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Abstract—Surrounded by a multitude of wireless networks,
users can nowadays experience significant performance
improvements when smartly combining multiple networks
concurrently (e.g., for transferring files). This phenomenon is
called Concurrent Access (CA). Some users, which are referred
to as foreground (FG) users, are able to access and utilize
multiple networks simulateneously. The traffic streams from the
FG users are optimized over multiple networks, in the presence
of background (BG) users that can use only one network.
In the literature a variety of traffic splitting algorithms have
been proposed, with a focus on improving the performance of
the FG users, whereas the influence of smart traffic splitting
on the performance experienced by the BG users, as well
as the resulting splitting ratios over the different networks,
have received hardly attention. In this paper, we evaluate and
compare the performance of these algorithms with respect to
three quality metrics: (1) the file transfer performance of the
FG traffic, (2) the file transfer performance of the BG traffic,
and (3) the traffic splitting ratios, i.e. the fractions of traffic
that is sent over each of the access networks. Our simulations-
based results provide a number of valuable insights in the pros
and cons of the different job splitting and assignment algorithms.

Keywords—Traffic Splitting, Processor Sharing, Concurrent
Access, Flow-level Performance, File Splitting.

I. INTRODUCTION

Over the past two decades the use of wireless communi-
cation networks has grown at an unprecedented rate, and this
growth is not likely to come to an end in the near future.
Normal cellphones are replaced by smartphones that generate
and consume vast amounts of data. The main barrier to the
sustained growth is the fundamental limitation on increasing
the data rate. In practical deployments scarce resources have
to be shared among a multitude of users, each of which shows
random behavior in terms of application usage and mobility.
In the competitive markets of wireless communication services
it is essential for network operators to deliver high-quality
services at sharp prices. This raises the need for smart and
differentiating methods to utilize, control and further optimize
the scarce wireless network resources in a cost-efficient man-
ner.

A promising solution to satisfy the increasing demand for
high application data rates is the concurrent use of multiple
wireless networks. On multi-homed devices, for example, the
data rate available to the applications may strongly benefit from
the overlapping coverage of a wide range of wireless access

technologies that operate in different frequency bands and
already achieve very high spectral efficiencies. The approach
to benefit from accessing multiple networks simultaneously,
called concurrent access (CA), potentially delivers significant
advantages, including performance improvement and increased
robustness. Before carrying out this research, however, little
was known about how to effectively exploit this enormous
potential by smartly splitting traffic streams over multiple
concurrent wireless networks. Currently, the efficient use of
multiple networks concurrently is an active area of both re-
search [1] and standardisation efforts [2]. This is the motivation
for the research pursued in this paper.

In the context of communication systems the concurrent
use of multiple network resources in parallel was already
described for a Public Switched Digital Network (PSDN) [3].
Here inverse multiplexing was proposed as a technique to
perform the aggregation of multiple independent informa-
tion channels across a network to create a single higher-
rate information channel. Many different forms of parallelism
occur throughout different protocol layers in communication
systems to enhance reliability, e.g., protecting channels that
transfer voice signaling using the Stream Control Transmission
Protocol (SCTP) [4], or to increase network performance for
Wireless LANs (WLANs) using multiple antennas in the IEEE
802.11n and IEEE 802.11ac standard [5], [6].

Many research efforts that are focused on combining the
capacity of multiple networks concentrate on the link layer,
the transport layer and on the application layer of com-
munication systems. At the data link layer, methods have
been proposed for switching between several homogeneous
networks [7] and scheduling over heterogeneous networks [8],
[9]. However, methods at this layer require modifications for
each different network interface that needs to be supported and,
moreover, switching the data segments of the same Transport
Control Protocol (TCP) session over different network links,
even in homogeneous networks, adversely affects TCP perfor-
mance [7], [10]. At the transport layer, two main areas can
be distinguished: one concentrating on the use of SCTP (e.g.,
see [11], [12], [13]) and the other on using or modifying TCP.
Within the IETF, SCTP has evolved from a transport protocol
for voice-signaling traffic into one that allows various types of
information to be transported over different network paths. It
needs to be pointed out that the functionality for efficiently
using concurrent paths is not considered by the standard,
meaning that distributing and re-sequencing the data should



