
Received 7 November 2024; revised 31 January 2025; accepted 24 February 2025. Date of publication 3 March 2025; date of current version 17 March 2025.

Digital Object Identifier 10.1109/OJCOMS.2025.3547261

Joint Demapping of QAM and APSK Constellations
Using Machine Learning

ARWIN GANSEKOELE 1,2,3, ALEXIOS BALATSOUKAS-STIMMING 4 (Member, IEEE), TOM BRUSSE5,
MARK HOOGENDOORN3, SANDJAI BHULAI 2, AND ROB VAN DER MEI1,2

1Department of Stochastics, Centrum Wiskunde & Informatica, 1090 GB Amsterdam, The Netherlands
2Department of Mathematics, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands

3Department of Computer Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
4Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands

5Ministry of Defense, 2500 ES The Hague, The Netherlands

CORRESPONDING AUTHOR: A. GANSEKOELE (e-mail: arwin.gansekoele@cwi.nl)

ABSTRACT As telecommunication systems evolve to meet increasing demands, integrating deep neural
networks (DNNs) has shown promise in enhancing performance. However, the trade-off between accuracy
and flexibility remains challenging when replacing traditional receivers with DNNs. This paper introduces
a novel probabilistic framework that allows a single DNN demapper to demap multiple QAM and APSK
constellations simultaneously. It is demonstrated that the framework can exploit hierarchical relationships
in families of constellations. The consequence is that we need fewer neural network outputs to encode
the same function without an increase in Bit Error Rate (BER). The simulation results confirm that the
framework approaches the optimal demodulation error bound under an Additive White Gaussian Noise
(AWGN) channel for multiple constellations. Under 3GPP-compliant OFDM fading channels, it is as
accurate as a neural receiver operating on just one modulation type. Thereby, the framework addresses
multiple important issues in practical neural receiver design. These include improvements in computational
efficiency, a reduction in memory overhead, and an improved adaptability in dynamic environments.

INDEX TERMS Communication systems, machine learning, symbol demapping.

I. INTRODUCTION

DIGITAL communications has proven to be an essential
technology in the era of information. A common

communications pipeline consists of many components that
need to match on both the sender and receiver sides.
These include components such as filters, coding, and
modulators. Recently, the use of machine learning (ML) has
been investigated and has already been included in the 5G
standard. DNN approaches, specifically, replace (parts of)
the communications pipeline with a neural network. One
approach is to replace the entire sender-receiver pipeline with
a DNN [1], [2], [3], [4], [5], [6], [7], [8], [9]. Doing so allows
the DNN to adapt the type of constellation used based on the
channel conditions seen during training. However, since the
entire pipeline is modeled by one DNN, the modularity of the
pipeline is destroyed. Modularity can be hugely beneficial
when designing practical systems as it simplifies the reuse of
components in a setting where space is limited. That is why a

second line of work opts to perform only channel estimation
and equalization using DNNs [10], [11], [12], [13], [13],
[14], [15], [16], [17], [18], [19], [20], [21]. As channel
estimation and equalization are traditionally performed with
data-driven techniques, replacing these components with
a DNN is intuitive. However, assumptions on the output
distribution of the DNN have to be made in this case.
That is why a third line of work proposes to also add
the demodulation component to the DNN, along with
equalization and estimation [22], [23], [24], [25], [26],
[27], [28].
Digital demodulation techniques generally assume that

the received I/Q samples are perturbed by white Gaussian
noise. This assumption becomes unnecessary by including
the demodulator as part of the receiver design. This inclusion
can potentially improve performance. The work of [22]
demonstrated that this approach can reduce the number of
pilots necessary, while achieving a performance similar to

c© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 6, 2025 1695

HTTPS://ORCID.ORG/0000-0002-7701-0296
HTTPS://ORCID.ORG/0000-0002-6721-4666
HTTPS://ORCID.ORG/0000-0003-1124-8821

GANSEKOELE et al.: JOINT DEMAPPING OF QAM AND APSK CONSTELLATIONS USING ML

that when the state channel information is known. However,
this approach introduced a new problem. Traditional demap-
pers for digital communications are flexible in the settings
they can use. For example, if needed, the constellation type or
bit mapping can be adjusted for every individual data block
with traditional demappers. Flexibility in bit mappings allows
receivers to operate with senders from previous generations,
while supporting multiple constellation types is imperative
for adaptive bandwidths.
Without further adjustments, it becomes necessary to train

a new DNN receiver for every mapping and constellation
type. If the implementation choice is made to keep all
sets of parameters in memory, the memory usage scales
linearly with the number of mappings and constellation
types. On the other hand, loading parameter sets as required
results in significant computational delays. Both options
are impractical and unnecessary, as the main receiver task
of channel estimation is shared between constellations.
What makes these inefficiencies even more problematic is
that naively applying DNNs already does not meet the
low-power and high-throughput requirements of modern
communication systems. While [22] propose a scheme to
model all variants of the 4n-QAM, their scheme does
not support different bit mappings. It also achieves worse
performance after combining multiple types of different 4n-
QAM constellations.
To address these issues, this work proposes a framework

for building deep neural receivers that can demap multiple
types of constellation. The modularity of the approach makes
it applicable to any neural receiver that operates on some
form of frequency and/or amplitude keying. The framework
enables features present in traditional receivers, such as
flexible symbol-to-bit mappings and multiple demodulation
types. It does so while maintaining the gain enabled by neural
receivers. The core contributions of the work as follows can
be characterized as follows.

1) An extension to existing deep receivers is proposed that
allows them to have flexible symbol-to-bit mappings
without loss of performance.

2) The hierarchical relationship from [22] is generalized
to arbitrary constellations. In addition, a hierar-
chical approach for APSK is proposed that can
reduce the memory requirement to model families of
constellations.

3) To the best of our knowledge, this work is the first
to construct a deep neural receiver that can demap
different constellations simultaneously with (close to)
no loss in performance. This claim is empirically
validated.

This paper is an extended version of [29], which was
originally presented at the ICMLCN 2024 conference and
was included in the proceedings. The current version extends
the conference version as follows. First, a proof is included
for a claim in the original work. A proof was included
that the framework is strictly more general than a neural

receiver that directly predicts bit LLRs. Second, a scaling
factor was proposed to correct for an issue that occurs when
demapping multiple different 4n-QAM over fading channels.
Third, a link with automatic modulation recognition (AMR)
is presented. The extended version demonstrates how the
framework can improve the performance of existing AMR
systems. Finally, the evaluation suite is expanded to include
3GPP-compliant OFDM receivers.

II. RELATED WORKS
The idea of using DNNs to perform channel esti-
mation and demapping has been studied over the
years [30], [31]. [32], [33], [34] provide a vision on the
role that AI could play in 6G. Reference [33] specifically
identified three steps: AI replacing individual components in
the sender-receiver pipeline, AI replacing multiple compo-
nents at once, and finally, AI replacing the entire pipeline
and/or designing the pipeline itself. The core benefit of
AI they envision is the ability to design systems in a
data-driven manner. A lot of development time goes into
building systems that are modular and effective for different
cases. The use of artificial intelligence could alleviate these
issues by automating (parts of) pipeline design. This paper
contributes to their vision by introducing modularity into a
pipeline that is entirely data-driven.
Many preliminary works followed the first approach

laid out in this vision. In the work of [10], the authors
built a neural network demodulator for BPSK, BASK,
and BFSK and demonstrated its potential compared to
classical approaches. In similar work [11], they built a
BPSK demodulator using a 1D-CNN. Furthermore, in the
work by [12], they used a CNN to demodulate FSK under
AWGN and Rayleigh fading. These works were still fairly
simple and only addressed relatively simple constellations.
In work by [14], the authors proposed DetNet for detection
in OFDM systems. This is one of the first works to apply
a DNN to OFDM system detection. The work of [15]
was among the first to perform over-the-air demodulation.
They used DBN-SVM and AdaBoost-based models to do
so. Reference [16] introduced the use of a CNN + RNN-
based network for demodulation. The work of [13], [17]
was among the first to perform channel estimation and
equalization using a DNN. They used a super-resolution-
based DNN to do so. The work of [18] proposed following
up the DNN denoiser by conventional LS for improved
demodulation. The work of [20] investigated the use of
graph neural networks for channel decoding. Work by [21]
built on top of traditional LMMSE systems using a 1D-
CNN to predict second-order statistics and the channel
aging effect. Reference [35] used approximate message
passing with graph neural networks for MIMO detection.
All of these works introduced various components of the
signal demodulation pipeline, such as improved modeling
in increasingly complex and realistic channel models. They
provide essential steps towards the development of fully
end-to-end neural receiver systems. The development of the

