
Deriving Explicit Control Policies for Markov Decision
Processes Using Symbolic Regression
A. Hristov

Center for Mathematics and Computer Science,
Stochastics Group

asparuhvh@gmail.com

J.W. Bosman
Center for Mathematics and Computer Science,

Stochastics group
joost.bosman@gmail.com

S. Bhulai
Vrije Universiteit Amsterdam,
Department of Mathematics

s.bhulai@vu.nl

R.D. van der Mei
Center for Mathematics and Computer Science,

Stochastics group
mei@cwi.nl

ABSTRACT
In this paper, we introduce a novel approach to optimizing the
control of systems that can be modeled as Markov decision pro-
cesses (MDPs) with a threshold-based optimal policy. Our method
is based on a specific type of genetic program known as symbolic
regression (SR). We present how the performance of this program
can be greatly improved by taking into account the corresponding
MDP framework in which we apply it.

The proposed method has two main advantages: (1) it results
in near-optimal decision policies, and (2) in contrast to other al-
gorithms, it generates closed-form approximations. Obtaining an
explicit expression for the decision policy gives the opportunity
to conduct sensitivity analysis, and allows instant calculation of
a new threshold function for any change in the parameters. We
emphasize that the introduced technique is highly general and
applicable to MDPs that have a threshold-based policy. Extensive
experimentation demonstrates the usefulness of the method.

CCS CONCEPTS
• Mathematics of computing→ Stochastic processes.

KEYWORDS
Markov Decision Processes, Genetic program, Symbolic regression,
Threshold-type policy, Optimal control, Closed-form approximation

ACM Reference Format:
A. Hristov, J.W. Bosman, S. Bhulai, and R.D. van der Mei. 2020. Deriving
Explicit Control Policies for Markov Decision Processes Using Symbolic
Regression. In 13th EAI International Conference on Performance Evaluation
Methodologies and Tools (VALUETOOLS ’20), May 18–20, 2020, Tsukuba, Japan.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3388831.3388840

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7646-4/20/05. . . $15.00
https://doi.org/10.1145/3388831.3388840

1 INTRODUCTION
In practice, many control problems exhibit an optimal policy that is
of a threshold type. In most cases, this structure can be shown theo-
retically by monotonicity and submodularity arguments combined
with mathematical induction within the framework of Markov de-
cision processes (MDPs). In real applications, however, one does
not only need to know the structure of the optimal policy, but also
the threshold value for implementation purposes. Unfortunately,
deriving this value explicitly remains a hard problem and has to be
solved by numerical computation.

There are many advantages of having the threshold value in an
explicit form in a practical setting. It allows one to easily imple-
ment a threshold for different system parameters without having to
resolve the MDP. This becomes even more relevant in an environ-
ment with time-varying parameters. Moreover, the robustness of
the threshold function can be assessed through sensitivity analysis.
This is important when system parameters are estimated from data.

In this paper, we develop a new approach to obtain an analytic
expression for threshold-based policies in MDPs. The main idea of
our method is to combine the field of Markov decision theory with
a specific genetic program, namely, the symbolic regression (SR)
algorithm, to learn the threshold function. We outline guidelines
and useful practices when tailoring the algorithm. Although the
obtained solution might not be the optimal one, the threshold-based
decision policy is, nevertheless, given in a closed-form expression
and near-optimal.

An introduction to MDPs and the well-known numerical tech-
niques to solve such problems (e.g., value iteration and function
iteration) are described in [10, 13, 18]. As discussed, next to the nu-
merical approach, one might tackle the challenge of optimal control
also by using algebraic techniques. However, due to the complexity
of most of the MDP problems, obtaining an algebraic solution is
not feasible. Therefore, the vast body of literature (e.g., [3, 6, 14])
deals with proving structural properties of various Markov decision
problems rather than finding the explicit structure of the decision
policy.

On the other hand, mostly due to practical reasons, there is a
need for an efficient procedure that yields an MDP solution, which
can be implemented afterward. There are several papers that show
how one can make use of machine learning techniques to obtain
such a solution. Most of the research in this domain is focusing

https://doi.org/10.1145/3388831.3388840
https://doi.org/10.1145/3388831.3388840

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan A. Hristov, J.W. Bosman, S. Bhulai, and R.D. van der Mei

on one of the following two types of algorithms: reinforcement
learning [16, 17], or genetic programs [1, 4, 9, 19].