be implemented separately, and that the flow- and congestion
control mechanism is the same for the possibly different
networks used in parallel, which is not in the interest of overall
efficient link utilization nor application performance [10], [14].
Several proposals to modify, use and extend TCP for exploiting
multiple networks have appeared. The most prominent being
a modification of TCP, called pTCP [10], later followed by
mTCP [14] and MPTCP [1] that aimed at enhancing TCP to
be capable of using multiple networks concurrently. In [15]
a simple, yet efficient and easily deployable traffic-splitting
algorithm for TCP-based networks is presented and evaluated
on its FG performance, i.e., the performance of the traffic
streams that are subjected to the traffic splitting policies.

On the theoretical side, there is a wealth of literature
on performance models and analysis. Processor Sharing (PS)
models have been successfully applied to model TCP-based
file transfers over a wide range of different network standards
that are commonly used, from cellular [16], [17] to WLANs
[18], [19], [20]. The complex dynamics of multiple protocol
layers can be modelled to obtain very accurate download
response time predictions over a single network [19]. Despite
the applicability of PS-based models to real communication
networks, little is known on PS-based models suitable for
modeling the use of multiple networks concurrently. In a
queueing-theoretical context, the distribution and re-assembly
of tasks into subtasks are typically modeled by fork-join
constructions [21]. In cases where the processing times of
the subtasks are independent, exact or numerical analysis
is relatively simple (e.g., [22]), whereas the inclusion of
dependent processing times (e.g., due to queueing or job
splitting) typically leads to very complex analysis (e.g., [23],
[24]) and no closed-form solution exists. In [25] and [26],
the author analyzes a similar model but with FCFS queues
and with probabilistic splitting. We further refer to Altman et
al. [27], who consider routing policies in a distributed versus
centralized environment. In general our queueing model falls
within the framework of fork-join queueing networks, see [28]
for an extensive overview.

For PS-queues that process the tasks of a job in parallel,
the complex correlation structure between the sojourn times at
the PS-queues makes an exact detailed mathematical analysis
of the model impossible. As a result, the available literature
on queueing models with regard to traffic-splitting is not
widely adopted and hence leaves a gap between theory and
practice. As an exception, Key et al. investigate the efficiency
of combining multipath routing and congestion control in TCP-
based networks. In [29] they show that under certain conditions
the allocation of flows to paths is optimal and independent
of the flow control algorithm used. In [30] it is shown that
with RTT bias uncoordinated control can lead to inefficient
equilibria, while without RTT bias, both coordinated and
uncoordinated Nash equilibria correspond to desirable welfare
maximizing states.

The literature leaves a clear gap between theory and
practice: the existing theory provides important fundamental
insight, but the models often rely on simplifying assumptions
that cannot be met by practical deployments. On the practical
side, the research efforts on splitting algorithms and imple-
mentations were concentrated at increasing the throughput on
multiple networks (often in the absence of BG traffic) without

having a notion of the user-level performance in the presence
of BG traffic. In fact, the impact that CA methods in networks
have on the performance of other traffic is a subject that is
not well-known in the literature. To this end, in this paper
we concentrate on the overall performance impact (i.e., the
impact on all traffic streams) of various CA methods that
can be applied to distributing application data among parallel
networks.

The remainder of the paper is organized as follows. In
Section II we describe the model and introduce the notation.
More specifically, we consider a CA network that consists of
N parallel communication networks, each of which is modeled
as a PS-queue that handles two types of traffic: FG and BG
streams. In Section III we review the CA methods for applying
static/dynamic splitting and assignment of jobs in a queueing
network of parallel queues. In Section IV we discuss the results
of extensive simulations conducted with the presented methods
and compare the performance of the overall set of traffic
streams. Finally, in Section V we summarize our observations.

