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ABSTRACT

Over the past few years, Java has evolved into a mature platform
for developing enterprise applications. A critica factor for the
commercial success of these applications is end-to-end
performance, e.g., in terms of response times, throughput and
availability. This raises the need for the development, validation
and analysis of performance models to predict performance
metrics of interest. To develop and validate performance models,
insight in the execution behavior of the application is essential,
requiring advanced monitoring capabilities.

In this paper we introduce our Java Performance Monitoring
Toolkit (JPMT). JPMT represents internal execution behavior of
Java applications by event traces. An event represents the
occurrence of some activity, such as thread creation, method
invocation, and locking contention. Events are annotated by high-
resolution performance attributes, e.g., duration of locking
contention and CPU time usage by method invocations. JPMT is
an open toolkit, its event trace API can be used to develop custom
performance analysis applications. JPMT comes with an event
trace visualizer and a command-line event trace query tool for
scripting.  JPMT supports event filtering during and after
application execution. The instrumentation required for
monitoring the application is added transparently to the user
during run-time. Overhead is minimized by only instrumenting
for events the user is interested in. Furthermore, the
instrumentation itself is carefully optimized.

This paper discusses the architecture and implementation of the
toolkit in detail and reports on our experience in applying the
toolkit to model a CORBA implementation.

Categories and Subject Descriptors
D.2.8 [ Softwar e Engineering]: Metrics — performance measures.

General Terms
Algorithms, M easurement,
Experimentation.
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1. INTRODUCTION

The drastic growth of the Internet, the ongoing developments in
the hardware and software industry, and the recent advances in
networking technology have boosted the emergence of
Information and Communication Technology (ICT). ICT systems
enable applications to be divided in components that can be
executed on geographically distributed information systems.
These applications are commonly referred to as distributed
applications. Distributed computing provides the fundamental
technology for the realization of enterprise-wide and even global
information systems.

The Quality of Service (QoS) provided by these enterprise
applications is often a critical success factor. For example,
unavailability of e-business applications directly leads to loss of
revenue.  Various QoS types can be identified, such as
performance, availability, and security. In this paper, we focus on
performance.

To ensure applications perform as required one could
perform tests using a rea system. However, often performance
testing is unfeasible for a variety of reasons. For instance, testing
might not be allowed because it would disrupt the operation of a
running system. Building a test environment similar to the real
world environment is often not possible, since it would require
too much time and money. Sometimes testing is not possible
sinceit’stoo difficult or expensive to reproduce certain workloads
in the test environment, or simply because an implementation of
the application to test is hot yet available.

An alternative to performance testing is performance
modeling. A performance model of a system is an abstraction of
that system describing the parts of the system that are relevant to

performance. Performance models provide performance
predictions, rather than performance observations. These
performance predictions are extremely useful to identify

performance bottlenecks and to timely anticipate on future
performance problems for projected growth volumes. Using, for
instance, discrete event simulation, numeric approximations, or
analytic techniques, the performance of a given scenario can be
predicted. Performance analysis using models is often faster and
cheaper than real-world testing. Contrary to testing, an
implementation or prototype of the application is not needed for
performance modeling. Performance models can be used to
validate application design decisions before they are implemented.
Since performance models provide only predictions, and not
observations, modeling results can become inaccurate if the model
does not capture the dynamic behavior of the application close
enough. Building accurate performance models of a system
requires insight in the internal behavior of the system and good



quality performance measures. As such performance monitoring
isan important step towards useful performance models.

Over the past few years Java [5] has evolved into a mature
platform. Its portability makes Java a popular language for
implementing  enterprise  applications and  off-the-shelf
components, such as middleware and business logic. The
objective of this paper is twofold: (i) present a performance
monitoring toolkit for Java, and (ii) to illustrate how this toolkit
can be applied for the development and validation of performance
models of software components implemented in Java.

The remainder of this paper is structured as follows. Section
2 presents the requirements for the toolkit. Section 3 discusses
the architecture. Section 4 discusses the implementation of our
prototype.  Section 5 applies the toolkit to monitor the
performance of a CORBA object-middieware implementation for
Java. Section 6 discusses related work. Section 7 lists future
work. Section 8 concludes.

2. REQUIREMENTS
To build performance models of a system, a description of its
execution behavior is needed. The description should include
performance annotations so that the performance analyst is able to
identify the behavior relevant for performance modeling.
Accurate performance models require a precise description of the
behavior, and good quality performance estimates or measures.
[28] Our objective is to design a performance monitoring toolkit
for Java that obtains both a description of the behavior of a Java
program, and high-resolution performance measurements.

The toolkit should be able to monitor the following elements
of execution behavior:

The invocation of methods. The sequence of method
invocations should be represented by a call-tree. To
produce call-trees we need to monitor method entry and
exit.

Object dlocation and release. In Java, objects are the
entities that invoke and perform methods. The monitoring
tool should be able to report information on these entities.
Thread creation and destruction. Java alows multiple
threads of control, in which method invocations can be
processed concurrently. The monitoring tool should be able
to produce call-trees for each thread.

Mutual exclusion and cooperation between threads. Java
uses monitors [6] to implement mutual exclusion and
cooperation. The monitoring tool should be able to detect
contention due to mutua excluson (Java’s
synchroni zed primitive), and measure the duration.
Furthermore, the monitoring tool should be able to measure
how long an object spends waiting on a monitor, before the
object is notified (wait(), notify(), and
noti fyAl I () inJava).

The monitoring results should include attributes that can be
used to calculate performance measures. For instance, to
calculate the wall-clock completion time of a method invocation
the timestamps of the method entry and exit are needed. The
timestamps, and other attributes used, should have a high-
resolution. For instance, timestamps with a granularity of 10ms
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are not very useful to calculate the performance of method
invocations, since alot of invocations may use less than 10ms.

Performance modeling is a top-down process. At various
performance modeling stages, performance analysts may have
different performance questions. During the early modeling
stages the analyst is interested in a global view of the system to be
modeled. The analyst tries to identify the aspects relevant for
performance modeling. In later stages the analyst has more
detailed performance questions about certain aspects of the
system. The monitoring toolkit should support this way of
working.

