
Journal Pre-proof

Identifying populations at ultra-high risk of suicide using a novel machine learning method

Guus Berkelmans, Lizanne Schweren, Sandjai Bhulai, Rob van der Mei, Renske Gilissen

PII:	S0010-440X(23)00017-2
DOI:	https://doi.org/10.1016/j.comppsych.2023.152380
Reference:	YCOMP 152380

To appear in: *Comprehensive Psychiatry*

Please cite this article as: G. Berkelmans, L. Schweren, S. Bhulai, et al., Identifying populations at ultra-high risk of suicide using a novel machine learning method, *Comprehensive Psychiatry* (2023), https://doi.org/10.1016/j.comppsych.2023.152380

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier Inc.

±

Journal Pre-proof

¹ Highlights

Identifying populations at ultra-high risk of suicide using a novel machine learning method

Guus Berkelmans, dr. Lizanne Schweren, prof.dr. Sandjai Bhulai, prof.dr.
⁵ Rob van der Mei, dr. Renske Gilissen

• Three sub-populations with extremely high suic 'e rates, (> 50 per 100,000 person years): (1) people on unfit for vor.' Lenefits that were never married, (2) males on unfit for work belowfies, (3) and people aged 55-69 who live alone, were never married, and have a relatively low household income.

• Two sub-populations where the rate w. s s.gnificantly higher than expected: (1) widowed males, and (2) people aged 25-39 with a low level of education.

Junior

Identifying populations at ultra-high risk of suicide using a novel machine learning method

Guus Berkelmans^{a,b,c,d}, dr. Lizanne Schweren^b, prof.dr. Sandjai Bhulai^c,
 prof.dr. Rob van der Mei^{a,c}, dr. Renske Gilissen^b

^aCentrum Wiskunde & Informatica, Science Park 123, 1098XG, Amsterdam, The Netherlands

^b113 zelfmoordpreventie, Paasheuvelweg 25, 1105BP, Amsterdan. The Netherlands ^cVrije Universiteit Amsterdam, De Boelelaan 1111, 1081HV, Amsterdam, The Netherlands

 $^{d}g.a.berkelmans@vu.nl$

18 Abstract

¹⁹ Background

 $_{20}$ Targeted interventions for suicid $_{\circ}$ prevention rely on adequate identification

of groups at elevated risk. Several 1 sk factors for suicide are known, but little is known about the interactions between risk factors. Interactions between

risk factors may aid in detecting nore specific sub-populations at higher risk.
Methods

Here, we use a novel mathine learning heuristic to detect sub-populations at
ultra high-risk for suich to based on interacting risk factors. The data-driven
and hypothesis-free model is applied to investigate data covering the entire
population of the Necherlands.

29 Findings

We found three v_{1} -populations with extremely high suicide rates (i.e. >50suicides per 160,000 person years, compared to 12/100,000 in the general population), namely: (1) people on unfit for work benefits that were never married, (2) males on unfit for work benefits, and (3) those aged 55-69 who live alone, were never married and have a relatively low household income. Additionally, we found two sub-populations where the rate was higher than expected based on individual risk factors alone: widowed males, and people aged 25-39 with a low level of education.

38 Interpretation

³⁹ Our model is effective at finding ultra-high risk groups which can be targeted

 $_{40}\;$ using sub-population level interventions. Additionally, it is effective at iden-

Preprint submitted to Comprehensive Psychiatry

February 2, 2023

tifying high-risk groups that would not be considered risk groups based on
conventional risk factor analysis.

⁴³ Keywords: Suicide, Risk factors, Population data, Machine learning,

44 Interactions

45 1. Introduction

In the Netherlands alone, an average of five people die by suicide each day[1]. Every case of suicide marks a personal trage in both for the victim and for those left behind. Therefore, it is of utmost importance to imple-ment effective suicide prevention programmes et mu tiple levels, including interventions directed at the entire population (, g., public awareness cam-paigns), interventions targeting high-risk group; or sub-populations (e.g., training gatekeepers among professionals ercountering individuals with fi-nancial difficulties) and interventions to geting at-risk individuals (e.g., cog-nitive behavioural therapy for individ as. with suicidal thoughts)[2].

Interventions at the second le et, targeting sub-populations, require ade-quate identification and detection of groups at elevated risk of suicide. Multi-ple studies have been performed to detect risk factors for suicide [3, 4, 5, 6, 7]. Not unexpectedly, the most important predictor of death by suicide is a prior non-fatal suicide attempt of on program psychiatric hospitalization[6]. Experienc-ing stressful life events and rental health problems including depression and substance use problem's substantially increase the risk for suicide attempts and suicidal ideation, which in turn increases the risk of suicide [6]. In addi-tion, certain socio-demographic groups are at elevated risk, including but not limited to men, people of middle age, people of lower socio-economic status and people live τ alone [6, 1].

In complex and multifactorial outcomes such as mental illness, risk fac-tors are known to interact or accumulate. For instance, stressful life events may trigger a depressive episode in persons with a genetic vulnerability to depression[8]. To our knowledge, however, little is known about interacting socio-demographic risk factors for suicide. In a hypothetical example, one might expect that unemployment might increase the risk of suicide more for men living alone than for the rest of the population. The detection of rel-evant interacting socio-demographic risk factors will allow the identification of more specific sub-populations at elevated risk of suicide. This may in-crease the efficacy of targeted preventive interventions and has the potential

⁷⁶ to reduce suicide rates.

Machine learning methods offer new possibilities for flexible, data-driven, hypothesis-free and robust investigation of accumulating risk factors for sui-cide. A recent study performed such analyses using predominantly healthcare data and succeeded in identifying multiple relevant interactions[9]. Risk of suicide was higher, for instance, in men and women who had recently at-tempted suicide and were not being treated with pharmacotherapy. In a second study, including over 15,000 features (includin, but not limited to: demographics, diagnostic codes, procedure codes, and medication prescrip-tions) in the initial model and retaining 117 of then. recearchers were able to develop a risk prediction model with acceptable parameters to stratify hospital patients by suicide risk[10].

An important limitation of the above studies is their complexity, ham-pering translation of their results to actionable recommendations for clinical practice. Moreover, as Kirtley et al. have eccenly emphasized[11], current machine learning methods have limited $\gamma_{\mathcal{P}} \rho_{\ell}$ bilities to support decisions and interventions at the individual level, s taise-positive rates as well as false-negative rates are typically high T us, there is a need for more actionable and transparent machine-learning .nodels to aid detection of high-risk sub-groups rather than individuals.

In this paper, we preser a new machine learning model that allows for investigation of complex intervalions of socio-demographic risk factors whilst retaining interpretability. This model is applied to predict suicide risk groups in a dataset spanning the entire population of the Netherlands over a period of nine years, thereby ritigating sampling bias and sample size limitations. Our model yields datained and interpretable results to aid the identification of sub-populations of individuals at relatively high risk for suicide, which may aid targeted preventive interventions.

¹⁰⁴ 2. Material and Methods

105 2.1. Data

Statistic Netherlands (CBS) is a national administrative authority aiming to collect and provide reliable information that advances the understanding of social issues. CBS maintains a high-quality database containing, among others, socio-demographic and medical information regarding every inhabitant of the Netherlands. Analyses on CBS data are to be performed via

¹¹¹ a remote access connection to their computational servers. All results are ¹¹² verified prior to release, ensuring compliance with privacy laws.

For the current paper, we included data regarding all inhabitants of the Netherlands on the 31st of December of nine consecutive years (2011 to 2019), adding up to a total of 137,666,515 person years. Of those, 16,417 person years ended by suicide in the year following observation and 137,650,098 person years did not end by suicide in the year following observation.

118 2.2. Features of interest

The following socio-demographic predictor variables were measured on the 31st of December of the year preceding the out ome: sex, age, immi-gration background, household income, person income, household wealth or debts, level of education, physical healthcare costs, place in household, marital status, short-term unemployment ben ofits, long-term unemployment benefits and unfit for work benefits. For detail, see Table 1. Categorical variables were one-hot-encoded for use r n achine learning analyses, mean-ing that for each category a new val able was introduced which has value 1 if the individual was in said c teg ry and has value 0 otherwise. Contin-uous variables were split into mu ally exclusive response categories (e.g., quartiles) and also one-hot-encoded.

130 2.3. Model

A heuristic algorithm was devised to obtain interacting features which provide additional risk of suicide or reduce the risk. The obtained interaction features were proritised on statistical significance as well as model improvement. The algorithm comprises four steps.

Step 1: the data is divided into three disjoint partitions: a training set, a validation set and a test set. The training set includes fifty percent of person years ending in suicide (N=8,214) and one percent of all other person years (N=1,377,055) and is used to detect significant interactions between features of interest. The validation set includes forty percent of person years ending in suicide (N=6,512) and one percent of all other person years (N=1,377,870)and is used to estimate the final logistic regression model. The test set includes ten percent of person years ending in suicide (N=1,691) and one percent of all other person years (N=1,375,966) and is used to evaluate the performance of the final model.

