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Abstract

Measuring and quantifying dependencies between random variables (RV’s) can

give critical insights into a data-set. Typical questions are: ‘Do underlying

relationships exist?’, ‘Are some variables redundant?’, and ‘Is some target

variable Y highly or weakly dependent on variable X?’ Interestingly, despite

the evident need for a general-purpose measure of dependency between RV’s,

common practice of data analysis is that most data analysts use the Pearson

correlation coefficient (PCC) to quantify dependence between RV’s, while it is

well-recognized that the PCC is essentially a measure for linear dependency

only. Although many attempts have been made to define more generic

dependency measures, there is yet no consensus on a standard, general-purpose

dependency function. In fact, several ideal properties of a dependency function

have been proposed, but without much argumentation. Motivated by this,

in this paper we will discuss and revise the list of desired properties and

propose a new dependency function that meets all these requirements. This

general-purpose dependency function provides data analysts a powerful means

to quantify the level of dependence between variables. To this end, we also

provide Python code to determine the dependency function for use in practice.

Keywords: probability theory; measure theory; distributions; association;

correlation

2020 Mathematics Subject Classification: Primary 62H20

Secondary 60A10; 62H05

1. Introduction

In as early as 1958, Kruskal [12] stated that “There are infinitely many possible

measures of association, and it sometimes seems that almost as many have been

proposed at one time or another.” Many years later, even more dependency measures

have been suggested. Yet, and rather surprisingly, there still does not exist consensus

on a general dependency function. Often the statement ‘Y is dependent on X’ means

that Y is not independent of X. However, there are different levels of dependency. For

example, RV Y can be fully determined by RV X (i.e., Y (ω) = f(X(ω)) for all ω ∈ Ω

and for a measurable function f), or only partially.

But how should we quantify how much Y is dependent on X? Intuitively, and assuming
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that the dependency measure is normalized to the interval [0,1], one would say that if

Y is fully determined by X then the dependency of Y w.r.t. X is as strong as possible,

and so the dependency measure should be 1. On the other side of the spectrum, if X

and Y are independent, then the dependency measure should be 0; and vice versa, it

is desirable that dependence 0 implies that X and Y are stochastically independent.

Note that the PCC does not meet these requirements. In fact, many examples exists

where Y is fully determined by X while PCC= 0.

Taking a step back, why is it actually useful to examine dependencies in a dataset?

Measuring dependencies between the variables can lead to critical insights, which will

lead to improved data analysis. First of all, it can reveal important explanatory

relationships. How do certain variables interact? If catching a specific disease is highly

dependent on the feature value of variable X, research should be done to investigate if

this information can be exploited to reduce the number of patients with this disease.

For example, if hospitalization time is dependent on a healthy lifestyle, measures can be

taken to try to improve the overall fitness of a population. Dependencies can therefore

function as an actionable steering rod. It is however important to keep in mind that

dependency does not always mean causality. Dependency relations can also occur due

to mere coincidence or as a byproduct of another process.

Dependencies can also be used for dimensionality reduction. If Y is highly dependent

on X, not much information is lost when only X is used in the data-set. In this

way, redundant variables or variables that provide little additional information, can be

removed to reduce the dimensionality of the data-set. With fewer dimensions, models

can be trained more efficiently.

In these situations a dependency function can be very useful. However, finding the

proper dependency function can be hard, as many attempts have already been made.

In fact, most of us have a ‘gut feeling’ for what a dependency function should entail.

To make this feeling more mathematically sound, Rényi [16] proposed a list of ideal

properties for a dependency function. A long list of follow-up papers (see the references

in Table 1 below) use this list as the basis for a wish list, making only minor changes

to it, adding or removing some properties.
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In view of the above, the contribution of this paper is threefold:

• We determine a new list of ideal properties for a dependency function;

• We present a new dependency function and show that it fulfills all requirements;

• We provide Python code to determine the dependency function for the discrete

and continuous case.

The remainder of this paper is organized as follows. In Section 2, we summarize which

ideal properties have been stated in previous literature. By critically assessing these

properties, we derive a new list of ideal properties for a dependency function (see

Table 2), which lays the foundation for a new search for a general-purpose dependency

function. In Section 3, the properties are checked for existing methods, and we conclude

that there does not yet exist a dependency function that has all desired properties.

Faced by this, in Section 4 we define a new dependency function and show in Section 5

that this function meets all the desired properties. Finally, Section 6 outlines the

general findings and addresses possible future research opportunities.

2. Desired properties of a Dependency Function

What properties should an ideal dependency function have? In this section, we sum-

marize previously suggested properties. Often, these characteristics are posed without

much argumentation. Therefore, we analyze and discuss which properties are actually

ideal and which properties are to be believed not relevant, or even wrong.

In Table 1 below, a summary is given of (twenty-two) ’ideal properties’ found in

previous literature, grouped into five different categories. These properties are denoted

by I.1-22. From these properties we derive a new set of desirable properties denoted

by II.1-8, see Table 2. Next, we discuss the properties suggested in previous literature

and how the new list is derived from them.

Desired property II.1 (Asymmetry):

At first glance, it seems obvious that a dependency function should adhere to property

I.13 and be symmetric. However, this is a common misconception for the dependency

function. Y can be fully dependent on X, but this does not mean that X is fully

dependent on Y . Lancaster [13] indirectly touched upon this same point by defining
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mutual complete dependence. First it is stated that Y is completely dependent on X

if Y = f(X). X and Y are called mutually completely dependent if X is completely

dependent on Y and vice versa. Thus, this indirectly shows that dependence should

not necessarily be symmetric, otherwise the extra definition would be redundant. In

[13] the following great asymmetric example was given.

