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Abstract

The study presented in this paper is motivated by the performance analysis of response times in distributed information
systems, where transactions are handled by iterative server and database actions. We model system response times as sojourn
times in a two-node open queueing network with a processor sharing (PS) node and a first-come-first-served (FCFS) node.
External customers arrive at the PS node according to a Poisson process. After departing from the PS node a customer proceeds
to the FCFS node with probabilityp, and with probability 1− p the customer departs from the system. After a visit to the
FCFS node, customers are fed back to the PS node. The service requirements at both nodes are exponentially distributed. The
model is a Jackson network, admitting a product-from solution for the joint number of customers at the nodes, immediately
leading to a closed-form expression for the mean sojourn times in steady-state. The variance of the sojourn times, however,
does not admit an exact expression—the complexity is caused by the possibility of overtaking. In this paper we propose a
methodology for derivingsimple, explicit andfast-to-evaluate approximations for the variance of the sojourn times. Numerical
results demonstrate that the approximations are very accurate in most model instances.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Motivation and background

This paper is motivated by response time analysis of distributed information systems where transactions
are handled by iterative server and database actions. Distributed information systems are commonly
implemented in a three-tiered system architecture, with a presentation tier implementing the end-user
interface, a business logic tier implementing the service logic and a data tier with information databases
and legacy systems. A typical feature of such applications is that a single transaction initiated by the client
(at the presentation tier) may initiate a sequence of transactions to be performed on the different system
components. Consider for example an on-line service offered by a telephone company that enables the
customers to check the status of telephone bills at its home PC with Internet access (seeFig. 1). The client
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Fig. 1. Three-tiered system architecture for distributed applications.

initiates a transaction request by typing in the proper uniform resource locator (URL), supplemented by a
login and password. The request is then sent to a Web server (a front-end server at the business logic tier)
that initiates a script (e.g., a common gateway interface (CGI) script, or an active server page (ASP)) that
first performs an authentication check at a database, and if successful, sends a query (or a sequence of
queries) to the database server (backend server at the data tier) to retrieve the requested information. The
Web server then processes the information into a proper format (e.g., hypertext markup language (HTML))
before sending back the response to the client. For the commercial success of distributed information
systems the ability to deliver an acceptable quality of service (QoS) level in terms of response times is of
key importance.

In this paper we focus on the processing of transactions at the front-end server and the backend
servers. The front-end server that implements the business logic typically executes a script that involves
a sequence of database accesses in addition to highly CPU-intensive processing steps. Therefore, the
front-end server is typically assumed to be CPU-bound, i.e., its processing capacity is limited by the CPU
speed. Alternatively, the backend servers typically handle the queries in the order in which they arrive. We
analyse response times of a transaction requests by modelling them as sojourn times of a customer in a
queueing network. More specifically, we consider a delayed feedback queueing network with a processor
sharing (PS) node and a first-come-first-served (FCFS) node. External customers arrive at the PS node
according to a Poisson process. After departing from the PS node a customer proceeds to the FCFS node
with probabilityp, and with probability 1− p the customer departs from the system. After each visit to
the FCFS node customers are fed back to the PS node. The mean sojourn time follows directly from the
product-form solution for the joint number of customers at both nodes, combined with Little’s law. In
this paper we focus on thevariance of the total sojourn time.

