
Machine Learning with Applications 10 (2022) 100412

E
J
a

b

A

K
F
S
A
F
C
T

1

t
s
l
u
b
p
o
a
o
o
G
o

S
S
s
s
d
c
i

Contents lists available at ScienceDirect

Machine Learning with Applications

journal homepage: www.elsevier.com/locate/mlwa

valuating a face generator from a human perspective
oris Pries a,∗, Sandjai Bhulai b, Rob van der Mei a

Centrum Wiskunde & Informatica, Department of Stochastics, Science Park 123, Amsterdam 1098 XG, Netherlands
Vrije Universiteit, Department of Mathematics, De Boelelaan 1111, Amsterdam 1081 HV, Netherlands

R T I C L E I N F O

eywords:
ace generator
tyleGAN2
ttribute prediction
acial recognition
lustering
runcation

A B S T R A C T

StyleGAN2 is able to generate very realistic and high-quality faces of humans using a training set (FFHQ).
Instead of using one of the many commonly used metrics to evaluate the performance of a face generator (e.g.,
FID, IS and P&R), this paper uses a more humanlike approach providing a different outlook on the performance
of StyleGAN2. The generator within StyleGAN2 tries to learn the distribution of the input dataset. However,
this does not necessarily mean that higher-level human concepts are preserved. We examine if general human
attributes, such as age and gender, are transferred to the output dataset and if StyleGAN2 is able to generate
actual new persons according to facial recognition methods. It is crucial for practical implementations that a
face generator not only generates new humans, but that these humans are not clones of the original identities.
This article addresses these questions. Although our approach can be used for other face generators, we only
focused on StyleGAN2. First, multiple models are used to predict general human attributes. This shows that the
generated images have the same attribute distributions as the input dataset. However, if truncation is applied
to limit the latent variable space, the attribute distributions change towards the attributes corresponding with
the latent variable used in truncation. Second, by clustering using face recognition models, we demonstrate
that the generated images do not belong to an existing person from the input dataset. Thus, StyleGAN2 is able
to generate new persons with similar human characteristics as the input dataset.
. Introduction

Think of an unknown face. Humans are capable of imagining faces
hey have never seen before, combining facial attributes from multiple
ources to create a new identity. Can a machine do the same? By
ooking at real images of humans, can it learn how to generate a
nique and realistic face? And if so, are humans still able to distinguish
etween authentic and computer-generated faces? These questions are
art of a larger quest of discovering the capabilities and boundaries
f machines. Speech, music, paintings, images, and even videos are
mong the many things a computer is now able to generate. The quality
f the produced content has increased rapidly since the introduction
f generative adversarial networks (GAN Goodfellow et al., 2014).
enerating realistic faces shows the power, capabilities, and limitations
f these approaches.

In 2019, the successor (Karras et al., 2019) of the well-known
tyleGAN (Karras, Laine, & Aila, 2018) paper was published. When
tyleGAN (Karras et al., 2018) was released in 2018, it immediately
howed impressive results. At that time, this architecture improved the
tate-of-the-art performance considerably by injecting the generator at
ifferent stages with a style-based latent variable. Although humans
an still distinguish between computer-generated and real images, the
mages look very realistic at first glance. This is a huge achievement.

∗ Corresponding author.
E-mail addresses: joris.pries@cwi.nl (J. Pries), s.bhulai@vu.nl (S. Bhulai), mei@cwi.nl (R. van der Mei).

Especially if one considers that only since 2017, Karras, Aila, Laine,
and Lehtinen (2017) were able to generate high-resolution images
(1024 × 1024 pixels). Only small details give away that these images
are not real (West & Bergstrom, 2019). The successive paper (Karras
et al., 2019) claims to improve the images even further, making them
even less distinguishable. Their new approach is called StyleGAN2.

As the name suggests, StyleGAN2 is trained using a generative
adversarial network (GAN) (Goodfellow et al., 2014). The basis of this
approach is to let two models compete against each other, making
each model better at their specific task. More specifically, one model
tries to generate images that resemble real faces, whereas the other
model tries to distinguish between the real and the generated images.
The generator within StyleGAN2 tries to learn the distribution of the
input images, which is monitored using the metrics FID, P&R, and PPL.
According to these metrics, StyleGAN2 is successful in learning the
input distribution. However, this does not necessarily mean that higher-
level human concepts are preserved. Are the input and generated
images similar from a human perspective?

When a human compares two faces, common measures for evalu-
ating GANs like FID (Heusel et al., 2017), IS (Salimans et al., 2016)
or PPL (Karras et al., 2018) are not natural, as these measures are
artificially using e.g., a neural network to evaluate the performance.
https://doi.org/10.1016/j.mlwa.2022.100412
Received 8 February 2022; Received in revised form 16 August 2022; Accepted 5 S
Available online 9 September 2022
2666-8270/© 2022 The Author(s). Published by Elsevier Ltd. This is an open acces
(http://creativecommons.org/licenses/by/4.0/).
eptember 2022

s article under the CC BY license

https://doi.org/10.1016/j.mlwa.2022.100412
http://www.elsevier.com/locate/mlwa
http://www.elsevier.com/locate/mlwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mlwa.2022.100412&domain=pdf
mailto:joris.pries@cwi.nl
mailto:s.bhulai@vu.nl
mailto:mei@cwi.nl
https://doi.org/10.1016/j.mlwa.2022.100412
http://creativecommons.org/licenses/by/4.0/


J. Pries, S. Bhulai and R. van der Mei Machine Learning with Applications 10 (2022) 100412

a
i

h
d
t
w
w
S
d
w
h
n
i

r
m
f
h
T
g

2

u
r
o
d
t
2
p

s
p
v
l
d
i
t

t
s
p
a
g
t
t
t
c

3

t
h
t
s
r
e
o
i
t

t
e
b
e

This is not a human approach, a person would rather compare human
characteristics to evaluate the images. Although it is infeasible to
compare a lot of generated images by hand, a humanlike approach is
necessary. Zhou et al. (2019) did use humans to decide whether images
generated by StyleGAN were fake or real. The results showed that
StyleGAN was capable of generating faces that were hard to distinguish
by humans from the input images. Our research focuses on two different
aspects: Are human traits transferred from the input to the output
dataset and are the generated images new identities? Lack of attribute
and identity labels tagged by humans for StyleGAN2, leads us to use
existing models that were trained using different humanly labeled data.

Hence, we take two separate paths to evaluate how well StyleGAN2
performs from a ‘human’ perspective. First, multiple models are used to
predict general attributes of the images, such as age, gender, and race.
In this way, we can determine if higher-level concepts are preserved.
Second, we examine for multiple face recognition models if the gener-
ted images can be considered to be different persons, compared to the
mages from the input dataset.

With this two-pronged approach, we are able to show that the
uman attribute distributions are very similar for the input and output
ataset, but the generated images are nonetheless different according
o the facial recognition models. Thus, StyleGAN2 has the best of two
orlds. It is able to copy high-level concepts from the input dataset,
hilst still creating different persons. Furthermore, if truncation (see
ection 2.1) is used to limit the latent variable space, the attribute
istributions change significantly towards the attributes corresponding
ith the latent variable used in truncation. To our knowledge, this
umanly approach to comparing high-level concepts of facial datasets is
ew. While we will only use our two-pronged approach for StyleGAN2,
t can also be used to evaluate other face generators.