Instrumentation of a Java program is required to obtain
information on its execution behavior.  For performance
monitoring it is important to keep the overhead introduced by
instrumentation minimal. So, we only want to instrument for the
behavior we are interested in. During the early modeling stages,
when the performance analyst wishes to obtain a global view of
the behavior, the overhead introduced by instrumentation is not a
major issue. However, when the analyst needs to measure the
performance of a certain part of the system it is important to keep
the instrumentation overhead to a minimum, since the
measurements need to be accurate. This means that we need
different levels of instrumentation depending on the performance
questions. Manually instrumenting the Java program for each
performance question is too cumbersome and time consuming.
Therefore we require some sort of automated instrumentation
based on a description of the behavioral aspects the performance
analyst isinterested in.

Tools are required to analyze and visualize the monitoring
results. Since performance questions may be domain specific it’s
important that custom tools can be developed to process the
monitoring results. Hence, the monitoring results should be
stored in an open data format. An application programming
interface (API) to the monitoring data should be provided to make
it easy to build custom tools.

3. ARCHITECTURE

Our architecture is based on event-driven monitoring. In general,
two types of monitoring can be distinguished: time-driven
monitoring and event-driven monitoring [12].

Time-driven monitoring observes the state of the monitored
system at certain time intervals. This approach, also known as
sampling, is often used to determine performance bottlenecks in
software.  For instance, by observing the cal-stack every
millisecond a list of methods using the most processing time can
be obtained. Time-driven monitoring doesn’t provide complete
behavioral information, only snapshots.

Event-driven monitoring is a monitoring technique where
events in the system are observed. An event represents a unit of
behavior, eg., the creation of a new thread. Our monitoring
toolkit should implement the event-driven monitoring approach,
since we require complete behaviora information, not just
snapshots.

The following figure illustrates our architecture in terms of
the main building blocks of our toolkit, and the way they are
related (e.g., viainput and output files).

First, the events of interest are specified in a configuration
file. By using event filters, events can be included or excluded
from the set of interesting events. For example, certain methods
of a given class may be interesting, while the rest should not be
monitored.
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Figure 1: Monitoring ar chitecture

During run-time the observer component collects the events
of interest. Instrumentation is added to enable generation,
observation, and logging of these events. The observed events are
stored in abinary file.

After monitoring the binary file containing the collected
events can be analyzed. An event trace generator produces event
traces from the collection of events. One event trace is produced
for each thread of control. An event trace represents events in a
tree-like structure. Event traces are very similar to call-trees, but
in addition to method invocations they also contain other event
types.

The event traces can be accessed using our event trace API.
This API is the main building block for tools that analyze or
visualize event traces. The event trace APl dlows the
performance analyst to build custom analysis tools.

The toolkit provides two applications based on the event
trace API; an event trace browser and an event trace anayzer.
The implementation of this architecture and the tools are
discussed in the next section.

4. IMPLEMENTATION

4.1 TheJavaVirtual Machine Profiler

Interface

The Java Virtual Machine Profiler Interface (JWMPI) plays an
important role in our observer implementation. JVMPI allows a
user provided profiler agent to observe events in the Java virtua
machine. The profiler agent is a dynamically linked library
written in C or C++. By subscribing to the events of interest,
using VMPI's event subscription interface, the profiler agent can
collect profiling information on behalf of the monitoring tool. We

use JVMPI and a profiler agent to implement the observer
component in our architecture. Figure 2 depicts the
implementation of the observer.

An important feature of JVMPI is its portability; its
specification is independent of the virtual ~machine
implementation. The same interface is available on each virtual
machine implementation that supports the JVMPI specification.
Furthermore, JVMPI does not require the virtual machine to be in
debugging mode, it is enabled by default. The Java virtua
machine implementations by Sun and IBM support JVMPI.

JVMPI supports both time-driven monitoring and event-
driven monitoring. This section only discusses the functionality
in VMPI that is relevant for event-driven monitoring.

The profiler agent is notified of events through a callback
interface. The following C++ fragment illustrates a profiler
agent’s event handler:

voi d NotifyEvent (JVMPI _EVENT *ev) {

switch (ev->event_type) {

case JVMPI _CLASS LQAD:
/! Handl e ‘class |oad’ event.
br eak;

case JVMPI _CLASS UNLOAD:
/1 Handl e ‘class unload’ event.
br eak;

The WMPI_EVENT structure includes the type of the event,
the environment pointer (the address of the thread the event
occurred in), and event specific data:

typedef struct {

jint event_type;

JNI Env *env_i d;

uni on {

struct {
/1 Event specific data for ‘class |oad’.
} class_| oad;
Pou
} JVVPI _EVENT;

JVMPI uses unique identifiers to refer to threads, classes,
objects, and methods. Information on these identifies is obtained
by subscribing to the defining events. For instance, the ‘thread
start” event, notifying the profiler agent of thread creation, defines
the identifier of that thread and has attributes describing the

thread (e.g., the name of the thread). The ‘thread end’ event
undefines the identifier. For certain identifiersit is not required to
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Figure 2: Implementation of the observer



be subscribed to their defining events to obtain information on the
identifier. Instead, the defining events may be requested at a later
time. For instance, defining events for object identifiers can be
requested at any time using the Request Event () method of
the VMPI API.

JVMPI profiler agents have to be multithread aware, since
JVMPI may generate events for multiple threads of control at the
same time. Profiler agents can implement mutual exclusion on its
internal data structures using VMPI’s raw monitors. These
monitors are similar to Java monitors, but are not attached to a
Java object.

The remainder of this subsection discusses the events that are
supported by IVMPI.

JVM start and shutdown events. These events are
triggered when the Java virtua machine starts and exits,
respectively. These events can be used to initialize the profiler
agent when the virtual machine is started and to release resources
(e.g., closelog file) when the virtual machine exits.

Class load and unload events These events are triggered
when the Java virtua machine loads a class file or unloads
(removes) a class. The attributes of the class load event include
the names and signatures of the methods it contains, the class and
instance variables the class contains, etc. The class loading and
unloading events are useful for building and maintaining state
information in the profiler agent. For instance, when JVMPI
informs the profiler agent of a method invocation it uses an
internal identifier to indicate what method is being invoked. The
class load event contains the information that is needed to map
this identifier to the class that implements the method and the
method signature.

