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Abstract

To optimize the pricing of paid ancillary seats, we adopt a revenue
management approach that optimizes over the capacity of these seats
while accounting for unknown underlying model parameters. We test var-
ious models against a simulation model to assess the performance against
wide-ranging input parameters.

We demonstrate that using a Bayesian exponential demand model to
describe the relationship between price and seats sold, combined with
a Bayesian reinforcement learning approach to estimate its parameters,
outperforms other approaches. By using a relatively simple demand model
with a limited number of parameters, updating in a Bayesian manner,
and in one step estimating demand parameters to directly use for price
optimization, the model is quickly able to perform well across a wide range
of demand scenarios.

1 Introduction
Recent advances in how the offer and order systems in airlines work have made
it possible to dynamically price ancillary paid seats, and there has been growing
interest in optimizing the pricing of those seats (Mumbower, Hotle, and Garrow
2022). When talking about dynamic pricing of paid seats, we specifically mean
the price determination of ancillary seats onboard the aircraft. These seats
have distinct characteristics: they have limited supply compared to the total
number of passengers on board the aircraft, and are of no value anymore after
the aircraft departs.
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Airline ancillary revenues have grown in importance over recent years, grow-
ing from 6.0% of global airline revenues in 2013 to 15.0% of global airline rev-
enues in 2022 (see OAG 2023 for more detail). The airlines with the highest
percentage of ancillary revenue as a percentage of total are usually the low cost
carriers, with up to 56% of revenue coming from ancillary products (in 2021,
by Wizz Air). But full service carriers have been adjusting their models as
well, unbundling their products and trying to tailor to more specific customers’
preferences, and with that, willingness-to-pay. Boosting the ancillary revenues
is seen as a key lever to increase profitability. See for instance Babić, Ban, and
Bajić 2019 for more details.

We have developed and tested various approaches to optimize paid seat
pricing, building up to a Bayesian exponential model to describe the relation
between price and seat sales. Our goal here is to optimize over the capacity
of available seats in the aircraft. This is different from most dynamic pricing
approaches, which try to find the optimal price point based on customer char-
acteristics. Instead of using a customer choice model, we take an approach that
is closer to revenue management. There is usually little data available to esti-
mate the relationship between price and demand for these types of seats. So,
in this work, we test these models against various demand assumptions using a
simulation model, and show the performance of these models.

Objective and Contributions. The primary goal of this paper is to es-
timate demand for paid ancillary seats under limited data and significant un-
certainty. We identify gaps in the literature where existing methods assume
rich historical data or do not account for inventory constraints of specific seat
categories. Our contributions are:

• We propose a Bayesian exponential demand model for seat sales, tailored
to low-data settings.

• We propose a model that optimizes over the capacity of available seats,
instead of per customer, utilizing the full capacity of the aircraft.

• We compare multiple methods (Q-Learning, linear regression variants, bi-
nomial model) within a unified simulation framework, showing how each
handles exploration-exploitation differently.

• We show that with stylized assumptions, our Bayesian approach quickly
learns seat-pricing strategies that capture a high percentage of theoretical
maximum revenue.

2 Related Work
There is a strong link to both more traditional revenue management used for
ticket pricing, and dynamic pricing in general in this specific area. In this paper,
we follow the definition as proposed in Wittman and Belobaba 2019, in which
dynamic pricing is defined as ‘Firms practice dynamic pricing when they charge

2



different customers different prices for the same product, as a function of an
observable state of nature’.

2.1 Ticket revenue management
A general framework for ticket revenue management usually has two steps. A
first step is to model willingness-to-pay (WTP) curves and arrival rates of types
of customers and to estimate their parameters (based on historical data). The
second step is then to optimize the network based on the estimated model.
See for example Belobaba 1989 for a starting point in this. In Gosavi 2004,
this is done more directly with a model-free reinforcement learning approach by
solving an average reward Markov (and semi-Markov) decision process, based
on Q-Learning that approximates the value function. In Otero and Akhavan-
Tabatabaei 2015 a different approach is presented, where a stochastic dynamic
pricing model is used to optimize ticket pricing. A phase-type distribution
is used to model inter-arrival times of customers, and the probability that a
customer will buy a ticket. These inter-arrival times are modeled explicitly, in
order to calculate the results.

2.2 Airline ancillary pricing
There is less research done on airline ancillary pricing than on ticket pricing,
however also in this domain there are quite a few papers of interest. Several
papers estimate customer willingness-to-pay through surveys, using individual
customer characteristics to predict the best price for that individual customer.
See for instance Warnock-Smith, O’Connell, and Maleki 2017, Shukla et al. 2019,
and Zhao, Cui, and Cheng 2021. In all these studies, surveys are conducted to
learn about the relation between customer characteristics (such as route, depar-
ture / return dates, number of passengers in the booking, etc.) and willingness-
to-pay.

In Ren, Pan, and Jiang 2022 this is done without surveys, but by estimating
the parameters by dividing the customers in three distinctive groups using a la-
tent class conditional logit model. See Kummara et al. 2021 for a more practical
implementation approach, using gradient boosting to estimate ancillary prices.
In this paper, inventory limits are not considered.

In general these approaches are more suited to products without a hard
inventory limit (like checked baggage), than it is for paid seats, as it is not
taken into account how many of the seats will be sold. Therefore, the model
does not necessarily optimize the revenue that can be achieved on a flight.

