
Plusmine: Dynamic Active Learning with Semi-Supervised
Learning for Automatic Classification
Jan Klein

j.g.klein@cwi.nl
CWI, Amsterdam, The Netherlands

Sandjai Bhulai
s.bhulai@vu.nl

Vrije Universiteit, Amsterdam, The Netherlands

Mark Hoogendoorn
m.hoogendoorn@vu.nl

Vrije Universiteit, Amsterdam, The Netherlands

Rob van der Mei
r.d.van.der.mei@cwi.nl

CWI, Amsterdam, The Netherlands

ABSTRACT
A major problem in cybersecurity research is the correct labeling
of up-to-date datasets. It relies on the availability of human experts,
and is as such very cumbersome. Motivated by this, two techniques
have been proposed for efficient labeling: Active Learning (AL)
and Semi-Supervised Learning (SeSL). In this paper, we introduce
Plusmine: an intrusion detection method that combines the benefits
of AL and SeSL to efficiently automate classification. We develop
new techniques for both components. Moreover, we empirically
show that Plusmine obtains good and more robust results than
benchmark methods.

KEYWORDS
active learning, semi-supervised learning, network intrusion detec-
tion, automatic labeling, partially labeled
ACM Reference Format:
Jan Klein, Sandjai Bhulai, Mark Hoogendoorn, and Rob van der Mei. 2021.
Plusmine: Dynamic Active Learning with Semi-Supervised Learning for
Automatic Classification. In 20th IEEE/WIC/ACM International Conference
on Web Intelligence and Intelligent Agent Technology, 14–17 December, 2021,
Melbourne, Australia. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3486622.3493948

1 INTRODUCTION
Cybercrime has become one of the most influential forms of crimi-
nality. Cybersecurity Ventures predicted the global damage to be $6
trillion USD in 2021 and estimated this to increase to $10.5 trillion
in the year 2025 [12]. The already rapid growth of cybercrime has
been accelerated by the outbreak of the COVID-19 pandemic in
early 2020, since the dependency on online communication became
even larger. Fortunately, in academia, the interest in cybersecurity
research has also grown [13]. Most studies are focused on pro-
tecting networks of computers by means of a Network Intrusion
Detection System (NIDS) [19]. Although there are several well-
known problems of NIDSs, such as either a high false positive rate
or high false negative rate [21], Xin et al. state that there are more

This work is licensed under a Creative Commons Attribution International
4.0 License.

WI ’21, 14–17 December 2021, Melbourne, Australia
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9115-3/21/12.
https://doi.org/10.1145/3486622.3493948

significant issues [26]. Most notably, there is a lack of realistic, up-
to-date cyberdata, which makes it challenging to replicate results
of newly developed techniques in actual computer network set-
tings. This lack is caused by two problems: (i) issues in security
and privacy and (ii) difficulties in labeling network observations
for training purposes, because connections are diverse, dynamic
and with many [20].

To mitigate the second problem, the labeling procedure of a cy-
berexpert could be optimized such that they only need to classify
the connections that are expected to increase overall detection per-
formance the most. After labeling and adding these observations,
the model can retrain itself on the increased dataset and select the
next batch of interesting connections. This description character-
izes Active Learning (AL). Although AL is an efficient approach to
accelerate learning, it is still restricted by the labeling speed of the
cyberanalyst, since the time it takes to correctly classify a network
connection can fluctuate drastically [25]. It is, therefore, beneficial
if the method itself could exploit the rich set of unlabeled data and
could automatically classify specific observations. This is where
Semi-Supervised Learning (SeSL) comes into play. Each iteration, a
subset of observations is specifically selected for Automatic Clas-
sification (AC) and is then added to the labeled set. For example,
a connection is automatically labeled when the confidence of the
model in its prediction exceeds some threshold [24]. SeSL tech-
niques allow the intrusion detection method to quickly expand the
labeled pool and increase performance without directly questioning
the cyberanalyst.

In this paper, we propose a novel NIDS called Plusmine that com-
bines AL and SeSL. Our Active Semi-Supervised Learning (ASeSL)
method consists of an improved state-of-the-art AL component and
a new transductive SeSL approach that considers the expected con-
sequences of labeling observations in the next time step and uses
this to determine which connections are the best candidates for AC.
This is in contrast to other ASeSL methods for network intrusion
detection [10, 11, 17, 24, 29]. Our AC strategy is both powerful and
simple. The AL component of Plusmine is an improved version
of the Jasmine method [6]. Jasmine incorporates a dynamic query
function that allows the model to learn the best query approach
during the labeling process. This makes it an adaptable and robust
method. However, we make an important improvement to Jasmine
to fix the bias it has towards querying a certain type of observations.
We apply Plusmine to two popular network intrusion detection
datasets that we use in four dataset configurations. We demonstrate

https://orcid.org/0000-0002-1777-194X
https://orcid.org/0000-0003-1124-8821
https://orcid.org/0000-0003-3356-3574
https://orcid.org/0000-0002-5685-5310
https://doi.org/10.1145/3486622.3493948
https://doi.org/10.1145/3486622.3493948
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3486622.3493948

WI ’21, 14–17 December 2021, Melbourne, Australia Klein et al.

that Plusmine obtains good, more robust and more reliable results
compared to benchmark methods.

2 RELATEDWORK
2.1 Active Learning
Active Learning is a type of Machine Learning (ML) in which the
learner can interactively query an oracle to classify certain unla-
beled observations. The procedure starts by training a classifier on
the (small) set of labeled data. Then, the query function determines
which observations from the unlabeled pool are proposed to the
oracle. This expert provides the true labels for the query instances
and these are then added to the labeled set. After that, the process
repeats itself with the expanded labeled pool. It ends when some
predetermined stop criterion is met. An important advantage of AL
is that less effort needs to be spent on labeling data [18]. This is
especially useful in fields where it is laborious to do so, such as in
cybersecurity.

