
Pre-processing a container yard under limited available time

Bernard Zweersa,b,∗, Sandjai Bhulaib,a, Rob van der Meia,b

aCentrum Wiskunde & Informatica, Stochastics, the Netherlands
bVrije Universiteit Amsterdam, Department of Mathematics, the Netherlands

Abstract

To pick up a container from a container terminal, other containers may need to be relocated to other

positions. In practice, these relocation moves are usually done when it is busy at a terminal. However,

if the crane is idle for some amount of time, it may be more efficient to execute some pre-processing

moves to reduce the number of future relocation moves. In this paper, we propose a model for optimal

pre-processing moves if the available time is limited. We develop a heuristic to produce fast solutions

for this new optimization problem. This heuristic consists out of multiple phases and for each phase,

two different approaches are possible, and thus, the heuristic produces multiple solutions. Besides

that, an optimal branch-and-bound algorithm is presented. Third, we propose another heuristic in

which the remaining relocation moves are estimated in a sub-optimal way in the branch-and-bound

method. This algorithm is not guaranteed to find the optimal solution, but its running time is faster

than the optimal branch-and-bound method. Finally, we give an integer linear program that can be

used to extend these solutions for a single bay of containers to a complete yard of containers.

Keywords: Terminal operations; Container Relocation Problem; Container Pre-Marshalling

Problem; Branch-and-bound; Heuristic

1. Introduction

Nowadays, it is hard to imagine a world without containers. About 75% of the total global volume

of goods is shipped by sea, and almost half of this sea trade is shipped in shipping containers (Lee &

Song, 2017). Shipping goods in a container is so popular because it is much easier to transship goods

from one mode of transportation to the other when they are in a container. Although different goods

generally have different sizes and weights, containers have standardized dimensions. Therefore, the

container terminals at which the containers are transshipped have specialized equipment to handle

these containers efficiently. A result of this easy transshipment is that for each part of the trip the most

efficient mode of transportation for a container can be used. For instance, deep-sea vessels are used

to transport thousands of containers from one continent to the other. Shipping that many containers

is only possible if there is an efficient way to ship the containers from the deep-sea port to their final

destination.

The part of the transportation from the deep-sea port to its final destination is called the inland

transportation of a container. Usually, there are three possible modes for inland transportation: trucks,
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trains, and barges. Trucks are often used if the container’s destination is close to the container terminal.

However, if the final destination is further away, it might be cheaper to transport the containers with

barges or trains to an inland terminal. These barges or trains can ship up to a few hundred containers

to an inland container terminal. These inland terminals are often located in the vicinity of the final

destination, and thus a truck can be used to ship a specific container to its destination. Besides the

fact that barge and train transportation is cheaper, it also has a lower CO2-emission per container

than truck transportation. However, using barges and trains also causes an extra transshipment at an

inland container terminal.

The transshipment of goods in a container still imposes extra costs, even though it is cheaper than

not using containers at all. First of all, there are costs concerning the equipment that is used to move

a container from one mode of transportation to the other. Furthermore, the arrival and departure

times of different transportation modes are, in general, not synchronized and containers need to be

stored temporarily at the container terminal. To reduce the associated storage costs, space is saved

by stacking containers on top of each other. We refer to a single row of containers as a bay and a

set of bays is called a yard. The equipment that is used to handle the containers in a terminal can

only access the top container of a stack. Hence, ideally, a container that needs to leave the terminal

is always placed on top of a stack at its departure time. However, when a container is placed in a

stack, it is usually unknown when it has to leave the yard. Therefore, it often happens in practice

that another container is on top of the container that needs to be retrieved. This so-called blocking

container needs to be relocated to another stack before the target container can be retrieved. This

move is called a relocation move and imposes extra costs. For instance, the waiting costs that are

encountered by the truck that will transport that container. Moreover, since the total number the

containers that are shipped is increasing (United Nations Conference on Trade And Development,

2020), the operations at a container terminal are under pressure to have an efficient transshipment of

containers to avoid a delay. Hence, these unproductive relocation moves should be avoided as much

as possible.

Although the departure time of a container is usually unknown when a container arrives at a

terminal, a few hours before containers are retrieved, it is known in which period they will be retrieved.

If at that time the crane is idle, then pre-processing moves can be performed. The idea of pre-processing

moves is to move containers to reduce the number of future relocation moves. As these pre-processing

moves can be done when the crane is otherwise idle, the costs are lower, because no truck is waiting.

However, in practice, the crane is only idle for a limited time, thus the number of pre-processing

moves that can be performed is limited. This study is motivated from real-life practice: an inland

terminal at the port of Amsterdam is facing the problem of determining which pre-processing moves

to perform to obtain the biggest decrease in the number of relocation moves. To solve this problem,

we present in this paper a new optimization problem: the Stochastic Container Relocation Problem

with Constrained Pre-Processing (SCRPCPP).

The contribution of this work is fourfold. First, we introduce a new optimization problem faced by

a real inland container terminal. Second, we develop two heuristics to solve this problem for a single

bay of containers. Third, we present an optimal algorithm for the same problem. Finally, a method

to optimally extend the solution for single bays to multiple bays is presented.
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The remainder of this paper is organized as follows. We start with an overview of related work in

the literature in Section 2. Afterward, the SCRPCPP is formally defined in Section 3. Subsequently,

in Section 4 two heuristic methods and an optimal algorithm to solve the SCRPCPP are discussed. In

Section 5, we extend the SCRPCPP from a single bay to multiple bays and present a solution method.

We compare all solution methods using numerical experiments in Section 6. Finally, we conclude this

paper in Section 7.

2. Literature review

Many different problems concerning the stacking of containers have been considered in the liter-

ature. An overview of all these different problems can be found in Carlo et al. (2014), Caserta et al.

(2011), and Lehnfeld & Knust (2014). Below, we discuss the literature concerning the three prob-

lems that are closest to our problem, namely the Stochastic Container Relocation Problem (SCRP),

the Container Pre-Marshalling Problem (CPMP), and the Unrestricted Blocks Relocation Problem

(UBRP). All these problems consider only containers in a single bay, only a few papers have been

devoted to problems within multiple bays.

In the SCRP, each container has a time interval in which it is retrieved from the yard. If it has

containers on top of it when it is retrieved, then these blocking containers need to be relocated to

other stacks. The goal of the SCRP is to relocate the containers to a stack in which their expected

number of remaining relocation moves is minimized. We know that each container is retrieved inside

its interval, but multiple containers could be retrieved in the same interval and the retrieval order

inside an interval is unknown. The SCRP was introduced by Zhao & Goodchild (2010). They study

the ‘value of information’ for this problem and propose a simple heuristic to solve the SCRP. In Ku &

Arthanhari (2016), a more advanced heuristic is proposed which is called the Expected Reshuffle Index

(ERI) heuristic. In this heuristic, the expected number of reshuffles needed to retrieve the containers

from each stack is calculated. The container is relocated to the stack for which this number is the

lowest. Another heuristic for the SCRP, the so-called Expected Minmax (EM) heuristic, is proposed

by Galle et al. (2018b). This heuristic first tries to place a container in a stack in which it does not

need to be relocated. If such a stack does not exist, a container is placed in a stack in which its

relocation move will be the latest. In Galle et al. (2018b), also an optimal formulation for the SCRP

is given which can solve small instances within a reasonable time. The solution of the EM heuristic

is close to the optimal solution and outperforms the ERI heuristic of Ku & Arthanhari (2016). If

each interval only contains a single container, the problem is referred to as the Container Relocation

Problem (CRP), because there is no more stochasticity. The CRP is sometimes also referred to as

the Blocks Relocation Problem (BRP), because it can also be applied to many other last-in-first-out

systems in which one can only retrieve a single item from a stack or row. The deterministic variants,

CRP and BRP, have been studied extensively, see for example Caserta et al. (2012), Zehender et al.

(2015) and Jovanovic et al. (2019).

The difference between the SCRP and the UBRP is that in the latter not only a blocking container

may be relocated, but each container is allowed to be relocated. The first mathematical formulation

for the UBRP is given in Caserta et al. (2012). In Petering & Hussein (2013), an Integer Linear
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Program (ILP) formulation that uses fewer decision variables than the model in Caserta et al. (2012)

is proposed. Moreover, the running time of the model of Petering & Hussein (2013) is faster. At the

moment, the best exact algorithm for the UBRP can be found in Tanaka & Mizuno (2018), in which

an exact branch-and-bound algorithm for the UBRP is presented. Besides the ILP formulation, in

Petering & Hussein (2013), also a look-ahead heuristic is proposed. In Jin et al. (2015), a heuristic

that constructs a partial tree with possible layouts is constructed. The layout for which a greedy

heuristic gives the lowest number of relocation moves is selected as the best solution. In Tricoire

et al. (2018), a metaheuristic for the UBRP is presented in which a beam search is combined with

constructive heuristics. Finally, Feillet et al. (2019) present a local search heuristic for the UBRP that

is incorporated in a dynamic programming formulation.

Contrary to the SCRP and the UBRP, in the CPMP, the containers are moved before any container

is retrieved and these moves are called pre-marshalling moves. The goal of the CPMP is to use as

few pre-marshalling moves as possible to obtain a stacking of the containers in which no relocation

moves are needed. One way to solve the CPMP is to use ILP models. In the first paper about the

CPMP, Lee & Hsu (2007) model the CPMP as a multi-commodity flow network that they solve using

an ILP formulation. In de Melo da Silva et al. (2018), an ILP formulation is presented that can

solve both the CPMP as the CRP. In Parreño-Torres et al. (2019), eight different ILP formulations

for the CPMP are given, which are currently the best mathematical models for the CPMP. Tree-

based methods are another way to solve the CPMP to optimality. The first tree-based method was

an A∗ algorithm introduced by Expósito-Izquierdo et al. (2012). An A∗ algorithm is a variant of a

branch-and-bound algorithm in which also the expected costs of the nodes below the current node are

estimated. In Tierney et al. (2017), an improved A∗ algorithm is given in which they make use of the

lower bounds for the CPMP of Bortfeld & Forster (2012). The current state-of-the-art algorithm for

solving the CPMP to optimality is a branch-and-bound algorithm that is first presented by Tanaka

& Tierney (2018) and later improved by Tanaka et al. (2019). This method can solve almost all

real-sized instances within an hour. Although the CPMP has never been proven to be NP-hard, no

faster optimal algorithms exist for the CPMP. Hence, besides optimal algorithms, also heuristics have

been proposed for this problem.

A constructive heuristic is the Lowest Priority First heuristic of Expósito-Izquierdo et al. (2012).

The idea of this heuristic is to place the containers with the largest time frames in the correct position

first. This heuristic consists of different phases and in Jovanovic et al. (2017), multiple heuristics are

applied to every single of these phases. Using this approach, multiple different solutions are obtained

and the best is chosen, which results in better solutions than the heuristic of Expósito-Izquierdo et al.

(2012). In Hottung & Tierney (2016), a genetic algorithm is used to find the best parameters of a

constructive heuristic. In Hottung et al. (2020), a tree search heuristic for the CPMP is developed

in which the branching decisions are made based on a model learned by a deep neural network. The

results of this heuristic are better than the heuristic of Hottung & Tierney (2016), but at the expense

of longer computation times.

In the papers described above, the objective has been to minimize the number of pre-marshalling

or relocation moves. Nevertheless, one can also decide to minimize the time needed to perform these

moves. In Voß & Schwarze (2019), it has been shown that if this objective is chosen, then the number
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of relocation moves is often also minimal. In case the time needed is in the objective function, it is

also natural to allow movement of containers to multiple bays. The first paper that includes a time

dimension in the objective function is Lee & Lee (2010). In this paper, the objective is a weighted

sum of the number of relocation moves and the time needed to perform these relocation moves. Lee

& Lee (2010) propose a three-phase heuristic to solve this problem, but even for small instances the

running time is too large to be used in practice. A much faster heuristic that also has a higher solution

quality is proposed in Lin et al. (2015). This heuristic calculates for each stack a weighted sum of the

minimum time frame of that stack and the time needed to travel to that stack. The stack for which

this index is the lowest is chosen as destination stack for the container. In da Silva Firmino et al.