Both Ødegaard and Wilson 2016; Shao and Kauermann 2020 optimize ticket
and ancillary pricing together in one optimization problem, mainly focused on
bundles. This is done through dynamic programming and statistical regres-
sion methods. Besides, in Wang, Wittman, and Bockelie 2021, extensions are
made on an earlier customer choice model that optimizes both ticket and an-
cillary pricing together, also from the perspective of assortment optimization
(see also Wittman and Belobaba 2019). This is also done in Wilson and Ahmed
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2024, where the problem of setting a price for a combination of a ticket and
multiple ancillary products is considered. Interesting from that paper is the
time-dependent arrival notion where certain passenger types arrive at certain
times.

2.3 Dynamic pricing
Vast literature exists on dynamic pricing in general. In this paper, we focus on a
reinforcement learning approach, so we narrow the selection down to papers that
also take such an approach. More often, a form of Q-Learning, so a model-free
approach is used, see for instance Dogan and Güner 2015; Mishra, Mosutafa,
and Ito 2020. But the focus is on infinite horizon, multi-retailer setting or an
auction type environment, which is different from a fixed inventory, single seller,
type setting. The Q-matrix can also be approximated in these settings with a
neural network to learn faster.

An interesting comparison is with Bastani, Simchi-Levi, and Zhu 2022, where
a Bayesian-approach is also used, with a so-called meta-prior that learns across
experiments, a methodology that is also used here. There, the main focus is
on transfer-learning across pricing experiments, but less on which model to use
to optimally determine a price. Another interesting comparison is with Yang,
Chu, and Wu 2022 in which a finite inventory pricing problem is modeled. An
LSTM-network is used to estimate the WTP-distribution, and then an MDP
pricing model is used to generate an optimal pricing strategy. There is also an
interesting comparison with Harrison, Keskin, and Zeevi 2012, who also uses a
Bayesian approach, where a seller offers prices sequentially to customers, which
is the same setting as we have. In that paper, a binary prior model is used, in
which upfront one of two possible demand models is applicable (unknown to the
seller which one). Bayesian reinforcement learning is used to converge to a belief
as to which of the possible demand models is active. As mentioned in that paper
also, this is a more simplistic view, where usually in practice there are not two
possible types of demand. Luo, Sun, and Liu 2024 also provides an interesting
insights, where a linear bandit framework is used with an upper-confidence
bound approach to balance exploration and exploitation, with unknown noise
parameters. In this paper a customer choice model is also considered with a
linear valuation function.

A very different approach is used in Boer and Zwart 2014, called Controlled
Variance Pricing, to optimally balance learning and gaining revenue. No model
is assumed between price and willingness-to-pay. Instead, the approach guaran-
tees a minimum (shrinking over time) variance of the prices tested. With that,
the policy ensures that enough data is gathered to test a wide enough range of
prices, while converging to the optimal price.

For a complete overview of various approaches in dynamic pricing in a
wider range of settings (e.g., also without inventory constraints, or different
approaches), see Den Boer 2015.
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2.4 Our contribution
Instead of using a completely model-free approach, we use relatively simple
models with a few parameters to facilitate faster learning. This approach leaves
various underlying mechanisms like inter-arrival times implicit, does not require
accounting for O&D complexities, and combines the estimation and optimiza-
tion steps often seen in ticket revenue management approaches in one. This gives
an improvement over the current literature by being practically more usable.

While estimating willingness-to-pay through surveys can work well for prod-
ucts without hard inventory limits (like check-in baggage), our approach does
take into account the inventory of paid seats. This is important to optimize the
total revenue from the available number of seats. Our approach is closer to a
revenue management approach, trying to make optimal use of the finite inven-
tory, instead of modeling customer characteristics. This is to our knowledge not
done yet in current literature and valuable in practice.

Compared to some of the dynamic pricing literature referenced in previous
sections, we take an approach that needs less known demand parameters, while
at the same time we use a simpler model that facilitates faster learning, as there
are fewer parameters to learn (instead of the approach in Yang, Chu, and Wu
2022. But we do consider important problem characteristics like inventory con-
straints, to optimally set a price for the full paid ancillary seat inventory (instead
of setting an optimal price from a customer choice optimization perspective like
in for instance Luo, Sun, and Liu 2024 or Wang, Wittman, and Bockelie 2021).
Besides, we use a similar mechanism as in Bastani, Simchi-Levi, and Zhu 2022 to
enable transfer-learning between flights, but together with an optimized pricing
function which has less focus in that paper. This is to our knowledge also not
done in other literature currently, and makes the model practically more usable
- although comes at the cost of not allowing to prove any optimality bounds.

3 Methodology
There are two main parts to consider: the general demand model, and how this
is used to optimize pricing. We will start with more simple models, building up
to our final approach and main contribution, a Bayesian exponential model.

3.1 Model Assumptions and Limitations
As far as we know, there is no public data available that describes well the
relation between price and demand for these types of seats, so it is not possible
to estimate specific distributions that model this relation, with the certainty
that that is similar to reality. In this paper, we assume that the number of
seats sold at departure of the aircraft is a function of the price of these seats,
with a maximum the number of seats that are the actual capacity. We assume
there are more than enough potential customers in the aircraft, so that it is not
necessary to explicitly model potentially arriving customers. In general in an
airline context, this is a safe assumption for specific paid seats, where the aircraft

5



configuration is generally always such that paid seats≪ regular customers, and
it can be assumed that the overall revenue management system will ensure
enough customers are on the flight.