2.1.1 Network Intrusion Detection. Several AL techniques have
been proposed in cybersecurity research. A common query strat-
egy is uncertainty sampling [4, 9, 27]. Firstly, the model determines
its confidence in the prediction of each unlabeled observation. Then,
the most uncertain instances are queried to the oracle. Although
uncertainty sampling is simple, Yang et al. show that only one third
of the labels are required to achieve the same performance as ran-
domly querying [27]. Li and Guo results are even more impressing
as one fiftieth of the labels are necessary for the same accuracy [9].
The uncertainty query function is static, because the way in which
the observations are selected is fixed throughout the labeling pro-
cess. A query function can also be dynamic by using the knowledge
it obtains during the AL procedure to adjust the selection approach.
Hence, it learns which types of observations are most informa-
tive for a certain iteration and is therefore more robust to changes
in data. Jasmine is one of the few methods, and state-of-the-art,
to propose such a dynamic query function [6]. Klein et al. show
that Jasmine obtains more robust results over several datasets than
static query functions do. However, as with all ALmethods, the only
source of labels is the oracle, and hence, the model is limited by the
labeling effort. Therefore, our method Plusmine incorporates SeSL
to perform Automatic Classification without human intervention.

2.2 Active Semi-Supervised Learning
Semi-Supervised Learning is in between supervised and unsuper-
vised learning. It extends one of the two types by using information
from the other [30]. For example, Levatić et al. [8] use tree-based
learning that exploits both labelled and unlabelled data to improve
performance. In our research, we combine SeSL with AL.

2.2.1 Combining paradigms. There are several ways to combine
the AL and SeSL paradigms. On the one hand, they can operate
relatively independently. Tomanek and Hahn propose an approach
in which highly uncertain observations are queried to the oracle
while highly confident ones are labeled automatically [24]. The
authors show that their approach reduces the labeling efforts by
60% compared to only AL when the right confidence threshold is
chosen. Leng et al. introduce an AL method with an SVM classifier
that queries uncertain instances to the oracle, while it uses different

SeSL techniques to automatically classify observations about which
the model is confident [7]. They show that some ASeSL methods
perform better than using only AL, while others perform worse.
This demonstrates that the inclusion of SeSL can also have a nega-
tive effect. Hady and Schwenker consider the same perspective for
AL and SeSL. They remark that both learning paradigms “tackle
the same problem, but from different directions” [5].

On the other hand, SeSL and AL can be intertwined more, e.g.,
SeSL can be made part of the query strategy: its results directly
determine which observations are presented to the oracle. Zhu et al.
estimate the expected classification error after an observation is
queried. This leads to a better query strategy than selecting the
most uncertain instances [31]. Here, both learning paradigms are
again used to tackle the same problem, but now together from the
same direction.

2.2.2 Network Intrusion Detection. Although promising results
have been obtained for ASeSL techniques, they have not been ex-
plored much in cybersecurity research. Both Mao et al. and Zhang
et al. introduce methods that combine AL with co-training [10, 29].
Co-training is used for binary classification when the features can
be separated in two uncorrelated sets or views that are both suf-
ficient for learning, meaning each view separately is enough for
classification. Although both methods obtain good results, Zhang
et al. mention it is necessary that the sufficiency and uncorrelat-
edness assumptions hold, which is not easy to achieve in practice.
Meng and Kwok confirm this: they state lots of human efforts are
necessary to obtain two uncorrelated, sufficient feature sets [11].

Because of the aforementioned limitations, our method Plusmine
does not consider a multi-view approach. In fact, it uses a novel
SeSL strategy in which the observations are automatically classified
when they are expected to contribute the most to the intrusion
detector in the next time step. Although it has similarities with
the non-cybersecurity research of Zhu et al. [31], they use the
consequences of potentially labeling observations for their query
strategy and not for AC, as we do. Besides this, the AL and SeSL
paradigms are not intertwined in Plusmine. This makes it easier to
analyze the contribution of each component separately.

3 PRELIMINARIES: JASMINE
Before we delve into the details of our method Plusmine, we first
explain the workings of Jasmine, which is used as the base for the
AL component of Plusmine, and introduce mathematical notation.

Assumewe have a feature datasetX ∈ RM×K consisting ofM ∈ N
observations with K ∈ N feature values. Let yi (t) ∈ {0, 1, ∗} be the
response value or label corresponding to instance i ∈ {1, . . . ,M}

at time step t ∈ {0, . . . ,T } with T ∈ N the maximum number of
iterations. For yi (t), ‘0’ denotes the benign class, ‘1’ the malicious
class, and ‘∗’ means that the label is (yet) unknown. Let L(t) be the
set of labeled observations andU(t) the set of unlabeled items. For
all iterations, the sets L(t) and U(t) are disjoint and their union is
the complete dataset (X, y(t)), with y(t) = (y1(t), . . . ,yM (t)).

Following the general AL framework, Jasmine trains a classi-
fier on L(t − 1) during iteration t ∈ {1, . . . ,T }. If the classifier
has hyperparameters, they are tuned beforehand on L(0). Also,
Jasmine-specific parameters are tuned on this. The trained classifier
is applied to U(t − 1) to obtain the malicious probability of each

