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Abstract
Evaluation metrics provide a means for quantifying and comparing performances of super-
vised learning models, but drawing meaningful conclusions from acquired scores requires
a contextual framework. Our paper addresses this by introducing the Dutch scaler (DS), a
novel performance indicator for binary classification models. It quantifies a model’s learning
by contextualizing empirical metric scores with a baseline (Dutch draw) and a new instru-
ment (Dutch oracle) representing the prediction quality of an “optimal” classifier. The DS
performance indicator expresses the relative contribution of these components to obtain a
model’s score, specifying the actual learning quality. We derived closed-form expressions
to map metric scores to DS scores for common evaluation metrics and categorized them by
their functional form and second derivative. The DS enhances the assessment of classifiers
and facilitates a framework to compare prediction quality differences between models with
varying metric scores.
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1 Introduction

“Howmuch did mymodel actually learn?” is a fundamental question that should be answered
during the development of any statistical or machine-learning model. But how do we define
learning in this context? A formal definition is given in Mitchell (1997) who states that a
machine learns by utilizing experience (data) to improve its performance on a certain task. If
we look at classification problems, the task of a model is to learn to map input data to labels.
More precisely, the goal is to approximate the mapping function so well that the classifier
makes accurate predictions for newly acquired input data. Checking whether this goal is met
before a classifier is deployed is crucial, but how can one do so?

The performance of a classifier and the quality of its predictions are commonly expressed
in performance metrics scores, such as the Fβ score and accuracy (Hossin & Sulaiman, 2015;
Mohri et al., 2018). For decades, various domains have proposed evaluation metrics for clas-
sification problems highlighting one or more aspects of the confusion matrix and expressing
a model’s performance in a single value. Earlier research endeavors have been dedicated to
studying and comparing performance metrics. For instance, Sokolova and Lapalme (2009)
analyzed the invariance of performance metrics by manipulating individual and total counts
within the confusion matrix. Several studies provide overviews of created metrics and iden-
tify relationships, properties, and dependencies between them (Canbek et al., 2022b, 2021).
Others compared metrics by analyzing their characteristics analytically or experimentally
(Powers, 2020; Ferri et al., 2009). Meanwhile, Brzezinski et al. (2018) present a compre-
hensive list of ten desirable properties for performance metrics, though under varying class
distribution scenarios. In more recent work, Gösgens et al. (2021) identify three essential
properties that performance metrics can potentially exhibit: monotonicity, distance, and a
constant baseline. Unfortunately, no single metric simultaneously fulfills all three of these
properties. Some argue specific metrics should be preferred over others when evaluating a
binary classifier on a certain problem (Chicco & Jurman, 2020; Delgado & Tibau, 2019;
Luque et al., 2019). However, no metric/measure is objectively “the best” for all situations,
so multiple metrics, and thus aspects, should be considered when assessing the quality of a
classifier. Furthermore, obtained performancemetric scores should be averaged overmultiple
(test) datasets or random seeds, as relying on a single instance could be misleading. After
all, even a broken clock can be right twice a day. Moreover, considering these scores alone is
insufficient to draw meaningful conclusions without a frame of reference. To illustrate this,
consider the following example. Suppose a classifier obtains an average F1 score of 0.9 and
its corresponding baseline is 0.89. How would we quantify how much the model has learned
when evaluated on this selected performance metric? In addition, what if, due to data quality
issues such as data noise and/or the stochastic nature of a selected classifier, an expected F1
score of the highest metric score of 1.0 on a test dataset is unattainable?

Performance indicators are higher-order performance metrics incorporating the notion of
performance bounds in quantifying a model’s prediction quality. They facilitate the further
comprehension and comparison of performancemetrics (Canbek et al., 2022a). Conceptually,
it is a metric that provides insight into a goal or a predetermined baseline (Texel, 2013).
Based on the available literature, only one study proposes an indicator called the accuracy
barrier (ACCBAR Canbek et al., 2017). This indicator assesses whether the performance of
a classifier is close to that of a dummy classifier (e.g., labeling only positive or negative).
The ACCBAR contextualizes the performance metric accuracy by subtracting a baseline (the
null error rate, NER, or the no information rate, NIR) from obtained evaluation scores. This
approach, however, has limitations as it focusesmerely on the relative performance compared
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to the baseline, but it does not quantify the model’s absolute prediction quality. Moreover,
it is worth considering why this indicator function does not incorporate the upper bound. In
conclusion, while the ACCBAR can contextualize metric scores, it raises questions about the
need to explore performance indicators further to provide a more sophisticated assessment
of classification model performance.