We also assume that different flights are similar in patterns, so that learning
from one flight can be used on the next. Note that this means we assume a meta-
prior distribution that governs the prior distribution for all flights. It does not
mean that the distribution for every flight needs to be the same. This transfer
learning is explained in more detail in the model in section 3.8. Further work
could take into account how this meta-prior can be updated for e.g. seasonality.
A practical approach right now could be to have various models for various
times of the year if there are relevant differences. It could also be that other
characteristics of flights (different aircraft or time of day) are so different that it
is not optimal to use the same model across all flights. Since there is no public
dataset with real-life paid seat sales available to our knowledge, we could not
test these assumptions in practice.

Across all models, we assume for marketing reasons, it is necessary to keep
the price fixed for the ’lifetime’ of the flight. This means that the model can
only choose an initial price, and learns the results of the chosen price after the
flight has departed and we know the total number of seats sold. Besides, we
assume that for every specific seat in the aircraft, the same price will be charged.
Through manual testing on various airline websites, we have found that this is
current practice by many large airlines at the time of writing. Further work
could investigate both the value of updating the prices throughout the sales
process, and differentiating prices within a type of seats, based on where the
physical seat is located in the aircraft. Since again, there is no public dataset
available to test these assumptions, we can’t be certain that optimizing over the
inventory is a better strategy than optimizing based on customer characteristics.

3.2 Overview of Approaches
This section introduces several approaches, some of which (e.g., Q-Learning,
linear regression, binomial model) serve as benchmarks or baseline methods,
and one main new approach (the Bayesian exponential model). We do not
intend this as a comprehensive survey; instead, we demonstrate how well-known
methods compare to our proposed Bayesian exponential approach, highlighting
advantages in fast learning and robust performance under uncertainty.

3.3 Q-Learning
The problem can be viewed as a standard Q-Learning problem. In such a setting,
the actions are viewed as the price to be used for this flight, and the reward is
then the revenue in the end achieved at departure of the flight, which together
constitute the Q-table.

The advantage of this demand model is that no relation between price and
sales is assumed in advance, so the model is able to learn any form. However, a
set of possible prices will have to be defined upfront, and no continuous range
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of prices is possible. It is necessary to set both the range, and the granularity of
prices, which are important tuning parameters. The optimal price needs to be
in the range of possible prices, and the granularity needs to be balanced between
quickly finding the right price – which is easier with less granular possible prices,
and being close enough to the optimal price – which is easier with more granular
possible prices. Another disadvantage is that the model doesn’t learn across
price points. Every separate price point needs to be tested by the model to
learn the resulting seat sales, and no information is transferred between the
price points.

3.3.1 Demand model

The demand model is then completely model-free. A Q-table per route is cre-
ated, with only the possible actions as the price to use for the flight, and as
result the revenue obtained in that case. A wide range of prices is used as
input. Updating the Q-table is done through the regular update rule

Qnew(at)← (1− α) ·Q(at) + α ·
(
rt + γ ·max

a
Q(a)

)
,

with st the number of seats available at time t, t is a flight that departs, so every
new flight increments t by 1, at the price chosen, α the learning rate (here set
at 0.995), rt the revenue obtained, and γ the discount factor (here set at 0.9).

3.3.2 Price determination

In general, the price is then determined by selecting the action with the highest
Q-value, which is the exploitation strategy. To have enough exploration as well,
the trade-off between exploration and exploitation is in this setting determined
through a regular ϵ-greedy approach (here set at 0.01). See section A.1 for more
detail on the sensitivity of these parameters.

3.4 Linear regression
3.4.1 Demand model

In this setting, a linear relation is assumed between the price of the seats, and
the resulting number of seats sold. So the relation used is

s = a− bx (1)

with x the price that is chosen, s the seats sold, and parameters a, b that have to
be learned. After at least 2 different prices were chosen (at random), a linear fit
is done, minimizing the error between the actual seats sold and what is predicted
by the model.

An advantage of this approach is that it allows continuous price points,
without the need to specify possible prices upfront. Next to that, learning
happens faster, because of the assumed linear relation. The model also learns
about untested price points, by estimating the parameters a, b.

7



3.4.2 Price determination

Learning in this case is done by using a regular ϵ-greedy approach to determine
the trade-off between exploration and exploitation (set at 0.05, in which case a
random price between a predetermined minimum and maximum is chosen).

In case exploitation is chosen, the price that optimizes revenue is chosen by
finding the maximum over

revenue = min (C, s) · x

with the expected seats sold s coming from the linear relation, and C the seat
capacity of the aircraft. Since prices can be set up to the cent level, this opti-
mization can easily be done numerically. See section A.2 for more detail on the
sensitivity of these parameters.

3.5 Constrained linear regression
This setting is very similar to the previous linear regression. However, in this
case, we set the constraint that a higher price cannot lead to higher demand.

3.5.1 Demand model

The same linear relation between the price of the seats and the resulting number
of seats sold is assumed.

s = a− bx

However, now with the constraint that b ≥ 0, which results in a curve that is
non-increasing if x increases. After at least 2 different prices were chosen (at
random), a linear fit is done, minimizing the error between the actual seats
sold and what is predicted by the model, under the condition that b ≥ 0, using
coordinate descent. Due to randomness across flights, it is well possible that
choosing a higher price for another flight, still leads to more seat sales, simply
because the willingness-to-pay on the other flight is higher. In case that happens,
a, b are still set at the point that minimizes the error between actual seats sold
and what is predicted by the model, just with the condition that b ≥ 0. This
means that there might still be other choices for a, b that lead to a smaller error.

