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Abstract

sider a polling model with multiple servers in which each server visits the queues
g to a general service order table. In general, such models are very hard to treat by
if analytical techniques. In this paper we show how the model can be analyzed with
of the so-called power-series algorithm (PSA), a tool for the numerical evaluation
imization of the performance of a broad class of multi-queue models. Numerical
ents with the PSA are performed to investigate the tendency for the servers to cluster,
ss the option of partitioning, and to make some comparisons with single-server systems
a comparable load.

ject Classification (1991): 60K25, 68M20.
© & Phrases: Bernoulli service, polling system, multiple servers, waiting time, queue
sower-series algorithm.

FCTION

erver polling system is a multiple-queue system attended to by a number of
h visit the queues in some order. Like the single-server versions, multiple-server
ms find many applications in computer systems, communication networks, and
1g environments. So far there are hardly any exact results known for these sys-
from some mean value results for global performance measures like cycle times
t times. In the model under consideration the order in which each of the servers
eues is prescribed by a fixed service order table (polling table). At each of the
srvers operate according to the so-called Bernoulli service strategy. In this paper
v the power-series algorithm (PSA) may be used to determine the joint distri-
3 queue lengths and the positions of the servers in the system. From this joint
also relevant performance measures like the mean waiting times of customers and
«ctors of the individual servers may be obtained. In the remainder of the intro-
uccessively discuss some applications, present an overview of related literature,
the organization of the paper.
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"a multiple-server polling system is a distributed system, consisting of a num-
ers, interconnected by a communication medium, that cooperate as follows in
tal load of the system, cf. [27]. The jobs entering the ‘front-end’ systems (cor-
the queues) are picked up in batches by the ‘back-end’ systems (corresponding
according to some cyclic schedule. As soon as a batch is served, the back-end
p the jobs from the next front-end system. When the communication delay is
1ay be preferable to use a more sophisticated strategy which keeps track of the
le system, like “serve the longest queue”. However, when the communication
rnificant, it makes sense to use a cyclic service schedule which requires only
:essing information.
wltiple-server polling systems also arise in communication networks, like the
nmunication medium in the above-mentioned distributed system. Consider
rea Network (LAN), consisting of a number of stations, interconnected by a
ing. There are various protocols known for the medium access control in a
a1g architecture. One variant is the multiple slotted ring, i.e., the ring is subdi-
2 slots of the size of a single message, circulating at constant speed. Occupying
nds to utilizing a server. Another medium access variant that may lead to
: polling is the multiple token ring, i.e., there are multiple rings, each with a
ng on it, representing the right of transmission on that particular ring. Holding
>onds to utilizing a server.
s arise in manufacturing environments. In flexible manufacturing systems, e.g.,
mber of machines that periodically change over from one type of operations
some factories internal transport is provided by vehicles that follow a track
unloading points, which conceptually comes very close to a slotted ring with
ease. A multiple-elevator facility is yet another example, although some fea-
acceleration effect when a floor is skipped, are not incorporated in the classical
a polling model, cf. [19)].

ire
¢ polling systems have received remarkably little attention in the vast litera-
; systems. One of the first studies is Morris & Wang [27] in which the servers
> be independent, i.e., to visit the queues independently of each other, each
1g to some cyclic schedule. They obtain the mean cycle time of each server
intervisit time to a queue, and derive approximate expressions for the mean
or both a gated-type and a limited-type service discipline. A very interesting
bserved in [27] is the tendency for the servers to cluster if they follow identi-
ecially in heavy traffic. Numerical experiments indicate that the bunching of
7 to deteriorate the system performance. The bunching of servers is alleviated
different routes. Therefore Morris & Wang advocate the use of ‘dispersive’
aprove the system performance.

ss [17] is one of the few studies in which the servers are assumed to be coupled,
e queues together. They obtain index rules for the minimization of the mean
idual cycles for both the exhaustive and the gated service discipline. Browne
ve the mean waiting time for a completely symmetric two-queue system with
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wumber of coupled servers and deterministic service times. Browne & Kella [16]
usy period distribution for a two-queue system with an infinite number of coupled
austive service, and deterministic service times at one queue and general service
other queue. Levy & Yechiali [24] and Kao & Narayanan [21] study the joint dis-
the queue length and the number of busy servers for a Markovian multiple-server
‘e the servers individually go on vacation when there are no waiting customers
1y & Avi-Itzhak [26] and Neuts & Lucantoni [28] analyze the joint distribution
e length and the number of busy servers for a Markovian multiple-server queue
rs break down at exponential intervals and then get repaired.
s [7], [20], [22], [29], [31] mean response time approximations are developed to
performance of LAN’s with multiple-token rings. Mean response time approx-
iented to LAN’s with a multiple slotted ring are contained in references [5], [7],
2. Ajmone Marsan et al. [2], [3], [4] derive the mean cycle time and bounds for
aiting times in symmetric systems for the exhaustive, gated, and 1-limited service
n [1] they illustrate how PETRI-net techniques may be used to study Markovian
ver polling systems.
mentioned studies unanimously point out that multiple-server polling systems,
she complexity of single-server polling systems and multiple-server systems, are
rily hard to analyze. In fact none of the studies (except [15], [16] and the single-
s [21], [24], [26], [28]) presents any exact results, apart from some mean value
lobal performance measures like cycle times and intervisit times.
xplores the class of systems that allow an exact analysis in the case of coupled
e class in question includes most single-queue systems, two-queue two-server sys-
xhaustive service and exponential service times, as well as infinite server systems
jitrary number of queues, exhaustive or gated service, and deterministic service
1e case of independent servers the class of systems that allow an exact analysis is
r. In fact, to the best of the authors’ knowledge, there is not a single non-trivial
eue system with multiple independent servers for which any exact expressions for
times are known. In the present paper we show however how a broad class of
y still be analyzed numerically by means of the PSA. Benefiting from the insights
7/ numerical experiments with the PSA, we present in a companion paper [13]
e approximations for systems with multiple independent servers.

n of the paper

2 we present a detailed model description. In Section 3 we describe how the evo-
e system may be modeled as a continuous-time Markov process and we give the
nce equations for the model. In Section 4 the state probabilities are expressed as
s in the load of the system in light traffic. Then, we derive a complete computation
letermine the coefficients of these power series. The complexity of the PSA for the
del is discussed in Section 5. Finally, in Section 6 we give an extensive overview
erical results that we gathered. We investigate the tendency for the servers to
the option of partitioning the system into a number of separate subsystems, each
by a single server. Further some comparisons are made with single-server systems
zomparable load.
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2 MODEL DESCRIPTION

