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ABSTRACT

We consider the classical cyclic polling model with Pois-
son arrivals and with gated service at all queues, but where
the local scheduling policies are not necessarily First-Come-
First-Served (FCFS). More precisely, we study the waiting-
time performance of polling models where the local service
order is Last-Come-First-Served (LCFS), Random-Order-
of-Service (ROS) or Processor Sharing (PS). Under heavy-
traffic conditions the waiting times turn out to converge
to products of generalized trapezoidal distributions and a
gamma distribution.

1. INTRODUCTION
A polling system is a multi-queue single-server system in
which the server visits the queues in some order to process
requests pending at the queues. Polling models find a wealth
of applications in areas like computer-communication sys-
tems and production systems [2]. In this paper, we study
the impact of the local scheduling policy on the waiting-time
performance.
It might be natural to assume that the impact of such lo-
cal scheduling is small, because it only impacts the system
performance locally, leaving the amount of time spent out-
side the targeted queue unaffected. However, [9] illustrates
that the impact on the mean waiting time from scheduling
within a queue of a polling system can be significant. In
many application areas of polling models, such as Bluetooth
and 802.11 protocols, scheduling policies at routers and I/O
subsystems in web servers, the workloads are known to have
high variability and priority-based scheduling could there-
fore be beneficial. So far, there are only a few papers known
where the effect of priority-based scheduling is studied in
polling systems (e.g. [1, 3, 9]), whereas the system operation
under heavy-traffic (HT) conditions, being the most critical
regime from a scheduling point of view, has not been studied
at all.
The main results of the paper are closed-form expressions
for the (scaled) waiting-time distribution under HT assump-
tions, explicitly quantifying the impact of the local schedul-
ing policies on the waiting-time performance. The main sur-
prising observation made is that the asymptotic distribution
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of the waiting time for all of these priority-based scheduling
disciplines can be described by the product of a generalized
trapezoidal distribution and a gamma distribution, both with
known parameters, giving fundamental novel insights in the
impact of priority-based scheduling on the waiting-time per-
formance.

2. MODEL AND NOTATION
We consider a system ofN infinite-buffer queues, Q1, . . . , QN ,
and a single server that visits and serves the queues in cyclic
order. Each queue receives gated service. Customers arrive
at Qi according to a Poisson process with rate λi. These
customers are referred to as type-i customers. The total ar-
rival rate is denoted by Λ =

∑N
i=1 λi. The service time of

a type-i customer is a random variable Bi, with Laplace-
Stieltjes transform (LST) B∗

i (·) and finite moments. The
kth moment of the service time of an arbitrary customer is
denoted by b(k) = E[B

k] =
∑N

i=1 λi E[B
k
i ]/Λ, k = 1, 2, . . . .

The load offered to Qi is ρi = λi E[Bi] and the total load

offered to the system is equal to ρ =
∑N

i=1 ρi. The switch-
over time required by the server to proceed from Qi to Qi+1

is an independent random variable Si with finite mean. Let
S =

∑N
i=1 Si denote the total switch-over time in a cycle

with mean r := E [S]. Ci denotes the cycle time at Qi, de-
fined as the time between two successive arrivals of the server
at queue i, and let C∗(s) denote its LST; it is well-known
that E [Ci] = r/(1 − ρ) for each i. The scheduling policy
determines the order in which the customers are served dur-
ing a visit period at a queue. We consider the following
four scheduling policies: FCFS, LCFS, ROS and PS. For
policy P ∈ {FCFS, LCFS, ROS, PS}, we denote i ∈ IP if
Qi receives scheduling policy P . A necessary and sufficient
condition for stability of the system is ρ < 1.
In this paper we study HT limits, i.e., the limiting behavior
as ρ approaches 1. The HT limits, denoted by ρ ↑ 1, taken
in this paper are such that the arrival rates are increased,
while keeping both the service-time distributions and the
ratios between the arrival rates fixed. For a one-dimensional
continuous random variable Y we denote (1−ρ)Y →d Ỹ (ρ ↑
1) if limρ↑1 Pr {(1− ρ)Y < y} = Pr{Ỹ < y} for all y. For
each variable x that is a function of ρ, we denote its value
evaluated at ρ = 1 by x̂.
Let Wi be the waiting time of a customer at Qi, defined as
the time between the arrival of a customer and the moment
at which he enters service. Ti denotes the sojourn time of an
arbitrary customer at Qi, defined as the time between the
arrival of a customer and the moment at which he departs
from the system. Let the LSTs of Wi and Ti be denoted
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by W ∗
i (s) and T ∗

i (s), respectively. It is easy to see that for
i ∈ IFCFS , ILCFS , IROS we have T ∗

i (s) = W ∗
i (s)B

∗
i (s).

3. ANALYSIS
Let us first consider the distribution of the cycle-time Ci,
the time between successive arrivals of the server at queue
i. A simple but important observation is that the distri-
bution of Ci is independent of the local scheduling policy,
assuming it is work conserving, i.e., the server works at full
speed when any work is present at the queue that is being
served; note that the policies FCFS, LCFS, ROS and PS
under consideration are indeed work conserving.