1696 VOLUME 6, 2025

framework relied on these works and/or the framework can
be directly applied to these works. For example, DetNet can
be extended with this framework to incorporate the properties
discussed in this work. Furthermore, work by [36] proposed
a dual-path network that takes into account the characteristics
of the channel to improve classification. Their approach is
similar to the effect of this work on automatic modulation
recognition.
The work of [17], [37] was among the first to approach

both channel estimation and demodulation with a neural
OFDM receiver pipeline to improve performance. These
lines of work share similarities with the detection networks
described before. The work of [22] proposed DeepRX, which
is a deep receiver that is able to approach the correction
performance of correcting with the ground truth channel state
information in SIMO OFDM systems. They achieved this by
incorporating knowledge of modern neural network design
to improve receiver capacity. The work of [25] extended
DeepRX to a MIMO setting and the work of [38] investigated
training parts of the sender to learn beamforming jointly
with the channel estimation. Further work on MIMO [24]
proposed the use of a GNN to extend works such as DeepRX
to a MIMO setting with arbitrary sets of users. Further
improvements by [27] proposed data augmentation strategies
to improve the training of deep receivers. Other approaches
include [28] who investigated power-efficient deep OFDM
receivers, work by [23] that built a neural receiver on time-
domain OFDM samples, and work by [26]. who used a
metalearning approach to quickly adapt a classifier to new
channels. The presented framework builds on these works
specifically by making these deep receivers more flexible.
Our approach can be added as a module to all of these
works. Doing so adds to the properties that are discussed in
this work.
Many authors have also already begun investigating the

possibility of replacing the entire communication pipeline
with learnable components. The preliminary work by [1]
first proposed envisioning the sender-receiver pipeline as an
autoencoder (AE). By doing so, they showed it possible
to perform geometric constellation shaping as a side-effect
of optimizing channel capacity directly. The work of [2]
validated this approach in an over-the-air setting using
two software-defined radios (SDR). They achieved BER
scores close to conventional systems and showed that the
constellations were realistic. The work of [4] extended these
systems to modulation in the frequency domain in the form
of OFDM. The work of [6] adds to this by jointly learning
optimal pilot patterns and a channel estimator for MIMO.
Although all of these works assume a differentiable channel
model, the work by [3] proposed a method that allows
model-free end-to-end learning that also works with non-
differentiable channel models. The work of [7] built on this
by demonstrating that end-to-end learning of the sender and
receiver allows for pilotless communication without loss of
performance. Reference [8] arrived at similar conclusions in
their work. In a similar work, [9] learned a transmit and

receive filter, constellation geometry, and associated end-to-
end bit labeling. They achieved rates similar to those of an
OFDM system under 3GPP-compliant channel models. An
important step that still needs to be taken is the inclusion
of different modes in these end-to-end pipelines. Adding the
module presented in this work to these pipelines could enable
constellation switching in a manner that respects predefined
hierarchical constraints.

III. METHODOLOGY
The symbol demapping or demodulation process is the
process of extracting information from some information-
carrying signal. Given a sequence of received IQ samples
y, extraction of the underlying set of information bits b is
desired. This is done by generating a set of bit estimates b̂
based on y. These estimates can be hard or soft; in the latter
case, a log-likelihood ratio (LLR) is computed for each bit
that a decoder can use to refine the decision. This process
could be performed with a DNN f with a set of parameters θ ,
in which case the LLR can be defined as

log
P
(
bij = 1 | y, θ)

P
(
bij = 0 | y, θ) =

(
f (LLR)
θ (y)

)

ij
. (1)

The probability P(bij = 1 | y, θ) refers to the probability
that bit ij is a 1. The indices ij refer to the i-th IQ sample
in the sequence and the j-th bit in the bit string. This
DNN predicts the log-likelihood ratio of all bits in the
information sequence. This formulation can be optimized
by using a sigmoid function followed by a binary cross-
entropy loss function. It can then be trained by applying
some form of gradient descent on this loss quantity. Note that
minimal assumptions have been made on the underlying data
distribution. This allows for the finding of an optimal strategy
for channel estimation, equalization, and demodulation.
A core issue with this approach is the lack of flexibility.

All complexity is abstracted within the architecture and
parameters defined by the set of parameters θ . As a DNN is
a highly non-linear function, there is no straightforward way
to change, for example, the bit mapping or the constellation
used in demodulation.

A. MAPPING INDEPENDENCE
Mapping independence is proposed as the ability to change
the association between constellation points and the bit
assignment. This concept used to be trivially true in tra-
ditional receiver design. Previously, demapping was simply
a module in a fully modular pipeline. When directly
predicting the bit LLRs with a DNN, it becomes less obvious
how to change the constellation and association between
constellation points. The constellation and association of
points with the bit string is hardcoded in the neural network
weights. Other than a few special cases, it is necessary to
build a new DNN receiver if a different association between
constellation points and bit string is desired. Hence why
this work defines (bit) mapping independence as a desirable
property for practical DNN receivers.

VOLUME 6, 2025 1697

GANSEKOELE et al.: JOINT DEMAPPING OF QAM AND APSK CONSTELLATIONS USING ML

When demodulation is performed without a DNN, the
log-likelihood ratio of each bit can be computed exactly
based on the constellation points. In this procedure, half of
the constellation points are associated with a bit value of
1 and the other half with a bit value of 0 for each bit in
the information string. The LLR can then be computed on
the basis of the distances of the received sample to each
constellation point and their bit assignment as

log
P
(
bij = 1 | y)

P
(
bij = 0 | y)

= log

⎛

⎜⎜
⎝

∑|S|
k=1

(Mb(sk))j=1
exp

(
− 1
No
|yi − s|2

)

∑|S|
k=1

(Mb(sk))j=0
exp

(
− 1
No
|yi − sk|2

)

⎞

⎟⎟
⎠. (2)

Here, cyi is the constellation point that corresponds to the
i-th I/Q sample of the sequence y. Variable sk is defined
as the k-th constellation point that belongs to a set S of
possible constellation points given a certain constellation.
In the case of 16-QAM, the set S has 16 constellation
points, for example. The mapping Mb was also defined as
a function that maps a symbol to a bit string. The outcome
of this function can be indexed, which is done in the form
of (∫‖)j = 1. This means that the j-th bit of the bit string to
which symbol sk is mapped should be 1.