Consider a model consisting of n queues @1, ..., @y, each of infinite buffer capacity, attended
to by m servers Si, ..., .Sp,. Customers arrive at @; according to a Poisson process with rate \;
and are referred to as type-i customers, i = 1,...,n. The service times of type-i customers are
exponentially distributed with mean 3; = 1/u;, i = 1,...,n. Denote 81 = (,Bgl), cee, ,(zl)).
Each server S; visits the queues periodically according to a fixed service order table ;o=
(mi(1),...,m;(L;)), where L; is the (finite) length of the service order table (also referred to as
a polling table) of S;; that is, the I-th queue visited by S; is ;(({—1)mod L;)+1),[ = 1,2,.. .,
j=1,...,m. Define Il; := {m;(1),...,m;(L;)} to be the index set of the queues visited by
Sj, 7 =1,...,m. Note that the queues are not necessarily visited by each of the servers. The
switch-over times needed by the servers to move from Q; to Q) are exponentially distributed
with mean 1/v;4, i,k = 1,...,n. The servers are assumed to visit the queues independently
of each other, under the restriction that at most m; servers may visit Q; simultaneously. An
arrival of a server S; (j = 1,...,m) at @; will be called effective if S; finds less than m; other
servers working at ¢); and there are customers waiting at @Q; (so that S; may start serving
at ;). The service of a customer can not be interrupted. The number of customers that
is served during one visit of a server S; (7 = 1,...,m) at @; is determined by a so-called
Bernoulli service discipline, which works as follows. If an arrival of S; at Q; is effective, then
S; serves at least one customer at @);; otherwise, S; immediately starts to move to the next
queue. Moreover, if after a service completion of S; at @; there are still customers waiting
at @i, then with probability ¢; (0 < ¢; < 1) S; serves another customer at Q;, i = 1,...,n;
otherwise, S; proceeds to the next queue according to its service order table. It should be
noted that in the case ¢; = 1 a server only departs from @; (after an effective arrival at
Q:) when there are no waiting customers left at @; (exhaustive service) and that in the case
¢; = 0 a server serves at most one customer at @; during a visit to @; (1-limited service),
i =1,...,n. At each queue the queueing disciplines may be general, but may not depend
on the actual service times. All service times, switch-over times, and interarrival times are
assumed to be mutually independent and independent of the state of the system.

We define the traffic intensity at Q;, p;, and the total traffic intensity, p, by

pi=Af;, i=1,...,n, p:=) p; (2.1)
=1

In the PSA p will be used as a variable. Therefore we define
a; == Xifp, i=1,...,n. (2.2)

Finally some words on the stability conditions. Denote by s; the mean total switch-over
time incurred by S; in a cycle. Denote by k;; the total number of visits paid to Q; by
S; in a cycle. For m = 1, the single-server case, necessary and sufficient conditions are
p+ Xisi(l —q;)/ka < 1,4 =1,...,n, cf. Fricker & Jaibi [18] for a rigorous proof. For
m > 1, the multiple-server case, the stability conditions are not generally known. Evidently,

necessary conditions are that p; < m;, i =1,...,n, and that for each set I C {1,...,n} the
indices ¢ € I occur in the polling table of at least Y, p; servers (in particular for I = {1,...,n}
i€l

implying p < m). We conjecture that these conditions are in fact also sufficient for ¢; = 1,
i=1,...,n, ie., for the exhaustive service discipline (as well as for other service disciplines
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that do not impose any (probabilistic) restriction on the maximum number of customers
served during a visit). For ¢; < 1, when the mean maximum number of customers served
during a visit to @; is 1/(1 — ¢;), it is considerably harder to find the stability conditions.
When m; = m, s; = s, kij =1,i=1,...,n, j = 1,...,m, simple balancing arguments
suggest that necessary and sufficient conditions are p + A\;s(1 —¢;) < m, i = 1,...,n, but
in other cases with ¢; < 1 and m; < m, s; # s, or k;; # 1, the problem of establishing the
stability conditions appears to be completely open. Although they are not generally known,
throughout the paper the stability conditions are simply assumed to hold.

3 THE BALANCE EQUATIONS

In this section we describe how the evolution of the system under consideration may be
modeled as a continuous-time Markov process. Subsequently, we derive the balance equations
for the Markov process in question. In the next section we show how the PSA may be used
to solve these balance equations.

We first introduce some notation. Let N;(t) be the number of customers at @; (including
customers in service) at time ¢, i = 1,...,n. Denote N(t) = (N1(t),..., Nn(t)). Evidently,
the joint queue length process {IN(t),t > 0} itself is not a Markov process, as the transitions
also depend on the status of the servers. So, to extend the joint queue length process to a
Markov process, we need to introduce some supplementary variables describing the status
of the servers. Let H;(t) be the actual entry in the polling table of S; at time ¢, j =
1,...,m. Let Z;(t) indicate whether S; is switching (Z;(t) = 0) or serving (Z;(t) = 1)
at time t, j = 1,...,m. So, if (H;(t),Z;(t)) = (,0) then S; is switching to queue m;(l)
at time ¢; if (H;(t), Z;(t)) = (I,1) then S; is serving at queue 7;(I) at time ¢. Denote
H(t) = (Hi(t),..., Hu(t)), Z(t) = (Z1(t),...,Zm(t)). Define the supplementary space by
© = ©; X By, where

O1={h=(h1,....hm): hj €{1,...,Li},j =1,...,m}, (3.1)
Oy ={z=(21,...,2m) 1 2; € {0,1},j =1,...,m}, (3.2)

with L; the length of the polling table of S;, j = 1,...,m. Then it is easily verified that the
stochastic process {(N(t), H(t), Z(t)),t > 0} is a continuous-time Markov process with state
space N x ©. We now derive the balance equations for the process {(N(¢), H(t), Z(t)), t >
0}. Denote by (N, H, Z) stochastic variables with as joint distribution the joint stationary
distribution of (N(t),H(t),Z(t)). For each state (n,h,z) € N* x © denote the number of
servers working at ; by

zi(h,2) = card({j : (r;(hy), ;) = (i, 1)}), (3.3)

where card(A4) stands for cardinality of the set A. The state probabilities are defined as
follows: for (n,h,z) € N* x O,

p(n,h,z) =Pr{(N,H,Z) = (n,h,z)}. (3.4)