Step 2: the algorithm identifies significant interactions between features
 of interest in the training dataset. For details, see Appendix A. In short,

Table 1: Table 1. Predictor variables or 'features of interest' included in the machine learning model, after sampling (all person years resulting in suicide were included and 3% of the person years not resulting in suicide were included, see model section), (ref) means the reference category.

Features	Response categories	Ν	%
Sex	Male (ref)	2050131	49.4
	Female	2097177	50.6
Age in years	10-24	835473	20.1
	25-39 (ref)	856591	20.7
	40-54	999010	24.1
	55-69	879303	21.2
	70+	576931	13.9
Immigration background	Dutch (ref)	3231078	77.9
	1st generation western	213524	5.1
	2nd generation western	207883	5.0
	1st generation non-western.	314951	7.6
	2nd generation non-weiten	179868	4.3
Personal income	1st quartile (ref)	1007657	24.3
	2nd quartile	1027422	24.8
	3rd quartile	1016962	24.5
	4th quartile	1015324	24.5
	Unknown	79943	1.9
Household income	1st quartile ref)	1019868	24.6
	2nd of art. e	1016622	24.5
	3rd Chart e	1016383	24.5
	4th qua. ile	1014626	24.5
Household wealth/debts	Tt quartile (ref)	1017399	24.5
riousenoid weating debits	2nd ruartile	1017837	24.5
	Ji quartile	1016503	24.5
	4 h juartile	1010000 1015760	24.5
Level of education	L .	892702	24.5
Level of education	fiddle (ref)	859185	21.0 20.7
	High	684749	16.5
	Unknown	1710672	41.3
Physical healthcare costs	€0 (ref)	59793	1.4
r nysicar nearthcare costs	€0 (1er) €1- €5000,	3635734	1.4 87.7
	€1- €3000, €5001-€10000	201167	4.9
	€10001+	183200	4.9
	Unknown	67414	$\frac{4.4}{1.6}$
Place in household	Child living at home		1.0
Place in nousenoid	Living alone	760069	10.3 19.4
	Partner in couple with children	$802714 \\ 1201518$	29.0
	Partner couple with children (ref)		29.0
	Other	1102279	
Manital status		280728	6.8
Marital status	Never married/registered partner (ref)	1714362	$41.3 \\ 44.3$
	Married/registered partner	1834896	-
	Divorced	348547	8.4
Un fit for month have fit	Widowed	232123	5.6
Unfit for work benefits	Yes	196522	4.7
C1	No (ref)	3950786	95.3
Short-term unemployment benefits	Yes	215734	5.2
• . • · · •	No (ref)	3931574	94.8
Long-term unemployment benefits	Yes	171810	4.1
	No (ref)	3975498	95.9

Journal Pre-proof

the algorithm defines a main-effects logistic regression model including all features listed in Table 1 (hereafter referred to as basic features). Next, interaction terms are added in an iterative manner. The algorithm looks at combinations of the form "X and Y", where X is a feature already present in the model, and Y is a basic feature. So the new combination feature "X and Y" would have value 1 if both feature X and feature Y have value 1. For each of these combinations, it calculates the rate at which it would improve the log-likelihood. Then we corrected for sub-population size, since larger sub-populations without an underlying effect or subride risk will still have a large effect on log-likelihood simply due to variance. The significant interactions that came out of this analysis were nst d and for the further analyses we focused on interactions of features that had the largest effects and also included at least 200 suicides. This was done because for suicide prevention interventions the primary interest is in sub-populations with a substantial number of suicides. After this a check was performed to ascertain whether this (interaction of) feature(s) t^{*}ul / improved the model. If it did not, it was removed. The process vas stopped when the ratio at which removals needed to be performed exceeded 10% and at least 30 interactions were tested.

Step 3: a logistic regression model was estimated on the validation 167 dataset including all signification interactions detected in step two. As the 168 data in the validation set is disjoint from the training set, the notion of over-169 fitting is removed and regular test statistics such as t-tests and p-values can 170 be interpreted.

171 Step 4: the following performance statistics were computed on the test 172 set: log-likelihooding an indicator of model fit, and area under the receiver 173 operating characteristics curve (AUC) as an indicator of the model's ability 174 to distinguish be ween those who died by suicide and those who did not.

175 2.4. Statistics

For each significant feature of interest and interaction between two or more features of interest, we report the logistic regression model β param-eters, odds ratios and corresponding confidence intervals. For interaction terms, we also report the compound odds ratios (CORs) and their con-fidence intervals, reflecting the summed effect of features when combined (e.g., $\exp(\beta_{male} + \beta_{widowed} + \beta_{male and widowed}))$). Also reported are the num-ber of suicides in the corresponding sub-populations for the validation set as well as the relative rate in said sets (per 100,000 inhabitants per year), which

are corrected for the sampling procedure (number of suicides is scaled up by
a factor of 2.5, and number of non-suicides by a factor of 100).

186 3. Results

187 3.1. Main effects

For a complete list of main effects predicting death by suicide, see Ap-pendix B. Most important risk factors for suicide were 1. ddle age (β_{40-54} vs $_{25-39}$ = 0.48, 95% CI = [0.39, 0.57], OR = 1.62, 95\% CI = [1.4°, 1.77]; $\beta_{55-69 \ vs \ 25-39}$ = 0.37, 95% CI = [0.22, 0.52], OR = 1.45, 95% Cl = 1.25, 1.68], living alone ($\beta_{living alone vs couple without children} = 0.88, 95''_{0}$ C = [0.77, 0.98], OR = 2.41, 95% CI = [2.16, 2.51]), high healthcare cos s $\binom{2}{k^2 - 10k/year}$ vs none = 0.87, 95% CI = [0.64, 1.11], OR = 2.39, 95% CI -[1.50, 3.03]; $\beta_{>10k/year \ vs \ none}$ = 1.53, 95% CI = [1.26, 1.80], OR = 4.62, 55% CI [3.53, 6.05], being di-vorced ($\beta_{divorced \ vs \ never \ married} = 0.51, 95\%$ CI = [0.39, 0.62], OR = 1.67, 95% CI[1.48, 1.86]), and receiving benefits ($\beta_{shc \cdot t-term \ unemployment \ vs \ not} = 0.19$, 95% CI [0.08, 0.30], OR = 1.21, 95% Ci = [1.08, 1.35]; $\beta_{long-term \ unemployment \ vs \ not}$ = 0.54, 95% CI = [0.42, 0.67], OF = 1.72, 95% CI = $[1.52, 1.95]; \beta_{unfit for work vs not}$ = 1.30, 95% CI [1.16, 1.44], OR = 3.67, 95% CI = [3.19, 4.22]). Most im-portant protective factors for scicide were female sex ($\beta_{female vs male} = -0.83$, 95% CI = [-0.90, -0.76], O'(\sim 0.44, 95\% CI = [0.41, 0.47]), younger age $(\beta_{10-24 vs 25-39} = -0.85, 95\% \text{CI} = [-1.00, -0.71], \text{OR} = 0.43, 95\% \text{CI} = [0.37, -0.71], \text{OR} = [0.37, -0.7$ (0.49]), non-western mign, tion background ($\beta_{first generation non-western vs Dutch$ = -1.02, 95% CI = [-1, 1.5, -0.89], OR = 0.36, 95% CI = $[0.32, 0.41]; \beta_{second generation non-western vs Dutch$ = -0.53, 95% CI = [-0.70, -0.35], OR = 0.59, 95% CI = [0,50, 0.70]) and higher income (e.g. $p_{personal income in 4th quartile vs 1st quartile} = -0.62, 95\%$ CI of the differences between non-reference groups (i.e. 40-54 vs 10-24), see Ap-pendix C. Among the general population there is a suicide rate of 11.8 per 100,000. When considering relative suicide rates among the sub-populations corresponding to the various features, the highest rate among the basic fea-tures is among the people who are unfit for work with a suicide rate of 47.0 per 100,000 on the validation set, with the second highest rate being among the long-term unemployed with a suicide rate of 32.1 per 100,000 on the val-idation set, and the rest of the sub-populations having rates below 30.0 per 100,000.

Table 2 lists all twenty interaction terms included in the final logistic regression model. Of those, seventeen yielded significant effects in the validation dataset (p < 0.05). Among the interaction features there are ten sub-populations identified with relative risks higher than 30.0 per 100,000 on the validation set.

Broadly, three categories of interacting risk factors can be distinguished (with minor crossover): (1) interactions related to age (2) interactions related to sex, and (3) interactions related to marital statue. Two significant interactions did not fit any of these categories.