This paper proposes a novel performance indicator for binary classification problems
called the Dutch scaler (DS). The DS quantifies the prediction quality of a classifier through
a derived metric referred to as the DS performance indicator (DSPI). To contextualize met-
ric scores, the DS employs two key components: the Dutch draw (DD) baseline, which is
an input-independent baseline approach indicating the expected metric score of a stochastic
model that does not learn from data (as discussed in van de Bijl et al., 2024; Pries et al.,
2023), and the Dutch oracle (DO). This method represents and marks the prediction quality
of an “optimal” classifier in the context of selected performance metrics. These components
serve as reference points for determining the DSPI. The DS allows us to perform comparative
analyses of classifiers on performance metrics as we harmonize evaluation scores of diverse
metrics into a uniform reference framework. The DS is (1) applicable for many commonly
used performance metrics in binary classification problems, (2) reproducible and simple, (3)
contextualizing using relevant performance thresholds, and (4) crucial to better assess perfor-
mancemetric scores. TheDS is a valuable addition to the existing body of literature, providing
an indispensable framework for improving the interpretation of realized performance metric
scores. In conclusion, the DS is an essential instrument for the data science toolbox.

Our contributions are as follows: (1) we introduce the DS and show how it quantifies
how much a model learned by integrating the DD baseline and the upper-performance value
as performance bounds, (2) we provide closed-form expressions, mathematical properties,
and parameters specifications of the DS for a set of performance metrics to convert metric
scores into DSPI scores and summarize them in several tables, (3) we visually show the
functions mapping metric scores to DSPI scores and categorize them on their concavity, (4)
we demonstrate how the DS can be used in practice to compare classifiers and contrast the
DS with the ACCBAR, and (5) we made the DS available in a Python package (van de Bijl,
2023).

The organization of this paper is as follows: Section 2 provides preliminaries for binary
classification and briefly discusses the DD baseline. Sections 3 and 4 introduce the DO and
DS, respectively. Section 5 gives a concavity analysis on theDSmetric score transformations.
Section 6 provides a comparative study betweenDSPI scores andACCBAR scores and shows
how the DSPI can be used to compare classifiers when selecting multiple metrics. Section 7
concludes with a discussion and future research directions.

2 Preliminaries

In this section, we provide the mathematical notations for binary classification problems,
discuss how prediction quality is quantified using evaluation metrics, and define how one can
achieve performance optimality. We then elaborate on the DD baseline and provide some
necessary mathematical notations for constructing it.

2.1 Binary Classification

The task in a binary classification problem is to let a classifier learn the relationship between
input data and a binary output vector. We consider a set of M ∈ N

+ instances of the form
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{(x1, y1), (x2, y2), . . . , (xM , yM )}, where, without loss of generality, xi ∈ R
d is a d dimen-

sional feature space and yi ∈ {0, 1} is its corresponding label. Observations with response
value 1 are “positive,” while those with 0 are “negative.” We denote the whole dataset as
(X, y) with X := (x1 . . . xM )� ∈ R

M×d and y := (y1, y2, . . . , yM ). Let P denote the
number of positive instances and N denote the number of negative instances. By definition,
P + N = M .

2.2 Performance Quantification

By comparing the labels of a set of predicted instances, denoted by ŷ, with their actual labels,
four base measures can be constructed: the number of true positives (TP), true negatives
(TN), false negatives (FN), and false positives (FP). Let us denote z : y × ŷ �→ N

4 as the
function to derive those four base measures. We define P̂ = TP + FP as the number of
predicted positive instances and N̂ = TN + FN as the number of the predicted negatives.

Performance metrics are derived from the before-mentioned base measures. Let us define
a performance metric as μ : N4 �→ R, mapping a function of the four base measures to a
performance metric score. A metric does not necessarily require all base measures as input
values, so only those used are included in the functional notation throughout this research.
Let us denote a composition function deriving the performance metric score directly from the
predicted and the actual label vectors asw = μ◦ z : y× ŷ �→ R. In this research, we consider
the same performance metrics as stated in van de Bijl et al. (2024), and their definitions and
co-domains can be found there.