Class ready for instrumentation. This event is triggered
after loading a classfile. It allows the profiler agent to instrument
the class. The event attributes are a byte array that contains the
byte-code implementing the class, and the length of the array.
Using the Java virtual machine specification, profiler agents may
interpret the byte array, and change (instrument) the
implementation of the class and its methods. JVMPI doesn’t
provide interfaces to instrument class objects though. We use this
event to instrument methods we want to monitor. This is
described in the next subsection.

Thread start and exit. These events are triggered when the
Java virtual machine spawns and deletes threads of control. The
events attributes include the name of the thread, the name of the
thread-group, and the name of the parent thread.

Method entry and exit. Method entry events are triggered
when a method implementation is entered. Method exit events are
triggered when the method exits. The time period between these
eventsis the wall-clock completion time of the method.

Compiled method load and unload. These events are
issued when just-in-time (JIT) compilation of a method occurs.
Just-in-time compilation of a method compiles the (virtua
machine) byte-code of the method into rea (native) machine
instructions.  Suns hot-spot technology automatically detects
often-used methods, and compiles them to native machine
instructions automatically.

Monitor contented enter, entered, and exit. These events
can be used to monitor the contention of Java monitors (due to
mutual exclusion). The monitor contented enter event is issued
when a thread attempts to enter a Java monitor that is owned by
another thread. The monitor contented entered event is issued
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when the thread that waited for the monitor enters the monitor.
The monitor contented exit event is issued when a thread leaves a
monitor for which another thread iswaiting.

Monitor wait and waited. The monitor wait event is
triggered when a thread is about to wait on an object. The
monitor waited event is triggered when the thread finishes waiting
on the object. These events are triggered due to waiting on
condition variables for the purpose of cooperation between
different threads.

Garbage collection start and finish. These events are
triggered before and after garbage collection by the virtua
machine. These events can be used to measure the time spent on
collecting garbage.

New arena and delete arena These events are sent when
arenas (areas of memory) for objects are created and deleted.
(Currently not implemented in WV MPI)

Object allocation, free, and move. These are triggered
when an object is created, released, or moved in the heap due to
garbage collection.

4.2 Profiler agent

Our first profiler agent prototype logged events in a human
readable (text) ASCII data format. Threads writing to the log file
needed to obtain aglobal lock for thefile. Thislock is held while
writing the event to the file.

Our second prototype replaced the text format with a binary
format, which is significantly faster. The binary log file is
memory-mapped into the profiler agent’s address space. Different
threads can write simultaneously to the memory map. Of course,
threads should not log events in the same location of the memory
map. A position in the memory map is assigned using a position
counter. Incrementing the position counter in the memory map
requires mutual exclusion. The position counter is increased with
the size of the data that isto be written.

The combined use of a binary data format, memory-mapped
1/0, and mutual exclusion to a position counter instead of the
whole file, makes this solution much faster than using text files.
There is a downside though; portability is sacrificed. Each
operating system may implement different interfaces for memory-
mapped files. For example, on POSIX mmap(2) [25] is used,
while Microsoft Windows has
Cr eat eFi | eMappi ng(W n32) .

Initialization, configuration, and maintenance of internal
tables. During its initialization the profiler agent reads a user
specified configuration file, containing event filters. For example,
the user may indicate which classes and methods are to be
monitored, or whether locking contention is to be monitored. An
example of a configuration file is depicted below:

output |og/test5.bin

observe_noni tor_contention
observe_obj ect _al |l ocati on

byt ecode_rewriting
observe_net hod_i nvocati ons

excl udemet hod * <init>

excl udenet hod * main

i ncl udenet hod net.qgahwah.jpnt.test.* *
excl udenet hod * *

After specifying the log file, the above configuration turns on
observation of monitor contention, object alocation, and method



invocations. Furthermore, it indicates that byte-code rewriting is
to be used to instrument for method invocation monitoring.
Finaly, it specifies the methods to be observed, using include and
exclude filters. These filters take two arguments: the class name
and the method name. Wildcards are allowed in these filters.

When the virtual machine loads a class file the VMPI
informs the profiler agent about it using a ‘class load” event. This
event has the following attributes:

struct
char
char

{

*cl ass_nane;

*sour ce_nane,
jint num.interfaces;
jint num nethods;
JVWPI _Met hod *net hods;
jint numstatic_fields;
JVMPlI _Field *statics;
jint num.instance_fields;
JVMPI _Field *instances;
Jobj ect1 D cl ass_id;

} class_I oad;

The profiler agent uses the attributes from the ‘class load’
event to build hash tables that map class and method identifiers to
class and method information, respectively. The hash tables only
keep information for classes and methods that are to be
monitored.

A ‘class unload’ event causes the information related to the
class to be removed from the hash tables.

The following code fragment depicts how the information on
classes and methods are stored in hash tables.

class dasslnfo

{

publi c:

jobjectID classlD;
char *nane;

bool dunped;
H

cl ass Met hodl nfo

{
public:
j met hodl D net hodl D;
Cl asslnfo *cl assl nfo;
char *nane;
char *signature;
bool dunped;
H

typedef hash_map<
j object! D,
Cl asslnfo *,
hash<j obj ect | D> > O assMap;

typedef hash_map<
j met hodl D,
Met hodl nfo *,
hash<j met hodl D> > Met hodMap;

Class and method information is written to the log file on
demand. For instance, when a monitored method is invoked for
the first time, information on that method is logged. The
‘dumped’ fields in the Classinfo and Methodinfo classes indicate
whether the information has been logged or not. The following
classinformation is logged:
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The ‘classID’ field, which uniquely identifies aclass.
The ‘name’ field, which contains the name of the class.

The following information is logged for methods:

. The ‘methodID’ field, which uniquely identifies the
method.
The class identifier of the class the method is part of,
obtained via the ‘classinfo’ reference to the object that
holds the class information.
The name of the method, which is stored in the ‘name’
field.
The signature (return type and types of the parameters)
of the method, which is stored in the ‘signature’ field.

Monitoring thread spawning and deletion. The profiler
agent records the spawning and deletion of every thread of
control, using the ‘thread start” and ‘thread exit” VMPI events.

A thread is identified by its environment pointer
(thread_env_id). The profiler agent maintains a hash
mapping of this environment pointer to a structure that contains
information on the thread.

When the thread exits the profiler agent removes the thread
information from the hash map.