Because the number of servers which may be working at Q; simultaneously is bounded by m;
and by n;, we have: for (n,h,z) € N* x O,

p(n,h,z) =0 if thereisani (i = 1,...,n) such that z;(h, z) > min{n;, m;}. (3.5)
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The global balance equations for the present model read as follows: for (n,h,z) € N* x ©,
with z;(h, z) < min{n;,m;},i=1,...,n,

n m m
Z Ai+ Z Vrj (b ~1),m3 (ki) L{zy=0} + Z b (h) =1} | P(1, B, 2) = (3.6)
i=1 j=1 j=1
n
Z )\ip(n —e;, h, Z)I{ni>0-}
i=1

+ D () P(R + €y By 2) 0 (1) Lzy=1)
j=1

m
D Vnihy=ms () P(0 By = )z
g=1

m
+ Dt (hy—)P(R+ €nj(n,—1), h — €j, 2+ €;)
J=1

[1 = O (b= 1), 11y (B2) < -} | L25=0}

m
+ Z; Vs (hs=2)ms (hs=)P(0 B = €5, 2) ey (2 mmingingn; 1yimn; n; -1y Y 2 =0)
i=

where I; gy stands for the indicator function of the event £ and where e; is the j-th unit
vector, j = 1,...,max{n,m}. The first term at the right-hand side of (3.6) indicates an
arrival at @);; the second term indicates that S; starts to serve another customer at queue
m;(h;) after a service completion at that queue; the third term corresponds to an effective
arrival of S; at queue =;(h;) and a subsequent service initiation at that queue; the fourth
term indicates that S; proceeds to the next queue after having completed a service at queue
mj(hj — 1); the fifth term indicates an arrival of S; at queue number 7;(h; — 1) which is not
effective, either because there are no customers waiting at that queue or because the maximal
allowable number of servers is already working at that queue.

In addition, the law of total probability implies

Z p(n,h,z) = 1. (3.7)

(n,h,z)eN"x0

For n > 1 the balance equations can not be solved analytically, not even in the single-server
case (m = 1).

Remark 3.1 For m = 1 the standard analysis is oriented to the stationary distribution of
the joint queue length process embedded at polling epochs rather than the continuous-time
Markov process. For a wide class of service disciplines the joint queue length distribution at a
polling epoch at Q; may then be related to the joint queue length distribution at the previous
polling epoch at ();. Subsequently an iterative procedure yields the stationary joint queue
length distribution at polling epochs. The marginal queue length distribution at Q; at an
arbitrary epoch may then be recovered from the queue length distribution at @; at a polling
epoch by using results for vacation systems. As a major benefit, the approach allows generally
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distributed service and switch-over times. In the multiple-server case (m > 1) however, the
approach is not likely to succeed, as even at polling epochs there are always m — 1 other
ongoing service or switch-over times. Moreover, it is not clear how the joint queue length
distribution at one embedded epoch could be related to the joint queue length distribution
at another embedded epoch. Neither is it clear how the marginal queue length distribution
at @; at an arbitrary epoch could be recovered from the queue length distribution at @; at a
polling epoch. So for m > 1 the analysis is restricted to the continuous-time Markov process.

]

In the next section we show how for any number of queues and any number of servers the PSA
may, in principle, be used to solve the set of global balance equations (3.6), (3.7) numerically.

4 COMPUTATION SCHEME

The basic idea of the PSA is to express the state probabilities as power series in the load in
light traffic and to derive a computation scheme to calculate the coefficients of these power
series. For the single-server case (m = 1) a complete computation scheme to calculate the
coefficients has been derived in [10]. In this section, we extend this computation scheme to
the multiple-server case. We emphasize that this derivation is rather technical. The reader
who is not interested in the details of the derivation is advised to proceed directly to the
computation scheme at the end of this section.

The approach relies on the following property: for (n, h,z) € N* x O,
p(n,h,z) = O(p™ ™) ploO. (4.1)

This property can be shown to be valid under the condition that for each reachable n, n # 0,
there is at least one positive departure rate, and that for each reachable state (n,h,z) €
N x ©, n # 0, the probability that a departure occurs before any arrival takes place, after
the process has entered this state, is positive; cf. [11] for a more detailed discussion about this
condition. It is readily verified that this condition is satisfied in the present model. Based on
this property, we introduce the following power-series expansions of the state probabilities:
for (n,h,z) € N* x O, z;(h, z) < min{n;,m;}, i=1,...,n,

oo
p(n, h,z) = pr1Htre )" pb(k; 1, b, z). (4.2)
k=0
We now show how a computation scheme may be derived to calculate the coefficients b(k; n, h, z)
of the power series. Substituting the power-series expansions (4.2) into the balance equations
(3.6), using a; = A;/p, and equating corresponding powers of p yields the following lin-
ear relations between the coefficients of the power series: for (k;n,h,z) € NI*" x © with
zi(h,z) < min{n;,m;},i=1,...,n,

Z Vi (hj~1)mj (k) {z;=0} + Zl b (h;)lz;=1} | b(k;m, h,z) = (4.3)
j=1 j=

Z Qi [b(k7 n-—e; ha Z)I{ni >0} — b(k = 1n, h? Z)I{k>0}]
i=1



+ > te; (h)0(E — 10+ €5 (), By 2) @, (1) Lz;=1} L (k>0}
i=1

+ > Vi (hj—1),m;(hy) bk 1, B, 2 — )15 1y
=1

+ Z/L,rj(hj_.]_)b(k—1;n+e7rj(hj__1),h"‘e]‘,z+ej)
=1

X [1 = b =) o 1y ()< g -1y} | Lzi=0 (k>0

m
+ zl Vﬂ-j (hJ —2),7!'_7' (h'J“l)b(k; n, h - ej’ Z)I{m‘lrj(hj—1)(hiz)=min{n1rj(hj—1))m1rj(hj—1)}}I{zj=0}'
J=

By rearranging the terms at the right-hand side, the set of equations (4.3) can be rewritten
as follows: for (k;n,h,z) € N'*" x ©, with z;(h,z) < min{n;,m;},i=1,...,n,

[Z Vi (hi ~1),m5(h) {z=0} + Z “Wj(hj)I{Zj=1}:I b(k;n, h,z) = (4.4)
nJL=1 j=1
2__:1 Vrj(hi=2)my (hy 00K D — €, 2)Lg (b zmrmingng -1y, (1) P20}
+ ;(k, n,h,z),
where
y(k;n, h,z) := Zn;a,- [b(k:; n—e;h, Z)I{ni>0} —b(k — 1;n,h, z)I{k>0}] (4.5)