2.3 Performance Optimality

The task in a classification problem is to find the “optimal” classifier, which makes accurate
predictions. In Pries et al. (2023), three important factors are stated to specify “optimality”: (1)
as binary classifiers can be stochastic, we typically examine their expected performance; (2)
the “optimal” classifier is the best in the set of considered classifiers; and (3) this classifier
should be the “best” for a specific dataset, but all permutations of this dataset should be
considered to prevent a coincidental perfectly prediction by a deterministic classifier. “Best”
and “optimal” here depend on the desire to maximize or minimize one or more selected
performance metrics. For example, accuracy is a metric we would naturally like to maximize,
while the false discovery rate is preferably minimized. Assuming that the selected metrics are
naturally maximized, this paper provides derivations only for maximization. For naturally
minimized metrics, one can follow the procedure below by substituting “maximizing” with
“minimizing” or simply multiplying the metric with “-1”.

A binary classifier is defined as a function h : χ ×R → {0, 1} that maps feature values to
zero or one, where the second input is used to capture the randomness nature in a stochastic
model, often referred to as the random seed (Pries et al., 2023). This classifier can only
label one instance at a time, so to classify multiple instances simultaneously, we define
hM : χM × R → {0, 1}M as the function that predicts M ∈ N

+ instances. Any single
instance classifier h can be extended to predict M instances simultaneously by applying this
classifier for each instance individually. Let us define HM as the set of all possible classifiers
of the form hM .

The objective in searching for the “best” classifier is to identify the so-called the average-
permutation-optimal classifier for a selected performancemetric. Thismeanswe try tofind the
classifier that optimizes the expected performance score, accounting for the variations due to
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data permutations and classifier randomness. Let us denote π as a function that permutes data
in all possible permutations, as specified in Pries et al. (2023). If we selected a performance
metric μ, the average-permutation expectation for a single classifier hM can be derived as
follows:

μhM := Eπ [Er∈R[w(hM (Xπ , r), yπ )]],
where w is the composition function of μ, as described in Section 2.2. To find the
average-permutation-optimal classifier, we have to search for the classifier with the highest
average-permutation expectation in the set of all possible classifiers HM , or mathematically
hmax
M ∈ argmaxhM∈HM

μhM . We define the average-permutation-optimal expectation score
for performance metric μ as follows:

�μ := Eπ [Er∈R[w(hmax
M (Xπ , r), yπ )]].

The average-permutation expectation cannot always be determined due to the generalization
error, but we can look at the empirical estimator: μ̄. Suppose we have a random classifier
h′
M , and we apply it K times on a dataset with different seeds. The empirical estimator can

be determined by

μ̄ :=
∑K

r=1 w(h′
M (X, r), y)

K
.

This empirical value is the score wewant to contextualize with the performance bounds in our
performance indicator. The difference between�μ andμ is also known as the generalization
error. The generalization error is, unfortunately, inevitable. The probably approximately
correct (PAC) learning framework offers theorems that estimate the number of instances
needed to determine the likelihood that the error remains within a specified bound. While
this framework can guide the selection of K , there is no definitive rule of thumb; generally,
a higher K tends to yield better results. The following sections discuss the two critical
components for deriving essential performance bounds: a baseline and the performance score
of the “optimal” classifier.

2.4 Dutch Draw Baseline

The selected method for deriving a binary classification baseline for a given metric is the DD
baseline (van de Bijl et al., 2024). We selected this method as it is the best binary classifier
that does not learn from data (input-independent), as proven in Pries et al. (2023). A baseline
is established by deriving the “optimal” DD classifier, which optimizes the expected value of
the selected performancemetric. ADD classifier predictsM instances by randomly assigning
the value “1” to d = �Mθ	 instances and the value “0” to the remaining M − d instances.
Here, �x	 denotes rounding x to the nearest integer (e.g., 1.4 rounds to 1 and 2.6 rounds to
3). The parameter θ ∈ [0, 1] specifies the proportion of M predicted as positive. Since this
random classifier depends solely on θ , it is considered data-independent and does not learn.

Let us provide a mathematical formulation for the DD classifier. Let S := {0, 1}M denote
the set of all possible binary vectors to predictM instances simultaneously.Wecandecompose
this set S into disjoint sets such that all vectors contain the samenumber of ones in each set. Let
us thus define Sk := {s ∈ S| ∑M

i=1 si = k}with k ∈ {0, 1, . . . , M}. It holds that∪M
k=0Sk = S.