To summarize, in this paper we:

• introduce a new two-pronged humanly approach to evaluate face
generators, by predicting human attributes and clustering using
face recognition models;

• show that the state-of-the-art StyleGAN2 generates images that
have the same attribute distributions as the input dataset;

• determine that StyleGAN2 generates faces that often do not be-
long to persons in the input dataset according to face recognition
models;

• observe that adding truncation to the latent variable space
changes the attribute distributions towards the attributes corre-
sponding with the latent variable used in truncation.

The remainder of this paper is organized as follows. First, the
elevant datasets are discussed in Section 2. Next, in Section 3 the
ethods are explained that are used to predict facial attributes, embed

aces, and cluster on these embeddings. Furthermore, we also define
ow a cluster is evaluated and why clustering is a natural approach.
he results are discussed in Section 4. Finally, Section 5 summarizes the
eneral findings and discusses possible future research opportunities.

. Datasets

Karras et al. (2019) made three datasets publicly available that are
sed in this research: The input dataset (FFHQ), consisting of 70,000
eal facial images (without identity annotation); Two output datasets
f StyleGAN2, both consisting of 100,000 generated images. The only
ifference in the creation of these output datasets is the so-called
runcation (Brock, Donahue, & Simonyan, 2018; Karras et al., 2018,
019) parameter. All images are high-quality pictures (1024 × 1024

ixels). 4

2

Fig. 1. StyleGAN structure: Architecture of the StyleGAN approach (extracted
from Karras et al. (2018)). Truncation limits the intermediate latent space  .

2.1. Truncation

To explain how truncation works, it is useful to take a look at
the structure of StyleGAN (see Fig. 1). Note that there are some dif-
ferences with the architecture of StyleGAN2. However, the following
core principles still hold. Some latent variable 𝒛 ∈  from latent
pace  goes into a mapping network 𝑓 , after it is normalized using
ixelwise feature vector normalization.1 This results in a different
ariable 𝒘 ∈  such that 𝑓 (𝒛) = 𝒘.  is the so-called intermediate
atent space. Next, the expectation of the intermediate latent variable is
etermined by �̄� ∶= E𝒛∼𝑃 (𝒛)[𝑓 (𝒛)], where 𝑃 (𝒛) is the probability that 𝒛
s randomly drawn from . The authors of Karras et al. (2018) state
hat �̄� represents ‘‘a sort of an average face’’.
�̄� is used to truncate the intermediate latent space. Given a 𝒘 ∈  ,

runcation returns a different intermediate latent variable, denoted 𝒘′,
uch that 𝒘′ = �̄� + 𝜓 ⋅ (𝒘 − �̄�), where 𝜓 ∈ R is called the truncation
arameter. Note that 𝜓 = 1 gives 𝒘′ = 𝒘, which is the same as not
pplying truncation at all. In Fig. 2, five faces are shown that are
enerated with �̄� as intermediate latent variable. This is equivalent
o generating images with 𝜓 = 0. Furthermore, noise is injected in
he synthesis network to increase stochasticity, see Fig. 1. However,
his leads to only minor changes if the intermediate latent variable is
onstant. As can be seen in Fig. 2, the faces all look very similar.

. Methodology

To compare the input images of a face generator with its output,
wo separate paths are taken. First, multiple models are used to predict
uman attributes. This allows for a high-level comparison between
he different datasets. Are characteristics, such as age and gender, the
ame for the input and output datasets? Secondly, clustering using face
ecognition models could determine if the generated faces belong to an
xisting person from the input dataset. Do the output datasets consist
f different persons, or are they embedded similarly compared to the
nput dataset? Combining these two approaches gives a clear view of
he performance of a face generator.

The output of StyleGAN has already been examined to some ex-
ent. Karras et al. (2019) evaluated the generated images in order to
liminate artifacts. For different datasets, FID and PPL was compared
etween StyleGAN and StyleGAN2 (Karras et al., 2018). Furthermore,
fforts have been made to understand and steer the latent space (Shen,

1 https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e
4479267968716b/training/networks_stylegan.py.

https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py
https://github.com/NVlabs/stylegan/blob/03563d18a0cf8d67d897cc61e44479267968716b/training/networks_stylegan.py


J. Pries, S. Bhulai and R. van der Mei Machine Learning with Applications 10 (2022) 100412
Fig. 2. Average intermediate latent space: These faces (seeds 0000–0004) are generated using the expected intermediate latent variable �̄�.
Fig. 3. General concept: A general overview of our proposed two-pronged approach. Using different truncation parameters, a comparison is made (with attribute prediction models
and facial embedding methods) between the input and output datasets in order to determine if generated images have similar human attributes and if they belong to original
identities.
F
r
a
c
o
d
e
1
o
d

Yang, Tang, & Zhou, 2020). By manipulating the latent space, one could
change certain attributes of an image. For example, Shen et al. (2020)
showed that it is possible to alter the age, gender, smile, pose, and
add or remove eyeglasses. However, to our knowledge, our humanly
approach to comparing high-level concepts of facial datasets is new.
While we will only look at datasets from StyleGAN2, our two-pronged
approach can also be used to evaluate other face generators. Within our
novel approach, existing methods are used for predicting, embedding
and clustering. These methods will all be discussed in the upcoming
sections. A general overview of our proposed approach can be found in
Fig. 3.

3.1. Attribute prediction

A face has many characteristics. This leads to a wide variety of
attribute predictions: pose (Hu, Chen, Zhou, & Zhang, 2004), skin
color (Vezhnevets, Sazonov, & Andreeva, 2003), and even attractive-
ness (Xu et al., 2017), to name just a few. We select the following group
of features to examine: age, gender, race, horizontal rotation, and vertical
rotation. Note that these features cover general human concepts, but
additional attribution models can always be added to or removed from
this framework. To clarify what we mean by ‘human concept’, we argue
that every identifiable aspect of a face (or body) that has been given
a name can be called a human concept. For example, the eyebrow is
identified by humans as a specific part of the face. But also, somebody
can look young or old. We consider these examples as ‘human concepts’,
because we abstract information from a group of pixels with respect to
some convention. In our view, any model that predicts a general human
attribute, trained with humanly labeled data, could give some insight
into the difference between the input and output dataset. Adding more
attribute models does give additional information, but to show how
our approach works, we limit ourselves to the attribute prediction
models that we introduce in the following sections. Note that adding or
removing other attribute prediction models does not affect the results
of an individual attribute model, as each model is assessed separately.
3

3.1.1. Predicting age, gender, and race
One of the main guiding papers for this research is the Diversity in

aces paper by Merler, Ratha, Feris, and Smith (2019). The aim of their
esearch was to create an annotated dataset in order to improve the
ccuracy of face recognition and increase the facial diversity within
ommonly used datasets. Lack of diversity could harm the effectiveness
f face recognition in practical implementations. It could even be
iscriminatory against minorities (Buolamwini & Gebru, 2018). Merler
t al. (2019) use different models to annotate images from the YFCC-
00M dataset (Thomee et al., 2016). These models predict a plethora
f attributes for each face. The same kind of models, implemented in
eepface (Serengil & Ozpinar, 2020), are used to predict the age, gender,

and race of a person.
However, there is a difference between the implementation of deep-

face (Serengil & Ozpinar, 2020) and the prediction models from Merler
et al. (2019). deepface uses the VGG-Face neural network (Parkhi,
Vedaldi, & Zisserman, 2015), whereas Merler et al. (2019) follows
the approach of Rothe, Timofte, and Van Gool (2018), who use the
VGG-16 architecture (Simonyan & Zisserman, 2014). The VGG-Face
network (Parkhi et al., 2015) is specifically trained to recognize faces,
whereas the VGG-16 network is trained with ImageNet (Russakovsky
et al., 2015) by Rothe et al. (2018). ImageNet contains a wide variety of
images, not limited to faces. This is why we decided to follow deepface
and use the VGG-Face network.

