user interfaces in diverse computing environments. The core
element of these Web solutions is a Web server that is based on
the Hypertext Transfer Protocol (HTTP) running over TCP/IP.
Web servers are required to respond to millions of transaction
requests per day at an "acceptable" Quality of Service (QoS) level
with respect to the end-to-end response time and the server
throughput. In many applications, the server performs significant
server-side processing in distributed, object-oriented (OO)
computing environments. In these applications, a Web server
retrieves a file, parses the file for scripting language content,
interprets the scripting statements and then executes embedded
code, possibly requiting a TCP connection to a remote application
for data transfer. In this paper, we present an end-to-end model
that addresses this new class of Web servers that engage in OO
computing. We have implemented the model in a simulation tool.
Performance predictions based on the simulations are shown to
match v/ell with performance observed in a test environment.
Therefore, the model forms an excellent basis for a Decision
Support System for system architects, allowing them to predict the
behavior of systems prior to their creation, or the behavior of
existing systems under new load scenarios.

Keywords
World Wide Web, H'ITP, Web server, httpd, performance,
distributed, object-oriented, computing, architecture,
configuration tuning, Decision Support System

1. INTRODUCTION
Over the past few years, the World Wide Web has experienced
tremendous growth, which is not likely to slow down in the near
future. The explosion of Internet Commerce service offerings [1]
has insured that the "Web" will remain at the center of
mainstream communications. Furthermore, the recent emergence
of Intemet Telephony (IT) service offerings has brought the
heretofore-separate world of the Internet into the realm of

traditional telecommunications. IT services range from simple
"click-to-dial" offerings that use the Internet for voice call setup
[2] to end-to-end voice communications that use the Interact for
packetized voice transport [3]. At the heart of these.Web solutions
is a Web server that is based on the Hypertext Transfer Protocol
(H'ITP) running over TCP/IP. Web servers are required to
respond to millions of transaction requests per day at an
"acceptable" QoS level with respect to the end-to-end response
time and the server throughput. To cope with the increasing
volume of transaction requests, as well as the increasing demands
of real-time voice communications, a thorough understanding of
the performance capabilities and limitations of Web servers is
crucial.

Web technologies are currently being employed to provide end
user interfaces in distributed computing environments, possibly
requiting a connection to a remote application for data transfer
(see Figure 1). In many applications, the server performs
significant server-side sctipting. To this end, many servers
implement the Common Gateway Interface (CGI) standard.
However, for each invocation of a CGI application a new process
is forked and executed, causing significant performance problems
on the server side. To overcome this, Web servers may
implement an Application Programming Interface (API) to
perform server-side processing without spawning a new process,
either by interpreting embedded scripting on web pages, or by
dynamically loading precompiled code.

One approach to performing server-side scripting is to implement
a script-engine dedicated to process server-side scripts. A typical
example of a script engine implementation is the Active Server
Pages (ASP) technology in Microsoft's Internet Information
Server (IIS) running on Windows NT. In ASP applications, IIS
retrieves a file, parses the file for scripting language content, and
interprets the scripting statements. Since a script is interpreted, a
complex script may slow down the script engine. Consequently,
some script engines (e.g., VBScript, JavaScript) enable instances
of objects (e.g., compiled C++ or Java code) to be created on the
Web server. In an object-oriented (OO) Web environment, an
object's methods, properties and events are directly accessible
from the script.

Web server performance in a distributed, OO environment is a
complex interplay between a variety of components (e.g.,
hardware platform, threading model, object scope model, server
operating system, network bandwidth, disk file sizes, caching).
However, existing models [4,5] fail to address servers with
significant server-side processing that participate in distributed,
OO computing. In this paper, we present an end-to-end

57

client

client

client

 rem°el
[distributed application I

seWr;~r

remote
application

environment

Figure 1. I l lustration of a Web server in a distributed computing environment

performance model for the communication between the client and
the server performance that incorporates server-side processing in
a distributed OO environment. In general, the transaction flows
depend on the implementation of the Web server and on the
Operating System. In this paper, we focus on the dynamics of the
ASP technology for the Microsoft IIS server for Windows NT.
However, we emphasize that analogous constructs are also
applicable beyond the IIS server. We have implemented the model
in a simulation tool. The model is validated by comparing
performance predictions based on the model to performance
observed in a test environment. The simulation tool forms an
excellent basis for the development of a Decision Support System
for evaluating the performance of Web servers in a distributed OO
environment, allowing system architects to predict the behavior of
systems prior to their creation, or the behavior of existing systems
under new load scenarios.