Interactions involving age: among people of young working age (25-39) years old), but not in the other age groups, a low let \mathbb{C}^2 of education is an im-portant risk factor for suicide (OR=1.58 (95% CUOR [1.35, 1.86], COR=1.63 [1.38, 1.93]). In contrast, being unemployed is εn important risk factor for suicide in the general population but not an one people of middle age (40-54 years old; OR=0.80 (95% CI OR [0.67,0.%], COR=2.23 [1.90,2.61])). Among those aged between 55-69, having ne or been married is an important risk factor (OR=1.38 (95% CI OR [1.6,1.65], COR=2.27 [1.64,2.44])), while high healthcare costs (OR=0.64 (95% \subset OR [0.53,0.78], COR=4.30 [3.16,5.86])) and living alone (OR=0.66 (9.% CI OR [0.51,0.84], COR=2.27 [1.78,2.9])) are less of a risk factor in this age group compared to other age groups (though they do remain risk f ctors). High healthcare costs are also less important for persons a, ed 70 or older (OR=0.52 (95% CI OR [0.41, 0.64]), $COR=2.14 [1.58, 2.90]_{1}$

Interactions involving sex: although being widowed is not a risk factor in general (OR=0.91 (95% CI OR [0.76,1.10])) it is a major one for males (OR=1.72 (95% CI OR [1.4,2.09], COR=1.56 [1.31,1.86])). Being a part of a couple with a ch.'d at home is very protective in general (OR=0.43 (95% CI OR [0.37,0.51])), however this effect is greatly reduced for males (OR=1.90 (95% CI OR [1.61,2.22], COR=0.82 [0.73,0.92])) although it does remain a protective factor.

Being on unfit for work benefits is a larger risk factor for females (OR=3.67 (95% CI OR [3.18,4.23])) than it is for males (OR=0.68 (95% CI OR [0.59,0.78], COR=2.48 [2.21,2.79])). Having higher healthcare costs (€10001 or more) is a larger risk factor for females (OR=4.62 (95% CI OR [3.54,6.05])) than it is for males (OR=0.74 (95% CI OR [0.63,0.87], COR=3.42 [2.64,4.43])).

Interactions involving marital status: although never being married protective in general, in specific groups it is a risk factor: those unfit for

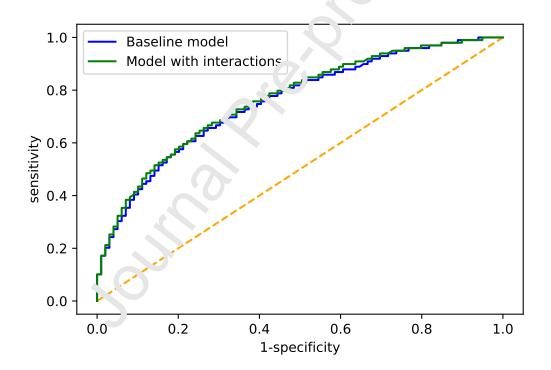
Journal Pre-proof

Table 2: Interaction terms found by the algorithm as tested on the validation set. With corresponding Beta parameters, Odds-Ratios, Compound Odds Ratios, absolute and relative number of suicides within the sub-population within the validation set. Sub-populations with ≥ 30 suicides per 100,000 are in bold.

Interaction term	Beta (95% CI)	Odds-Ratio (95% CI)	Corpound Odds Ratic '95%CI)	Number of suicides	Relative number of suicides
Aged 25-39 and low level of education	0.46 ([0.30, 0.62])	1.58 (1.35, 1.86])	1.53 (, 38, 1.93])	259	20.07
Aged 40-54 and long- term unemployment	-0.22 ([-0.41, -0.04])	$0.80 \ ([0.67, \ 0.96])$	2. 3 (190, 2.61])	234	35.58
Aged 55-69 and living alone	-0.42 ([-0.67,-0.17])	$0.66 \ ([0.51, \ 0.84])$	27 ([1.78, 2.9])	833	35.54
Aged 55-69 and living alone and Dutch	0.18 ([-0.04, 0.39])	1.20 ([0.96, 1.48])	2.71 ([2.30, 3.19])	728	39.37
immigration background Aged 55-69 and living alone and household income in the 1st quartile and never married	-0.21 ([-0,43, 0.01])	0.81 ([0.65, 1.01])	3.44~([2.60,4.55])	229	57.22
Aged 55-69 and never	$0.32 \ ([0.15, \ 0.5])$	1.38 (f16 [1.65])	$2.00 \; ([1.64, 2.44])$	427	34.81
married Aged 55-69 and part of couple without child at home	-0.46 ([-0.63, -0.29])	0.、	0.91 ([0.79, 1.05])	622	9.38
nome Aged 55-69 and healthcare costs of €10001 or more	-0.44 ([-0.63, -0.25]	0.64~([0.53,~0.78])	$4.30\;([3.16,5.86])$	238	30.70
Aged 70 or older and healthcare costs of €10001 or more	-0.66 ([-0.88, -0 1])	0.52 ([0.41, 0.64])	2.14 ([1.58, 2.9])	175	15.59
Male and unfit for work Male and part of couple with child at home	-0.39 ([-0. ^ℓ 1, 0. ¬]) 0.64 ([0.48, 0.ℓ)	0.68 ([0.59, 0.78]) 1.90 ([1.61, 2.22])	2.48 ([2.21 , 2.79]) 0.82 ([0.73, 0.92])	642 801	58.56 10.94
Male and widowed Male and healthcare costs of $\pounds10001$ or more	0.54 ([`.33, c.74]) -0.3(([-c ¹ 6, -0.14])	$\begin{array}{c} 1.72 \ ([1.40, \ 2.09]) \\ 0.74 \ ([0.63, \ 0.87]) \end{array}$	$\frac{1.56 ([1.31, 1.86])}{3.42 ([2.64, 4.43])}$	218 456	31.31 27.48
Never married and unfit for work	- 03 (-0.26, 0.19])	0.97 ([0.77, 1.21])	3.54 ([2.77, 4.53])	441	88.48
Never married and unfit for work and	9.54 (ເ0.31, 0.78])	$1.72 \ ([1.36, \ 2.18])$	$6.45 \; ([4.83, 8.61])$	321	83.01
physical healthce e costs between ₹ 1 a d €5000					
Never married d household income i the 1st quartile	0.30 ([0.18, 0.43])	1.35 ([1.19, 1.54])	1.35 ([1.19, 1.54])	1438	25.69
Never married and average level of education	$0.25 \ ([0.12, \ 0.37])$	$1.28 \ ([1.13, \ 1.45])$	1.28 ([1.13, 1.45])	871	13.59
Never married and personal income in the 2nd quartile	0.27 ([0.15, 0.4])	1.31 ([1.16, 1.49])	1.04 ([0.93, 1.17])	259	20.07
Unfit for work and personal income in the 2nd quartile	-0.38 ([-0.53, -0.23])	0.68 ([0.59, 0.8])	$1.98\;([1.65,2.38])$	234	35.58
Education unknown and physical healthcare costs between €1 and €5000	0.28 ([0.16, 0.41])	$1.32 \ ([1.17, 1.51])$	$1.21 \; ([0.95, 1.54])$	833	35.53

work with low healthcare costs (OR=1.72 (95% CI OR [1.36,2.18], COR=6.45 [4.83,8.61])), those with the 25% lowest household incomes (OR=1.35 (95% CI OR [1.19,1.54], COR=1.35 [1.19,1.54])), and those with an average level of education (OR=1.28 (95% CI OR [1.13,1.45], COR=1.28 [1.13,1.45])).

Other interactions: finally, there are two interaction features that fit into none of the three major groups. Personal income being in the 2nd quartile is most protective for those who are unfit for work, though not so protective as to completely mitigate the risk associated with being unfit for work (OR=0.68 (95% CI OR [0.59,0.8], COR=1.9⁸ (1.65,2.38])). Lastly though education being unknown is a protective factor in general (OR=0.86(95% CI OR [0.75, 0.98])) this protective effect dis pp ars for those with low healthcare costs (OR=1.32 (95% CI OR [1.17,1.1], COR=1.21 [0.95,1.54])).


268 3.3. Model Performance

The baseline logistic regression model without interaction terms had a log-likelihood of -12184.54 and an AUC of 0.75. In comparison the logistic regression model with interaction terms had a log-likelihood of -12119.24 and an AUC of 0.76. See Figure 1 for the curves themselves.

273 4. Discussion

Effective suicide prevention programs include, among others, interven-tions targeting subgroup of people at particularly high-risk of suicide. Here, we designed a heuristic model to detect such subgroups based on interactions between risk factors, a. d applied it to data covering the entire population of the Netherlands. V_{e} identified three sub-populations at ultra-high risk for suicide, with rel. tive suicide rates of 50/100,000 person years or higher. In addition, we ide, tified several factors that when combined increase the risk of suicide, while in isolation they do not increase the risk of suicide. These risk factors would not be detected using traditional prediction models.