This form of demapping is optimal when it is assumed
that the I/Q samples have a Gaussian distribution centered
at their ground-truth constellation point. This approach also
has a bit mapping that can be easily adjusted within the
module. When a different bit assignment is needed under
this formulation, only one thing needs to be changed. This
is the assignment of which constellation points should be 1
and which 0. To achieve complete mapping independence,
it is necessary to have an explicit probability measure over
all possible constellation points. To achieve this in a DNN-
based approach, the constellation point probabilities can be
directly modeled as

P
(
cyi = sk | y, θ

) =
(
f (symbol)
θ (y)

)

ik
. (3)

Given the probability distribution over the constellation
points, the association between the constellation points and
the bit predictions can be defined. Note that the formulation
has been restricted to bit mappings that are bijective for
brevity’s sake. This means that every constellation point
maps to exactly one-bit string and that each bit string that is
mapped is unique. The bit probability can then be defined
as

P
(
bij = 1 | y, θ) =

|S|∑

k=1
(Mb(sk))j=1

P
(
cyi = sk | y, θ

)
. (4)

Equation (4) utilizes that the probability P(bij = 1 | y, θ)

corresponds to the probability that sk should be demapped
as one of the symbols that maps to bit j. Thus, it can be

FIGURE 1. An example of QPSK and 16QAM overlaid. The representation is
determined by counting from left to right and from bottom to top in Gray code.
Afterward, interleave the in-phase and quadrature components to get a hierarchy. The
representation values match the position in the representation by color.

computed by adding the constellation point probabilities of
points that map to 1 at the index j in the bit string. An explicit
term for the probability of each constellation point has
been derived. Thus, a mapping-independent formulation is
presented. To demodulate with a different mapping, one can
change Mb to a desired new mapping M̂b. The appropriate
probabilities are then directly obtained without adjusting the
DNN weights. The described procedure performs an exact
computation of the LLR. However, mapping independence
can also be achieved with an approximate LLR. This can be
computed, for example, by taking the maximal probabilities
of constellation points corresponding to a bit value of 1
and 0. Doing so potentially reduces system performance
while allowing higher throughput. These effects would be
more noticeable the larger the constellation is.

B. QAM REPRESENTATION
Although the property of mapping independence is impor-
tant, it does not address the hierarchical structures in many of
the constellation families. Figure 1 depicts the hierarchical
structure. Here, a QPSK constellation is overlaid by a
16-QAM constellation. There are two important observations
here. First, there is an identical symmetry component for both
QPSK and 16-QAM. For QPSK, only two bits are needed to
encode the location of a point; one bit is used to determine
the sign of the real axis, and the other is used to determine
the sign of the imaginary axis. As such, it is not necessary to
encode a probability for each individual symbol. Two binary
probabilities, one for each sign, are sufficient to compute
all symbol probabilities. Second, there are shared decision
boundaries between QPSK and 16-QAM. The bit mappings
depicted here allow us to define the first two bits of the
16-QAM constellation. These bits correspond to the sign of
the real and imaginary components. Thus, these bits can be
shared with the QPSK constellation, an observation made
previously by [22]. Having a form of binary representation
thus makes sense in the context of 4n-QAM constellations.

1698 VOLUME 6, 2025

Therefore, a form of shared binary representation that
respects the hierarchical relationship between different QAM
constellations is proposed. This representation is referred to
as r and a mapping Mr is defined. This mapping maps a
constellation point to the binary representation r. The binary
representation can be defined in a manner similar to [22]
and Figure 1. The neural network is then defined as

log
P
(
rij = 1 | y, θ, ri1, . . . , ri(j−1)

)

P
(
rij = 0 | y, θ, ri1, . . . , ri(j−1)

) =
(
f (repr)θ

(
x̂
))

ij
. (5)

Note that no assumption on the independence of each
representation bit is made. It is also not assumed that Mr is
bijective. It could be desirable to have a binary representation
in which elements of the representations are dependent on
prior elements in the representation. The formulation in (5)
is the final formulation that is used for all experiments.
To map the representation bits to a bit string, the symbol
probabilities are first computed as

P
(
cyi = sk | y, θ

)

=
R∏

j=1

P
(
rij = (Mr(sk))j | y, θ, ri1, . . . , ri(j−1)

)
. (6)

Here, R is introduced as the total size of the representation.
The symbol probabilities can be computed by sequentially
multiplying all the elements in the representation for a
given symbol. For the resulting receiver, a sequence of
defined formulas can be used. The sequence of (4), (5),
and (6) is used. Consequently,all variants of 4n-QAM can be
modeled with this formulation. It also incorporates mapping
independence, improving over [22]. For 4n-QAM, the special
case where Mr is an extension of Mb occurs. For this
case, the following theorem holds assuming an exact LLR
computation.
Theorem 1: Mb is extended by Mr → P(bij = 1 |

y, θ) = P(rij = 1 | y, θ, ri1, . . . , ri(j−1))

Proof: P(bij = 1 | y, θ) =∑|S|
k=1

(Mb(sk))j=1
P(cyi = sk | y, θ)

= ∑|S|
k=1

(Mb(sk))j=1

∏R
l=1 P(ril = (Mr(sk))l |

y, θ, ri1, . . . , ri(l−1))

= ∑|S|
k=1

(Mb(sk))j=1

∏B
l=1 P(ril = (Mb(sk))l |

y, θ, ri1, . . . , ri(l−1))

=∑|S|
k=1

(Mb(sk))j=1
P(rij = (Mb(sk))j | y, θ, ri1, . . . , ri(j−1))∗

∏B
l=1
l �=j

P(rij = (Mb(sk))l | y, θ, ri1, . . . , ri(l−1))

= P(rij = 1 | y, θ, ri1, . . . , ri(j−1))
∏B

l=1
l �=i

P(ril = 0 |
y, θ, ri1, . . . , ri(j−1))+ P(ril = 1 | y, θ, r1l, . . . , ri(j−1))

P(bij = 1 | y, θ) = P(rij = 1 | y, θ, ri1, . . . , ri(j−1))

To describe the proof in text, the first two steps are
applications of the definitions of Eq. (4) and Eq. (6). In
Eq. (8), the hypothesis that Mb is extended by Mr is
applied. Then, in Eq. (9), the case where bit l is the
same as bit j is factored. The sum is then moved inward,

FIGURE 2. Comparison of 16-QAM and 64-QAM. The red circles represent 16-QAM
with the large red circle being the average for each quadrant. We presented the same
in green for 64-QAM. While the averages for both constellations are quite similar, they
are not exactly equal. This causes a small reduction in BER when masking is
performed.

resulting in the product becoming a product on terms that
all evaluate to 1. The term that was originally moved out of
the product sum becomes P(rij = 1 | y, θ, ri1, . . . , ri(j−1)).
This is a result of moving the sum inward. This step also
concludes the proof. This result implies that the formulation
for 4n-QAM is a generalization of direct modeling of LLRs
with a neural network. The framework should thus be as
accurate as models directly optimized on the LLR. However,
it has mapping independence. As a side note, non-square
constellation can also be added to the representation. This
can be done by appending all and not including them in the
hierarchical structure. Doing so gives a shared representation
for 4n-QAM and separate representations for the other QAM
constellations.
a) Scaling: An issue exists with the masking hierarchy

found by [22]. The concept of this hierarchy is that 16-QAM
can be considered as an extension of QPSK, 64-QAM as
an extension of both 16-QAM and QPSK, etc. However,
looking at Fig. 1, there is a deviation in this hierarchy
visible. For 16-QAM to be a proper extension of QPSK, it
is expected that the constellation points of QPSK align with
those of 16-QAM. An appropriate alignment based on the
given decision boundaries would be as follows. First, take
the average of the four constellation points with positive
real and imaginary components of 16-QAM. Then, align this
average with the QPSK point having a positive real and
imaginary component.
However, this is not achieved when normalizing a signal

based on the average power. The averaged points in the
16-QAM constellation have the same angle as the QPSK
constellation points but a slightly smaller amplitude. This is
not an issue when only 16-QAM and QPSK are combined, as
the decision boundaries between points still align perfectly.
However, this causes problems when including a third
constellation from this family. Although the alignment

VOLUME 6, 2025 1699

GANSEKOELE et al.: JOINT DEMAPPING OF QAM AND APSK CONSTELLATIONS USING ML

TABLE 1. The multiplication factors used for different QAM constellations.