II. THE CONCURRENT ACCESS NETWORK MODEL

In [19], [20] a new concept is introduced for modeling
data traffic flows in a communication network by jobs that are
processed by a Processor Sharing (PS) queue. The influence
of complex combined dynamics and protocol overhead of
multiple communication layers on data traffic flows in real
networks can be accounted for in an explicit expression for
a single parameter which will be called the effective service
time. Based on the effective service time, the effective load
is defined to describe the performance of data flows in a
network with an M/G/1 PS model. Extensive validation by
means of simulations and experiments conducted with network
equipment reveals that accurate predictions for the mean
download time [19] and its distribution [20] can be obtained
for a wide range of parameter combinations. Additionally,
this model can be used to parameterize a PS-based queueing
network, such that the outcomes correspond to the performance
of real networks or vice versa. Using the properties of the
model for effective service time we analyze the concurrent
access network model with a queueing network that consists
of N parallel PS nodes (Figure 1). There are N + 1 traffic
streams: a single stream of FG jobs (called class-0 jobs) and
N streams of BG jobs (called class-i jobs, for i = 1, . . . , N ).
Class-i jobs arrive according to independent Poisson processes
with rates λi, the service times are generally distributed with
mean βi, and the corresponding load offered to the system is
ρi = λiβi, i = 0, 1, . . . , N . It is assumed that PS-queue i
operates at rate ci. Based on the model for effective service
time the network may be represented by PS-queues and the
files by jobs to study traffic splitting methods in a queueing-
theoretical context.

Let Si denote the sojourn time of an arbitrary class-i job
in the system, for i = 0, 1, . . . , N . In the next section we
discuss a number of traffic splitting methods, which are aimed
to minimize the expected value of the sojourn time of FG jobs
(i.e., E[S0]), with respect to the choice of the splitting policy.

III. THE CONCURRENT ACCESS METHODS

In this section we briefly discuss the different traffic
splitting methods under consideration.



Fig. 1: The concurrent access network model.

A. Static splitting

In the case of having static splitting, each FG job is
fragmented (split) upon arrival according to a static, splitting
rule α = (α1, . . . , αN ) where

∑N
i=1 αi = 1 and αi ≥ 0,

i = 1, . . . , N . After splitting, the fragments are routed to their
corresponding queues. Thus, when a job of size B arrives at
stream 0, a fragment of size αiB is directed to each queue i.
Once all fragments complete their service, the fragments must
be reunited (indicated in Figure 1 as the optional reassembly),
and this completes the processing of the job that models the
file transfer through the N communication networks. When
we consider a tagged FG job J that arrives to a network in
steady-state, we denote the sojourn time of its i’th fragment
operating under the splitting rule α by S

α
i ; this is the time

it takes the fragment to complete service at queue i. Denote
Sα = (S

α
1 , . . . , S

α
N ). The sojourn time of J through the

network is defined as Sα0 := maxSα.

When optimizing static splitting, the objective is to choose
a splitting rule α∗ such that E[S

α
0 ] is minimal over all

feasible values of α. In this context, note that in general the
sojourn times of a job’s fragments in the different PS-queues
S
α
1 , . . . , S

α
N are generally correlated, and do not allow for an

exact detailed analysis. The following simple static splitting
rule is proven achieve optimality with respect to the tail of the
sojourn time of the FG traffic (cf. [31])

α∗i :=
ci − ρi∑N

j=1(cj − ρj)
(i = 1, . . . , N), (1)

to obtain a splitting rule for all queues denoted by:

α∗ := (α∗1, . . . , α
∗
N ). (2)

This rule divides FG jobs in parts that are proportional to
the remaining capacity in each queue. Note that ci − ρi is the
unutilized capacity of queue i due to BG traffic and

∑N
j=1(cj−

ρj) is the total unutilized capacity due to BG traffic. Note that
α∗ does not depend on ρ0. We refer to [31] for a more detailed
discussion about static splitting.