Plusmine: Dynamic Active Learning with Semi-Supervised Learning for Automatic Classification WI ’21, 14–17 December 2021, Melbourne, Australia

observation u and its predicted class. This also yields uncertainty
scores zu (t), one of the two informativeness measures in Jasmine, for
all u ∈ U(t − 1). An informativeness measure is used to determine
which observations are queried. Simultaneously, an anomaly detec-
tor is constructed for each class. These detectors yield the anomaly
scores au (t), the second informativeness measure, for all unlabeled
observations. Now, the Jasmine-specific query function constructs
the query set Q(t) ⊂ U(t − 1) by using the uncertainty and anom-
aly scores. This set is of fixed size Q ∈ N and a mix of uncertain,
anomalous and randomly selected observations according to the
provided query type fractions αz (t), αa (t) and αr (t), respectively.
Then, the oracle provides the actual response values yq (t) ∈ {0, 1}
of the query items q ∈ Q(t). Note that the labels of these observa-
tions were unknown (thus had value ‘∗’) in the previous time steps.
The queried instances are added to the labeled pool to obtain L(t)
and removed from the unlabeled set to obtainU(t). Next, the query
type fractions are updated. To this end, the anomaly information
metric δ βa (t) and uncertainty information metric δ βz (t) are calculated.
In short, they measure howmuch information each query type adds
on average. When δ

β
a (t) > δ

β
z (t), more anomalies are queried next

iteration, while more uncertainties are queried when δ βa (t) < δ
β
z (t).

This update procedure is called α -dynamic updating and is the key
component of Jasmine. Finally, the time step is increased and the
procedure is repeated. We refer the reader to Klein et al. for a more
detailed explanation [6].

4 METHODOLOGY
In this section, we propose Plusmine. Its Active Learning compo-
nent is based on Jasmine. However, we make some crucial changes
to its query approach to eliminate the bias towards querying uncer-
tain observations. After that, the Semi-Supervised Learning com-
ponent of Plusmine that constitutes Automatic Classification is
introduced.

4.1 Improvements over Jasmine
4.1.1 Construction of query set. First of all, the construction of the
query set Q(t) is adjusted. In Jasmine, it is enforced that the number
of predicted benign and malicious observations is equal within both
the anomalous and uncertain query types (if possible). In Plusmine,
this restriction is relaxed such that only at least one observation of
each class is necessary (if possible). This is because we do not want
to force a 50/50 split in Q(t) for imbalanced datasets.

4.1.2 α -dynamic updating. Secondly, the unique update procedure
of Jasmine called α-dynamic updating is improved. In Plusmine,
the information metrics are changed to address the bias towards
querying uncertain observations. They become

δ
β
a (t) :=

∑
q∈Qa (t)

(
z̃q (t) + ãq (t)

)
·

(
1 + (β − 1)1{yq (t)=1}

)
2
(
Qa (t) + (β − 1) ·

��{q ∈ Qa (t) : yq (t) = 1}
��) , (1)

δ
β
z (t) :=

∑
q∈Qz (t)

(
z̃q (t) + ãq (t)

)
·

(
1 + (β − 1)1{yq (t)=1}

)
2
(
Qz (t) + (β − 1) ·

��{q ∈ Qz (t) : yq (t) = 1}
��) ,

with Qa (t) and Qz (t) the subsets of anomalous and uncertain obser-
vations in Q(t) with sizes Qa (t) and Qz (t), respectively. Note that
1{·} represents the indicator function. To explain the information

metrics, consider Equation (1). The term z̃q (t) + ãq (t) is the sum
of the normalized uncertainty score z̃q (t) and normalized anomaly
score ãq (t) and indicates how informative observation q ∈ Qa (t)
is. The larger the scores, the more information the sum conveys. In
Jasmine, the anomaly score was not taken into account, only the un-
certainty score. Therefore, the bias towards querying uncertainties
is expected to be fixed in Plusmine. Also, the parameter β puts more
(β > 1) or less (0 < β < 1) emphasis on a malicious observation
compared to a benign one, i.e., a false negative weighs respectively
more or less than a false positive. Finally, the denominator ensures
that δ βa (t),δ

β
z (t) ∈ [0, 1].

4.2 Semi-Supervised Learning
Besides labeling by a human oracle, Plusmine uses transductive
SeSL to assign labels to observations. To this end, our method con-
structs the set of candidate observations A(t) := U(t − 1) \ Q(t)
for Automatic Classification. The instances in the query set Q(t)
are clearly not appropriate, because they obtain the real label by
the oracle. Now, S ∈ N disjoint subsets of size B ∈ N are drawn
without replacement from A(t) to obtain B1(t), . . . ,BS (t). The ob-
servations in these subsets have their predicted classes (as is often
done [28]). Then, for all s ∈ {1, . . . , S}, a decision tree is trained
on a random subset of L(t − 1) ∪ Q(t) ∪ Bs (t). Note that L(t − 1)
and Q(t) have their real labels, while Bs (t) has predicted labels.
Next, the classifier is validated on the remaining set of observa-
tions, which yields the performance metricVs (t). The setBs̄ (t)with
s̄ := arg maxs ∈{1, ...,S }{Vs (t)} is selected as the (relatively) optimal
subset to be automatically classified (assuming that a larger Vs (t)
means better performance). Lastly, both Q(t) and Bs̄ (t) are added
to L(t − 1) to obtain L(t) and removed from U(t − 1) to obtain
U(t). The complete Plusmine method is illustrated in Figure 1.

Figure 1: Plusminemethodology with AL component in pur-
ple and SeSL component in blue

4.2.1 AC-specific parameters. In general, the larger the number of
subsets S is, the higher the likelihood is that a good candidate set
for AC is found. However, a larger S means a higher computation
time too. The size of each subset B is also a parameter that should
be selected beforehand. We consider this a Plusmine-specific hy-
perparameter and is therefore tuned on L(0) in the same way the

WI ’21, 14–17 December 2021, Melbourne, Australia Klein et al.

hyperparameters for the AL component of Plusmine are tuned. This
tuning is explained in Section 5.2.4.

5 EXPERIMENTAL SETUP
We conducted several experiments to demonstrate whether Plus-
mine performs better than benchmark methods.

5.1 Data
Ferrag et al. present an overview of datasets that are commonly
used in network intrusion detection research ranging from 1999
to 2018 [2]. From this overview, we selected the popular NSL-KDD
data and more recent UNSW-NB15 dataset for our investigations.