Example 2.1. Let X ∼ U(0, 1) be uniformly distributed and let Y = −1 if X ≤ 1
2

and Y = 1 if X > 1
2 .

Then, Y is fully dependent on X, but not vice versa. To drive the point home even

more, we give another asymmetric example.

Example 2.2. X is uniformly randomly drawn out of {1, 2, 3, 4} and Y := X mod 2.

Y is fully dependent on X, because given X the value of Y is deterministically known.

On the other hand, X is not completely known given Y . Note that Y = 1 still leaves the

possibility for X = 1 or X = 3. Thus, when assessing the dependency between variable

X and variable Y , Y is fully dependent on X, whereas X is not fully dependent on Y .

In other words, Dep (X,Y ) 6= Dep (Y,X).

In conclusion, an ideal dependency function should not always be symmetric. To

emphasize this point even further, we change the notation of the dependency function.

Instead of Dep (X,Y ), we will denote Dep (Y |X) for how much Y is dependent on X.

Based by this, property I.13 is changed into II.1.

Desired property II.2 (Range):

An ideal dependency function should be scaled to the interval [0, 1]. Otherwise, it

can be very hard to draw meaningful conclusions from a dependency score without

a known maximum or minimum. What would a score of 4.23 mean without any

information about the possible range? Therefore, property I.1 is retained. A special

note on the range for the well-known Pearson’s correlation coefficient [15], which is

[−1, 1]: The negative or positive sign denotes the direction of the linear correlation.

When examining more complex relationships, it is unclear what ‘direction’ entails.

We believe that a dependency function should measure by how much variable Y is
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dependent on X, and not necessarily in which way.

Desired property II.3 (Independence and dependency 0):

If Y is independent of X, it should hold that the dependency achieves the lowest

possible value, namely zero. Otherwise, it is vague what a dependency score lower

than the dependency between two independent variables means. A major issue of the

commonly used Pearson’s correlation coefficient, is that zero correlation does not imply

independence. This makes it complicated to derive conclusions from a correlation score.

Furthermore, note that if Y is independent of X, it should automatically hold that X

is also independent of Y . In this case, X and Y are independent, because otherwise

some dependency relation should exist.

Desired property II.4 (Functional dependence and dependency 1):

If Y is strictly dependent on X (and thus fully determined by X), the highest possible

value should be attained. It is otherwise unclear what a higher dependency would

mean. However, it is too restrictive to demand that the dependency is only 1 if Y

is strictly dependent on X. Rényi [16] stated “It seems at the first sight natural to

postulate that δ(ξ, η) = 1 only if there is a strict dependence of the mentioned type

between ξ and η, but this condition is rather restrictive, and it is better to leave it

out”. Take, for example, Y ∼ U(−1, 1) and X := Y 2. Knowing X reduces the infinite

set of possible values for Y to only two
(
±
√
X
)

, whereas it would reduce to one if Y

was fully determined by X. It would be very restrictive to enforce Dep (Y |X) < 1, as

there is only an infinitesimal difference compared to the strictly dependent case.

Desired property II.5 (Unambiguity):

Kruskal [12] stated “It is important to recognize that the question ‘Which single

measure of association should I use?,’ is often unimportant. There may be no reason

why two or more measures should not be used; the point I stress is that, whichever ones

are used, they should have clear-cut population interpretations.” It is very important

that a dependency score leaves no room for ambiguity. The results should stroke

with our natural expectation. Therefore, we introduce a new requirement based on a

simple example: suppose we have a number of independent RV’s and observe one of

these at random. The dependency of each random variable on the observed variable

should be equal to the probability it is picked. More formally, let Y1, Y2, . . . , YN , S be
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independent variables with S a selection variable s.t. P(S = i) = pi and
∑N
i=1 pi = 1.

When X is defined as X =
∑N
i=1 1S=i · Yi, it should hold that Dep (Yi|X) = pi for all

i ∈ {1, . . . , N}.

Desired property II.6 (Generally applicable):

Our aim is to find a general dependency function, which we denote by Dep(X|Y ).

This function must be able to handle all kinds of variables: continuous, discrete,

and categorical (even nominal). These types of variables occur frequently in a data-

set. A general dependency function should be able to measure the dependency of a

categorical variable Y on a continuous variable X. Stricter than I.9-12, we want a single

dependency function that is applicable to any combination of these variables.

There is one exception to this generality. In the case that Y is almost surely constant

it is completely independent as well as completely determined by X. Arguing what

the value of a dependency function should be in this case is a bit similar to arguing the

value of 0
0 . Therefore, we argue that in this case it should be either undefined or return

some value that represents the fact that Y is almost surely constant (for example −1

since this cannot be normally attained).

Desired property II.7 (Invariance under isomorphisms):

Properties I.14-20 discuss when the dependency function should be invariant. Most

are only meant for variables with an ordering, as ‘strictly increasing’, ’translation’ and

’scaling’ are otherwise ill-defined. As the dependency function should be able to handle

nominal variables, we assume that the dependency is invariant under isomorphisms,

see II.7. Note that this is a stronger assumption than I.14-20. Compare Example 2.2

with the following example.

Example 2.3. Let X ′ be uniformly randomly drawn out of {◦,4,�,♦} and Y ′ = ♣

if X ′ ∈ {◦,�} and Y ′ = ♠ if X ′ ∈ {4,♦}.