We believe that our paper can serve as a link between the above
described two major, and fundamentally different, approaches. Our
technique exploits certain structural properties of the given MDP
to produce a closed-form solution. Namely, it requires the optimal
policy to be of a threshold type. To obtain the function characteriz-
ing this decision policy, we use SR. An introduction to this genetic
program can be found in [5, 7]. A related research that applies SR
within an MDP framework is the one conducted in [11]. However,
in contrast to [11], our research aims at finding the control policy
rather than the value function. Therefore, with our approach one
can directly incorporate insights into the optimal policy in the SR
implementation.

As an additional remark, we note that the results in this pa-
per were obtained using the gplearn [15] Python package, which
provides an SR implementation. Its efficiency together with the
scikit-learn [12] inspired and compatible API, made this pack-
age our choice for representative SR solution.

The remainder of this paper is organized as follows. We first
outline our implementation of the SR method for solving a given
MDP with a threshold-based policy in Section 2. To present our
guidelines more comprehensibly, we introduce in Section 3 an
MDP that will serve as a running example. In Sections 4 and 5,
we discuss our findings and our approach in the following two
crucial procedures: preparing the data and adjusting the settings
of the algorithm. We evaluate our threshold function discovery
technique in twoways: ‘How does the approximated policy perform
compared to the optimal one?’ and ‘How much does the generated
expression resemble the real closed-form solution?’ We conclude
with a summary and discussion in Section 8.

2 OUTLINE OF THE TECHNIQUE
In this section, we introduce our method of finding a closed-form
solution for the control policy of a given MDP. As mentioned, our
technique uses SR. Therefore, we briefly present the main concepts
of this regression algorithm. The reader is referred to [5, 7, 15] for
more details on SR.

The goal of SR is to find an algebraic expression that best fits a
given dataset. Like any other genetic program, SR forms an initial
population of individuals, which in this case represent mathematical
formulas. Next, it iteratively generates a new offspring of individu-
als (e.g., a new generation) by combining and/or mutating already
existing individuals. The underlying idea is that over time the pop-
ulation’s accuracy increases due to evolving the good performing
individuals. Within the SR framework, an individual represents a
specific formula, which is expressed as a tree (for an example we
refer to Fig.1). Note that each leaf contains a parameter, whereas
each node gives the mathematical operator. In Fig. 2, we illustrate
one of the few possible combination/mutation schemes.

In the following, we list the four main steps of our technique.
Step 1: Modeling an MDP with a threshold-based policy: as a
first step, one should model the problem as an MDP by defining
the system states and the corresponding transition probabilities,
associated operational costs and possible control decisions. Note
that the studied MDP should have an optimal policy which is of a

Figure 1: The formula (x − 2 + 4x) expressed as a tree.

Figure 2: An example of generating a new individual by a
combination of two others.

threshold type.
Step 2: Preparing the data: the regression program requires a
dataset on which the individuals will be tested. Therefore, one
needs to numerically solve a number of system instances, e.g., to
obtain the optimal decision policy with regards to specific parame-
ter values.
Step 3: Specifying the algorithm settings: there are many set-
tings that determine the duration of the evolution, the initial pop-
ulation, and perhaps most importantly the way the generations
evolve.
Step 4: Evaluating the results: different setting configurations
lead to different results. There are certain choices that we believe
are optimal, but nevertheless, we advise one to iteratively analyze
the obtained expressions and further adjust certain settings that
might lead to a better result.

To evaluate the performance of the algorithm, we examine two
MDPmodels. The first one defines a system for which the analysis is
very challenging and, to the best of our knowledge, there is still no
efficient technique for obtaining the optimal policy. Furthermore,
there is no analytic solution available even for specific cases of
this system. Therefore, we take the corresponding MDP model as a
running example and as a benchmark for evaluating the algorithm’s
accuracy in terms of achieved system performance. In contrast, the
optimal policy for our second MDP example, namely, an M |M |1
queue, can be derived in closed-form. Hence, by comparing the
expressions generated by our technique to the optimal formula, we
can study how well the algorithm approximates the algebraic form
of the threshold function.

Control Policies with Symbolic Regression VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan

Figure 3: The ‘write behind’ mechanism as a queueing
model.