(2019), an optimal A∗ algorithm and a GRASP heuristic are proposed to minimize the crane’s working

time. A GRASP heuristic is a meta-heuristic in which a greedy construction heuristic is combined

with a local search heuristic. In Galle et al. (2018a), a model is considered in which only the retrieval

order of the first set of containers is known. The objective is to minimize a weighted sum of the time

needed to retrieve these containers and the future remaining number of relocation moves in the bay.

In Casey & Kozan (2012), a model is studied in which the objective is to minimize the total time

needed to perform all movements. They consider both incoming and outgoing containers and propose

both constructive and meta-heuristics to solve the problem. However, they study a terminal that uses

a straddle carrier to handle containers, which is a different type of equipment than used in the other

papers mentioned.

The concept of pre-processing a container bay to reduce the number of relocation moves was first

introduced by Zweers et al. (2020). In this paper, the weighted sum of pre-processing moves and

expected relocation moves is minimized and with that it generalizes both the SCRP and the CPMP:

if the weight of a pre-processing move is set close to zero, then the problem is equivalent to the CPMP

and the problem is equivalent to the SCRP if the weight of a pre-processing move is set extremely

high. The pre-processing phase could also be seen as a variant of the UBRP in which all containers

can be moved, but only before the very first container is retrieved.

3. Problem formulation

To formulate the SCRPCPP, it is important to describe the processes at a container terminal first.

In container terminals, containers are stored in a rectangular yard, as illustrated in Figure 1(a). One

row of containers in such a yard is called a bay. The commonly used equipment to store and retrieve

a container from a yard is a Rail Mounted Gantry Crane (RMGC), which is also given in Figure 1(a).

Other vehicles, for instance a terminal tractor or a truck, are used to move the container to another

position inside or outside the terminal, such as a ship or a customer. In both figures of Figure 1, such

a vehicle is depicted. In Figure 1(b), one sees one bay and an RMGC with a trolley attached to it.

The trolley can be lowered to pick up a container from the yard, but only the top container of a stack

can be picked up by the trolley. Afterward, the trolley is lifted again to move the container over the

other containers to the end of the bay to place the container at the vehicle. As a result, the maximum

number of containers in a stack is limited, because otherwise, the trolley cannot move a container

from one side of the bay to the other. Moreover, the width of the RMGC also imposes a constraint
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Figure 1: The layout of an RMGC and a container yard from above in (a) and from the front in (b) (Tierney
et al., 2017).

on the maximum number of stacks in a bay. Consequently, the number of containers in a bay, called

slots, is also limited. For example, the bay in Figure 1(b) can contain at most four stacks that have a

maximum height of three and therefore has twelve slots.

The RMGC is also used to move the top container of a stack to another stack if it has to be

relocated. In case a container is moved to a stack in another bay, the entire RMGC has to move,

whereas only the trolley has to move if the container is moved to a stack in the same bay. The former

is much more time-consuming, and on top of that, in some terminals, it is not even allowed to move

the crane if it is carrying a container (Lee & Hsu, 2007). Therefore, in the SCRPCPP it is not allowed

to move a container from one bay to another bay and thus, the problem is two-dimensional, similar

to Figure 1(b). As will be explained later, the SCRPCPP can be extended to multiple bays, but also

in that scenario no containers are moved from one bay to another.

The SCRPCPP is inspired by a problem faced by an inland terminal in the port of Amsterdam.

For all containers that will leave that terminal on a certain day, it is known at the beginning of that

day in which time interval they are retrieved. However, the exact arrival time of the truck on which

the container is transported is unknown, because its departure at its previous visit and its travel time

are stochastic. In practice, the time interval is often about one hour and multiple trucks can arrive

during this interval. Hence, we do not know the exact order of the arrival of the trucks in that period.

In general, a crane at an inland terminal is less busy than a crane at a larger deep-sea terminal. If

the crane is idle, it can perform some pre-processing moves to reduce the number of relocation moves.

However, the time needed to reshuffle the containers such that no relocation moves are needed is

often more than the idle time of the crane. Therefore, it is impossible to perform all pre-marshalling

moves and it is important to perform the pre-processing moves that reduce the number of relocation

moves the most. The SCRPCPP consists out of two different phases: (i) the pre-processing and (ii)

the relocation phase. The pre-processing phase ends the moment when the first container is retrieved

and at that time the relocation phase starts. The relocation phase is equivalent to the SCRP. At

first sight, the moves in the pre-processing phase might look the same as the pre-marshalling moves
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in the CPMP. However, the main difference is that after all pre-marshalling moves are performed no

relocation moves are needed and there might still be some relocation moves after the pre-processing

phase has finished.

The remainder of this section is organized as follows. In Section 3.1, the assumptions that are

listed for the SCRPCPP are explained. Using these assumptions, the mathematical formulation of the

SCRPCPP is given in Section 3.2. Finally, we extend the method for a single bay to multiple bays in

Section 5.1.

3.1. Assumptions

We have decided to make a few assumptions to keep the SCRPCPP tractable while respecting the

current practice at container terminals as much as possible. The assumptions are the same as the

ones made in Zweers et al. (2020). In this section, we explain why these assumptions are realistic and

what kind of problems arise if they are relaxed. The assumptions are as follows:

1. All containers in a bay will leave the bay before any new containers arrive.

2. A container may only be moved in the relocation phase if it is blocking the container that needs

to be retrieved.

3. For each container, the time interval in which it is picked up is known, but the retrieval order

inside an interval is a random uniform permutation.

4. The cost of moving a container from one stack to any other stack does not depend on the stack

to which a container is moved.

5. Each container can be placed on top of every other container.

Assumption 1 is made because it imposes a natural end of the period that needs to be considered.

Moreover, most container terminals reserve empty stacks for containers unloaded from one specific

vessel. On top of that, they have specific areas in which only outbound or inbound containers are

stored. As a consequence, it often happens that no new containers arrive in a bay with outbound

containers that will leave the terminal this day. A problem that is closely related to our problem and

in which new incoming containers in a bay are allowed is the Dynamic Container Relocation Problem

(Akyüz & Lee, 2014).

In Section 2, we have already seen that Assumption 2 is sometimes relaxed and that then the

unrestricted version of the CRP is obtained. However, this second assumption makes the relocation

phase significantly easier and it is also common practice in container terminals (Caserta et al., 2012).

Under Assumption 2, the number of relocation moves that are performed when a single container is

retrieved is the same as the number of containers that are blocking this target container. Whereas in

the unrestricted version, there is no tight bound for the number of relocation moves. On top of that,

with this assumption it is straightforward to check if a container does not need to be moved in the

relocation phase: if a container has only containers underneath it that are picked up later, then it

will never be moved in the relocation phase. We say that a container for which no relocation moves

are needed is well-placed or correctly-placed. Contrary, a container that is not well-placed is called

poorly-placed.
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The third assumption distinguishes the CRP from the SCRP, because in the CRP each container

has its unique time interval in which it is picked up. This assumption reflects the situation in which

terminals have a truck appointment system (Ku & Arthanhari, 2016). In such a system the terminal

has a fixed number of time intervals in which trucks can arrive to pick up a container. Multiple

trucks can make an appointment to pick up a container in such a time interval. After that, the

terminal knows which containers will leave the terminal in which interval, but it does not know

anything about the order of the departures in such a time interval. As no information is available, it

is most natural to assume that the retrieval order is a uniform permutation, since then each order is

equally likely. The moment the information of the retrieval order inside an interval becomes known

to the terminal can vary and leads to two slightly different variants of the SCRP: the online model

(Zhao & Goodchild, 2010; Ku & Arthanhari, 2016) and the batch model (Galle et al., 2018b). In the

batch model, a container is only retrieved after all trucks for that time interval have arrived at the

terminal. Consequently, if the first container in a time interval is retrieved, then the exact retrieval

order for all containers in that time interval is known. Whereas in the online model, each container is

retrieved immediately after a truck has arrived to pick it up. Therefore, no extra information about

the containers that are retrieved later during that interval is known when this container needs to be

relocated. The batch model is more suitable for large terminals in which the time intervals are short

and in which there is a significant amount of time between the arrival of a truck at the terminal and

the moment it is served, whereas the online model better reflects smaller terminals in which trucks

are served faster (Galle et al., 2018b). As the batch model implicitly assumes that the crane does not

have any idle time, the online model is a variant in which pre-processing makes more sense. Motivated

by this, in this paper we use the online model.

Assumption 3 is the only assumption that makes the SCRPCPP stochastic. The stochasticity

lies in the fact that it is not completely known whether a container needs to be relocated or not.

Furthermore, if it needs to be relocated, then it is unknown how often it will be relocated. As a result

of Assumption 2, a container may only be relocated if it is blocking the container that is picked up.

However, if that target container is the first container of the interval, the bay might look completely

different at that retrieval moment than if it were the last container being retrieved in that interval.

Consequently, Assumption 3 implies that computing the expected number of relocation moves for a

given bay and relocation policy is computationally expensive. On the other hand, if a certain relocation

policy for the deterministic CRP is used, then the number of relocation moves for a specific bay can

be computed efficiently.

The trolley needs to be positioned exactly above the container to pick it up which is a very precise

task. Moreover, placing a container on top of another container is also hard. As a result, picking

up and putting down a container is much more time-consuming than actually moving the trolley to

another stack, and thus Assumption 4 is realistic. A consequence of Assumption 4 is that the only

objective to minimize is the number of relocation moves. Since the costs of relocating a container do

not depend on the distance between the stack, one could see two bays in which the stacks of one bay

are a permutation of the stacks of another bay as equivalent. In Section 2, we have seen that there are

a few papers in which Assumption 4 is not made and the total objective is to minimize the weighted

average of the number of relocation moves and the total working time of the crane.
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B Specific layout of a bay
S Set of all stacks in a bay
B(s1, s2) Bay after moving the top container of stack s1 in bay B to stack s2
C(t, s) Container that is positioned in stack s at tier t
H Maximum height of a stack
C Set of containers in a bay
C Number of containers in a bay
n(s) Number of containers in stack s
l(s) Smallest time frame of stack s
s(c) Stack of container c
u(c) Smallest time frame of containers underneath c
t(c) Time frame of container c
p(c) Position of a container c in stack s(c): 1 is the lowest and H the highest position
pj The jth pre-processing moves
P Set of all pre-processing moves
ρ Maximum number of pre-processing moves
π Relocation policy
LB Lower bound for the optimal solution
f(B, π) Estimation of expected number of relocation moves using policy π in bay B
τ Time needed to move a container within a bay from one stack to the other
T Total time available for the pre-processing phase
b Number of bays in a yard

Table 1: Notation for the SCRPCPP.

Although containers have standardized sizes, the number of different sizes for containers is still quite

large. Containers of different sizes can, in general, not be stacked on top of each other. Nevertheless,

in most terminals, containers with different sizes are not placed in the same bays and thus Assumption

5 is still realistic. Moreover, if there would be a container in a bay on which a container could not be

placed, then the possible number of stacks with a feasible relocation move is lower and the SCRPCPP

is only easier.

3.2. Mathematical formulation

In this section, we use the five assumptions and the notation of Table 1 to define the SCRPCPP

formally. A pre-processing move pj is the jth pre-processing move that is performed and it is uniquely

defined by its origin stack oj and its destination stack dj , i.e., pj = (oj , dj). Let P := (p1, p2, . . . , pm)

be an ordered set with the set of performed pre-processing moves, such that for each 1 ≤ i < j ≤ m

move pi is performed before move pj . If the pre-processing moves in P are applied to a bay B, then

the resulting bay is unique and given by B(P). As a consequence of Assumption 3, we assume that

there is a fixed amount of time needed to do a single pre-processing move. Let us denote this time

by τ . Moreover, we assume that the available time for the pre-processing phase is known and given

by T . Using these two time units, there is a maximum number of pre-processing moves that can be

performed, namely ρ :=
⌊
T
τ

⌋
. Note that if ρ is defined in this way, it is an integer.