between 64-QAM and 16-QAM is much better than between
QPSK and 16-QAM, there is a discrepancy. This has been
illustrated in Fig. 2. This discrepancy becomes an issue in
a multi-demapper that demaps, e.g., four different types of
4n-QAM constellations. This demapper then achieves worse
BER rates than a neural receiver that only has to demap one
type.
Note that if the signal power of a received signal is

normalized, the constellations can be mapped to any desired
space through multiplication. Thus, an appropriate hierarchy
for 4n-QAM can be constructed with a scaling factor.
This ensures that the underlying demapping problem is on
the same scale for all of these constellations. Given the
set S4n−QAM that contains all complex-valued constellation
points for a certain constellation, define the set of S4n−QAM

+ =
{s ∈ S4n−QAM | Re(s) > 0 & Im(s) > 0}. Then, one can
compute the scaling factor for a constellation as

γ =
∑

c∈S4n−QAM
+

c
∑

s∈S4n−QAM
+

s
. (7)

Using this formula, the appropriate scaling factors for
the 4n-QAM constellations are presented in Table 1. By
multiplying a received normalized signal by these factors, the
received signal can be lifted back into the same space. The
hierarchical approach with a scaling factor is only applicable
to 4n-QAM constellations.

C. APSK REPRESENTATION
The advantage of separating Mr and Mb and defining
Mr as non-bijective mapping is not immediately apparent
for 4n-QAM. For square QAM constellations, a masking-
based approach can encode all of these with a bijective bit
mapping. However, constellation groups generally do not
allow solutions where Mr is bijective. Thus, elements of ∇
are not necessarily independent of each other. Furthermore, it
is not always practical to assume that the bit mapping is the
same. Different standards may have different bit mappings
that can be decoded in a similar way. An important example
of this is the family of circular APSK constellations.
These types of constellation are common in the

DVB-S2 standard [39]. They come in various configurations
and shapes, but can often be defined on the basis of a
few aspects. These include the number of amplitude levels,
the number of phase levels, the distance between each
amplitude level, and the phase offset per amplitude level. For
convenience, from now on the different levels of amplitude
shift are referred to as circles. Note that no assumption has to
be made that the outer circle has an amplitude of 1. Similarly
to traditional receivers, the only assumption necessary is that
the amplitude level of each circle is consistent.

Algorithm 1 Get APSK Representation of Constellation
Require: none
Ensure: Returns updated representations for QAM, circle, and

family bits
1: Initialize q← zeros(representation_size× #symbols)
2: Determine the quadrant in which each point lies
3: for each point do
4: if point in bottom-left quadrant then
5: Assign quadrant bits 00 in q
6: else if point in top-left quadrant then
7: Assign quadrant bits 10 in q
8: else if point in bottom-right quadrant then
9: Assign quadrant bits 01 in q

10: else
11: Assign quadrant bits 11 in q
12: end if
13: end for
14: Number the circles from innermost to outermost
15: for each point do
16: Compute the binary value with

�current_circle ∗ 2	log2(total_circles)
/(num_circles− 1)�
17: Assign the Gray-coded binary representation of the circle in

q
18: end for
19: for each quadrant and circle do
20: Extract all points within the circle and quadrant
21: Determine their order based on their (counter-)clockwise

angle. The top-right and bottom-left have a clockwise order
22: Number them using: �current_point ∗ 2	log2(total_points)

/(total_points− 1)�
23: Gray-code these values and assign them to the symbols in q
24: end for
25: Return q

FIGURE 3. A QPSK (blue) and offset 8-PSK (red) constellation overlaid. The latter
constellation hierarchically relates to the former, as by adding one more bit (red) to
the two bits (blue), the quadrants can be split in two.

For many of the constellations in the DVB-S2(x) standard,
there are a few commonalities. The circles in many APSK
constellations have a phase offset of π/M where M is the
number of constellation points on that circle. The simplest
instances of this family are BPSK and QPSK. To better
illustrate this family, QPSK overlaid with offset 8-PSK was
drawn in Fig. 3. A potential Gray mapping for both was

1700 VOLUME 6, 2025

included. The figure shows that the QPSK points split the
offset 8-PSK points exactly through the middle for each
quadrant.Interestingly, the real and imaginary axis lines form
decision boundaries for both constellations. For QPSK, they
form the set of optimal hard decision boundaries. For offset
8-PSK, the lines through the QPSK points have to be added.
The hard-decision boundaries between QPSK and offset
8-PSK thus overlap. This means that only a demapper for
offset 8-PSK is needed to demap both QPSK and offset
8-PSK. It is thus clear that these two constellations form a
hierarchy.
This hierarchy can be used to build an efficient and more

general representation for APSK. The relationship in Fig. 3
holds when the number of points in the circle is a power
of two starting at four. However, many APSK constellations
have a number of points from these different from those.
Nevertheless, they still obey this hierarchical relationship as
long as the phase offset is π/M. Note that this phase offset
can thus differ per circle, as each circle can have a different
number of points. The points that form a hierarchy follow
4× 2n × d where n = 0, 1, 2, . . . and d = 1, 3, 5, This
is equivalent to the set of all odd numbers. Intuitively, the
hierarchies are formed with an odd number d at the base.
Every factor of 2n then forms a set in which the constellation
points are split again in half. For example, when there are
12 points on a circle, the decision boundaries are perfectly
contained by a circle with 24 points. As these circles do
not allow for a perfect binary representation a non-bijective
dependent mapping is necessary.
The process of generating the binary representation per

circle is divided into two steps. First, the bits belonging to
a quadrant are determined. The bits belonging to family are
then determined. Here, family refers to the value of d that
applies to the number of points in a circle. For example,
a circle with 12 points is part of the 3-family. The general
procedure is described in Algorithm 1. In each quadrant and
for every circle, points are ordered based on their angle and
then Gray coded. Doing so ensures that the representation has
the smallest error possible. There are two important details to
the labeling process. First, for only three points, they are not
labeled as 0, 1, 2 but as 0, 1, 3. This procedure ensures that
the labeling respects the hierarchical relationship that was
established. Second, the top right and bottom left quadrants
are labeled clockwise. This ensures that neighboring points
in different quadrants have the same representation bits. The
quadrant bits themselves correspond to the representation
of QPSK. This representation is common in all 4n-QAM
constellations and most APSK constellations. These bits can
then be combined with the 4n-QAM representation. This is
done by computing then separately for further efficiency.
These quadrant bits are computed on the basis of the sign
of the real and imaginary components.
One more aspect is the configuration of the amplitudes per

circle. APSK constellations often consist of multiple circles,
with each circle having a different amplitude. Although
the outermost circle in a normalized APSK constellation

FIGURE 4. The structure of a multi-branch AMR and Demapper model.

usually has an amplitude of around 1, the inner circles
can vary depending on the configuration. The optimal
decision boundaries for the circles differ on the basis of the
configuration. The assumption is made that there is a known
set of configurations, such as inthe DVB-S2x standard. For
each configuration, a separate set of circle bits is determined.
It is important not to share the circle configuration. The
network becomes less capable of demapping when the circle
bits are shared.
Finally, some APSK constellations do not follow any of

the structures discussed above. A simple example of this
is 8-PSK. As 8-PSK has a phase offset of 0, the decision
boundaries do not form a hierarchy. A solution to include
these constellations is to extend Mr with Mb directly. By
doing so, no loss of performance for these constellations is
guaranteed by Theorem 1. Thus, any arbitrary constellation
can be included in the framework. It is also important to
note that the framework does not consider phase ambiguity.
As with other receivers, some mechanic is needed to
address phase ambiguity. Resolving phase ambiguity does
not affect the framework, however. If the framework is unable
to resolve phase ambiguity, a standard neural receiver is
unlikely to be able to resolve it, also.