3.5.2 Price determination

Like in the case of regular linear regression, learning is done through a regular ϵ-
greedy approach to determine the trade-off between exploration and exploitation
(set at 0.01).

Exactly like in the case with the linear model, in case exploitation is chosen,
the price is chosen that optimizes revenue by finding the maximum over

revenue = min (C, s) · x
with the expected seats sold scoming from the linear relation. In this case,
finding the maximum is also done numerically.
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3.6 Bayesian linear regression
3.6.1 Demand model

The same linear relation between seats sold and price can also be used in a
Bayesian approach. So still with the model between price set and seat sales as:

s = a− bx

However, instead of learning a specific value of the parameters a and b, since
they are unknown, we assume a distribution for them. Like in the previous
approach, we would like to have a curve that is non-increasing if x increases.
In order to achieve this, we use a log-normal distribution for b, and a nor-
mal distribution for a. Since the log-normal distribution is only positive, this
means that the curve can only be non-increasing. We achieve this by setting a
normal-inverse-gamma distribution as prior for b. This is the conjugate prior
distribution for a posterior with normal distribution with unknown µ and σ,
meaning that the posterior distribution for b would be normally distributed and
can be analytically computed. In order to set b ≥ 0, we apply a logarithm to the
data to compute the posterior parameters, leading to a log-normal distribution
for b. For more detail see for instance Fink 1997.

An advantage of this approach is that we can be smarter about balanc-
ing exploration and exploitation. Instead of setting an explicit ϵ-parameter to
determine how much exploration is done, we can use the distribution of the
parameters. Thompson sampling is used to have a specific value for the a and
b parameters (originally coming from Thompson 1933). This means that every
time we need to compute the demand distribution, we take a random sample out
of the posterior distributions for a and b, and optimize based on those values.
By taking a random sample according to the distribution of these parameters,
we still test various prices, but we are more likely to test in areas where the
probability is ’high’ that we test something logical.

3.6.2 Price determination

To have a specific estimate for the seats sold given a chosen price, the expected
value of the parameter distributions is used to represent the expected number of
seats sold. The price is then optimized by choosing the price that has the highest
expected revenue, in the same manner as the two previous linear regression
approaches.

3.7 Binomial model
3.7.1 Demand model

All previous methods were regression-based approaches, and here we use differ-
ent approach. The main idea is that for a specific flight type, every price point
has its own probability that a seat will be sold. This can then be interpreted as
a binomial experiment, in which there are C independent Bernoulli trials, for
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the number of seats available, with a probability p that a seat is sold. So the
probability that k seats are sold at departure, is then

P (s = k) =

(
C

k

)
pkx(1− px)

C−k,

with px the probability for price level x, with s the number of seats sold, and
C the seat capacity. In this case, we need to define a set of allowed prices
X = {x1, x2, ...}. The expectation for the total number of seats sold is then the
probability that a seat is sold multiplied by the number of seats.

The main choice is then how to learn px, the probability per price point, as
input for the binomial experiment. This can be done in a frequentist approach,
by keeping track of how often seats were offered at a price point, and how often
they were sold. Then the new probability for this price point is simply the
division of number of sales by number of offers:

px =
#seats sold at price x

#price x offered
(2)

A Bayesian approach can also be used with this demand model, which has
shown to result in better performance. In that case, a Beta(1,1)-prior is as-
sumed for the px parameter, to start with a wide range of possibilities for the
probability. This Beta distribution is the conjugate prior distribution for a bi-
nomial posterior, hence fits well with this binomial model. Updating the two
parameter values of the prior can then simply be done analytically afterwards,
by incrementing the number of offers and number of sales for the two parame-
ters of the Beta distribution (see again Fink 1997 for more detail on conjugate
pairs).

3.7.2 Price determination

Then the total expected revenue gained by choosing a seat price is

E(revenue) =
∑
X

px(seat sold) · seat price (3)

The advantage of using the Bayesian approach for learning the probabilities is
that Thompson sampling can be used to balance the trade-off between explo-
ration and exploitation. Instead of using equation (2) which gives a specific
point estimate for the probability of purchase at a price point, we use the beta-
distribution. By taking a random sample from this distribution, we explore the
range of possible probabilities for this price-point, but are more likely to do so
at ’logical’ places. Then with these samples, we choose the price point that
optimizes the expected revenue according to equation (3). Since in this case we
have a set of allowed prices, we simply numerically determine the maximum.
After we get the results for this price point, we can again update our belief in
the distribution for the probabilities.
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3.8 Bayesian Exponential Model
Bayesian updating for demand estimation has been explored in ticket-pricing
contexts (Harrison, Keskin, and Zeevi 2012; Bastani, Simchi-Levi, and Zhu
2022). Our exponential model is relatively simpler yet highly flexible, incorpo-
rating capacity effects through the logistic-like form. Those elements separately
were presented in other contexts before, but this combination, along with the
hierarchical prior (meta-distribution), is not found in ancillary seat pricing lit-
erature, marking our main methodological contribution.

3.8.1 Demand model

In this case, it is assumed that the demand follows an exponential curve de-
scribing the relation between price and demand, like D = eb+ax, with D the
overall demand, a, b parameters that describe this relation, and x the price cho-
sen. Note that this is also a simplification assuming continuous demand, while
in practice demand is discrete. However, since the number of paid seats is sig-
nificantly lower than the total number of customers on the aircraft, sales of paid
seats cannot be higher than the capacity. So in the end we observe sales instead
of demand, described by

S = min(C, eb+ax), (4)

with S a random variable that describes the sold seats, C the paid seat capacity,
and all other parameters as before. See figure 1 for an example with both the
potential total demand, and the total sales that would have occurred.