Let n be the number of different retrieval orders in a bay and let σ = {σ1, σ2, . . . , σn} be the

set of those orders. We assume that the actions in the relocation phase are made according to a

certain relocation policy π that potentially takes the complete bay and all possible retrieval orders

into consideration. Given a relocation policy π and a retrieval order σi, the number of relocation

moves for a bay B is denoted by Rπ(B, σi). Hence, the expected number of relocation moves for a

bay B is given by 1
n

∑n
i=1Rπ(B, σi). Using this notation, the SCRPCPP is given by the following
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mathematical optimization problem:

min
π,P

1

n

n∑
i=1

Rπ(B(P), σi) (1)

subject to: |P| ≤ ρ. (2)

The objective function in (1) represents the expected number of relocation moves for bay B after the

pre-processing moves in P if policy π is applied to the relocation phase. Furthermore, the constraint

in (2) ensures that no more than ρ pre-processing moves are performed. In case ρ is less than one,

the formulation above is exactly equivalent to the SCRP, because then no pre-processing move can

be performed. In Caserta et al. (2012), it has been shown that the deterministic CRP is NP-hard.

Since the SCRP is a generalization of the CRP and the SCRPCPP is equivalent to the SCRP if no

pre-processing moves are allowed, the SCRPCPP is also NP-hard.

Running example

Throughout this paper, the bay given in Figure 2 will be used to illustrate concepts and solution

methods. The bay of Figure 2 consists out of five stacks and we assume that in this bay containers can

be stacked at most four containers high. In the center of the thirteen squares indicating containers

is an integer from 1 up to 5 shown. This number indicates the time interval in which a container is

retrieved: the containers with a 1 inside them are the first to be retrieved and in the last interval

containers that are indicated by a 5 are picked up. Although it is easy to check that a container is

relocated at least once, computing the exact number of expected relocation moves for a container is

difficult. As then, one also needs to be able to compute the bay at the moment that the container

has to be relocated and that, in turn, depends on the relocation moves did during the first time

interval. For example, the container with time frame 5 in stack 4 is relocated at least once, because

the container underneath it is retrieved in time interval 2. However, it is hard to consider all potential

bays at the moment that this container is relocated. On the other hand, computing the exact expected

number of relocation moves for the top container of the first stack is easy. The retrieval order of the

containers in a time interval is a random uniform permutation, and thus, both the probability that

the top container of stack 1 is retrieved before and after the bottom container is 1
2 . One can easily

check that there should be an available slot in a stack not containing a container with time frame 4

if the top container has to be relocated. Hence, it will at most be relocated once and its expected

number of relocation moves is 1
2 .

If only a single pre-processing move is allowed for this bay, the best pre-processing move is moving

the top container of the fourth stack to the first stack. The top container of stack 4 is poorly-placed

in that stack and will need to be relocated at least once. However, all containers in the first stack

have a higher time frame than 3, so the container will not need to be relocated if it is placed in stack

1. The top container of stack 3 can also be placed such that it will not be relocated in stacks 1, 4

and 5, but its expected number of relocation moves is only 1
2 in the example bay of Figure 2, so less

improvement is made by moving this container. Nevertheless, if two pre-processing moves are allowed,

this container will be moved. If more than two pre-processing moves are allowed for the bay of Figure
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Figure 2: Layout of a bay with five stacks that have a maximum height of four containers (Zweers et al., 2020).

2, it is more complicated to determine the best pre-processing moves. We will discuss that situation

later.

4. Solution methods

In this section, we discuss three solution methods to solve the SCRPCPP. We only develop methods

for the pre-processing phase, because a good heuristic and optimal formulation for the relocation phase

have already been given in Galle et al. (2018b). As we have shown in Section 3.2, the SCRPCPP is

NP-hard, thus we first give a heuristic for the pre-processing phase in Section 4.1. In this heuristic,

we need a method to estimate the number of relocation moves for a given bay. We use the rule-based

method presented in Zweers et al. (2020) to obtain the estimation. The idea behind this estimation

method is to use three rules to estimate the expected number of relocation moves for a single container.

Using these rules, we can divide the containers into four different groups, namely containers for which

the estimated number of expected relocation moves is: (i) zero, (ii) strictly between zero and one, (iii)

exactly one, and (iv) more than one. Every container in such a group gets a weight of, respectively, 0,

0.5, 1, or 1.4 and the weighted sum of all containers is the estimate for the total number of expected

relocation moves. After we have developed a heuristic, we derive in Section 4.2 a lower bound for

the SCRPCPP. This lower bound is used in a branch-and-bound method that is presented in Section

4.3. In this branch-and-bound algorithm, the number of expected relocation moves for a bay needs to

be calculated. If the optimal expected number of relocation moves is calculated in each node of the

branch-and-bound tree, then the branch-and-bound algorithm produces the optimal solution for the

SCRPCPP. However, the number of relocation moves for a bay can also be estimated in a sub-optimal

way using the rule-based method and that gives us another heuristic for the SCRPCPP.

4.1. Top Correct heuristic

In this section, a heuristic to find good pre-processing moves is described. We call this heuristic the

Top Correct (TC) heuristic. The general idea of the TC heuristic is that we try for each combination

of two stacks, to move the top container of one stack, called the origin stack, to the correct position in

another stack, called the destination stack. It is also possible to place a container in a correct position

in the same stack as it is currently located. In this case, the origin and destination stack are the same
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Movement phase Improvement phase Selection phase

Post-optimization phase Stop

Improvement in objective function and |P| < ρ

|P| = ρ

|P| = ρ|P| < ρ
No improvement in
objective function
and |P| < ρ

Figure 3: Illustration of the TC heuristic.

stack. After that, we calculate for each combination of origin and destination stacks the difference

in the number of expected relocation moves and choose the pair that yields the largest decrease in

the expected number of relocation moves without exceeding the maximum number of pre-processing

moves. In total, the TC heuristic consists of four different phases that we call (i) the movement, (ii)

the improvement, (iii) the selection, and (iv) the post-optimization phase. In the first three stages,

two different decisions can be made, thus the heuristic has 23 = 8 different variants. Below, the four

different phases are described. In Figure 3, an illustration of the TC heuristic is given.

Phase 1: Movement

In the movement phase, the top container of the origin stack is moved into a correct position in the

destination stack. To place the container correctly in the destination stack, it might be necessary to

move containers from the destination stack to other stacks before the top container of the origin stack

can be moved to the destination stack. We refer to these moves as the cleaning moves. In cleaning

moves, containers are ideally moved to stacks in which they are correctly-placed. Out of the stacks in

which a container is correctly-placed, the stacks with the fewest poorly-placed containers are selected.

We prefer stacks in which few containers are poorly-placed, because if a container is placed in a stack

in which it is correctly-placed, while other containers are not correctly-placed, then it might still need

to be moved a second time in the pre-processing phase. If there are multiple stacks with the same

number of poorly-placed containers and in which the container that is moved will be correctly-placed,

then the container is moved to stack in which the minimum time frame is the lowest. If it is not

possible to move a container in the cleaning phase to a stack in which it will not need to be relocated

a second time, then it is moved to a stack in which it is moved as late as possible in the relocation

phase. This last step is equivalent to the procedure applied in the EM heuristic for the SCRP (Galle

et al., 2018b).

We have defined that a container is correctly-placed if it only has containers with a lower time

frame underneath it. However, if for a specific container the minimum time frame of all containers
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underneath it is the same as its own time frame, then the probability that it does not need to be

relocated is positive but smaller than one. We call this type of container semi-correct. In case the top

container of the origin stack is allowed to be semi-correctly-placed in the destination stack, it could be

that fewer cleaning moves are necessary, while still the number of relocation moves is reduced. Hence,

the two different variants for the movement phase are whether we require the top container of the

origin stack to be semi-correct or correct in the destination stack.

Phase 2: Improvement

It could be that after the movement phase also other containers can be correctly-placed. For

instance, when the container that is correctly-placed in the movement phase has a large time frame,

many containers can be stacked upon that container. So after the movement phase, the TC heuristic

tries to move poorly-placed containers to stacks in which they are correctly-placed. This phase is called

the improvement phase and the moves performed in this phase are called improving moves. Improving

moves are equivalent to the “excellent moves” in Hottung & Tierney (2016). The containers with the

largest time frames are first moved in this phase, because if these containers are correctly-placed in

a stack, containers with a lower time frame can be correctly-placed on top of them. At first sight, it

might seem wise to always perform the improving moves. However, in some scenarios, it is better not

to perform improving moves and use the remaining pre-processing moves differently. Hence, the two

variants of the improvement phase are: performing improving and not performing improving moves.

Phase 3: Selection

The number of pre-processing moves in the movement and improvement phase can be calculated

for each combination of origin and destination stacks. There are in total S2 possible combinations, but

we only consider combinations of stacks for which fewer pre-processing moves were needed than the

available pre-processing moves. For all these combinations, the remaining number of relocation moves

are calculated using the rule-based estimation method presented in Zweers et al. (2020). This rule-

based estimation method produces fast and rather accurate predictions for the number of relocation

moves for a bay. Hence, we can estimate how much the objective function changes if the top container

of the origin stack is placed correctly in the destination stack for each combination of origin and

destination stack. However, even when for all feasible combinations of origin and destination stacks

the number of expected relocation moves can be estimated, then it is still unclear which combination

to select. It might be the case that one combination yields a strong decrease in the objective function

and uses many pre-processing moves, while another combination only uses a few pre-processing moves,

but has a smaller improvement.

In the selection phase of the TC heuristic, we distinguish two different selection methods: the

greedy and the ratio selection method. In the greedy method, the combination that results in the

largest decrease in the objective function is selected. On the other hand, in the ratio method, one

divides the improvement in the objective function by the number of pre-processing moves needed to

obtain the improvement per pre-processing move. As a result, the ratio selection method generally

selects a solution in which a moderate improvement is obtained in a relatively small number of pre-

processing moves. In contrast, in the greedy selection method, a solution is chosen that produces the
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biggest improvement in a large number of pre-processing moves. Although the improvement made by

the ratio section method is lower than the by the greedy selection method, it might be that many

improving moves are possible for the bay that is selected. In that case, it is beneficial that still a

rather large number of pre-processing moves is available for upcoming iterations of the improvement

phase.

In both selection methods, there may be multiple combinations of origin and destination stack that

result in the same improvement of the objective function. In that case, we simply select the leftmost

origin stack and after that the leftmost destination stack. If no pre-processing moves can be found

that result in a decrease in the expected number of relocation moves, the TC heuristic continues to

the post-optimizing phase. Otherwise, it starts again in the movement phase.

Phase 4: Post-optimization

The three phases described above all have three two different options and thus there are in total

eight different variants possible. Each of this eight variants terminates the moment that there is no

feasible combination of origin and destination stacks that result in an improvement of the objective

function. However, it could be that there are still some pre-processing moves available that are unused.

The idea of the post-optimizing phase is to use these moves to change the bay without changing the

estimate of the objective function. After the bay has changed, we again try the first three phases to

see if an improvement can be made. It could be the case that a new top container can be easily placed

correctly and with that improve the objective function.

