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ABSTRACT 
Over the past few years, Java has evolved into a mature platform 
for developing enterprise applications.  A critical factor for the 
commercial success of these applications is end-to-end 
performance, e.g., in terms of response times, throughput and 
availability.  This raises the need for the development, validation 
and analysis of performance models to predict performance 
metrics of interest.  To develop and validate performance models, 
insight in the execution behavior of the application is essential, 
requiring advanced monitoring capabilities. 
In this paper we introduce our Java Performance Monitoring 
Toolkit (JPMT).  JPMT represents internal execution behavior of 
Java applications by event traces.  An event represents the 
occurrence of some activity, such as thread creation, method 
invocation, and locking contention.  Events are annotated by high -
resolution performance attributes, e.g., duration of locking 
contention and CPU time usage by method invocations.  JPMT is 
an open toolkit, its event trace API can be used to develop custom 
performance analysis applications.  JPMT comes with an event 
trace visualizer and a command-line event trace query tool for 
scripting.  JPMT supports event filtering during and after 
application execution.  The instrumentation required for 
monitoring the application is added transparently to the user 
during run-time.  Overhead is minimized by only instrumenting 
for events the user is interested in.  Furthermore, the 
instrumentation itself is carefully optimized. 
This paper discusses the architecture and implementation of the 
toolkit in detail and reports on our experience in applying the 
toolkit to model a CORBA implementation. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics ’  performance measures. 

General Terms 
Algorithms, Measurement, Performance, Design, 
Experimentation. 

Keywords  

Performance measurement and monitoring of Java applications. 

1. INTRODUCTION 
The drastic growth of the Internet, the ongoing developments in 
the hardware and software industry, and the recent advances in 
networking technology have boosted the emergence of 
Information and Communication Technology (ICT). ICT systems 
enable applications to be divided in components that can be 
executed on geographically distributed information systems.  
These applications are commonly referred to as distributed 
applications. Distributed computing provides the fundamental 
technology for the realization of enterprise-wide and even global 
information systems. 

The Quality of Service (QoS) provided by these enterprise 
applications is often a critical success factor.  For example, 
unavailability of e-business applications directly leads to loss of 
revenue.  Various QoS types can be identified, such as 
performance, availability, and security.  In this paper, we focus on 
performance. 

To ensure applications perform as required one could 
perform tests using a real system.  However, often performance 
testing is unfeasible for a variety of reasons.  For instance, testing 
might not be allowed because it would disrupt the operation of a 
running system.  Building a test environment similar to the real 
world environment is often not possible, since it would require 
too much time and money.  Sometimes testing is not possible 
since it‘s too difficult or expensive to reproduce certain workloads 
in the test environment, or simply because an implementation of 
the application to test is not yet available. 

An alternative to performance testing is performance 
modeling.  A performance model of a system is an abstraction of 
that system describing the parts of the system that are relevant to 
performance.  Performance models provide performance 
predictions, rather than performance observations.  These 
performance predictions are extremely useful to identify 
performance bottlenecks and to timely anticipate on future 
performance problems for projected growth volumes.  Using, for 
instance, discrete event simulation, numeric approximations, or 
analytic techniques, the performance of a given scenario can be 
predicted.  Performance analysis using models is often faster and 
cheaper than real-world testing.  Contrary to testing, an 
implementation or prototype of the application is not needed for 
performance modeling.  Performance models can be used to 
validate application design decisions before they are implemented.  
Since performance models provide only predictions, and not 
observations, modeling results can become inaccurate if the model 
does not capture the dynamic behavior of the application close 
enough.  Building accurate performance models of a system 
requires insight in the internal behavior of the system and good 
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quality performance measures.  As such performance monitoring 
is an important step towards useful performance models. 

Over the past few years Java [5] has evolved into a mature 
platform.  Its portability makes Java a popular language for 
implementing enterprise applications and off-the-shelf 
components, such as middleware and business logic.  The 
objective of this paper is twofold: (i) present a performance 
monitoring toolkit for Java, and (ii) to illustrate how this toolkit 
can be applied for the development and validation of performance 
models of software components implemented in Java. 

The remainder of this paper is structured as follows.  Section 
2 presents the requirements for the toolkit.  Section 3 discusses 
the architecture.  Section 4 discusses the implementation of our 
prototype.  Section 5 applies the toolkit to monitor the 
performance of a CORBA object-middleware implementation for 
Java.  Section 6 discusses related work.  Section 7 lists future 
work.  Section 8 concludes. 

2. REQUIREMENTS 
To build performance models of a system, a description of its 
execution behavior is needed.  The description should include 
performance annotations so that the performance analyst is able to 
identify the behavior relevant for performance modeling.  
Accurate performance models require a precise description of the 
behavior, and good quality performance estimates or measures. 
[28]  Our objective is to design a performance monitoring toolkit 
for Java that obtains both a description of the behavior of a Java 
program, and high-resolution performance measurements. 

The toolkit should be able to monitor the following elements 
of execution behavior: 

 
• The invocation of methods.  The sequence of method 

invocations should be represented by a call-tree.  To 
produce call-trees we need to monitor method entry and 
exit. 

• Object allocation and release.  In Java, objects are the 
entities that invoke and perform methods.  The monitoring 
tool should be able to report information on these entities.  

• Thread creation and destruction.  Java allows multiple 
threads of control, in which method invocations can be 
processed concurrently.  The monitoring tool should be able 
to produce call-trees for each thread. 

• Mutual exclusion and cooperation between threads.  Java 
uses monitors [6] to implement mutual exclusion and 
cooperation.  The monitoring tool should be able to detect 
contention due to mutual exclusion (Java‘s 
synchronized primitive), and measure the duration.  
Furthermore, the monitoring tool should be able to measure 
how long an object spends waiting on a monitor, before the 
object is notified (wait(), notify(), and 
notifyAll() in Java). 

 
The monitoring results should include attributes that can be 

used to calculate performance measures.  For instance, to 
calculate the wall-clock completion time of a method invocation 
the timestamps of the method entry and exit are needed.  The 
timestamps, and other attributes used, should have a high-
resolution.  For instance, timestamps with a granularity of 10ms 

are not very useful to calculate the performance of method 
invocations, since a lot of invocations may use less than 10ms.  

Performance modeling is a top-down process.  At various 
performance modeling stages, performance analysts may have 
different performance questions.  During the early modeling 
stages the analyst is interested in a global view of the system to be 
modeled.  The analyst tries to identify the aspects relevant for 
performance modeling.  In later stages the analyst has more 
detailed performance questions about certain aspects of the 
system.  The monitoring toolkit should support this way of 
working. 