It should hold that Dep (Y |X) = Dep (Y ′|X ′) and Dep (X|Y ) = Dep (X ′|Y ′), as the

relationship between the variables is the same (only altered using isomorphisms).

Desired property II.8 (Non-increasing under functions of X):

Additionally, Dep (Y |X) should not increase if a measurable function f is applied to X
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since any dependence on f(X) corresponds to a dependence on X (but not necessarily

the other way around). The information gained from knowing X can only be reduced,

never increased by applying a function.

However, though it might be natural to expect the same for functions applied to

Y , consider once again Example 2.2 (but with X and Y switched around) and the

following 2 functions: f1(Y ) := Y mod 2 and f2(Y ) :=
⌈
Y
2

⌉
. Then f1(Y ) is completely

predicted by X and should therefore have a dependency of 1 while f2(Y ) is independent

of X and should therefore have a dependency of 0. So the dependency should be free

to increase or decrease for functions applied to Y .

Exclusion of Pearson’s correlation coefficient as a special case:

According to properties I.21-22, when X and Y are normally distributed the depen-

dency function should coincide with or be a function of the Pearson’s correlation

coefficient. However, these properties lack a good argumentation for why this would

be ideal. It is not obvious why this would be a necessary condition. Even more,

there are many known problems and pitfalls with the correlation coefficient [3, 9], so

it seems undesirable to force an ideal dependency function to reduce to a function of

the correlation coefficient, when the variables are normally distributed. This is why

we leave these properties out.

3. Assessment of the Desired Properties for Existing Dependency

Measures

In this section, we assess whether existing dependency functions have the properties

listed above. In doing so, we limit this section to the most commonly used dependency

measures. Table 3 shows which properties each investigated measure adheres to.

Although the desired properties listed in Table 2 seem not too restrictive, many depen-

dency measures fail to have many of these properties. One of the most commonly used

dependency measures, the Pearson correlation coefficient, does not even satisfy any
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Table 1: A summary of desirable properties for a dependency function stated in

previous literature.

Property group Property Article(s)

Range

I.1. 0 ≤ Dep (X,Y ) ≤ 1 [16, 1, 18, 6, 10, 7,

19, 17, 3]

I.2. Dep (X,Y ) = 0⇐ X and Y are independent [10, 6, 17]

I.3. Dep (X,Y ) = 0⇒ X and Y are independent [19]

I.4. Dep (X,Y ) = 0⇔ X and Y are independent [16, 1, 18, 7, 14, 3]

I.5. Dep (X,Y ) = 1 ⇔ Y = LX with probability 1, where L is a

similarity transformation

[14]

I.6. Dep (X,Y ) = 1⇐ X and Y are strictly dependent [16, 1, 6, 17]

I.7. Dep (X,Y ) = 1 ⇔ X and Y are comonotonic or countermono-

tonic

[3]

I.8. Dep (X,Y ) = 1⇔ X and Y are strictly dependent [7]

I.9. Dep (X,Y ) is defined for any X,Y where both are not constant [16, 7, 14]

I.10. Well-defined for both continuous and discrete variables [6]

I.11. Defined for both categorical and continuous variables; and

for ordinal categorical variables for which there may be underlying

continuous variables

[10]

General

I.12. There is a close relationship between the measure for the

continuous variables and the measure for the discretization of the

variables

[10]

Symmetric I.13. Dep (X,Y ) = Dep (Y,X) [16, 1, 18, 17, 3]

I.14. Dep (f(X), g(Y )) = Dep (X,Y ) with f, g strictly monotonic

functions

[1]

I.15. Dep (f(X), Y ) = Dep (X,Y ) with f : R→ R strictly monotonic

on the range of X

[3]

I.16. Dep (f(X), f(Y )) = Dep (X,Y ) with f continuous and strictly

increasing

[18, 6]

I.17. Dep (f(X), g(Y )) = Dep (X,Y ) if f(·), g(·) map the real axis in

a one-to-one way onto itself

[16, 10]

I.18. Dep (X,Y ) is invariant with respect to all similarity transfor-

mations

[14]

I.19. Dep (X,Y ) is invariant with respect to translation and scaling [18]

Applying function
to argument

I.20. Dep (X,Y ) is scale invariant [19]

I.21. Dep (X,Y ) is a function of the Pearson’s correlation if the joint

distribution of X and Y is normal

[1, 6, 19]

Behavior normal
distribution

I.22. Dep (X,Y ) = |ρ(X,Y )| if the joint distribution of X and Y is

normal, where ρ is the Pearson’s correlation

[16, 10]
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Table 2: New list of desirable properties for a dependency function

Property group Property

Asymmetric II.1. There exist RV’s X,Y such that Dep (Y |X) 6= Dep (X|Y ).

II.2. 0 ≤ Dep (Y |X) ≤ 1 for all RV’s X and Y .

II.3. Dep (Y |X) = 0⇔ X and Y are independent.

II.4. Dep (Y |X) = 1⇐ Y is strictly dependent on X.
Intuitive

II.5. If Y1, Y2, . . . , YN , S independent with P(S ∈ [N ]) = 1, P(S = i) = pi and

X = YS then Dep (Yi|X) = pi must hold.

General II.6. Applicable for any combination of continuous, discrete and categorical RV’s

X,Y , where Y is not a.s. constant.

II.7. Dep (g(Y )|f(X)) = Dep (Y |X) for any isomorphisms f, g.
Functions

II.8. Dep (Y |f(X)) ≤ Dep (Y |X) for any measurable function f .

one of the desirable properties. Furthermore, almost all measures are not asymmetric.