For each attribute, a similar procedure is followed. deepface uses
a pre-trained VGG-Face network (Parkhi et al., 2015) as the start-
ing point. Only the last few layers are replaced and retrained to fit
the objective. There are some important details about these models
(see Serengil and Ozpinar (2020) for technicalities):

• Counterintuitively, age prediction is not made using regression.
Rothe et al. (2018) claim that using classification instead of re-
gression improved the performance and also stabilized the train-
ing process. The output layer consists of 101 variables, each
corresponding to an age in years (0–100). The last layer has a
softmax activation function, which ensures that the output of the
last layer is a probability distribution over the different output
variables. The age is finally predicted by taking the expectation
over these output variables, see Rothe et al. (2018).



J. Pries, S. Bhulai and R. van der Mei Machine Learning with Applications 10 (2022) 100412

t
t
a
d
a
t
w
t
w
t

3

i
(
a
t
n
r

a
v
S
i
c
T
r

i
h
w
p
b
f
c

c
a
t

Fig. 4. Dlib landmarks: Dlib predicts the coordinates of these 68 landmarks for each
face.
Source: extracted from Sagonas, Tzimiropoulos, Zafeiriou, and Pantic (2013).

• Gender prediction is made using two output variables, corre-
sponding to woman and man.

• For race prediction, a distinction is made between the follow-
ing races: Asian, Indian, Black, White, Middle Eastern, and Latino
Hispanic.

• deepface uses the haarcascade frontalface default detector from
OpenCV (Bradski, 2000) to center, trim, and resize an image.
However, it can occur that the facial detector does not recognize
a face. When this happens, the image is simply omitted from the
analysis of the corresponding attributes.

Serengil and Ozpinar (2020) self-reported on the performance of
he models. The mean absolute error of the age model was 4.65 and
he accuracy of the gender model was 97.44% with 96.29% precision
nd 95.05% recall. However, the models were not evaluated on the
atasets that will be used in this research, because there exist no
nnotated labels of these features yet. It is therefore unclear how well
hese models perform for the datasets that are used. Nevertheless, we
ant to stress the fact that these models are only used to compare

he characteristics of each dataset globally. Even if the models perform
orse (due to domain shift), they can still be insightful for comparing

he datasets.

.1.2. Predicting horizontal and vertical rotation
To measure the horizontal and vertical rotation, dlib (King, 2009)

s used. It can predict the position of 68 general landmarks on a face
see Fig. 4). These landmarks can be used to crop an image or measure
ttributes such as face and nose width/height. We use the landmarks
o estimate the horizontal and vertical position of a head. It must be
oted that these points remain a prediction. Especially when a head is
otated too much, these predictions lose accuracy.

There are many ways to estimate the horizontal rotation (yaw)
nd vertical rotation (pitch) of a head (Breitenstein, Kuettel, Weise,
an Gool, & Pfister, 2008; Díaz Barros, Mirbach, Garcia, Varanasi, &
tricker, 2019; Hu et al., 2004). However, we are mainly interested
n the differences between the datasets. Therefore, we are not much
oncerned about obtaining the best accuracy for each individual image.
hus, we use a simple concept to estimate the horizontal and vertical
otation, see Figs. 5 and 6.

Let 𝑥𝑖, 𝑦𝑖 denote the horizontal and vertical position of landmark
𝑖, respectively. Observe that when a head rotates sideways, the hori-

zontal distance between the tip of the nose and the corner of the eyes

4

Fig. 5. Horizontal rotation: Horizontal rotation is measured by dividing the red bar by
the yellow bar (see Eq. (1)). The positions of the blue dots are predicted by dlib. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 6. Vertical rotation: Vertical rotation is measured by dividing the red bar by the
yellow bar (see Eq. (2)). The positions of the blue dots are predicted by dlib. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

changes. To scale this measure properly, this distance is compared with
the horizontal distance between both lateral eye corners. Thus, the
fraction

|𝑥right lateral eye corner − 𝑥nose tip|

|𝑥right lateral eye corner − 𝑥left lateral eye corner|
(1)

s measured to approximate horizontal rotation (see Fig. 5). When a
ead is straight, the tip of the nose is assumed to be in the middle. But,
hen it rotates to a side, the fraction becomes smaller or larger, de-
ending on the side it is rotating towards. Note that this fraction could
e used to approximate the horizontal rotation in degrees using known
acial rotations. However, varying nose shapes and facial asymmetries
ould influence the results.

Using a similar key insight, vertical rotation can be measured by
omparing the vertical distance between the nose root and nose tip
nd the vertical distance between the nose root and the chin. Thus,
he fraction
|𝑦nose root − 𝑦nose tip|

|𝑦nose root − 𝑦chin|
(2)

is measured to approximate the vertical rotation, see Fig. 6. Note that
this measure is more subjective to personal traits, as nose lengths
can vary. Although this may raise issues for an individual image,
we believe that this method is sufficient for comparing the datasets
generally, as individual errors will not have a large impact on the
general comparison.

3.2. Facial embedding with face recognition models

Are new individuals created or are the generated images too similar
to individuals from the input dataset? To compare the images from
a human perspective, some kind of facial embedding is necessary. It
is imperative that the dimensionality of each image is reduced. Every
image consists of 1024 × 1024 pixels and each pixel consists of three
color values (RGB). Given the size of these datasets, it is unfeasible

to compare the pixels for each pair of images. Furthermore, a human



J. Pries, S. Bhulai and R. van der Mei Machine Learning with Applications 10 (2022) 100412

d

f
T
e
a
i
t
c
o

3

c
c
w
f
e
d
p
t
f
E
r

t

T
D
m
o
c
f

Z
s
t

a

3

d
R
t
r
t
o
s

t

P

does not compare two images pixel by pixel. Instead, one matches facial
features such as eyes, nose, hair, and mouth to evaluate if these two
images belong to the same person. This is why we decide to use face
recognition models, where a face is first embedded to a point in a latent
space, such that distances can be measured between faces. If two points
are close, they are assumed to be similar. In this way, we can determine
if new individuals are created. The four facial embedding methods used
for facial recognition are outlined below.

FaceNet . Schroff, Kalenichenko, and Philbin (2015) is well suited for
our objective. It is a deep convolutional network that converts an image
(160 × 160 pixels) to a 128-dimensional vector that lies on the 128-
imensional hypersphere. To find an appropriate embedding, FaceNet

uses a triplet loss function.

OpenFace. Amos, Ludwiczuk, and Satyanarayanan (2016) follows the
same concept as FaceNet (Schroff et al., 2015). It is, however, open-
source and focuses on real-time face recognition. It converts an im-
age (96 × 96 pixels) to a 128-dimensional vector that lies on the
128-dimensional hypersphere.

DeepFace. Taigman, Yang, Ranzato, and Wolf (2014) uses 3D face
modeling and a large deep neural network to recognize faces. It con-
verts an image (152 × 152 pixels) to a 4096-dimensional vector, which
is then used to identify individuals using a classification layer. Taigman
et al. (2014) call this vector the ‘‘raw face representation feature
vector’’.

VGG-face. Parkhi et al. (2015) uses the well-known VGG-16 archi-
tecture (Simonyan & Zisserman, 2014) to specifically train for fa-
cial recognition. It converts an image (224 × 224 pixels) to a 2622-
dimensional vector. This model also uses the specific loss function from
FaceNet (Schroff et al., 2015) to train the model for facial recognition.