Instrumentation of a Java program is required to obtain 
information on its execution behavior.  For performance 
monitoring it is important to keep the overhead introduced by 
instrumentation minimal.  So, we only want to instrument for the 
behavior we are interested in.  During the early modeling stages, 
when the performance analyst wishes to obtain a global view of 
the behavior, the overhead introduced by instrumentation is not a 
major issue.  However, when the analyst needs to measure the 
performance of a certain part of the system it is important to keep 
the instrumentation overhead to a minimum, since the 
measurements need to be accurate.  This means that we need 
different levels of instrumentation depending on the performance 
questions.  Manually instrumenting the Java program for each 
performance question is too cumbersome and time consuming.  
Therefore we require some sort of automated instrumentation 
based on a description of the behavioral aspects the performance 
analyst is interested in. 

Tools are required to analyze and visualize the monitoring 
results.  Since performance questions may be domain specific it‘s 
important that custom tools can be developed to process the 
monitoring results.  Hence, the monitoring results should be 
stored in an open data format.  An application programming 
interface (API) to the monitoring data should be provided to make 
it easy to build custom tools. 

3. ARCHITECTURE 
Our architecture is based on event-driven monitoring.  In general, 
two types of monitoring can be distinguished: time-driven 
monitoring and event-driven monitoring [12]. 

Time-driven monitoring observes the state of the monitored 
system at certain time intervals.  This approach, also known as 
sampling, is often used to determine performance bottlenecks in 
software.  For instance, by observing the call-stack every 
millisecond a list of methods using the most processing time can 
be obtained.  Time-driven monitoring doesn‘t provide complete 
behavioral information, only snapshots. 

Event-driven monitoring is a monitoring technique where 
events in the system are observed.  An event represents a unit of 
behavior, e.g., the creation of a new thread.  Our monitoring 
toolkit should implement the event-driven monitoring approach, 
since we require complete behavioral information, not just 
snapshots. 

The following figure illustrates our architecture in terms of 
the main building blocks of our toolkit, and the way they are 
related (e.g., via input and output files). 

First, the events of interest are specified in a configuration 
file.  By using event filters, events can be included or excluded 
from the set of interesting events.  For example, certain methods 
of a given class may be interesting, while the rest should not be 
monitored. 
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During run-time the observer component collects the events 
of interest.   Instrumentation is added to enable generation, 
observation, and logging of these events.  The observed events are 
stored in a binary file. 

After monitoring the binary file containing the collected 
events can be analyzed.  An event trace generator produces event 
traces from the collection of events.  One event trace is produced 
for each thread of control.  An event trace represents events in a 
tree-like structure.   Event traces are very similar to call-trees, but 
in addition to method invocations they also contain other event 
types. 

The event traces can be accessed using our event trace API.  
This API is the main building block for tools that analyze or 
visualize event traces.  The event trace API allows the 
performance analyst to build custom analysis tools. 

The toolkit provides two applications based on the event 
trace API; an event trace browser and an event trace analyzer.  
The implementation of this architecture and the tools are 
discussed in the next section. 

4. IMPLEMENTATION 
4.1 The Java Virtual Machine Profiler 
Interface 
The Java Virtual Machine Profiler Interface (JVMPI) plays an 
important role in our observer implementation.  JVMPI allows a 
user provided profiler agent to observe events in the Java virtual 
machine.  The profiler agent is a dynamically linked library 
written in C or C++.  By subscribing to the events of interest, 
using JVMPI's event subscription interface, the profiler agent can 
collect profiling information on behalf of the monitoring tool.  We 

use JVMPI and a profiler agent to implement the observer 
component in our architecture.  Figure 2 depicts the 
implementation of the observer. 

An important feature of JVMPI is its portability; its 
specification is independent of the virtual machine 
implementation.  The same interface is available on each virtual 
machine implementation that supports the JVMPI specification.  
Furthermore, JVMPI does not require the virtual machine to be in 
debugging mode, it is enabled by default.  The Java virtual 
machine implementations by Sun and IBM support JVMPI.  

JVMPI supports both time-driven monitoring and event-
driven monitoring.  This section only discusses the functionality 
in JVMPI that is relevant for event-driven monitoring. 

The profiler agent is notified of events through a callback 
interface.  The following C++ fragment illustrates a profiler 
agent‘s event handler: 

 
void NotifyEvent(JVMPI_EVENT *ev) { 
  switch (ev->event_type) { 
  case JVMPI_CLASS_LOAD: 
    // Handle ’class load� event. 
    break; 
  case JVMPI_CLASS_UNLOAD: 
    // Handle ’class unload� event. 
    break; 
  .. 
  } 
} 

 
The JVMPI_EVENT structure includes the type of the event, 

the environment pointer (the address of the thread the event 
occurred in), and event specific data: 

 
typedef struct { 
  jint event_type; 
  JNIEnv *env_id; 
  union { 
    struct { 
    // Event specific data for ’class load�. 
    } class_load; 
    .. 
  } u; 
} JVMPI_EVENT; 
 

JVMPI uses unique identifiers to refer to threads, classes, 
objects, and methods.  Information on these identifies is obtained 
by subscribing to the defining events.  For instance, the �thread 
start‘ event, notifying the profiler agent of thread creation, defines 
the identifier of that thread and has attributes describing the 
thread (e.g., the name of the thread).  The �thread end‘ event 
undefines the identifier.  For certain identifiers it is not required to 

Application to be
monitored Observer

produces

Event trace generator

is input for

produces

Event trace browser
(GUI tool)

Event trace analyzer
(command line tool)

Event trace API (library)

is input for

applications based
on the library

configures

Observer config-file
containing event filters

   Binary file containing
logged events

Event trace file

 
Figure 1: Monitoring architecture 
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Figure 2: Implementation of the observer 
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be subscribed to their defining events to obtain information on the 
identifier.  Instead, the defining events may be requested at a later 
time.  For instance, defining events for object identifiers can be 
requested at any time using the RequestEvent() method of 
the JVMPI API. 

JVMPI profiler agents have to be multithread aware, since 
JVMPI may generate events for multiple threads of control at the 
same time.  Profiler agents can implement mutual exclusion on its 
internal data structures using JVMPI‘s raw monitors.  These 
monitors are similar to Java monitors, but are not attached to a 
Java object. 

 
The remainder of this subsection discusses the events that are 

supported by JVMPI. 
JVM start and shutdown events.  These events are 

triggered when the Java virtual machine starts and exits, 
respectively.  These events can be used to initialize the profiler 
agent when the virtual machine is started and to release resources 
(e.g., close log file) when the virtual machine exits. 