2. TRANSACTION FLOWS
Each HTrP transaction proceeds through a Web server along four
successiye phases: (1) TCP connection setup, (2) H'ITP layer
processing, (3) script-engine processing, and (4) network I/O
processing. The different phases (see Figure 2) are discussed in
more detail in sections 2.1 to 2.4.

2.1 TCP Connection Setup Phase
Before information can be exchanged between the client and
server, a two-way connection (a TCP socket) must be established.
The TCP sub-system consists of a TCP Listen Queue (TCP-LQ)
served by a server daemon. A TCP connection is established by
the well-known three-way handshake procedure (see [6] for
details). Immediately after the TCP socket has been established,
the transaction request is forwarded to the H'ITP sub-system for
further processing. If all slots in the TCP-LQ are occupied upon
arrival of a connection request, then the request is rejected and the
client must resubmit a connection setup request.

The TCP connection setup phase is modeled by a multi-server
blocking model and zero waiting buffer space. Each "server"
represents a slot in the TCP-LQ, and the number of servers equals
the size of the TCP-LQ. Each customer represents a connection
request. If an incoming customer finds all servers busy (i.e., all
slots are occupied by other pending connection requests), then the
customer is rejected; otherwise, the customer is taken into service
immediately. A service time represents the time between the
arrival of the connection request at the TCP-LQ and the time at
which the three-way handshake is completed. In this way, the
service time of a customer corresponds to one round-trip time
(RTT) between the server and the client.

2.2 HTTP Layer Processing Phase
The HTFP sub-system consists of an HTrP Listen Queue (HTFP-
LQ) and a number of multi-threaded HTI'P daemons that
coordinate the processing performed by a number of (worker)
threads. The dynamics of the H'ITP sub-system are described as
follows:

1. If an HTrP thread is available, then the thread retrieves the
requested file. If the file requires script processing, then the
transaction is forwarded to the script engine for further
processing (see section 2.3); otherwise, the file content is
forwarded to the I/O sub-system (see section 2.4).

2. If all I/O buffers are occupied at that time, then the HTrP
thread remains idling until an I/O buffer becomes available.

3. If there is no H'ITP thread available, then the transaction
request enters the HTFP-LQ (if possible), and waits until it
gets assigned a thread to handle the request.

4. If the HTFP-LQ if full, then the transaction request is
rejected, the TCP connection is torn down, and the clients
receives a "connection refused" message.

The HTFP sub-system can be modeled by a multi-server finite-
buffer blocking system. The servers represent the H'ITP threads,
the customers represent transaction requests, and the buffer
represents the HTTP-LQ. The number of servers equals the
number of threads, and the buffer size is the length of the HTTP-
LQ. If a server is available, then the customer is taken into service
immediately. Otherwise, the customer enters the HTrP-LQ; if the
queue is full, then the customer is rejected. The customer occupies
the thread from the time at which a thread starts to handle the
transaction request until the thread becomes available for handling
another transaction request.

2.3 Script Engine Processing Phase
The dynamics of a script-engine (SE) generally depend on the
Web server implementation and on the Operating System. In this
section, we focus on the dynamics of the Active Server Pages
(ASP) technology for the IIS Web server xunning on Microsoft
Windows NT. However, the constructs discussed below are also
applicable beyond the IIS server. We emphasize that the aim of
discussion is to give the reader a general understanding of the type
of performance issues related to different SE implementations, not
to discuss the ASP technology in great detail. To this end, the
terminology used will be generic and may deviate from the ASP-
specific terminology. The reader is referred to Microsoft
documentation for extensive discussions of the ASP internals and
the ASP terminology.