The following code fragment shows the attributes of the
‘thread start’ event, and how thread information is stored in ahash
table.

struct {
char *thread_nane;
char *group_naneg;
char *parent_nane;
jobjectID thread_id;
JNIEnv *thread_env_id;
} thread_start;

cl ass Threadl nfo

{

publi c:
char
char
char

h

typedef hash_nmap<
JNI Env *,
Threadl nfo *,
hash<JNI Env *> > Thr eadMap;

*name;
*gr oupNane;
*par ent Nane;

Spawning and deletion of threads is recorded in the event log
file. The following information is logged when a thread is
spawned:

. The environment pointer of the thread.

The object identifier of the thread, when the profiler
agent is configured to monitor object allocations. The
object identifier can be used to obtain type information
of the thread object, e.g., the name of the class of the
thread object.

The name of the thread, the name of the parent thread,
and the name of the thread group this thread is part of.
A timestamp, representing the time the event occurred.



When athread is deleted the following information is logged:
The environment pointer of the thread.
A timestamp, representing the time the event occurred.

Monitoring method invocations using JVMPI method
entry and exit events. JVMPI natifies the profiler agent of
method invocations using the method entry and method exit
events. Both JVMPI events have one event specific attribute, the
method identifier.

struct {
j met hodl D net hod_i d;
} nethod;

When the profiler agent is notified of a method entry it
executes the following algorithm:

1. Obtain the thread local storage to store per-thread data.
The profiler agent creates this thread local storage when
it processes the first method entry in the thread.
If the method hash map doesn’t contain information for
the method identifier (meaning that the method is not to
be monitored) then a counter in the thread local storage
is increased and the event handler exits. This counter
represents the number of un-logged method invocations
in the thread of control. It can be used to correct the
event trace for perturbation. For example, if a logged
method calls 5 other methods that are filtered out (not
logged), the CPU usage and completion time of that
method includes the time for observing and filtering the
un-logged method invocations. By keeping track of the
number of un-logged invocations, we can subtract the
costs of observing and filtering out these method
invocations from the CPU usage and completion time of
the logged method.
If the method hash map does contain information on the
method identifier then information on the method and
its class is logged if it hasn’t been logged before. The
un-logged method-invocation counter is reset and its
old value is pushed on a stack in the thread local
storage. Subsequently, the information on the method
entry is logged, including timing related attributes, and
the event handler exits.

A Iogged method entry contains the following attributes:
The environment pointer of the thread that executes the
method invocation.
The identifier of the method.
The value of the un-logged method invocations
counter, before it has been reset.
Information needed to determine the CPU usage of the
method.
A timestamp, representing the time the event occurred.

Unfortunately, each operating system implements interfaces
to obtain CPU timing information differently. For example,
POSIX (a UNIX standard) offers the ti mes(2) call, Windows
offers Get Thr eadTi nes(W n32) and
Get Curr ent Thr eadCPUTiI me( W n32) , BSD UNICES and
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derivatives have getrusage(2), and Sun Solaris has
gethrtine(2) andget hrvtinme(2).

JVMPI offers Get Cur r ent Thr eadCpuTi nme( ) , whichis
supposed to return the CPU time in nano-seconds. However, on
Linux it returns the same value asget t i neof day(2) does: the
current wall-clock time in micro-seconds.

Often, CPU time information has a 10ms resolution, e.g.
POSIX” times(2), BSD’s get rusage(2), and Windows’
Get Thr eadTi mes(W n32) have a 10ms granularity. Thisis
too coarse to be used as a performance measure for Java method
invocations. This is caused by the frequency of the clock
interrupt timer. Most operating systems are configured to
generate 100 clock interrupts per second.

There is a solution for this problem: architecture specific
hardware performance counters. All modern micro processors,
including Intel’s Pentium family, IBM/Motorola’s PowerPC, and
Compag/DEC’s Alpha, implement such performance counters.

These hardware counters don’t have the granularity problem,
but they still have an interfacing problem: there is no common
interface to access these counters. Libraries such as PAPI [2]
provide a common interface to these counters. The current
implementation of the profiler agent doesn’t use such a library,
but implements similar functionality.

The profiler agent accesses the hardware performance
counters using an operating system specific device driver. On
Linux Mikael Pettersson’sper f ct r [20] package is used.

Besides propagating hardware performance counter values to
user-land, these device drivers could also implement virtual
performance counters for each process (thread). Virtual counters
are only incremented when a process is executing, not when it is
waiting in the operating system’s process scheduler queue. So, in
contrast to global counters, these counters provide precise timing
information for the process.

On the Intel platform information that can be obtained using
hardware performance counters includes the number of processor
cycles since the processor was booted [10]. We use this counter
to caculate the CPU usage of a method invocation. The
information that can be obtained using hardware performance
counters can be much more detailed, e.g. efficiency of the caches,
and efficiency of branch prediction. For our purposes this is
much too detailed.

The CPU usage of a method can be calculated by subtracting
the number of processor cycles at method entry from the number
of processor cycles at method exit.

Using byte-code rewriting to monitor method invocations.
Processing method entry and exit notifications sent by the VMPI
for every method invocation introduces a lot of overhead. At
minimum, two hash table lookups are required (to see whether or
not to log the method entry and exit). To reduce the overhead
introduced due to monitoring method invocations we have aso
implemented another monitoring approach: instrumentation of the
byte-code of method implementations. This instrumentation
mechanism only inserts instrumentation in methods that we want
to monitor. Thisis different from JVMPI’s method entry and exit
events, which are triggered for every method invocation, similar
to the interceptor design pattern [4].

JVMPI provides the ‘class ready for instrumentation’) event,
which can be used to insert instrumentation in Java classes.
However, no user-friendly interface is provided to change the
implementation of the classes. For Java, libraries are available



that provide the user with APIs for rewriting the implementation
of classes, such as the Byte Code Engineering Library (BCEL)
[3]. Unfortunately, we cannot use these libraries since the profiler
agent has to be implemented in C or C++. Rewriting classes
before run time is not an option, since that solution is in conflict
with the requirement that the insertion of instrumentation should
be transparent to the user, and be done at run-time.

We choose to implement the byte-code instrumentation
ourselves, in the profiler agent. The c‘class ready for
instrumentation’ event provides us with a byte array that contains
the compiled class object. The format of the class object is
described in the Java Virtual Machine Specification [16]. The
following pseudo-code fragment describes the structure of class
objects. Data types represented are: u2 and u4, which are 2-byte
and 4-byte unsigned numbers;, cp_info, field_info,
nmet hod_i nf o, and attri but e_i nf o, which are structures
that describe constant pool entries (e.g., names of methods),
variables, methods, and attributes, respectively.