A DD classifier, denoted by σθ : N �→ {0, 1}M , randomly draws one vector from one of these
decomposed sets (Sk) and is mathematically defined as σθ (M) ∼ Uniform(S�Mθ	) where
Uniform(A) is defined as the uniform distribution over a set A and �Mθ	 specifies the number
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of positively predicted instances (P̂) for this classifier. The distributions of the basemeasures,
denoted by TNDD

θ , TPDDθ , FNDD
θ , and FPDDθ , are directly determined by σθ and all follow a

hypergeometric distribution with parameters depending on M , P , and �Mθ	.
It can be observed in this mathematical notation that multiple values of θ can result in

the same classifier. For example, suppose M = 10 and θ1 = 0.1 and θ2 = 0.11, then
σθ1(M) = σθ2(M). Let us, therefore, introduce another variable θ∗ := �Mθ	

M as the discretized
version of θ . This θ∗ reduces the search space for finding the set of θ , leading to the optimal
DD. Furthermore, we define

�∗ :=
{�Mθ	

M
: θ ∈ [0, 1]

}

=
{

0,
1

M
, . . . ,

M − 1

M
, 1

}

,

as the set of all unique values that θ∗ can obtain for all θ ∈ [0, 1]. There are, however, some
limitations to P̂ or N̂ . For example, we require P̂ > 0 to have a defined precision score.
Let us, therefore, introduce �∗

μ as the set of possible θ∗ values respecting the limitations of
the evaluation metric μ. The DD baseline is the expectation of the optimal DD classifier for
a selected performance metric μ. Let us define θ∗

opt as the θ∗ leading to this optimum. In
mathematical terms, we try to find

θ∗
opt ∈ �∗

opt := argmax
θ∗∈�∗

μ

{
E

[
w(σθ∗(M), y)

]}
.

The DD baselines and corresponding θ∗
opt values for all selected evaluation metrics μ can be

found in van de Bijl et al. (2024).

3 Dutch Oracle

Deriving an exact upper bound on the expected performance of supervised learning models
is often challenging for several reasons. First, its performance is bounded by the quality
and size of the used data (Jain et al., 2020). The existence of noise in labels or input data,
class imbalance, sample bias, and outliers illustrate why classifiers cannot always make
perfect predictions (Gupta et al., 2021). Secondly, there does not exist one unique model
that achieves the highest possible performance score for all problems as described in the
no-free-lunch theorem (Wolpert & Macready, 1997). Therefore, we would have to search
the set of all possible classifiers to find the model achieving the “best” score for a specific
problem. Thirdly, there are an infinite number of possible classifiers. Still, we can only gather
empirical results for a finite number of classifiers, so it is always possible that we did not
consider a model that approximates the target function better. Upper bounds should represent
expected performances, while with empirical results, we can only estimate the expectations.

Fortunately, we can approximate the performance of an “optimal” classifier using an
abstraction from the active learning domain called oracle (Kuncheva et al., 2003). In general,
an oracle is an entity that knows the correct answer to all questions (Raykar et al., 2009). In
a classification problem, this would be a model that always predicts the correct label. But, as
mentioned in Raykar et al. (2009), even an oracle sometimes makes mistakes or is not always
correct, introducing the notion of an imperfect oracle. This imperfect oracle can approximate
the expected performance score of the optimal model by finding the right balance of correct
and incorrect predictions.

We propose a novel (im)perfect oracle classifier called the DO. The DO can be seen as
a proxy for optimal model performance, establishing the theoretical performance limit for
any chosen metric. The imperfect oracle enables the incorporation of upper limits when
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determining prediction quality scores, providing more nuanced evaluations of a classifier’s
performance. The DO approximates optimal model performance by balancing correct pre-
dictions with occasional errors. The DOmakes an incorrect prediction for each instance with
a probability ρ ∈ [0, 1]. As such, each base measure can be represented as the outcome of a
binomial trial. Thus, we get

TPDOρ ∼ B(P, (1 − ρ)), FNDO
ρ ∼ B(P, ρ),

TNDO
ρ ∼ B(N , (1 − ρ)), FPDOρ ∼ B(N , ρ).

Independently of the actual label of the instance, the DO will make a mistake with this prob-
ability ρ. Deriving expectations of these base measures with the DO gives us the following:

E
[
TPDOρ

] = P(1 − ρ), E
[
FNDO

ρ

] = Pρ,

E
[
TNDO

ρ

] = N (1 − ρ), E
[
FPDOρ

] = Nρ.