Dimensionality reduction
The output vector of DeepFace (Taigman et al., 2014) and VGG-

Face (Parkhi et al., 2015) is too large to properly cluster on. Therefore,
the dimensionality is reduced with singular value decomposition (SVD)
rom a 4096- and 2622-dimensional vector to a 128-dimensional vector.
hus enforcing the same dimensions of the output vector for each
mbedding method. This dimensionality reduction could weaken the
ccuracy of these models, as some information is lost. However, if there
s still a clear distinction between the datasets in this lower dimension,
here must be a similar or larger, difference in the higher dimension. We
all these models Reduced DeepFace and Reduced VGG-Face from now
n.

.3. Clustering

Once the faces are embedded using face recognition models, images
an be compared. There are many options, however we will show why
lustering is the most natural approach in our view. In the end, we
ant to answer the question if actual new persons are generated. The

ace recognition methods enable us to measure the distance between
ach pair of images. If the distance between images A and B is below a
efined threshold, the images are considered to be of the same identical
erson. However, if the distance between images B and C is also below
he threshold, images A, B and C all belong to the same person and
orm a cluster. Thus, a clustering approach naturally arises by this logic.
ach cluster of images represents a single person, according to the face
ecognition methods.

To investigate if the output dataset contains the same identities as
he input dataset, two combinations are made:

• FFHQ ∪ (𝝍 = 𝟏): The input dataset combined with the generated
images without truncation;

• FFHQ ∪ (𝝍 = 𝟎.𝟓): The input dataset combined with the generated
images with truncation.
5

he clustering is done on the embeddings of these two combinations.
ue to the size of the datasets (170,000 images in total), a clustering
ethod with few parameters is preferred. Furthermore, there is no

r little domain knowledge of proper parameter values, making most
lustering methods too computationally expensive, as a range of values
or the parameters needs to be evaluated.

This leads to the decision to use HDBSCAN (Campello, Moulavi,
imek, & Sander, 2015). The idea behind this algorithm is that in-
tances 𝐴 and 𝐵 are neighbors if the distance between them is less
han or equal to 𝜖 and two instances 𝐴 and 𝐵 are in the same cluster

if there exists a sequence of instances from 𝐴 to 𝐵 such that each
successive instance is a neighbor of the previous. HDBSCAN allows
𝜖 to be altered post-completion. In this research, we use the imple-
mentation of McInnes, Healy, and Astels (2017) with the Euclidean
distance function. Although HDBSCAN has computational complexity
(𝑛2) (Campello et al., 2015) with 𝑛 the number of samples, McInnes,
Healy, and Astels (2016) show that HDBSCAN performs reasonably fast
for large datasets. Furthermore, it returns a hierarchical clustering. This
is useful to determine different statistics post-completion. If instead
the very similar DBSCAN (Ester, Kriegel, Sander, & Xu, 1996) is used,
some information about the parameter 𝜖 is necessary. 𝜖 determines the
neighborhood of each point. The relevant range for 𝜖 varies greatly for
different embeddings. Without large computational costs, it is possible
to determine the results for different values of 𝜖 using the hierarchical
cluster, after running HDBSCAN.

HDBSCAN has a single primary input parameter 𝑚𝑝𝑡𝑠 (Campello
et al., 2015). This parameter determines if a group of samples is large
enough to be considered an actual cluster. If two images are embedded
closely together, they should be able to form a cluster, as they can
belong to the same person. Thus, 𝑚𝑝𝑡𝑠 = 2 is a natural choice, as it
llows all cluster sizes except a cluster containing a single image.

.3.1. Cluster evaluation
The goal of clustering is to investigate if the input and output

atasets consist of different individuals. Therefore, purity (Manning,
aghavan, & Schütze, 2008) is used to measure the intertwinedness of

he clustering, as this metric evaluates if subclusters consist of purely
eal or generated images. Purity is measured by counting the samples of
he most frequent class in each cluster and dividing by the total number
f samples. More formally, let clustering 𝐶 of 𝑁 samples consist of
ubclusters 𝐶𝑖 for 𝑖 ∈ {1,… , 𝐾}, for some 𝐾 ∈ N>0. Each sample
𝑗 comes from a corresponding dataset labeled 𝑙𝑗 . For each subcluster
𝐶𝑖, let 𝑑𝑖 denote the label of the dataset that occurs most frequently,
hen:

urity(𝐶) = 1
𝑁

⋅
𝐾
∑

𝑖=1

∑

𝑗∈𝐶𝑖

1𝑙𝑗=𝑑𝑖 . (3)

If Purity(𝐶) = 1, it means that every subcluster only contains
samples of one class. If there are only two classes, a lower bound of
purity is Purity(𝐶) = 0.5, as in the worst case every subcluster is split
50/50 between the classes.

Baseline purity. Note that the upper and lower bound, previously given,
cannot always be achieved. This is dependent on the distribution of the
labels and the structure of a clustering. For example, if there is only one
cluster and the labels are divided 80/20, the purity score will be 0.8.
Therefore, a better baseline is necessary to evaluate how good/bad a
purity score of a clustering is.

Assume that the input and output dataset are sampled from the
same distribution. Then there is no way of telling which image is
drawn from which dataset. For each parameter combination, HDBSCAN
returns a cluster with a certain structure. Each cluster consists of a
number of subclusters all with a corresponding size. If there would
be no difference between the two datasets, it would correspond with
randomly assigning each sample to a position in the cluster. As we have
seen before, the structure of the cluster is important for the purity score.



J. Pries, S. Bhulai and R. van der Mei Machine Learning with Applications 10 (2022) 100412

i
t
t
s

4

v
o
a
t
t

4

b
t
t
(
m

4

Fig. 7. Age distribution: Age distribution averaged per dataset.

Therefore, we approximate the expected purity score of a randomly
assigned cluster with the same structure as provided by HDBSCAN.
Under the hypothesis that there is no difference between the datasets,
we get an average purity score that is ultimately used to compare the
results. If the results are close to this baseline, it means that the datasets
are very similar. On the other hand, if there is a clear distinction
between the baseline and the results, it would mean that the datasets
are not alike.

4. Analysis

The images from the datasets are analyzed in two ways. First,
models are used to predict certain attributes of each face (e.g., gen-
der and age). This will determine the distribution of these features,
which can be used to compare the datasets globally. Second, multiple
embedding methods are used in combination with a clustering method.
By looking inside each subcluster and evaluating the purity score (see
Section 3.3.1), a comparison between the datasets can be made. The
results of both approaches are discussed below.

4.1. Results attributes

For each image in every dataset, models were used to predict the
following attributes: age, gender, race, horizontal rotation, and vertical
rotation. The results are grouped together per dataset. This gives a
global overview of these attributes for each dataset. In particular, we
are interested in the similarity of the distributions. If these distributions
are different, it would suggest that the underlying datasets are in fact
different.

4.1.1. Results age
Without truncation (𝜓 = 1), the age distribution of the generated

mages is almost identical to the input dataset (FFHQ), see Fig. 7. Even
he small peak around 40 years is similar for these two datasets. If
runcation is added (𝜓 = 0.5), it can be observed that the distribution
hifts more towards the younger age groups.

.1.2. Results gender
The model returns for both classes (woman and man) a probability

alue. The dominant gender is the gender with the highest probability
f the two. Note that without truncation (𝜓 = 1), the distribution is
lmost the same as the input dataset (FFHQ), see Fig. 8. Whereas with
runcation (𝜓 = 0.5), relatively more females are generated compared
o the input.