We identified three sub-populations at ultra-high risk of suicide, with social isolation and socio-economic hardship as common denominators. Compared to suicide rates in the general population of the Netherlands (11.8 suicides per 100,000 person years), people who were never married and unfit for work - and among them those with low healthcare costs - were up to 7.4 times more likely to die by suicide (88 suicides per 100,000 person years). Despite the relatively small size of this group in the Dutch population, in Figure 1: Receiver Operating Characteristics curve for the basel. γ and the interaction models, sensitivity is the true positive rate while 1-specificity is the false positive rate. The plot shows their values for a range of thresholds.

2012-2020 more than 100 suicides (7% of all suicides within that period) oc-curred in this group each year. The second ultra-high risk group concerns males who are unfit for work, with 59 suicides per 100,000 person years. These findings urge professionals in regular contact with individuals receiv-ing unfit for work benefits, including occupational healthcare professionals, community service providers and municipal workers, to pay particular at-tention to males and people who were never married. The third ultra-high risk group comprises individuals aged 55-69, who we e never married, are living alone and have a relatively low income, with 57 succides per 100,000 person years. Further studies, including longitudinal and qualitative studies, are needed to investigate how the combination of these specific risk factors culminates in extreme high-risk profiles.

In addition to the extreme high-risk group, we identified several risk fac-tors that increase the risk of suicide only in the presence of other risk factors. First, while neither young age (25-39 years old) nor lower level of education was found to be a risk factor in itself, to got ler they constituted a major risk profile. Among individuals of young a 'ult age, those with a lower level of ed-ucation presented with a relative sui ide rate more than double that of their peers with a medium or higher lev^{-1} of education (20.1 vs. 8.8 suicides per 100,000 person years). Our da'a does not provide insights into mechanisms that might underlie the elevand risk of suicide among young adults with lower education. In keeping vich our prior observation that socioeconomic hardship may be a com. on denominator, we speculate that, among many factors, job insecurity night play a role: young adults in the Netherlands, and especially those with lower levels of education, are more likely than other age groups to be affined temporary employment [12]. Job insecurity has been linked to pocter mental health [13], which in turn is linked to a higher sui-cide risk[4]. To substantiate this hypothesis or find alternative explanations, we recommend research into risk factors for suicide in this group, including socio-economic factors, external stressors, psycho-social circumstances and psychological vulnerabilities.

Second, widowhood did not increase the risk of suicide in the general population in our study, yet it did when combined with the known risk factor male sex. Among widowed males, the suicide rate is more than twice the rate observed in general male population. Previous studies including males only have reported a higher risk of suicide among widowed individuals[14, 15, 16], but to our knowledge the combined risk of widowhood and male gender has not previously been reported. The current study does not allow characterisa-

Journal Pre-proof

tion of the suicidal process within male widowed individuals. A recent study showed that male widows, compared to female widows, are generally protected from income loss yet are more likely to experience negative emotional consequences such as loneliness and depression[17]. Our findings underline the need for social support for males who lost their partner, and urge training of gatekeepers among professionals encountering these males.

Finally, we wish to draw the readers attention to two risk factors that each appear in a large number of significant interaction terms: (1) being of middle age (55-69 years old) and (2) having never been in arried. The large number of significant interactions involving these factors suggests risk profiles within the sub-populations of middle-aged individuals and individuals who were never married that differ from risk profiles in the general population.

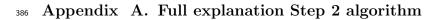
Several limitations to our approach should be considered when interpret-ing our findings. First, death by suicide is a elatively rare event, limit-ing our statistical power to find associations with risk factors. To achieve reliable model performance, we includ d a'l suicides that occurred in the Netherlands between 2012 and 2020. We are unable to assess whether re-sults are stable over time. Second, the model is constructed bottom-up. A top-down approach starting w. h all possible highest-level interactions might allow detection of more high-risk subgroups, however such approaches are also known to generate *m*, re false-positives. Third, adding interaction terms to the model improved rhodel performance only slightly (AUC=0.76 vs. AUC=0.75). While the validity of the identification of high-risk groups is not affected (AUC bet, een 0.7 and 0.8 is generally deemed 'acceptable'), it does suggest that even with highly complex statistical modelling predicting death by suicide amains challenging. Fourth, we did not have data regard-ing family his or of suicide, nor mental disorder diagnoses. These are both substantial risk i, ctors which might explain some of the associations. Lastly, since suicide rates differ substantially across nations, there might be a limit to generalisability, especially with regard countries with substantially different cultures.

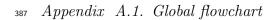
Our approach has many strengths. First, since we sampled from the entire population in a controlled manner, we avoid sampling bias. Second, our model is hypothesis-free, allowing identification of previously unidentified risk groups. Third, our model has flexible settings, allowing the user to adjust the trade-off between good model performance and statistically robust results. Finally, and in contrast to existing machine learning methods such as artificial neural networks, our model is open and readily interpretable.

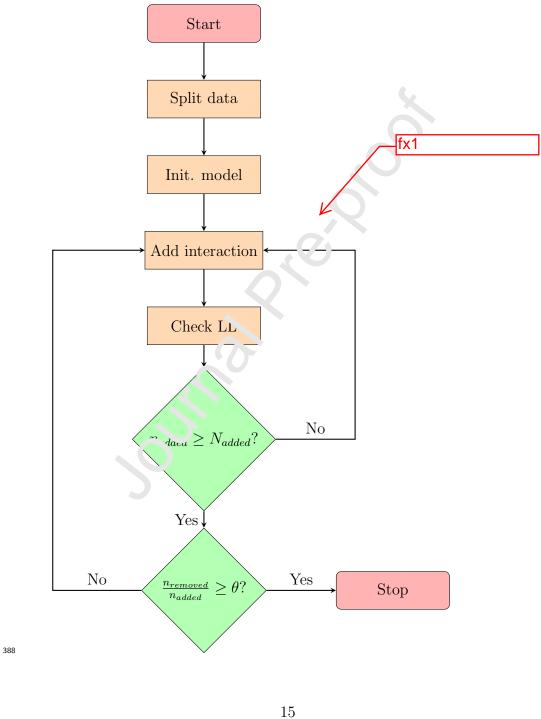
366 4.1. Conclusions

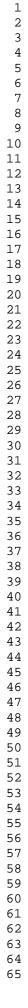
In summary, we performed a heuristic machine learning method to find interactions. We found disproportionately high suicide rates among people who were never married and received unfit for work benefits, among males who received unfit for work benefits, and among those aged 55-69 who lives alone, were never married and whose household income was low. Addition-ally, we found high suicide rates among those aged 25-39 with a low level of education and among males who lost their partner. Out findings may have important implications for suicide prevention policies and are generalizable to other (similar) countries.

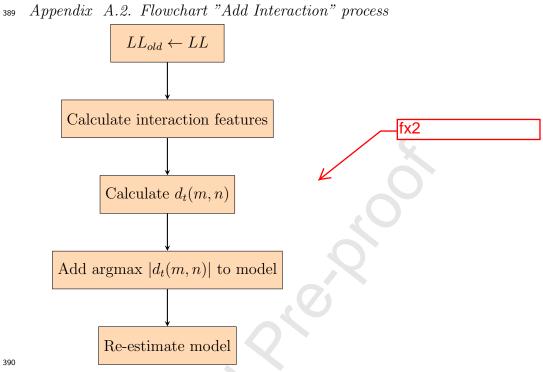
³⁷⁶ Disclaimer source and accessibility data


Results based on calculations by 113 Suich¹e ¹/¹revention using non-public microdata from Statistics Netherlands. Under cortain conditions, these microdata are accessible for statistical an ¹/₁ sc entific research. For further information: microdata@cbs.nl.


381 Funding


This paper was funded by 13 Juicide Prevention, which is in turn funded by the Dutch Ministry of Healt'h, Welfare, and Sport.


384 Declaration of interest


385 None

Appendix A.3. Elaboration product

In what follows we will outline the full details of every step within the global flowchart, further "plitting the "Add Interaction" step into the sub-steps shown in the second flowchart.

Start:

To start vite we specify our hyper-parameters N_{added} , θ , t, and S_{min} whose functions hall be explained as they become relevant. Additionally, we initialize $n_{added} = n_{removed} = 0$ and T as an empty list. These will be updated throughout the procedure.

We define \vec{x}_i for $i \in \{1, 2, ..., N\}$ to be our one-hot encoded basic features. We define \vec{y}_i for $i \in \{1, 2, \dots, L\}$ to be all the features in our model. The amount of basic features, N, is fixed. However, since we will be adding features throughout our model, the total amount of features, L, will vary.

Split data:

We split our training set into two subsets: a *searching* set (80% of cases), and a *control* set (containing the remaining 20%).

407 Init. model:

Using the searching set we estimate an initial logistic regression model specified by

$$\mathbb{P}((\vec{s})_k = 1 | \vec{y_1}, \dots, \vec{y_L}) = rac{e^{V_k}}{1 + e^{V_k}}$$

410 where \vec{s} is the feature corresponding to "died by suicide" and

$$V_k(\vec{y}_1,\ldots,\vec{y}_L) = \beta_0 + \sum_{i=1}^L \beta_i(\vec{y}_i)_k$$

with the β_i being the parameters to be estimated. Estimation is done through log-likelihood maximization via gradient desce. t methods. Set LL to be equal to the log-likelihood of the model on the control set.