3.8.2 Sales model approximation

Equation (4) is inconvenient in further computations due to the presence of the
minimum function. In order to have a simpler function that can be used more
easily in further computations, we approximate the sales by

S =
C

1 + e−(b+ax)
, (5)

with S sold seats, C seat capacity, x price chosen. a, b are estimated parameters
used to fit the model, which are specific to the flight (= route) of interest. With
a, b it is possible to model a wide range of options. The curve can be close to
linear, with a positive or negative slope, ranging between the maximum capacity
and 0. This approximation via a logistic-like function (Equation 5) is a common
approach in practice to smooth out the discontinuity arising from min(C, eb+ax).
While (4) is piecewise differentiable, we find that the form in (5) eases Bayesian
updating and yields robust results in our experiments. In typical seat-capacity
ranges (e.g., 5–20 seats), the approximation is quite close.

Figure 2 shows for the same example parameters how the capped demand
model to describe actual sales can be approximated with equation (5).

In (5), a, b are unknown parameters which we have to learn, and which might
also differ per specific flight. Therefore, we approach these as distributions,
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Figure 1: An example of the full demand model with parameters a = −0.07, b =
5.8 and C = 20.

leading to a Bayesian approach for modeling the relation between price and
seats sold. Based on the results of the number of seats sold, a, b are updated in
a Bayesian manner. We assume that a ∼ N (µa, σa), b ∼ N (µb, σb).

After a flight has departed, we know the actual number of seats that are
sold, denoted as s. That means then that

−log(C
s
− 1) ∼ N (µb + µa · x, σ2

b + σ2
a · x) (6)

In Equation 6, the ratio C
s −1 is stochastic, which arises from s since this has

an underlying distribution of customer willingness-to-pay and how many seats
are sold. We then take a log transform to relate the observed s to b + a x in
a convenient way. This is not a straightforward conjugate prior, therefore, the
Metropolis-Hastings (MH) algorithm is used to update the parameters (origi-
nally proposed in Hastings 1970). We describe how that is applied in this case,
but for a full and detailed background, see for instance Chib and Greenberg
1995. In short, we want to be able to sample from equation (6) in order to es-
timate the updated µa, µb, σa, σb, and use that for the following flight. In order
to do that, following the MH-algorithm:

1. Set some initial random guess for x0.

2. Repeat for j = 1, 2, . . . , N .
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Figure 2: The same demand and sales model, with an approximation by the
exponential curve.

3. Generate y from q(xj , �) = xj−1 +N (µMH , σMH) and u from U(0,1).

4. If u ≤ α(xj , y)

• set xj+1 = y

5. Else

• set xj+1 = xj

6. Return the values {x1, x2, . . . , xN}.

where α(x, y) is defined as the minimum of the ratio of the likelihood of the data
under parameters x and y, and 1: α(x, y) = min(Ldata(x)

Ldata(y)
, 1). Since this likeli-

hood is described by equation (6), this can be easily computed. In the practical
experiments, we have used N = 5000, so 5000 samples to estimate the posterior
distribution. We set N = 5000 samples in the Metropolis-Hastings algorithm
to ensure good mixing and convergence in our posterior estimates. Although
fewer samples (e.g., 1000–2000) sometimes suffice, we found 5000 strikes a bal-
ance between computational overhead and accuracy in our trials. On a regular
laptop (Macbook Pro M1), the algorithm then runs in seconds per flight. If run-
time is more constrained, advanced MCMC techniques (e.g., Hamiltonian Monte
Carlo, for instance No-U-Turn Sampler, see Hoffman, Gelman, et al. 2014 for
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more detail) or fewer iterations can be considered. However, in our practical
experiments we have found that the calculation time on a regular laptop was
acceptable with this configuration.

We can then assume that across flights, there is a shared structure, with
curves that are ’similar’ across different routes. This shared learning can be
modeled in a hierarchical Bayesian set-up, again assuming that µa, µb, σa, σb ∼
are normally distributed.

In figure 3 is an example of this relation in practice, based on a few samples
of data. The green area shows the 95%-width of the posterior distribution that
describes the relation between price and seats sold, which of course depends on
the spread of sampled data and the amount of data available.

Figure 3: The distribution and mean of the posterior distribution after a few
samples from a simulation with a 95%-confidence interval.
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3.8.3 Price setting

Based on expert input, or just a wide-ranging distribution if this is not available,
a prior distribution can be chosen for the a, b parameters. Using the simulation
model from section 4.1, we have found that a normal distribution works well for
both these parameters. The mean and variance of these normal distributions
are then again from a meta-distribution that is shared across types of flights
(as proposed in Bastani, Simchi-Levi, and Zhu 2022). We have found that for
this meta-distribution, normally distributed parameters also perform well. So,
that leads to µa ∼ N (µ1, σ1), σa∼ N (µ2, σ2), µb ∼ N (µ3, σ3), σb ∼ N (µ4, σ4).
Figure 4 shows the relation between these distributions. We select normal priors
for simplicity and because normal distributions form a flexible family in practice.
Although not guaranteed to perfectly match real seat sales, we find that normal
priors on (µa, σa, µb, σb) offer a good empirical fit over multiple flights. Other
priors (e.g., Gamma distributions) could also be used, depending on domain
knowledge.