.1.3. Results race
Table 1 shows the average probability mass for each race. Ta-

le 2 shows the distribution of the dominant race. This is the class
hat obtained the maximum probability given by the model. Without
runcation (𝜓 = 1), the distribution is very similar to the input dataset
FFHQ). However, if truncation is added (𝜓 = 0.5), white is predicted
ore often.
 a

6

Fig. 8. Dominant gender: Probability averaged per dataset that man or woman gets
the highest prediction probability.

Table 1
Average probability: Race distribution averaged per dataset.

Dataset Race

Asian Indian Black White Middle Eastern Latino Hispanic

FFHQ 0.1826 0.0425 0.0549 0.4889 0.0965 0.1346
𝜓 = 0.5 0.0921 0.0198 0.0118 0.6879 0.0805 0.1079
𝜓 = 1 0.1883 0.0366 0.0579 0.4900 0.0933 0.1339

Table 2
Dominant race probability: Probability averaged per dataset that a race class gets the
highest prediction probability.

Dataset Race

Asian Indian Black White Middle Eastern Latino Hispanic

FFHQ 0.1961 0.0183 0.0509 0.5775 0.0513 0.1058
𝜓 = 0.5 0.1031 0.0034 0.0084 0.7769 0.0346 0.0735
𝜓 = 1 0.2066 0.0100 0.0552 0.5719 0.0501 0.1062

Fig. 9. Horizontal rotation: Horizontal rotation averaged per dataset, predicted using
the landmarks of dlib (see Fig. 5).

4.1.4. Results horizontal rotation
As explained by Fig. 5, the horizontal rotation is measured using the

predicted landmarks of dlib (see Eq. (1)). In Fig. 9, it can be observed
that without truncation (𝜓 = 1), the distribution is nearly identical.
When truncation is added, the distribution narrows to 0.5, which means
that more straight faces are generated or the faces are more symmetric.

4.1.5. Results vertical rotation
As explained by Fig. 6, the vertical rotation is measured using

the predicted landmarks of dlib (see Eq. (2)). Again, the distribution
without truncation (𝜓 = 1) is identical to the distribution of the input
dataset FFHQ (see Fig. 10). If truncation is added (𝜓 = 0.5), the dis-
tribution shifts to the right. There are two possible explanations. First,
it could mean that the generated images are rotated more downwards.
Second, it is possible that the generated images have a longer nose. In
Fig. 11, the distributions of the nose length can be found. There is a
significant shift when truncation is added (𝜓 = 0.5). Thus, it can be
concluded that the nose lengths are on average larger for 𝜓 = 0.5.

.1.6. Failed detections deepface
The models that predict the age, gender, and race were trained using
specific face detector. When the detector finds a face, it automatically



J. Pries, S. Bhulai and R. van der Mei Machine Learning with Applications 10 (2022) 100412

d

T
w

4

a
m
a
d
a
i

t
s
p

Fig. 10. Vertical rotation: Vertical rotation averaged per dataset, predicted using the
landmarks of dlib (see Fig. 6).

Fig. 11. Nose length: Nose length averaged per dataset, estimated by measuring the
istance between the nose root and nose tip.

Fig. 12. Failure rate deepface detector: Probability averaged per dataset that the
haarcascade detector (Bradski, 2000) (used in deepface) fails to detect a face.

trims and resizes the image. However, this detector sometimes fails to
detect a face. In this case, the image is simply omitted from the attribute
analysis. Fig. 12 shows how often the detector is successful. Note that
with truncation (𝜓 = 0.5) this failure probability decreases drastically.

he results for FFHQ and no truncation (𝜓 = 1) are similar and
relatively high. A failure rate of around 10 percent is rather substantial.

In Figs. 13, 14, and 15, the first images of each dataset are shown
where the deepface detector fails. Only for 𝜓 = 0.5, it is not very clear
why these images fail. However, we suspect that the following factors
contribute to the general failure of the detector:

• eyewear;
• headwear;
• rotated heads;
• multiple persons;
• young age;
• obstructed eyes;
• structural errors (deformation, glitches, missing parts, etc.).

Note that these are only visual observations and should be investigated

further. t

7

Fig. 13. Deepface detector failures FFHQ: The first images from the input dataset
FFHQ, where the deepface detector does not detect a face.

Fig. 14. Deepface detector failures 𝜓 = 0.5: The first images from the output dataset
ith truncation (𝜓 = 0.5), where the deepface detector does not detect a face.

.1.7. Failed detections dlib
Dlib uses another face detector. The failure rate of this detector is

lso measured. As can be seen in Fig. 17, the failure probability is
uch lower compared to Fig. 12. It is notable that if truncation is

dded (𝜓 = 0.5), the failure probability is even zero. However, the
ifferences between the probabilities are so small that it is hard to draw
ny meaningful conclusions for the different datasets. The failure rate
s very small for each dataset.

In Figs. 16 and 18, the first images of each dataset are shown, where
he dlib detector fails. Note that for 𝜓 = 0.5, there are no failures. The
ame elements we observed in the failures of the deepface detector are
revalent in the dlib detector failures. However, the dlib detector seems
o be more robust compared to the deepface detector.



J. Pries, S. Bhulai and R. van der Mei Machine Learning with Applications 10 (2022) 100412

m
v
H
t
u
S
c
d
I

T

4

r
c
8
a
n
d
t
i
g
w
t

Fig. 15. Deepface detector failures 𝜓 = 1: The first images from the output dataset
without truncation (𝜓 = 1), where the deepface detector does not detect a face.

Fig. 16. Dlib detector failures FFHQ: The first images from the input dataset FFHQ,
where the dlib detector does not detect a face.

Fig. 17. Failure rate dlib detector: Probability averaged per dataset that the frontal
face detector (used in dlib) fails to detect a face.

4.2. Results clustering

In Section 3.3, it is discussed why clustering is a natural approach
to determine if the newly generated images belong to an existing
 g

8

Fig. 18. Dlib detector failures 𝜓 = 1: The first images from the output dataset without
truncation (𝜓 = 1), where the dlib detector does not detect a face.

Table 3
Maximum subclusters: For each dataset combination and facial embedding method, the
maximum number of subclusters is determined with 𝑚𝑝𝑡𝑠 = 2.

Facial embedding Dataset combination

FFHQ ∪ (𝜓 = 1) FFHQ ∪ (𝜓 = 0.5)

FaceNet 5170 5592
OpenFace 2835 3598
Reduced DeepFace 2885 3153
Reduced VGG-Face 2865 2246

person. The clustering results can be seen in Fig. 19. Note that different
parameter values of 𝜖 are relevant for each embedding method. This

akes HDBSCAN (Campello et al., 2015) very useful, as the parameter
alue of 𝜖 can be changed post-computation. Given the parameters,
DBSCAN returns a cluster. Two measures are of our interest. First,

he number of subclusters within each cluster. This indicates how many
nique persons exist in the data according to the embedding methods.
econd, the purity of a cluster is measured (see Section 3.3.1). We
luster on the combination of the input dataset (FFHQ) and the output
ataset with either no truncation (𝜓 = 1) or with truncation (𝜓 = 0.5).
n this way, the output dataset can be compared with the input dataset.

For each facial embedding the maximum number of subclusters (
able 3) is determined with 𝑚𝑝𝑡𝑠 = 2 (see Section 3.3).