Class load and unload events.  These events are triggered 
when the Java virtual machine loads a class file or unloads 
(removes) a class.  The attributes of the class load event include 
the names and signatures of the methods it contains, the class and 
instance variables the class contains, etc.  The class loading and 
unloading events are useful for building and maintaining state 
information in the profiler agent.  For instance, when JVMPI 
informs the profiler agent of a method invocation it uses an 
internal identifier to indicate what method is being invoked.  The 
class load event contains the information that is needed to map 
this identifier to the class that implements the method and the 
method signature. 

Class ready for instrumentation.  This event is triggered 
after loading a class file.  It allows the profiler agent to instrument 
the class.  The event attributes are a byte array that contains the 
byte-code implementing the class, and the length of the array.  
Using the Java virtual machine specification, profiler agents may 
interpret the byte array, and change (instrument) the 
implementation of the class and its methods.  JVMPI doesn‘t 
provide interfaces to instrument class objects though.  We use this 
event to instrument methods we want to monitor.  This is 
described in the next subsection. 

Thread start and exit.  These events are triggered when the 
Java virtual machine spawns and deletes threads of control.  The 
events attributes include the name of the thread, the name of the 
thread-group, and the name of the parent thread. 

Method entry and exit.  Method entry events are triggered 
when a method implementation is entered.  Method exit events are 
triggered when the method exits.  The time period between these 
events is the wall-clock completion time of the method. 

Compiled method load and unload.  These events are 
issued when just-in-time (JIT) compilation of a method occurs.  
Just-in-time compilation of a method compiles the (virtual 
machine) byte-code of the method into real (native) machine 
instructions.  Suns hot-spot technology automatically detects 
often-used methods, and compiles them to native machine 
instructions automatically. 

Monitor contented enter, entered, and exit.  These events 
can be used to monitor the contention of Java monitors (due to 
mutual exclusion).  The monitor contented enter event is issued 
when a thread attempts to enter a Java monitor that is owned by 
another thread.  The monitor contented entered event is issued 

when the thread that waited for the monitor enters the monitor.  
The monitor contented exit event is issued when a thread leaves a 
monitor for which another thread is waiting. 

Monitor wait and waited.  The monitor wait event is 
triggered when a thread is about to wait on an object.  The 
monitor waited event is triggered when the thread finishes waiting 
on the object.  These events are triggered due to waiting on 
condition variables for the purpose of cooperation between 
different threads. 

Garbage collection start and finish.  These events are 
triggered before and after garbage collection by the virtual 
machine.  These events can be used to measure the time spent on 
collecting garbage. 

New arena and delete arena.  These events are sent when 
arenas (areas of memory) for objects are created and deleted.  
(Currently not implemented in JVMPI) 

Object allocation, free, and move.  These are triggered 
when an object is created, released, or moved in the heap due to 
garbage collection. 

4.2 Profiler agent 
Our first profiler agent prototype logged events in a human 
readable (text) ASCII data format.  Threads writing to the log file 
needed to obtain a global lock for the file.  This lock is held while 
writing the event to the file. 

Our second prototype replaced the text format with a binary 
format, which is significantly faster.  The binary log file is 
memory-mapped into the profiler agent‘s address space.  Different 
threads can write simultaneously to the memory map.  Of course, 
threads should not log events in the same location of the memory 
map.  A position in the memory map is assigned using a position 
counter.  Incrementing the position counter in the memory map 
requires mutual exclusion.  The position counter is increased with 
the size of the data that is to be written. 

The combined use of a binary data format, memory-mapped 
I/O, and mutual exclusion to a position counter instead of the 
whole file, makes this solution much faster than using text files.  
There is a downside though; portability is sacrificed.  Each 
operating system may implement different interfaces for memory-
mapped files.  For example, on POSIX mmap(2) [25] is used, 
while Microsoft Windows has 
CreateFileMapping(Win32). 

 
Initialization, configuration, and maintenance of internal 

tables.  During its initialization the profiler agent reads a user 
specified configuration file, containing event filters.  For example, 
the user may indicate which classes and methods are to be 
monitored, or whether locking contention is to be monitored.  An 
example of a configuration file is depicted below: 
 

output log/test5.bin 
observe_monitor_contention 
observe_object_allocation 
bytecode_rewriting 
observe_method_invocations 
excludemethod * <init> 
excludemethod * main 
includemethod net.qahwah.jpmt.test.* * 
excludemethod * * 

 
After specifying the log file, the above configuration turns on 

observation of monitor contention, object allocation, and method 
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invocations.  Furthermore, it indicates that byte-code rewriting is 
to be used to instrument for method invocation monitoring.  
Finally, it specifies the methods to be observed, using include and 
exclude filters.  These filters take two arguments: the class name 
and the method name.  Wildcards are allowed in these filters. 

When the virtual machine loads a class file the JVMPI 
informs the profiler agent about it using a �class load‘ event.  This 
event has the following attributes: 

 
struct { 
  char *class_name; 
  char *source_name; 
  jint num_interfaces; 
  jint num_methods; 
  JVMPI_Method *methods; 
  jint num_static_fields; 
  JVMPI_Field *statics; 
  jint num_instance_fields; 
  JVMPI_Field *instances; 
  JobjectID class_id; 
} class_load; 

 
The profiler agent uses the attributes from the �class load‘ 

event to build hash tables that map class and method identifiers to 
class and method information, respectively.  The hash tables only 
keep information for classes and methods that are to be 
monitored. 

A �class unload‘ event causes the information related to the 
class to be removed from the hash tables. 

The following code fragment depicts how the information on 
classes and methods are stored in hash tables. 

 
class ClassInfo 
{ 
public: 
  jobjectID classID; 
  char *name;  
  bool dumped; 
}; 
 
class MethodInfo 
{ 
public: 
  jmethodID methodID; 
  ClassInfo *classInfo; 
  char *name; 
  char *signature; 
  bool dumped; 
}; 
 
typedef hash_map< 
  jobjectID, 
  ClassInfo *, 
  hash<jobjectID> > ClassMap; 
 
typedef hash_map< 
  jmethodID, 
  MethodInfo *, 
  hash<jmethodID> > MethodMap; 

 
Class and method information is written to the log file on 

demand.  For instance, when a monitored method is invoked for 
the first time, information on that method is logged.  The 
�dumped‘ fields in the ClassInfo and MethodInfo classes indicate 
whether the information has been logged or not.  The following 
class information is logged: 

• The �classID‘ field, which uniquely identifies a class. 
• The �name‘ field, which contains the name of the class. 