The one measure that comes closes to fulfilling all requirements, is the uncertainty

coefficient [15]. This is a normalized asymmetric variant of the mutual information

[15], where the discrete variant is defined as

CXY =
I(X,Y )

H(Y )
=

∑
x,y pX,Y (x, y) log

(
pX,Y (x,y)
pX(x)·pY (y)

)
−
∑
y pY (y) log(pY (y))

,

where H(Y ) is the entropy of Y and I(X,Y ) is the mutual information of X and

Y . Note that we use the following notation pX(x) = P(X = x), pY (y) = P(Y = y),

and pX,Y (x, y) = P(X = x, Y = y) throughout the paper. In addition, for a set H we

define pX(H) = P(X ∈ H) (and similarly for pY and pX,Y ).

However, the uncertainty coefficient does not satisfy properties II.5 and II.6. For

example, if Y ∼ U(0, 1) is uniformly drawn, the entropy of Y becomes:

H(Y ) = −
∫ 1

0

fY (y) ln (fY (y)) dy

= −
∫ 1

0

1 · ln (1) dy

= 0.

Thus, for any X, the uncertainty coefficient is now undefined (division by zero).

Therefore, the uncertainty coefficient is not as generally applicable as property II.5

requires.



BP Dependency Function 11

Table 3: Properties of previous dependencies functions (7= property not satisfied, 3=

property satisfied)

Asymmetric Intuitive General Functions
Measure

II.1 II.2 II.3 II.4 II.5 II.6 II.7 II.8

Pearson correlation coefficient [15] 7 7 7 7 7 7 7 7

Spearman’s rank correlation coefficient [15] 7 7 7 7 7 7 7 7

Kendall rank correlation coefficient [15] 7 7 7 7 7 7 7 7

Mutual information [15] 7 7 3 7 7 3 3 3

Uncertainty coefficient [15] 3 3 3 3 7 7 3 3

Total correlation [20] 7 7 3 7 7 3 3 3

Mutual dependence [1] 7 3 3 3 7 3 3 3

∆L1
[2] 7 7 3 7 7 3 3 3

∆SD [2] 7 7 3 7 7 3 7 7

∆ST [2] 7 7 7 7 7 3 7 7

Monotone correlation [11] 7 3 3 7 7 7 7 7

Maximal correlation [4] 7 3 3 3 7 3 3 3

Distance correlation [19] 7 3 3 7 7 7 7 7

Two other measures that satisfy many (but not all) properties are mutual dependence

[1] and maximal correlation [4]. Mutual dependence is defined as the Hellinger distance

[8] dh between the joint distribution and the product of the marginal distributions,

defined as follows (cf. [1]):

d(X,Y ) , dh(fXY (x, y), fX(x) · fY (y)). (1)

Maximal correlation is defined as (cf. [16]):

S(X,Y ) = sup
f,g

R(f(X), g(Y )), (2)

where R is the Pearson correlation coefficient, and where f, g are Borel-measurable

functions, such that R(f(X), g(Y )) has a sense [16].

Clearly, Equations (1) and (2) are symmetric. The joint distribution and the product

of the marginal distributions does not change by switching X and Y . Furthermore,

the Pearson correlation coefficient is symmetric, making the maximal correlation also

symmetric. Therefore, both measures do not have property II.1



12 G. Berkelmans, J. Pries et al.

4. The Berkelmans-Pries Dependency Function

After devising a new list of ideal properties (see Table 2) and showing that these

properties are not fulfilled by existing dependency functions (see Table 3), we will now

introduce a new dependency function that will meet all requirements. Throughout, we

will refer to this function as the Berkelmans-Pries (BP) dependency function.

The key question surely is: What is dependency? Although this question deserves an

elaborate philosophical study, we believe that measuring the dependency of Y on X,

is essentially measuring how much the distribution of Y changes on average based on

the knowledge of X, divided by the maximum possible change. This is the key insight,

where the BP dependency function is based on. To measure this, we first have to

determine the difference between the distribution of Y with and without conditioning

on the value of X times the probability that X takes on this value in Section 4.1.

Secondly, we have to measure what the maximum possible change in probability mass

is, which is used to properly scale the dependency function and make it asymmetric

(see Section 4.2).

4.1. Definition expected absolute change in distribution

We start by measuring the expected absolute change in distribution (UD), which is the

difference between the distribution of Y with and without conditioning on the value of

X times the probability that X takes on this value. To this end, for two discrete RV’s

X and Y , UD is defined as follows:

UD (X,Y ) =
∑
x

pX(x) ·
∑
y

∣∣pY |X=x(y)− pY (y)
∣∣ .

More explicit formulations of UD for specific combinations of RV’s are given in Ap-

pendix A.1. For example, when X and Y remain discrete and take values in EX and

EY respectively, it can equivalently be defined as:

UD (X,Y ) = 2 sup
A ⊂EX×EY

 ∑
(x,y)∈A

(pX,Y (x, y)− pX(x) · pY (y))

 .
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Similarly, if X and Y are two continuous RV’s, UD can be written as

UD (X,Y ) =

∫
R

∫
R
|fX,Y (x, y)− fX(x)fY (y)|dydx,

which is the same as ∆L1 [2].