The analysis of the variance of the sojourn time in the present model is complicated due to the fact
that overtaking may occur. Overtaking usually destroys any hope for an exact analysis of the higher
moments of the sojourn-time distributions. We refer to Boxma and Daduna[2] for an excellent survey
of the available results on sojourn times in queueing networks. The main result in[2] is an expression
for the Laplace–Stieltjes transform (LST) of the joint probability distribution of the successive sojourn
times of a customer that traverses a predefined path of nodes in a product-form queueing network. Several
results are known for single-node queueing systems with instantaneous feedback. For the M/G/1 queue
with Bernoulli feedback, Doshi and Kaufmann[5] derive expressions for the LST of the joint distribution
of the sojourn times of a customer at its successive passes through the system. We refer to Disney and
Koenig [4] for an overview on Bernoulli feedback models. van den Berg and Boxma[1] consider an
M/G/1 system, with either FCFS or PS service, where a customer after receiving service for thekth time
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is looped back into the system with probabilitypk and departs from the system with probability 1− pk.
For this model, van den Berg and Boxma[1] analyse the joint distribution of the firstk successive sojourn
times of a customer (who is fed back at leastk − 1 times). In particular, they derive expressions for
the moments of these sojourn times, and for the correlations between the successive sojourn times of
an arbitrary customer in the system. Less results are known for sojourn-time distributions for networks
with delayed feedback (which occurs in the present model). In[6], Foley and Disney studied queueing
systems with delayed feedback, but their focus is merely on queue length processes, busy period and
several customer flow processes.

In the absence of exact solutions, we propose a new methodology for developing simple, explicit and
fast-to-evaluate approximations. We explore the specific structure of the network by combining known
results for (instantaneous) feedback queues and product-form queueing networks. We emphasise that the
methodology for developing approximations is applicable in a much more general context than the specific
model considered here. Numerical results demonstrate that the approximations are highly accurate in most
model instances.

The remainder of this paper is organised as follows. InSection 2the model is described. InSection 3we
present exact expressions for the mean sojourn times and develop an approximation for the variance of the
sojourn times. InSection 4the accuracy of the approximations is tested by comparing the performance
predictions based on the approximations with simulation results. Finally, inSection 5we address a number
of topics for further research.

2. Model

We consider an open queueing model with a single customer class and two nodes: a PS node and a
FCFS node (seeFig. 2). External customers arrive at the PS node according to a Poisson process with
rateλ. After service completion at the PS node, the customer proceeds to the FCFS node with probability
p, and with probability 1− p the customer departs from the system. Customers leaving the FCFS node
are always fed back to the PS node. The service times at each node are exponentially distributed with
meanβps andβfcfs, respectively. The successive service times at both nodes are assumed to be mutually
independent and independent of the state of the system. The load at the PS node and the FCFS node is
given by

ρps := λβps

1 − p
and ρfcfs := λβfcfsp

1 − p
, (1)

respectively. For an arbitrary customer denoted byN the random variable indicating the number of visits
to the FCFS node before departing from the system. Then it is readily seen thatN is geometrically

Fig. 2. Illustration of the two-node queueing network model.
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distributed with parameterp, i.e., Prob{N = n} = (1− p)pn, for n = 0, 1, . . .. Fori = 1, 2, . . . , N + 1,
letS(ps)

i denote the sojourn time of theith visit to the PS node, and forj = 1, . . . , N , denote by andS(fcfs)
j

the duration of thej th visit to the FCFS node. The total sojourn time is then given by

S =
N+1∑
i=1

S
(ps)
i +

N∑
j=1

S
(fcfs)
j . (2)

To ensure stability of the system it is assumed thatρps, ρfcfs < 1.

3. Analysis

The queueing network model described inSection 2is a Jackson network, and as such has the following
product-form solution (withLps andLfcfs denoting the number of customers at the PS node and at the
FCFS node, respectively):

Prob{Lps = l; Lfcfs = l′} = Prob{Lps = l} Prob{Lfcfs = l′} (3)

Prob{Lps = l; Lfcfs = l′} = (1 − ρps)ρ
l
ps(1 − ρfcfs)ρ

l′
fcfs, l, l′ ≥ 0. (4)

In general, the arrivals at both nodes are not Poisson, and the successive sojourn times of a customer are
generally not independent. Nonetheless, the successive sojourn times of a tagged customer at the same
node are identically distributed.

Lemma 1.

(a) The successive sojourn times S
(ps)
i (i = 1, . . . , N + 1) are identically distributed.

(b) The successive sojourn times S
(fcfs)
j (j = 1, . . . , N) are identically distributed.