Figure 4: The relation between the meta-distribution across flights, and specific
distribution per flight.
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Across all flights, based on expert input, a prior is set for µa, σa, µb, σb. Then,
for every flight, Thompson sampling is used to have a specific value for the
µa, σa, µb, σb parameters (originally coming from Thompson 1933). After that,
for that specific flight, using Thompson-sampling again over the a, b parameter
distributions, we get a specific value of a, b, and with that we have a direct
relation between the price and the seats that are sold at departure of the aircraft.
It’s then straightforward to choose the price that optimizes expected revenue
given that all parameters are known, by finding the maximum over

expected revenue = expected seats sold · seat price

After departure of the flight, we learn the actual amount of seats sold, and
the posterior distribution describing the relation between seats sold and price
can be updated. The algorithm here does not have any knowledge about the
actual distribution of the demand, but works with the price and resulting seats
sold. For the ’next’ flight within this type of flights, this updated posterior is
then again used as prior.

After all flights have departed, the results for a, b can be used to update
the meta-prior that is shared across flight types. Since these are regular nor-
mal distributions, it is possible to calculate the posterior analytically. For the
next type of flight, we can then sample from this distribution to get the initial
prior distribution for a, b again, and the cycle continues. Pseudo-code for the
algorithm can be found in section B.

4 Results

4.1 Simulation model
To test the pricing model, a simulation engine has been created in order to test
under different conditions. The simulation engine simulates a range of different
types of flights, which all have the same type of distribution, but different pa-
rameters, for the number of passengers and the willingness-to-pay (WTP) per
passenger. The simulation runs in two steps, first simulating flight data based
on the input for the flight type. And second, for every flight within the flight
type, using the earlier simulated data, drawing samples for this specific flight.
As input for the simulation, the number of different flight types, the number
of specific flights per type, and the number of simulations to run is configured.
One round of the simulation model is defined as once going through all flight
types, with all flights within that type. Going forward we compare results using
75 simulation rounds of 50 different flight types, with all 6 flights per type. This
means that in every simulation round, there is a total of 300 flights (50 · 6), and
a full simulation of 75 rounds has a total of 22, 500 flights.

For every flight within a type of flight, the pricing model knows which type
of flight is active, but has no further information about parameters for this type
of flight. Before the start of the sales window in which seats are offered to all
of the customers, the model has to set a price per seat. Then all customers are
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in random order, as they are generated from the simulation, offered a seat and
either buy a seat (if the seat price is lower or equal to their WTP) or not. This
random order of customers would not be a valid assumption for regular ticket
pricing. However for paid ancillary seats, this does seem applicable as these
seats are often also sold during check-in. The model afterwards only learns the
total number of seats that were sold, and how often a seat has been offered in
total. See figure 5 for a visual representation of the interaction.

Figure 5: The interaction between the simulation engine and the pricing model
for a specific flight.

As mentioned before, a customer will accept a seat if the price is lower than
or equal to the WTP of this customer. However, there are a few further details.
A customer is part of a booking, with a (random) number of other people in the
booking. The seat is only accepted if the number of adjacent seats available,
with an acceptable price, is at least as high as the number of people in the
booking. Furthermore, from empirical results, it is known that for individual
customers (the largest share of bookings), the middle seats are less attractive
than window or aisle seats. So in this case, the simulation engine reduces the
WTP to 25% of the initial WTP for this customer, for that specific middle seat.
Using this simulation model, all different approaches described in section 3 are
compared against each other. At the same time, a wide range of distributions is
tested for the number of passengers that are on the flight, and the willingness-
to-pay distribution of those customers.

All code for both the simulation model, and all models from section 3, is
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available on Simulation and optimization models for Bayesian Reinforcement
Learning to Optimize Paid Ancillary Revenue in the Airline Industry paper
2025.

4.2 Result comparison
There are two important factors to consider in this case. On the one hand, it
is important that the algorithm ’quickly’ learns, so that we don’t lose a lot of
revenue over hundreds/thousands of flights, before the model begins to perform
well. On the other hand, that the model has a high maximum revenue. To
compare across simulations how well an algorithm is performing, we compare
against an algorithm that is all-knowing, so knows exactly which customers
are on the flight and their exact willingness-to-pay. This algorithm can then
sell separate seats at exactly the maximum willingness-to-pay to exactly the
customers that are willing to pay the most. In order to measure both how
quickly an algorithm is learning, and how well it is able to perform in the long
run, we measure the percentage of theoretical maximum both for the first 3
simulation rounds (meaning, the first 900 flights optimized), and for the last 3
simulation rounds.

For the Q-Learning model of section 3.3 and the binomial model of section
3.7 it is necessary to upfront define a set of allowed prices, for all other models
this is not necessary. In all following experiments, allowed prices were defined
as prices between 1 and 250, in 100 equal steps.

The most important scenario is what we called the ’realistic setting’. In this
case, we have tried to estimate distributions and parameters that appear to be
close to results in reality. However, to our knowledge there are no public datasets
available that can be used to estimate price elasticity from actual customer
behavior, so we can’t be certain that this is exactly right. Therefore, multiple
other scenarios are also compared.