B. Dynamic assignment

For the case of dynamic assignment, FG jobs are assigned
to one of the available networks, in the presence of BG traffic

streams. The problem is to develop a dynamic policy that
minimizes the mean sojourn time of the FG traffic. The optimal
policy generally depends on the information that is available to
the decision maker. For example, in the case where the decision
maker has information about the numbers of FG and BG jobs at
each of the access nodes, the optimal policy can be developed
by solving a Markov decision problem. As another example, in
some cases the decision maker does not have full information
about the numbers of FG and BG jobs in each of the networks,
but instead only has partial information on the total number
of jobs at each of the networks. In [?], a Bayesian learning
algorithm was proposed that splits a stream by optimally
assigning entire jobs to different nodes. The optimality of the
partial information algorithm is evaluated by comparing the
performance of the algorithm with the ’ideal” performance
of the optimal policy using full state information about the
numbers of FG and BG jobs at the nodes. Experimental results
show that the dynamic assignment, which is also referred
to as the Bayesian assignment a delivers close to optimal
performance over a wide range of parameter values. We refer
to [?] for a more detailed discussion of dynamic assignment
policies.

C. Dynamic splitting of FG jobs

In the case of dynamic splitting, FG jobs use the capacity
of all nodes simultaneously in a fluid-like manner, using the
(instantaneously) available capacity at all the N PS nodes; at
any moment in time the capacity available at node i is equally
shared amongst all FG jobs in the system and with the BG jobs
at node i. The splitting operates without delay with infinitely
small granularity and has perfect information about the number
of FG and per-class BG jobs in the system. If upon arrival of
a tagged FG job F there are k0 other FG jobs in the system
and ki BG jobs at node i, then F obtains a fraction

fi :=
1

k0 + 1 + ki
(3)

of the capacity of node i, for i = 1, . . . , N . Note that in this
way, the instantaneous total transmission speed that F receives
equals

∑N
i=1 fi, and that this speed changes during the course

of the sojourn time of F in the system, as other jobs may come
and go.

The model described above uses fluid-like splitting of
FG jobs at infinitely fine time granularity. Therefore, the
performance of the dynamic splitting model is optimal in the
sense that the synchronization delay in the reassembly phase
(which is usually encountered when splitting is done at coarse-
grained granularity or with non-perfect or delayed information)
is zero, while the FG jobs receive no more than their fair share
of capacity at each of the nodes. It is evident that from the
viewpoint of the FG traffic even better performance for FG
jobs can be obtained by allowing unfair capacity sharing at
the PS nodes in favor of FG traffic.

The model is a flow-level performance model that describes
the elastic behavior of TCP-based networks by PS-models,
abstracting from the complex packet-level dynamics at the
TCP layer. To model the flow-level behavior of TCP-based
networks, the parameters of TCP networks (e.g., RTTs, max-
imum window sizes, maximum segmant sizes, etc.) need to
be parameterized into the parameters of the PS-models (e.g.,



service times). To this end, in [19] we propose the concept
of effective service time and give a full parameterization,
translating the TCP-parameters into PS-model parameters. In
doing so, the transfer time of a file over a TCP network is
modeled by the sojourn time of a job in the corresponding
PS-model

In the special case where the service-time distributions
are all exponentially distributed, with rates µi := 1/βi (i =
0, 1, . . . , N ), then the evolution of the system can be de-
scribed as a continuous-time Markov chain (CTMC) with
state space S = N0

N+1, where each state is of the form
s = (k0, k1, . . . , kN ) ∈ S, with k0 the number of FG jobs in
all N PS nodes and ki (i = 1, . . . , N) the number of BG jobs
in PS node i. For each arriving FG job, a task is assigned to
each PS node of which the processing demand will be adjusted
to complete the service of all tasks corresponding to the same
job simultaneously. It is readily verified that the state-transition
rates of the CTMC are as follows:

q(s, s+ ei) = λi (i = 0, 1, . . . , N), (4)

q(s, s− e0) =
N∑
i=1

k0
k0 + ki

µ0, (5)

q(s, s− ei) =
ki

k0 + ki
µi (i = 1, . . . , N), (6)

for all possible state combinations in S; here, ei stands for the
unit vector that has zeros on all dimensions except the dimen-
sion that corresponds to the total number of FG jobs (by taking
i = 0) or number of BG jobs (for i = 1, . . . , N ) respectively.
Equation (4) represents the external arrivals of class-i jobs, for
i = 0, 1, . . . , N . Equations (5) and (6) represent the departure
of a FG job, and a class-i job, respectively. Given the stationary
distribution of the CTMC, π(·), the expected number of FG
and BG jobs in the system is, for k = 0, 1, . . . , N ,

E [Nk] =

∞∑
i0=0

∞∑
i1=0

. . .