Proof. We observe that the model under consideration is a multi-class product-form network, where the
customer classes are defined as follows. Each customer enters the system (at the PS node) as a class-0
customer, and its class number is incremented fromi to i +1 any time the customer jumps from one node
to the next (i = 0, 1, . . .). (In this way, for each customer its class indicates the number of node visits
since the arrival of the customer in the system.) Then according to the Arrival theorem for multi-class
product-form networks (cf., e.g., Walrand[10, Theorem 4.4.1]) sees the system in steady-state,regardless
of its class number, which immediately implies the validity ofLemma 1. �

3.1. Mean sojourn times: exact expressions

Using the above lemma, it follows directly fromEq. (4)and Little’s law that

E[Lps] = ρps

1 − ρps
, (5)

E[S(ps)
i ] = ρps

(λ/(1 − p))(1 − ρps)
= βps

1 − ρps
, i = 1, . . . , N + 1. (6)
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Recall that the total arrival intensity at the PS node equalsλ/(1 − p). Similarly, for the FCFS node we
have

E[Lfcfs] = ρfcfs

1 − ρfcfs
(7)

and

E[S(fcfs)
j ] = ρfcfs

(pλ/(1 − p))(1 − ρfcfs)
= βfcfs

1 − ρfcfs
, j = 1, . . . , N. (8)

Combining(6) and (8)and applying Wald’s equation we obtain the following expression for the mean
total sojourn time of an arbitrary customer:

E[S] = E

[
N+1∑
i=1

S
(ps)
i +

N∑
i=1

S
(fcfs)
i

]
= (E[N ] + 1)E[S(ps)

1 ] + E[N ]E[S(fcfs)
1 ] (9)

= 1

(1 − p)

βps

(1 − ρps)
+ p

(1 − p)

βfcfs

(1 − ρfcfs)
. (10)

3.2. Variance of the sojourn times: approximations

Analysis of the variance of the total sojourn time is fundamentally more complex. The complexity is
caused by the fact thatovertaking may occur. In the absence of exact expressions for the variance of the
sojourn times we develop new, simple and fast approximations for the variance of the sojourn times. The
accuracy of the results will be demonstrated in the next section.

To start we rewrite the sojourn time variance Var[S] in the following convenient form:

Var[S] = Var


N+1∑

i=1

S
(ps)
i +

N∑
j=1

S
(fcfs)
j


 (11)

= E


Var


N+1∑

i=1

S
(ps)
i +

N∑
j=1

S
(fcfs)
j |N





 + Var


E


N+1∑

i=1

S
(ps)
i +

N∑
j=1

S
(fcfs)
j |N





 (12)

=
∞∑

n=0

Var


n+1∑

i=1

S
(ps)
i +

n∑
j=1

S
(fcfs)
j


 (1 − p)pn + Var


N+1∑

i=1

E[S(ps)
i ] +

N∑
j=1

E[S(fcfs)
j ]


 (13)

=
∞∑

n=0

Var

[
n+1∑
i=1

S
(ps)
i

]
(1 − p)pn +

∞∑
n=0

Var


 n∑

j=1

S
(fcfs)
j


 (1 − p)pn

+
∞∑

n=0

2 Cov


n+1∑

i=1

S
(ps)
i ,

n∑
j=1

S
(fcfs)
j


 (1 − p)pn + Var[N ](E[S(ps)

1 ] + E[S(fcfs)
1 ])2 (14)
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=
∞∑

n=0

(n + 1)Var[S(ps)
1 ](1 − p)pn +

∞∑
n=0

n Var[S(fcfs)
1 ](1 − p)pn

+
∞∑

n=0

∑
i �=k

Cov[S(ps)
i , S

(ps)
k ](1 − p)pn +

∞∑
n=0

∑
j �=l

Cov[S(fcfs)
j , S

(fcfs)
l ](1 − p)pn

+
∞∑

n=0

n+1∑
i=1

n∑
j=1

2 Cov[S(ps)
i , S

(fcfs)
j ](1 − p)pn + Var[N ](E[S(ps)

1 ] + E[S(fcfs)
1 ])2 (15)

= 1

1 − p
Var[S(ps)

1 ] + p

1 − p
Var[S(fcfs)