In a realistic setting in terms of distributions for the number of passengers
and willingness-to-pay (meaning, giving similar results as observed at a large
European airline as outcomes), the exponential model works very well, as can be
seen in figure 6, where on the X-axis the number of simulation rounds is shown,
and on the Y-axis the percentage of total revenue the model achieved on one
full set of flights (so the 50 different types of flights, with all 6 flights per type,
meaning in total on 300 flights) compared to the theoretical maximum from
the all-knowing model. Since for every new round the number of passengers
and WTP is sampled again, the model does learn, but can also have worse
performance in a new round simply due to randomness. Dependent on the
variability of the number of passengers and willingness to pay, the performance
of the models gets closer to the theoretical maximum.

Testing across a wide range of different settings, the exponential model from
section 3.8 always appears to work well. The model was tested against:

1. Realistic settings, where the simulation model is intended to give results
similar to what seems to be relevant in practice:
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Figure 6: Simulation results of the various models with realistic distribution.

(a) Number of passengers is Binomially distributed with n = max passengers, p =
probability per passenger to show up

i. n is uniformly distributed between 80 and 120
ii. p is uniformly distributed between 0.7 and 0.9

(b) Willingness-to-pay (WTP) is log-normally distributed with µ = 0, σ,
multiplied by a scale parameter s

i. µ is 0
ii. σ is normally distributed with µ = 0.35, σ = 0.2

iii. s is Poisson-distributed with λ = 40

2. High variability, where the simulation model creates a situation with very
high variability across parameters

(a) Number of passengers is Binomially distributed with n = max passengers, p =
probability per passenger to show up

i. n is uniformly distributed between 50 and 150
ii. p is uniformly distributed between 0.5 and 0.99

(b) Willingness-to-pay (WTP) is Cauchy distributed with a µ and σ pa-
rameter that are both uniformly distributed

i. µ ∼uniform(40, 80)
ii. σ ∼uniform(5, 20)

3. Low variability, where the simulation model creates a situation with a low
variability across parameters
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(a) Number of passengers is Binomially distributed with n = max passengers, p =
probability per passenger to show up, both with fixed parameters

i. n is 120
ii. p is 0.9

(b) Willingness-to-pay (WTP) is normally distributed with a µ and σ
parameter that are both fixed

i. µ is 50
ii. σ is 10

4. Fixed #passengers, random WTP, where the simulation model creates a
situation with a fixed number of parameters, but a random willingness-
to-pay

(a) Number of passengers is fixed at 100
(b) Willingness-to-pay (WTP) is log-normally distributed with µ = 0, σ,

multiplied by a scale parameter s

i. µ is 0
ii. σ is normally distributed with µ = 0.35, σ = 0.2

iii. s is Poisson-distributed with λ = 40

In all these scenarios, there is no relation or usage between the distribution
used in the simulation, and the distributions used in the Bayesian approaches.
So these are nowhere aligned to make sure there is a well-fitting prior for in-
stance. See figure 7 for an overview of the results across these input-settings.
The log-normal form for willingness-to-pay is closer to the exponential model
from section 3.8, however, a logit-like shape is often used in practice and lit-
erature for willingness-to-pay, and various other distribution froms are tested
as well. While we do often use an exponential-like functional form in the sim-
ulation, we also vary the underlying distributions (e.g., log-normal or Cauchy
for WTP) to ensure that our Bayesian exponential approach is not artificially
favored. Our experiments show that even when the simulation distribution de-
parts from an exact exponential shape, the proposed model still learns effective
pricing strategies.

In general, it is clear that the exponential model is both learning quickly, as
in the first 20 simulations it is commonly the best, or among the best, performing
algorithms. And the same is the case at the last 25 simulations, where the model
is also usually outperforming all other models. Another convenient property is
that the standard deviation of the performance is very low compared to the
other models, meaning that it is consistently performing at this level. Besides,
in reality it is of course not possible to know what input distributions are most
accurately reflecting reality. Another good property of the exponential model is
that it is consistently performing well across scenarios, without the need to tune
parameters for that specific scenario (across all tests, the hyper parameters -
like prior-distributions - were kept the same). More detail about the sensitivity
to the prior parameters can be seen in section A.3. From there it can be seen
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that especially in the early stages, what prior is selected matters. But as long as
the priors are ’wide’ enough, in the end the models converge towards the same
eventual performance. These values will in the end have to be estimated based
on what data is available in practice.

(a) Simulation results with a realistic input
distribution.

(b) Simulation results with a very high vari-
ability input distribution.

(c) Simulation results with a very low variabil-
ity input distribution.

(d) Simulation results with a fixed number of
passengers, and random willingness-to-pay.

Figure 7: Simulation results across various input distributions.

4.3 Computation times
The exponential model from section 3.8 can have relatively large computation
time compared to the other methods due to the sampling involved. We have
found on a regular laptop (Apple with an Apple M1 Pro chip), that using the
described configuration, a full simulation of 75 rounds, which contains 22,500
flights, takes about 7,800 seconds. This means that about 2.9 flights per sec-
ond can be optimized using this method. This is much heavier than the other
methods, which all take between 15 and 20 seconds to run for a full simulation
– meaning about 1,285 flights per second. However, since the model only needs
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to run once after a flight departs, this computational overhead is feasible for
day-to-day airline operations.

Taking the main numbers from OAG 2023 which states that on average
around 27% of ancillary revenues for full-service carriers comes from seat se-
lection and upselling. From the same report, total ancillary revenue for large
network carriers can be over one billion USD, and for some large carriers over 5
billion USD (for American, Delta and United). This means that seat ancillary
revenue for those carriers is over 270 million USD, up to 1.35 billion USD. The 4
to 5% percentage performance increase of the Bayesian exponential model over
models with lower computation times with that is normally worth it.