58

Web server
[... i objects

O C ~ O

script 0
engine 0

> [ITT] °
0
0

remote
• I application
l
1

HTTP 0 ~ ~ [
TCP 0 ~ ,l I/O sub-s..ystem

0] I / 0 buffers [[
, >) 0]1 I IOC l i

' a t © i ' ' 0 I I I i i i i
: i

• " i 0 ! l i i
i f . i [I
! 0 ! l t I I I ;
i ,• ... J]

' n**wor / i
c o n n e c t i o n] l

| . J

Figure 2. Model of the transaction flows within Web server

The SE sub-system is equipped with a SE Listen Queue (SE-LQ)
and a pool of threads dedicated to interpreting scripting
statements and executing embedded code (e.g., C++, Java).
During object execution, communication with a remote backend
server may be needed (e.g., to perform a database query), possibly
requiring a TCP/IP connection to the backend server to be
established and subsequently torn down. The transaction flows
related to the SE depend on the object scoping and threading
models. Below we outline the basic ideas of object threading and
scoping models (for the ASP technology), and their impact on the
performance of the SE sub-system.

2.3.1 Object Threading Model
Objects can be classified as single-threaded or multi-threaded. 1 A
single-threaded object has so-called thread affinity. That is, the
object's methods can only be executed by a dedicated thread, so
that the object can never be accessed concurrently. If another
thread needs to access the object's methods, it will have to request
the thread that owns the object to access the object on its behalf•
Hence, all method calls to a single-threaded object must be
serialized on a specific thread. In contrast, a multi-threaded object
is not owned by a specific thread, and can be accessed
concurrently by multiple threads, with no guarantee concerning
which thread will execute a given method invocation.

In ASP terminology, an object can live in a so-called apartment,
which can be single-threaded or multi-threaded. An object can
be "Single-", "Apartment-", "Free-" or "Both-" threaded.

Implementers must therefore protect resources (e.g•, shared static
variables) used by a single instance of the object against
concurrent access. We refer to [7] (and references therein) for
more details on threading models.

2.3.2 Object Scope
Objects are also classified according to their so-called scope. The
scope of an object is associated with the lifetime of the object.
Two extreme examples are Transaction Scope Objects 2 (TSOs)
and Application Scope Objects (ASOs). A TSO lives only for the
duration of a single object request• A TSO is created, executed,
and dereferenced over the course of the request. Multiple TSO
object requests result in multiple instances of the object. In
contrast, an ASO lives for the complete duration of the
application. An ASO is created when the application is started.
Only a single instance of the object will exist for the duration of
the application. Session Scope Objects (SSOs) fall in between
TSOs and ASOs in the sense that they live only for the duration of
a user's session. The reader is referred to [9,10] (and references
therein) for more information on object scoping models.

2.3.3 Performance Modeling
The object scoping and threading models may have a strong
impact on the performance of the Web server. The dynamics of
the SE sub-system depend on the seoping and threading models,
which lead to different performance models, depending on the

2 Also referred to as Page Scope Objects.

59

implementation of the Web server. Several possible performance
modeling approaches are addressed below.

The simplest model is obtained in the case when all objects are
TSOs. A TSO is created, executed, and dereferenced over the
course of a request by a specific thread. Because the TSO only
lives during the course of a single request, there is no concurrency
in accessing the TSO by other threads. Therefore, this scenario
can be modeled by a multi-server queueing model, where the
servers represent the threads, the customers represent transaction
requests entering the SE sub-system, and the time needed to
create, execute, and dereference the TSO is incorporated into the
service time.

A different performance model is obtained for single-threaded
ASOs (and SSOs), which are owned by a specific thread, T*, but
which are not dereferenced after execution. In this case, the
ASO's methods can only be accessed by T* and transaction
requests handled by other threads that need to execute the ASO
are serialized through T* to execute the object. These dynamics
can be modeled by a single-server queue, where the server
represents T*, the customers represent transaction requests owned
by other threads that need to access the ASO, and the service
times represent the CPU time required to serialize a transaction
and to execute the ASO. Note that it may be possible (although
not desirable) that T* owns multiple ASOs, which leads to a
similar model.