1 ] +
∞∑

n=0

∑
i �=k

Cov[S(ps)
i , S

(ps)
k ](1 − p)pn

+
∞∑

n=0

∑
j �=l

Cov[S(fcfs)
j , S

(fcfs)
l ](1 − p)pn +

∞∑
n=0

n+1∑
i=1

n∑
j=1

2 Cov[S(ps)
i , S

(fcfs)
j ](1 − p)pn

+ p

(1 − p)2
(E(S

(ps)
1 ) + E[S(fcfs)

1 ])2. (16)

Eq. (11)follows from Eq. (2), and(12) follows directly from the classical Var[U ] = E[Var[U |V ]] +
Var[E[U |V ]] by taking U := ∑N+1

i=1 S
(ps)
i + ∑N

j=1 S
(fcfs)
j andV := N . Eq. (13) is then obtained by

conditioning with respect to the event{N = n}. Subsequently,(14) follows fromLemma 1and classical
rules for the variance of random variables, and(15) is obtained fromLemma 1. Finally, Eq. (16)can be
obtained via standard calculus.

E[S(ps)
1 ] and E[S(fcfs)

1 ] in (16) are given byEqs. (6) and (8). From Lemma 1and the sojourn time
variance of an M/M/1-FCFS (cf.[3]), we have Var[S(fcfs)

1 ] = (βfcfs/1 − ρfcfs)
2. Hence, it remains to

develop approximations for Var[S
(ps)
1 ], Cov[S(ps)

i , S
(ps)
j ], Cov[S(ps)

i , S
(fcfs)
j ] and Cov[S(fcfs)

i , S
(fcfs)
j ], for any

i �≡ j .

Approximation Assumption 1. The total arrival process at PS node is a Poisson process, with rate
λ/(1 − p).

For non-acyclic queueing networks, ApproximationAssumption 1is known to be not true in general,
not even under the assumption that the service times are exponentially distributed. The violation of the
Poisson assumption is caused by the feedback loop, implying dependent interarrival times at the nodes.
Based on ApproximationAssumption 1, we obtain the following approximate expression for the variance
of the sojourn times at the PS node (cf.[7]):

Var[S(ps)
1 ] ≈ 2 + ρps

2 − ρps

(
βps

1 − ρps

)2

. (17)

van den Berg and Boxma[1] derived exact expressions for the covariance between the successive sojourn
times for single-server FCFS and PS queues withdirect feedback, where customers upon receiving service
are immediately fed back into the system (with some probability). We emphasise that the model discussed
in Section 2implements adelayed feedback mechanism: upon departing from the FCFS node, a customer



R.D. van der Mei et al. / Performance Evaluation 49 (2002) 99–110 105

is first processed by the PS-node before returning to the FCFS node. Similarly, after leaving the PS node,
a customer is first processed at the FCFS node before returning to the PS node.

Approximation Assumption 2.

(a) The covariance between the successive sojourn times of a customer at the PS node in the network
with delayed feedback is equal to those in a single M/M/1 PS node with direct feedback.

(b) The covariance between the successive sojourn times of a customer at the FCFS node in the network
with delayed feedback is equal to those in a single M/M/1 FCFS node with direct feedback.

Now, based on ApproximationAssumption 2we approximate the covariances between the successive
sojourn times at the same node (i.e., Cov[S

(ps)
i , S

(ps)
j ] and Cov[S(fcfs)

i , S
(fcfs)
j ] (i �= j)) by the exact results

for systems withdirect feedback, derived from Eq. (9.13), respectively (3.17) in[1]. This leads to the
following approximations: for 1≤ i < n, 1 ≤ k ≤ n − i,

Cov[S(fcfs)
i , S

(fcfs)
i+k ] ≈ ρfcfs(ρfcfs(1 − p) + p)k−1β2

fcfs

(1 − ρfcfs)2
(18)

and similarly, for 1≤ i < n + 1, 1 ≤ k ≤ n + 1 − i,

Cov[S(ps)
i , S

(ps)
i+k ] ≈ ρpsβ

2
ps

(1 − ρps)2(2 − ρps − p + ρpsp)k+1
. (19)