3 MODELING AN MDPWITH A
THRESHOLD-BASED POLICY

In this section, we present our first MDP problem. We consider a
single-server queuing system with features inspired by the ‘write
behind’ caching mechanism (see Fig. 3). Namely, the server has to
complete a two-step process for each request that arrives in the
system. Jobs receive an initial service in a First Come First Served
(FCFS) fashion and are subsequently accumulated in a buffer. The
second phase consists of serving those requests that are in the buffer
as a batch, i.e., perform a flush of the cache. In such a way, the server
can accumulate requests in the buffer to some level before serving
them all together as a group.

In the following, we denote the maximum size of the server
queue and the buffer as Q and B, respectively. Next to that, jobs
are assumed to arrive according to a Poisson process with rate λ
and join the queue if they find the server busy at this moment.
Furthermore, the time to store a request in the buffer is taken to
be exponentially distributed, with mean β1. This corresponds to
the required time to write a request to the cache. The service time
required for the second phase is also assumed to be exponentially
distributed, with mean β2,K , and stands for the time required to
write to the cache and consequently perform a flush of size K .
We model β2,K to increase proportionally to the batch size and
therefore we take β2,K = a + bK , where a and b are parameters.
One can interpret a ≥ β1 as the time required to write the K-th
request to the cache and subsequently initialize the flush, i.e., the
batch service. On the other hand, b > 0 stands for the average
time to write a single update to the storage. As the flush requires
an initialization time, accumulating jobs and serving them at once
might greatly improve the overall performance by reducing the
number of initialization steps. On the other hand, the bigger the
group size is, the larger the waiting times during the batch service
will be. This implies that requests can be grouped to an optimal level.
Motivated by this, we analyze the control policy that minimizes
the average waiting time.

In addition, we note that the system load, ρ, is dependent on the
batch size and hence the decision policy. Therefore, in the following
as an approximation of ρ we use the case of a batch size 1. Hence,
we take ρ = 0.5λ(β1 + a + b).

Optimizing the above described queuing system has proven to
be challenging. Due to the complexity of the problem [8], there are
studies on the simpler case of a static system control - the requests

in the buffer are servedwhenever they reach a predefined numberK ,
regardless of the number of jobs at the server queue. However, even
in this case, there is still no analytic solution. Therefore, we believe
that finding an analytic expression for the dynamic threshold policy
would greatly facilitate managing such systems. At the same time,
it promises a far better performance than the static one as it takes
into account also the number of requests at the server queue.

4 PREPARING THE DATA
As discussed, we use SR to derive an expression for the threshold
policy function for a given MDP. To produce an estimate, the re-
gression needs training data set as an input. Once trained on the
corresponding samples, the approximation’s accuracy can be ob-
tained by comparing the predictions on a given set of test samples
with the actual, real values.

There are a few ways to solve an instance of a given MDP prob-
lem, e.g., by running the value iteration technique [13, 18] or by
Temporal Difference (TD) learning [16]. Once the optimal threshold
policy is obtained, one can transform it into a function f (Ps ,x) = y,
where Ps denotes the specific system parameters andy gives the cor-
responding threshold level for x . Note that for an MDP with an N -
dimensional state space the vector x would be (N − 1)-dimensional
and y an integer. In our example, x is an integer and stands for the
number of jobs at the server queue, whereas y is the number of
requests that are already in the buffer. Next to that, we believe that
in addition to the initial core parameters of the system (e.g., the
local variables), one might also consider including self-composed
ones (e.g., structured features). In such a way, one can facilitate
the algorithm in discovering important dependencies between the
parameters. For example, in most of the cases, the system load, ρ,
greatly influences the behavior of the MDP, and hence, the opti-
mal control. Therefore, in some of the generated SR instances we
include ρ as a structured feature.

In the following, we outline the procedure we have performed
to generate the data set for our running example. Our objective
is to obtain approximation that can be used for a system with
any parameters set, Ps = (λ, β1,a,b). Therefore, we design model
instances with the idea of generating samples for systems as diverse
as possible: β1 ∈ {1.2, 2.4, 3.6, ..., 12}, a/β1 ∈ {1, 1.4, 1.8, ..., 5}, and
b/β1 ∈ {0.01, 0.014, 0.18, ..., 0.5}. In all cases we take λ = 1 to reduce
the number of parameters without loss of generality. In such a way,
we produce examples of systems with a load ranging from 0.1 to
0.9. Note that for a given set of system parameters, Ps , we have
Q + 1 samples in the data. Namely, one for each 0 ≤ x ≤ Q (the
number of requests at the queue cannot exceed the queue length)
together with the corresponding threshold value y indicating the
optimal batch size.