In the post-optimization phase, we use the concept of Good-Good (GG) moves introduced by

Tanaka & Tierney (2018) in the context of the CPMP. In a GG move, a well-placed container is moved

to a stack in which it is still well-placed. It is likely that a GG move does not change the number of

relocation moves in a bay. A GG move can be beneficial if after that GG move new improving moves

are possible. The idea behind a GG move is to make the most improving moves possible. Hence,

the container that is moved in a GG move is the container for which the difference between its time

frame and the container underneath it is maximized. The destination stack is chosen such that the

difference between the time frame of the top container and the time frame of the container that is

moved is minimized. We apply a single GG move and then again the first three phases to improve

the resulting bay. If no improvement is possible, another GG move is applied until the moment that

either all pre-processing moves are performed or no GG moves are available.

Running Example (continued)

Let us apply the TC heuristic to the bay of our running example in Figure 2. The estimate of the

number of relocation moves for the initial bay of Figure 2 using the rule-based method is 6.2. In total,

the TC heuristic produces eight solutions for this bay, but if the maximum number of pre-processing

moves is three, then there are only two different solutions which are shown in Figure 4. All four

variants in which the greedy selection method is used in the selection phase gives the bay in Figure

4(a), whereas the bay in Figure 4(b) is obtained using the ratio selection method.

Placing the top container of the fourth stack of the bay of Figure 2 at a correct position in the

second stack needs three moves and then the bay in Figure 4(a) is obtained. In this case, the containers
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(a) Bay of Figure 2 after performing three pre-
processing moves using greedy selection.

(b) Bay of Figure 2 after performing three pre-
processing moves using ratio selection.

Figure 4: Two possible outcomes of the TC heuristic after three pre-processing moves for the bay of Figure 2.

in stack 2 needs to be moved to a different stack, (which are a cleaning moves). It is not feasible to

position these containers in the third stack, because that stack does already have the maximum number

of containers. Moreover, these containers can neither be positioned in stack 4, because we would like

to move the top container of the fourth stack. Hence, stacks 1 and 5 are the stacks to which they

could be moved. The first container to be moved from stack 2 is the container with time frame 5. This

container cannot be correctly placed in any of the two stacks and thus, it is positioned in the stack

in stack 1 because in this stack it will be relocated in time interval 4, which is later than interval 2 of

the fifth stack. Afterward, the container with time frame 1 can be positioned correctly in both stacks

1 and 5. As stack 1 has two poorly-placed containers and stack 5 does not contain any poorly-placed

containers, it is moved to stack 5. In the final third move, the top container from stack 4 is moved to

the second stack. For the bay of Figure 4(a), the estimate for the number of relocation moves is 4.8.

This is the lowest that can be obtained by moving the top container of a stack in a correct position

while using at most three pre-processing moves. Hence, that is why the greedy method selects this

bay as the best bay.

In the first move of the ratio method, the top container of the fourth stack of the initial bay of

Figure 2 is placed in the first stack. The estimated number of relocation moves for the bay that is

obtained after this bay is 5.2 and thus the improvement per pre-processing move is exactly one. To

compare that with the bay in Figure 4(a), the improvement per move in that bay is 6.2−4.8
3 ≈ 0.47.

After the first pre-processing move, only two pre-processing moves are left and the only top container

that can be correctly positioned using one or two pre-processing moves is the top container of the

middle stack. The improvement in the objective function is 0.5 if it is placed in stack 1, 4, or 5. Since

stack 1 is the most left stack of these three stacks, the container is placed in that stack. Afterward,

there is no top container that can be placed correctly in a stack with improving the objective function.

Hence, the post-optimizing phase is entered. The top container of the first stack is now the container
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with time frame 1 that has been moved in the second pre-processing move. This container is the only

container for which we can apply a GG move. This container is still correctly positioned if it is moved

to the fourth or fifth stack. The top container of the fourth stack has time frame 5, while the time

frame of the fifth stack is only 2. Therefore, the container with time frame 1 is moved to the fifth

stack, because then the difference with the top container is minimized. All in all, the bay of Figure

4(b) is obtained with the greedy selection method.

The optimal number of expected relocation moves for the bay in Figure 4(a) is 51
6 and for the bay

in Figure 4(b), it is 5. Hence, for the bay of Figure 2 if three pre-processing moves are allowed, any

variant of the TC heuristic that uses the ratio selection method produces a better solution than the

variants that use the greedy selection method. However, for other bays or different maximum numbers

of pre-processing moves the greedy selection method might produce better pre-processing moves than

the ratio selection method.

4.2. Lower bound

In Section 4.3, a branch-and-bound algorithm will be developed for the SCRPCPP. For that reason,

in this section, we present a lower bound for the SCRPCPP. For ease of explanation, we first describe

in Section 4.2.1, the lower bound in the scenario in which each container has a unique time interval,

i.e., the deterministic scenario. The lower bound for the stochastic setting is based upon the lower

bound for this deterministic setting and is described in Section 4.2.2.

4.2.1. Deterministic CRP

In the CRP, it is easy to check whether a container needs to be relocated or not. If there is a

container with a smaller time frame underneath the container under consideration, then it is relocated

at least once, and otherwise, it is never relocated. Let us denote the lower bound for the number of

relocation moves for container c by lb(c), then lb(c) = 1 if t(c) > u(c) and lb(c) = 0 otherwise. Hence,

a lower bound for the number of relocation moves is to count all containers which need to be relocated

at least once, which can be expressed as
∑

c∈C lb(c). So a lower bound for the number of relocation

moves for the bay without any pre-processing moves can easily be calculated. The pre-processing

moves are used to reduce the number of relocation moves, but each pre-processing move can reduce

the lower bound for the relocation moves by at most one. Hence, a trivial lower bound for the CRP

with pre-processing moves is max{0,∑c∈C lb(c)− ρ}.
However, for that lower bound it has to be possible to place each poorly-placed container in a

correct position with only a single pre-processing move. There are two reasons why that might not be

possible for a bay. The first reason is that there could be no stack with only containers with a higher

time frame than the poorly-placed container. Secondly, it could be that the poorly-placed container

has a well-placed container on top of it. In this case, the well-placed container needs to be moved before

the poorly-placed container can be accessed. In case not all poorly-placed containers can become well-

placed with a single pre-processing move, it might be possible to strengthen the lower bound. For that

purpose, we divide the poorly-placed containers into two groups: the one-move and multiple-moves

containers. The one-move containers can be moved to a correct position in a single pre-processing move

and the multiple-moves containers need more than one pre-processing move to be placed correctly. If
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the number of one-move containers is less than or equal to the number of pre-processing moves, then

the lower bound for the CRP with pre-processing moves remains max{0,∑c∈C lb(c)− ρ}. Otherwise,

at least one of the pre-processing moves is needed for a multiple-moves container and thus the lower

bound is equal to: max{0,∑c∈C lb(c) − ρ + 1}. This improved lower bound is inspired by the lower

bound of the CPMP given in Tanaka & Tierney (2018).

To check which containers are one-move containers, the bay needs to be investigated stack on

stack level. If the top container of a stack is poorly-placed and can be placed correctly in another

stack, it is a one-move container and the container underneath it can be investigated. Otherwise, the

top container is a multiple-moves container and with that, all poorly-placed containers in that stack

are multiple-moves containers. If the top container is a one-move container, then for the container

underneath it we can also check if there is a stack in which it will be correctly-placed. If that is

case, that container is also a one-move container and the next container of that stack is considered.

Otherwise, the container is a multiple-moves container and the next stack is considered.

It is important to realize that no multiple-moves containers will become a one-move container after

a one-move container has been moved in the pre-processing phase to a stack in which it is correctly-

placed. If a one-move container has been moved to a stack in which it is correctly-placed, then the

container with the minimum time frame of that stack is the one-move container that has just been

moved. Hence, the minimum time frame of that stack has increased. Furthermore, the one-move

container was poorly-placed in its origin stack and thus the minimum time frame of that stack has to

be lower than the time frame of the one-move container. Consequently, after a movement of a one-

move container, the lay-out has not improved for any multiple-moves container and no multiple-moves

container will ever become a one-move container.

Running example (continued)

To illustrate the lower bound for the deterministic case, the bay of Figure 2 has been slightly

adjusted. In Figure 5, the containers are positioned in the same way as in Figure 2, but each container

has its own time interval. The order in which the containers in Figure 5 are retrieved is a possible

retrieval order for the containers in Figure 2. In total, six containers need to be relocated at least

once in the bay of Figure 5, namely the containers with time interval 2, 7, 8, 10, 11, and 13. Hence,

the lower bound for the number of relocation moves for the bay in Figure 5 is six. Out of these

six containers, the containers with time frame 2, 7, and 8 are one-move containers and the other

containers are multiple-moves containers. When placed in stack 1, the container with time interval

7 does not need to be relocated anymore. Furthermore, the containers with time frame 2 can be

correctly positioned in every other stack and if that container is moved, the container with time frame

8 is examined. This container can be placed in a correct position in stack 1. It is important to realize

that in this specific example the order in which the containers are moved in the pre-processing phase

is important. If container 7 is moved to the first stack before container 8, then container 8 cannot

be correctly positioned in that stack. Nevertheless, as we are considering the lower bound we should

focus on the best possible order.

If the number of pre-processing moves is three or less, then the three one-move containers can be

moved and the lower bound equals six minus the number of pre-processing moves. For instance, the
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Figure 5: Deterministic variant of the bay in Figure 2 in which every container has a unique time interval.

lower bound for two pre-processing moves equals four. If there are more than three pre-processing

moves, then there is at least one multiple-moves container that needs to be moved to further reduce

the number of relocation moves. Therefore, the lower bound equals six minus the number of pre-

processing moves plus one. For instance, the lower bound for five pre-processing moves is two. For

seven and more pre-processing moves, the lower bound is zero.

4.2.2. Stochastic CRP

In the stochastic setting, both the lower bound for the number of expected relocation moves and

the gain that can be achieved with pre-processing moves are different from the deterministic setting.

However, the general idea of the lower bound is the same. A lower bound for the number of expected

relocation moves is given in Galle et al. (2018b). This lower bound assigns to each container a

probability that it needs to be relocated. The expected number of relocation moves is at least the

sum of all these probabilities. Similarly to the deterministic case, this probability equals 0 or 1 for a

container, if the minimum time frame of the containers underneath it is, respectively, strictly larger

or strictly smaller than the time frame of the container. The relocation probability of a container

lies strictly between 0 and 1 if its time frame is exactly the minimum time frame of the containers

underneath it. To calculate the relocation probability, we use the value m(c), which corresponds to the

number of containers underneath container c with the same time frame as container c. If container c is

retrieved before any of these m(c) containers, container c is not relocated and otherwise it is relocated

at least once. Since we made the assumption that the retrieval order is a uniform permutation, the

probability that container c is picked up before the m(c) containers with the same time frame is 1
m(c)+1 .

Consequently, the probability that container c is relocated at least once is m(c)
m(c)+1 , which is a lower

bound for the expected number of relocation moves. The lower bound for the number of relocation

moves for a bay is, just as in the deterministic case, the sum of the lower bounds for each container.

The calculation of the lower bound on the number of expected relocation moves, corresponds to the

first for-loop of Algorithm 1.

In the second for-loop of Algorithm 1, it is determined whether a container is a one-move or a

multiple-moves container. Two aspects are different in the stochastic setting than in the deterministic

setting. In the deterministic setting, it was only beneficial to place a container c in a stack in which
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Algorithm 1: Lower bound for the objective function of the SCRPCPP.