Exploring the extremes of the prediction quality generated by the DO proves to be insight-
ful. Choosing ρ = 0 results in a flawless DO, which we call the perfect predictor (PP). The
PP, a classical approach, accurately predicts the label for a given instance, making it suitable
for approximating the maximum performance score when a model consistently achieves per-
fect predictions. Conversely, opting for ρ = 1 leads to a DO prone to mere errors, labeled
the terrible predictor. Instances presented to this oracle consistently receive incorrect labels.
However, since the objective is to estimate the score of the optimal model, this oracle lacks
practical value, with any baseline model expected to outperform it.

Let us outline two ways to determine ρ. First, it can be determined through one expert
straightforward estimation, providing an approximate but reasonably accurate assessment of
the upper limit. Although not as precise as rigorous quantitative analysis, the user-driven
estimation method is quick and practical, making it a valuable tool for setting the upper
boundary, especially when more rigorous data or analysis is not readily available. Second, a
more quantitative approach involves using theoretically derived upper bounds on classifier
performance. One such approach is determining the Bayes error rate (Ishida et al., 2023;
Antos et al., 1999), representing the minimum error rate that any classifier can theoretically
achieve. Once the Bayes error is known, the corresponding expected metric score for this
“optimal” model can be calculated. For instance, if the Bayes error rate for accuracy is 0.15,
then the expected accuracy of the “optimal” classifier would be 0.85. The corresponding ρ

to align the DO under the DS is 0.15, but in Section 4.6 and specifically Table 4, we will give
exact formulas to translate other theoretical “optimal” model scores to ρ. Still, depending
on the problem instance and the theoretical approach chosen, other bounds—such as those
derived from PAC learning theory—can provide quantitative values to determine the upper
limit of an “optimal” classifier’s performance.

4 Dutch Scaler

This section describes the DS and how it quantifies how much a classifier has learned. First,
we discuss the essential characteristics an indicator should possess to achieve this purpose.
Second, we mathematically define the DS and show under which conditions our indicator
satisfies these desirable properties.
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4.1 Desirable Properties of an Indicator

Before we discuss our proposed performance indicator, let us outline the two key character-
istics it should possess.

Normalization and Range [0,1] If a classifier’s metric score surpasses the baseline of a
selected performance metric and does not exceed the expected score of the “optimal” model,
then the indicator score should fall within the range [0, 1]. In this context, “0” signifies the
baseline performance, while “1” represents the upper limit of the expected performance.
These bounds should be based on expectations rather than empirical averages, as the latter
lacks theoretical grounding and may be harder to interpret or extend to new situations. On the
one hand, if a classifier’s performance falls short of the baseline, the indicator score should
be negative. This negative score signals that the classifier underperforms in comparison to the
baseline. Identical to a negative R2 in a regression context, its numerical value lacks practical
significance because it indicates that the regressor’s performance is inferior to predicting the
mean.On the other hand, if the empiricalmetric score is above the expectation of an “optimal”
model, indicating a generalization error, the derived score will be above 1. An interpretation
of this indicator score can be either (1) the expectation of the “optimal” model is incorrect or
(2) the empirical estimation of the expectedmetric score is deviant from the actual expectation
of the corresponding model.

The overly-optimistic empirical acquired score introduces the generalization error in the
latter situation. In either scenario, the values should be carefully re-evaluated.

Strictly Increasing with Performance Indicator scores must exhibit a strict positive mono-
tone relationship with the realized scores. As a metric score increases, its corresponding
indicator score should also consistently rise. Failing to demonstrate this relationship would
be counterproductive, as it would mean that striving for better performance does not yield
higher indicator scores.

These properties contribute to form a clearly defined, easily interpretable performance
indicator that provides valuable insights for evaluating and comparing classifier performance.

4.2 Definition and Objective

TheDS quantitatively contextualizesmetrics scores by redefining the computation of the base
measures to determine how much a model has learned. The DS base measures are derived
using a convex combination of the expectations of the DD baseline and DO base measures.
The mathematical definition of each DS base measure is expressed as follows:

TPα := αE
[
TPDOρ

] + (1 − α)E
[
TPDDθ∗

opt

]
,

TNα := αE
[
TNDO

ρ

] + (1 − α)E
[
TNDD

θ∗
opt

]
,

FNα := αE
[
FNDO

ρ

] + (1 − α)E
[
FNDD

θ∗
opt

]
,

FPα := αE
[
FPDOρ

] + (1 − α)E
[
FPDDθ∗

opt

]
.