.2.1. Purity results
The purity results for 𝑚𝑝𝑡𝑠 = 2 are shown in Fig. 19. The relevant

ange for 𝜖 is chosen based on the number of clusters. Two main
onclusions can be drawn from these graphs. First of all, 7 out of
clusterings show a clear distinction between the baseline and the

ctual purity score. Only OpenFace without truncation (𝜓 = 1) shows
o obvious separation. Therefore, it can be concluded that there is a
efinite difference between the input and the output datasets. Thus,
he generated images belong to different persons compared to the
nput dataset, according to the facial recognition methods. Second, the
ap between the baseline and the actual purity score is much larger
ith truncation (𝜓 = 0.5) than without truncation (𝜓 = 1.0). Thus,

runcation makes it more likely that a cluster is predominantly real or
enerated.



J. Pries, S. Bhulai and R. van der Mei Machine Learning with Applications 10 (2022) 100412

(
s
t

5

c

Fig. 19. Clustering purity: Using HDBSCAN with 𝑚𝑝𝑡𝑠 = 2, 𝜖 determines which clustering is made. The red line (1) denotes the number of subclusters of each cluster. The blue line
2) is the purity score (see Section 3.3.1). The black line (3) shows the approximated purity score under the hypothesis that the two datasets are similarly distributed using 100
imulations (see Section 3.3.1). The left side is the combination FFHQ ∪ (𝜓 = 1), whereas the right side is the combination FFHQ ∪ (𝜓 = 0.5). (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)
H
g
i

. Conclusion and further research

We presented a general two-pronged approach that tries to humanly
ompare the input and output datasets for a given face generator.
 M

9

owever, we explicitly applied this approach to the state-of-the-art
enerator StyleGAN2 (Karras et al., 2019). We started by comparing the
nput dataset (FFHQ) and the output datasets based on their attributes.
ultiple models were used to predict attributes (age, gender, race,



J. Pries, S. Bhulai and R. van der Mei Machine Learning with Applications 10 (2022) 100412

a
g
p
g
c

5

p
t
b
d
b
t
v

e
t
d
(
i
w
o
w

b
t
c
d
e
(
o
c
s
t
i
I
w
a
a
I
u
i
t
t
t
t
u
‘
a
s
h
d
a
m
c

C

F
W
j
S

horizontal, and vertical rotation) for each image. The results were very
clear. The attribute distributions were the same for the input dataset
and the generated images without truncation (𝜓 = 1). However, when
truncation is added (𝜓 = 0.5), the attribute distributions shift signif-
icantly towards the attributes corresponding with the latent variable
used in truncation. Although there exist many evaluation measures
for GANs (Borji, 2018), the three most commonly used measures are:
Fréchet Inception Distance (FID), Inception Score (IS), and Precision and
Recall (P&R) (Borji, 2021; Shmelkov, Schmid, & Alahari, 2018). FID
measures the difference between the input and output images by em-
bedding them into the feature space of an Inception Net (trained on
ImageNet) (Borji, 2018). IS also uses the Inception Net to measure
the diversity of the generated images compared to the mean. P&R
quantifies how similar the generated images are to the input dataset
and how well the entire training dataset is covered. Additionally, Style-
GAN2 (Karras et al., 2019) evaluates the perceptual path length, (PPL)
which measures the difference between the VGG-16 embedding (Si-
monyan & Zisserman, 2014) of two consecutive images, where a path
in the latent space is subdivided into linear segments (Karras et al.,
2018). These measures have been used to evaluate the performance of
StyleGAN2 (Karras et al., 2019). Thus, the observation that StyleGAN2
is able to learn the input dataset is not new. It is known that GANs
are able to learn the input distribution, although training sometimes
appears successful, whilst the target distribution is actually far from the
trained distribution (Arora, Ge, Liang, Ma, & Zhang, 2017). However,
it has not previously been shown that higher-level human concepts are
also preserved. It could be that somehow these measures indirectly
assess these human concepts, although this has not yet been show.
This article gives a direct approach and demonstrates that such human
concepts are indeed preserved, which further strengthens the work
of Karras et al. (2019).

In addition, four facial embedding models (FaceNet, OpenFace, Re-
duced DeepFace, and Reduced VGG-Face) were used to embed the im-
ages. This allowed us to cluster each combination of input and output
dataset. By determining the purity score, which measures how inter-
twined each subcluster is, we were able to show that the generated
images are not grouped together with the input dataset. This means that
StyleGAN2 is able to generate new persons that do not exist in the input
dataset, according to the facial embeddings. Recently, Khodadadeh
et al. (2022) had a similar idea of using a face recognition method
in combination with StyleGAN2. They used FaceNet in a loss function
to generate faces with StyleGAN2 that belong to the same identity.
Furthermore, they used 35 attribute methods to steer the latent space
in order to generate faces with modified attributes, which is different
compared to our research. The insight that StyleGAN2 is capable of
generating new identities is novel and one of the contributions of our
research.

Summarizing, by using a two-pronged humanly approach, con-
sisting of predicting human attributes (Section 3.1) and clustering
using face recognition models (Sections 3.2 and 3.3), the following
conclusions can be drawn:

• The images generated by StyleGAN2 (without truncation) have
the same attribute distributions as the input dataset, according to
the prediction models.

• The generated faces belong with high probability to different
persons compared to the input dataset, according to the clustering
using face recognition models.

• Adding truncation to the latent variable space changes the at-
tribute distributions towards the attributes corresponding with
the latent variable used in truncation, according to the prediction
models.

Generalizing, our approach can also be used for other face gener-
ators. It is not specifically tailored for StyleGAN2. Furthermore, our
approach is modular in the sense that different attribute prediction and

facial embedding methods can be added or removed. It should therefore –

10
be used in conjunction with other evaluation measures such as FID
nd PPL to give a broader perspective of the performance of a face
enerator. It addresses different questions and concerns compared to
revious measures. When our approach, for example, shows that the
enerated images belong to identities in the input dataset, adaptations
ould be made if this effect is undesirable due to privacy issues.

.1. Future work

Finally, we address a number of topics for future research. Section 4
rovides multiple insights that should be explored further. First, note
hat the maximum number of subclusters is relatively small (see Ta-
le 3). Not more than 5592 subclusters are formed maximally for a
ataset consisting of 170,000 images. A lot of images are considered to
e anomalies, which means that there is no face that closely resembles
heirs. It could be that either the dataset is too small, due to the wide
ariety of possible faces, or the embedding methods are too specific.

Second, truncation ensures that the latent variables lie closer to the
xpected intermediate latent variable �̄� (see Section 2.1). In the results,
he attributes were very similar for the input dataset and the output
ataset without truncation (𝜓 = 1). However, when truncation is added
𝜓 = 0.5), there was a shift in the attribute distributions. Our hypothesis
s that this shift stems from the attribute values of the images generated
ith �̄� as intermediate latent variable (see Fig. 2). Taking the average
f the predicted attribute values for the first 1000 images, generated
ith �̄�, leads to Table 4.