D. EXTENSION TO AUTOMATIC MODULATION
RECOGNITION
As neural demapping has now been extended to simultane-
ously demap multiple constellations to increase parameter
efficiency, it must be asked whether this task can be further
extended. To do so, the link between the simultaneous
demapping of multiple types of constellation and multi-
task learning is drawn. The shared challenges in channel
estimation, equalization, and demapping are used to more
efficiently demap multiple constellations. In that context, it
can be seen that the pipeline could be extended to other tasks.
It is observed that many tasks in communication are rendered
trivial in the absence of complex impairments, implying that
the most important task that a neural network must perform
is the identification and correction of channel impairments.

VOLUME 6, 2025 1701

GANSEKOELE et al.: JOINT DEMAPPING OF QAM AND APSK CONSTELLATIONS USING ML

For that purpose, automatic modulation recognition
(AMR) was added to the pipeline. AMR is an interesting fit
for inclusion, as the framework’s approach already allows
demapping multiple types of constellations simultaneously.
Thus, it is fairly straightforward to include AMR as well.
This can be done using a shared representation learned for
both tasks. Combining AMR with simultaneous demapping
would be a complementary change. Making the change
removes the need for the assumption that the modulation
type has been communicated. One issue is that the scaling
factor previously discussed cannot be included. This scaling
factor violates a fundamental assumption of AMR, as the
modulation type must be known. This limits the demapping
performance of the model. Note that it is not required to
perform the QAM masking approach used. One could treat
4n-QAM in the same way as the other QAM constellations.
This increases memory use and complexity, but removes the
need for the scaling factor.
A schematic of the combined model has been included in

Fig. 4. The model consists of three components: the encoder,
the classifier, and the demapper. The exact architectures
of these models can be decided upon on the basis of the
setting. In principle, the encoder contains most of the model
parameters and has the primary task of correcting channel
impairments. The demapper is a small model that first
translates the corrected samples to our representation space
and then translates them to bit LLRs. Finally, the classifier
aggregates all symbols in the transmission and then provides
a probability over the set of possible modulation types. For
jointly training these models, the BCE loss over the bit
LLRs is combined with the cross-entropy (CE) score of the
modulation type labels. Note that all models discussed so
far can be considered within this framework by leaving out
either the classifier or the demapper.

IV. EXPERIMENTAL SETUP
To validate the framework, experiments were run using sim-
ulations. The simulations were performed using Sionna [40].
The experiments were first ran in an AWGN setting to
validate the approach. Second, simulations were run over an
OFDM fading channel to validate whether the conclusions
transfer to a more realistic setting.

A. AWGN
To evaluate the performance of the method, the data was
simulated over a simple AWGN channel. This was done
to better understand how the method behaves in various
combinations of constellations. As an AWGN channel allows
for a simple optimal hard-decision demodulation rule, it was
used as a bound to benchmark the method. The simulation
pipeline is depicted in Fig. 5.
To perform our experiments, a simple DNN receiver was

used as depicted in Table 2. The encoder takes the raw
I/Q samples and consists of three hidden layers of size 256
each, followed by a ReLU activation function and a batch
normalization layer. This model was chosen because it has

TABLE 2. AWGN experimental configuration.

TABLE 3. AWGN system parameters.

sufficient capacity to approach the BER lower bound for
the neural receiver. The DemapHead module then receives
the output from the encoder and returns either the bit LLRs
directly for the standard neural receiver or the representation
bits for the multi-neural receiver. The ClassifierHead is
only included when the model performs AMR. It first
performs global average pooling over the time dimension
and then passes the output through a one-layer deep neural
network.
The rest of the hyperparameters are detailed in Table 3.

These settings are included for reproducibility; the code
will be released on GitHub. For the AWGN channel, the
noise was sampled uniformly at random between −5 and
20 Eb/N0. As we perform simulations, every sequence is
new. The number of symbols per block refers to the number
of I/Q samples encoded at each step. Coding is done with
a 5G compliant LDPC de / encoder with a code rate of
1/2 [41]. For training, the coding module is not included as

1702 VOLUME 6, 2025

FIGURE 5. The AWGN link-level simulation that was used for part of the experiments.

it does not affect the optimal decision boundary. The batch
size depends on the number of constellation types included.
For the baseline neural receiver, a batch size of 32 is used.
For the multi-receiver, 32 is multiplied by the total number
of constellations incorporated during training. In addition to
the optimization settings mentioned in the table, we use a
scheduler that reduces the learning rate by a factor of 10 in
epochs 100 and 125. As new data is simulated every batch,
there is no relevant dataset size. The only impairment used
in the AWGN channel is the Gaussian noise element.
Each sequence has a different SNR, and thus the DNN

demapper should learn how to correct for the noise level.
The APSK constellations are generated based on the DVB-
S2x specification [39]. These constellations are specified
by their configuration and code rate. For example, the
constellation 64-APSK-7/9 is the APSK constellation with 64
constellation points associated with the code rate 7/9 under
this specification. Different code rates generally refer to a
different circle radius in the APSK constellations, but may
also refer to entirely different layouts. A diverse subset of the
118 constellations is taken for the experiments. For example,
there are many variants of 16-APSK with a configuration of
4 + 12. This means that the inner circle contains 4 points
and the outer circle 12 points. Including all of them is not
necessarily as interesting as including an entirely different
configuration.
To evaluate the method, the following three systems are

compared.

1) A baseline approach that computes the bit LLRs based
on the squared Euclidean distance of received symbols
to every constellation point. As this approach is equal
to the MAP-estimator assuming a Gaussian distribution
per constellation point, this approach is optimal under
AWGN. That is why we included this approach to
demonstrate the achievable lower bound within our
setup.

2) A neural demapper that directly predicts the bit LLRs.
This single receiver allows us to evaluate how a

TABLE 4. OFDM system parameters.

receiver that only has to demap a single constellation
performs comparatively.

3) The multi-demapper approach that we trained
on multiple constellations. The constellations on
which it is trained are QPSK, 16-QAM, 64-QAM,
256-QAM, 8-PSK, 16-APSK-2/3, 16-APSK-100/180,
32-APSK-2/3, 64-APSK-7/9, 64-APSK-128/180, 256-
APSK-124/180.

B. OFDM
Note that a neural receiver is redundant for an AWGN
channel, as its primary objective is correcting channel
impairments. A simple SIMO OFDM simulation pipeline
is used to further evaluate the method. A schematic for
the pipelines is given in Fig. 6. Four different pipelines are
compared for the OFDM setting.

1) For the first baseline, perfect channel state information
is assumed. This means that ground-truth fading effects
are used for equalization. This baseline served as a
reference to what is achievable.

2) For the second baseline, LS estimation based on the
pilot symbols is performed. These estimates are passed
to the equalization module.

VOLUME 6, 2025 1703

GANSEKOELE et al.: JOINT DEMAPPING OF QAM AND APSK CONSTELLATIONS USING ML

FIGURE 6. The SIMO OFDM pipeline that is used for part of the experiments.

3) The single neural receiver is the DeepRX [22] model.
It takes the received I/Q samples, the ground-truth pilot
symbols, and the LS estimation based on these pilot
symbols as input.

4) The multi-neural receiver. It is built upon DeepRX and
extends it with the representation module.