∞∑
iN=0

ikπ(i0, i1, . . . , iN ). (7)

Using Little’s formula, we obtain the expected sojourn time of
the FG and BG jobs:

E [Sk] =
E [Nk]

λk
(k = 0, 1, . . . , N). (8)

We refer to [?] for a more detailed discussin on the dynamic
splitting model.

D. Static assignment

The static assignment policy simply assigns all foreground
traffic to the node with the lower background load (ties are
broken evenly).

E. Join-Shortest-Queue

The Join-Shortest-Queue (JSQ) policy assigns a FG job to
the node with the smallest number of jobs present (ties are
broken evenly).

Fig. 2: Splitting/assignment ratios of light FG traffic
(ρ0 = 0.1) for various CA strategies as a function of the BG

load.

IV. COMPARISON

In this section we compare the outcomes of the five CA
strategies discussed above by simulations. For these strategies,
we focus on the following three quality metrics: (1) mean
sojourn time of FG jobs, (2) mean sojourn time of BG jobs,
and (3) the traffic splitting ratios. In the following subsections
the results of simulations are shown. To this end, we consider
a network, where N = 2 and β(1) = 1. The load of the
FG traffic ρ0 was varied from light (ρ0 = 0.1) to mild
(ρ0 = 0.5), moderate (ρ0 = 0.9) and heavy (ρ0 = 1.8), and
the BG loads ρ1 and ρ2 were varied as 0.1, 0.2, . . . , 0.9. Each
simulation run is based on averages from 108 FG observations.
For convenience, the BG traffic performance in both queues
is consolidated into the following notion of the BG traffic
performance:

γ =
E [S1] ρ1 + E [S2] ρ2

ρ1 + ρ2
(9)

A. Light FG traffic load

Figure 2 shows that under light FG traffic load, the traffic
splitting/assignment ratios demonstrate very typical behavior
for each strategy. The static assignment strategy simply selects
the queue with the smallest BG traffic load and is a trivial
example. When performing static job-splitting, the ratio re-
mains close to half when the BG traffic loads become unequal
and cause a very steep increase in the splitting ratio towards
a highly unbalanced system. The ratio in which the jobs
are assigned by the Join-the-Shortest Queue (JSQ) algorithm
differ much from the other in that there seems to be a linear
increase as the systems become more and more unequally
loaded. Different from the other strategies, both the dynamic
Bayesian assignment and the dynamic splitting policies show a
bended curve as the queues become more and more unequally
loaded. However, the dynamic splitting ratio shows a much
steeper increase and remains far below the other strategies.
The sojourn times that match the splitting/assignment ratios
from Figure 2 are shown in Figure 3. From the perspective of
the FG sojourn time, the dynamic traffic splitting outperforms
all other strategies. As long as the overall BG traffic load is not
very high, static assignment performs fairly well considering
its simplicity. If the BG load in both queues increases, static
assignment may yield very high sojourn times or may cause
one of the queues to become unstable where other strategies
continue to perform well.



Static splitting of light FG traffic leads to fairly good
performance as long as both queues are lightly loaded. As
the BG load on one of the queues is gradually increased,
the performance of static splitting is very similar to static
assignment for low to moderate overall BG traffic loads. The
results for Bayesian assignment and JSQ are so close that they
can hardly be distinguished. In particular under higher overall
BG traffic loads the performance of dynamic assignment and
JSQ lead to fairly good results. Clearly, there is no strategy that
outperforms dynamic splitting. The relative difference to static
splitting is not very large under very low overall BG traffic
loads. If, however, the BG traffic loads increase the difference
between dynamic splitting and static splitting becomes very
large, up to the point where dynamic splitting is more than
twice as fast.