ClassFile {
ud4 nmagi c
u2 mnor_version;
u2 mmj or _version
u2 constant_pool _count;
cp_info constant _pool [ const ant _pool _count-1];
u2 access_fl ags;
u2 this_class;
u2 super_cl ass;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 net hods_count;
met hod_i nf o et hods[ net hods_count];
u2 attributes_count;
attribute_info attributes[attributes_count];

The byte-code rewriter takes the original byte-code array,
rewrites it, and returns the rewritten byte-code array to the virtual
machine. A full description of the rewriting process is beyond the
scope of this paper. Instead we describe shortly the rewriting
algorithm (the rewriting algorithm is only executed if the class
contains methods that we should monitor):

. All bytes of the class are copied to a newly allocated byte
array that keeps the instrumented class.
The constant pool of the class is parsed and severa
administration tables are built, containing information
about constants. The constant pool contains, for instance,
references and names of classes the class refers to, and
references and names of methodsit calls.
New constant pool entries for the class and methods that
implement the instrumentation are added to the
instrumented class.
Subsequently, the list of methods is iterated. If a method
is to be monitored, instrumentation is inserted a the
method entry point and before every method exit. The
instrumentation contains byte-code that notifies the
profiler agent of method entry and exit. The insertion of
byte-code instructions renders branching offsets, and
position counters of exception handlers invalid. The
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rewriting algorithm fixes these relative and absolute
addresses. In addition, the maximum stack size may need
to be updated, since the instrumentation contains method
invocations of the profiler agents method entry and exit
handlers. Method invocations use the stack to store
parameters.

Figure 3 illustrates the rewriting algorithm. It shows how the

method body of a simple method is rewritten. The
instrumentation is printed in bold face.
Java source
public static int test2b(int i) {
if (i == 2) return test2a(i+1);
el se return test2a(i);
Byt e- code before instrunentation
PC  OPCODE OPERANDS
0x0 Oxla iload_0O
Ox1 O0x05 iconst_2
0x2 O0xa0 if_icnpne 0x0 Oxa
0x5 Oxla iload_ 0
0Ox6 0x04 iconst_1
0x7 0x60 iadd
0x8 0xb8 invokestatic Ox0 0x2
Oxb Oxac ireturn
Oxc Oxla iload_0O
Oxd Oxb8 invokestatic 0x0 0x2
0x10 Oxac ireturn
Byt e-code after instrunmentation
PC  OPCODE OPERANDS
0x0 0x10 bi push 0x01
0x2 O0xb8 invokestatic Ox0 Oxle
0x5 Oxla iload_ 0
0x6 0x05 iconst_2
0x7 O0xaO if_icnpne 0x0 Oxf
Oxa Oxla iload_0
Oxb 0x04 iconst_1
Oxc 0x60 iadd
Oxd O0xb8 invokestatic 0x0 0x2
0x10 0x10 bi push 0x01
0x12 0xb8 invokestatic Ox0 Ox1f
0x15 Oxac ireturn
0x16 Oxla il oad_O
0x17 Oxb8 invokestatic 0x0 0x2
Oxla 0x10 bi push 0x01
Ox1c Oxb8 invokestatic 0x0 Ox1if
Ox1f Oxac ireturn
Figure 3: Java byte-code rewriting illustration
Monitoring contention during mutual exclusion. The

JVMPI ‘monitor contented enter’, ‘entered’, and ‘exit’ events are
logged with timestamps, the environment pointer of the thread,
and the object-id of the Java object that is associated with the
monitor.

Monitoring cooperation. The JVMPI ‘monitor wait’ and
‘waited’ events are logged with timestamps, the environment
pointer of the thread, and the object-id of the Java object that is
associated with the monitor.
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Figure 4: Screenshot of the event trace browser, displaying part of a trace of a particular thread

Object allocation. In case information on Java objects is
needed, for instance when there is contention for a monitor, the
observer queries VMPI for object information. This information
is stored in the observer's internal data structures. To keep this
information valid the observer also needs to monitor ‘object free’
events, and ‘object move’ events (an object may be moved to
another address during garbage collection). The object
information is also logged, so that the analyzer and visualizer
tools can display object information of objects associated to
monitor contention and cooperation events.

4.3 Tools

The observer produces a binary log file containing the collected
events. From this event collection, event traces can be generated.
The toolkit provides an event trace generator that produces and
event trace for each program thread. Tools are needed to visualize
and analyze these event traces.

JPMT provides an event trace APl that can be used to
implement event trace processing tools. The API provides an
object-oriented view on the event traces. C++ classes represent
the various event types, events are instances of those classes
(objects). Event attributes can be queried by invoking methods on
the event objects.

We have implemented two tools on top of this API: (i) an
event trace browser (or visualizer), and (ii) a command-line tool
for analyzing event traces.

The event trace browser provides a simple graphical user
interface for browsing the event trace. Events, including
performance attributes, are displayed on the screen in a tree-like
structure. The user is able to expand and collapse sub traces,
depending on the level of detail the user requires. Figure 4 shows
a snapshot of the event browser. The figure contains part of an
event trace of one of the threads in an application we used to test
the toolkit. In this application various threads increment a shared
counter repeatedly. After incrementing the counter they perform
some CPU intensive operations. Since the counter is a shared
object, we use mutual exclusion. The screenshot shows the
monitored events for mutual exclusion (contended monitors) and
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the invocation of the increment method on the counter object.
The events are annotated with performance measures, such as the
duration of monitor contention and CPU time usage of methods.

The command-line tool can be used in scripts that post-
process the event traces for specific experiments, for example, to
obtain input data for GNUplot (a tool to generate plots). The
command-line tool can also be used to export the event tracesto a
human readabl e text format.

We plan to add language bindings for the Java and Ruby
programming languages to the API, such that performance
analysis applications can be written in those languages too.