Here, α ∈ [0, 1] is the DSPI. The DSPI controls the weight assigned to the DO and
DD baseline base measures expectations. Metric scores (μ) are derived from one or
more of the four base measures, as discussed in Section 2.2. Similarly, metrics under the
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DS can be computed using the same transformation, and we denote its computation as
μα := μ(TPα,TNα,FPα,FNα).

The objective of the DS is to find the DSPI score (α) that results in the corresponding
acquired metric score. Mathematically, find α such that μα = μ, where μ is a realized
performance metric score described in Section 2.3. The intuition behind this approach is that
we are interested in how much contribution of the DO and the DD baseline is required to
achieve an identical empirical metric score. The underlying question is “How much learning
is needed to achieve the same score?”. There are metrics, such as the true positive rate, where
the DD baseline directly results in the “optimal” model’s expected metric score. The highest
possible score can be achieved for these metrics without learning from the data. We focus
on metrics where the DD baseline does not result in the “optimal” model score and where
a model’s performance lies between the DD baseline and the DO. Mathematical reverse
engineering is needed to derive the required α, which we will show in the following sections.

4.3 Substitutions and Properties

Having established the definitions of the base measures under the DS, we can now formulate
the performance metrics using these base measures. Let us substitute the expectations of the
DD baseline and the DO in the definition of the DS as stated in Sections 2.4 and 3. From
van de Bijl et al. (2024), it follows that E

[
TPDD

θ∗
opt

]
= Pθ∗

opt, E
[
TNDD

θ∗
opt

]
= N (1 − θ∗

opt),

E

[
FNDD

θ∗
opt

]
= P − E

[
TPDD

θ∗
opt

]
, and E

[
FPDD

θ∗
opt

]
= N − E

[
TNDD

θ∗
opt

]
. By substituting them into

these expectations in the definition of the DS base measures, we get the following:

TPα := αE
[
TPDOρ

] + (1 − α)E
[
TPDDθ∗

opt

]
= αP(1 − ρ − θ∗

opt) + Pθ∗
opt, (1)

TNα := αE
[
TNDO

ρ

] + (1 − α)E
[
TNDD

θ∗
opt

]
= αN (θ∗

opt − ρ) + N (1 − θ∗
opt), (2)

FNα := αE
[
FNDO

ρ

] + (1 − α)E
[
FNDD

θ∗
opt

]
= αP(ρ − 1 + θ∗

opt) + P(1 − θ∗
opt), (3)

FPα := αE
[
FPDOρ

] + (1 − α)E
[
FPDDθ∗

opt

]
= αN (ρ − θ∗

opt) + Nθ∗
opt. (4)

By definition, we have 0 ≤ TPα , FNα ≤ P , and 0 ≤ TNα,FPα ≤ N . As mentioned before,
TPα + FNα = P and TNα + FPα = N . A convenient mathematical expression in the
derivation of closed-form expressions of performance metrics under the DS is the number of
positively/negatively predicted instances, which is given by

P̂ = TPα + FPα = α(ρ(N − P) + P − Mθ∗
opt) + Mθ∗

opt, (5)

N̂ = TNα + FNα = α(ρ(P − N ) + Mθ∗
opt − P) + M(1 − θ∗

opt). (6)

These derivations help to rewrite metric definitions in terms of the DS parameters. Table 1
shows the DS definition for the selected performance metrics. They are functions of α, P , M ,
θ∗
opt, and ρ. The values of M and P are inherent to the specific dataset employed, while ρ is
a user-estimated parameter. We will elaborate on this later, but since multiple values of θ∗

opt
can lead to the DD baseline, it is essential to establish criteria for selecting the appropriate
θ∗
opt for the DS. In the following sections, we will elaborate on the selection of θ∗

opt, describe
the mathematical reverse engineering of α, and show the restrictions on the user-estimated
parameter ρ to satisfy all required properties defined for an indicator. Still, first, we will look
at the range of the DS.
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Table 1 Performance metrics substituted with DS base measures

Metric DS Abbr. Definition under the DS

Positive predicted value PPVα
αP(1−ρ−θ∗

opt)+Pθ∗
opt

α(ρ(N−P)+P−Mθ∗
opt)+Mθ∗

opt

Negative predicted value NPVα
αN (θ∗

opt−ρ)+N (1−θ∗
opt)

α(ρ(P−N )+Mθ∗
opt−P)+M(1−θ∗

opt)

Fβ score Fβ
α

(1+β2)(αP(1−ρ−θ∗
opt)+Pθ∗

opt)

α(ρ(N−P)+P−Mθ∗
opt)+Mθ∗

opt+Pβ2

Youden’s J statistic/index Jα α(1 − 2ρ)