Input: Bay B and maximum number of pre-processing moves ρ.
for c ∈ C do

if t(c) > u(c) then
lb(c) = 1

else
if t(c) = u(c) then

m(c) = |{c′ ∈ C : s(c′) = s(c) ∧ p(c′) < p(c) ∧ t(c′) = t(c) = u(c)}|
lb(c) =

m(c)
m(c)+1

else
lb(c) = 0

end

end

end
for s ∈ S do

t = n(s)
I(s) = 0
while t > 1 do

c = C(t, s)
if lb(c) > 0 ∧ t(c) ≤ max{l(s′) : s′ ∈ S \ s ∧ n(s′) < T} then

a = min{ |{c
′∈C:t(c)=t(c′)∧s(c′)=s′}|

|{c′∈C:t(c)=t(c′)∧s(c′)=s′}|+1
: s′ ∈ S \ s ∧ t(c) ≤ l(s′) ∧ n(s′) < T}

G(c) = max{lb(c)− a, 0}
if I(s) +G(c) > n(s)− t then

I(s) = I(s) +G(c)
t = t− 1

else
t = 0

end

else
t = 0

end

end

end
if ρ ≤

∑
s∈S I(s) then

LB =
∑

c∈C lb(c)− ρ
else

if ρ ≤
∑

s∈S I(s) + 1 then
LB =

∑
c∈C lb(c)−

∑
s∈S I(s)

else
LB = max{

∑
c∈C lb(c)− ρ+ 1, 0}

end

end
Output: LB.

the minimum time frame of all containers was higher than the time frame of c. However, in the

stochastic setting it might also be beneficial to place container c in a stack which minimum time frame

is the same as the time frame of container c . The value a in Algorithm 1 represents the relocation

probability in the best stack for container c. Hence, the best improvement that can be made for

moving container c in the pre-processing phase is given by G(c), which is a value between 0 and 1. A

second difference with the deterministic setting is how one should determine if the next container of a

stack should be checked for being a one-move container. The value I(s) is the improvement that can

be made by placing one-move containers from stack s to other stacks. Only if I(s) + G(c) is larger

than the number of containers that needs to be moved before container c can be moved plus one, then

container c belongs to the one-move containers. Otherwise, the improvement that can be made by

moving container c is less than the number of containers in its stack, plus one, and if there is one extra

move needed, then the container belongs to the multiple-moves containers.

After the improvement that can be made by only moving one-move containers is calculated, i.e.,∑
s∈S I(s), the final lower bound can be calculated. Similar to the deterministic case, if the number
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of pre-processing moves is less than the improvement made by one-move containers, then the lower

bound equals the lower bound for the relocation moves of the initial bay minus the number of pre-

processing moves. If the number of pre-processing moves lies between the improvement made by the

one-move containers and that improvement plus one, then the lower bound equals the lower bound for

the number of relocation moves for the initial bay minus the improvement of the one-move containers.

Finally, in all other scenarios the lower bound equals the lower bound for the relocation moves of the

initial bay minus the number of pre-processing moves plus one.

Running example (continued)

Let us now compute the lower bound for the bay of the running example of Figure 2. The top

container of the first and third stack has a relocation probability of 1
2 , because there are no containers

with a strictly smaller time frame underneath them and only a single container with the same time

frame. If the first stack consisted of three containers with time frame 4, then the top container would

have had a relocation probability of 2
3 and the middle container of 1

2 . For the containers with time

frame 5 in stack 2, time frame 4 in stack 3, time frame 3 in stack 4, and time frame 5 in stack 4 at

least one relocation move is needed and all other containers are correctly-placed. Hence, the lower

bound for the relocation moves of the bay in Figure 2 is 4 + 2× 1
2 = 5.

Although, the lower bound for the number of relocation moves for the top containers of the first two

stacks is larger than zero, there is no stack in which they could be moved such that they are correctly-

placed. Hence, the improvement that can be made for these two stacks is zero. The improvement for

the fifth stack is also zero, because the top container is already correctly-placed. The top container of

stack 4 can be placed correctly in the first stack, but there is no stack in which the container with time

frame 5 underneath it can be placed such that the lower bound for the number of relocation moves for

that container decreases. Therefore, the improvement for stack 4 is one. Finally, we consider the most

interesting stack, which is stack 3. If the top container of that stack is placed in stack 1, 4, or 5, then

the lower bound for the relocation moves of that container decreases from 1
2 to zero, thus the gain for

that container is 1
2 . The container below it with time frame 4 has a lower bound for the number of

relocation moves of 1, which can be improved by placing the container in stack 1. If it is placed there,

then the lower bound for the number of relocation moves of that container is 2
3 , thus the gain obtained

by moving that is 1
3 . The total gain of these two containers is 5

6 for which two containers need to be

moved. However, if a multiple-moves container is moved, then the total gain with two moves could be

one. Therefore, in the third stack, only the top container is considered as a one-move container and

the total improvement of that stack is 1
2 .

All in all, the top containers of stacks 3 and 4 are one-move containers and moving these container

into a correct position reduces the number of relocation moves by at least 11
2 . Given that the lower

bound for the number of relocation moves for the original bay is five, the lower bound with a single

pre-processing move is four. With two pre-processing moves, the lower bound equals 31
2 and with three

or more pre-processing moves, the lower bound is the maximum of zero and five minus the number of

pre-processing moves plus one.
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Algorithm 2: Branch-and-bound algorithm to find the optimal pre-processing moves.

Input: Bay B, relocation policy π and the maximum number of pre-processing moves ρ
LB := the lower bound from Algorithm 1.
B′ := bay after pre-processing moves from TC.
SOL := f(B′, π)
Q := (B, ρ, LB)
I := ∅
while LB < SOL and Q 6= ∅ do

Find the triplet (B′, d′, LB′) ∈ Q with the smallest d′. If there are multiple bays, choose the bay with the smallest
value of LB′. In case there are still multiple bays left, choose the bay that was the earliest added to Q.
Q = Q \ {(B′, d′, LB′)} and I = I ∪ {(B′, d′, LB′)}
Set V AL = f(B′, π).
if V AL < SOL then

SOL = V AL
end
if d′ > 0 then

for s1, s2 ∈ S and s1 6= s2, n(s1) > 0 and n(s2) < H do
Compute the lower bound LB′′ for bay B′′ = B(s1, s2) using Algorithm 1.
if LB′′ < SOL and {(B, d, LB) ∈ Q ∪ I : B = B′′ ∧ d ≥ d′ − 1} = ∅. then

Q = Q ∪ {(B′′, d′ − 1, LB′′)}
end

end

end

end
Output: SOL

4.3. Branch-and-bound

In this section, a branch-and-bound algorithm is given for the SCRPCPP. The root of the branch-

and-bound tree is the initial bay and for this bay, the TC heuristic can be applied to calculate an

upper bound for the optimal solution. A lower bound for the optimal solution is derived by Algorithm

1. We expand the tree in depth-first way by constructing every possible bay that can be obtained with

a single pre-processing move. Hence, the maximum depth of a tree is ρ. A node is only added to the

tree if it is not already in the tree with fewer or the same number of pre-processing moves. Note that

here we can exploit the fact that we can consider each permutation of a set of stacks as the same bay.

If there are multiple nodes of the tree that have the same depth, the node with the lowest lower bound

is selected and if that is also a tie, the node that was created the earliest is selected. For each bay that

is selected, the expected number of relocation moves using relocation policy π is calculated. If this

number is lower than the upper bound, the upper bound is adjusted. The complete branch-and-bound

algorithm is given in Algorithm 2. This algorithm is similar to the branch-and-bound algorithm of

Zweers et al. (2020), but there are two main differences. First, we have a tight bound on the depth

of the tree, namely the number of pre-processing moves. Second, the best solutions are likely to be

solutions with many pre-processing moves, whereas the problem in Zweers et al. (2020) usually has

better solutions with fewer pre-processing moves. Hence, in Algorithm 2, the solutions with a higher

depth are investigated first.

If one chooses the optimal relocation policy π∗ and uses the exact evaluation of the number of

expected relocation moves for a bay, then Algorithm 2 will produce the optimal solution. Nevertheless,

for two reasons the branch-and-bound algorithm might take too much computational time for practical

purposes to solve the SCRPCPP to optimality. The first reason is that the number of branches of

the tree grows exponentially in the number of pre-processing moves. Second, the expected number

of relocation moves has to be computed for each bay. The optimal PBFS algorithm, presented in
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Galle et al. (2018b), is the best optimal algorithm for the relocation phase, but it has been shown

that computing the optimal expected number of relocation moves for a single bay can already take

more than one hour for larger instances. An alternative to computing the optimal expected number

of relocation moves is using the rule-based estimation method of Zweers et al. (2020) to estimate the

expected number of relocation moves in a bay. If that method is used, Algorithm 2 is not guaranteed

to find an optimal solution, but it runs much faster. We refer to the branch-and-bound algorithm in

which the optimal number of relocation moves is calculated as BB-O and use BB-H to indicate the

variant of Algorithm 2 in which the rule-based estimation method is used to calculate the number of

relocation moves for a bay.

5. Extension to multiple bays

In this section, we show how we can apply the methods described in the previous section to a

situation in which we consider multiple bays. We first give in Section 5.1 the exact problem formulation

for the extension to multiple bays. Afterward, in Section 5.2, we present a method to solve this

problem.

5.1. Problem formulation for multiple bays

Some containers in a bay become correctly positioned in one or a few pre-processing moves, while

for other containers possible many pre-processing moves might be needed to be in a position such that

their expected number of relocation moves is lower. Hence, the improvement in the objective function

per pre-processing move becomes smaller if more pre-processing moves are performed. Therefore, if

the crane driver is idle for a longer time, then it could be better to visit multiple bays. Driving from

one bay to the other is time-consuming, but if there are some containers that can be easily placed in a

better position it might be worth moving the crane. Hence, in this section, we consider an extension

of the SCRPCPP in which multiple bays are visited.

We assume that the bays are positioned in a line and are numbered from left to right as is shown in

Figure 6. The crane in this figure is positioned above bay B4, but at the beginning of the pre-processing

phase it could be positioned above any bay. We call the bay above which the crane is positioned before

the pre-processing phase the starting bay, which we denote by Bs. We do not require the crane to

return to bay Bs at the end of the pre-processing phase, so any bay could be the last bay. In the

extension to multiple bays, one needs to decide both the number of pre-processing moves to perform at

each bay and a path that visits each bay for which at least one pre-processing move is performed. The

total time needed to move the crane and perform the pre-processing times should again not exceed T .

To reduce the problem’s complexity, we do not allow the crane to take a container from one bay and

place it in another bay.

The time needed to drive from bay Bi to bay Bj is given by tij . We restrict the travel times tij to

the class of times that satisfy the following properties:

• tij = tji for all Bi, Bj .

• tij < tik for all Bi < Bj < Bk.
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Figure 6: Illustration of the numbering of the bays (view from above).

• tij + tjk − tik = tlm + tmn − tln for all Bi < Bj < Bk and Bl < Bm < Bn.

In the first property, we assume the travel times to be symmetric. The second property states that if

one bay is closer than another bay, then the travel time is also shorter. The last equality implies that

the cost of stopping at a bay is independent of the bay itself and the origin and destination of the bays

that are visited before and after that bay. If one takes the layout of a container yard into account, as

is illustrated in Figure 6, then the first two properties are realistic. With the last property, scenarios

in which the crane drives at a constant speed and has no or a constant time needed to accelerate en

decelerate are included. In the literature, these types of travel times have been assumed before (Lee

& Lee, 2010; Lin et al., 2015). Nevertheless, we do not include the fact that a crane can accelerate

stronger if it has to drive for a longer distance. Using these three properties for the travel time we

can derive nice properties for the optimal path as are given in Lemma 1.

Lemma 1. There exists an optimal path P with the following properties:

1. The bays in between the leftmost and rightmost bay are visited in either increasing or decreasing

order.

2. The endpoint of the tour is either the leftmost or rightmost visited bay.

3. The bay visited directly after the start bay is either the leftmost or rightmost visited bay.

The proof of Lemma 1 is given in Appendix A. There are two paths satisfying the properties of

Lemma 1: one that ends at bay Bl and one that ends at bay Br. The starting bay determines which

of the two paths is optimal. The only difference in the length of these two paths is in the time needed

to travel from the starting bay to the second visited bay. By the third property of Lemma 1, this bay

is either Br or Bl. The second property ensures that the other extreme bay that is visited is the last

bay of the path. By the first property, we know that all bays in between bay Br and Bl are visited in
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the order they appear on the line. Since the travel times are symmetric, the costs of visiting the bays

in between bays Br and Bl are the same for starting in bay Br or in bay Bl. As the only difference

between the two paths is the time needed to go from the starting bay to the second bay, the optimal

path visits first of Br and Bl the bay that is closest to Bs. Then the crane travels to the other bay,

Bl or Br, and stops at every bay in between that needs to be visited. For example, consider the bay

in Figure 6 and assume that all bays of this figure should be visited. As bay B1 is closer to B4 than

B8, the optimal path visits after bay B4 first B1 and then all bays in increasing order without visiting

bay B4 again.