 
The following information is logged for methods: 
• The �methodID‘ field, which uniquely identifies the 

method. 
• The class identifier of the class the method is part of, 

obtained via the �classInfo‘ reference to the object that 
holds the class information. 

• The name of the method, which is stored in the �name‘ 
field. 

• The signature (return type and types of the parameters) 
of the method, which is stored in the �signature‘ field. 

 
Monitoring thread spawning and deletion.  The profiler 

agent records the spawning and deletion of every thread of 
control, using the �thread start‘ and �thread exit‘ JVMPI events. 

A thread is identified by its environment pointer 
(thread_env_id).  The profiler agent maintains a hash 
mapping of this environment pointer to a structure that contains 
information on the thread. 

When the thread exits the profiler agent removes the thread 
information from the hash map. 

The following code fragment shows the attributes of the 
�thread start‘ event, and how thread information is stored in a hash 
table. 

 
struct { 
  char *thread_name;         
  char *group_name;          
  char *parent_name;         
  jobjectID thread_id;       
  JNIEnv *thread_env_id; 
} thread_start; 
 
class ThreadInfo 
{ 
public: 
  char *name; 
  char *groupName; 
  char *parentName; 
}; 
 
typedef hash_map< 
  JNIEnv *, 
  ThreadInfo *, 
  hash<JNIEnv *> > ThreadMap; 

 
Spawning and deletion of threads is recorded in the event log 

file.  The following information is logged when a thread is 
spawned: 

• The environment pointer of the thread. 
• The object identifier of the thread, when the profiler 

agent is configured to monitor object allocations.  The 
object identifier can be used to obtain type information 
of the thread object, e.g., the name of the class of the 
thread object. 

• The name of the thread, the name of the parent thread, 
and the name of the thread group this thread is part of.  

• A timestamp, representing the time the event occurred. 
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When a thread is deleted the following information is logged: 
• The environment pointer of the thread. 
• A timestamp, representing the time the event occurred. 

 
Monitoring method invocations using JVMPI method 

entry and exit events.  JVMPI notifies the profiler agent of 
method invocations using the method entry and method exit 
events.  Both JVMPI events have one event specific attribute, the 
method identifier. 

 
struct { 
  jmethodID method_id; 
} method; 

 
When the profiler agent is notified of a method entry it 

executes the following algorithm: 
1. Obtain the thread local storage to store per-thread data.   

The profiler agent creates this thread local storage when 
it processes the first method entry in the thread. 

2. If the method hash map doesn‘t contain information for 
the method identifier (meaning that the method is not to 
be monitored) then a counter in the thread local storage 
is increased and the event handler exits.  This counter 
represents the number of un-logged method invocations 
in the thread of control.  It can be used to correct the 
event trace for perturbation.  For example, if a logged 
method calls 5 other methods that are filtered out (not 
logged), the CPU usage and completion time of that 
method includes the time for observing and filtering the 
un-logged method invocations.  By keeping track of the 
number of un-logged invocations, we can subtract the 
costs of observing and filtering out these method 
invocations from the CPU usage and completion time of 
the logged method. 

3. If the method hash map does contain information on the 
method identifier then information on the method and 
its class is logged if it hasn‘t been logged before.  The 
un-logged method-invocation counter is reset and its 
old value is pushed on a stack in the thread local 
storage.  Subsequently, the information on the method 
entry is logged, including timing related attributes, and 
the event handler exits. 

 
A logged method entry contains the following attributes:  
• The environment pointer of the thread that executes the 

method invocation. 
• The identifier of the method. 
• The value of the un-logged method invocations 

counter, before it has been reset. 
• Information needed to determine the CPU usage of the 

method. 
• A timestamp, representing the time the event occurred. 

 
Unfortunately, each operating system implements interfaces 

to obtain CPU timing information differently.  For example, 
POSIX (a UNIX standard) offers the times(2) call, Windows 
offers GetThreadTimes(Win32) and 
GetCurrentThreadCPUTime(Win32), BSD UNICES and 

derivatives have getrusage(2), and Sun Solaris has 
gethrtime(2) and gethrvtime(2). 

JVMPI offers GetCurrentThreadCpuTime(), which is 
supposed to return the CPU time in nano-seconds.  However, on 
Linux it returns the same value as gettimeofday(2) does: the 
current wall-clock time in micro-seconds. 

Often, CPU time information has a 10ms resolution, e.g. 
POSIX‘ times(2), BSD‘s getrusage(2), and Windows‘ 
GetThreadTimes(Win32) have a 10ms granularity.  This is 
too coarse to be used as a performance measure for Java method 
invocations.  This is caused by the frequency of the clock 
interrupt timer.  Most operating systems are configured to 
generate 100 clock interrupts per second. 

There is a solution for this problem: architecture specific 
hardware performance counters.  All modern micro processors, 
including Intel‘s Pentium family, IBM/Motorola‘s PowerPC, and 
Compaq/DEC‘s Alpha, implement such performance counters. 

These hardware counters don‘t have the granularity problem, 
but they still have an interfacing problem: there is no common 
interface to access these counters.  Libraries such as PAPI [2] 
provide a common interface to these counters.  The current 
implementation of the profiler agent doesn‘t use such a library, 
but implements similar functionality. 

The profiler agent accesses the hardware performance 
counters using an operating system specific device driver.  On 
Linux Mikael Pettersson‘s perfctr [20] package is used. 

Besides propagating hardware performance counter values to 
user-land, these device drivers could also implement virtual 
performance counters for each process (thread).  Virtual counters 
are only incremented when a process is executing, not when it is 
waiting in the operating system‘s process scheduler queue.  So, in 
contrast to global counters, these counters provide precise timing 
information for the process. 

On the Intel platform information that can be obtained using 
hardware performance counters includes the number of processor 
cycles since the processor was booted  [10].  We use this counter 
to calculate the CPU usage of a method invocation.  The 
information that can be obtained using hardware performance 
counters can be much more detailed, e.g. efficiency of the caches, 
and efficiency of branch prediction.  For our purposes this is 
much too detailed. 

The CPU usage of a method can be calculated by subtracting 
the number of processor cycles at method entry from the number 
of processor cycles at method exit. 

 
Using byte-code rewriting to monitor method invocations.  

Processing method entry and exit notifications sent by the JVMPI 
for every method invocation introduces a lot of overhead.  At 
minimum, two hash table lookups are required (to see whether or 
not to log the method entry and exit).  To reduce the overhead 
introduced due to monitoring method invocations we have also 
implemented another monitoring approach: instrumentation of the 
byte-code of method implementations.  This instrumentation 
mechanism only inserts instrumentation in methods that we want 
to monitor.  This is different from JVMPI‘s method entry and exit 
events, which are triggered for every method invocation, similar 
to the interceptor design pattern [4]. 