5 Conclusion
We have shown that by using a model that uses a limited number of parameters,
we can quickly learn the right settings and optimize paid seat prices without
a lot of historical data. In almost all contexts on demand distributions, the
exponential model from section 3.8 outperforms other approaches. The model
performs well both against model-free approaches that can learn any relation
between price and number of seats sold, and against other simple models that
require less computation. Besides, the model is easy to implement in practice, as
the data required is very limited. Only the price that the model itself outputs,
and the number of seats that are sold at this price-level at departure are needed.
Both are readily available in any practical context. Next to that, the model
requires feasible computational power. Prices are set for the duration of the
flight sales window, and learning - which is computationally the most expensive
- is only done after a flight departs. In any practical context, this can easily be
handled computationally.

Future research that would be of interest is in three directions. First, more
parameters could be used to estimate the optimal price point. For instance,
it would be relevant to use more parameters about the flight itself such as
flight duration, day or night flight, etc. Also more customer parameters could
be incorporated, to investigate an approach that combines a customer choice
type of approach, with this revenue management type of approach. A very
interesting direction would be to combine a customer choice model approach,
which is most often found in literature, with a revenue management approach
also taking into account the inventory like in our paper. It’s an open question
whether this revenue management approach works better than a customer choice
type approach. Second, price determination can be more dynamic than it is in
this model. Instead of fixing the price across seats and during the ’lifetime’ of
the flight, this could also be varied both across specific seats (e.g. it is generally
known that window or aisle seats are more attractive than middle seats), and
while seats are being sold to optimize pricing based on intermediate feedback.
Third, we still use a heuristic here in sections 3.7 and 3.8 to optimally choose a
price. We could potentially also model the system as a Markov Decision Process
(MDP) and then use value iteration to find the optimal solution.
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A Sensitivity of parameters

A.1 Sensitivity of Q-Learning parameters
Q-Learning can be sensitive to parameter changes in α - the learning rate, γ the
discount factor, and ϵ, the parameter that governs the amount of exploration
vs exploitation. Below table gives an overview of the impact of the parameters,
using the default simulation scenario from section 4.2. The optimal parameters
from this overview are used in the final results comparison in that section.

Performance first 3 rounds Performance last 3 rounds
α = 0.85 12% 38%
α = 0.92 12% 51%
α = 0.995 13% 51%
γ = 0.85 14% 38%
γ = 0.9 13% 51%
γ = 0.95 8% 38%
ϵ = 0.001 1% 28%
ϵ = 0.01 13% 51%
ϵ = 0.05 45% 49%

A.2 Sensitivity of linear regression parameters
Linear regression can be sensitive to parameter changes in ϵ, the parameter
that governs the amount of exploration vs exploitation. Below table gives an
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overview of the impact of this parameter, using the default simulation scenario
from section 4.2. The optimal parameter from this overview is used in the final
results comparison in that section.

Performance first 3 rounds Performance last 3 rounds
ϵ = 0.01 41% 43%
ϵ = 0.05 41% 43%
ϵ = 0.1 39% 43%

A.3 Sensitivity of prior-parameters for exponential model
The exponential model has various prior parameters which can influence the
performance of the algorithm, especially in the initial rounds of simulations and
learning. We have not fine-tuned the prior parameters for the model, since that
would also not be possible in practice – as in practice you never observe the
percentage of theoretical maximum. However, we did select prior parameters
that seemed logical.

Five scenarios were run against the same simulation model, using the realistic
settings for number of passengers and willingness-to-pay:

intercept µ slope µ
Used parameters 6.0 -0.09
Intercept µ increased 9.0 -0.09
Intercept µ decreased 3.0 -0.09
Slope µ increased 6.0 -0.01
Slope µ decreased 6.0 -0.18

Results for these scenarios can be seen in figure 8, from which it’s visible
that especially in the initial rounds differences in performance are larger. In
later rounds, these differences converge towards the same performance. Since
in practice theoretical maximum performance is not observable, and the priors
likely differ per situation, it is not possible to give a concrete recommendations
for these values, and they would depend on what kind of information is available
per situation to estimate them.
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Figure 8: Simulation results showing the sensitivity to the prior parameters for
the exponential model.
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B Pseudo-code for the exponential model

Algorithm 1 Exponential Pricing Model with Bayesian Updating
Initialization:

• Define hierarchical priors for intercept and slope across N flight types.

• Define prior distributions

• Initialize sampling parameters (e.g., MCMC samples, burn-in, lag).

Main Algorithm:

1. Initialize Flight Type Parameters:

• For each flight type, draw initial values of slope and intercept from
hierarchical priors based on Thompson-sampling.

2. Compute Prediction for a Given Price:

• Use posterior intercept µb and slope µa to compute expected demand:

D̂ =
C

1 + e−(µb+µa·P)

3. Select Optimal Price:

• For each price p ∈ P:

– Compute revenue:

Revenue(p) = D̂(p) · p

• Select price p∗ that maximizes revenue.

4. Update Model Post-Flight:

• Observe total seats sold s and update posterior distributions through
MH-sampling:

Posterior(µb, µa) ∝ Likelihood(Data|µb, µa) · Prior(µb, µa)

• Update hierarchical priors based on observed distributions.

5. Repeat:

• Use updated priors and posteriors for subsequent flights of the same
type, again using Thompson-sampling to get actual values as in step
1.
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