In general, for X : (Ω,F , µ)→ (EX , E(X)) and Y : (Ω,F , µ)→ (EY , E(Y )) UD is de-

fined as

UD (X,Y ) = 2 sup
A∈E(X)

⊗
E(Y )

{
µ(X,Y )(A)− (µX × µY )(A)

}
,

where E(X)
⊗
E(Y ) is the σ-algebra generated by the sets C ×D with C ∈ E(X) and

D ∈ E(Y ). Furthermore, µ(X,Y ) denotes the joint probability measure on E(X)
⊗
E(Y )

and µX × µY is the product measure.

4.2. Maximum UD given Y

Next, we have to determine the maximum of UD for a fixed Y in order to scale the

dependency function to [0, 1]. To this end, we prove that for a given Y :

X fully determines Y ⇒ UD (X,Y ) = max
X′
{UD (X ′, Y )} .

The full proof for the general case is given in Appendix A.2.4, which uses the upper

bound determined in Appendix A.2.3. However, we will show the discrete case here

to give some intuition about the proof. Let Cy = {x|pX,Y (x, y) ≥ pX(x) · pY (y)},

then

UD (X,Y ) = 2
∑
y

(pX,Y (Cy × {y})− pX(Cy) · pY (y))

≤ 2
∑
y

(min {pX(Cy), pY (Y )} − pX(Cy) · pY (y))

= 2
∑
y

(min {pX(Cy) · (1− pY (y)), (1− pX(Cy)) · pY (y)})

≤ 2
∑
y

(pY (y) · (1− pY (y)))

= 2
∑
y

(
pY (y)− pY (y)2

)
= 2

(
1−

∑
y

pY (y)2

)
,
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with equality iff both inequalities are equalities. Which occurs iff pX,Y (Cy × {y}) =

pX(Cy) = pY (y) for all y. So we have equality when for all y the set Cy has the

property that x ∈ Cy iff Y = y. Or equivalently Y = f(X) for some function f .

Thus,

UD(X,Y ) ≤ 2

(
1−

∑
y

pY (y)2

)
,

with equality iff Y = f(X) for some function f .

Note that this holds for every X that fully determines Y . In particular, for X := Y it

now follows that

UD (Y, Y ) = max
X′
{UD (X ′, Y )} = 2 · (1−

∑
y

pY (y)2).

4.3. Definition Berkelmans-Pries Dependency Function

Finally, we can define the BP dependency function to measure how much Y is depen-

dent on X, by

Dep (Y |X) =


UD(X,Y )

UD(Y,Y )
if Y is not a.s. constant,

undefined if Y is a.s. constant.

This is the difference between the distribution of Y with and without conditioning

on the value of X times the probability that X takes on this value divided by the

largest possible difference for an arbitrary X ′. Note that UD (Y, Y ) = 0 if and only

if Y is almost surely constant (see Appendix A.2.4), which leads to division by zero.

However, we previously argued in Section 2 that if Y is almost surely constant, it is

completely independent as well as completely determined by X. It should therefore be

undefined.

5. Properties of the Berkelmans-Pries Dependency Function

Next, we show that our new BP dependency function satisfies all requirements from

Table 2. To this end, we use properties of UD (see Appendix A.2) to derive properties

II.1-8.
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Property II.1 (Asymmetry): It holds for Example 2.1 that UD (X,Y ) = 1,

UD (X,X) = 2, and UD (Y, Y ) = 1. Thus,

Dep (Y |X) =
UD (X,Y )

UD (Y, Y )
= 1,

Dep (X|Y ) =
UD (X,Y )

UD (X,X)
=

1

2
.

Therefore, we see that Dep (Y |X) 6= Dep (X|Y ) for this example, thus making the BP

dependency asymmetric.

Property II.2 (Range): In Appendix A.2.2, we show that for every X,Y it holds that

UD (X,Y ) ≥ 0. Furthermore, in Appendix A.2.3 we prove that supX′ {UD (X,Y )} ≤

2
(

1−
∑
y∈dY µY ({y})2

)
. In Appendix A.2.4 we show for almost all cases that this

bound is tight for UD (Y, Y ). Thus, it must hold that 0 ≤ UD (X,Y ) ≤ UD (Y, Y ) and

it then immediately follows that 0 ≤ Dep (Y |X) ≤ 1. The result for the highly specific

remaining cases remains an open problem, the formulation (and conjecture) of which

can be found in the Appendix A.2.4.

Property II.3 (Independence and dependency 0): In Appendix A.2.2, we prove

that

UD (X,Y ) = 0⇔ X and Y are independent.

Furthermore, note that Dep (Y |X) = 0 if and only if UD (X,Y ) = 0. Thus,

Dep (Y |X) = 0⇔ X and Y are independent.

Property II.4 (Functional dependence and dependency 1): In Section A.2.4,

we show that if X fully determines Y it holds that UD (X,Y ) = maxX′ {UD (X ′, Y )},

in almost all cases. This holds in particular for X := Y . Thus, if X fully determines

Y it follows that

Dep (Y |X) =
UD (X,Y )

UD (Y, Y )
=

maxX′ UD (X ′, Y )

maxX′ UD (X ′, Y )
= 1.

The result for the highly specific remaining cases remains an open problem, the for-

mulation (and conjecture) of which can be found in the Section A.2.4.