Let Xkl be a binary decision variable indicating whether the crane drives from bay Bk to bay Bl

or not. A bay is never visited more than once, because all moves that would be done in the second

or later visits could also be done at the end of the first visit. Consequently, the constraint (2) for a

single bay is replaced by the following constraint if there are multiple bays:

m∑
k=1

m∑
l=1

tklXkl + τ |P| ≤ T. (3)

5.2. Solution method for multiple bays

In Sections 4.1 and 4.3, we have given an optimal algorithm and two heuristic methods to find

pre-processing moves for a single bay. We use these method in this section to derive a solution method

for the extension to multiple bays. The idea of the method for multiple bays is to calculate, for each

bay and number of pre-processing moves, the improvement that can be made by performing that

number of pre-processing moves in that bay. For a single bay k and any number of λk pre-processing

moves, the (optimal) pre-processing moves can be determined using the methods from Sections 4.1

and 4.3. Let us define S(Bk, λk) as (an estimation of) the expected number of relocation moves for

bay Bk after λk pre-processing moves have been performed. Moreover, for a specific bay Bk we can

also determine the maximum number of pre-processing moves that will be done for that bay, which

we denote by mk. First of all, we know that mk cannot exceed ρ because of the time limit. Second, if

with λk pre-processing moves S(Bk, λk) = 0, then it is useless to perform more than λk pre-processing

moves. In other words, mk := min{ρ, arg minµ{S(Bk, µ) = 0}}. Hence, the maximum number of

pre-processing moves that can be performed in a bay is different per bay. Consequently, the values

that λk can take is different for each bay k. For each bay Bk we can calculate the value of S(Bk, λk)

for λk = 0, 1, . . . ,mk. If the optimal pre-processing moves are performed and the value of S(Bk, λk)

is the optimal number of relocation moves, then S(Bk, λk) ≥ S(Bk, λk + 1). However, if either the

pre-processing moves or the estimation of the relocation moves are not optimal, the inequality does

not always hold. Nevertheless, if the estimates S(Bk, λk) are calculated in an iterative order starting

at λk = 0, then one can set the value S(Bk, λk + 1) equal to S(Bk, λk) if S(Bk, λk + 1) > S(Bk, λk).

Hence, we know that for each bay Bk it should hold that S(Bk, 0) ≥ S(Bk, 1) ≥ . . . , S(Bk,mk).

Using the values for S(Bk, λk), we can formulate an ILP to decide upon the number of pre-

processing moves for each bay and the route of the crane. Let Ykλk be a binary variable that equals

one if λk pre-processing moves are performed in bay Bk. Furthermore, let Xjk be a binary variable

indicating whether the crane travels from bay Bj to bay Bk. In Lemma 1, it has been shown that,
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given a set of bays that needs to be visited, an optimal path has some structural properties. Therefore,

we know that either the leftmost bay (Bl) or rightmost bay (Br) is the first bay to be visited after the

initial bay and the other of the two is the last bay that is visited. We give the starting bay an index

of 1. We could number the other bays either from left to right or from right to left. If we use the ILP

below to solve both numberings then the solution with the lowest objective function is the optimal

solution. All in all, the SCRPCPP for multiple bays can be formulated as the following ILP:

min
b∑

k=1

mk∑
λk=0

S(Bk, λk)Ykλk (4)

subject to:

mk∑
λk=0

Ykλk ≤ 1 k = 1, . . . , b (5)

mk∑
λk=1

Ykλk ≤
b∑
l=1

Xlk k = 2, . . . , b (6)

b∑
o=1

Xlo ≤
b∑

k=1

Xkl l = 2, . . . , b (7)

b∑
k=1

b∑
l=1

tklXkl +

b∑
k=1

mk∑
λk=0

τkYkλk ≤ T (8)

Xij = 0 i = 1, . . . , b j = 1, . . . , i (9)

Xij ∈ {0, 1} i = 1, . . . , b j = 1, . . . , b (10)

Ykλk ∈ {0, 1} k = 1, . . . , b λk = 0, . . . ,mk. (11)

In the objective function in equation (4) the sum of S(Bk, λk) over all bays and all possible pre-

processing moves in each bay is taken. In constraint (5), it is forced that for each bay only a single

number of pre-processing moves can be performed. The X- and Y -variables are coupled in constraint

(6) by forcing all Ykλk to be zero if the crane does not visit bay k. Note that this does not hold for

bay 1, because the crane starts in that bay. Constraint (7) ensures that the crane can only leave a

bay if it has arrived at that specific bay. Again, this does not apply to the starting bay. The first

sum in constraint (8) represents the total travel time of the crane between the bays and the second

sum of this constraint gives the total time the crane spends on moving containers inside the bays.

Thus, in constraint (8) the total time the crane uses in the pre-processing phase is limited to T . In

constraint (9), the properties of Lemma 1 are exploited with the fact that there exists an optimal tour

in which the bays are visited in the way they are numbered. Finally, constraints (10) and (11) ensure

that all variables are binary.

In the ILP above, the fact that the maximum number of pre-processing moves in a bay is different

per bay is used. One could also decide to refrain from calculating mk for each bay k and decide to

set mk equal to ρ. This has the advantage that notation can be simplified because λk and mk do not

depend on k anymore. However, this comes at the costs of having more Y -variables and thus, we have
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1 Correct, No improvement, Ratio
2 Correct, No improvement, Greedy
3 Correct, Improvement, Ratio
4 Correct, Improvement, Greedy
5 Semi-correct, No improvement, Ratio
6 Semi-correct, No improvement, Greedy
7 Semi-correct, Improvement, Ratio
8 Semi-correct, Improvement, Greedy

Table 2: Numbering of the TC heuristic.

decided not to do so.

6. Numerical Results

In this section, numerical experiments are conducted to compare the three solution methods for

a single bay presented in the previous section: the TC heuristic, the BB-H method, and the BB-O

method. Moreover, the gain that can be obtained by investigating multiple bays is investigated. First,

we compare in Section 6.1, the eight different variants of the TC heuristic. The results of the TC

heuristic are compared with the branch-and-bound methods in Section 6.2. Finally, we compare the

effects of extending the problem to multiple bays in Section 6.3. All the numerical experiments are

done using the set of instances for the SCRP of Ku & Arthanhari (2016). This set contains bays with

five up to ten stacks and a maximum stack height of three up to six containers. Furthermore, the

number of containers inside a bay is either 50% or 67% of all slots in the bay. This percentage is

referred to as the fill rate. For each combination of these parameters, 30 instances are in the set of

instances.

We decided to restrict the experiments to the instances of Ku & Arthanhari (2016) with five and

ten stacks to investigate the consequences of different number of stacks. Furthermore, we only focus

on the instances with a fill rate of 67%, because they have more containers per stack. These instances

have, in general, a higher number of expected relocation moves than the instances with a fill rate

of 50%, because these bays contain more containers. Another consequence of the higher number of

containers is that more pre-processing moves are needed to reduce the relocation moves. Hence, we

can assume that the instances with a fill rate of 67% are more difficult than the instances with a fill

rate of 50%. Finally, we solve every instance for three different number of pre-processing moves. We

let the number of pre-processing moves depend on the number of containers in a bay. We set the

number of pre-processing moves to 25%, 50%, and 75% of the total number of containers in a bay. It

is important to note that if the number of pre-processing moves equals 25% of the total number of

containers, then some instances might already be reshuffled such that no relocation moves are needed.

In that case, performing more pre-processing moves is obviously not useful. However, there will also

be instances for which still relocation moves will be needed if the number of pre-processing moves

equals 75% of the total number of containers.

6.1. TC heuristic

In this section, the eight different variants of the TC heuristic, as discussed in Section 4.1, are

compared with each other. In order to refer easily to the variants of the TC heuristic, we have given
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Instances # heuristics 1 2 3 4 5 6 7
All % diff 8 heur. 16,05% 5,16% 1,75% 0,93% 0,40% 0,13% 0,01%

Best heuristics 7 7,8 1,7,8 3,5,7,8 3,5,6,7,8 1,3,5,6,7,8 1,3,4,5,6,7,8
ρ = 0.25C % diff 8 heur. 5,08% 1,52% 0,39% 0,17% 0,05% 0,01% 0,01%

Best heuristics 8 5,8 5,7,8 2,5,7,8 2,3,5,7,8 3,4,5,6,7,8 1,3,4,5,6,7,8
ρ = 0.5C % diff 8 heur. 20,92% 6,42% 1,62% 0,65% 0,13% 0,05% 0,01%

Best heuristics 7 7,8 1,7,8 1,6,7,8 1,3,6,7,8 1,3,4,6,7,8 1,3,4,5,6,7,8
ρ = 0.75C % diff 8 heur. 40,09% 16,82% 6,18% 3,26% 1,20% 0,17% 0,03%

Best heuristics 3 3,8 3,5,8 1,3,7,8 1,3,6,7,8 1,3,5,6,7,8 1,3,4,5,6,7,8
H = 3 % diff 8 heur. 10,45% 2,55% 1,09% 0,55% 0,09% 0,00% 0,00%

Best heuristics 8 7,8 1,7,8 3,5,7,8 2,3,5,7,8 2,3,5,6,7,8 2,3,4,5,6,7,8
H = 4 % diff 8 heur. 13,16% 4,26% 2,09% 1,03% 0,53% 0,06% 0,03%

Best heuristics 8 3,8 3,6,8 3,5,6,8 3,5,6,7,8 3,4,5,6,7,8 1,3,4,5,6,7,8
H = 5 % diff 8 heur. 13,93% 3,81% 0,94% 0,41% 0,13% 0,02% 0,00%

Best heuristics 8 5,8 1,7,8 1,3,7,8 1,3,6,7,8 1,3,5,6,7,8 1,3,4,5,6,7,8
H = 6 % diff 8 heur. 13,01% 5,44% 1,97% 0,87% 0,34% 0,11% 0,02%

Best heuristics 7 7,8 1,7,8 3,5,7,8 3,5,6,7,8 1,3,5,6,7,8 1,3,4,5,6,7,8
S = 5 % diff 8 heur. 13,47% 4,51% 1,76% 0,71% 0,41% 0,13% 0,02%

Best heur. 8 7,8 1,7,8 1,6,7,8 1,5,6,7,8 1,3,5,6,7,8 1,3,4,5,6,7,8
S = 10 % diff 8 heuristics 16,65% 5,78% 1,54% 0,64% 0,26% 0,13% 0,01%

Best heuristics 7 7,8 3,5,8 3,5,7,8 3,5,6,7,8 3,4,5,6,7,8 1,3,4,5,6,7,8

Table 3: Comparison of different variants of the TC heuristic for different subsets of the instances.

each variant of the TC heuristic a number which is given in Table 2. In Table 3, the effect of using eight

variants of the TC heuristic is investigated. For each variant and instance, we calculated the number of

expected relocation moves of the bay after the pre-processing phase. Calculating the optimal number

of expected relocation moves for some of the instances takes already more than an hour. Hence, we

decided to estimate the expected number of relocation moves by solving 10,000 realizations of the

retrieval order using the EM heuristic. On the rows of Table 3 are different subsets of the instances

and on the columns are the number of variants of the TC heuristic that are used. Both the best

combination of variants and the percentage difference with the objective function if all eight variants

were used are given. For example, if all instances as described above, are considered, then heuristic 7

is the best if only a single variant is allowed. The percentage difference in objective function between

the solution of heuristic 7 and the solution using all eight variants is 16.05%.