D by (h)b(k = 1 ey, B )4 ) Lizy=11 (k50)
J=1

m
+ D Va1 () bk 1 By 7 — ), gy
Jj=1

+ Z#‘Wj(hj-—l)b(k_ 1;n+e1rj(hj—1)7h_—ej7z+ej)
j=1

X [1 - q“'j(hj—1)1{%3-(hj—z)(hyz)<n1rj(hj—1)} I{z,-=0}1{k>o}-

We will now show how the relations (4.4), (4.5) can be used to compute the coefficients
b(k; n, h, z) mainly recursively. To this end, we Izirst geﬁne the following partial ordering of
the vectors (k;n, h,z) (cf. [10]): for (k;n,h,z), (k;fi,h,2) € N't? x O,

(k;n,h,z) < (k;,h,2) if (4.6)
k4+ni4...4np <k+A1+...+0,

or if k+n1+...+nn=ic+ﬁ1+...+ﬁn and k < k.
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xtend the partial ordering < to the vectors of supplementary values (h,z): for
(k;n,h,2) e N1 x Q,

h,z) < (k;n,h,2) ifVj=1,...,m: 2 < % and 3j* : zj» < Zj-. (4.7)

verified that all coefficients in the right-hand side of (4.5) are of lower order w.r.t.
n, h,z), and hence may be considered to be known in (4.4). So, for given k, n
mains to define an ordering of the vectors (k;n,h,z), h € ©;. For given z € Oq,

n the index set {I,...,m} into the following two subsets (corresponding to the
of switching and serving servers, respectively):
2):={j:2;=0}, CW(z)={j:2 =1} (4.8)

ler to derive an ordering for the vectors (k;n,h,z), h € ©, for given values of k,
should be noted that the right-hand side of (4.4) motivates to partition the index
(for fixed n, h and z) into the following two subsets:

n,h,z) = {j € CO(z) : z;(h,z) = min{n;, m;}} forall i € II;}, (4.9)

of switching servers that cannot start serving at a queue as long as neither arrivals
completions occur; and

n,h,z) := CO(z)\ C¥(n,h,2) (4.10)
= {j € CO(z) : 3i* € II; for which z;» (h, z) < min{n;, m;-}}, |

of switching servers that can start serving at a queue (namely Q= ), even before
rival, or a service completion, or a switch-over completion of another server occurs.
tinguish, for given k, n, z and h; (j € CM)(z)), between two cases: (i) quo)(n, h,z) =
01(40) (n,h,z) # 0.

7f)(n, h,z) =0 (for given k, n, z and h; (j € cM(z))).
ow a recursive computation scheme for the coefficients b(k; n, h, z), h € ©,, with
€ C(z)), can be accomplished in this case. From Cgo)(n, h,z) = 0 it follows
exists an h* € Oy, with h* = h; (j € C™)(z)), such that for any j € C©)(z) there
* € II; (namely ¢* = m;(hf — 1)) for which z;+(h*,z) = z:(h, z) < min{n;, m;«}.
st term at the right-hand side of (4.4) vanishes, so that b(k; n, h*, z) is expressed
ns of lower order w.r.t. <, cf. (4.6)-(4.7). The coefficient b(k; n, h*, z) will be used
point for a recursive computation of the coefficients b(k;n,ﬁ,z), h € ©;, with
R (j € CM(z)). To this end, we define the following ordering of the vectors

for (k;n, b, z), (k;n,h",z) € N'*" x © (with b = hl =h} =h;, j € c(z)),
b',z) < (k;n,h",z) if (4.11)

CO(n,h,z) : (H, — hf) mod L; < (! — h}) mod L;,

i* € CV(n,h,2) : (B — %) mod Lj» < (A — hi-) mod Lj-.
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As an illustration of the ordering defined in (4.11), consider the following parameters: m = 4,
Li =3, Ly =2, L3 =3, Ly =2and z = (1,0,0,1). Then we have CO(z) = {2,3},
C(z) = {1,4}. If hy = 2, hy = 1, and h* = (2,2,2,1), then the vectors h € ©1, with given
hi = h}, hy = h}, are ranked in increasing order as first (2, 2,2, 1), then (2,2,3,1), (2,1,2,1),
then (2,2,1,1), (2,1,3,1), and finally (2,1,1,1).

Case (ii). Cgo)(n, h,z) # 0 (for given k, n, z and h; (j € C((2))).
In this case the first term at the right-hand side of (4.4) does not vanish, so that the coefficients
b(k;n,h,z), h € Oy, with h; = h; (j € CM(z)), can not be calculated recursively from
(4.4) and (4.5). By definition, for each j € C’](Bo)(n, h,z) there exist an ¢* € II;, and an
h; € {1,...,L;} with i* = 7;(h} — 1), for which z;(h,z) < min{n;,m;x}. Hence, the
coefficients b(k; n, h,z), h € Oy, with fzj =h; (j€ CW(z)) and ﬁj =hi(j€ Cg))(n, h, z)),
can be computed by solving the set of H L; linear equations induced by (4.4).
€0 (n,h,z)
Then, the H L; coefficients b(k; n, h,z), h € ©;, with ﬁj =h;j (€ CM)(z)), can be
jEC'g))(n,h,z)
computed by solving the set of equations (4.4) for the coefficients b(k; n, h, z), h € ©,, with
hi = h; (j € CO(z)), hy = hy (j € C’g))(n, h,z)) in increasing order of the values of the
combinations h; (j € Cg))(n, h, z)) w.r.t. the partial ordering defined in (4.11), starting with
h; = h; (j € Cg))(n, h,z)). We refer to Remark 4.2 for a more intuitive characterization of
whether or not (4.4) is recursively solvable.
The same conditions which guarantee that (4.2) holds also guarantee that these sets possess
a unique solution (cf. [10]), except for the case n = 0. So the only states that need further
attention are the states with n = 0 (and hence, z = 0, cf. (3.5)). In this case the set of
equations (4.4) reads: for (k;h) € Nx 0,

m m
Z ”Wj(hj—l)m(hj)b(k; 0,h,0) = Z Vﬂj(hj—2)ﬂrj(hj—1)b(k5 0,h —e;,0). (4.12)
j=1 j=1

One may verify by summing the equations (4.12) over h, h € ©,, that this set of equations
is dependent. However, the law of total probability (3.7) yields (together with (4.2)) the
following additional equation: for k =0, 1,...,

> b(k;0,h,2) = Y(k), (4.13)
(h,z)e®
where Y(0):=1and fork=1,2,...,
Y (k) := - > > bk —ni—...—ngn,h,z). (4.14)

0<ny+...4nn <k (h,2)€0

Note that the right-hand side of (4.14) contains only coefficients of lower order w.r.t. < than
(k;0,h,z), cf. (4.6). Now, all but one of the equations in (4.12) together with either (4.13)
or (4.14) uniquely determine the coefficients b(k;0,h,0), h € ©4, for k = 0,1,..., provided
the Markov process {(N(t), H(¢), Z(t)),t > 0}, conditioned on N(t) = 0 and Z(t) = 0, is
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irreducible. This condition is satisfied when in the case A\; = 0 (1 = 1,...,n) each state
(0,h,0), h € ©4, can be reached from any other state with (0, 1,0), h € Oy, i.e., the (con-
ditioned) Markov process is irreducible. For the present model this condition is satisfied,
because (conditioned on N(z) = 0) the servers keep on switching along the queues according
to their respective service order tables in a periodic way, independently of each other.