Markedness MKα α(1 − 2ρ) PN
P̂ N̂

Accuracy Accα
αP(1−ρ−θ∗

opt)+Pθ∗
opt+αN (θ∗

opt−ρ)+N (1−θ∗
opt)

M

Balanced accuracy BAccα α(1 − 2ρ) 12 + 1
2

Matthews’ correlation coefficient MCCα α(1 − 2ρ)
√

PN
P̂ N̂

Cohen’s kappa κα α(1 − 2ρ) 2PN
P̂N+N̂ P

Fowlkes-Mallow index FMα
αP(1−ρ−θ∗

opt)+Pθ∗
opt√

P(α(ρ(N−P)+P−Mθ∗
opt)+Mθ∗

opt)

Threat score TSα
αP(1−ρ−θ∗

opt)+Pθ∗
opt

P+αN (ρ−θ∗
opt)+Nθ∗

opt

G-mean 2 G(2)
α

√
(α(1 − ρ + θ∗

opt) + θ∗
opt)(α(θ∗

opt − ρ) + (1 − θ∗
opt)

4.4 Range

The range of the metric scores (μα) the DS can achieve is determined by the selected metric
and its specific definition. Let us formulate two theorems describing the value of μα at
α ∈ {0, 1} to check whether and under which conditions the previously described desirable
properties hold.

4.4.1 Baseline Bound

Our first desirable property of an indicator describes that an indicator score of 0 should
indicate the expectation score of a baseline model. For our indicator, we selected the DD
baseline as our baseline approach. The following theorem indicates the two properties metric
μα should possess such that it holds that the DS with α = 0 equals the DD baseline.

Theorem 4.1 If μα is strictly increasing in α ∈ [0, 1] and μ0 is linear in TPDD
θ∗
opt
, then its

minimum is E
[
μα

(
TPDD

θ∗
opt

)]
, which is the DD baseline.

Proof It holds thatμα is strictly increasing in α, so the minimum ofμα is achieved for α = 0,
i.e.,

min
α∈[0,1] μα = μα=0(TPα=0,TNα=0)

Eqs. (1), (2)= μα=0

(
0E

[
TPDOρ

] + 1E
[
TPDDθ∗

opt

]
, 0E

[
TNDO

ρ

] + 1E
[
TNDD

θ∗
opt

])
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= μα=0

(
E

[
TPDDθ∗

opt

]
,E

[
TNDD

θ∗
opt

])
.

Hence, the minimum μα=0 depends only on the DD. Under the DD, all four base measures
can be written as linear functions of TPDD

θ∗
opt
. We can drop the TNDD

θ∗
opt

argument inμα . Letμ∗
α=0

be thismeasure, i.e.,μ∗
α=0

(
E

[
TPDD

θ∗
opt

])
:= μα=0

(
E

[
TPDD

θ∗
opt

]
, N − �Mθ∗

opt	 + E

[
TPDD

θ∗
opt

])
.

By the linearity of the expectation operator, we have

μα=0

(
E

[
TPDDθ∗

opt

]
,E

[
TNDD

θ∗
opt

])
= μ∗

α=0

(
E

[
TPDDθ∗

opt

])
= E

[
μ∗

α=0

(
TPDDθ∗

opt

)]
.

The right-hand side is precisely the definition of the DD baseline for the evaluation measures
μα . ��
It immediately follows from Theorem 4.1 that E

[
μα=0

(
TPDD

θ∗
opt

,TNDD
θ∗
opt

)]
≤ μα(TPα,TNα)

under the specified conditions. Some metrics, i.e., TSα and G(2)
α , do not satisfy the linearity

property in TPDD
θ∗
opt

underμ0, so Theorem 4.1 does not necessarily hold for them. It is, however,

possible that an equality does occur. For TSα , inequality occurs only in cases where P = 1
and θ∗

opt < 1. Since no closed-form expression is currently known for determining θ∗
opt for

G(2)
α resulting in the DD baseline, identifying when μα=0 equals the DD baseline remains an

open question. In the case of inequality, additional considerations or adjustments are required
to construct indicator scores satisfying the desirable properties of an indicator as described
in Section 4.1.

4.4.2 Optimal Model Bound

Using the following theorem, let us now examine the alignment of the DS with the expected
performance score of the “optimal” classifier.

Theorem 4.2 If μα is strictly increasing in α ∈ [0, 1], then the maximum of μα is equal to
μα=1(E

[
TPDOρ

]
,E

[
TNDO

ρ

]
).