3.1 Preliminaries
The following result gives a characterization for the limiting
behavior of the cycle-time distributions (cf. [7, 8]):

Property 1 (Convergence of the cycle times).
For i = 1, . . . , N , ρ ↑ 1,

(1− ρ)Ci →d Γ̃,

where Γ̃ has a gamma distribution with parameters

α := rδ
b(1)

b(2)
, μ := δ

b(1)

b(2)
, δ :=

N∑
i=1

ρ̂i(1 + ρ̂i). (1)

For FCFS service, the following result gives an expression
for the LST of the waiting time Wi in terms of the LST of
the cycle time Ci [6]: For i ∈ IFCFS , Re(s) > 0, ρ < 1,

W ∗
i (s) =

C∗
i (λi(1−B∗

i (s))− C∗
i (s)

E [Ci] (s− λi(1−B∗
1 (s))

. (2)

Property 1 and (2) imply the following result, characterizing
the HT-behavior of the waiting times (cf. [7]):

Property 2 (Asymptotic waiting times for FCFS)
For i ∈ IFCFS, ρ ↑ 1,

(1− ρ)Wi →d Ui[ρ̂i; 1]C̃i, (3)

where Ui[ρ̂i; 1] is uniformly distributed on [ρ̂i, 1], and where

C̃i has a gamma distribution with parameters α+ 1 and μ,
where α and μ are defined in (1).

In the next three subsections we use Properties 1 and 2 to de-
rive asymptotic results for the LCFS, ROS and PS schedul-
ing policy, respectively. Details of the proofs are omitted.

3.2 Last-Come-First-Served
The LST for the waiting-time distribution for LCFS is ex-
pressed in terms of the cycle-time distributions as follows
(cf. [3]): For i ∈ ILCFS , ρ < 1, Re(s) > 0,

W ∗
i (s) =

1− C∗
i (s+ λi(1−B∗

i (s)))

E [Ci] (s+ λi(1−B∗
i (s)))

. (4)

The following result gives an expression for the asymptotic
waiting-time distribution for LCFS service in HT.

Theorem 1 (Asymptotic waiting times for LCFS)
For i ∈ ILCFS, ρ ↑ 1,

(1− ρ)Wi →d Ui[0; 1 + ρ̂i]C̃i, (5)

where Ui[0; 1 + ρ̂i] is uniformly distributed on [0, 1+ ρ̂i] and

C̃i has a gamma distribution with parameters α+ 1 and μ,
where α and μ are defined in (1).

3.3 Random Order of Service
Next we proceed to the Random Order of Service (ROS) lo-
cal scheduling policy. ROS is represented by ordering marks.
Each customer that arrives gets an ordering mark x, a re-
alization from a uniform distribution on [0, 1]. When the
server arrives at the queue, the gate closes and the customers
before the gate are served in order of their marks. It is con-
venient to condition with respect to x. For i ∈ IROS , let
Wi(x) be the waiting time of a customer in queue i with or-
dering mark x. Denote the corresponding LST by W ∗

i (s|x).
In [3], the LST is computed conditionally on x, yielding for
i ∈ IROS , ρ < 1, Re(s) > 0, x ∈ [0, 1],

W ∗
i (s|x) = C∗

i (κi(s))− C∗
i (s+ κi(s))

sE[Ci]
, (6)

with κi(s) := λix(1−B∗
i (s)). The next result gives the HT

limit of the conditional asymptotic scaled delay.

Theorem 2 For i ∈ IROS, ρ ↑ 1, x ∈ [0, 1],

(1− ρ)Wi(x) →d Ui[ρ̂ix; 1 + ρ̂ix]C̃i, (7)

where Ui[ρ̂ix; 1 + ρ̂ix] is uniformly distributed over the in-

terval [ρ̂ix, 1 + ρ̂ix] and C̃i has a gamma distribution with
parameters α+ 1 and μ, where α and μ are defined in (1).

The following result is useful for unconditioning the result
presented in Theorem 2 with respect to the value of x.

Lemma 1 Let x be a realization of the random variable X
having cumulative distribution function FX(t) := Pr{X ≤
t} and density fX(t). Assume that the conditional random
variable T |x is uniformly distributed on [a(x), a(x)+ 1] and
suppose that a(0) = 0, a(∞) = ρ̂i and a(x) is increasing in
x. Let a−1(·) be the inverse of a(·). Then, the unconditional
distribution of T |x, denoted by T , has probability density
function

fT (y) =

⎧⎨⎩ FX(a−1(y)) y ∈ [0, ρ̂i)
1 y ∈ [ρ̂i, 1]
1− FX(a−1(y − 1)) y ∈ (1, 1 + ρ̂i].

Combining Theorem 2 and Lemma 1, we obtain the follow-
ing result.