The OFDM system parameters for our method can be
found in Table 4. Similar neural network settings were used
as they worked well for OFDM too. Thus, each receiver
is also trained for 150 epochs using the AdamW optimizer
with a learning rate of 0.004. At epochs 100 and 125, the
learning rate is reduced by a factor of 10. The receiver has a
dual antenna setup with antenna patterns as in the 3GPP TR
38.901 specification. We have opted for a SIMO pipeline
as it is sufficiently simple to allow isolating the important
factors while still being interesting to evaluate a neural multi-
receiver. The combination of a CDL-C for training and a
CDL-D model for evaluation was chosen. These channel
models are sufficiently general to draw conclusions for
SIMO systems. A different channel model for training and
evaluation is chosen to ensure that the approaches generalize.
In each training batch, a set of fading channels is

sampled from the given CDL-C configuration. The channel
coefficients are simulated using this configuration. These
coefficients are then multiplied element-wise with the data
to be transmitted. Finally, Gaussian noise is generated based
on a batch of uniform random SNR values between −5 and
20 Eb/N0. The noise samples are then added to the batch
to simulate the OFDM samples received. As simulations
are used, there is again no concept of a dataset size
or training/test split. Every generated block is different
from every other block. Frame synchronization is assumed
to have been accomplished beforehand. This is fair, as
this assumption is made for all methods compared. The
experiments were run on a compute node that has a partition
with 18 cores of an Intel Xeon Platinum 8360Y CPU, 128GB
of RAM, and an NVIDIA A100 GPU with 40GB of VRAM.

FIGURE 7. BER performance of different methods under AWGN as a function of
SNR. This figure contains the first set of six modulations.

Simulations are often sufficient for generalizable conclu-
sions. Real-world demapping datasets are often limited in
size and diversity. An alternative is to use the DeepMIMO
dataset [42]. This is a highly realistic ray-traced set of
scenarios that allows sampling channel coefficients.

V. SIMULATION RESULTS
A. AWGN
First, the methods were compared for AWGN. In Fig. 7,
the BER across the entire evaluated SNR range has been

1704 VOLUME 6, 2025

FIGURE 8. BER performance of different methods under AWGN as a function of
SNR. This figure contains the second set of five modulations.

depicted for 6 different constellations. These constellations
contain the four constellations that share the QAM bits,
i.e., QPSK, 16-QAM, 64-QAM, and 256-QAM. It can be
observed that for all of these constellations, both the neural
and multi-receiver achieve a performance similar to the
baseline. For QPSK, this implies that no performance is
lost by sharing the representation with other constellation
types. The QPSK constellation is one of the most interesting
in this evaluation, as it shares its representation bits with
every constellation other than 8-PSK. However, this has
not hampered the optimization of this constellation type.
The 256-QAM constellation again shares many of its
representations with other methods, but it also has many
unique representation bits. Furthermore, 256-QAM is one
of the most complex constellation types in the setup. It is
also relatively hard to fit, since the neural receiver needs to
learn to distinguish many more symbols. Again, the approach
achieves a performance similar to that of both the baseline
and the neural receiver. Similarly, the performance of both
the neural receiver and multi-receiver approaches the baseline
for both 16-QAM and 64-QAM. One of the smaller APSK
settings is also depicted in this figure. This constellation was
depicted because it does not share many representation bits
with other approaches. It is also one of the constellation types
for which there is no bijective mapping for the constellation
points on the outer circle. However, there does not seem to be

FIGURE 9. Distribution of I/Q samples based on the learned representation. The
position is given, and the point color is the model prediction. The background is a
visual aid to depict the ground truth. The bits associated with QPSK and the first
1 − family APSK bit are depicted here.

a major performance difference between the standard neural
receiver and multi-receiver. Finally, the results for 8− PSK
are presented. Here, it is observed that the performance of
the multi-receiver is approximately equal to the baseline
and neural receiver. It is indicated by this that, without bit
sharing, a similar performance can be achieved.
Second, the remaining five included in Fig. 8 were

depicted. These five include three APSK constellations
that share all family bits. These include 16-APSK-100/180,
64-APSK-128/180, and 256-APSK-124/180. These have 8+
8, 16+16+16+16, and 32+32+32+32+32+32+32+
32 as configurations, respectively. It can be observed that
these constellations all achieve similar performance to their
respective baselines when modeled separately. Consequently,
the proposed bit-sharing representation seems valid under
AWGN. It can also be seen that the other two constellations
achieve a performance similar to their respective baseline.
In general, it is thus observed that the multi-receiver is as

accurate under AWGN as the neural receiver that only has
to demap a single constellation. This conclusion seems to
hold for all included constellations. This indicates that, under
AWGN, there is no reason to constrain the set of possible
constellations to just one. Using the presented approach,
multiple different types of constellation can be included
without loss of performance.
a) Learned Representation: To better understand what the

method learns, a range of I/Q samples was generated and
passed through the multi-receiver. The range of I/Q samples
consists of a set of evenly spaced points between the corner
points {(−1,−1), (1,−1), (−1, 1), (1, 1)}. For each of these
samples, the symbol label was determined based on the
hard-decision bit labels. For example, if a bit has a hard-
demapping of 11, the colour associated with the symbol that
demaps to 11 was given. The first representation bit of the 1−
family of the APSK representation was also added. According
to the intuition of the approach, this representation bit should

VOLUME 6, 2025 1705

GANSEKOELE et al.: JOINT DEMAPPING OF QAM AND APSK CONSTELLATIONS USING ML

FIGURE 10. AMR performance of different methods under AWGN as a function of
SNR.

FIGURE 11. BER performance of different methods under AWGN for 256-QAM as a
function of SNR.

add the diagonal decision boundaries defined through the
points (−1,−1) to (1, 1) and (−1, 1) to (1,−1). The result
of this is depicted in Fig. 9. Although some points around
the edges may be classified incorrectly, the points are overall
correctly classified based on their position. These results
give an idea of what the approach learns. The expected,
optimal decision boundaries seem to be the same as the ones
learned by the neural multi-receiver. This result underlines
the validity of the approach.
b) Demapping + Classification: Finally, the classification

head was included in the approach. The multi-receiver was
trained with both the demapping head and the classification
head simultaneously. To compare, a model with just a
classification head was also trained. This experiment allows
evaluating whether the tasks of classification and demapping
can be performed jointly. The results of the AMR approach
are shown in Fig. 10. It can be seen that the accuracy of
both is similar. This indicates that the classification task is
not hindered by the demapping task performed. To further
validate this finding, the BER of the combined model is
compared with the original 256 − QAM multi-demapper

FIGURE 12. Coded BER performance of different methods under OFDM as a
function of SNR. This figure contains the first set of six modulations.

results in Fig. 11. Here, the performance is again equivalent.
This indicates that the tasks of AMR and bit demapping
do not hinder each other. These results demonstrate that it
is possible to jointly learn a neural classifier and demapper
with a shared representation under AWGN without loss of
performance.

B. OFDM PIPELINE
To get a better idea of the practical utility of this work, the
framework was also evaluated in a set of four SIMO OFDM
pipelines. These pipelines were previously described in the
experimental setup.
a) BER Performance: First, the BER results of the

pipelines for various modulation types were evaluated. In
Fig. 12, the results for the first half of the constellations
included in the experimental setup are depicted again. For
all constellations, it can be observed that none is as good as
the baseline under perfect CSI. This is to be expected, as the
perfect CSI baseline under simulation is optimal. The neural
receiver and the multi-receiver also beat the LS-estimation
significantly, which underlines that an NN-based approach
is complementary for both pipelines.
The first four important constellations to consider are

the group of QPSK, 16-QAM, 64-QAM, and 256-QAM.
Together, these form an interesting family, as they all directly
extend each other. Both the neural receiver and multi-
receiver achieve relatively similar performance for all four of
these constellations. Slight discrepancies between the neural

1706 VOLUME 6, 2025

FIGURE 13. Coded BER performance of different methods under OFDM as a
function of SNR. This figure contains the second set of five modulations.

receiver and multi-receiver can be observed. Generally, the
neural receiver achieves a lower BER when there is a
difference. At an SNR of 4, the neural receiver for 256-QAM
achieves a clearly lower BER than what we observe for the
multi-receiver. Similarly, it can be observed that at an SNR of
−3, the neural receiver is also slightly better than the multi-
receiver for QPSK. Overall, the BER curve is fairly similar
for these constellations. Note that the constellations QPSK,
16-QAM, 64-QAM, and 256-QAM share their representation
bits but retain a similar performance as separately trained
models. Even under a complicated channel model, masking
is able to approach the performance of the single neural
receiver for the QAM constellations. Another interesting
observation is that the performance of 8-PSK is highly
similar as well for both the neural receiver and multi-
receiver. As the constellation does not share bits with any
other constellations, it demonstrates that adding more general
constellations does not harm the BER of these constellations.
In Fig. 13, the BER curves for the remaining constella-

tions are shown. The most important set of constellations
to consider here is 16-APSK-100/180, 64-APSK-128/180
and 256-APSK-124/180 as they all share the 1 family for
every circle. The performance for these constellations is
again similar for both the neural receiver and multi-receiver.
This implies that the APSK representation sharing feature
also works under a realistic channel model. Furthermore,

TABLE 5. Throughput measurements for different systems and modulation methods
in Mb/s on an A100 GPU.