Approximation Assumption 3. The sojourn timesS(ps)
i andS

(fcfs)
j are uncorrelated: fori = 1, . . . , N +1

andj = 1, . . . , N

Cov[S(ps)
i , S

(fcfs)
j ] ≈ 0. (20)

In general, ApproximationAssumption 3is known to be not true. However, the product-form solution
for the present model, see(4), implies that thenumber of customers at both nodesare independent. Also,
the sojourn time at the FCFS queue is closely related to the number of customers at that node: if a customer
findsnfcfs customers at the FCFS node upon arrival, then the sojourn time simply consists ofnfcfs + 1
independent successive exponential phases each with rateβ−1

fcfs, which is an Erlang distribution with shape
parameternfcfs + 1 and rate parameterβ−1

fcfs. For the PS node, the correlation between the sojourn times
and number of customers present upon arrival is less clear, and intuitively seems to be weaker than for
FCFS nodes. These observations suggest that the cross-correlation terms are rather small. To support this
conjecture, we have performed a variety of simulation experiments, calculating the correlation coefficients
between the successive sojourn times. For several cases (with varying loads and feedback probabilities) we
found that the cross-correlation coefficient were about a factor 2, smaller than the correlation coefficient
for successive sojourn times at the PS node. Also we found that the correlation coefficient for sojourn
times at the FCFS node were about three times larger than the PS node correlation coefficient. These
results confirm the conjecture that the cross-correlation terms for the sojourn times of visits todifferent
nodes areindeed negligible compared to the correlation terms of successive visits to thesame node.
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Finally, substituting the exact formula for the variance of the sojourn time in the FCFS node and
approximations(17)–(20)in the expression for Var[S] in (16)we obtain the following approximation for
the variance of the sojourn time:

Var[S] ≈ 1

1 − p

2 + ρps

2 − ρps

(
βps

1 − ρps

)2

+ p

1 − p

(
βfcfs

1 − ρfcfs

)2

+ 2pρpsβ
2
ps

(2 − ρps − p + pρps)(1 − p)2(2 − ρps)(1 − ρps)2

+ 2p2ρfcfsβ
2
fcfs

(1 − p)2(1 − pρfcfs + p)(1 − ρfcfs)2
+ p

(1 − p)2

(
βps

1 − ρps
+ βfcfs

1 − ρfcfs

)2

. (21)

Remark 3.1. We re-emphasise that the model and analysis presented in this paper can be extended to a
much wider range of models, without complicating the essence of the analysis. In particular, the general
method of developing approximations for queueing networks with feedback is to ignore cross-variances
and to calculate the variance of total sojourn times from variances of individual nodes and the covariances
between sojourn times of successive visits at each node. This method is expected to achieve accurate results
also for other queueing model where customers frequently visit a ‘central node’ (such as the PS node
in the model presented in this paper), as is the case in many server and database system applications.
Currently, we are exploring the possibilities for extending the application of this method.

4. Numerical results

To assess the accuracy of the approximations for the variance of the sojourn times proposed inSection 3,
we have performed numerous numerical experiments, comparing the approximations with simulations.
We have checked the accuracy of the approximations for many parameter combinations, by varying the
arrival rate(λ), the mean service times at both nodes (βfcfs, βps), and the value of the feedback probability
p. From the simulations, we have calculated the point estimates for the variance of the sojourn times, and
95% confidence intervals (CIs). Denoting the point estimations based on simulations by “simulation”,
and the approximated values by “approx.”, the relative error of the approximations is defined as

∆% = approx. − simulation

simulation
× 100%. (22)