Theorem 3 (Asymptotic waiting times for ROS)
For i ∈ IROS, ρ ↑ 1,

(1− ρ)Wi →d UiC̃i

where Ui has a trapezoidal distribution with density function

fUi(y) =

⎧⎨⎩ y/ρ̂i y ∈ [0, ρ̂i)
1 y ∈ [ρ̂i, 1]
(1 + ρ̂i − y)/ρ̂i y ∈ (1, 1 + ρ̂i],

and where C̃i has a gamma distribution with parameters α+
1 and μ, where α and μ are defined in (1).

3.4 Processor sharing
When x is the amount of work that a tagged customer brings
into the system, we define the waiting time Wi(x) as the so-
journ time minus the service time x of the tagged customer.
The following result expresses the LST of Wi(x) in terms of
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the cycle times (cf. [3]): For i ∈ IPS , ρ < 1, Re(s) > 0,
x > 0,

W ∗
i (s|x) = C∗

i (ζi(s, x))− C∗
i (s+ ζi(s, x))

sE[C]
, (8)

where ζi(s, x) := λi(1 − ϕi(s, x)), with ϕi(s, x) the LST of
min(Bi, x).

For PS, the most interesting performance metrics are the
conditional and unconditional sojourn times, denoted Ti(x)
and Ti. Note that under HT scalings, the limiting distribu-
tions Wi(x) and Ti(x) are the same for all x, and so are the
unconditional waiting and sojourn times Wi and Ti.

Theorem 4 (Conditional sojourn time for PS)
For i ∈ IPS, ρ ↑ 1, x > 0, we have

(1− ρ)Ti(x) →d Ui(x)C̃i, (9)

where Ui(x) is uniformly distributed over the interval [ai(x), 1+

ai(x)], with ai(x) := λ̂i E[min(Bi, x)] and C̃i has a gamma
distribution with parameters α+1 and μ, where α and μ are
defined in (1).

Then, using Lemma 1, we obtain the following result.

Theorem 5 (Unconditional sojourn time for PS)
For i ∈ IPS, ρ ↑ 1, we have

(1− ρ)Ti →d UiC̃i,

where Ui has a generalized trapezoidal distribution with den-
sity function

fUi(y) =

⎧⎨⎩
FBi(a

−1
i (y)) y ∈ [λ̂im, ρ̂i)

1 y ∈ [ρ̂i, 1 + λ̂im]

1− FBi(a
−1
i (y − 1)) y ∈ (1 + λ̂im, 1 + ρ̂i],

where ai(x) = λ̂i E[min(Bi, x)] and m is the lowest possible
value of Bi.

To illustrate this, suppose Bi is a uniformly distributed ran-
dom variable on the interval [ai, bi]. Then it follows after

some calculus that a−1
i (y) = bi −

√
(1− y/ρ̂i)(b2i − a2

i ), and
that the density function of Ui is

fUi(y) =

⎧⎪⎪⎨⎪⎪⎩
1−

√
(1−y/ρ̂i)(b

2
i−a2

i )

bi−ai
y ∈ [λ̂iai, ρ̂i)

1 y ∈ [ρ̂i, 1 + λ̂iai]√
(1−(y−1)/ρ̂i)(b

2
i−a2

i )

bi−ai
y ∈ (1 + λ̂iai, ρ̂i + 1].

Figure 1 illustrates fUi(y) for the case ai = 0.1340, bi =

1.8660, λ̂i = 0.077 and thus ρ̂i = 0.077, and the case ai =
0.2679, bi = 3.7321, λ̂i = 0.2315 and thus ρ̂i = 0.4615.

Some remarks are due. First, an interesting observation is
that in HT the influence of the scheduling policy only man-
ifests itself in the distribution of Ui, while the parameters
of the gamma distribution do not depend on the schedul-
ing policy. This observation is in line with the fact that the
cycle-time and queue-length distributions at polling instants
are stochastically identical among different local schedul-
ing policies, as observed in Section 3. Second, there is
a remarkable difference in sensitivity with respect to the
service-time distributions. On the one hand, for policies
like FCFS, LCFS and ROS (see Property 2 and Theorems
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Figure 1: Density function of Ui for uniform distri-
bution in case of PS scheduling

1 and 3) the asymptotic waiting-time distribution is of the
form Ui[ai; bi]Γ, where the ai and bi depend on the service-
time distribution at Qi only through its mean, whereas for
PS the asymptotic sojourn-time distribution does depend on
the complete service-time distributions (Theorem 5). Third,
the HT results form an excellent basis for the development
of waiting-time and sojourn time approximations for stable
systems: For ρ < 1, i = 1, . . . , N , x > 0,

Pr{Ti > x} ≈ Pr{UiΓ > x(1− ρ)}, (10)

where Ui and Γ are characterized in Theorems 1 to 5 above.
Refinement of the approximations can also be obtained along
the lines of [4]. Initial simulation experiments show promis-
ing results. Lastly, the HT asymptotics are easily extendable
to renewal arrivals, following the lines described in [5].
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