Fig. 3: Mean sojourn times of light FG traffic (ρ0 = 0.1) for
various CA strategies as a function of the BG load.

The impact of the traffic distribution strategies on the BG
traffic performance is shown in Figure 4. Here it is shown
that the relative differences between the BG traffic load is
limited as long as the queues are not very unequally loaded
with BG traffic and the overall BG traffic load is not too
high. The overall BG traffic sojourn times is most favorable
in the remaining cases for either static assignment low to
medium BG traffic load) or in the case of dynamic assignment
or JSQ. Under very high BG traffic load, dynamic splitting
improves the FG traffic performance slightly at the expensive
of the BG traffic compared to JSQ and dynamic (Bayesian)
assignment. When considering the splitting ratios in Figure 2,
dynamic splitting is directing much more service demand to the
queue with the highest load. This consistent behavior can be
observed throughout Figure 2. Static splitting performs worst
at very high load, both with respect to the FG-and the BG
performance. This may be explained by the high fluctuations in
occupation level in both queues: splitting the FG traffic based
on a long-term characteristic does not match the occupation
levels at small time scales.

Fig. 4: BG traffic performance (γ) for various CA strategies
with light FG traffic (ρ0 = 0.1) as a function of the BG load.

B. Mild FG traffic load

Figure 5 shows the results on the splitting/assignment ratios
for a FG traffic load that is equal to ρ0 = 0.5. As expected, the
static assignment strategy has fewer combinations for which
the system is stable. Considering the curves of the other CA
strategies it may seem to increase steeper than for the light BG
traffic load. This is not generally the case. For static splitting,
the ratios are increasing much slower with an increasing BG
load skewness when compared to light FG load. This effect is
even more pronounced for Bayesian assignment.

The JSQ strategy increases its assignment ratios very
modestly. An exception to this rule is the behavior of dynamic
splitting, which is splitting the traffic such that, in comparison
to light FG load, a higher portion of the FG traffic arrives at
the queue that has a higher load. Due to the higher FG traffic
load, the splitting ratios show smaller variations, in particular
for higher BG load values. Again are the dynamic policies
characterized by bended curves whereas the JSQ strategy
demonstrates an almost linear increase. The impact on the
FG sojourn times is illustrated in Figure 6, where the static
assignment strategy is clearly performing much worse than
others. Also the distance between these other strategies has
increased in comparison to the case of light FG traffic load (in
Figure 3). Figure 6 also shows that for mild FG traffic load
the difference between the JSQ strategy and dynamic Bayesian
assignment becomes visible for higher BG load values. For
the highest BG load depicted, the results are very similar
to the ones illustrated in Figure 3. The results on the BG
performance are shown in Figure 7 and demonstrate higher
differences between the various strategies. It can be observed
that static assignment of FG traffic does not lead to poor BG
performance.

In fact, for low overall BG traffic loads, static assignment
leads to the lowest BG sojourn times. Dynamic assignment
using JSQ or Bayesian strategies leads to slightly higher
sojourn times than those for static assignment. For higher
overall BG loads the difference between Bayesian assignment
and JSQ becomes visible and clearly Bayesian assignment
delivers lower FG response times at the expense of the BG
traffic performance. Dynamic splitting leads to relatively high
BG sojourn times when both queues are exposed to very
different BG traffic loads. In those cases dynamic splitting
delivers higher BG sojourn times than static splitting. The
latter strategy adversely affects the BG performance most



prominently when the overall BG traffic load is high, an effect
that is similar to the FG sojourn times in Figure 6.

Fig. 5: Splitting/assignment ratios of mild FG traffic
(ρ0 = 0.5) for various CA strategies as a function of the BG

load.

Fig. 6: Mean sojourn times of mild FG traffic (ρ0 = 0.5) for
various CA strategies as a function of the BG load.

Fig. 7: Background traffic performance (γ) for various CA
strategies with mild FG traffic (ρ0 = 0.5) as a function of the

BG load.