5.1.1 NSL-KDD. The NSL-KDD dataset was published in 2009 and
is partitioned into a fixed train and evaluation set [23]. Both sets
contain the same main attack types, but differ in attack scenarios
within the types. We refer to this data as NSLKDDfix.

We were also interested in the workings of the considered meth-
ods when the train and evaluation set have (approximately) the
same underlying distribution. Therefore, we combined the train
and evaluation set of NSLKDDfix into one set. For each experiment,
this set was randomly split in a train and evaluation set. We refer
to this data as NSLKDDrand.

5.1.2 UNSW-NB15. The UNSW-NB15 data was designed in 2015
by Moustafa and Slay. This dataset is much more recent than NSL-
KDD and has more realistic aspects. In fact, it was constructed
to address some of the inherent problems of NSL-KDD (for more
information, see [14, 15]). We refer to this data as UNSWrand.

Moustafa and Slay also provide a fixed train and evaluation set.
that are statistically similar (in contrast to the provided train and
evaluation set of NSL-KDD). We refer to this data as UNSWfix.

5.1.3 Preprocessing. Firstly, since the methods require numerical
input, the categorical features in all four data settings were re-
moved. In NSL-KDD these are Protocol_type, Service, Flag and
Difficulty_level. In UNSW-NB15 these variables are proto, state,
service, stcpb and dtcpb. Additionally, the features srcip, sport,
dstip, dsport, Stime, Ltime were removed, because they directly
determine the output label or have no predictive use. Secondly,
the response value was made binary: the benign class was made
‘0’ and the malicious class ‘1’. Thirdly, all four data settings were
standardized and Principal Component Analysis was performed to
obtain (linearly) uncorrelated features and to reduce dimensional-
ity [16]. To explain 99% of the variance, 31 Principal Components
are necessary for NSLKDDfix and NSLKDDrand, 27 for UNSWrand
and 28 for UNSWfix.

5.2 Experiments
5.2.1 AL and ASeSL methods. We considered four main AL and
ASeSL techniques: (i) Plusmine (plu), (ii) a technique (tom) based
on the work of Tomanek and Hahn [24], (iii) Plusmine-incomplete
(pin), and (iv) Jasmine (jas) [6]. The technique tom incorporates the
query approach of uncertainty sampling and automatically labels
highly confident samples. These simple strategies make it a good
benchmark. Plusmine-incomplete is Plusmine without the SeSL
component (only AL). The difference in performance between plu
and pin exactly shows the influence of Automatic Classification.

Lastly, the differences in results between pin and jas demonstrate
whether the changes made over Jasmine were indeed beneficial.

The intrusion detector is a supervised classifier and was one
of two options in each method: Decision Tree (DeT) or Gradient
Boosting Machine (GBM). Both learners are tree-based algorithms.
DeT is the most basic one, since it consists of only one tree, while
GBM integrates multiple boosted decision trees [3]. Hence, we
incorporated a fast, but simple and weak predictor; or a slower, but
more complex and highly flexible one. Methods that are paired with
DeT obtain the suffix ‘.det’ and the ones paired with GBM the suffix
‘.gbm’, e.g., Plusmine with GBM is ‘plu.gbm’.

Moreover, the anomaly detector was chosen to be Naive Bayes
Classifier (NBC). This is a fast algorithm with no hyperparameters,
making the results more robust. The technique is considered in
all method settings, except for jas.gbm, since this is the original
Jasmine procedure of Klein et al., which uses Isolation Forest.

5.2.2 Global parameters. The global parameters were chosen be-
fore the experiments took place. These are the initial size of the
labeled set L(0), the initial size of the unlabeled poolU (0), the size
of the evaluation set E, the query set size Q , the maximum number
of query observations N that are presented to the oracle (labeling
budget), and specifically for Plusmine the number of subsets S that
are available for AC (see Section 4.2). How many query iterations
T were performed is given by: T := ⌊min{U (0),N }/Q⌋. Because of
stochasticity, each experiment is repeated R times with L(0) and
U(0) randomly drawn each repetition. The evaluation set E is also
newly constructed for NSLKDDrand and UNSWrand. Hence, the
average behavior of the methods can be examined and the range in
which the performance resides.

Firstly, we chose L(0) = 200, since a small starting size is usually
the case in AL. Secondly, E = 5,000 was selected for NSLKDDrand
and UNSWrand, as we deemed it large enough to be representative.
The sizewas already provided forNSLKDDfix andUNSWfix by their
authors with E = 22,544 and E = 82,332, respectively. Thirdly,U (0)
follows directly from L(0) and E. Therefore, we hadU (0) = 143,317
forNSLKDDrand,U (0) = 125,773 forNSLKDDfix,U (0) = 2,534,847
for UNSWrand and U (0) = 175,141 for UNSWfix. Fourthly, we
selectedQ = 50, as we see adding 50 new observations sufficient for
retraining the classifier. Finally, for Plusmine, S = 50 was chosen
as a trade-off between computation time and a larger potential
performance (see Section 4.2 for details).

Table 1: Hyperparameter GBM ranges (sr = ‘sample_rate’)

distribution histogram_type learn_rate_annealing
Bernoulli RoundRobin {0.95, 0.99, 0.999}
max_depth sr ntrees
{6, 12, 24} {0.60, 0.78, 1.0} {250, 500, 1,000}
nbins nbins_cats learn_rate

{10, 16, 25} {16, 32, 64} {0.02, 0.05, 0.125}
min_rows col_sr col_sr_change_per_level
{6, 8, 10} {0.84, 0.92, 1.0} {0.94, 1.0, 1.06}

col_sr_per_tree
{0.40, 0.64, 1.0}

Plusmine: Dynamic Active Learning with Semi-Supervised Learning for Automatic Classification WI ’21, 14–17 December 2021, Melbourne, Australia

5.2.3 Hyperparameter tuning Gradient BoostingMachine. GBM can
be customized to a high degree, i.e., there are many hyperparam-
eters. In each experiment, good values for these parameters were
found by performing k-fold cross validation on L(0). The research
of Tama and Rhee and exploratory studies were used to decide
which hyperparameters were tuned and over which range [22].
Table 1 shows the selected hyperparameters and corresponding
ranges for the h2o.gbm function of the H2O.ai package in the R
programming language. The parameters that are not shown in the
table got their default settings. Because the total number of com-
binations is enormous, random search was performed for 2 hours
with the F1 score as performance measure.