4.4 Overhead

The overhead of monitoring depends on the amount of
instrumentation. In section 2 we identified two distinct levels of
monitoring: (i) exploring the behavior of the monitored software
and (ii) measuring performance of parts of the software to answer
specific performance questions. For exploring behavior it doesn’t
really matter how much overhead is introduced. For performance
measurement however, we like to minimize the overhead, since it
disrupts the measurements. We can do this by filtering out events
we’re not interested in. Monitoring of method invocations causes
the most overhead. On a Pentium Il 700 MHz system the
overhead for monitoring and logging a method invocation is 6
microseconds when the byte-code rewriting algorithm is used to
instrument methods. This can be split evenly in 3us for
monitoring the method entry event, and 3us for monitoring the
method exit event. Logging itself costs 1us for each event. The
other 2us per event are caused by the invocation of our method
invocation event handler and obtaining timestamps and CPU
performance counters. To compare, a Java method that does a
print-line on the screen (System out.println()), costs
16us. We provide a small utility to measure overhead caused by
the instrumentation on other platforms.



5. EXAMPLE: CORBA PERFORMANCE
MEASURES

This section illustrates the use of our Java Performance
Monitoring Toolkit to obtain performance measures of
ORBacug/Java[11], a CORBA implementation [19].

5.1 OMG CORBA Distributed Object

Middleware

The Common Object Request Broker Architecture (CORBA) [19]
specified by the Object Management Group (OMG) is the de-facto
object-middleware  standard. CORBA mediates bhetween
application objects that may live on different machines, by
implementing an object-oriented RPC mechanism. This allows
application objects to talk to remote objects in the same way as
they tak to loca objects. Besides this object location
transparency, CORBA aso implements programming language
transparency. Object interfaces are specified in an interface
description language (IDL). These IDL interfaces are compiled to
so-called stubs and skeletons, which act as proxies for the client
and server objects, respectively. The client and server objects
may be implemented in different programming languages, for
instance Java and C++. Figure 5 depicts the CORBA method
invocation path. The figure shows a two-way (request and reply)
remote method invocation.

Activities that make up the functional path of a CORBA
remote method invocation. First, the client invokes the method
on the stub, which is the local proxy of the target object. A
reference to the stub is obtained by narrowing the object reference
of the target object.

The stub constructs a CORBA request object and translates
the method invocation parameters, which are expressed using
programming language, operating system, and architecture
specific data types, to a common data representation (CDR). This
trandation process is caled marshaling. The marshaled data is
added to the request object. Subsequently, the request object is
forwarded to the client-side ORB library.

The client-side ORB library uses a TCP/IP connection to
communicate with the server-side ORB library. The address of
the server-side ORB is obtained from the target object's object
reference. This object reference is created by a portable object
adapter (POA) on the server-side ORB. Each object is managed
by exactly one POA.

A POA implements the adapter design pattern [4] to adapt
the programming language specific object interfaces to CORBA
interfaces, making the target object implementation accessible
from the ORB.

The POA has a map of active objects. This map associates
object identifiers with object implementations. Object
implementations are caled servants. The object reference
contains server information, such as hostname and port number,
the name of the POA, and the object identifier of the target object.

The client-side ORB sends the request object to the server-
side ORB.

The server-ORB obtains the target object's POA and object
identifier from the request object and forwards the request to the
POA.

The POA looks up the servant in it's active object map using
the object identifier and forwards the request to the skeleton of the
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target object. Figure 6 illustrates the mapping from object-id to
servant.

The skeleton unmarshals the method invocation parameters
and invokes the request on the target object.

When the method invocation returns, the skeleton creates a
CORBA reply object, marshals the return parameters, and inserts
the return parameters in the reply object. The reply object is
forwarded to the server-side ORB.

The server-side ORB forwards the reply object to the client-
side ORB.

The client-side ORB forwards the reply object to the stub.

The stub unmarshals the return parameters and forwards
those to the client.

This description is a bit simplified. However, a full
description of what happens during a method invocation is outside
the scope of this paper. More information is available from [19]

(7.

ORBacus/Java using thread pools. ORBacus/Java supports
various server-side threading models, such as thread-per-request
and thread-pool. In this use case we look at the thread-pool
model.

In the thread-pool model the server-side activities described
above are distributed over receiver and dispatcher threads. Each
client connection has its own receiver thread. The requests are
dispatched by receiver threads onto a pool of pre-alocated
threads. Requests are queued in the thread pool in a FIFO queue.
Idle dispatcher threads take a request from the queue and process
the request. The length of the queue is only limited by the
available memory. The number of threads in the thread pool is
fixed. The maximum number of requests that can be processed
simultaneously equals the size of the thread pool. A discussion on
the advantages and disadvantages of various threading models can
be found in [22].
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Figure 7: Server siderequest flow in ORBacus with thread-pool model

The receiver thread receives the request object from the
network, gets the POA and object identifier from the request
object, constructs a dispatch-request object, and forwards that
object to the thread pool. The receiver thread can then process the
next request (if any).

The dispatch-request is processed by a dispatcher thread,
which forwards the request to the POA, skeleton, and servant.
After the request is processed by the servant a reply object is
constructed and sent to the client-side ORB. The dispatcher thread
isthen ready to process the next dispatch-request object.

Figure 7 illustrates the execution path at the server-side of a
method invocation in ORBacus, using the thread pool threading
model.

5.2 Blackbox performance measur ements
To measure end-to-end performance of CORBA under different
configurations we have developed a set of benchmarking
applications. The set consists of a source and sink application.
The source application implements a synthetic workload
according to a given scenario. The sink application processes the
workload generated by the source application. The interaction
between the source and sink applicationsisillustrated in figure 8.
A scenario consists of three parts:
. The configuration of the client and server ORBacus.
For instance, the threading model of the server is
described here.
A description of the workload the source should
generate. It describes a number of arrival processes,
their distribution, and the routing probabilities to the

different target objects (see figure 8).

A deployment description of the sink application,
which describes a number of POAs and objects that are
managed by the POAs. It also describes POA palicies,
such as the POA threading policy. This threading
policy is different from the ORB threading policy. The
CORBA specification specifies two POA threading
policies:. ORB controlled and single threaded. If the
ORB controlled threading policy is used, the ORB may
implement any threading model. If the single thread
policy is used, then the POA can only process one
request at atime. This POA threading policy can be
used when the servants are not multi-thread aware.

The source and sink applications have been developed to
make it easier to perform different experiments. Without the
source and sink applications and their scenario configuration files,
we would have to implement the scenario inside client and server
applications.  Having to change these client and server
applications for different experimentsistoo tedious.