Property II.5 (Unambiguity): Let E denote the σ-algebra, where Y1, Y2, . . . , YN

are defined. By definition, it holds that P(X = x) =
∑
j P(Yj = x) · P(S = j), so for
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all i ∈ {1, . . . N}

UD (X,Yi) = 2 sup
A∈E×E

 ∑
(x,y)∈A

(P(X = x, Yi = y)− P(X = x)P(Yi = y))


= 2 sup

A∈E×E

 ∑
(x,y)∈A

∑
j

P(YS = x, Yi = y, S = j)−P(X = x)P(Yi = y)


= 2 sup

A∈E×E

 ∑
(x,y)∈A

∑
j 6=i

P(YS = x, Yi = y, S = j) +P(YS = x, Yi = y, S = i)

− P(X = x)P(Yi = y)


= 2 sup

A∈E×E

 ∑
(x,y)∈A

∑
j 6=i

P(Yj = x)P(Yi = y)P(S = j)

+ P(Yi = x, Yi = y)P(S = i)−
∑
j

P(Yj = x)P(S = j)P(Yi = y)


= 2 sup

A∈E×E

 ∑
(x,y)∈A

(piP(Yi = x, Yi = y)− piP(Yi = x)P(Yi = y))


= piUD (Yi, Yi) .

This leads to

Dep (Yi|X) =
UD (X,Yi)

UD (Yi, Yi)
=
piUD (Yi, Yi)

UD (Yi, Yi)
= pi.

Therefore, we can conclude that property II.5 holds.

Property II.6 (Generally applicable): The BP dependency measure can be applied

for any combination of continuous, discrete and categorical variables. It can handle

arbitrary many RV’s as input by combining them. Thus, the BP dependency function

is generally applicable.

Property II.7 (Invariance under isomorphisms): In Appendix A.2.6, we show

that UD is invariant under isomorphisms. In other words, for any isomorphisms f, g it

holds that

UD (X,Y ) = UD (f(X), g(Y )) .
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It follows for the BP dependency measure that

Dep (g(Y )|f(X)) =
UD (f(X), g(Y ))

UD (g(Y ), g(Y ))
=

UD (X,Y )

UD (Y, Y )

= Dep (Y |X) ,

thus Property II.7 is satisfied.

Desired property II.8 (Non-increasing under functions of X): In Appendix A.2.5,

we prove that transforming X or Y using a measurable function does not increase UD.

In other words, for any measurable function f , it holds that

UD (f(X), Y ) ≤ UD (X,Y ) .

Consequently, Property II.8 holds for the BP dependency function, as

Dep (Y |f(X)) =
UD (f(X), Y )

UD (Y, Y )
≤ UD (X,Y )

UD (Y, Y )
= Dep (Y |X) .

6. Discussion and Further Research

Motivated by the need to measure and quantify the level dependence between random

variables, we have proposed a general-purpose dependency function. The function

meets an extensive list of important and desired properties, and can be viewed as

a powerful alternative to the classical PCC, which is often used by data analysts

today.

Whilst it is recommended to use our new dependency function, it is important to

understand the limitations and potential pitfalls of the new dependency function.

Below we elaborate on these aspects.

The underlying probability density function of a RV is often unknown in practice;

instead, a set of outcomes is observed. These samples can then be used (in a simple

manner) to approximate any discrete distribution. However, this is generally not the

case for continuous variables. There are mainly two categories for dealing with continu-

ous variables: either (1) the observed samples are combined using kernel functions into

a continuous function (kernel density estimation [5]), or (2) the continuous variable is
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reduced to a discrete variable using data binning. The new dependency measure can

be applied thereafter.

A main issue is that the dependency measure is dependent of parameter choices of either

kernel density estimation or data binning. To illustrate this, we conduct the following

experiment: Let X ∼ U(0, 1) and define Y = X + ε with ε ∼ N (0, 0.1). Next, we draw

5,000 samples of X and ε and determine each corresponding Y . For kernel density

estimation, we use Gaussian kernels with constant bandwidth. The result of varying

the bandwidth on the dependency score can be seen in Figure 1a. With data binning,

both X and Y are binned using bins with fixed size. Increasing or decreasing the

number of bins changes the size of the bins. The impact of changing the number of

bins on the dependency score, can be seen in Figure 1b.

(a) Kernel density estimation (b) Data binning

Figure 1: Influence of chosen bandwidth (a) / number of bins (b) on the dependency

score Dep (Y |X) with 5,000 samples of X ∼ U(0, 1) and Y = X + ε with ε ∼ N (0, 0.1).

The main observation from Figures 1a and 1b is that the selection of the parameters

is important. In the case of the kernel density estimation, we see the traditional

trade-off between over-fitting when the bandwidth is too small and under-fitting when

the bandwidth is too large. On the other hand, with data binning, we see different

behaviour: Having too few bins seems to overestimate the dependency score and as

bins increase the estimator of the dependency score decreases up to a certain point,

where-after it starts increasing again. The bottom of the curve seems to be marginally

higher than the true dependency score of 0.621.
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This observation raises a range of interesting questions for future research. For example,

are the dependency scores estimated by binning consistently higher than the true

dependency? Is there a correction that can be applied to get an unbiased estimator?

Is the minimum of this curve an asymptotically consistent estimator? Which binning

algorithms give the closest approximation of the true dependency?

An interesting observation, with respect to kernel density estimation, is that it appears

that at a bandwidth of 0.1 the estimator of the dependency score is close to the true

dependency score of approximately 0.621. However, this parameter choice could only

be made if the underlying probability process was known a priori.

Yet, there is another challenge with kernel density estimation, when X consists of

many variables or feature values. Each time Y is conditioned on a different value of X,

either the density needs to be estimated again or the estimation of the joint distribution

needs to be integrated. Both can rapidly become very time-consuming. When using

data binning, it suffices to bin the data once. Furthermore, no integration is required

making it much faster. Therefore, our current recommendation would be to bin the

data and not use kernel density estimation.