There are three main conclusions to be drawn from Table 3. The first is that the solution of the

TC heuristic greatly improves in the beginning by adding more variants, but that the contribution of

the sixth, seventh and eight best variants is marginal. For example, if the number of pre-processing

moves is 75% of the total number of containers in the bay (ρ = 0.75C), then the solution of the best

heuristic, heuristic 3, is more than 40% worse than the solution including all eight variants. However,

when allowing for three variants, the solution is already only 6.18% off from the solution using eight

variants. A second conclusion is that the number of stacks or the maximum height of a stack does not

really influence how many heuristics are needed to obtain a solution that is close to the best possible

solution of the TC heuristic. However, the number of pre-processing moves has a big impact on the

number of heuristics needed. If the number of pre-processing moves is only 25% of the total number of

containers then the variants have not got many options to vary in the suggested pre-processing moves.

In case the number of pre-processing moves is 75% of the total number of containers, then the number

of possible different solutions is much bigger. The third main conclusion is that there is no variant of

the TC heuristic that outperforms the others in all subsets of the instances. Heuristic 7 is the best

for all instances, but that is partially caused by the fact that it performs well on the instances with
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more relocation moves, namely H = 6 and S = 10. Although heuristic 7 is the best for S = 10 if only

a single heuristic is selected, the best three heuristics do not include 7. Another observation is that if

two heuristics can be chosen, then heuristic 8 is always one of the two.

All in all, it is beneficial to include multiple variants in the TC heuristic and although certain

heuristics give better results than others, no variant is outperforming all other heuristics for every

type of instance. In the remainder of the paper, all eight variants of the TC heuristic will be applied

to obtain the best possible results. However, if time does not allow to run all eight variants, only

including the best four or five heuristics is probably the best option.

6.2. Branch-and-bound methods

In this section, the performance of the TC heuristic is compared with the two branch-and-bound

methods introduced in Section 4.3: BB-H and BB-O. Again, we only focus on the set of instances of Ku

& Arthanhari (2016) with five and ten stacks and a fill rate of 67%. In Table 4, the three methods TC,

BB-H, and BB-O are compared for the instance with five stacks. In Table 5, exactly the same is done

but for the instances with ten stacks. Similar to the previous section, we set the maximum number of

pre-processing moves to 25%, 50%, and 75% of the total number of containers in a bay. Moreover, we

also include a column with ρ = 0 to investigate the improvement that is made in the pre-processing

phase. For each combination of stack height and maximum number of pre-processing moves there are

thirty instances and for each instance the maximum running time for the pre-processing phase is set

to one hour. We report in Tables 4 and 5, the average running time per instance. In calculating the

average running time, we include the instances for which the pre-processing phase was stopped after

one hour. For the TC heuristic, all eight heuristics were run, which all have about the same running

time. The running time of the TC heuristic reported in Tables 4 and 5 could be decreased by solving

only a subset of the eight variants, but in that case, the solution quality also decreases as we have

seen in Section 6.1. Furthermore, we show in the row ‘Solved’, for how many of the thirty instance the

pre-processing phase terminated within one hour. This number is especially important for the BB-O

because if this method solves an instance within one hour then the solution is optimal. Therefore, if

all thirty instances are solved, then the sum of objective values is optimal. In order to calculate the

objective function of the SCRPCPP, we need to calculate the remaining expected number of relocation

moves after the pre-processing phase. We calculate these expected relocation moves in two different

ways: we use both the optimal algorithm and the EM heuristic of Galle et al. (2018a). We set the

maximum running time for the relocation phase also to one hour and in that case, the relocation phase

cannot be solved to optimality for the larger instances. Therefore, we use the EM heuristic to also

obtain an estimate for the objective function for these instances. For the EM heuristic we use 10,000

simulations to calculate the average number of relocation moves for an instance.

The first conclusion from Table 4 and 5 is that the maximum height of the stacks has the biggest

influence on the running time for all methods. For example, the number of containers in a bay is the

same for S = 5 and H = 6, and S = 10 and H = 3. However, in the latter, the average running time of

the optimal method in only a few seconds, whereas in the former, the optimal method could only solve

six instances to optimality within one hour. Furthermore, the running times of the BB-O and BB-H

methods also increase significantly with the maximum number of pre-processing moves. For some
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ρ = 0 ρ = 0.25C ρ = 0.5C ρ = 0.75C
BB-O BB-H TC BB-O BB-H TC BB-O BB-H TC

H = 3

Opt obj value 92.3 49.9 50.6 50.9 8.5 8.5 11.5 2 2 3
EM obj value 92.3 49.9 50.6 50.9 8.5 8.5 11.5 2 2 3
Avg run time (s.) - 0.9 0.9 0.9 0.9 0.9 0.9 1.2 0.9 0.9
Solved - 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30

H = 4

Opt obj value 167.4 95.2 97.5 99.5 39.6 41.3 45.3 7.0 7.2 25.3
EM obj value 169.4 95.3 97.6 99.6 39.6 41.6 45.3 7.0 7.2 25.3
Avg run time (s.) - 3.7 1.5 1.4 3.2 1.5 1.4 53.7 7.9 1.4
Solved - 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30

H = 5

Opt obj value - 187.0 191.4 193.1 101.2 95.7 115.6 58.2 35.3 72.6
EM obj value 314.4 191.2 202.0 198.6 102.8 98.7 117.1 58.8 35.3 72.8
Avg run time (s.) - 1200.6 2.2 2.2 1441.2 6.2 2.4 2864.7 1210.4 2.3
Solved - 22/30 30/30 30/30 22/30 30/30 30/30 8/30 22/30 30/30

H = 6

Opt obj value - - - - 199.9 145.5 210.1 136.7 92.8 140.7
EM obj value 439.5 286.6 292.8 312.6 204.8 149.4 215.4 139.3 95.3 143.3
Avg run time (s.) - 3018.0 15.1 2.8 3491.0 674.6 2.8 3483.8 3371.1 3.0
Solved - 6/30 30/30 30/30 2/30 27/30 30/30 1/30 2/30 30/30

Table 4: Sum of objective function and average running times of the BB-O, BB-H and TC solution methods
for S = 5 and fill rate of 67% for different stack heights and number of pre-processing moves.

ρ = 0 ρ = 0.25C ρ = 0.5C ρ = 0.75C
BB-O BB-H TC BB-O BB-H TC BB-O BB-H TC

H = 3
Opt obj value 158.2 40.5 40.7 50.0 1.0 1.0 2.5 0 0 0
EM obj value 158.4 40.5 40.7 50.0 1.0 1.0 2.5 0 0 0
Avg run time (s.) - 3.3 2.7 2.6 150.5 144.0 3.5 4.1 4.1 4.1
Solved - 30/30 30/30 30/30 29/30 29/30 30/30 30/30 30/30 30/30

H = 4
Opt obj value - 137.3 138.8 157.3 33.5 26.5 43.0 3.5 2.5 3.5
EM obj value 308.8 137.5 139.3 157.6 33.5 26.5 43.0 3.5 2.5 3.5
Avg run time (s.) - 1028.3 13.2 4.8 2708.4 2061.7 5.8 487.9 487.2 6.9
Solved - 25/30 30/30 30/30 15/30 9/30 30/30 26/30 26/30 30/30

H = 5
Opt obj value - - - - 125.7 104.0 128.2 48.6 47.6 48.6
EM obj value 485.7 271.9 253.4 284.5 125.7 104.0 128.2 48.6 47.6 48.6
Avg run time (s.) - 3094.4 331.8 7.0 3600.0 3564.3 9.4 3001.9 3001.7 10.7
Solved - 7/30 28/30 30/30 0/30 1/30 30/30 5/30 5/30 30/30

H = 6
Opt obj value - - - - - - - - - -
EM obj value 696.0 425.5 394.8 432.5 230.6 198.4 230.6 111.3 109.8 111.3
Avg run time (s.) - 3600.0 1252.4 9.0 3600.0 3600.0 11.8 3600.0 3600.0 13.0
Solved - 0/30 22/30 30/30 0/30 0/30 30/30 0/30 0/30 30/30

Table 5: Sum of objective function and average running times of the BB-O, BB-H and TC solution methods
for S = 10 and fill rate of 67% for different stack heights and number of pre-processing moves.

parameter settings, for example S = 5, H = 5, and ρ = 0.5C and S = 10, H = 4, and ρ = 0.25C,

the BB-H method can still solve the instances within seconds, whereas the BB-O method cannot

find the optimal solution for every instance within one hour. There are other parameter settings,

especially when S = 10, for which also the BB-H method cannot solve all instances within one hour.

Consequently, for instances in which the maximum stack size or the number of pre-processing moves

is large, only the running time of the TC heuristic is small enough to be applied in practice.

We also see that in case the optimal expect relocation moves could be calculated within one hour,

the objective value approximated by the EM heuristic is always within 5% of the optimal objective

function. If the number of containers in a bay is large, then it is not possible to calculate the optimal

expected number of relocation. More interestingly, this is also the case when fewer pre-processing

moves have been applied. For example, for S = 5 and H = 6, the optimal relocation moves could only

be calculated for ρ = 0.5C and ρ = 0.75C, but not for ρ = 0 and ρ = 0.25C. Hence, we can conclude

that the relocation phase is simplified if more pre-processing moves are applied.

It is important to note that if the BB-O method does not solve all instances within one hour, it
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is often outperformed by the BB-H method. At first, this might be counterintuitive, but it can be

explained by the fact that the BB-H method needs less time to investigate the quality of a node in

the branch-and-bound tree. In the BB-O method, to investigate the quality of a node, the optimal

number of expected relocation moves needs to be calculated, whereas in the BB-H method, only an

estimation of the number of relocation moves is used. As a result, the BB-H method visits more nodes

in the branch-and-bound tree than the BB-O method and finds better solutions.

If one wants to compute the optimality gap of the BB-H or TC method, it is important to realize

that this can be in two different ways that give completely different results. For instance, for S = 5,

H = 4, and ρ = 0.75C, one could compare the values 7.0 and 25.3 and argue that the optimality gap

of the TC heuristic is more than 300%. However, one could also look at the reduction of the objective

function, compared with ρ = 0. In this situation, the optimality gap of the TC heuristic is only about

10%. Comparing the objective function for different values of ρ, we can also conclude that the first

pre-processing moves yield the largest reduction in the number of relocation moves. For instance, if

we take a look at the difference of the objective function between ρ = 0 and ρ = 0.75C, we see that

about 40% to 50% of this improvement is already made for ρ = 0.25C. Whereas the improvement

made between ρ = 0.5C and ρ = 0.75C is only about 10% to 15%. The observation that the first

pre-processing moves yield a bigger reduction in the objective function than later pre-processing moves

supports the idea to investigate multiple bays.

6.3. Multiple bays

If the idea of pre-processing is extended to multiple bays, the time units that are used are important.

We use as closely as possible the time units that were used in previous works in the literature (Lee

& Lee, 2010; Lin et al., 2015). We assume that the time to move a container inside a bay is 30

seconds. Furthermore, the time to accelerate and decelerate the crane is set to be 40 seconds and the

time to move the crane a single bay is 3.5 seconds per bay. For example, going with the crane to an

adjacent bay takes 43.5 seconds and to a bay that is separated by two other bays in between takes 50.5

seconds. As we are the first to study any variant of the SCRP in a multiple bay setting, no benchmark

instances are available. We have decided to use the same instances from Ku & Arthanhari (2016)

as for the single-bay case. For each parameter setting thirty single-bay instances are available. An

instance for multiple bays consists out of twenty randomly selected instances of these thirty instances.

We investigate the instances with five and ten stacks and with a maximum height of five containers.

For both of these parameter settings, we have created thirty instances consisting of twenty bays.