JVMPI provides the �class ready for instrumentation‘) event, 
which can be used to insert instrumentation in Java classes.  
However, no user-friendly interface is provided to change the 
implementation of the classes.  For Java, libraries are available 
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that provide the user with APIs for rewriting the implementation 
of classes, such as the Byte Code Engineering Library (BCEL) 
[3].  Unfortunately, we cannot use these libraries since the profiler 
agent has to be implemented in C or C++.  Rewriting classes 
before run time is not an option, since that solution is in conflict 
with the requirement that the insertion of instrumentation should 
be transparent to the user, and be done at run-time. 

We choose to implement the byte-code instrumentation 
ourselves, in the profiler agent.  The �class ready for 
instrumentation‘ event provides us with a byte array that contains 
the compiled class object.  The format of the class object is 
described in the Java Virtual Machine Specification [16].  The 
following pseudo-code fragment describes the structure of class 
objects.  Data types represented are: u2 and u4, which are 2-byte 
and 4-byte unsigned numbers; cp_info, field_info, 
method_info, and attribute_info, which are structures 
that describe constant pool entries (e.g., names of methods), 
variables, methods, and attributes, respectively. 

 
ClassFile { 
  u4 magic; 
  u2 minor_version; 
  u2 major_version; 
  u2 constant_pool_count; 
  cp_info constant_pool[constant_pool_count-1]; 
  u2 access_flags; 
  u2 this_class; 
  u2 super_class; 
  u2 interfaces_count; 
  u2 interfaces[interfaces_count]; 
  u2 fields_count; 
  field_info fields[fields_count]; 
  u2 methods_count; 
  method_info methods[methods_count]; 
  u2 attributes_count; 
  attribute_info attributes[attributes_count]; 
} 

 
The byte-code rewriter takes the original byte-code array, 

rewrites it, and returns the rewritten byte-code array to the virtual 
machine.  A full description of the rewriting process is beyond the 
scope of this paper.  Instead we describe shortly the rewriting 
algorithm (the rewriting algorithm is only executed if the class 
contains methods that we should monitor):  

• All bytes of the class are copied to a newly allocated byte 
array that keeps the instrumented class. 

• The constant pool of the class is parsed and several 
administration tables are built, containing information 
about constants.  The constant pool contains, for instance, 
references and names of classes the class refers to, and 
references and names of methods it calls. 

• New constant pool entries for the class and methods that 
implement the instrumentation are added to the 
instrumented class. 

• Subsequently, the list of methods is iterated.  If a method 
is to be monitored, instrumentation is inserted at the 
method entry point and before every method exit.  The 
instrumentation contains byte-code that notifies the 
profiler agent of method entry and exit.  The insertion of 
byte-code instructions renders branching offsets, and 
position counters of exception handlers invalid. The 

rewriting algorithm fixes these relative and absolute 
addresses.  In addition, the maximum stack size may need 
to be updated, since the instrumentation contains method 
invocations of the profiler agents method entry and exit 
handlers.  Method invocations use the stack to store 
parameters. 

 
Figure 3 illustrates the rewriting algorithm.  It shows how the 

method body of a simple method is rewritten.  The 
instrumentation is printed in bold face.  

 
Monitoring contention during mutual exclusion.  The 

JVMPI �monitor contented enter‘, �entered‘, and �exit‘ events are 
logged with timestamps, the environment pointer of the thread, 
and the object-id of the Java object that is associated with the 
monitor. 

 
Monitoring cooperation.  The JVMPI �monitor wait‘ and 

�waited‘ events are logged with timestamps, the environment 
pointer of the thread, and the object-id of the Java object that is 
associated with the monitor. 

 

Java source: 
 
public static int test2b(int i) { 
  if (i == 2) return test2a(i+1); 
  else return test2a(i); 
} 
 
Byte-code before instrumentation: 
 
PC   OPCODE            OPERANDS 
0x0  0x1a iload_0 
0x1  0x05 iconst_2 
0x2  0xa0 if_icmpne    0x0 0xa 
0x5  0x1a iload_0 
0x6  0x04 iconst_1 
0x7  0x60 iadd 
0x8  0xb8 invokestatic 0x0 0x2 
0xb  0xac ireturn 
0xc  0x1a iload_0 
0xd  0xb8 invokestatic 0x0 0x2 
0x10 0xac ireturn 
 
Byte-code after instrumentation: 
 
PC   OPCODE            OPERANDS 
0x0  0x10 bipush       0x01 
0x2  0xb8 invokestatic 0x0 0x1e 
0x5  0x1a iload_0 
0x6  0x05 iconst_2 
0x7  0xa0 if_icmpne    0x0 0xf 
0xa  0x1a iload_0 
0xb  0x04 iconst_1 
0xc  0x60 iadd 
0xd  0xb8 invokestatic 0x0 0x2 
0x10 0x10 bipush       0x01 
0x12 0xb8 invokestatic 0x0 0x1f 
0x15 0xac ireturn 
0x16 0x1a iload_0 
0x17 0xb8 invokestatic 0x0 0x2 
0x1a 0x10 bipush       0x01 
0x1c 0xb8 invokestatic 0x0 0x1f 
0x1f 0xac ireturn 

Figure 3: Java byte-code rewriting illustration 
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Object allocation.  In case information on Java objects is 
needed, for instance when there is contention for a monitor, the 
observer queries JVMPI for object information.  This information 
is stored in the observer's internal data structures.  To keep this 
information valid the observer also needs to monitor �object free‘ 
events, and �object move‘ events (an object may be moved to 
another address during garbage collection).  The object 
information is also logged, so that the analyzer and visualizer 
tools can display object information of objects associated to 
monitor contention and cooperation events.  

4.3 Tools 
The observer produces a binary log file containing the collected 
events.  From this event collection, event traces can be generated.  
The toolkit provides an event trace generator that produces and 
event trace for each program thread.  Tools are needed to visualize 
and analyze these event traces. 

JPMT provides an event trace API that can be used to 
implement event trace processing tools.  The API provides an 
object-oriented view on the event traces.  C++ classes represent 
the various event types; events are instances of those classes 
(objects).  Event attributes can be queried by invoking methods on 
the event objects. 

We have implemented two tools on top of this API: (i) an 
event trace browser (or visualizer), and (ii) a command-line tool 
for analyzing event traces. 