Next to that, in the analyzed MDP system, scaling the arrival rate
and the service rates does not influence the optimal decision pol-
icy. Therefore, we incorporate this insight by multiplying/dividing
(1/λ, β1,a,b) by a factor of 100, append the already derived x and
y and use the result as additional data samples. In such a way, we
assist SR in finding an expression that is scale-free with regards
to (1/λ, β1,a,b), and therefore less probable to be over-fitting the
specific range of training values.

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan A. Hristov, J.W. Bosman, S. Bhulai, and R.D. van der Mei

For the majority of cases, we took Q = 100 and B = 50, so that
we could solve the above-described systems with the value iteration
technique in terms of seconds. Nevertheless, we did also generate
samples with Q = 1000 and B = 500 and included them in the
test set. As a final remark, we note that we have split the obtained
dataset in a training and test set by a 70/30 ratio, including MDP
instances with various loads in both subsets.

5 SPECIFYING THE ALGORITHM SETTINGS
Once the MDP problem is modeled, and a dataset is generated by
solving instances of this problem, one needs to specify the desired
algorithm settings. An extensive list of the possible settings for the
gplearn’s SR implementation is described in the corresponding
package documentation (see [15]). Therefore, in this paper, we fo-
cus only on the features that we find particularly interesting with
regards to our technique, i.e., when one uses the genetic program
within an MDP framework. Namely, settings that one should con-
sider adjusting in a way different than the default one are listed in
the following subsections.

5.1 Set of operators
The set of operators contains a list of the mathematical operators
that are allowed in building and evolving the trees. Due to a trade-
off between the complexity of the formulas and their accuracy,
our approach is to start with the four basic binary operations –
addition, subtraction, multiplication, and division. Next to that, we
believe that often the threshold function might contain square root
operation, inverse function and/or logarithm. Therefore, we suggest
running a few SR instances where trees can use various subsets
of those mathematical operators. Comparing the outcomes of the
configurations one can decide which results suit better one’s goal.
Note that there is no benefit in implicitly allowing exponentiation
if one does not expect an exponent higher than 2, as the trees
exponent (a, 2) andmultiply (a,a) have the same depth and length.

5.2 Initial depth and parsimony coefficient
One can control the length and the depth of the trees, i.e., the
complexity of the expressions, by adjusting the initial depth (init_d)
and the parsimony coefficient (pc). More precisely, the init_d is given
by a tuple that defines the minimum and the maximum size allowed
for the first generation of trees, whereas the pc is influencing how
the further generations evolve by penalizing longer expressions.
In such a way, one can control the “bloating” effect – an increase
in the trees’ size which corresponds to a not significant increase
in their fitness. Greater values of the pc penalize larger trees more
and make them less favorable for selection. In our MDP example,
we generated instances with values for the pc between 0.001 and
0.1 and init_d in ranges varying from as low as (2, 3) to the higher
values of (7, 8). Based on the conducted tests, we believe that setting
the pc to 0.01 in combination with init_d range containing the
number of system parameters, |Ps |, would be a reasonable default
choice for our technique. In particular, we conclude that for our
MDP problem init_d = (3, 6) tends to produce the best results as
the first generation consists of relatively simple expressions that
nevertheless are complex enough to capture all system parameters.

5.3 Fitness function
The fitness of a given tree is calculated based on the accuracy of
its predictions on the training samples. This implies that there are
two important components of the fitness function – the way the
error on a single training sample is defined and the way the overall
fitness is obtained from those accuracy scores. Note that if one’s
aim is to produce the best fit of the real threshold function solely,
one can simply apply one of the common accuracy measurement
metrics, e.g., mean absolute error or mean squared error. In contrast,
in the following guidelines, we assume that the primary goal of
a person using our technique is to minimize the costs associated
with a certain MDP problem. In such a case, we find it crucial to
assign appropriate weights to the various training samples. The
reason is that the more probable a system state is, the greater
impact an error in the corresponding decision has. Therefore, one
might consider using the steady-state probability of each state
as its weight. However, in some systems, it is difficult to obtain
the steady-state distribution. As a consequence, in our running
example, we tested the two simpler weight functions: ρx and (Q −
x)2, where ρ is the load of the system from the corresponding
sample (Ps ,x ,y). Note that the second function does not require
any additional computations as the maximum queue length Q is
given as a system parameter.