414 Add interaction:

 $LL_{old} \leftarrow LL$: We set the value of LI_{old} to the current value of LL.

416 Calculate interaction feature: For each $m \in \{1, ..., N\}$ and $n \in \{1, ..., L\}$ 417 define $\vec{z}_{m,n} = \vec{x}_m * \vec{y}_n$ where * denotes the element-wise product.

Let \vec{u} be the all ones vector and $N_{\vec{z}_{m,n}} = \langle \vec{z}_{m,n}, \vec{u} \rangle$ be the amount of people possessing both characteristic and n. Let $S_{\vec{z}_{m,n}} = \langle \vec{z}_{m,n}, \vec{s} \rangle$ be the amount of people possessing both characteristic m and n who died by suicide.

Let $s_{\vec{z}_{m,n}} = \mathbb{1}(S_{\vec{z}_{m,r}} \geq S_{min})$. Here S_{min} functions as a lower bound on the amount of suicides 1. the sub-population corresponding to the interaction feature for us to consider it for the model. We used $S_{min} = 200$.

⁴²⁴ Calculate $d_t(n, r)$: Let $LL_{m,n}(\beta_{m,n})$ be the log-likelihood corresponding ⁴²⁵ to the logistic regression model specified as

$$V_{k} = \beta_{0} + \sum_{i=1}^{L} \beta_{i}(\vec{y}_{i})_{k} + \beta_{m,n}(\vec{z}_{m,n})_{k}$$

426 then

$$\frac{dLL_{m,n}}{\beta_{m,n}} = \sum_{k=1}^{N_p} (\vec{z}_{m,n})_k \left(s_k - \frac{e^{V_k}}{1 + e^{V_k}} \right)$$

where N_p is the total number of cases in our searching set. Note that under the assumption that the "true" value of $\beta_{n,m}$ on the underlying probability

⁴²⁹ process is 0 (i.e. feature $\vec{z}_{m,n}$ is irrelevant) the value of this expression scales ⁴³⁰ to the order of $\sqrt{N_{\vec{z}_m,n}}$. Therefore, if we do not correct for this, large values ⁴³¹ of $\left|\frac{dLL_{m,n}}{\beta_{m,n}}\right|$ will simply end up corresponding to large sub-populations. As ⁴³² such we define

$$d_t(m,n) = \frac{1}{N_{\vec{z}_{m,n}}^t} \frac{dLL_{m,n}}{\beta_{m,n}} s_{\vec{z}_{m,n}}$$

where hyper-parameter t describes the trade-off between optimization of the log-likelihood and statistical significance, with a value c. 0 completely prioritizing the former, and a value of 0.5 completely priority ing the latter. We used t = 0.3.

Add $\arg \max |d_t(m, n)|$ to model: We then select

$$(m^*, n^*) = \arg \max_{m,n} |a_t(m, n)|$$

and add the corresponding feature to cu. me del by setting $\vec{y}_{L+1} = \vec{z}_{m^*,n^*}$ and set $L \leftarrow L+1$. We add (m^*, n^*) to the list T. We also set $n_{added} \leftarrow n_{added} + 1$

Re-estimate model: We re-estimate the model with the new feature and set LL to the log-likelihood of this new model on the control set.

442 Check LL:

We check whether or jot the performance on the control set has improved by looking at $LL - LL_{oi}$. In this is negative we once again remove the added feature from our model and set $n_{removed} \leftarrow n_{removed} + 1$

 $n_{added} \geq N_{ac} \cdot n_{added}$

Here N_{added} is notions as a minimum number of iterations before stopping. If we have not yet run that many iterations, we return to the "Add interaction" step. If we have we move on to the next step. We used $N_{added} = 30$

 $\frac{\mathbf{n}_{\text{removed}}}{\mathbf{n}_{\text{removed}}} \ge \theta$:

Here θ functions as a minimum amount of false positives before terminating. If the proportion of false positives is less that θ we return to the "Add interaction" step. If it is at least θ we end our algorithm. We used $\theta = 0.1$.

⁴⁵⁴ Appendix B. Full results logistic regression

In B.3 we give the full results of our final model including both the basic as well as the interaction features.

Table B.3: Full results logistic regression on validation set including both basic features and interaction terms. With corresponding Beta parameters, Odds-Ratios, Compound Odds Ratios, absolute and relative number of suicides within the sub-population within the validation set as well as the training set. With N(val)=absolute number of suicides within validation set, N(train)=absolute number of suicides within training set, $\operatorname{Rel}(val)=\operatorname{relative}$ number of suicides within the validation set (corrected for sam_F ing procedure, per 100,000), Rel(train)=relative number of suicides w thin the training set (corrected for sampling procedure, per 100,000)

Features	Beta	95% C.I.	95% C.I.	95% C.I.	N	Rel	Ν	Rel
	estimates		OR	C' R	(val)	(val)	(train)	(train)
β_0 / Full population	-5.42	[-5.7, -5.13]	[0, 0.01]	01	6512	11.7598	8214	11.8591
Male	0.00	[0,0]	[1,1]	[1,1]	4397	16.0445	5565	16.2555
Aged 25-39	0.00	[0,0]	[1,1]	^{[1,1}]	1151	10.0758	1467	10.2593
Dutch Immigration	0.00	[0,0]	[1,1]	[1, 1]	5378	12.4660	6756	12.5191
Background								
Part couple without	0.00	[0,0]	[1,1]	[1,1]	1510	9.4118	1857	9.2573
child at home								
Personal income in	0.00	[0,0]	[1, 1]	[1,1]	941	6.9806	1228	7.3130
first quartile								
Household income in	0.00	[0,0]	[1,1]	[1,1]	2784	20.3763	3401	19.9394
first quartile								
Household	0.00	[0,0]	[1,1]	[1,1]	1814	13.3128	2176	12.8107
wealth/debts in								
first quartile								
Average level of	0.00	[0,0]	[1,1]	[1,1]	1448	12.5832	1896	13.2622
education				. / .				
No physical	0.00	[0,0]	[1,1]	[1,1]	86	10.8723	123	12.2103
healthcare costs			. , ,	. / .				
Never married	0.06	[0,0]	[1,1]	[1,1]	2821	12.3053	3508	12.2679
Female	- ` 83	[-0.9,-0.76]	[0.41, 0.47]	[0.41, 0.47]	2115	7.5616	2649	7.5623
Aged 10-24	9.8	[-1, -0.71]	[0.37, 0.49]	[0.37, 0.49]	512	4.5826	720	5.1680
Aged 40-54	0.4 3	[0.39, 0.57]	[1.48, 1.76]	[1.48, 1.76]	1956	15.7218	2403	15.4614
Aged 55-69	0.7	[0.22, 0.52]	[1.24, 1.68]	[1.24, 1.68]	1796	15.3007	2231	15.1825
Aged 70 or older	-0.11	[-0.24, 0.03]	[0.79, 1.03]	[0.79, 1.03]	928	12.0496	1202	12.4417
1st generation	-0.21	[-0.33, -0.09]	[0.72, 0.92]	[0.72, 0.92]	331	11.6500	396	11.0959
western immigration	-0.21	[-0.00,-0.00]	[0.12,0.32]	[0.12,0.32]	001	11.0000	000	11.0000
background								
1st generation non-	-1.02	[-1.15, -0.89]	[0.32, 0.41]	[0.32, 0.41]	297	7.0322	359	6.8358
western immigration	-1.02	[-1.15,-0.69]	[0.32, 0.41]	[0.32, 0.41]	291	1.0322	209	0.6556
background								
	0.06	$[0.1700c^{1}]$	[0.94.1.02]	[0.94.1.00]	262	12 0050	402	14 9199
0	-0.06	[-0.17, 0.06]	[0.84, 1.06]	[0.84, 1.06]	363	13.0852	493	14.2122
western immigration								
background	0.59				1.40	F 0709	010	C 0005
2nd generation non-	-0.53	[-0.7, -0.35]	[0.5, 0.7]	[0.5, 0.7]	143	5.9703	210	6.9805
western immigration								
background		[[0,00,4,0 ⁻¹]			4 0 0 0 0		-
Child living at home	0.08	[-0.08, 0.24]	[0.93, 1.27]	[0.93, 1.27]	508	4.9926	756	5.9679
Living alone	0.88	[0.77, 0.98]	[2.17, 2.66]	[2.17, 2.66]	2943	27.4229	3652	27.2016