In practice, the number of coefficients that can be computed is restricted by limitations on
the available amounts of storage capacity and computation time. Here, we assume that the
coefficients of the power series are computed up to a given power Mmpax of p.

Summarizing, the coefficients for (k;n,h,z) € N*™ x © (with z;(h,z) < min{n;, m;},
i=1,...,n) can be computed according to the following computation scheme:

step 1: M ;= 0;
step 2: for all (k;n) € N'*™ with n # 0 and with k+ny +... +np, = M do
for all z € O (in increasing order of z w.r.t. < (cf. (4.6), (4.7))) do
for all possible combinations of h; (j € C(V)(z)) do
if C’(O)(n, h,z) = (§ then
determine h* as follows:
for j € CO(z), determine * € II; for which z;+(h,z) < min{ns,m;},
and determine h} such that ¢* = m;(h} — 1);
for j € CM(z), let A} = hy;
determine the coefficients b(k; n, h,z), h € ©;, with ﬁj =h;j (j€ M (z)),
recursively in increasing order of <, cf. (4.11);
if C’(O)(n, h,z) # 0 then
determine h* (5 € C’g))(n, h, z)) as follows:
determine i* € II; for which z;+(h, z) < min{n;, ms},
and determine A} such that ¢* = 7rJ(hJ - 1);
compute the coefﬁaents b(k;n,h,z), h € 1, with h; = h; (€ C(l)(z))
by successively solving the set of linear equations (4. 4) for h = h
(j € C'( )(n h,z)) in increasing order of the combinations h;
(j e CB (n,h,z)) w.r.t. (4.11) (starting with h; = =h;(j€ C’B (n,h,z)));
step 3. determine b(M;0,h,0), h € ©1, by solving the set of equatlons (4.12) together
with either (4.13) or (4.14);
step 4: M := M + 1;
step 5: if M < Mpax then return to step 2; otherwise STOP.

This computation sche.ne allows for the calculation of the state probabilities up to, in prin-
ciple, any level of accuracy. Once the coefficients of the power series have been obtained
(up to some power of p), the expectation of an arbitrary function g(N, H,Z) of the state
probabilities can be expressed in terms of these coefficients as

E(g(N,H,Z)) = Z > > g(m,h,z)b(k —ny —... —nn;n,hyz).  (4.15)

k=0 n1+...4nn<k (h,z)€0



The assumption of exponentially distributed service and switch-over times
the ease of the presentation. In fact, the approach presented in this section can
l in a straightforward manner to systems with Coxian distributed service times
er times, cf. [10]. A Coxian distributed random variable consists of a stochastic
; necessarily identical exponential phases. The class of Coxian distributions lies
lass of distribution functions of non-negative random variables (cf. [6]). In the
o distributions for the service times and switch-over times the supplementary
se extended with variables describing the actual phases of the service times or
sr times. Similarly, Markov Arrival Processes (MAP’s) could be incorporated
1. Tt should be noted that Coxian distributions are preferred to more general
stributions, because Coxian distributions allow for more efficient computations,
Che approach presented in this section can also readily be extended to multiple-
3 in which some of the switch-over times are negligible (i.e., v; ; = 00). In that
zht modifications of the balance equations and the computation scheme would
ade. In the case that all switch-over times are negligible, the presence of a
;ate simplifies the computation scheme; cf. [8] for single-server polling systems

;ch-over times.
O

In order to characterize whether or not the set of equations (4.4) is recursively
s reconsider the set of equations (4.4) for given values of k, n, z and h; (j €
t is, we consider the following information on the current state of the system to -
the joint queue length, (ii) whether each of the servers is serving or switching,
queues (entries) at which the serving servers are working. Then, given this

C’f)(n, h,z) is the set of indices corresponding to those switching servers j
skip each queue (i = mj(h; — 1)) that they visit, either because the maximal
iber of servers is already working at that queue (i.e. z;(h, z) = m;) or because
waiting customers at that queue (i.e. z;(h,z) = n;). So, as long as neither
rvice completions occur, the server S; (j € C,(qo)(n, h,z)) will keep on moving
1es without serving any customer. Thus, for given k, n, z and h; (j € CV(z)),
ations (4.4) is not recursively solvable if and only if one or more servers will
1g along the queues (according to their respective polling tables) as long as no
rvice completions occur.

[

In the case that all polling tables are surjective mappings, i.e., each queue
each of the servers, then (for given values of k, n, z and h; (j € CM(z)))
h,z) =0 (and Cg))(n, h,z) = C©(z)) or Cg)) (n,h,z) =0 (and C’go)(n, h,z) =
ee this, suppose C’fqo)(n, h,z) = 0, then there exists an ¢ € {1,...,n} for which
1{n;, m;}. Because each server visits each of the queues, for each j € C(z)
n h; for which 7;(h; — 1) = 4, so that j € Cl(f)(n, h,z). As a result, as long
vals nor service completions occur, either all switching servers or none of them

10ving along the queues without serving any customers.
0
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[TY

memory requirements of the PSA are known to increase exponentially with
'queues, so that its use is restricted to systems with a fairly small number of
]. In this section we will see that the required amounts of computation time
ipacity also increase exponentially in the number of servers. More precisely,
that the total number of terms that have to be evaluated in order to compute
1 of the power series up to the M-th power of p is given by

m
i ) x T L; x 2™ (5.1)
j=1

r indicates the number of vectors (k;n) for which £ +ny + ... + n, < M; the
ird factor together indicate the size of the supplementary space. In practice,
a limited number of performance measures have to be evaluated (e.g. mean
rather than all individual state probabilities. Then, the coefficients of the
gpansions of the important performance measures can be aggregated during
of the PSA (cf. e.g. [10] (section 2)), and stored in (relatively small) arrays,
icients of the state probabilities can be removed as soon as they are not needed
rther computations. This approach reduces the storage requirement for the
M terms of the power-series expansion to (cf. [8] (section 5)):