When we examine the differences in the attribute distributions
etween truncation (𝜓 = 0.5) and no truncation (𝜓 = 1), and compare
hese with the difference between Tables 4 and 5, we see that they coin-
ide. Thus, we hypothesize that adding truncation focuses the attribute
istributions towards the attribute values belonging to the faces gen-
rated with the expected intermediate latent variable �̄�. Karras et al.
2019) regulate the generator to smoothen the perceptual path length
f generated images under small perturbations in the latent space. This
ould be a reason why the human attributes are also similar under
mall perturbations. The hypothesis can be tested by replacing �̄� in
he truncation procedure by a different intermediate latent variable and
nvestigating the attribute distributions of the newly generated images.
f the hypothesis holds, this method can also be used to generate images
ith the desired attributes. Future research is needed to explore how �̄�
nd the truncation variable influences the attribute distributions. The
ttribution methods that were used are all trained on alternate datasets.
t is unclear how well their performance transfers to the data that is
sed in this research. Nevertheless, it still provides the insight that the
nput and output distributions were similar. Still, it remains interesting
o evaluate how well the models can transfer their learned knowledge
o this dataset. Additionally, the goal of our approach was to evaluate
he generator in a more humanlike way. We decided to use methods
hat were trained using humanly labeled data, as it was unfeasible for
s to label this dataset ourselves. However, it remains uncertain how

humanlike’ these methods are. Are they actually predicting correct
ttribute labels for our datasets? Although this questions is beyond our
cope, it is interesting to evaluate if these models are good at replacing
uman experts. Lastly, the facial recognition methods are trained using
atasets of real images. The results showed that the generated images
re embedded differently than the input images. If the facial embedding
ethods are also trained using generated faces, a better comparison

ould possibly be made.

RediT authorship contribution statement

Joris Pries: Conceptualization, Methodology, Software, Validation,
ormal analysis, Investigation, Data curation, Writing – original draft,
riting – review & editing, Visualization, Project administration. Sand-
ai Bhulai: Conceptualization, Validation, Writing – review & editing,
upervision. Rob van der Mei: Conceptualization, Validation, Writing

review & editing, Supervision.



J. Pries, S. Bhulai and R. van der Mei Machine Learning with Applications 10 (2022) 100412
Table 4
Attribute predictions �̄�: Average predicted attribute values for 1000 images (seeds 0000–0999) generated with the expected intermediate latent variable �̄�.

Age (years) Gender (prob.) Race (prob.) Horizontal rotation Vertical rotation Failed deepface
(prob.)

Failed dlib
(prob.)

23.7 Woman
0.649

Man
0.351

Asian Indian

0.504 0.345 0 0
0.0009 0.0002

Black White

0.0002 0.9975

Middle eastern Latino Hispanic

0.0006 0.0005
Table 5
Attribute predictions (𝜓 = 1): Averaged attribute values of the output dataset without truncation.

Age (years) Gender (prob.) Race (prob.) Horizontal rotation Vertical rotation Failed deepface
(prob.)

Failed dlib
(prob.)

31.6 Woman
0.4158

Man
0.5842

Asian Indian

0.497 0.306 0.1 0.014
0.2066 0.0100

Black White

0.0552 0.5719

Middle eastern Latino Hispanic

0.0501 0.1062
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Availability of data and material

All data used in this research is cited in the appropriate sections.

Acknowledgments

The authors wish thank the anonymous referees for their use-
ful comments, which has led to a significant improvement of the
readability and quality of the paper.

References

Amos, B., Ludwiczuk, B., & Satyanarayanan, M. (2016). OpenFace: A general-purpose
face recognition library with mobile applications: Technical report. CMU-CS-16-118,
CMU School of Computer Science.

Arora, S., Ge, R., Liang, Y., Ma, T., & Zhang, Y. (2017). Generalization and equilibrium
in generative adversarial nets (gans). CoRR abs/1703.00573 URL: http://arxiv.org/
abs/1703.00573 arXiv:1703.00573.

Borji, A. (2018). Pros and cons of gan evaluation measures. http://dx.doi.org/10.48550/
ARXIV.1802.03446, URL: https://arxiv.org/abs/1802.03446.

Borji, A. (2021). Pros and cons of gan evaluation measures: New developments. http://
dx.doi.org/10.48550/ARXIV.2103.09396, URL: https://arxiv.org/abs/2103.09396.

Bradski, G. (2000). The opencv library. Dr. Dobb’s Journal of Software Tools.
Breitenstein, M. D., Kuettel, D., Weise, T., van Gool, L., & Pfister, H. (2008). Real-time

face pose estimation from single range images. In 2008 IEEE conference on computer
vision and pattern recognition (pp. 1–8).

Brock, A., Donahue, J., & Simonyan, K. (2018). Large scale gan training for high fidelity
natural image synthesis. arXiv:1809.11096.

Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities
in commercial gender classification. In S. A. Friedler, & C. Wilson (Eds.), Proceedings
of the 1st conference on fairness, accountability and transparency (pp. 77–91). New
York, NY, USA: PMLR, URL: http://proceedings.mlr.press/v81/buolamwini18a.
html.

Campello, R. J. G. B., Moulavi, D., Zimek, A., & Sander, J. (2015). Hierarchical density
estimates for data clustering, visualization, and outlier detection. ACM Transactions
on Knowledge Discovery from Data, 10. http://dx.doi.org/10.1145/2733381.

Díaz Barros, J. M., Mirbach, B., Garcia, F., Varanasi, K., & Stricker, D. (2019). Real-time
head pose estimation by tracking and detection of keypoints and facial landmarks.
In D. Bechmann, M. Chessa, A. P. Cláudio, F. Imai, A. Kerren, P. Richard, A. Telea,
& A. Tremeau (Eds.), Computer vision, imaging and computer graphics theory and
applications (pp. 326–349). Cham: Springer International Publishing.
11
Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise (pp. 226–231). AAAI Press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et
al. (2014). Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, K. Q. Weinberger (Eds.), Advances in neural information processing
systems, Vol. 27 (pp. 2672–2680). Curran Associates, Inc., URL: http://papers.nips.
cc/paper/5423-generative-adversarial-nets.pdf.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G., & Hochreiter, S.
(2017). Gans trained by a two time-scale update rule converge to a nash
equilibrium. CoRR abs/1706.08500 URL: http://arxiv.org/abs/1706.08500 arXiv:
1706.08500.

Hu, Yuxiao, Chen, Longbin, Zhou, Yi, & Zhang, Hongjiang (2004). Estimating face
pose by facial asymmetry and geometry. In Sixth IEEE international conference on
automatic face and gesture recognition, 2004. proceedings (pp. 651–656).

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans
for improved quality, stability, and variation. CoRR abs/1710.10196 URL: http:
//arxiv.org/abs/1710.10196 arXiv:1710.10196.

Karras, T., Laine, S., & Aila, T. (2018). A style-based generator architecture for
generative adversarial networks. CoRR abs/1812.04948 URL: http://arxiv.org/abs/
1812.04948 arXiv:1812.04948.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2019). Analyzing
and improving the image quality of stylegan. CoRR abs/1912.04958.

Khodadadeh, S., Ghadar, S., Motiian, S., Lin, W. A., Bölöni, L., & Kalarot, R. 2022.
Latent to latent: A learned mapper for identity preserving editing of multiple
face attributes in stylegan-generated images. In Proceedings of the IEEE/CVF winter
conference on applications of computer vision (WACV) (pp. 3184–3192).

King, D. E. (2009). Dlib-ml: A machine learning toolkit. Journal of Machine Learning
Research, 10, 1755–1758.

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval.
Cambridge, UK: Cambridge University Press, URL: http://nlp.stanford.edu/IR-book/
information-retrieval-book.html.

McInnes, L., Healy, J., & Astels, S. (2016). Benchmarking performance and scaling
of python clustering algorithms. URL: https://hdbscan.readthedocs.io/en/latest/
performance_and_scalability.html.

McInnes, L., Healy, J., & Astels, S. (2017). Hdbscan: Hierarchical density based
clustering. The Journal of Open Source Software, 2. http://dx.doi.org/10.21105/joss.
00205.