Features	Beta estimates	95% C.I. Beta	95% C.I. OR	95% C.I. COR	N (val)	Rel (val)	N (train)	Re (tr
Part couple with	-0.84	[-1, -0.68]	[0.37, 0.51]	[0.37, 0.51]	1052	7.1662	1341	7.2
child at home Other member	0.14	[0.01, 0.27]	[1.01, 1.32]	[1.01, 1.32]	499	13.3264	608	12
household Personal income in	-0.23	[-0.35, -0.12]	[0.71, 0.89]	[0.71, 0.89]	2184	15.9142	2734	15
the 2nd quartile Personal income in	-0.42	[-0.52, -0.32]	[0.6, 0.73]	[0.6, 0.73]	1847	13.6120	2305	13
the 3rd quartile Personal income in	-0.62	[-0.73, -0.5]	[0.48, 0.61]	[0.48, 0.61]	1407	10.3917	1782	10
the 4th quartile Personal income unknown	0.20	[-0.03, 0.42]	[0.97, 1.53]	[0.97, 1.53]	? ?	12.5132	165	12
Household income in the 2nd quartile	0.00	[-0.1, 0.09]	[0.91, 1.1]	[0.91, 1.1]	152 8	11.6848	2057	12
Household income in the 3rd quartile	-0.04	[-0.16, 0.07]	[0.86, 1.07]	[0.86 1.07]	1142	8.4459	1384	8.1
Household income in the 4th quartile	-0.20	[-0.32, -0.07]	[0.72, 0.94]	[0.,	865	6.3886	1207	7.1
Household net wealth in the 2nd	-0.05	[-0.12, 0.02]	[0.89, 1.02]	[0.8 ,1.02]	1848	13.5832	2387	14
quartile Household net wealth in the 3rd	-0.02	[-0.1,0.06]	[0.9 1.03]	[0.9, 1.06]	1336	9.8571	1657	9.7
quartile Household net wealth in the 4th quartile	0.10	[0.02,0.19]	[1.0, 1.21]	[1.02, 1.21]	1381	10.2071	1829	10
Low level of education	0.03	[-0.6. 9.14]	[0.92, 1.15]	[0.92, 1.15]	1248	10.4582	1478	9.9
High level of education	0.03	[-0 J8 . ¹ 4]	[0.92, 1.16]	[0.92, 1.16]	893	9.8205	1065	9.2
Level of education unknown	-0.15	[-C 25, J.02]	[0.75, 0.98]	[0.75, 0.98]	2923	12.7969	3775	13
Physical healthcare costs between $\mathfrak{C}1$ and $\mathfrak{C}5000$	0.06	<u>ו</u> - ^.17,0.28]	[0.84, 1.33]	[0.84,1.33]	5053	10.4067	6374	10
Physical healthcare costs between €5001	07	[0.64, 1.11]	[1.89, 3.02]	[1.89, 3.02]	587	21.8782	727	21
and $€10000$ Physical healthcai costs of $€10001$ or	1.53	[1.26, 1.8]	[3.54, 6.05]	[3.54, 6.05]	786	23.4980	990	23
more Physical healthcare costs unknown	-1.40	[-1.69,-1.11]	[0.18, 0.33]	[0.18, 0.33]	71	7.9273	78	6.9
Married or registered partnership	0.26	[0.14, 0.37]	[1.15, 1.45]	[1.15, 1.45]	2096	8.5726	2608	8.5
Divorced	0.51	[0.39, 0.62]	[1.48, 1.86]	[1.48, 1.86]	1155	24.6854	1489	25
Widowed	-0.09	[-0.27, 0.09]	[0.76, 1.1]	[0.76, 1.1]	440	14.2491	609	15
Short-term	0.19	[0.08,0.3]	[1.09, 1.35]	[1.09, 1.35]	395	15.8520	503	16
unemployment								
Unfit for work	1.30	[1.16, 1.44]	[3.18, 4.23]	[3.18, 4.23]	1048	46.9534	1262	44
Long-term unemployment	0.54	[0.42, 0.67]	[1.52, 1.95]	[1.52, 1.95]	609	32.0567	746	31
Aged 25-39 and low level of education	0.46	[0.3, 0.62]	[1.35, 1.86]	[1.38, 1.93]	259	20.0663	296	18

54

 $\begin{array}{c} 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 27\\ 29\\ 30\\ 32\\ 33\\ 35\\ 37\\ 39\\ 41\\ 42\\ 43\\ 44\\ 45\\ \end{array}$

Features	Beta estimates	95% C. Beta	.I. 95% C.I. OR	95% C.I. COR	N (val)	Rel (val)	N (train)	Rel (trair
Aged 40-54 and long-	-0.22	-0.41,-0.04	[0.67, 0.96]	[1.9, 2.61]	234	35.5796	262	31.73
term unemployment								
Aged 55-69 and living alone	-0.42	[-0.67,-0.17	7] [0.51,0.84]	[1.78, 2.9]	833	35.5369	1040	35.63
Aged 55-69 and living alone and Dutch immigration background	0.18	[-0.04,0.39]	[0.96,1.48]	[2.3,3.19]	728	39.3718	892	38.85
Aged 55-69 and living alone and household income in the 1st quartile and	-0.21	[-0.43,0.01]	[0.65, 1.01]	[2.6, 4.55]	229	57.2214	250	50.41
never married Aged 55-69 and	0.32	[0.15, 0.5]	[1.16, 1.65]	[1.64,2 14]	15.1	34.8185	506	33.16
never married Aged 55-69 and part of couple without child at home	-0.46	[-0.63,-0.29	9] [0.53,0.75]	[0. 9,1 05]	622	9.3768	753	9.084
Aged 55-69 and healthcare costs of €10001 or more	-0.44	[-0.63,-0.25	5] [0.53,0.78]	[3.1],5.86]	238	30.7018	280	29.00
Aged 70 or older and healthcare costs of €10001 or more	-0.66	[-0.88,-0.44	4] [0.4 1,0 34]	[1.58, 2.9]	175	15.5938	260	18.49
Male and unfit for work	-0.39	[-0.54,-0.7]	t] [0.5، 0.78]	[2.21, 2.79]	642	58.5574	764	55.54
Male and part of couple with child at home	0.64	[0.48, 0.8]	[1.61,2.22]	[0.73, 0.92]	801	10.9391	979	10.68
Male and widowed Male and healthcare costs of €10001 or more	0.54 -0.30	[0.1,3,1.74] [-0.47,-0.14	L / J	$[1.31, 1.86] \\ [2.64, 4.43]$	218 456	31.3128 27.4831	$\begin{array}{c} 304 \\ 596 \end{array}$	34.52 28.41
Never married and unfit for work	-0.03	l- [^] .26,0.19]	[0.77, 1.21]	[2.77, 4.53]	441	88.4831	495	79.02
Never married and unfit for work and physical healthcare costs between €1	0.54	[0.31,0.78]	[1.36, 2.18]	[4.83,8.61]	321	83.0144	362	74.68
and €5000 Never married and household income	0.30	[0.18, 0.43]	[1.19, 1.54]	[1.19, 1.54]	1438	25.6896	1715	24.65
the 1st quartile Never married and average level of education	0.25	[0.12, 0.37]	[1.13, 1.45]	[1.13, 1.45]	871	13.5912	1144	14.37
Never married and personal income in the 2nd quartile	0.27	[0.15, 0.4]	[1.16, 1.49]	[0.93, 1.17]	1008	24.7583	1245	24.50
Unfit for work and personal income in the 2nd quartile	-0.38	[-0.53,-0.23	3] [0.59,0.8]	[1.65, 2.38]	382	48.5758	470	47.55

Features	Beta	95% D	C.I.	95% C.I.	95% C.I.	N ())	Rel	N (/ · ·)	Rel
	estimates	s Beta		OR	COR	(val)	(val)	(train)	(train)
Education unknown	0.28	[0.16, 0.	41]	[1.17, 1.51]	[0.95, 1.54]	2165	11.5392	2808	11.9722
and physical									
healthcare costs									
between									
€5000									

457 Appendix C. Confidence intervals differences non-reference groups 458 $(\beta_A - \beta_B)$

It is interesting to not only know whether or not s 1b-1 opulations have an increased risk of suicide with respect to a reference and population, but also with respect to the other sub-populations. Therefore, we provide confidence intervals for $\beta_A - \beta_B$ for sub-populations corresponding to the same original categorical variable in tables C.4 to C.12.