The source and sink applications report on end-to-end
performance measures, such as the response time of each request.
These measures are blackbox measures, meaning that we don't
know how the end-to-end measures are distributed over the
activities that make up the functional path of a method invocation
a the server-side ORB. The next paragraph discusses how
whitebox measures are obtained. The remainder of this paragraph
discusses our example scenario.
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Figure 9: Responsetime graph for our example scenario

We use the following scenario:
The workload consists of 5000 requests.
All requests are sent to the same target object. The
target method’s name is pi ng_with_wait(). The
name of the Java servant class implementing the object is
net . gahwah. j pnt . exanpl es. ORBacus. Perfo
rmanceTest 1 inpl.
There is one arrival process, generating 4 requests per
second for the target object. This arrival process is
exponentially distributed.
On the server side there is a multithreaded POA, with a
thread-pool of 3 threads.
Thepi ng_w t h_wai t () operation in the servant has
a constant waiting time (no CPU usage) of 1/1.75
seconds per request.

We have performed the experiment on a uniprocessor
Pentium Il 700MHz machine with 320MB RAM, running the
Linux 2.4 operating system and ORBacus 4.1.0b1l. Both the
source and sink application run on the same machine. There was
no background load.

The mean end-to-end response time of a request as measured

Sink

Source

L POA |
/
p=0.25 /g

A

Client
Arrival p
process P%

Figure 8: Source generates synthetic workload for sink

=t

p=0.45

124

is 0.7649234997 seconds (with a variance of 0.07222361847
seconds).

Figure 9 shows a plot of the response times, and the mean
response time. The variance in the response times is caused by
the exponential distribution of the request arrival process.

5.3 Whitebox performance measures

We use JPMT to obtain whitebox measurements. Figure 10 and
11 show monitoring results for request 87 (out of 5000). First, the
request is read from the network by the receiver thread (using
recei ve_det ect ()) in two steps: one for the request header,
and one for the request body. The execut eHeader () method
determines the request type from the header. The execut e()
method |ocates the target POA and creates a request object (a Java
object representing the incoming request). The request is put in
the thread-pool by the invoke() method. Both
execut eHeader () and execut e() unmarsha fields from
the request header and request body. Not the whole request is
unmarshaled; method invocation parameters are unmarshaled by
the skeleton in the dispatcher thread. After adding the request
object to the thread-pool (using add() ), the receiver thread is
ready to process the next incoming request (highlighted
recei ve_detect () in figure 10). The thread-pool has a
FIFO queue in which requests are stored. When a dispatcher
thread is ready to process a request it gets the request from the
thread-pool using the get () method. The request is then
invoked. First, the object implementation (servant) is located in
the POAs active object map (using | ocat e() ). Subsequently,
the request is dispatched to the servant, via the target object’s
skeleton (di spat ch()). The skeleton unmarshals the method
invocation parameters (not shown in the trace) and calls the target
method in the servant (ping with_wait()). When the
servant is done, a reply object is created (cr eat eRepl y()),
and return parameters are marshaled (not shown). The request is
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Figure 10: Activitiesin receiver thread for request 87
* A simple event trace viewer: ORBacus:ThreadPool-0:Dispatcher-2 {env ptris 0xdecddd04) P3-700MHz * X
Event Wall usec | CPU usec | Gueuing ]
E----n:0m.onc.OB.ThreadPnnl#geto 17 16 no.87 #4 7430660
B-com.ooc. OB DispatchRequest_impReinvokeq) 530085 ati s
E--cDm.DUc.OBF'Dr‘[abIeServer.F'O.-‘-\_impI#_OEI_dispatchO 290067 fE4
--cDm.unc.OEIPartableServer..fﬂ.ctiVEObjectOnIyStrategy#IDcateO 30 28
E----cum.DDC.OBPurtabIeServer.PO.-’-\_impl#_OEI_preinvukeO 1 59
E--n:om.unn:.OBPur’[abIeServer.ServantDispatcher#dispatcho 589943 540
E!--net.qahwah.jpmt.examples.OF-:Bau:us.PerrnrmanceTesHF'O.ﬂ.#_invukeo 509745 346
: E--net.qahwah.jpmt.examples.ORBacus.PerfnrmanceTesHF'O.ﬂ.#_OEI_Dp_ping_with_waitO ad9713 310
E----net.qahwah.jpmt.examples.OHEacus.PerfDrmanceTesﬂ_impl#ping_with_waito ag947e Jat}
H --cum.DDc.OBPurtabIeServer.ServantDispatcher#createﬂeplyo 200 194§
5----n:0m.unc.OB.Upcall#pnstMarshalo 154 152
14 16 no.90 #6 799373Us
#H-com.ooc. OB DispatchRequest_impRinvoked) 09944 G54 -

Figure 11: Activitiesin dispatcher thread for request 87

sent to the client in the post Marshal () method. The
dispatcher thread is then ready to process the following request
(highlighted get () infigure11).

For each monitored method invocation in the receiver thread
and dispatcher thread, we have measured the wall-clock
completion time and the CPU time, both in microseconds. Note
that the completion time and CPU time of a method invocation
includes the completion and CPU time of its children (i.e., the
methods it calls). The servant’s pi ng_wi t h_wai t () method
doesn’t use alot of CPU time (68 microseconds) compared to the
wall-clock completion time.

We've added a custom extension to the event trace browser
and analyzer tools to show queuing information. In the ‘queuing’
column the request number is shown (87), the size of the queue
after performing the add() and get () method is shown (3 and
4, respectively), and in the dispatcher thread it is shown how long
arequest has been queued (request 87 spent 749066 microseconds
in the queue). The queuing information is obtained by replaying
actions in the event trace related to the thread-poal, i.e., we track
theadd() and get () methods of the thread-pool.

The mean queuing time we measured is 0.1739308757
seconds (variance is 0.07204043565 seconds). In our scenario we
have configured the pi ng_wi t h_wai t () method to use 1/1.75
seconds (0.5714285714 seconds). However, the event trace
(figure 11) shows that 0.589472 seconds are used. The difference
is caused by the coarse granularity of the Java
Thr ead. sl eep() method, whichis 10ms.
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The waiting time in the servant and the queuing time in the
thread-pool’s FIFO queue are the main contributors to the end-to-
end response time. They account for 0.74535945 seconds of the
0.7649234997 seconds. The remaining 0.0195640526 seconds
can be attributed to the client ORB processing, |oop-back
networking between the client and server ORBSs, and server ORB
processing. The performance monitoring toolkit can be used to
precisely quantify these attributes too.