Another situation arises for multi-threaded ASOs (or SSOs),
which are not owned by a specific thread, and can be accessed
concurrently by multiple threads. This type of situation may be
modeled by a multiple- (possibly infinite-) server queueing model,
where the servers represent the access ports to the concurrently
accessible ASO, and the customers represent transactions or
thread~-that need to access the ASO. The speed at which the
active servers work generally depends on the amount of "critical
sections" in the ASO object code. In the extreme case where all
sections are critical, the server node may be a Processor Sharing
node, i.e., where the speed of the active servers is inversely
proportional to the number of active servers (see for example
[11]). In the other extreme case where the amount of critical
sections is negligible, the server speed may be assumed to be
independent of the number of active servers.

We reemphasize that the discussion of the modeling of different
combinations of threading and scoping models is intended only to
give a global idea of the type of performance issues related to
different threading and scoping models in an t O environment.
Clearly, refinement of the models may be required in specific
implementations.

2.4 I/O Processing Phase
The I/O sub-system consists of a number of parallel I/O buffers,
an I/O controller (IOC), and the connection from the server to the
network. The contents of the I/O buffers are "drained" over the
network connection to the network. The draining of the different
I/O buffers over the network connection is scheduled by the IOC.

The IOC visits the different I/O buffers in a round-robin fashion,
checks whether the I/O buffers have any data to send, and if so,
places a chunk of data onto the network connection. The
communication between the server and the client is based on the
TCP flow control mechanism (see [6] for details). The
transmission unit for the TCP/IP-based network connection is the
Maximal Segment Size (MSS), i.e., the largest amount of data that
TCP will send to the client at a time. Therefore, the files residing
in the I/O buffers are (virttually) partitioned into blocks of 1 MSS
(except for the trailing part of the file). The window mechanism
implies that a block of a file residing in an output buffer can only
be transmitted if the TCP window is open. Notice that the arrival
of acknowledgments generally depends on the congestion on the
network. Therefore, the rate at which I/O buffers can drain their
contents may be affected by congestion on the network.

The dynamics of the I/O subsystem can be modeled as a single-
server multi-queue polling model with finite buffers. Each queue
represents an I/O buffer. The server represents the IOC, and the
service times represent the time to transmit a file block. When the
server arrives at a (non-empty) queue, it transmits one or more file
blocks (depending on the TCP window size); if the window is
closed, then the server immediately proceeds to the next queue.
We assume that the time for the server to proceed from one queue
to the next is negligible. The dynamics of the TCP flow control
mechanism can be modeled along the lines of Heidemann et al.
[4] for a variety of slow-start algorithms.

To understand the end-to-end performance of the Web server, it is
important to understand the interactions between the different
sub-systems discussed in sections 2.1-2.4. To this end, let us
consider what happens if the network connection between the
Web server and the client is congested for some time period. Then
the network WIT increases, so that the TCP acknowledgments
(from the client to the server) of the receipt of file blocks by the
client are delayed, implying that the "drain rate" of the I/O buffers
decreases. This, in tum, implies that I/O buffers become available
to the H'ITP and SE threads at a slower rate, so that these threads
may have to wait for a longer time period to get access to an I/O
buffer to "dump" the output content. Since the threads are idling
as long as they are waiting for an I/O buffer to become available,
the availability of the threads will go down, and the H'FFP and SE
LQs will tend to fill up and overflow, which may lead to blocking
of incoming transaction requests. In this way, performance
problems in the network may imply performance problems in the
Web server itself.

3. IMPLEMENTATION
To obtain and validate performance predictions based on the
model discussed in the previous section, we have implemented the
model in a simulation tool called Q+. The tool provides a GUI for
debugging and demonstration purposes. In addition, we have
implemented a C Programming Interface (CPI) to the model. The
CPI allows the user to disable the GUI and run the model in the
background, which is significantly faster. The GUI
implementation of the model (see Figure 3) is outlined below.