Table C.4: Differences of beta parameters of the age groups with corresponding 95% confidence intervals (significant differences the marked with a *)

$A \setminus B$	Age 10-24	Age 25-39	Age 40-54	Age 55-69	Age $70+$
Age 10-24	N/A	-0.85 [-1 ,0,-0.' 1]*	-1.33 [-1.48,-1.18]*	-1.22 [-1.41,-1.03]*	-0.74 [-0.92,-0.56]*
Age 25-39	$0.85 [0.71, 1.00]^*$	N/A	-0.48 [-0.57,-0.39]*	-0.37 [-0.52,-0.22]*	0.11 [-0.03,0.24]
Age 40-54	1.33 [1.18,1.48]*	0.48 [0.39,0., 7]*	N/A	0.11 [-0.02, 0.24]	$0.59 [0.47, 0.71]^*$
Age 55-69	1.22 [1.03,1.41]*	0.37[0.22, 0.52]	-0.11 [-0.24,0.02]	N/A	$0.48 [0.32, 0.64]^*$
Age $70+$	0.74 [0.56,0.92]*	-0.11 $0.24,0.03$	-0.59 [-0.71,-0.47]*	$0.48 [0.32, 0.64]^*$	N/A
-		· · · ·	. , 1	. , 1	*

Table C.5: Differences ∞ beta parameters of the migration backgrounds with corresponding 95% confide. ce intervals (significant differences are marked with a *)

A\B	Dutch	1st gen Western	1st gen non- Western	2nd gen Western	2nd gen non- Western
Dutch	N/A	0.21 [0.09,0.33]*	$1.02 [0.89, 1.15]^*$	0.06 [-0.06, 0.17]	0.53 [0.35,0.7]*
1st ger Western	n -0.21 [J.C] -0.09]*	N/A	0.81 [0.65,0.97]*	-0.15 [-0.31,0.01]	$0.32 [0.12, 0.52]^*$
1st gen non- Western	02 1.15 0.89]*	-0.81 [-0.97,-0.65]*	N/A	-0.96 [-1.12,-0.80]*	-0.49 [-0.69,-0.29]*
2nd ger Western	-0.06 [0.17,0.06]	$0.15 \ [-0.01, 0.31]$	$0.96 \ [0.80, 1.12]^*$	N/A	$0.47 \ [0.27, 0.67]^*$
2nd gen non- Western	-0.55 [-0.7,-0.35]*	-0.32 [-0.52,-0.12]*	0.49 [0.29,0.69]*	-0.47 [-0.67,-0.27]*	N/A

Table C.6: Differences of beta parameters of place in household with corresponding 95% confidence intervals (significant differences are marked with a *)

$A \setminus B$	Child living at	Living alone	Partner couple	Partner couple	Other
	home		without kids	with kids	
Child living at	N/A	-0.80 [-0.94,-0.66]*	0.08 [-0.08, 0.24]	0.92 [0.72,1.12]*	-0.06 [-0.22,0.10]
home					
Living alone	0.80 [0.66,0.94]*	N/A	0.88 [0.77,0.98]*	1.72 [1.56,1.88]*	0.74 [0.63,0.85]*
Partner couple	-0.08 [-0.24,0.08]	-0.88 [-0.98,-0.77]*	N/A	$0.84 [0.68, 1.00]^*$	-0.14 [-0.27,-0.01]*
without kids					
Partner couple	-0.92 [-1.12,-0.72]*	-1.72 [-1.88,-1.56]*	-0.84 [-1,-0.68]*	N/A	-0.98 [-1.15,-0.81]*
with kids					
Other	0.06 [-0.10, 0.22]	-0.74 [-0.85,-0.63]*	$0.14 \ [0.01, 0.27]^*$	$0.98 [0.81, 1.15]^*$	N/A

Table C.7: Differences of beta parameters of personal income with corresponding 95% confidence intervals (significant differences are marked with a^{*})

confidence filter vals (significant afferences are mariled with a)							
A\B	1st quartile	2nd quartile	3rd quartile	4th quartile	Unknown		
1st quartile	N/A	0.23 [0.12,0.35]*	0.42 [0.32,0 52]	0.62 [0.5,0.73]*	-0.20 [-0.42,0.03]		
2nd quartile	-0.23 [-0.35,-0.12]*	N/A	0.19 [0.10, °8]*	$0.39 [0.28, 0.50]^*$	-0.43 [-0.65,-0.21]*		
3rd quartile	-0.42 [-0.52,-0.32]*	-0.19 [-0.28,-0.10]*	N/A	0.20 [0.12,0.28]*	-0.62 [-0.84,-0.40]*		
4th quartile	-0.62 [-0.73,-0.5]*	-0.39 [-0.50,-0.28]*	-0.20 0.28, 0.12]*	N/A	-0.82 [-1.05,-0.59]*		
Unknown	0.20 $[-0.03, 0.42]$	$0.43 [0.21, 0.65]^*$	0.62 40,0. 4]*	$0.82 [0.59, 1.05]^*$	N/A		

Table C.8: Differences of beta parameters of a cuse nold income with corresponding 95% confidence intervals (significant differences a.e. marked with a *)

A B	1st quartile	2nd quartile	3_1] quartile	4th quartile
1st quartile	N/A	0.00 [-0.09, 10]	0.04 [-0.16, 0.07]	0.20 [0.07,0.32]*
2nd quartile	0.00 [-0.10,0.09]	N/A	0.04 [-0.04, 0.12]	0.20 [0.10,0.30]*
3rd quartile	-0.04 [-0.16,0.07]	-0.04 [-0.12,0.04]	N/A	$0.16 [0.07, 0.25]^*$
4th quartile	-0.20 [-0.32,-0.07]*	-0.20 30, -0.10	-0.16 [-0.25,-0.07]*	N/A

Table C.9: Differences of bet parameters of net household wealth with corresponding 95% confidence intervals (significant differences are marked with a *)

A B	1st quartile	2na uartile	3rd quartile	4th quartile
1st quartile	N/A	7.05 [-0.02,0.12]	0.02 [-0.06, 0.10]	-0.10 [-0.19,-0.02]*
2nd quartile	-0.05 [-0.12,0.02]	N ₁ A	-0.03 $[-0.11, 0.05]$	-0.15 [-0.23,-0.07]*
3rd quartile	-0.02 [-0.10,0 06]	7.03 [-0.05,0.11]	N/A	-0.12 [-0.20,-0.04]*
4th quartile	0.10 [0.02,0.1. *	$0.15 [0.07, 0.23]^*$	$0.12 [0.04, 0.20]^*$	N/A

Table C.10: Differences of beta parameters of education level with corresponding 95% confidence interval (significant differences are marked with a *)

	(0			/
$A \setminus B$	Low	Mid	High	Unknown
Low	N/A	0.03 [-0.09, 0.14]	0.00 [-0.10,0.10]	0.18 [0.05,0.31]*
Mid	-0.03 [-0.14,0.09]	N/A	-0.03 [-0.14,0.08]	$0.15 [0.02, 0.29]^*$
High	0.00 [-0.10,0.10]	0.03 [-0.08,0.14]	N/A	0.18[0.05, 0.31]*
Unknown	-0.18 [-0.31,-0.05]*	-0.15 [-0.29,-0.02]*	-0.18 [-0.31,-0.05]*	N/A

Table C.11: Differences of beta parameters of physical healthcare costs with corresponding 95% confidence intervals (significant differences are marked with a *)

55% confidence more vals (significant unicrences are marked with a)					
$A \setminus B$	€0	€1-5000	€5001-10000	€10001+	Unknown
€0	N/A	-0.06 [-0.28,0.17]	-0.87 [-1.11,-0.64]*	-1.53 [-1.80,-1.26]*	1.40 [1.11,1.69]*
€1-5000	0.06 [-0.17, 0.28]	N/A	-0.81 [-0.92,-0.70]*	-1.47 [-1.63,-1.31]*	$1.46 [1.07, 1.85]^*$
€5001-10000	$0.87 [0.64, 1.11]^*$	$0.81 [0.70, 0.92]^*$	N/A	-0.66 [-0.83,-0.49]*	$2.27 [1.88, 2.66]^*$
€10001+	1.53 [1.26,1.80]*	1.47 [1.31,1.63]*	0.66 [0.49,0.83]*	N/A	2.93 [2.49,3.37]*
Unknown	-1.40 [-1.69,-1.11]*	-1.46 [-1.85,-1.07]*	-2.27 [-2.66,-1.88]*	-2.93 [-3.37,-2.49]*	N/A

Table C.12: Differences of beta parameters of marital status with corresponding 95% confidence intervals (significant difference) are marked with a *)

			D: 1	, TTT: 1 1	TT 1
A\B	Never married	Married	Divorced	Widowed	Unknown
Never married	N/A	-0.20 '-0.37,-0.14]*	-0.51 [-0.62,-0.39]*	0.09 [-0.09, 0.27]	1.40 [1.11,1.69]*
Married	0.26 [0.14,0.37]*	N/A	-0.25 [-0.35,-0.15]*	$0.35 [0.18, 0.52]^*$	$1.46 [1.07, 1.85]^*$
Divorced	0.51 [0.39,0.62]*	$0.2^{-1} 15, 35]^{*}$	N/A	$0.60 [0.44, 0.76]^*$	$2.27 [1.88, 2.66]^*$
Widowed	-0.09 [-0.27,0.09]	-0 35 52,-0.18]*	-0.60 [-0.76,-0.44]*	N/A	2.93 [2.49,3.37]*
Unknown	-1.40 [-1.69,-1.11]*	-1.4ϵ $[-1.35, -1.07]*$	-2.27 [-2.66,-1.88]*	-2.93 [-3.37,-2.49]*	N/A

464 References

- [1] G. Berkelmans, R. van der Mei, S. Bhulai, R. Gilissen, Identifying sociodemographic risk factors for suicide using data on an individual level, BMC Public Health 21 (1) (2021) 1702. doi:10.1186/s12889-021-11743-3.
 URL https://doi.org/10.1186/s12889-021-11743-3
 [2] World Health Organization, Preventing suicide: global imperative,
- [2] World Health Organization, Preventing suicide: global imperative,
 World Health Organization, Geneva, 2014.
- 472 URL https://apps.who.int/iris/handle/10635/131056
- [3] G. Ayhan, R. Arnal, C. Basurko, V. Aboul, A. Pastre, E. Pinganaud,
 D. Sins, L. Jehel, B. Falissard, M. Nachel, Sulcide risk among prisoners
 in French Guiana: prevalence and predictive factors, BMC Psychiatry
 17 (1) (2017) 156. doi:10.1186/s12888-017-1320-4.
- 477
 URL
 http://bmcpsychiatry.bio.edcentral.com/articles/10.