Table 2: Hyperparameter A(SeS)L ranges

α
(0)
a β , γ τ B{ 1

4 ,
1
2 ,

3
4
} { 1

2 , 1, 2
} { 1

450 ,
1

150 ,
1
50
}

{25, 50, 100, 200}

5.2.4 Hyperparameter tuning AL and ASeSL. The methods Plus-
mine, Plusmine-incomplete and Jasmine have AL-specific hyperpa-
rameters that had to be tuned. This tuning is part of the procedure.
One of the hyperparameters was already introduced in Section 4.1:
β , the weight factor in the information metrics. Additionally, we
have α (0)a , the initial anomaly query fraction; γ > 0, the update
magnitude in α-dynamic updating; and τ > 0, which is related
to the query fraction of random observations. More information
about these hyperparameters can be found in [6]. The SeSL com-
ponent of Plusmine introduces the hyperparameter B, the size of
a candidate set for AC. Table 2 shows the ranges over which the
hyperparameters were tuned. Now, let H be the set of all hyper-
parameter combinations. Thus, |H | = 81 for Plusmine-incomplete
and Jasmine, and |H | = 324 for Plusmine.

During tuning, L(0) is randomly partitioned into the sets LH (0),
UH (0) and EH in a 30/50/20-split. As the notation suggests,LH (0)
is the initially labeled set for tuning with size LH (0),UH (0) is the
initially unlabeled set with sizeUH (0) and EH is the evaluation set.
In Plusmine and Plusmine-incomplete, the size of the query setQH

during tuning is defined as QH :=
⌈
LH (0)
L(0) ·Q

⌉
. Thus, the ratio of

QH to Q is the same as that of LH (0) to L(0). The number of query
iterations in tuning is equal to tH :=

⌈
UH (0)
QH

⌉
− 1. The minus one is

because the last iteration is not performed, since it always contains
the leftover observations that are the least informative.

Next, let h ∈ H be some hyperparameter combination. Then,
the chosen classifier (DeT or GBM) is trained on LH (0) and applied
to EH to obtain the F1 score F (h)1 (0). Then, the rest of the AL or
ASeSL procedure is executed, as described in Section 3 and 4. After
this, the sequence of performance scores (F (h)1 (0), . . . , F (h)1 (tH)) is
obtained. Then, the area under the (t , F (h)1 (t)){t=0, ...,tH }-‘curve’ is
determined to obtain a single quality score. Such a learning curve is
commonly used in AL research to evaluate the overall performance
of a prediction model [18]. The larger the area under the learning
curve, the better combination h ∈ H is.

Because of stochasticity, the tuning rounds were repeated at least
RH = 4 times. Each repetition, L(0) was split into the three sets

LH (0), UH (0) and EH and the area under the learning curve was
obtained. The combination that yielded the largest area averaged
over the repetitions provided the (relatively) optimal values for α (0)a ,
β , γ , τ , and (if applicable) B. In total, the DeT-based methods got
16 hours for this, while the GBM-based procedures got 14 hours,
since they already used 2 hours for tuning the GBM classifier. If
there was time left (usually for the lighter DeT-based methods),
then another repetition was performed.

5.2.5 Assessment of AL and ASeSL methods. For the final assess-
ment of the eight methods, the performance on the separate evalua-
tion set E was used. In iteration t , the classifier was trained on L(t)
and the performance score F1(t) was obtained for each method.
After some reference iteration tref (0 ≤ tref ≤ T), the area under
the (t , F1(t)){t=0, ...,tref }-curve A(tref) was calculated. Since the ex-
periments were conducted R times, this yielded R reference areas
per method. We used these areas to determine whether Plusmine
performed significantly better according to a Mann-Whitney U test.

6 RESULTS
We discuss two categories of results: (i) average learning curves,
and (ii) tables of p-values. The first category provides a graphical
insight in how the performance of the four main methods (plu, pin,
tom and jas) evolved on the evaluation set E. The second category
describes the statistical significance of each method for several
reference iterations by performing a Mann-Whitney U (MWU) test
with significance level 0.05.

6.1 Results on NSL-KDD

(a) DeT classifier

(b) GBM classifier

Figure 2: Learning curves on NSLKDDrand with random
evaluation set

6.1.1 NSLKDDrand. Figure 2 shows the average learning curves
of F1 scores for the four main methods with DeT (Figure 2a) or
GBM (Figure 2b) classifier. Each simulation yielded a learning curve

WI ’21, 14–17 December 2021, Melbourne, Australia Klein et al.

and the figure shows the mean over all runs per method. The hori-
zontal axis is the size of the truly labeled set O(t), i.e., the number
of observations classified by the oracle. For both classifiers, there
is a large discrepancy between tom and the other three methods.
Moreover, the learning curves of plu, pin and jas are very close to
each other, especially for GBM. For the latter, the three methods
quickly reached their final score, which is represented by the black
dashed line (.fin). This is the average performance of the classifier
trained on the complete train set with all labels available. As the
initial performance was already good, there was not much to learn.
It seems that Plusmine performed best for both DeT and GBM at
the start, which is the most important part. It is also striking that
Plusmine-incomplete performed less well than Jasmine. Further-
more, the difference between DeT or GBM is as expected: the F1
scores for DeT were generally lower than those for GBM. The latter
is a more complex technique and was therefore better able to learn
structures in the data. Lastly, the gray dashed line is the Dutch Draw
baseline [1]. This is the maximum expected score that a classifier
that makes random predictions or that predicts only one class can
attain. Therefore, a method should at least outperform this baseline.