60

Figure 3. Implementation of the model

To implement the dynamics of the model, we have used a token-
pool mechanism. Each entry in the TCP-LQ, each buffer spot in
the H'ITP-LQ or SE-LQ, each HTrP or SE thread, and each I/O
buffer corresponds to a unique token. Free tokens reside in the
TOKEN_POOL node, and occupied tokens reside in the
USED_TOKENS node. Each transaction enters the system at the
ARRIVAL node and leaves in the sink, either via the
REL_TOKEN node (when the transaction has been performed
successfully) or via the BLOCK_PROB node (when the
transaction has failed). A transaction that needs to allocate a token
(e.g., to reserve a buffer spot, to access a thread, or to reserve an
I/O buffer), enters the ALLOC_TOKEN node. If no token of the
type required is available (e.g., when a buffer is full, when all
threads are occupied, or when all I/O buffers are occupied), then
the transaction may either wait (idle) in the ALLOC TOKEN
node until a token becomes available (e.g., when allocating an I/O
buffer), or the transaction may enter the REATFEMPT node (for
reattempts) or the BLOCK_PROB node (when the transaction is
rejected). When a transaction is assigned a thread, the transaction
is executed on one of the processors (P1 to P4). A token is
released by entering the REL_TOKEN node. The I/O buffers and
IOC are implemented in the I/O_PROC node, the TCP flow
control is implemented in the INET node, and baekend
communication is implemented in the BACKEND node (not
shown in Figure 3).

The model is rather complex and has a fairly large number of
input parameters. The main input parameters are the transaction
request rate, the TCP-LQ size, the HTTP-LQ size, SE-LQ size,
the number of HTI'P threads, the number of SE threads, the HTI'P
thread CPU-time, the SE thread CPU time, the percentage of
transactions that require script processing, the number of I/O
buffers, the I/O buffer size, the average file size, the number of
CPUs, the MSS, the network connection speed, the modem speed,
the client-server acknowledgment Round Trip Time (RTI')
distribution, the maximum TCP window size, the fraction of
transactions that require backend communication, the server-
backend R'IT distribution, the reattempt probability, the
distribution of the reattempt time interval, amongst others.

The output parameters in the current implementation are (a) the
effective server throughput, (b) the end-to-end response time
(mean and standard deviation), and (c) the fraction of transactions
that are blocked at the TCP, HTrP and SE sub-systems,
respectively.

Figure 4. Test configuration

4. VALIDATION
To validate the simulation model, we compared model predictions
with observed measurements taken on IIS under load test for a
variety of datasets. The results are outlined below.

4.1 Test Environment
The Web Server test configuration is shown in Figure 4. The top
left machine in the first row represents the Web Server under Test
(SUT) executing on an HP LX Pro workstation. The SUN-FE4000
shown in the top row on the right was used as a load generator
machine for simulating client requests and as a backend-eud
server running an application that participated in distributed OO
computing. The other workstations were used as load generators,
while the leftmost machine in the bottom row also stored
performance test data. The servers were connected via a
100Mbit/s Fast Ethernet LAN.

4.2 Results
We have performed experiments with a variety of datasets. The
details are omitted for compactness of the paper. In all cases, the
SUT was exposed to different transaction request rates, and the
responsiveness of the SUT was measured in terms of the
throughout (i.e., the number of transactions per time unit) and the
residence time (defined as the time between the transaction
entering service at the HT'FP sub-system until the output file was

t ,

I.

i
E

i ' ' ' , X ,
0. - -,- -, - - ,- - -, ~ ,- - ; - O, -

• o.e

o.4 ' '

1t o : i i i
20 4O eO ao 1oo 120 140 16~ 180

trerlea©tJon requosta pro- second

Figure 5. Simulated and empirical average residence times

61

entirely placed into an I/O buffer). Figure 5 shows the predicted
and empirical residence times for several transaction request rates
for dataset IV, and Table 1 shows the maximum throughput (TP),
both the measured values and the values predicted by the
simulation model, for the different datasets.