 478
 1186/s12888-017-1320-4
- [4] M. Bhatt, S. Perera, L. Zieh, Ki, R. B. Eisen, S. Yeung, W. El-Sheikh,
 J. DeJesus, S. Rangaraj, n, H. Sholer, E. Iordan, P. Mackie, S. Islam,
 M. Dehghan, L. Thabath, Z. Samaan, Profile of suicide attempts and
 risk factors among psychiatric patients: A case-control study, PLOS
 ONE 13 (2) (2018) c015 2998. doi:10.1371/journal.pone.0192998.
 URL https://dx plc5.org/10.1371/journal.pone.0192998
- [5] S. B. Choi, W. Lee, J.-H. Yoon, J.-U. Won, D. W. Kim, Risk factors
 of suicide attempt among people with suicidal ideation in South
 Korea: a row sectional study, BMC Public Health 17 (1) (2017) 579.
 doi:10.1186/ 12889-017-4491-5.
 - URL http://bmcpublichealth.biomedcentral.com/articles/10. 1186/s12889-017-4491-5
- [6] J. C. Franklin, J. D. Ribeiro, K. R. Fox, K. H. Bentley, E. M. Kleiman,
 X. Huang, K. M. Musacchio, A. C. Jaroszewski, B. P. Chang, M. K.
 Nock, Risk factors for suicidal thoughts and behaviors: A meta-analysis
 of 50 years of research., Psychological Bulletin 143 (2) (2017) 187–232.
 doi:10.1037/bul000084.
- 496 URL http://doi.apa.org/getdoi.cfm?doi=10.1037/bul0000084

	1
	2
	3
	4
	5
	2
	6 7 8
	.7
	8
	9
1	0
1	1
1	Ť
T	2
1	3
1	4
1	5
1	б
1	-
T	/
T	8
1	9
2	0
2	1
2	- -
2	890123456789012345678901
2	3
2	4
2	5
2	6
2	-
2	/
2	8
2	9
3	0
З	1
3	2
2	2
3	3
3 3	3 4
3 3 3 3 3 3 3 4	2 3 4 5 6 7 8 9 0 1
3 3	3 4
3 3 3 3 3 3 3 4	3 4
3333334444	34567890123
3333334444	34567890123
33333344444	34567890123
33333344444	34567890123456
3333334444444	34567890123456
3333334444444444	345678901234567
3333334444444444	3456789012345678
333333444444444444	3456789012345678
3333334444444444	34567890123456789
333333444444444444	34567890123456789
333333444444444455	34567890123456789012
3333334444444444555	34567890123456789012
333333444444444455555	3456789012345678901234
33333344444444445555555	3456789012345678901234
333333444444444455555555	3456789012345678901234
33333344444444445555555	345678901234567890123456
333333444444444455555555555555555555555	345678901234567890123456
333333444444444455555555	345678901234567890123456
333333444444444455555555555555555555555	34567890123456789012345678
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	345678901234567890123456789
333333444444444455555555555555555555555	3456789012345678901234567890
333333444444444455555555555555555555555	345678901234567890123456789
33333344444444455555555555556	3456789012345678901234567890
3333334444444444555555555555666	3456789012345678901234567890
3333334444444444555555555555666	3456789012345678901234567890

489

[7] I. Parra-Uribe, H. Blasco-Fontecilla, G. Garcia-Parés, L. Martínez-Naval, O. Valero-Coppin, A. Cebrià-Meca, M. A. Oquendo, D. Palao-Vidal, Risk of re-attempts and suicide death after a suicide attempt: A survival analysis, BMC Psychiatry 17 (1) (2017) 163. doi:10.1186/s12888-017-1317-z. URL http://bmcpsychiatry.biomedcentral.com/articles/10. 1186/s12888-017-1317-z [8] R. Uher, Gene-Environment Interactions in Severe Mental Illness, Frontiers in Psychiatry 5 (May 2014). doi:10.33 9/1 syt.2014.00048. http://journal.frontiersin.org/picicle/10.3389/fpsyt. URL 2014.00048/abstract [9] J. L. Gradus, A. J. Rosellini, E. Horváth Puló, A. E. Street, I. Galatzer-Levy, T. Jiang, T. L. Lash, H. T. Sørens, , Prediction of Sex-Specific Suicide Risk Using Machine Learning and Single-Payer Health Care Registry Data From Denmark, JAA A Psychiatry 77 (1) (2020) 25–34. doi:10.1001/jamapsychiatry.2019.2005. URL https://doi.org/10.10J1/jamapsychiatry.2019.2905 [10] L. Zheng, O. Wang, S. Hao, C. Ye, M. Liu, M. Xia, A. N. Sabo, L. Markovic, F. Stearrs, I. Kanov, K. G. Sylvester, E. Widen, D. B. McElhinney, W. Zhang, U Liao, X. B. Ling, Development of an early-warning system for high-risk patients for suicide attempt using deep learning and electronic health records, Translational Psychiatry 10 (1) (2020) 1–10. doi:1. 1038/s41398-020-0684-2. URL https://www.nature.com/articles/s41398-020-0684-2 [11] O. J. Kirthy, K. van Mens, M. Hoogendoorn, N. Kapur, D. de Beurs, Translating promise into practice: a review of machine learning in suicide research and prevention, The Lancet Psychiatry 9 (3) (2022) 243–252. doi:10.1016/S2215-0366(21)00254-6. URL https://linkinghub.elsevier.com/retrieve/pii/ S2215036621002546 [12] Aantal flexwerkers in 15 jaar met drie kwart gegroeid (Feb. 2019). URL https://www.cbs.nl/nl-nl/nieuws/2019/07/ aantal-flexwerkers-in-15-jaar-met-drie-kwart-gegroeid

		Journal Pre-proof
530	[13]	A. D. LaMontagne, L. S. Too, L. Punnett, A. J. Milner, Changes in
531		Job Security and Mental Health: An Analysis of 14 Annual Waves of an Australian Working Danulation Danal Survey, American Journal of
532 533		an Australian Working-Population Panel Survey, American Journal of Epidemiology 190 (2) (2021) 207–215. doi:10.1093/aje/kwaa038.
534		URL https://academic.oup.com/aje/article/190/2/207/5815383
535	[14]	K. L. Bower, K. G. Emerson, Exploring Contextual Factors Associated
536		with Suicide among Older Male Farmers: Re ⁻ ults from the CDC
537 538		NVDRS Dataset, Clinical Gerontologist 44 (J. (2021) 528–535. doi:10.1080/07317115.2021.1893885.
539		URL https://www.tandfonline.com/doi/full/i0.1080/07317115.
540		2021.1893885
541	[15]	J. Yang, G. He, S. Chen, Z. Pan, J. Zhang, Y. Li, J. Lyu, Incidence
542		and risk factors for suicide death in male patients with genital-system
543 544		cancer in the United States, European Journal of Surgical Oncology 45 (10) (2019) 1969–1976. doi:10.10-6/j.ejso.2019.03.022.
545		URL https://liminghub.elsevier.com/retrieve/pii/
546		S0748798319303506
547	[16]	C. Richardson, K. A. Robb, R. C. O'Connor, A systematic
548		review of suicidal ter. viour in men: A narrative synthesis of risk factors, Secial Science & Medicine 276 (2021) 113831.
549 550		doi:10.1016/j.socsci.red.2021.113831.
551		URL h.tps://linkinghub.elsevier.com/retrieve/pii/
552		S02779536210016.5
553	[17]	J. L. Streeter, Gender differences in widowhood in the short run and
554		long run: financial and emotional well-being, Innovation in Aging 3 (Supplement_1) (2019) S736–S736. doi:10.1093/geroni/igz038.2698.
555 556		URL https://academic.oup.com/innovateage/article/3/
557		Supplement_1/S736/5618394
		27
		21