Table 3: p-values MWU test for NSLKDDrand

tref O(tref)
plu.d v.
pin.d

plu.d v.
tom.d

plu.d v.
jas.d

pin.d v.
jas.d

4 400 0.50 0.0054 0.75 0.78
10 700 0.52 3.0 · 10−12 0.32 0.66
25 1450 0.20 7.9 · 10−15 0.12 0.41
63 3350 0.00011 7.9 · 10−15 0.15 1.0
156 8000 1.2 · 10−10 7.9 · 10−15 0.20 1.0
399 20150 0.011 7.9 · 10−15 0.92 1.0

tref O(tref)
plu.g v.
pin.g

plu.g v.
tom.g

plu.g v.
jas.g

pin.g v.
jas.g

4 400 0.30 7.4 · 10−8 1.3 · 10−6 4.3 · 10−6

10 700 0.035 2.0 · 10−9 3.0 · 10−7 0.00013
25 1450 0.00052 3.6 · 10−11 1.5 · 10−7 0.046
63 3350 2.1 · 10−5 5.3 · 10−13 1.3 · 10−7 0.48
156 8000 1.5 · 10−5 7.2 · 10−12 3.7 · 10−5 0.92
399 20150 0.00010 4.6 · 10−11 0.039 1.0

Table 3 supports what we observed in Figure 2. Note that ‘.d’
represents ‘.det’ and ‘.g’ represents ‘.gbm’. A green value means
that the first method in the corresponding column name performed
significantly better than the second method, a red value means it
was significantly worse, and a black value means no decisive con-
clusion could be drawn. Clearly, Plusmine performed significantly
better than tom for all reference iterations. The bad performance
of the latter was possibly due to the immediate automatic label-
ing of on average 80% of all unlabeled observations in the first
few iterations. Especially for DeT, there were many mistakes in
these predictions, making it very difficult for the method to recover
from this. Also, plu.gbm was almost always significantly better
than pin.gbm and jas.gbm. However, we see in Figure 2b that the
differences in performance were small.

(a) DeT classifier

(b) GBM classifier

Figure 3: Learning curves on NSLKDDfix with fixed evalua-
tion set

6.1.2 NSLKDDfix. Although NSLKDDfix is based on the same
dataset as NSLKDDrand, the results are vastly different, as Fig-
ure 3 shows. Firstly, most surprisingly is the difference between
DeT (Figure 3a) and GBM (Figure 3b). The final performance of
DeT was higher than that of GBM, even though GBM is a more
complex technique. Also, plu.det performed better than plu.gbm
after the first ten iterations. It even performed notably better than
its final score. Secondly, this time tom was a worthy competitor.
Interestingly, still approximately 80% of the observations were auto-
matically labeled and the number of mistakes made was of the same
order. Apparently, it has to do with the difference in distribution
of train and evaluation set: tom was now better able to generalize,
even though there were mistakes in the labeled set. Thirdly, pin
was mostly better than or on par with jas, except for a large dip
in pin.gbm around O(t) = 9,000. Lastly, pin.det, jas.det, pin.gbm,
tom.gbm and jas.gbm performed worse or much worse than the
Dutch Draw baseline at certain iterations. This is undesirable be-
havior, because it means a better performance could be attained
without learning and by predicting everything malicious, which
the Dutch Draw classifier does in this specific setting. This means
the benefits of AL or ASeSL are not clear here.

The p-values of the statistical tests in Table 4 suggest that Plus-
mine in general performed on par or significantly better than the
other methods. There is one exception for tref = 4 and DeT.

6.2 Results on UNSW-NB15
6.2.1 UNSWrand. Figure 4 shows the average learning curves for
theUNSWrand setting. Remarkably, the results for GBM (Figure 4b)
are very similar to the results on NSLKDDrand. Both datasets have
in common that train and evaluation set have approximately the
same distribution. However, the results with DeT (Figure 4a) are

Plusmine: Dynamic Active Learning with Semi-Supervised Learning for Automatic Classification WI ’21, 14–17 December 2021, Melbourne, Australia

Table 4: p-values MWU test for NSLKDDfix

tref O(tref)
plu.d v.
pin.d

plu.d v.
tom.d

plu.d v.
jas.d

pin.d v.
jas.d

4 400 0.12 0.98 0.11 0.37
10 700 0.16 0.89 0.0076 0.052
25 1450 0.0048 0.36 0.00048 0.16
63 3350 0.00052 0.050 2.5 · 10−5 0.12
156 8000 1.1 · 10−12 0.0042 4.0 · 10−12 0.48
399 20150 7.9 · 10−15 0.0068 7.9 · 10−15 0.74

tref O(tref)
plu.g v.
pin.g

plu.g v.
tom.g

plu.g v.
jas.g

pin.g v.
jas.g

4 400 0.071 0.031 4.4 · 10−7 5.7 · 10−7

10 700 0.14 0.0068 4.4 · 10−7 8.3 · 10−7

25 1450 0.24 0.0019 5.3 · 10−6 7.1 · 10−5

63 3350 0.088 0.0023 5.9 · 10−5 0.0051
156 8000 0.039 0.016 0.0011 0.088
399 20150 0.28 0.27 0.076 0.27

(a) DeT as classifier

(b) GBM as classifier

Figure 4: Learning curves on UNSWrand with random eval-
uation set

notably different for pin.det and jas.det. Both methods started com-
parably well to Plusmine, but after around 2,000 queried observa-
tions jas.det began to worsen, and the same happened for pin.det
after approximately 7,500 queries.