Furthermore, we compare the effect of the starting position of the crane. The crane can be positioned

at the beginning or in the middle of the yard. If the crane is positioned at the beginning of the yard,

fewer bays are located nearby than if the crane is located in the center of the yard. Finally, we use

four different variants of T , namely T = 300, T = 600, T = 900 and T = 1800, which corresponds to

five, ten, fifteen and thirty minutes.

In Table 6, the results of the ILP of Section 5.2 are shown for the parameter set described above.

For the pre-processing phase, the TC heuristic is used and to estimate the number of relocation moves

we have used the EM heuristic based on 10,000 simulations. We have chosen to do so because each

bay has to be solved with possibly a large number of pre-processing moves. One conclusion that can
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S = 5 S = 10
Start crane Begin Middle Begin Middle

T = 300
# pre-proc. moves 7.80 7.63 7.73 7.70
# bays visited 1.43 1.27 1.57 1.67
Reduction # reloc. moves 9.52 9.45 9.71 10.09

T = 600
# pre-proc. moves 15.73 15.70 15.77 15.70
# bays visited 2.93 2.70 2.60 2.83
Reduction # reloc. moves 19.05 18.75 19.37 19.62

T = 900
# pre-proc. moves 24.40 24.10 23.87 24.37
# bays visited 3.83 3.70 3.80 3.83
Reduction # reloc. moves 28.11 27.51 28.67 28.97

T = 1800
# pre-proc. moves 48.30 48.43 49.70 49.83
# bays visited 8.03 7.77 7.00 6.77
Reduction # reloc. moves 53.26 52.49 54.76 54.53

Table 6: The average number of pre-processing moves, number of bays visited and the improvement made in
the objective function for different values of T , S and the starting position of the crane.

be drawn from Table 6 is that the results are rather similar for instances with five and ten stacks per

bay. However, with ten stacks the number of relocation moves can be reduced slightly more. There

are two possible explanations of why the objective function can improve more for instances with ten

stacks than with five stacks. The first is that every initial bay has on average a larger number of

relocation moves and thus performing more pre-processing moves in a single bay is likely to give a

greater improvement in the objective function. This effect is the most clearly seen for T = 1800

for which for S = 10 more pre-processing moves per bay are performed than for S = 5. A second

explanation is that in a bay with ten stacks, it happens more often that a poorly-placed container

can be placed correctly using a single pre-processing move than in a bay with five stacks. This is

caused by the fact that there are simply more potential stacks in a bay with ten stacks than in a bay

with five stacks. Consequently, if S = 5 it is often the case that no pre-processing moves are done in

the starting bay, whereas if S = 10 usually at least a few pre-processing moves are performed in the

starting bay. The advantage of performing pre-processing moves in the starting bay is that no travel

time is needed. Hence, if the time is limited, for instance for T = 300, we see that the instances with

ten stacks have more bays visited.

If the crane is positioned at the center of the yard, then the other bays are on average closer than

if the crane starts at the beginning of the yard. This might be beneficial if only one or two bays could

be visited. Nevertheless, if either the leftmost or rightmost bay is close to the end at which the crane

is positioned, then starting at the beginning of the yard is more beneficial, because the crane does not

need to travel that far in the beginning. If the available time is larger and more bays are visited, it is

likely that the leftmost and rightmost visited bays are closer to the end of the yards. Hence, we see

that for T = 1800 the improvement is larger if the crane is positioned at the beginning of the yard.

Obviously, these results heavily depend on the values for t and τ .

Furthermore, as expected, the improvement per pre-processing move decreases if T increases, be-

cause if T is small only the very best pre-processing moves are performed, whereas if T gets larger then

also less profitable pre-processing moves are performed. However, even for T = 1800, the improvement

per pre-processing move is still larger than one, meaning that one pre-processing move reduces, on

average, the number of relocation moves with more than one. If one does not allow the crane to move

and let it only be positioned above a single bay, then this improvement is much lower. For instance, if
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T = 900, the crane could perform thirty pre-processing moves, which yields an average improvement of

10.22 for S = 5 and when S = 10 of 15.67. However, even when the available time is only 300, already

a substantial improvement can be made. In that case, ten pre-processing moves can be performed for

a single bay, which yields an improvement of 7.05 and 8.34 for, respectively, S = 5 and S = 10.

A final remark to be made concerns the running time of the extension to multiple bays. The

ILP (4)-(11) runs in less than a second for the instances we have considered. Hence, the only time-

consuming part is to calculate the values of S(Bk, λk) for each bay Bk and number of pre-processing

moves λk. Here a trade-off has to be made between the solution quality and the running time. If one

uses a single variant of the TC heuristic for the pre-processing phase and estimates the number of

relocation moves by the rule-based method, then even for the largest instances calculating S(Bk, λk)

takes at most two seconds. Nevertheless, for a better solution quality more computing time is needed.

As the values of S(Bk, λk) do not depend on the other bays it could be possible in practice to calculate

them offline. Only if a container arrives or leaves in a bay, the values of S(Bk, λk) have to be updated.

7. Conclusion

In this paper, a new optimization problem, the SCRPCPP, faced by an inland container terminal

in the port of Amsterdam, has been introduced. The problem focuses on which pre-processing moves

to perform to reduce the expected number of relocation moves as much as possible. We have developed

a branch-and-bound algorithm to solve this problem to optimality. However, for larger instances, the

running time of this method is too large to be used in practice. Therefore, we have also developed

two heuristics. The first heuristic, the TC heuristic is fast, but the gap between its solution and the

optimal solution is for more difficult instances large. The BB-H heuristic is based on the optimal

branch-and-bound algorithm, but as it does not calculate the optimal number of relocation moves

for a bay, its solutions are not necessarily optimal. However, its running time is also significantly

lower than the optimal algorithm. We have also developed a method for the pre-processing phase of a

complete yard consisting out of multiple bays. Using multiple bays, one can make a large improvement

per pre-processing move even when a large amount of time is given for the pre-processing phase.

A direction for further research could be to improve the formulation for multiple bays. In the

current method, for each combination of bays and possible number of pre-processing moves one has

to calculate the improvement, which could be time-consuming. A fast method to decide upon the

allocation of the number of pre-processing moves to a bay based on the initial layout could be an

improvement. Nevertheless, in allocating the pre-processing moves, one should also take into account

the position of the bay in the yard. Furthermore, this new method might allow for moving a container

from one bay to the other.

Both the TC and BB-H heuristic rely on the rule-based estimation method for estimating the

number of relocation in a bay. If a better estimation method is found, then the performance of both

methods can be improved. We expect that if sophisticated machine learning algorithms are applied

then better predictions might be obtained than by the rule-based estimation method. Furthermore,

at the moment the BB-O and BB-H heuristic do not use advanced branching decisions, it might also

be worth to investigate if their performance could improve if better branching decisions were used.
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Finally, one could speed-up the BB-H heuristic by only constructing a partial tree or using a beam

search approach to focus only on the promising parts of the tree. It has to be investigated if the

solution quality of such type of method is much lower than the current BB-H heuristic.
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Appendix A. Proof of Lemma 1

Lemma 1. There exists an optimal path P with the following properties:

1. The bays in between the leftmost and rightmost bay are visited in either increasing or decreasing

order.

2. The endpoint of the tour is either the leftmost or rightmost visited bay.

3. The bay visited directly after the start bay is either the leftmost or rightmost visited bay.
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Proof. To prove that there exists an optimal path P with these three properties we go through

these properties one by one. For Properties 1 and 2, we consider an optimal path P ′ for which these

properties do not hold and show a contradiction. For the last property we show that an optimal

path P ′ satisfying the first two but not the last property can be changed into a path P that satisfies

all three properties without changing the objective function. We denote the leftmost and rightmost

visited bay by, respectively, Bl and Br.

1. For sake of contradiction, let us consider an optimal path P ′ in which the first property does

not hold. Without loss of generality, let us assume that bay Bl is visited before bay Br. Let

bay Bm be the first bay that is visited in path P ′ after bay Bn with n > m. On top of that, we

denote the bay that is directly visited before bay Bn in path P ′ as Bk and the bay that is visited

right after bay Bm as bay Bo. Hence, the crane travels in path P ′ from bay Bk to Bn to Bm

to Bo and this partial route takes tkn + tnm + tmo time units. If the order of bays Bm and Bn

is swapped, then the total travel time to visit these bays is tkm + tmn + tno. As it is given that

tmn = tnm and that both tkm ≤ tkn and tno ≤ tmo, we know that swapping the bays Bk and Bl

in path P ′ reduces the travel time of that tour, which contradicts the optimality of path P ′.

2. For sake of contradiction, consider an optimal path P ′ that satisfies the first property, but that

does not end at the rightmost or leftmost visited bay. Let us denote the bay at which path P ′

ends by Be. Without loss of generality, we assume that the rightmost visited bay Br is visited

later than the leftmost visited bay Bl. Furthermore, because of the first property we assume

that the bays between Bl and Br are visited in increasing order. We will show that visiting bay

Be before bay Br reduces the cost of path P ′. We distinguish between two different cases: the

first case is the situation in which bay Be is the only bay visited after bay Br, and in the second

case, multiple bays are visited after bay Br.

Consider the situation in which bay Be is the only bay visited after bay Br. Let us change the

path P ′ into path P such that bay Be is visited in between bay Bl and Br. Using the first

property, the optimal position in the path can be easily determined. Let us denote the bay that

is visited before bay Be in the new path by Bd and the bay that is visited after Be in path P

by Bf . Note that bay Bf might be equal to bay Br. The increase in cost of visiting bay Be in

between bay Be and Bf , instead of going directly from Bd to Bf equals tde+ tef − tdf . Moreover,

after bay Br, bay Be does not need to be visited anymore which decreases the cost by tre. Hence,

the difference in cost by visiting bay Be between bays Bd and Bf instead of after bay Br equals

tde + tef − tdf − tre < tef − tre < 0.
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Here, the first inequality holds because tde < tdf . The second inequality holds with equality if

Bf is bay Br. However, if Bf is not Br, then by definition bay Bf is closer to bay Be than Br

is to Be and thus tef < tre.

Now consider the case in which there are one or multiple bays visited in between bay Br and

bay Be. Let bay Bg be the bay visited directly before bay Be and bay Bh be the bay directly

before Bg. Again, we will show that the cost of the tour decreases if bay Be is visited between

Bd and Bf . Note that now both Bf and Bh could be the same as bay Br. The cost in path P ′

for going from Bd to Bf and from Bh via Bg to Be equals

tdf + thg + tge,

which can be rewritten into

tdf + thg + tge − the + the = tdf + tde + tef − tdf + the

= tde + tef + the

≥ tde + tef + thg.

The last expression is exactly the cost of the tour if bay Be is visited in between Bd and Bf

instead of after Bh. Therefore, the cost of P ′ can be reduced, which is in contradiction with the

optimality of path P ′.

3. Consider an optimal path P ′ in which the third property does not hold, but the first two are

satisfied. Again we assume without loss of generality that bay Bl is visited before Br. Let us

define the bay that is visited directly after the start bay of the crane, namely Bs, in P ′ as Bt

and let bay Bu be the bay visited after bay Bt. Consider a path P in which bay Bt is not visited

directly after bay Bs, but in the order that is suggested with the first property, between bays

Bd and Bf . Again, note that bays Bu and Bd might be the same as Bl. The costs for going

from Bs to Bt to Bu and from Bd to Bf in path P equals tst + ttu + tdf . In the equation below

we see that these costs are exactly the same as tdt + ttf + tsu, which are the costs in path P ′ of

visiting bay Bt between bays Bd and Bf and bay Bu directly after Bs:

tst + ttu + tdf = tst + ttu − tsu + tsu + tdf = tdt + ttf − tdf + tsu + tdf = tdt + ttf + tsu.

Hence, we can change path P ′ into a path P that satisfies the third property without changing

the length of the path.
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