Next to that, we believe that in the context of estimating a control
policy of a threshold-type one should consider fitness function
that computes the relative error on a given sample instead of the
absolute one. In conclusion, we recommend the weighted version
of a relative accuracy measurement, e.g., weighted mean absolute
percentage error (wMAPE) or weighted root mean squared error
(wRMSE).

6 EVALUATING THE RESULTS
As discussed, the output of the algorithm depends on the specific
settings. Therefore, one has to decide whether it is possible to fur-
ther adjust one or more of those features to produce an expression
that fits better one’s goal – a simpler threshold function or a more
accurate one. Nevertheless, we believe that certain settings result in
both better performing and less complex threshold decision policies.
For that reason, next to the provided setting recommendations, we
advise that one initially explores a larger number of various SR
configurations and only afterward further evolve a few of the best
ones. In such a case, it might become important to optimize the
running time of each algorithm’s instance. One way to achieve this
is to train and/or test the first couple of configurations only on a
subset of the corresponding data instead of the full one. Next to that,
one can keep track of the best fitness score for each generation and
terminate the instance earlier if there is not much of an increase in
the score for a few generations in a row.

In the following, we discuss the accuracy of our technique for
our running example. We configure the SR algorithm in accordance
with the guidelines that we described in the previous sections. In
such a way, we incorporate the insights from analyzing the system
as an MDP model. To evaluate the added value of our approach we
compare it to SR instances with default settings. Next to that, we
also include cases where only part of our recommendations were
implemented. In Table 1, we list some of these instances, numbered

Control Policies with Symbolic Regression VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan

Table 1: Setting configurations

N Operators ρ feature? Fitness Weights
I +,−, ∗, / No RMSE
II +,−, ∗, / No wMAPE ρx

III +,−, ∗, / Yes wMAPE ρx

IV +,−, ∗, / Yes wRMSE ρx

V +,−, ∗, / Yes wRMSE (Q − x)2

VI +,−, ∗, /,
√ Yes wRMSE (Q − x)2

VII +,−, ∗, /,
√ Yes wRMSE (Q − x)2

Table 2: Numerical results

N Threshold function Er perc.
50th 95th

I 3aλ−0.37
λβ1

− λ
λ−1/β1 + 0.27x + 0.96 1.31 5.05

II λ(β1 + a) + a−bx
β1
+ x 0.32 1.65

III λ(β1 + a + b) + a−2b
β1
+ 0.75x + 0.4 0.30 1.10

IV 2λ(β1 + a + b) + 0.75(a−2b)
β1

+ 0.5x 0.26 1.28
V 1.5λ(β1 + a + b) + a(2λ + 1/β1) + 0.33x 0.27 0.93
VI

√
0.4(aλ + x) (1.6

√
a/β1 + 0.6λ) 0.03 0.34

VII aλ +
√
x (aλ + 1.5) +

√
√
x (aλ + 1.5) 0.01 0.18

with Roman numerals and the corresponding parameters. The first
column, N , is used for a reference purpose, whereas the other
columns are self-explanatory.

As it is also most often the case in practice, our goal is to find the
decision policy which minimizes the average costs of the system.
Therefore, although the algorithm is approximating the threshold
function, in this section, we will not examine how good of a fit
the estimation is. Instead, we present the relative difference, Er ,
between the acquired costs if one uses the threshold policy from
the generated expression, дest , and the optimal one, дopt . More
precisely, we calculate

Er =
|дest − дopt |

дopt
× 100%.

The generated expressions and their accuracy are shown in Table 2.
Next to the median, we also state the 95th percentile of Er . Based
on the results for formulas I to V, we conclude that incorporating
the various guidelines in accordance with the MDP framework
greatly improves the accuracy of the expressions without adding
complex terms. Next to that, we note that including the square
root operator can decrease the error even further. However, the
remarkable accuracy of the threshold functions VI and VII come
with the cost of expressions that are hard to interpret.