Table 5 confirms these observations as Plusmine was signifi-
cantly better than the other methods for almost all reference values.
In contrast to the results on NSL-KDD, it seems that pin is often
better than jas, as indicated by the significant p-values in the final
column of the tables and the learning curves.

6.2.2 UNSWfix. The learning curves on the UNSWfix data are
shown in Figure 5. Again, the GBM classifier (Figure 5b) produced
straightforward results: the learning curves of plu.gbm, pin.gbm

Table 5: p-values MWU test for UNSWrand

tref O(tref)
plu.d v.
pin.d

plu.d v.
tom.d

plu.d v.
jas.d

pin.d v.
jas.d

4 400 0.0040 0.022 0.0012 0.14
10 700 0.0033 6.4 · 10−8 1.4 · 10−5 0.030
25 1450 0.15 3.5 · 10−10 0.0057 0.040
63 3350 0.12 3.0 · 10−12 0.00032 0.0033
156 8000 0.011 3.6 · 10−13 9.6 · 10−12 7.4 · 10−8

399 20150 1.2 · 10−5 3.2 · 10−14 7.9 · 10−15 9.4 · 10−7

tref O(tref)
plu.g v.
pin.g

plu.g v.
tom.g

plu.g v.
jas.g

pin.g v.
jas.g

4 400 0.0020 1.2 · 10−5 4.9 · 10−9 0.00013
10 700 0.0024 1.1 · 10−8 2.6 · 10−8 0.00032
25 1450 0.0031 1.5 · 10−7 8.3 · 10−7 0.0064
63 3350 0.0038 2.0 · 10−7 0.00056 0.24
156 8000 0.0027 8.3 · 10−7 0.032 0.90
399 20150 0.0019 1.1 · 10−6 0.19 0.97

(a) DeT as classifier

(b) GBM as classifier

Figure 5: Learning curves onUNSWfixwith fixed evaluation
set

and jas.gbm were close to each other and their initial performance
was already close to the final score. This time, tom.gbm was very
stable, but a bit lower than the other three. The results with DeT
(Figure 5a) show more contrasting behaviors. plu.det and pin.det
almost did not change and performed better than their final score,
but tom.det and jas.det were much different. The first had a per-
formance drop at the start, and then tried to recover. As before,
most of the unlabeled observations were immediately automatically
labeled. jas.det had a fast performance decrease and later on tried
to rebound. These results clearly show the benefit of pin over jas.

Finally, the p-values in Table 6 support what the correspond-
ing learning curves with DeT suggest: Plusmine was significantly

WI ’21, 14–17 December 2021, Melbourne, Australia Klein et al.

Table 6: p-values MWU test for UNSWfix

tref O(tref)
plu.d v.
pin.d

plu.d v.
tom.d

plu.d v.
jas.d

pin.d v.
jas.d

4 400 0.0057 3.0 · 10−7 4.4 · 10−7 0.00087
10 700 0.035 2.4 · 10−13 1.2 · 10−10 4.1 · 10−8

25 1450 0.019 1.6 · 10−14 7.9 · 10−15 5.5 · 10−14

63 3350 7.7 · 10−5 3.2 · 10−14 7.9 · 10−15 7.9 · 10−15

156 8000 1.1 · 10−5 5.5 · 10−14 7.9 · 10−15 7.9 · 10−15

399 20150 0.00060 5.5 · 10−14 7.9 · 10−15 7.9 · 10−15

tref O(tref)
plu.g v.
pin.g

plu.g v.
tom.g

plu.g v.
jas.g

pin.g v.
jas.g

4 400 0.25 0.0012 0.066 0.17
10 700 0.82 0.00022 0.55 0.34
25 1450 0.99 2.1 · 10−5 0.98 0.81
63 3350 1.0 7.4 · 10−6 1.0 0.98
156 8000 1.0 3.8 · 10−6 1.0 1.0
399 20150 1.0 5.3 · 10−6 1.0 0.99

better than the other methods for all reference values, and Plusmine-
incomplete always performed better than jas.det. This is in contrast
to the p-values for GBM: they seem to not be in favor of Plus-
mine at all. pin.gbm and jas.gbm firstly performed on par with
plu.gbm, but were later on significantly better. Also the final col-
umn demonstrates that Jasmine outperforms pin.gbm. However,
Figure 5b shows how close the performance scores actually were
to each other.

7 CONCLUSION
In this paper, we introduced Plusmine, an NIDS that combines
new techniques for both AL and SeSL. Its AL component is an
improved version of Jasmine [6]. The results on the UNSW-NB15
data support that this is an improvement in most cases; and when
this was not the case, the difference between the learning curves
was small. However, this was not the case for the NSL-KDD data.
Yet, in general, our query approach in Plusmine performed more
reliably than Jasmine, i.e., drops in performance were less severe.

Secondly, the SeSL component of Plusmine had a convincingly
positive effect on performance for all dataset configurations. It
performed at least on par with the other methods, but often it was
significantly better. The rare occassion when this was not the case,
the difference between the learning curves was small. Hence, the
addition of AC is beneficial. Moreover, our proposed form of AC
performed mostly significantly better than the benchmark ASeSL
method tom that automatically labels confident observations, as is
common practice for SeSL [24].

REFERENCES
[1] E. Van de Bijl, J. Klein, J. Pries, S. Bhulai, M. Hoogendoorn, and R. Van der Mei.

2021. The Dutch Draw: constructing a universal baseline for binary prediction
models. Machine Learning [Under Review] (2021).

[2] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke. 2020. Deep learning
for cyber security intrusion detection: Approaches, datasets, and comparative
study. Journal of Information Security and Applications 50 (2020), 102419.

[3] J. H. Friedman. 2001. Greedy function approximation: a gradient boosting ma-
chine. Annals of statistics (2001), 1189–1232.