6. RELATED WORK

Performance monitoring requires some kind of instrumentation to
measure and trace execution behavior. Various instrumentation
techniques are available. In this section we consider manua and
automated instrumentation of the source code, automated
instrumentation of Java byte-code, and the use of profiler and
debugging APIs offered by the Java virtual machine.

The most obvious technique is manual instrumentation of
Java source code, by inserting logging and measurement
statements in the source code. Tracing and logging libraries, such
as Visible Workings' Trace for Java [27] and Apache Log4J [1],
make source code instrumentation easier by providing some
common tracing and logging functionality. To trace method
invocations, the source code of each method to be traced hasto be
modified, which is cumbersome. Dynamic proxies, supported by
Javas reflection package, can be used to selectively instrument
certain objects by wrapping the object in another object using the
proxy design pattern. [4] This eliminates the need of having to
instrument each method.



Because instrumenting source code manualy is tedious,
some sort of automation would be preferable. For instance,
AspectJ [13], which is an aspect-oriented programming extension
to Java, considers tracing as a crosscutting concern, or aspect
[14]. The Aspect) compiler can automatically insert
instrumentation to facilitate tracing of method invocations.

Another instrumentation technique is byte-code rewriting,
which is discussed in section 4. The JMonde Trace tool [17]
supports method tracing by rewriting the byte-code of a class
when the class is loaded. A custom Java class loader reads the
class and uses the BCEL library [3] to rewrite the byte-code of the
class, eg., by inserting logging statements in method
implementations. The JMonde Trace tool supports filtering of
traces by alowing the user to select classes that are to be included
or excluded in the trace. The tool doesn’t support performance
measurement, and thread monitoring.

Recent versions of Java include the Java Virtual Machine
Debugger Interface (JVMDI) [23] and the Java Virtual Machine
Profiler Interface (JVMPI) [15]. Both interfaces can be used to
implement tracing tools. Like WVMPI (discussed in the previous
section), the debugger interface notifies clients through events.
Compared to the profiler interface JVMDI provides more context
information, such as information on the contents of local variables
and method parameters. The disadvantage of VMDI compared
to VMPI is that it requires the virtual machine to run in debug
mode, which causes a performance penalty.

Profiler tools, such as IBM Jnsight [8], Compuware
NuMega DevPartner TrueTime [18], Sitraka Jprobe [24],
Optimizelt [26] and Intel VTune [9], obtain profiling data from
the virtual machine using VMPI. Most profilers do not provide
complete traces of events that have occurred in the virtual
machine; they employ call stack sampling to inform the user of
execution hot spots, i.e, parts of the code that use the most
execution time. These profiler tools are used to find performance
problems and to optimize programs. Our goal is different; we
want to measure the performance of user specified methods and
provide the user with a complete method invocation trace.

Most profiler tools restrict the user to a GUI that provides a
fixed view on the performance. Instead of providing fixed views,
JPMT logs event traces in an open data format, allowing users to
build custom tools to execute the performance queries they
require. Rational Quantify [21] and IBM Jinsight allow exporting
of datato, e.g., spreadsheets or scripts.

JPMT also supports both online and offline filtering of
interesting events (i.e., at run-time and during event trace
processing by analyzer and visualization tools). Most profilers
only support filtering after program execution. An exception is
Rational Quantify, which allows the user to indicate which datais
to be collected and reported, and the level of detail of the data.

7. FUTURE WORK

Our toolkit is under active development and is to be released
under an open source license. We’re currently adding techniques
to quantify the performance of object creation and destruction,
and garbage collection.  Various improvements are planned for
the event trace visuaizer, including replaying (animation) of
event traces and recognition of execution patterns. Besides
improving the usability of the visualizer, we also plan to add
features that aid the user with event filter set specification. The
specification of these filter sets is currently a manual process.
Usualy, it takes a few iterations to find a good filter set for
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measuring the performance aspects the user is interested in.
Another useful extension we’re planning is the ability to detect
and display differences between two event traces. For example,
this can be useful when the two event traces are generated for the
same experiment, but using different deployment configurations.
In this case the differences list the impact of the deployment
configuration changes.

8. CONCLUSIONS

In this paper, we have introduced our Java Performance
Monitoring Toolkit (JPMT). This toolkit provides insight in the
execution behavior of Java programs. JPMT implements event-
driven monitoring, i.e., execution behavior is expressed as a series
of events. An event represents an individua unit of behavior,
such as the creation of a new thread, entering a method, and
exiting amethod. Events are annotated by performance attributes.
For example, the ‘method entry’ and ‘exit’ events are annotated
with a timestamp (wall-clock time) and the contents of certain
CPU registers (called hardware performance counters). These
attributes can be used to calculate the wall-clock completion time
of amethod invocation and its CPU usage.

JPMT allows the user to indicate the events of interest. To
monitor these events of interest, instrumentation is added to the
Java program. JPMT adds this instrumentation transparently to
the user, and during run-time. Instrumentation doesn’t require
availahility of the source code. The instrumentation logs events to
abinary formatted file.

From this file, event traces can be produced. An event trace
represents the execution behavior as a tree of events; each event
may have child events stored in sub-trees. For example, method
invocations are child events of the calling method.

Event traces can be analyzed using an event trace API. Tools
can be built on top of this API to process the event traces. Two
tools are provided: a GUI to browse event traces and a command-
line tool to perform event trace analysis.

We have developed the toolkit to gain insight in the
execution behavior of Java applications for which we’re
developing performance models. We found that existing tools
didn’t offer the functionality we required. Profiler tools focus on
performance tuning (finding execution hot-spots) and provide an
incomplete view of the execution behavior (no complete event
traces). Compared to related tools, JPMT produces complete
event traces, offers event filtering during and after execution, and
alows custom event trace analysis and visualization tools to be
developed. Instrumentation overhead is minimized by only
adding instrumentation for events that are to be monitored and by
careful optimization of the instrumentation itself.

9. CONTACT INFORMATION

For more information please contact Marcel Harkema at
m.harkema@cs.utwente.nl.
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