7 OBTAINING ALGEBRAIC RESULTS
Next to numerically evaluating the performance of the generated
functions, we are also interested in how well these symbolic expres-
sions resemble the optimal one. Therefore, in this section, we apply
our technique to an MDP system that has a closed-form solution.
In such a way, we can compare the derived expressions to the real

one. Moreover, we use this example to once again go through the
steps of our approach. In the following, we implement the algo-
rithm according to the guidelines described in Sections 4 and 5.
Furthermore, we apply the default settings in order to examine our
technique in its general form, without any adjusting and tailoring
to a specific model.

1. Modeling an MDP with a threshold-based policy:We study
a single server queue with Poisson arrivals with rate λ and expo-
nentially distributed service times with rate µ. There are holding
costs, ch , associated with each customer in the queue. Furthermore,
one can decide to reject a customer upon arrival. In such a case,
there is a rejection cost, cr acquired. Even for such a simple system,
obtaining the closed-form expression of the decision policy is very
challenging. In [2], it was shown that the long-run average cost, д,
for a system with ch = cr = 1 is given by:

д =
ρ −

(τ+1) (1−ρ)ρ
(1/ρ)τ −ρ
1 − ρ +

(1 − ρ)λ(1
ρ

)τ
− ρ
,

where ρ = λ/µ is the system load and τ is the threshold value. Now,
minimizing д with respect to τ gives the optimal threshold value
τopt :

τopt = µ − λ − 1

−
1

log(ρ)

−
L (−ρ exp (log (ρ) (µ − 1 − λ) − 1))

log(ρ) ,

(1)

where L(.) is the Lambert-W function.

2. Preparing the data: Note that the state space of this MDP is
one dimensional, i.e., the number of customers in the queue, and
therefore each system configuration results in exactly one data
sample (λ, µ, ρ,y) where y denotes the threshold value. We gener-
ated samples for systems with 100 equally spread values of µ in the
range [1..1000] and 100 values of λ for each µ resulting in ρ from
0.05 to 0.95.

3. Specifying the algorithm settings:Three different setting con-
figurations were tested. In the first one we used only the four basic
mathematical operators (addition, subtraction, multiplication, and
division), whereas in the second configuration we added two more
that are present in the closed-form expression: inversion and natural
logarithm. Finally, we generated a third program instance including
also the Lambert-W function as a possible mathematical operator.
In all of the configurations, the init_d and the pc were assigned to
the suggested default values, namely (1, 3) and 0.01, respectively.
Furthermore, since each system instance is associated with exactly
one sample, there is no need of using weights in the fitness function.

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan A. Hristov, J.W. Bosman, S. Bhulai, and R.D. van der Mei

4. Evaluating the results: The outcomes of the above-described
three setting configurations are given by the following approxima-
tions τ1, τ2, and τ3 for the optimal threshold policies, respectively:

τ1 = µ − λ − 0.657 + λ

µ − λ
; (2)

τ2 = µ − λ −
µ − λ

µ − λ
−

1
log(ρ) = µ − λ − 1 − 1

log(ρ) ; (3)

τ3 = µ − λ − 0.597 + λ

µ − λ
. (4)

The results show that the technique is able to find the most influen-
tial terms (namely, µ − λ) in all three configurations. Furthermore,
in the first case (Eq. (2)) it approximated (−1 − 1/ log(ρ)) using the
term λ/(λ − µ) and a constant. It is interesting to note that this is
indeed a very good estimation as it is exactly the first (and most
important) term, ρ − 1, from the Taylor expansion of log(ρ) around
0. Namely:

1
log(ρ) ≈

1
ρ − 1 =

µ

λ − µ
=

λ

µ − λ
− 1.

In addition, we believe that the high accuracy of this approxima-
tion led the algorithm to use it also in τ3, although the log and the
inverse operands were allowed by the third settings configuration.
The fact that τ2 contains the exact term −1 − 1/ log(ρ) shows that
given more evolutionary time (e.g., more generations, and/or dif-
ferent random seeds) would have helped the third configuration to
discover this term.

Finally, we note that the last part of the exact threshold expres-
sion that involves the Lambert-W function was not included by the
algorithm. After further analysis, we found that the mean and the
variance of this term across the sampled systems were −0.005 and
0.003, respectively. Therefore, given that the mean threshold was
1252, we believe that this additional term is indeed negligible. Based
on these findings, we conclude that one might use our technique
not only for deriving a very well-performing decision policy, but
also the reason for its structure, and therefore, the importance of
certain parameters and the relations between them.