[4] Y. Gu and D. Zydek. 2014. Active learning for intrusion detection. In 2014 National
Wireless Research Collaboration Symposium. IEEE, 117–122.

[5] M. F. A. Hady and F. Schwenker. 2010. Combining committee-based semi-
supervised learning and active learning. Journal of Computer Science and Tech-
nology 25, 4 (2010), 681–698.

[6] J. Klein, S. Bhulai, M. Hoogendoorn, and R. Van der Mei. 2021. Jasmine: a
New Active Learning Approach to Combat Cybercrime. Machine Learning with
Applications [Under Revision Review] (2021). https://arxiv.org/abs/2108.06238

[7] Y. Leng, X. Xu, and G. Qi. 2013. Combining active learning and semi-supervised
learning to construct SVM classifier. Knowledge-Based Systems 44 (2013), 121–131.

[8] J. Levatić, M. Ceci, D. Kocev, and S. Džeroski. 2017. Semi-supervised Classification
Trees. Journal of Intelligent Information Systems 49, 3 (2017), 461–486.

[9] Y. Li and L. Guo. 2007. An active learning based TCM-KNN algorithm for
supervised network intrusion detection. Computers & Security 26, 7-8 (2007),
459–467.

[10] C.-H. Mao, H.-M. Lee, D. Parikh, T. Chen, and S.-Y. Huang. 2009. Semi-supervised
co-training and active learning based approach for multi-view intrusion detection.
Proceedings of the 2009 ACM symposium on Applied Computing, 2042–2048.

[11] Y. Meng and L. F. Kwok. 2012. Intrusion detection using disagreement-based
semi-supervised learning: Detection enhancement and false alarm reduction. In
International Symposium on Cyberspace Safety and Security. Springer, 483–497.

[12] S. Morgan. 2020. Cybercrime To Cost The World 10.5 Trillion Annually By 2025. Cy-
bercrime Magazine. Retrieved June 30, 2021 from https://cybersecurityventures.
com/hackerpocalypse-cybercrime-report-2016/

[13] S. A. Mouloua, J. Ferraro, M. Mouloua, G. Matthews, and R. R. Copeland. 2019.
Trend Analysis of Cyber Security Research Published in HFES Proceedings from
1980 to 2018. In Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, Vol. 63. SAGE Publications Sage CA: Los Angeles, CA, 1600–1604.

[14] N. Moustafa and J. Slay. 2015. UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set). In 2015 military
communications and information systems conference (MilCIS). IEEE, 1–6.

[15] N. Moustafa and J. Slay. 2016. The evaluation of Network Anomaly Detection
Systems: Statistical analysis of the UNSW-NB15 data set and the comparison
with the KDD99 data set. Information Security Journal: A Global Perspective 25,
1-3 (2016), 18–31.

[16] K. Pearson. 1901. LIII. On lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin philosophical magazine and journal of
science 2, 11 (1901), 559–572.

[17] Z. Qiu, D. J. Miller, and G. Kesidis. 2017. Flow based botnet detection through semi-
supervised active learning. In 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2387–2391.

[18] B. Settles. 2009. Active learning literature survey. (2009).
[19] P. W. Singer and A. Friedman. 2014. Cybersecurity: what everyone needs to know.

Oxford University Press.
[20] R. Sommer and V. Paxson. 2010. Outside the closed world: On using machine

learning for network intrusion detection. In 2010 IEEE symposium on security and
privacy. IEEE, 305–316.

[21] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad. 2019. Survey on SDN
based network intrusion detection system using machine learning approaches.
Peer-to-Peer Networking and Applications 12 (2019), 493–501.

[22] B. A. Tama and K.-H. Rhee. 2019. An in-depth experimental study of anomaly
detection using gradient boosted machine. Neural Computing and Applications
31, 4 (2019), 955–965.

[23] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. 2009. A detailed analysis of
the KDD CUP 99 data set. In 2009 IEEE symposium on computational intelligence
for security and defense applications. IEEE, 1–6.

[24] K. Tomanek and U. Hahn. 2009. Semi-Supervised Active Learning for Sequence
Labeling. In Proceedings of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural Language Processing of
the AFNLP. 1039–1047.

[25] J. L. Guerra Torres, C. A. Catania, and E. Veas. 2019. Active learning approach to
label network traffic datasets. Journal of Information Security and Applications 49
(2019), 102388.

[26] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and C. Wang. 2018.
Machine learning and deep learning methods for cybersecurity. IEEE Access 6
(2018), 35365–35381.

[27] K. Yang, J. Ren, Y. Zhu, and W. Zhang. 2018. Active Learning for Wireless IoT
Intrusion Detection. IEEE Wireless Communications 25, 6 (2018), 19–25.

[28] D. Yarowsky. 1995. Unsupervised word sense disambiguation rivaling supervised
methods. In 33rd annual meeting of the association for computational linguistics.
189–196.

[29] Y. Zhang, J. Wen, X. Wang, and Z. Jiang. 2014. Semi-supervised learning com-
bining co-training with active learning. Expert Systems with Applications 41, 5
(2014), 2372–2378.

[30] X. Zhu and A. B. Goldberg. 2009. Introduction to semi-supervised learning. 3, 1
(2009), 1–130.

[31] X. Zhu, J. Lafferty, and Z. Ghahramani. 2003. Combining Active Learning and
Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions. In
ICML 2003 workshop on the continuum from labeled to unlabeled data in machine
learning and data mining, Vol. 3.

https://arxiv.org/abs/2108.06238
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Active Learning
	2.2 Active Semi-Supervised Learning

	3 Preliminaries: Jasmine
	4 Methodology
	4.1 Improvements over Jasmine
	4.2 Semi-Supervised Learning

	5 Experimental Setup
	5.1 Data
	5.2 Experiments

	6 Results
	6.1 Results on NSL-KDD
	6.2 Results on UNSW-NB15

	7 Conclusion
	References