32-APSK-2/3 and 64-APSK-7/9 share representation bits for
some circles and do not share them for others. However, their
performance is also similar for both the neural receiver and
multi-receiver. Overall, while there are slight performance
discrepancies at some SNR points, the model is overall
similarly accurate between both the multi-receiver and neural
receiver. This implies that the approach is also valid under
OFDM with a realistic channel model.
b) Throughput: To get an idea of what the overhead of

the approach could be, the throughput values are presented
in Table 5. These values entail the time it took between
receiving the symbols and computing the bit LLRs. This
process was repeated 5 times with 1000 MC iterations
each. The minimum time of these repeats were taken. The
minimum time is commonly used as it is the least noisy
estimate of the average run-time of code. The bitrate was
then calculated by dividing the number of demapped bits by
the time it took to process them. The experiments were run
on a compute node that has a partition with 18 cores of an
Intel Xeon Platinum 8360Y CPU, 128GB of RAM, and an
NVIDIA A100 GPU with 40GB of VRAM.
In the table, it can be seen that the throughput difference

is minimal for methods with a smaller number of symbols.
However, for 256 symbols, the performance difference
becomes more noticeable. The evaluation of symbol prob-
abilities for 256 symbols can be resource-intensive. Note
that the assumption was made here that all neural models
are already loaded into memory. While this may be realistic
for the multi-model, it may prove less realistic for the
standard neural receiver models. Thus, it is shown that the
performance impact of using the approach under pessimistic
assumptions is only slight.
c) Demapping + AMR: Finally, the addition of a classifi-

cation head to DeepRX is evaluated. To form a classification
head, the last residual block of DeepRX was taken and
duplicated for the classification head. A global average
pooling layer and a dense layer were added at the end
to arrive at the classification model. Again, training the

VOLUME 6, 2025 1707

GANSEKOELE et al.: JOINT DEMAPPING OF QAM AND APSK CONSTELLATIONS USING ML

FIGURE 14. AMR performance of different methods under OFDM as a function of
SNR.

FIGURE 15. BER performance of different methods under OFDM for 256-QAM as a
function of SNR.

classifier only was compared with the combination of the
classifier and demapper.
The results were drawn in Fig. 14. Surprisingly, the

combination of a classifier and demapper is not just as
accurate but significantly more accurate than training the
classifier. This would imply that the task of demapping helps
in learning the task of classification. This result is consistent
with the work by [36]. However, they have multiple loss
functions that operate directly on the underlying data. The
approach presented here can perform this process fully end-
to-end. Intuitively, these results make sense, as the learning
task becomes more structured when demapping is included.
The AMR task needs to deal with at least two types
of variance: the variance caused by the channel and the
variance caused by the symbol transitions. When demapping
is included in the objective, the latter becomes given.
To validate the demapper of the combined model, it is

compared with the previously evaluated demapper in Fig. 15.
Here, it can be seen that the combined model is less effective
than the model that just performs demapping. It seems
that the cost of augmenting the classification performance

under OFDM is that the demapping performance is worse.
In conclusion, the classification head under the shared
model performs better than the model purely trained with a
classification objective. This indicates that the joint demapper
can provide additional information for AMR approaches.
This allows them to more quickly converge to a more
effective AMR approach without increasing the complexity
of the downstream model. This work thus also presents a
contribution to AMR.

VI. CONCLUSION
We proposed a framework that allows us to jointly train on
and generalize to multiple types of constellations. In this
framework, we include mapping independence and the ability
to use hierarchical relationships in families of constellations.
We found that it is not only possible to train a model jointly
on multiple constellations, but that such a method approaches
the hard-decision BER bound under AWGN. It also performs
similarly to neural receivers under both AWGN and SIMO
OFDM channels. Furthermore, we found that combining
AMR and demapping results in better AMR accuracies under
OFDM.
Thus, the framework introduced opens up the possibility

of efficiently modeling families of constellations in the
context of DNNs. This is an important step in making DNN
receivers sufficiently adaptable in dynamic environments.
It also shows the promise of combining various tasks in
the communication pipeline. The framework is modular and
applicable to any deep learning receiver pipeline. As the
approach is implemented as a module applied to every
symbol individually, it is also applicable to multi-user
MIMO scenarios without further extension. Thus, this work
addresses an important issue in the flexibility of neural
receivers. The framework applies to many related works,
as the approach can be modularized and attached to any
neural receiver that outputs bit LLRs. Due to its modular
nature, the work can be easily extended to larger datasets and
more complex architectures. Future work includes extending
the work to MIMO, beamforming, and real-world datasets.
Future work could also look at approaches to reducing the
exact computation. This is necessary for scaling to very large
constellations, such as, e.g., 4096-QAM.

REFERENCES
[1] T. O’Shea and J. Hoydis, “An introduction to deep learning for the

physical layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4,
pp. 563–575, Dec. 2017.

[2] S. Dörner, S. Cammerer, J. Hoydis, and S. T. Brink, “Deep learning
based communication over the air,” IEEE J. Sel. Topics Signal
Process., vol. 12, no. 1, pp. 132–143, Feb. 2018.

[3] F. A. Aoudia and J. Hoydis, “Model-free training of end-to-end
communication systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 11,
pp. 2503–2516, Nov. 2019.

[4] A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. T. Brink, “OFDM-
Autoencoder for end-to-end learning of communications systems,” in
Proc. IEEE 19th Int. Workshop Signal Process. Adv. Wireless Commun.
(SPAWC), 2018, pp. 1–5.

[5] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled
semantic communication systems,” IEEE Trans. Signal Process.,
vol. 69, pp. 2663–2675, Apr. 2021.

1708 VOLUME 6, 2025

[6] X. Ma and Z. Gao, “Data-driven deep learning to design pilot and
channel estimator for massive MIMO,” IEEE Trans. Veh. Technol.,
vol. 69, no. 5, pp. 5677–5682, May 2020.

[7] F. A. Aoudia and J. Hoydis, “End-to-end learning for OFDM: From
neural receivers to pilotless communication,” IEEE Trans. Wireless
Commun., vol. 21, no. 2, pp. 1049–1063, Feb. 2022.

[8] D. Korpi, M. Honkala, and J. M. J. Huttunen, “Deep learning-based
pilotless spatial multiplexing,” in Proc. 57th Asilomar Conf. Signals,
Syst., Comput., 2023, pp. 1025–1029.

[9] F. A. Aoudia and J. Hoydis, “Waveform learning for next-generation
wireless communication systems,” IEEE Trans. Commun., vol. 70,
no. 6, pp. 3804–3817, Jun. 2022.