The event trace browser provides a simple graphical user 
interface for browsing the event trace.  Events, including 
performance attributes, are displayed on the screen in a tree-like 
structure.  The user is able to expand and collapse sub traces, 
depending on the level of detail the user requires.  Figure 4 shows 
a snapshot of the event browser.  The figure contains part of an 
event trace of one of the threads in an application we used to test 
the toolkit.  In this application various threads increment a shared 
counter repeatedly.  After incrementing the counter they perform 
some CPU intensive operations.  Since the counter is a shared 
object, we use mutual exclusion.  The screenshot shows the 
monitored events for mutual exclusion (contended monitors) and 

the invocation of the increment method on the counter object.  
The events are annotated with performance measures, such as the 
duration of monitor contention and CPU time usage of methods.  

The command-line tool can be used in scripts that post-
process the event traces for specific experiments, for example, to 
obtain input data for GNUplot (a tool to generate plots).  The 
command-line tool can also be used to export the event traces to a 
human readable text format. 

We plan to add language bindings for the Java and Ruby 
programming languages to the API, such that performance 
analysis applications can be written in those languages too. 

4.4 Overhead 
The overhead of monitoring depends on the amount of 
instrumentation.  In section 2 we identified two distinct levels of 
monitoring: (i) exploring the behavior of the monitored software 
and (ii) measuring performance of parts of the software to answer 
specific performance questions.  For exploring behavior it doesn‘t 
really matter how much overhead is introduced.  For performance 
measurement however, we like to minimize the overhead, since it 
disrupts the measurements.  We can do this by filtering out events 
we‘re not interested in.  Monitoring of method invocations causes 
the most overhead.  On a Pentium III 700 MHz system the 
overhead for monitoring and logging a method invocation is 6 
microseconds when the byte-code rewriting algorithm is used to 
instrument methods.  This can be split evenly in 3us for 
monitoring the method entry event, and 3us for monitoring the 
method exit event.  Logging itself costs 1us for each event.  The 
other 2us per event are caused by the invocation of our method 
invocation event handler and obtaining timestamps and CPU 
performance counters.  To compare, a Java method that does a 
print-line on the screen (System.out.println()), costs 
16us.  We provide a small utility to measure overhead caused by 
the instrumentation on other platforms. 

 
Figure 4: Screenshot of the event trace browser, displaying part of a trace of a particular thread 
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5. EXAMPLE: CORBA PERFORMANCE 
MEASURES 
This section illustrates the use of our Java Performance 
Monitoring Toolkit to obtain performance measures of 
ORBacus/Java [11], a CORBA implementation [19]. 

5.1 OMG CORBA Distributed Object 
Middleware 
The Common Object Request Broker Architecture (CORBA) [19] 
specified by the Object Management Group (OMG) is the de-facto 
object-middleware standard.  CORBA mediates between 
application objects that may live on different machines, by 
implementing an object-oriented RPC mechanism.  This allows 
application objects to talk to remote objects in the same way as 
they talk to local objects.  Besides this object location 
transparency, CORBA also implements programming language 
transparency.  Object interfaces are specified in an interface 
description language (IDL).  These IDL interfaces are compiled to 
so-called stubs and skeletons, which act as proxies for the client 
and server objects, respectively.  The client and server objects 
may be implemented in different programming languages, for 
instance Java and C++.  Figure 5 depicts the CORBA method 
invocation path.  The figure shows a two-way (request and reply) 
remote method invocation. 

 
Activities that make up the functional path of a CORBA 

remote method invocation.  First, the client invokes the method 
on the stub, which is the local proxy of the target object.  A 
reference to the stub is obtained by narrowing the object reference 
of the target object. 

The stub constructs a CORBA request object and translates 
the method invocation parameters, which are expressed using 
programming language, operating system, and architecture 
specific data types, to a common data representation (CDR). This 
translation process is called marshaling.  The marshaled data is 
added to the request object.  Subsequently, the request object is 
forwarded to the client-side ORB library. 

The client-side ORB library uses a TCP/IP connection to 
communicate with the server-side ORB library.  The address of 
the server-side ORB is obtained from the target object's object 
reference.  This object reference is created by a portable object 
adapter (POA) on the server-side ORB.  Each object is managed 
by exactly one POA. 

A POA implements the adapter design pattern [4] to adapt 
the programming language specific object interfaces to CORBA 
interfaces, making the target object implementation accessible 
from the ORB. 

The POA has a map of active objects.  This map associates 
object identifiers with object implementations.  Object 
implementations are called servants.  The object reference 
contains server information, such as hostname and port number, 
the name of the POA, and the object identifier of the target object.  

The client-side ORB sends the request object to the server-
side ORB. 

The server-ORB obtains the target object's POA and object 
identifier from the request object and forwards the request to the 
POA. 

The POA looks up the servant in it's active object map using 
the object identifier and forwards the request to the skeleton of the 

target object.  Figure 6 illustrates the mapping from object-id to 
servant. 

The skeleton unmarshals the method invocation parameters 
and invokes the request on the target object. 

When the method invocation returns, the skeleton creates a 
CORBA reply object, marshals the return parameters, and inserts 
the return parameters in the reply object.  The reply object is 
forwarded to the server-side ORB. 

The server-side ORB forwards the reply object to the client-
side ORB. 

The client-side ORB forwards the reply object to the stub. 
The stub unmarshals the return parameters and forwards 

those to the client. 
This description is a bit simplified.  However, a full 

description of what happens during a method invocation is outside 
the scope of this paper.  More information is available from [19] 
[7]. 

 
ORBacus/Java using thread pools.  ORBacus/Java supports 

various server-side threading models, such as thread-per-request 
and thread-pool.  In this use case we look at the thread-pool 
model. 

In the thread-pool model the server-side activities described 
above are distributed over receiver and dispatcher threads.  Each 
client connection has its own receiver thread. The requests are 
dispatched by receiver threads onto a pool of pre-allocated 
threads.  Requests are queued in the thread pool in a FIFO queue.  
Idle dispatcher threads take a request from the queue and process 
the request. The length of the queue is only limited by the 
available memory.  The number of threads in the thread pool is 
fixed.  The maximum number of requests that can be processed 
simultaneously equals the size of the thread pool.  A discussion on 
the advantages and disadvantages of various threading models can 
be found in [22]. 
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Figure 5: CORBA method invocation path 
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The receiver thread receives the request object from the 
network, gets the POA and object identifier from the request 
object, constructs a dispatch-request object, and forwards that 
object to the thread pool.  The receiver thread can then process the 
next request (if any). 