8 CONCLUSION
This paper is a pioneering contribution, and presents a new and
promising technique to obtain an analytic solution to MDPs that
have a threshold-based optimal policy. The method makes use of
a specific machine learning algorithm - the symbolic regression.
Therefore, we showed how one can apply and tailor this genetic
program to the MDP framework. Although the obtained solution
might not be the optimal one, the decision policy is nevertheless
near-optimal and furthermore given in a closed-form expression.

The technique introduced in this paper was tested on two MDP
models, resulting in highly accurate approximations both in terms
of the achieved system performance and the form of the expression.
We believe that the first next step would be to extend the algorithm
to a broader range of MDP problems.

The results also raise a number of other questions for further
research. For example: (1) How do the generated approximations
relate to the size of the training data set?, (2) What is a good experi-
mental setup for the specific parameter settings used in the training
set?, (3) How does the choice of the hyper-parameters (the set of

basis functions, the set of operators, the set of features) of the SR-
algorithm influence the approximations?, (4) How does inaccuracy
in the calculations of of the value functions affect the quality of the
approximations?, and (5) To what extent is this general methodol-
ogy applicable to other models, and beyond approximating control
policies in MDPs?

REFERENCES
[1] D. Barash. A genetic search in policy space for solving Markov decision pro-

cesses. In AAAI Spring Symposium on Search Techniques for Problem Solving under
Uncertainty and Incomplete Information. AAAI Press, 1999.

[2] S. Bhulai. Markov decision processes: The control of high-dimensional systems,
2002.

[3] S. Bhulai and G. Koole. On the structure of value functions for threshold policies
in queueing models. J. Appl. Probab., 40(3):613–622, 09 2003.

[4] H.S. Chang, H.-G. Lee, M.C. Fu, and S.I. Marcus. Evolutionary policy iteration
for solving Markov decision processes. IEEE Transactions on Automatic Control,
50(11):1804–1808, Nov 2005.

[5] M.W. Khan and M. Alam. A survey of application: Genomics and genetic pro-
gramming, a new frontier. Genomics, 100(2):65 – 71, 2012.

[6] G. Koole. A simple proof of the optimality of a threshold policy in a two-server
queueing system. Syst. Control Lett., 26(5):301–303, December 1995.

[7] J.R. Koza, D. Andre, F.H. Bennett, and M.A. Keane. Genetic Programming III:
Darwinian Invention & Problem Solving. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1st edition, 1999.

[8] Y. Levy. A class of scheduling policies for real-time processors with switching
system applications. 1985.

[9] Z.-Z. Lin, J.C. Bean, and C.C. White. A hybrid genetic/optimization algorithm for
finite-horizon, partially observed Markov decision processes. INFORMS Journal
on Computing, 16(1):27–38, 2004.

[10] J.M. Norman. Heuristic procedures in dynamic programming. Manchester Univer-
sity Press Manchester, 1972.

[11] M. Onderwater, S. Bhulai, and R.D. van der Mei. Value function discovery in
Markov decision processes with evolutionary algorithms. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 46(9):1190–1201, Sept 2016.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[13] M.L. Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. New York, NY, USA: John Wiley & Sons, 1994.

[14] D. Roubos and S. Bhulai. Approximate dynamic programming techniques for the
control of time-varying queuing systems applied to call centers with abandon-
ments and retrials. Probab. Eng. Inf. Sci., 24(1):27–45, January 2010.

[15] T. Stephens. Gplearn version 0.2.0. https://gplearn.readthedocs.io/en/stable/,
2016.

[16] R.S. Sutton. Learning to predict by the methods of temporal differences. Mach.
Learn., 3(1):9–44, August 1988.

[17] R.S. Sutton and A.G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition, 1998.

[18] H. Tijms. A First Course in Stochastic Models. Wiley, 2003.
[19] A. Yener and C. Rose. Genetic algorithms applied to cellular call admission: local

policies. IEEE Transactions on Vehicular Technology, 46(1):72–79, Feb 1997.

https://gplearn.readthedocs.io/en/stable/

	Abstract
	1 Introduction
	2 Outline of the technique
	3 Modeling an MDP with a threshold-based policy
	4 Preparing the data
	5 Specifying the algorithm settings
	Set of operators
	Initial depth and parsimony coefficient
	Fitness function

	6 Evaluating the results
	7 Obtaining algebraic results
	8 Conclusion
	References