Merler, M., Ratha, N. K., Feris, R. S., & Smith, J. R. (2019). Diversity in faces. CoRR
abs/1901.10436 URL: http://arxiv.org/abs/1901.10436 arXiv:1901.10436.

Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. In M. W.
J. Xianghua Xie, & G. K. L. Tam (Eds.), Proceedings of the British machine vision
conference (pp. 41.1–41.12). BMVA Press, http://dx.doi.org/10.5244/C.29.41.

Rothe, R., Timofte, R., & Van Gool, L. (2018). Deep expectation of real and apparent
age from a single image without facial landmarks. International Journal of Computer
Vision, 126, 144–157. http://dx.doi.org/10.1007/s11263-016-0940-3.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
Imagenet large scale visual recognition challenge. International Journal of Computer
Vision, 115, 211–252. http://dx.doi.org/10.1007/s11263-015-0816-y.

Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., & Pantic, M. (2013). 300 Faces in-the-
wild challenge: The first facial landmark localization challenge. In 2013 IEEE
international conference on computer vision workshops (pp. 397–403).

http://refhub.elsevier.com/S2666-8270(22)00087-1/sb1
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb1
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb1
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb1
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb1
http://abs/1703.00573
http://arxiv.org/abs/1703.00573
http://arxiv.org/abs/1703.00573
http://arxiv.org/abs/1703.00573
http://arxiv.org/abs/1703.00573
http://dx.doi.org/10.48550/ARXIV.1802.03446
http://dx.doi.org/10.48550/ARXIV.1802.03446
http://dx.doi.org/10.48550/ARXIV.1802.03446
https://arxiv.org/abs/1802.03446
http://dx.doi.org/10.48550/ARXIV.2103.09396
http://dx.doi.org/10.48550/ARXIV.2103.09396
http://dx.doi.org/10.48550/ARXIV.2103.09396
https://arxiv.org/abs/2103.09396
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb5
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb6
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb6
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb6
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb6
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb6
http://arxiv.org/abs/1809.11096
http://proceedings.mlr.press/v81/buolamwini18a.html
http://proceedings.mlr.press/v81/buolamwini18a.html
http://proceedings.mlr.press/v81/buolamwini18a.html
http://dx.doi.org/10.1145/2733381
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb10
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb10
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb10
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb10
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb10
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb10
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb10
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb10
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb10
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb11
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb11
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb11
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://abs/1706.08500
http://arxiv.org/abs/1706.08500
http://arxiv.org/abs/1706.08500
http://arxiv.org/abs/1706.08500
http://arxiv.org/abs/1706.08500
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb14
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb14
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb14
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb14
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb14
http://abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://abs/1812.04948
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
http://abs/1912.04958
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb19
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb19
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb19
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html
https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html
https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html
http://dx.doi.org/10.21105/joss.00205
http://dx.doi.org/10.21105/joss.00205
http://dx.doi.org/10.21105/joss.00205
http://abs/1901.10436
http://arxiv.org/abs/1901.10436
http://arxiv.org/abs/1901.10436
http://dx.doi.org/10.5244/C.29.41
http://dx.doi.org/10.1007/s11263-016-0940-3
http://dx.doi.org/10.1007/s11263-015-0816-y
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb27
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb27
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb27
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb27
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb27


J. Pries, S. Bhulai and R. van der Mei Machine Learning with Applications 10 (2022) 100412

S

S

S

S

S

V

W

X

Z

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X., et
al. (2016). Improved techniques for training gans. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, R. Garnett (Eds.), Advances in neural information processing
systems. Curran Associates, Inc, URL: https://proceedings.neurips.cc/paper/2016/
file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf.

chroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for
face recognition and clustering. CoRR abs/1503.03832 URL: http://arxiv.org/abs/
1503.03832 arXiv:1503.03832.

erengil, S. I., & Ozpinar, A. (2020). Lightface: A hybrid deep face recognition
framework. In 2020 innovations in intelligent systems and applications conference (pp.
23–27). IEEE, http://dx.doi.org/10.1109/ASYU50717.2020.9259802.

hen, Y., Yang, C., Tang, X., & Zhou, B. (2020). Interfacegan: Interpreting the
disentangled face representation learned by gans. arXiv:2005.09635.

hmelkov, K., Schmid, C., & Alahari, K. (2018). How good is my gan?. In V. Ferrari,
M. Hebert, C. Sminchisescu, & Y. Weiss (Eds.), Computer vision – ECCV 2018 (pp.
218–234). Cham: Springer International Publishing.

imonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv:1409.1556.
12
Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). Deepface: Closing the gap to
human-level performance in face verification. In 2014 IEEE conference on computer
vision and pattern recognition (pp. 1701–1708).

Thomee, B., Shamma, D. A., Friedland, G., Elizalde, B., Ni, K., Poland, D., et al.
(2016). Yfcc100m. Communications of the ACM, 59, 64–73. http://dx.doi.org/10.
1145/2812802.

ezhnevets, V., Sazonov, V., & Andreeva, A. (2003). A survey on pixel-based skin color
detection techniques. In IN PROC. GRAPHICON-2003 (pp. 85–92).

est, J., & Bergstrom, C. (2019). Which face is real?. URL: http://www.whichfaceisreal.
com/learn.html.

u, J., Jin, L., Liang, L., Feng, Z., Xie, D., & Mao, H. (2017). Facial attractiveness
prediction using psychologically inspired convolutional neural network (pi-cnn).
In 2017 IEEE international conference on acoustics, speech and signal processing (pp.
1657–1661).

hou, S., Gordon, M. L., Krishna, R., Narcomey, A., Fei-Fei, L., & Bernstein, M.
S. (2019). Hype: A benchmark for human eye perceptual evaluation of gener-
ative models. http://dx.doi.org/10.48550/ARXIV.1904.01121, URL: https://arxiv.
org/abs/1904.01121.

https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
http://abs/1503.03832
http://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1503.03832
http://dx.doi.org/10.1109/ASYU50717.2020.9259802
http://arxiv.org/abs/2005.09635
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb32
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb32
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb32
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb32
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb32
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb34
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb34
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb34
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb34
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb34
http://dx.doi.org/10.1145/2812802
http://dx.doi.org/10.1145/2812802
http://dx.doi.org/10.1145/2812802
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb36
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb36
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb36
http://www.whichfaceisreal.com/learn.html
http://www.whichfaceisreal.com/learn.html
http://www.whichfaceisreal.com/learn.html
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb38
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb38
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb38
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb38
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb38
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb38
http://refhub.elsevier.com/S2666-8270(22)00087-1/sb38
http://dx.doi.org/10.48550/ARXIV.1904.01121
https://arxiv.org/abs/1904.01121
https://arxiv.org/abs/1904.01121
https://arxiv.org/abs/1904.01121

	Evaluating a face generator from a human perspective
	Introduction
	Datasets
	Truncation

	Methodology
	Attribute prediction
	Predicting age, gender, and race
	Predicting horizontal and vertical rotation

	Facial embedding with face recognition models
	Dimensionality reduction

	Clustering
	Cluster evaluation


	Analysis
	Results attributes
	Results age
	Results gender
	Results race
	Results horizontal rotation
	Results vertical rotation
	Failed detections deepface
	Failed detections dlib

	Results clustering
	Purity results


	Conclusion and further research
	Future work

	CRediT authorship contribution statement
	Declaration of competing interest
	Availability of data and material
	Acknowledgments
	References