[10] X. Lin, R. Liu, W. Hu, Y. Li, X. Zhou, and X. He, “A deep
convolutional network demodulator for mixed signals with differ-
ent modulation types,” in Proc. IEEE 15th Int. Conf. Dependable,
Auton. Secure Comput., 15th Int. Conf. Pervasive Intell. Comput.,
3rd Int. Conf. Big Data Intell. Comput. Cyber Sci. Technol. Congr.
(DASC/PiCom/DataCom/CyberSciTech), 2017, pp. 893–896.

[11] M. Zhang, Z. Liu, L. Li, and H. Wang, “Enhanced efficiency
BPSK demodulator based on one-dimensional convolutional neural
network,” IEEE Access, vol. 6, pp. 26939–26948, 2018.

[12] A. S. Mohammad, N. Reddy, F. James, and C. Beard, “Demodulation
of faded wireless signals using deep convolutional neural networks,” in
Proc. IEEE 8th Annu. Comput. Commun. Workshop Conf. (CCWC),
2018, pp. 969–975.

[13] M. Soltani, V. Pourahmadi, A. Mirzaei, and H. Sheikhzadeh, “Deep
learning-based channel estimation,” IEEE Commun. Lett., vol. 23,
no. 4, pp. 652–655, Apr. 2019.

[14] N. Samuel, T. Diskin, and A. Wiesel, “Learning to detect,” IEEE
Trans. Signal Process., vol. 67, no. 10, pp. 2554–2564, May 2019.

[15] H. Wang et al., “Deep learning for signal demodulation in physical
layer wireless communications: Prototype platform, open dataset, and
analytics,” IEEE Access, vol. 7, pp. 30792–30801, 2019.

[16] T. Wu, “CNN and RNN-based deep learning methods for digital signal
demodulation,” in Proc. Int. Conf. Image, Video Signal Process., 2019,
pp. 122–127.

[17] H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for channel
estimation and signal detection in OFDM systems,” IEEE Wireless
Commun. Lett., vol. 7, no. 1, pp. 114–117, Feb. 2018.

[18] E. Balevi, A. Doshi, and J. G. Andrews, “Massive MIMO channel
estimation with an untrained deep neural network,” IEEE Trans.
Wireless Commun., vol. 19, no. 3, pp. 2079–2090, Mar. 2020.

[19] Y. Wang, H. Lu, and H. Sun, “Channel estimation in IRS-enhanced
mmWave system with super-resolution network,” IEEE Commun. Lett.,
vol. 25, no. 8, pp. 2599–2603, Aug. 2021.

[20] S. Cammerer, J. Hoydis, F. A. Aoudia, and A. Keller, “Graph neural
networks for channel decoding,” in Proc. IEEE Globecom Workshops
(GC Wkshps), 2022, pp. 486–491.

[21] M. Goutay, F. A. Aoudia, J. Hoydis, and J.-M. Gorce, “Machine
learning for MU-MIMO receive processing in OFDM systems,” IEEE
J. Sel. Areas Commun., vol. 39, no. 8, pp. 2318–2332, Aug. 2021.

[22] M. Honkala, D. Korpi, and J. M. J. Huttunen, “DeepRx: Fully
convolutional deep learning receiver,” IEEE Trans. Wireless Commun.,
vol. 20, no. 6, pp. 3925–3940, Jun. 2021.

[23] Z. Zhao, M. C. Vuran, F. Guo, and S. D. Scott, “Deep-waveform: A
learned OFDM receiver based on deep complex-valued convolutional
networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 8, pp. 2407–2420,
Aug. 2021.

[24] S. Cammerer et al., “A neural receiver for 5G NR multi-user
MIMO,” in Proc. IEEE Globecom Workshops (GC Wkshps), 2023,
pp. 329–334.

[25] D. Korpi, M. Honkala, J. M. Huttunen, and V. Starck, “DeepRx
MIMO: Convolutional MIMO detection with learned multiplicative
transformations,” in Proc. IEEE Int. Conf. Commun. (ICC), 2021,
pp. 1–7.

[26] T. Raviv, S. Park, O. Simeone, Y. C. Eldar, and N. Shlezinger,
“Online Meta-learning for hybrid model-based deep receivers,” IEEE
Trans. Wireless Commun., vol. 22, no. 10, pp. 6415–6431,
Oct. 2023.

[27] T. Raviv and N. Shlezinger, “Data augmentation for deep
receivers,” IEEE Trans. Wireless Commun., vol. 22, no. 11,
pp. 8259–8274, Nov. 2023.

[28] J. Pihlajasalo et al., “Deep learning OFDM receivers for improved
power efficiency and coverage,” IEEE Trans. Wireless Commun.,
vol. 22, no. 8, pp. 5518–5535, Aug. 2023.

[29] A. Gansekoele, A. Balatsoukas-Stimming, T. Brusse,
M. Hoogendoorn, S. Bhulai, and R. van der Mei, “A machine
learning approach for simultaneous demapping of QAM and APSK
constellations,” 2024, arXiv:2405.09909.

[30] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Commun. Surveys Tuts., vol. 21,
no. 3, pp. 2224–2287, 3rd Quart., 2019.

[31] B. Ozpoyraz, A. T. Dogukan, Y. Gevez, U. Altun, and E. Basar,
“Deep learning-aided 6G wireless networks: A comprehensive survey
of revolutionary PHY architectures,” IEEE Open J. Commun. Soc.,
vol. 3, pp. 1749–1809, 2022.

[32] Z. Qin, H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep learning in
physical layer communications,” IEEE Wireless Commun., vol. 26,
no. 2, pp. 93–99, Apr. 2019.

[33] J. Hoydis, F. A. Aoudia, A. Valcarce, and H. Viswanathan, “Toward
a 6G AI-native air interface,” IEEE Commun. Mag., vol. 59, no. 5,
pp. 76–81, May 2021.

[34] X. You et al., “Towards 6G wireless communication networks: Vision,
enabling technologies, and new paradigm shifts,” Sci. China Inf. Sci.,
vol. 64, pp. 1–74, Jan. 2021.

[35] H. He, X. Yu, J. Zhang, S. Song, and K. B. Letaief, “Message
passing meets graph neural networks: A new paradigm for massive
MIMO systems,” IEEE Trans. Wireless Commun., vol. 23, no. 5,
pp. 4709–4723, May 2024.

[36] S. Hanna, C. Dick, and D. Cabric, “Signal processing-based deep
learning for blind symbol decoding and modulation classifica-
tion,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 82–96,
Jan. 2022.

[37] X. Gao, S. Jin, C.-K. Wen, and G. Y. Li, “ComNet:
Combination of deep learning and expert knowledge in OFDM
receivers,” IEEE Commun. Lett., vol. 22, no. 12, pp. 2627–2630,
Dec. 2018.

[38] J. M. J. Huttunen, D. Korpi, and M. Honkala, “DeepTx: Deep
learning Beamforming with channel prediction,” IEEE Trans. Wireless
Commun., vol. 22, no. 3, pp. 1855–1867, Mar. 2023.

[39] A. Morello and V. Mignone, “DVB-S2: The second generation
standard for satellite broad-band services,” Proc. IEEE, vol. 94, no. 1,
pp. 210–227, Jan. 2006.

[40] J. Hoydis et al., “Sionna: An open-source library for next-generation
physical layer research,” 2023, arXiv:2203.11854.

[41] “3rd generation partnership project; technical specification group radio
access network; requirements for evolved UTRA (E-UTRA) and
evolved UTRAN (E-UTRAN); (Release 7), Version 7.3.0,” 3GPP,
Sophia Antipolis, France, Rep. TR 25.913, 2006.

[42] A. Alkhateeb, “DeepMIMO: A generic deep learning dataset for
millimeter wave and massive MIMO applications,” in Proc. Inf. Theory
Appl. Workshop (ITA), 2019, pp. 1–8.

VOLUME 6, 2025 1709

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