C. Moderate FG traffic load

For a moderate FG traffic load, ρ0 = 0.9 the split-
ting/assignment ratios are as expected: the differences between

the curves are again smaller in comparison to lower FG traffic
loads and the splitting ratios of dynamic splitting are lagging
behind the other strategies. In the case of moderate FG traffic
load static assignment does not lead to a stable system in the
case of having a BG load equal to 0.1. The differences between
static splitting and dynamic assignment using JSQ or Bayes are
very small. Similar to what was observed for an increasing FG
traffic load from light to mild intensities, dynamic splitting is
the only strategy that is directing again more traffic towards
the queue that has the highest BG load. In contrast, Bayesian
assignment and static splitting send a smaller portion of the
FG traffic to the queue with the highest BG load.

The JSQ strategy has the smallest sensitivity to the FG
traffic intensity; slightly smaller amounts of jobs are assigned
to the queue with the highest BG load. The resulting impact
on the FG sojourn times are shown in Figure 9 where it
is clearly shown that Bayesian assignment outperforms the
JSQ strategy most notably for unbalanced systems. Again, the
sojourn times of the FG traffic are significantly smaller than
for all other strategies. The resulting BG traffic sojourn times
demonstrate that dynamic splitting optimizes the FG traffic at
the expense of the BG performance, in particular BG jobs in
highly loaded queues in unbalanced systems experience very
high mean sojourn times.

Fig. 8: Splitting/assignment ratios of moderate FG traffic
(ρ0 = 0.9) for various CA strategies as a function of the BG

load.

Fig. 9: Mean sojourn times of moderate FG traffic (ρ0 = 0.9)
for various CA strategies as a function of the BG load.



Fig. 10: BG traffic performance (γ) for various CA strategies
with moderate FG traffic (ρ0 = 0.9) as a function of the BG

load.

D. Heavy FG traffic load

When exposing the N = 2 queueing network to a high FG
traffic load of ρ0 = 1.8 the four strategies shown in Table I
may lead to a stable system. Dynamic splitting sends the most
traffic over the queue that also carries BG traffic. Bayesian
assignment performs slightly better with respect to FG traffic
performance than JSQ. In this context the relative difference
between static splitting and the other methods is fairly limited
when considering its simplicity. The FG traffic performance of
dynamic splitting is 8.3% better than the second-best strategy
of Bayesian assignment. When taking an overall performance
metric ψ = ρ0 ·E[S0] + ρ2 · γ dynamic splitting also performs
best, improving the performance with 4.9% in comparison to
JSQ.

α∗ E[Sα
∗

0 ] γ
Static split 0.527 11.723 20.555
Dynamic assignment 0.533 10.370 15.391
Dynamic split 0.525 9.510 19.207
JSQ 0.527 10.532 10.682

TABLE I: Simulation results for heavy FG load (ρ0 = 1.8),
with ρ1 = 0 and ρ2 = 0.1.

V. SUMMARY

In this paper the peformance dynamic splitting of FG traffic
jobs over multiple PS-queues is considered. To this end, we
compare the following five splitting and assignment policies:
JSQ, static splitting, static assignment, dynamic splitting and
dynamic assignment. The comparison is based on the following
quality metrics: the mean sojourn time of both FG and BG
traffic streams, and the splitting ratios. Based on extensive
simulation experimentation, we come to the following obser-
vations.

• Static splitting may lead to a strong improvement
of the performance of the FG traffic, but also to
degradation. It often has a main negative impact on the
BG traffic performance. As such, static traffic splitting
is less useful for practical purposes in a networking
environment.

• Dynamic assignment is the best solution if one wishes
to split traffic over multiple networks, but does not
want to make the total capacity of the FG traffic
exceed the capacity of a single network (which is also
an assumption of multi-path TCP).

• Dynamic assignment improves the FG performance,
and at the same time is mild to the BG traffic. By
dynamic assignment one may decide in exceptional
cases to select another queue.

• Dynamic split is expected to lead to a worse FG
performance than dynamic assignment, because the
FG traffic takes the risk of re-sequencing delays and
losses, and does not get a higher capacity in return.
Also, additional protocol overhead is encountered.
Therefore, dynamic splitting is not recommended for
practical purposes.
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