The dispatch-request is processed by a dispatcher thread, 
which forwards the request to the POA, skeleton, and servant.  
After the request is processed by the servant a reply object is 
constructed and sent to the client-side ORB. The dispatcher thread 
is then ready to process the next dispatch-request object. 

Figure 7 illustrates the execution path at the server-side of a 
method invocation in ORBacus, using the thread pool threading 
model. 

5.2 Blackbox performance measurements 
To measure end-to-end performance of CORBA under different 
configurations we have developed a set of benchmarking 
applications.  The set consists of a source and sink application.  
The source application implements a synthetic workload 
according to a given scenario.  The sink application processes the 
workload generated by the source application.  The interaction 
between the source and sink applications is illustrated in figure 8.  

A scenario consists of three parts: 
• The configuration of the client and server ORBacus. 

For instance, the threading model of the server is 
described here. 

• A description of the workload the source should 
generate.  It describes a number of arrival processes, 
their distribution, and the routing probabilities to the 

different target objects (see figure 8). 
• A deployment description of the sink application, 

which describes a number of POAs and objects that are 
managed by the POAs.  It also describes POA policies, 
such as the POA threading policy.  This threading 
policy is different from the ORB threading policy.  The 
CORBA specification specifies two POA threading 
policies: ORB controlled and single threaded.  If the 
ORB controlled threading policy is used, the ORB may 
implement any threading model.  If the single thread 
policy is used, then the POA can only process one 
request at a time.  This POA threading policy can be 
used when the servants are not multi-thread aware. 

 
The source and sink applications have been developed to 

make it easier to perform different experiments.  Without the 
source and sink applications and their scenario configuration files, 
we would have to implement the scenario inside client and server 
applications.  Having to change these client and server 
applications for different experiments is too tedious.  

The source and sink applications report on end-to-end 
performance measures, such as the response time of each request.  
These measures are blackbox measures, meaning that we don't 
know how the end-to-end measures are distributed over the 
activities that make up the functional path of a method invocation 
at the server-side ORB.  The next paragraph discusses how 
whitebox measures are obtained.  The remainder of this paragraph 
discusses our example scenario. 
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Figure 7: Server side request flow in ORBacus with thread-pool model 
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We use the following scenario: 
• The workload consists of 5000 requests. 
• All requests are sent to the same target object.  The 

target method‘s name is ping_with_wait().  The 
name of the Java servant class implementing the object is 
net.qahwah.jpmt.examples.ORBacus.Perfo
rmanceTest1_impl. 

• There is one arrival process, generating 4 requests per 
second for the target object.  This arrival process is 
exponentially distributed. 

• On the server side there is a multithreaded POA, with a 
thread-pool of 3 threads. 

• The ping_with_wait() operation in the servant has 
a constant waiting time (no CPU usage) of 1/1.75 
seconds per request. 

 
We have performed the experiment on a uniprocessor 

Pentium III 700MHz machine with 320MB RAM, running the 
Linux 2.4 operating system and ORBacus 4.1.0b1.  Both the 
source and sink application run on the same machine.  There was 
no background load. 

The mean end-to-end response time of a request as measured 

is 0.7649234997 seconds (with a variance of 0.07222361847 
seconds). 

Figure 9 shows a plot of the response times, and the mean 
response time.  The variance in the response times is caused by 
the exponential distribution of the request arrival process.  

5.3 Whitebox performance measures 
We use JPMT to obtain whitebox measurements.  Figure 10 and 
11 show monitoring results for request 87 (out of 5000).  First, the 
request is read from the network by the receiver thread (using 
receive_detect()) in two steps: one for the request header, 
and one for the request body.  The executeHeader() method 
determines the request type from the header.  The execute() 
method locates the target POA and creates a request object (a Java 
object representing the incoming request).  The request is put in 
the thread-pool by the invoke() method.  Both 
executeHeader() and execute() unmarshal fields from 
the request header and request body.  Not the whole request is 
unmarshaled; method invocation parameters are unmarshaled by 
the skeleton in the dispatcher thread.  After adding the request 
object to the thread-pool (using add()), the receiver thread is 
ready to process the next incoming request (highlighted 
receive_detect() in figure 10).  The thread-pool has a 
FIFO queue in which requests are stored.  When a dispatcher 
thread is ready to process a request it gets the request from the 
thread-pool using the get() method.  The request is then 
invoked.  First, the object implementation (servant) is located in 
the POAs active object map (using locate()).  Subsequently, 
the request is dispatched to the servant, via the target object‘s 
skeleton (dispatch()).  The skeleton unmarshals the method 
invocation parameters (not shown in the trace) and calls the target 
method in the servant (ping_with_wait()).  When the 
servant is done, a reply object is created (createReply()), 
and return parameters are marshaled (not shown).  The request is 

 
Figure 9: Response time graph for our example scenario 
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sent to the client in the postMarshal() method.  The 
dispatcher thread is then ready to process the following request 
(highlighted get() in figure 11). 

For each monitored method invocation in the receiver thread 
and dispatcher thread, we have measured the wall-clock 
completion time and the CPU time, both in microseconds.  Note 
that the completion time and CPU time of a method invocation 
includes the completion and CPU time of its children (i.e., the 
methods it calls).  The servant‘s ping_with_wait() method 
doesn‘t use a lot of CPU time (68 microseconds) compared to the 
wall-clock completion time. 

We‘ve added a custom extension to the event trace browser 
and analyzer tools to show queuing information.  In the �queuing‘ 
column the request number is shown (87), the size of the queue 
after performing the add() and get() method is shown (3 and 
4, respectively), and in the dispatcher thread it is shown how long 
a request has been queued (request 87 spent 749066 microseconds 
in the queue).  The queuing information is obtained by replaying 
actions in the event trace related to the thread-pool, i.e., we track 
the add() and get() methods of the thread-pool. 

The mean queuing time we measured is 0.1739308757 
seconds (variance is 0.07204043565 seconds).  In our scenario we 
have configured the ping_with_wait() method to use 1/1.75 
seconds (0.5714285714 seconds).  However, the event trace 
(figure 11) shows that 0.589472 seconds are used.  The difference 
is caused by the coarse granularity of the Java 
Thread.sleep() method, which is 10ms. 

The waiting time in the servant and the queuing time in the 
thread-pool‘s FIFO queue are the main contributors to the end-to-
end response time.  They account for 0.74535945 seconds of the 
0.7649234997 seconds.  The remaining 0.0195640526 seconds 
can be attributed to the client ORB processing, loop-back 
networking between the client and server ORBs, and server ORB 
processing.  The performance monitoring toolkit can be used to 
precisely quantify these attributes too. 