’ ) X ﬁ L;x2m. (5.2)

j=1

ion, consider a model in which all servers move along the queues in a strictly
(i.e., Ly =mn,j=1,...,m). Table 5.1 gives the maximal number of coefficients
series that can be computed according to (5.2) for given amounts of storage
or various values of the number of servers and the number of queues.

nory = 10° coeff. | memory = 107 coeff.
n=3|n=4|n=2 n=3|n=4
98 39 | 2234 213 71

53 221 1116 116 41

28 12 557 63 23

7 2 138 17 6

B O O

1e maximal number of terms for given amounts of memory space.

trates that the number of terms of the power series that can be computed for
it of storage capacity may decrease considerably when the numbers of servers
: increased. As a consequence, the use of the PSA is restricted to systems with
mumber of queues and with a rather small number of servers.

eferred to [10], [11] for a detailed discussion on the practical implementation of
ideas given there (on improving the rate of convergence of the power series and
rage management) generally lead to strong improvements of the performance
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In general, it is not easy to give rules of thumb for the number of terms of the power-
series expansions of the state-probabilities that is needed to achieve an ‘acceptable’ degree
of accuracy. This number generally depends on a number of factors such as the occupancy
(load) of the system and on the ‘degree of symmetry’ of the system. If the system is fairly
symmetrical then 10 terms may suffice to give rather accurate results for lightly loaded
systems (say p/m < 0.5); if the system is heavily loaded (say p/m = 0.9) then 10 to 15
terms may still do well (applying extrapolation techniques, cf. [10]). If the system is rather
asymmetrical the algorithm may converge rather slowly. If the system is lightly loaded then
10 or 15 terms may still do well, but if the system is more heavily loaded then typically 30
or 40 (or even more) terms may be needed to achieve accurate results.

6 NUMERICAL RESULTS

In this section we give an overview of the numerical results that we gathered. Firstly, we
investigate the tendency for the servers to cluster (especially in heavily-loaded systems in
which the servers follow the same route) and the influence of the visit orders on the system
performance. Numerical examples will show that the system performance can be improved
considerably by using so-called dispersive schedules, i.e., schedules that somehow keep the
servers apart. Secondly, we consider the option of partitioning a multiple-server system
into separate systems. It is illustrated that this segmentation may be particularly beneficial
if the queues are clustered and the clusters are somewhat isolated, i.e, if the switch-over
times needed by the servers to move from one cluster to another are significant. Finally, we
make some comparisons between multiple-server systems and single-server systems carrying
a comparable load. These investigations suggest that, as far as the mean waiting times at the
queues are concerned, multiple-server systems compare favourably with proportionally loaded
single-server systems. Such comparisons are also relevant for developing approximations for
multiple-server polling systems based on existing results for single-server polling systems.

Coalescing of the servers; influence of the visit orders

An interesting property of multi-server polling systems is the fact that the servers tend to
coalesce, especially in heavily loaded systems in which the servers follow the same route.
This phenomenon may be visualized as follows. A trailing server will tend to move fast, as it
only encounters recently served queues, whereas a leading server will tend to be slowed down
by queues that have not been served for a while, so that the servers tend to form bunches
while constantly leapfrogging over one another. This explains why the visit orders and the
system load play a role in this coalescing effect. To illustrate this, consider a model with
the following parameters: n = 4; m = 2; a; = N/p = 025, u; = 1, m; = 2, ¢; = 1 (i.e.,
exhaustive service), ¢ = 1,...,n; v;, = 1/a for i,k = 1,...,n, with & to be specified later
on; w1 = 7 = (1,2,3,4). We define the joint probability distribution of the server positions
as follows:

P(k1,..., km) := Pr{S; is working at or switching to Qk;,J =1,...,m}, (6.1)

forkj=1,...,n,5 =1,...,m. Table 6.1 gives the mean waiting times at the queues EW;_4
(which are equal for each queue) and the server-position distribution P(ky, ..., kn) (cf. (6.1))
for a = 0.05 and for varying values of the offered load to the system p.
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p=04 p=16 p=19
EWi_4 P (X].O—Z) EW,_, P (X 10—'2) EWqi_4 P (X10_2)
0.14 6.3 6.2 6.2 6.2 2.08 7.8 59 54 5.9 10.68 146 39 25 39
6.2 6.3 6.2 6.2 59 7.8 59 54 39 146 39 25
6.2 6.2 6.3 6.2 54 59 7.8 5.9 25 3.9 146 39
6.2 6.2 6.2 6.3 59 54 59 7.8 39 24 39 146

Table 6.1. The coalescing effect.

Table 6.1 illustrates that the tendency for the servers to cluster grows as the traffic intensity
grows. Indeed, if the system is lightly loaded, the switch-over times tend to predominate the
lengths of the visit periods and will thus constantly disperse the servers over the system. In
heavily loaded systems on the other hand, the visit periods will dominate the switch-over
times and drive the servers together.

In order to investigate the impact of the visit orders on the system performance, we have
computed the mean waiting times at the various queues, EW; (which are no longer equal
for each queue when the visit orders of the servers are different), and the mean total amount
of unfinished work in the system, EV, for a model with the same parameters as before but
with different visit orders; as before w; = (1,2, 3,4), but 7y is varied over all possible per-
mutations of the index set {1,2,3,4}. Note that because of the symmetry of the model there
are only three non-equivalent cyclic service order combinations. Table 6.2 shows the results
for various values of a and p; the case a = 0 corresponds to a system with zero switch-over
times, cf. also Remark 4.1. Using Little’s law it is easily verified that EW; and EV satisfy

the relationship EV = Z 0 EW,; +

1 & . . . . .
5 E )\iﬁ?), irrespective of the interarrival, service, and
i=1 i=1

1 C . N
switch-over times. Here 5 Z )\iﬁfz) = p, as the service times are exponentially distributed

with mean 1. =
p=16 p=18
« ™ EW, |EW, | EW3 | EW, | EV | EW; | EW, | EW3 | EW, | EV
(1,2,3,4) | 1.78 | 1.78 | 1.78 | 1.78 |4.44 | 4.26 | 4.26 | 4.26 | 4.26 9.47
0.00|(1,2,4,3)| 178 |18 |1.74 |1.74 |4.44 442 |467 |398 |3.98 9.47
(1,4,3,2) | 1.78 | 1.78 |1.78 | 1.78 | 444|426 |426 | 426 |4.26 9.47
(1,2,8,4) | 208 |2.08 |208 |208 |492|487 | 487 |4.87 |4.87 | 10.56
0.05|(1,2,4,3) | 207 |215 |2.02 |202 |491 500 |527 |447 | 447 |10.45
(1,4,3,2) | 206 |2.06 |206 |206 |490|479 |479 |4.79 | 479 | 1043
(1,2,3,4) | 329 [329 |329 |329 687|736 |736 |736 |736 | 15.05
0.25 | (1,2,4,3) | 324 | 340 |3.09 |3.09 |673|752 |7.87 |639 |6.39 |14.48
(1,4,3,2) | 316 |3.16 |3.16 |3.16 | 667|686 |686 |6.86 |6.86 |14.15