Appendix A.

Notation

The following general notation is used throughout this appendix. Let X : (Ω,F ,P)→

(EX , EX) and Y : (Ω,F ,P)→ (EY , EY ) be RV’s. Secondly, let µX(A) = P(X−1(A)),

µY (A) = P(Y −1(A)) be measures induced by X and Y on (EX , EX) and (EY , EY )

respectively. Furthermore, µX,Y (A) = P({ω ∈ Ω|(X(ω), Y (ω)}) ∈ A) is the joint mea-

sure and µX × µY is the product measure on (EX × EY , EX
⊗
EY ) generated by

(µX × µY )(A×B) = µX(A)µY (B).

A.1. Formulations of UD

In this appendix, we give multiple formulations of the expected absolute change in

distribution (UD). Depending on the type of RV’s, these formulations can be used.
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A.1.1. General case For any X, Y the UD is defined as

(3)

UD (X,Y ) = sup
A ∈E(X)

⊗
E(Y )

{
µ(X,Y )(A)− (µX × µY )(A)

}
+ sup
B ∈E(X)

⊗
E(Y )

{
(µX × µY )(B)− µ(X,Y )(B)

}
= 2 sup

A∈E(X)
⊗
E(Y )

{
µ(X,Y )(A)− (µX × µY )(A)

}
,

A.1.2. Discrete RV’s only WhenX,Y are discrete RV’s, Equation 3 simplifies into

UD (X,Y ) =
∑
x,y

|pX,Y (x, y)− pX(x) · pY (y)| ,

or equivalently,

UD (X,Y ) =
∑
x

pX(x) ·
∑
y

∣∣pY |X=x(y)− pY (y)
∣∣ .

Similarly, when X and Y take values in EX and EY respectively, Equation 3 be-

comes

UD (X,Y )

= sup
A ⊂EX×EY

 ∑
(x,y)∈A

(pX,Y (x, y)− pX(x)pY (y))


+ sup
A ⊂EX×EY

 ∑
(x,y)∈A

(pX(x)pY (y)− pX,Y (x, y))


= 2 sup

A ⊂EX×EY

 ∑
(x,y)∈A

(pX,Y (x, y)− pX(x)pY (y))

 .

A.1.3. Continuous RV’s only When X,Y are continuous RV’s, Equation 3 be-

comes:

UD (X,Y ) =

∫
R

∫
R
|fX,Y (x, y)− fX(x)fY (y)|dydx,

or equivalently

UD (X,Y ) =

∫
R
fX(x)

∫
R
|fY |X=x(y)− fY (y)|dydx.
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Another formulation (more measure theoretical) would be:

UD (X,Y ) = 2 · sup
A ∈B(R2)

{∫
A

(fX,Y (x, y)− fX(x)fY (y))dydx

}
.

A.1.4. Mix of discrete and continuous When X is discrete and Y is continuous,

Equation 3 reduces to:

UD (X,Y ) =
∑
x

pX(x)

∫
y

|fY |X=x(y)− fY (y)|dy.

Vice versa, if X is continuous and Y is discrete, Equation 3 becomes:

UD (X,Y ) =

∫
x

fX(x)
∑
y

|pY |X=x(y)− pY (y)|dx.

A.2. Properties expected absolute change in distribution (UD)

In this appendix, we prove properties of UD that are used in Section 5 to show that

the BP dependency measure satisfies all properties in Table 2.

A.2.1. Symmetry UD UD is symmetric i.e. UD (X,Y ) = UD (Y,X) for every X,Y

as

UD (X,Y ) = 2 sup
A∈EX

⊗
EY

{
µ(X,Y )(A)− (µX × µY )(A)

}
= 2 sup

A∈EY
⊗
EX

{
µ(Y,X)(A)− (µY × µX)(A)

}
= UD (Y,X) .

A.2.2. Independence and UD = 0 Note that

UD (X,Y ) = sup
A∈EX

⊗
EY

{
µ(X,Y )(A)− (µX × µY )(A)

}
+ sup
B∈EX

⊗
EY

{
(µX × µY )(B)− µ(X,Y )(B)

}
≥
(
µ(X,Y )(EX × EY )− (µX × µY )(Ex × EY )

)
+
(
(µX × µY )(EX × EY )− µ(X,Y )(EX × EY )

)
= 0,

with equality if and only if µ(X,Y ) = µX × µY on EX
⊗
EY , so if and only if X and Y

are independent.
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A.2.3. Upper bound given Y To scale the dependency function, we need to deter-

mine supX′ {UD (X ′, Y )} for a given Y . Let dY = {y ∈ EY |µY ({y}) > 0} be the

set of all singletons with positive probability and let cY = EY \ dY . Furthermore, let

DY = EX × dY and CY = EX × cY . Then,

UD (X,Y ) = 2 sup
A∈EX

⊗
EY

{
µ(X,Y )(A)− (µX × µY )(A)

}
= 2 sup

A∈EX
⊗
EY

{
µ(X,Y )(A ∩ CY )− (µX × µY )(A ∩ CY )

}
+ 2 sup

A∈EX
⊗
EY

{
µ(X,Y )(A ∩DY )− (µX × µY )(A ∩DY )

}
.

The first term is upper-bounded by

2 sup
A ∈EX

⊗
EY

{
µ(X,Y )(A ∩ CY )− (µX × µY )(A ∩ CY )

}
≤ 2µ(X,Y )(CY )− 0

= 2µY (cY )

= 2(1−
∑
y∈dY

µY ({y})),

with equality if and only if there exists a set A such that µ(X,Y )(A ∩ CY ) = µY (cY )

and µX × µY (A ∩ CY ) = 0.