One might question whether including covariance terms in the approximation only makes the approxima-
tion more complex, without gaining a higher level of accuracy. In order to illustrate the ‘added value’ of
including covariance terms in the approximation we also compare it to a simple, straightforward approx-
imation, which completely ignores dependencies between successive sojourn times of a tagged customer
in the PS or FCFS nodes. In particular, the simple approximation is the same as approximation(21)with-
out the covariance terms. InTable 1we will denote the results of this simple approximation by “simple”.
Table 1shows the results for the caseβfcfs = 1 andρfcfs = ρps, for a variety of combinations ofρps, p, βps

andλ (implicitly). The results presented inTable 1show that the approximations are highly accurate for
all parameter combinations considered, with a worst-case error of only 3%. Further, the results show that
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Table 1
Variance of the sojourn times: approximations versus simulations

ρps p βps Simulation CI Approx. ∆% Simple ∆%

0.2 0.2 0.2 1.2 (1.21, 1.23) 1.2 0.2 1.2 −2.8
0.2 0.5 0.5 10.2 (10.1, 10.3) 10.1 −0.7 9.6 −6.3
0.2 0.8 0.8 123.3 (122.0, 124.7) 123.5 0.2 113.6 −7.9
0.4 0.2 0.2 2.3 (2.24, 2.27) 2.3 1.5 2.2 −4.5
0.4 0.5 0.5 19.7 (19.6, 19.8) 19.6 −0.3 17.4 −11.7
0.4 0.8 0.8 244.5 (241.2, 247.7) 244.3 −0.1 204.4 −16.4
0.6 0.2 0.2 5.3 (5.25, 5.35) 5.4 2.7 5.0 −6.4
0.6 0.5 0.5 48.3 (47.7, 48.9) 48.7 0.7 40.2 −16.8
0.6 0.8 0.8 628.4 (619.7, 637.0) 621.5 −1.1 467.1 −25.7
0.8 0.2 0.2 24.8 (22.9, 23.6) 23.2 −0.3 20.4 −12.2
0.8 0.5 0.5 215.9 (212.3, 219.5) 218.2 1.1 166.7 −22.8
0.8 0.8 0.8 2956.7 (2904.5, 3009.0) 2868.7 −3.0 1906.7 35.5

the approximation is much more accurate than the simple, straightforward approximation, which shows
errors of up to 35%.

For the results presented inTable 1it is assumed that the load on both nodes are equal. To investigate the
impact of asymmetry in the load per node on the accuracy of the approximations, we have also considered
a variety of parameter combinations with unequal load per node, with the assumption thatβfcfs = 1. The
results are shown inTable 2. The results inTable 2demonstrate that for these scenarios the relative error
is still very low, smaller than 3% and almost all approximation results are within the CIs. Again, the
estimation is sometimes higher and sometimes lower than the centre of the CI. It does not seem to make

Table 2
Variance of the sojourn times: approximations versus simulations

ρps ρfcfs p βps Simulation CI Approx. ∆%

0.20 0.80 0.2 0.05 16.6 (16.4, 16.9) 16.7 0.2
0.20 0.80 0.5 0.13 111.9 (110.2, 113.5) 114.6 2.5
0.20 0.80 0.8 0.20 1204.2 (1139.4, 1269.0) 1203.6 −0.1
0.80 0.20 0.2 0.80 61.5 (60.5, 62.6) 61.5 −0.1
0.80 0.20 0.5 2.00 979.0 (944.2, 1013.7) 964.2 −2.0
0.80 0.20 0.8 3.20 15603.3 (14495.9, 16710.7) 15514.4 −0.6
0.65 0.85 0.2 0.15 32.0 (31.1, 32.9) 32.0 −0.1
0.65 0.85 0.5 0.38 246.7 (237.3, 256.1) 241.8 −2.0
0.65 0.85 0.8 0.61 2701.3 (2552.7, 2849.9) 2758.2 2.1
0.85 0.65 0.2 0.26 20.0 (19.8, 20.2) 20.0 −0.3
0.85 0.65 0.5 0.65 269.5 (262.1, 276.8) 267.8 −0.6
0.85 0.65 0.8 1.05 4179.5 (3963.3, 4395.7) 4097.4 −2.0
0.20 0.35 0.2 0.11 1.6 (1.58, 1.60) 1.6 0.5
0.20 0.35 0.5 0.29 11.1 (11.0, 11.2) 11.2 0.7
0.20 0.35 0.8 0.46 117.5 (115.6, 119.4) 119.2 1.4
0.35 0.20 0.2 0.35 1.97 (1.96, 1.98) 2.0 −0.0
0.35 0.20 0.5 0.88 21.9 (21.7, 22.1) 21.8 −0.2
0.35 0.20 0.8 1.40 316.2 (311.3, 321.1) 311.9 −1.4
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Table 3
Variance of the sojourn times: approximations versus simulations