Table 6.2. Influence of the visit order.




ws that the service orders may have a considerable impact on the individual
times. For single-server systems similar observations have been made by Blanc
for single-server systems with exhaustive service it is well-known that EV, and

p:EW,;, is completely insensitive to the service order (as long as it is strictly

xma & Groenendijk [14]. Table 6.2 suggests that in multiple-server systems
s not extremely sensitive to the service orders but definitely not completely
-fact also the individual mean waiting times appear to be more sensitive to the
in multiple-server systems. Table 6.2 shows e.g. that in a multiple-server sys-
ase of a completely symmetric configuration the individual mean waiting times
s service order, unlike in a single-server system. The difference in sensitivity
ively explained as follows. In case of exhaustive service the individual mean
strongly depend on the mean residual intervisit time. In a single-server system
time is the time needed for the server itself to reach the queue again, i.e., the
in passing through the complete system once, which usually only marginally
1e service order. In a multiple-server system the intervisit time is typically
ed for one of the other servers to reach the queue again, which strongly varies
2e of clustering as implied by the service order. Table 6.2 points out e.g. that
) yields the best global performance (i.e., minimal EV) in all considered cases.
(1,4,3,2) is likely to minimize the degree of clustering. The latter observation
the observation of Morris & Wang [27] that the system performance can be
n the coalescing effect is alleviated by using dispersive schedules. Note that in -
), because of the symmetry of the model, EV does not depend on the service
s the same distribution as in a classical M /M /m system with the same param-

ersus non-partitioning

g multiple-server polling systems it is interesting to consider the option of par-
stem into a number of subsystems, each of which is served by one or more
3. Such a partitioning (or segmentation) seems to be particularly beneficial if
> clustered, and the switch-over times to move between the clusters are rela-
'n the other hand, when the system is partitioned into subsystems, the servers
wtually isolated clusters are not able to ‘help’ each other. Hence, it will hap-
: to time that one server is idle while another server is still busy, so that the
ver is only partially used. As a consequence, in systems with negligible switch-
- amount of work in the system will always be smaller in the non-partitioned
ustrate the effect of partitioning, consider the following model: n = 4; m = 2;
025, s = 1, my = 2,4 = 1,...,n; if 4,k € {1,2} or i,k € {3,4} then
otherwise v;; = 1/a, 4,k = 1,...,n. We compare the system performance
e non-partitioned model, in which both servers visit each of the queues, with
2,3,4), and (ii) the partitioned model, in which S; serves Q; and Q, and S,
Q4, with 71 = (1,2) and w9 = (3,4). Table 6.3 gives the mean total amount of
n the system (which is proportional to the mean waiting time of an arbitrary
) for various values of o and offered load p, for the cases q = (0,0,0, 0) (i.e.,
ce at each queue) and q = (1,1,1,1) (i.e., exhaustive service).
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q=(0,0,0,0) q=(1,1,1,1)
o p=04]|p=08|p=16|p=18|p=04]p=08p=16|p=128
0.01 0.10 0.28 2.30 6.48 0.10 0.27 1.96 4.63
0.05 0.14 0.34 2.72 9.14 0.14 0.31 2.08 4.87
0.10 0.19 0.42 3.39 00 0.18 0.37 2.23 5.17
0.25 0.36 0.67 7.31 00 0.33 0.56 2.69 6.11
0.50 0.65 1.15 00 00 0.58 0.87 3.50 7.75
1.00 1.27 2.43 %) 00 1.08 1.50 5.24 11.93
partitioning | 0.35 0.82 5.47 17.73 0.33 0.76 4.18 9.30

Table 6.3. Effect of partitioning.

Table 6.3 confirms the conjecture that when the switch-over times are relatively small, par-
titioning will generally be disadvantageous. Moreover, it is illustrated that when the switch-
over times become large, the loss of service capacity due to the switch-over times may tend
to predominate the benefits from a non-partitioned system. Table 6.3 also suggests that the
question as to whether or not partitioning is beneficial generally depends on the offered load
to the system. In fact, when the offered load is increased, it may well occur (for limited-type
service disciplines) that some queues become instable in the non-partitioned system, whereas
in the partitioned system all queues remain stable.

Comparisons with single-server systems carrying a comparable load.

When investigating the performance of multiple-server polling systems, it is interesting to
make comparisons with single-server systems with a comparable load. To this end, we first
compare the performance of a multiple-server polling system (with m servers) with a single-
server polling system in which the server operates at m-fold processing rate. Then, we will
compare the multiple-server system with a single-server system with 1/m-fold arrival rates.

Consider a multiple-server system versus a single-server system in which the server operates
at m-fold processing rate. In the single-server case all processing power is concentrated, so
that the single-server system might roughly be seen as a multiple-server system with extreme
coalescence of the servers. Hence, one would expect the waiting times at the queues to be
smaller in the multiple-server case, because the processing power would be more homoge-
neously distributed over the queues, cf. the discussion above. On the other hand, although
the waiting times at the queues are expected to be smaller in the multiple-server case, the
sojourn time (i.e., waiting time plus service time) of a customer in the system might be
smaller in the single-server case (especially in light traffic), because the service times are
(stochastically) smaller. In fact, for zero switch-over times the amount of work and hence, in
a symmetrical system, the sojourn time, is smaller in the single-server m-speed case than in
the multiple-server case. As an illustration, we compare the system performance in both sit-
uations for the following model: n=4; a; = X\;/p=025, y; = p, m; =2, ; =1,i=1,...,n
(i-e., exhaustive service); v, = 1/, 1,k = 1,...,n; 71 = my = (1,2,3,4). Table 6.4 shows
the mean waiting time, EW, and the mean sojourn time, ER (= EW + 1/u) of an arbitrary
customer for the system with two servers both processing at normal speed (1 = 1) and the
system with a single server processing at double speed (u = 2).
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2 normal-speed servers 1 double-speed server

o p=04 p=1.6 p=18 p=04 p=16 p=18

EW | ER EW  ER | EW | ER |EW | ER | EW | ER | EW | ER

0.01 006 |1.06|184 | 284 | 438 538 (015|065 2.09| 2.59| 466 | 516
0.10 | 0.23 | 1.23 | 2.37 | 3.37 | 545 | 645|041 {091 | 2.85| 3.35| 6.10| 6.60
0.25 050 | 1.50 | 3.29 | 429 | 7.37| 837,084 | 1.34| 413 463 | 850 9.00
0.50 1 0.95 | 1.95 | 4.96 | 5.96 | 10.95 | 11.95 | 1.56 | 2.06 | 6.25 | 6.75 | 12.50 | 13.00
1.00 | 1.84 | 2.84 | 8.73 | 9.73 | 18.72 | 19.72 | 3.00 | 3.50 | 10.50 | 11.00 | 20.50 | 21.00