The second term is upper-bounded by

2 sup
A ∈EX

⊗
EY

{
µ(X,Y )(A ∩DY )− (µX × µY )(A ∩DY )

}
= 2

∑
y∈dY

sup
B∈EX

{
µ(X,Y )(B × {y})− (µX × µY )(B × {y})

}
≤ 2

∑
y∈dY

sup
B∈EX

{min {µX(B), µY ({y})} − µX(B) · µY ({y})}

= 2
∑
y∈dY

sup
B∈EX

{min {µX(B) · (1− µY ({y})), (1− µX(B)) · µY ({y})}}

≤ 2
∑
y∈dY

(
µY ({y}) − µY ({y})2

)
,

with equality if and only if for all y ∈ dY we have that supB∈EX {µX(B) = µY ({y})} =

supB∈EX
{
µ(X,Y )(B × {y})

}
.



BP Dependency Function 23

Combining these two upper-bounds gives

UD (X,Y ) ≤ 2(1−
∑
y∈dY

µY ({y})) + 2
∑
y∈dY

(
µY ({y}) − µY ({y})2

)

= 2

1−
∑
y∈dY

µY ({y})2
 .

A.2.4. Functional dependence attains maximum UD If Y = f(X) for a measur-

able function f : EX → Rm, let dY = {y ∈ Rm|P(Y = y) > 0} be the set of elements y

with positive probability (which is a countable set) and let cY = Rm \ dY . Then for

any ε > 0 there exists a partition T1,ε, T2,ε, . . . , Tkε,ε of cY such that P(Y ∈ Ti,ε) < ε,

thus µX(f−1(Ti,ε)) = P(X ∈ f−1(Ti,ε)) < ε. Now we define the set

Bε =

(
kε⋃
i=1

(
f−1 (Ti,ε)× Ti,ε

))
∪

 ⋃
y∈dy

(
f−1 ({y})× {y}

),
then

UD (X,Y ) = 2 sup
A∈EX

⊗
EY

{
µ(X,Y )(A)− (µX × µY )(A)

}
≥ sup

ε

{
2(µ(X,Y )(Bε)− (µX × µY )(Bε))

}
≥ sup

ε

2(1−
kε∑
i=1

(µX(f−1(Ti,ε))µY (Ti,ε))−
∑
y∈dY

µX(f−1({y}))µY ({y}))


≥ sup

ε

2(1− εµY (cY )−
∑
y∈dY

µY ({y})2)


= 2(1−

∑
y∈dY

µY ({y})2).

In Appendix A.2.3, we have determined the upper bound, which is also equal to

2(1 −
∑
y∈dY µY ({y})2). Thus, UD is maximized. As corollary to this result, we

find that UD (Y, Y ) = 0 iff there exists y such that P(Y = y) = 1 so iff Y is almost

surely constant.

Note that the only property of Y being constrained to Rm we really need is the fact

that all atoms can be split into singletons and a null-set. So specifically, once we

remove singletons with positive probability we are left with a non-atomic measurable
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space. This therefore allows us to define partitions. The proof can therefore be easily

transferred to any space where this condition holds.

Only for highly specific situations, we were unable to prove that the upper bound is

tight and achieved by UD (Y, Y ). It specifically concerns the cases where there exist

sets A with µY (A) > 0 and for all subsets A′ ⊂ A it holds that µY (A′) ∈ {µY (A), 0}

and additionally for all elements a ∈ A it holds that µY ({a}) = 0. We call these

’non-trivial atoms’. In practice non-trivial atoms are highly irregular. It is mostly

interesting from a theoretical point of view (for the sake of completeness).

We conjecture that for this case the upper bound would be equal to UD (X,Y ) ≤

2
(
1−

∑
A∈B µY (A)2

)
where B is a set of atoms of µY with one representative per

equivalence class (where A1 ∼ A2 if they differ by a null-set) and that this bound is

attained for X for which Y = f(X) (so in particular X = Y ). However, as mentioned

above this problem remains open.

A.2.5. Measurable functions never increase UD Let f : (EX , EX)→ (EX′ , EX′)

be a measurable function. Then h : EX × EY → EX′ × EY with h(x, y) = (f(x), y) is

measurable. Now it follows that

UD (f(X), Y ) = 2 sup
A∈EX′

⊗
EY

{
µ(f(X),Y )(A)− (µf(X) × µY )(A)

}
= 2 sup

A∈EX′
⊗
EY

{
µ(X,Y )(h

−1(A))− (µX × µY )(h−1(A))
}
,

with h−1(A) ∈ EX
⊗
EY . Thus,

UD (f(X), Y ) ≤ 2 sup
A∈EX

⊗
EY

(µ(X,Y )(A)− (µX × µY )(A))

= UD (X,Y ) .

In Appendix A.2.1, it is proven that UD is symmetric. Therefore, it also holds for

g : EY → EY ′ , that

UD (X, g(Y )) ≤ UD (X,Y ) .
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A.2.6. UD invariant under isomorphisms Using Appendix A.2.5, it must hold for

all isomorphisms f, g that

UD (X,Y ) = UD
(
f−1(f(X)), g−1(g(Y ))

)
≤ UD (f(X), g(Y ))

≤ UD (X,Y ) .

Therefore, all inequalities are actually equalities. In other words,

UD (f(X), g(Y )) = UD (X,Y ) .
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