6. RELATED WORK 
Performance monitoring requires some kind of instrumentation to 
measure and trace execution behavior.  Various instrumentation 
techniques are available. In this section we consider manual and 
automated instrumentation of the source code, automated 
instrumentation of Java byte-code, and the use of profiler and 
debugging APIs offered by the Java virtual machine. 

The most obvious technique is manual instrumentation of 
Java source code, by inserting logging and measurement 
statements in the source code.  Tracing and logging libraries, such 
as Visible Workings' Trace for Java [27] and Apache Log4J [1], 
make source code instrumentation easier by providing some 
common tracing and logging functionality.  To trace method 
invocations, the source code of each method to be traced has to be 
modified, which is cumbersome.  Dynamic proxies, supported by 
Java's reflection package, can be used to selectively instrument 
certain objects by wrapping the object in another object using the 
proxy design pattern. [4]  This eliminates the need of having to 
instrument each method. 

 
Figure 10: Activities in receiver thread for request 87 

 
Figure 11: Activities in dispatcher thread for request 87 
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Because instrumenting source code manually is tedious, 
some sort of automation would be preferable.  For instance, 
AspectJ [13], which is an aspect-oriented programming extension 
to Java, considers tracing as a crosscutting concern, or aspect  
[14].  The AspectJ compiler can automatically insert 
instrumentation to facilitate tracing of method invocations.  

Another instrumentation technique is byte-code rewriting, 
which is discussed in section 4.  The JMonde Trace tool [17] 
supports method tracing by rewriting the byte-code of a class 
when the class is loaded.  A custom Java class loader reads the 
class and uses the BCEL library [3] to rewrite the byte-code of the 
class, e.g., by inserting logging statements in method 
implementations.  The JMonde Trace tool supports filtering of 
traces by allowing the user to select classes that are to be included 
or excluded in the trace.  The tool doesn‘t support performance 
measurement, and thread monitoring. 

Recent versions of Java include the Java Virtual Machine 
Debugger Interface (JVMDI) [23] and the Java Virtual Machine 
Profiler Interface (JVMPI) [15].  Both interfaces can be used to 
implement tracing tools.  Like JVMPI (discussed in the previous 
section), the debugger interface notifies clients through events.  
Compared to the profiler interface JVMDI provides more context 
information, such as information on the contents of local variables 
and method parameters.  The disadvantage of JVMDI compared 
to JVMPI is that it requires the virtual machine to run in debug 
mode, which causes a performance penalty. 

Profiler tools, such as IBM Jinsight [8], Compuware 
NuMega DevPartner TrueTime [18], Sitraka Jprobe [24], 
OptimizeIt [26] and Intel VTune [9], obtain profiling data from 
the virtual machine using JVMPI.  Most profilers do not provide 
complete traces of events that have occurred in the virtual 
machine; they employ call stack sampling to inform the user of 
execution hot spots, i.e., parts of the code that use the most 
execution time.  These profiler tools are used to find performance 
problems and to optimize programs.  Our goal is different; we 
want to measure the performance of user specified methods and 
provide the user with a complete method invocation trace. 

Most profiler tools restrict the user to a GUI that provides a 
fixed view on the performance.  Instead of providing fixed views, 
JPMT logs event traces in an open data format, allowing users to 
build custom tools to execute the performance queries they 
require.  Rational Quantify [21] and IBM Jinsight allow exporting 
of data to, e.g., spreadsheets or scripts. 

JPMT also supports both online and offline filtering of 
interesting events (i.e., at run-time and during event trace 
processing by analyzer and visualization tools).  Most profilers 
only support filtering after program execution.  An exception is 
Rational Quantify, which allows the user to indicate which data is 
to be collected and reported, and the level of detail of the data.  

7. FUTURE WORK 
Our toolkit is under active development and is to be released 
under an open source license.  We‘re currently adding techniques 
to quantify the performance of object creation and destruction, 
and garbage collection.    Various improvements are planned for 
the event trace visualizer, including replaying (animation) of 
event traces and recognition of execution patterns.  Besides 
improving the usability of the visualizer, we also plan to add 
features that aid the user with event filter set specification.  The 
specification of these filter sets is currently a manual process.  
Usually, it takes a few iterations to find a good filter set for 

measuring the performance aspects the user is interested in.  
Another useful extension we‘re planning is the ability to detect 
and display differences between two event traces.  For example, 
this can be useful when the two event traces are generated for the 
same experiment, but using different deployment configurations.  
In this case the differences list the impact of the deployment 
configuration changes. 

8. CONCLUSIONS 
In this paper, we have introduced our Java Performance 
Monitoring Toolkit (JPMT).  This toolkit provides insight in the 
execution behavior of Java programs.  JPMT implements event-
driven monitoring, i.e., execution behavior is expressed as a series 
of events.  An event represents an individual unit of behavior, 
such as the creation of a new thread, entering a method, and 
exiting a method.  Events are annotated by performance attributes.  
For example, the �method entry‘ and �exit‘ events are annotated 
with a timestamp (wall-clock time) and the contents of certain 
CPU registers (called hardware performance counters).  These 
attributes can be used to calculate the wall-clock completion time 
of a method invocation and its CPU usage. 

JPMT allows the user to indicate the events of interest.  To 
monitor these events of interest, instrumentation is added to the 
Java program.  JPMT adds this instrumentation transparently to 
the user, and during run-time.  Instrumentation doesn‘t require 
availability of the source code.  The instrumentation logs events to 
a binary formatted file. 

From this file, event traces can be produced.  An event trace 
represents the execution behavior as a tree of events; each event 
may have child events stored in sub-trees.  For example, method 
invocations are child events of the calling method. 

Event traces can be analyzed using an event trace API.  Tools 
can be built on top of this API to process the event traces.  Two 
tools are provided: a GUI to browse event traces and a command-
line tool to perform event trace analysis. 

We have developed the toolkit to gain insight in the 
execution behavior of Java applications for which we‘re 
developing performance models.  We found that existing tools 
didn‘t offer the functionality we required.  Profiler tools focus on 
performance tuning (finding execution hot-spots) and provide an 
incomplete view of the execution behavior (no complete event 
traces).  Compared to related tools, JPMT produces complete 
event traces, offers event filtering during and after execution, and 
allows custom event trace analysis and visualization tools to be 
developed.  Instrumentation overhead is minimized by only 
adding instrumentation for events that are to be monitored and by 
careful optimization of the instrumentation itself.  

9. CONTACT INFORMATION 
For more information please contact Marcel Harkema at 
m.harkema@cs.utwente.nl. 
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