Table 6.4. Two servers versus a single server with two-fold processing rate: mean waiting
time and mean sojourn time of an arbitrary customer.

Table 6.4 points out that the mean waiting times are generally smaller in the multiple-server
case, but that this is generally not true for the mean sojourn times. So in order to answer
the question if the multiple-server system outperforms a single-server system operating at
proportional speed, we have to deal with a trade-off between (i) the increase of the mean
waiting time, and (ii) the decrease of the mean service time. The results show that for small
switch-over times the decrease of the mean service times dominates the increase of the mean
waiting times, whereas the reverse is true when the switch-over times are relatively large.

We finally make a comparison of the performance of a single-server system with a multiple-
server system (with m servers) with m-fold arrival rates. In general multiple-server systems-
tend to outperform single-server systems with a proportional arrival stream, as the servers
in a sense have the opportunity to cooperate. Stoyan [30] shows e.g. that in an ordinary
M/G/m system the mean waiting time is indeed always smaller than in an M/G/1 with
proportional arrival rate. Although hard to prove, it is likely that in polling systems the
situation is similar. As an illustration, consider the model with the following system param-
eters: n =4; a; = A\;/p=0.25, i =1, m; =2, ¢; = 1 (i.e., exhaustive service), i = 1,...,n;
vig = 1/a, i,k = 1,...,n; w1 = (1,2,3,4). We have computed the mean waiting time for
the single-server case and the two-server case (with wo = (1,2,3,4)) in which the arrival rate
at each of the queues is doubled. Note that in the latter case the symmetry of the model
implies that both servers carry the same load p/2. Table 6.5 shows the results for various
values of a and offered load p.

single server two servers
a | p=021p=04|p=08p=09]p=04|p=08|p=16|p=1.8
0.00 | 0.25 0.67 4.00 9.00 0.04 0.19 1.78 4.26
0.05 | 0.39 0.84 443 9.80 0.14 0.31 2.08 4.87
0.25 | 0.97 1.54 6.13 13.00 0.50 0.77 3.29 7.37

Table 6.5. Single server versus two servers with doubled load: mean waiting time of an
arbitrary customer.

Table 6.5 confirms the conjecture that multiple-server systems lead to a better system per-
formance than single-server systems with proportional arrival rates.
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7 (CONCLUSIONS AND TOPICS FOR FURTHER RESEARCH

We have considered a polling model with multiple servers in which each server visits the
queues according to a given service order table. In general, such models are mathematically
intractable. In this paper it is shown how the model can be implemented into the PSA, a de-
vice for the numerical evaluation (and optimization) of performance measures of the system.
This implementation into the PSA has been used for various numerical experiments. We
have observed some interesting phenomena, such as the tendency for the servers to bunch to-
gether (cf. also [27]), and the fact that this coalescence of the servers deteriorates the system
performance. We have also observed that the service orders may have a considerable impact
on the system performance, as opposed to single server systems. We have considered the
option of partitioning the system into a number of subsystems. The latter has been shown
to be particularly beneficial when the queues are somewhat clustered. Moreover, we have
made comparisons of the performance of a multiple-server system with m servers with the
situation that (i) the system is attended by a single server with m-fold processing rate and
(ii) the system is attended by a single server, while the arrival rates at the queues are divided
by m. These comparisons have suggested that the mean waiting times (at the queues) are
generally smaller in the multiple-server case.

Finally, we discuss a number of topics for further research. For the case in which each of the
servers visits all queues in a strictly cyclic order (not necessarily identical for each server) and
in which the servers incur the same switch-over times per cycle, we consider the question:
‘Does each server carry the same load?’. In the papers that have appeared in the literature it
is assumed that the servers indeed carry the same load. Based on simulation results, Morris
& Wang [27] did not find any significant differences between the loads carried by each of
the servers. We did not find significant differences with the aid of the PSA either. This
interesting phenomenon might be explained by the following intuitive argument. Consider
a system with two servers. Assume that the mean switch-over time incurred per cycle is s
for both servers. Then from simple balancing arguments it follows that the respective mean
cycle times are given by EC; = s/(1—7;), where 7; is the load carried by S;, ¢ = 1, 2. Suppose
EC; < ECjy. Then, because of the fact that S; is moving around faster, S; will visit the
queues more frequently and hence, will find more customers to be served. The latter would
imply 71 > 79. Contradiction. We emphasize that this argument is only intuitive. Therefore,
it would be interesting to investigate this intriguing question further.

Another interesting point is the following. For the single-server case with cyclic server rout-
ing, Levy et al. [24] proved that the amount of work in the system (at any time) is minimal
when all queues are served exhaustively, i.e., when the server only leaves a queue when there
are no waiting customers left at that queue. It is easy to construct examples showing that
for multiple-server polling the latter is not the case in a sample-path sense. Nevertheless,
this does not exclude that the monotonicity with respect to the ‘exhaustiveness’ of the ser-
vice disciplines may hold for the steady-state amount of work in the system. However, it is
not impossible that in the multiple-server case the steady-state system performance may be
improved by serving non-exhaustively, because the bunching effect (discussed earlier) would
be alleviated. It would be interesting to investigate this monotonicity further.

In the model description in Section 2 the number of servers working at ¢); simultaneously
may be restricted by a maximum m;. Numerical experiments have suggested that decreasing
the values of m; deteriorates the system performance, which seems to be intuitively clear.
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However, in heavily-loaded systems with negligible switch-over times, tightening the restric-
tions on the number of servers simultaneously working at the queues may somewhat disperse
the server-position distribution and possibly alleviate the coalescing effect, leading to a better
system performance. It would be an interesting topic for further research to investigate if
putting such an extra restriction on the behaviour of the servers may improve the system
performance.
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