Dataset Measured TP Predicted TP

I 125 123

II 54 55

III 13 13

IV 177 179

Table 1. Measured and predicted maximum throughput for
different datasets

The results in Figure 5 and Table 1 indicate that the simulation
model results are consistent with the empirical test results.

5. MODEL EXTENSIONS
The model can be extended in several directions. First, in the
current model a separate TCP connection is established and tom
down for each individual file, which is known to degrade the
server performance. To overcome this, one may use the concept of
persistent connections, where multiple files are transmitted over
the same TCP connection. It would be interesting to incorporate
the concept of persistent connections into the model and study its
impact of the end-to-end performance of the Web server. Second,
in the current implementation of the model the objects are
assumed to be of transaction° scope. To study the impact of the
object scoping models in more detail, we are currently
implementing the dynamics of session scope and application
scope objects into the model (see section 2.3 for more details on
the modeling). Third, in this paper the modeling of the script-
engine node has been focused on the dynamics of the Active
Server Component (ASC) of the Microsoft's IIS server. It is a
challenging topic for further research to incorporate other script
engine implementations, such as servlet technology, into the
model and study its impact on the end-to-end performance of the
server.

6. CONCLUDING REMARKS
The final objective for both testing and modeling Web Server
performance is to identify appropriate configuration guidelines for
deploying Web Servers. Although TESTING is an important
technique for assessing Web Server performance, it has several
severe drawbacks:

1. load/stress testing is extremely time-consuming and tedious

2. testing alone is of limited applicability beyond the test
workload and is not generalizable

3. testing alone cannot predict the performance tradeoffs in
advance of major new software releases.

Hence, MODELING is critical to further understand the
performance capabilities and limitations of Web servers. We
reemphasize that a simulation model of a Web server is extremely
useful as a Decision Support System for system architects,
allowing them to predict the behavior of systems prior to their
creation, or the behavior of existing systems under new load
scenarios.

For Web servers that engage in OO computing, it is important to
analyze factors that affect threads responsible for script and object
execution. These factors include whether the scripting thread pool
is synchronous versus asynchronous [8], whether objects are
single or multi-threaded, whether the object executes within the
Web server's process space, thread affinity, and thread message
filtering. Note that these factors can be contrasteed with factors
previously investigated in Web server performance studies (e.g.,
file-size distribution, transaction request arrival process, TCP
window control algorithms, different versions o f HTrP). A
simulation model offers an ideal tool for such an investigation.

7. REFERENCES
[1] AT&T Easy World Wide Web service,

http://www.att.com/easywww/

[2] AT&T Just4Me service, http://www.att.com/just4me/

[3] AT&T Connect 'N Save service,
http://www.connectnsave.att.com/

[4] Heidemann, J., Obraczka, K. and Touch, J. (1997), Modeling
of the performance of HTTP over several transport protocols.
IEEE Trans. Netw. 5,616-630

[5] Slothouber, L.P., A model of Web server performance,
http://louvx.biap.com/whitepapers/per formance/overview/

[6] Stevens, R.W. (1994). TCP/IP Illustrated, Vol 1 (Addison
Wesley)

[7] Box, D. (1998), Essential COM (Addison Wesley Longman,
Inc.)

[8] Hu, J., Pyarali, I. and Schmidt, D.C. (1997), Measuring the
impact of event dispatching and concurrency models on Web
server performance over high-speed Networks, IEEE
Proceedings of the 2nd Global Internet Conference

[9] Coming, M., Elfanbaum, S. and Melnick, D. (1997),
Working with Active Server Pages (Que Corporation,
Indianapolis, IN)

[10]Box, D., Active Server Pages and COM apartments,
http://www.develop.com/dbox/aspapt.asp

[11] Kleinrock, L.K. (1976). Queueing Systems, Vol. 2 (Wiley &
Sons, New York)

62