λ ρps p βps Simulation Approx. ∆% Simple ∆%

0.01 0.4 0.95 2 6552.3 6605.2 1 4555 −44
0.01 0.7 0.95 3.5 119491.3 112253.8 −6 57376 −108
0.01 0.95 0.95 4.75 11795228 10126905 −14 3936619 −200

any difference whether the loads of the two nodes are very different, e.g., 0.20–0.80, or close to each
other, e.g., 0.65–0.80 and 0.20–0.35. Considering that the relative errors are very low, we impute the
difference in sign to the randomness of the simulation. Asymmetric loads do not cause the approximation
to perform worse. This could be expected, as the approximation contains separate covariance terms for
the PS and the FCFS nodes. Consequently, the formulas can adapt to asymmetric loads.

Each approximation, almost by definition, may become inaccurate at some regions of the parameter
space. To identify those regions, notice that the formula for the variance of the sojourn times at the PS are
based on the assumption that the arrival process is Poisson. However, in general, the arrival process at the
PS node is non-Poisson, since the two-node network considered here is not acyclic. Hence, one may expect
the approximation to perform worse when the arrival process at the PS node are highly non-Poisson. To
this end, we construct a pathological scenario in which the arrival processes at the two nodes are highly
non-Poisson by taking the external arrival rateλ close to 0 andp close to 1. This results bursts of arrivals
at the nodes. Further, we choseβps to be negligibly small in order to emphasise the fact that the inaccuracy
holds in particular for the PS node.Table 3shows the results for various parameter combinations (the CIs
are omitted here). The results inTable 3indeed demonstrate that the approximation tends to become less
accurate when rateλ becomes very low andp becomes very high, but in several cases still acceptable.
When comparing the results to those for the simple approximation introduced earlier in this section, one
can see that the errors for approximation(21) are significantly smaller. We emphasise that the scenarios
presented inTable 3are quite pathological, from a practical point of view.

5. Topics for further research

Finally, we address a number of topics for further research. First, in the present paper it is assumed
that there is a single FCFS node, representing an information database. In practice, however, information
is to be retrieved for different information systems, which could be modelled by multiple FCFS nodes.
Similarly, we have assumed the presence of a single PS node, representing a CPU-bound server executing
heavy scripting processing. In practice, multiple servers may be implemented in the system, which could
be modelled by taking into account multiple PS nodes, or a generalised PS (GPS) node. Extension of the
results presented here is an interesting and promising topic for further research. Second, in this paper cus-
tomers traverse routes through the queueing network according to a Bernoulli feedback scheme. However,
the covariance results from[1] are more widely applicable. For example, the approximation developed
in this paper can be extended to models where customer follow fixed routes. Another potential model
extension is to include multiple customer types that may each be governed by different feedback schemes.
Third, in many applications the maximum number of requests that a server will handle simultaneously
is limited to some fixed maximum in order to protect the server-side system from getting overloaded.
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This type of limitations may be included in the model by a token-based mechanism, where customers
may need to wait to get access to a token needed to enter the system. Extension of the model and the
results to include the impact of limitations in the number of customers in the system is an interesting
topic for further research. Further, it is assumed here that the service times are exponentially distributed,
whereas in practice the processing times may be far from exponential, and may even be heavy tailed.
Extension of the results to incorporate non-exponential service-time distributions is an open research
topic (in particular, for the FCFS node). Finally, the methodology developed in this paper is new and the
results are very accurate. Therefore, it is a challenging topic for further research to investigate to what
extent the methodology can be applied in a more general context, e.g., application to non-product form
queueing networks.
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