Proof μα is strictly increasing, and hence, the maximum of μα is achieved for α = 1, i.e.,

max
α∈[0,1] μα = μα=1(TPα=1,TNα=1)

Eqs. (1), (2)= μα=1

(
1E

[
TPDOρ

] + 0E
[
TPDDθ∗

opt

]
, 1E

[
TNDO

ρ

] + 0E
[
TNDD

θ∗
opt

])

= μα=1(E
[
TPDOρ

]
,E

[
TNDO

ρ

]
).

��
More specifically,

max
α∈[0,1] μα = μα=1(P(1 − ρ), N (1 − ρ)).

Table 2 gives the boundaries of a set of selected performance metrics we would naturally
like to maximize. Since the considered performance metrics, except for TSα and G(2)

α , exhibit
DD baseline linearity in TPDDθ , it can be inferred that the lower bound of the DS is equivalent
to the DD baseline. Notably, the alignment of TSα remains accurate despite its non-linearity
in TPDDθ . To ensure that μ0 < μ1, certain constraints on the parameter ρ are necessary,
which we will specify in Section 4.6. When the realized performance score is between these
bounds, we should search for the resulting indicator score, which we will discuss in the next
section.
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Table 2 Boundaries of DS performance metrics

Metric DD baseline �∗
opt Baseline bound (μ0) Optimal model bound (μ1)

PPVα �∗ \ {0} P
M

P(1−ρ)
ρ(N−P)+P

NPVα �∗ \ {1} N
M

N (1−ρ)
ρ(P−N )+N

Fβ
α {1} (1+β2)P

M+Pβ2
(1+β2)P(1−ρ)

ρ(N−P)+P(1+β2)

Jα �∗ 0 1 − 2ρ

MKα �∗ \ {0, 1} 0 N P(1−2ρ)

−ρ2(P−N )2+ρ(P−N )2+N P

Accα if P = N → �∗
else → {|P < M

2 |}
max{P,N }

M 1 − ρ

BAccα �∗ 0.5 1 − ρ

MCCα �∗ \ {0, 1} 0
√
PN (1−2ρ)√

(ρ(N−P)+P)(ρ(P−N )+N )

κα if P = M → �∗ \ {1}
else → �∗

0 2PN (1−2ρ)

ρ(N−P)2+2PN

FMα {1}
√

P
M

√
P(1−ρ)√

P(1−ρ)+Nρ

TSα if P = 1 → �∗ \ {0}
else → {1}

Pθ∗
opt

P+Nθ∗
opt

P(1−ρ)
ρN+P

G(2)
α n/a

√
θ∗
opt(1 − θ∗

opt) 1 − ρ

4.5 Selecting�∗
opt and Reverse Engineering˛

The definitions of the performance metrics under the DS provided in Table 1 show that some
metrics (e.g., Jα and BAccα) are independent of θ∗

opt, while other metrics (e.g., FMα , F
β
α ,

or Accα) have a unique corresponding DD baseline optimizer (θ∗
opt) as shown in Table 2,

and there are metrics for which multiple θ∗
opt result in the DD baseline (|�∗

opt| > 1). To
avoid ambiguity regarding the choice of θ∗

opt when there are multiple options, we outline the
selection criteria that should guide it. If one has obtained an empirical performance metric
score μ, then θ∗

opt should be selected so that the least required indicator rate α to achieve
this. The intuition behind minimizing α is that we want to maximize the utility of the DD
baseline. If a higher DD baseline can be achieved without learning by selecting another θ∗

opt,
then this θ∗

opt should be selected. If we can achieve a higher score without learning, the DD
baseline difference should not be considered as learning. The DD baseline parameter θ∗

opt
should thus be selected to minimize α under the restriction that the constructed score μα

equals the empirical gathered performance metric score μ.
Reverse engineering α with the selection criteria of θ∗

opt to obtain a metric score requires
solving the following optimization problem for a selected performance metric μ:

min α,

s.t. μ = μα(TPα,TNα,FPα,FNα),

θ∗
opt ∈ �∗

opt,

α ∈ [0, 1].
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The solution to this problem specifies the weight α required to achieve the same realized
performance score. Let us notateμα as a function s = μα(α, P, M, θ∗

opt, ρ). Given thatwe are

interested inα, we denoteμ−1
α as the inverse function ofμα to s : α = μ−1

α (s, P, M, θ∗
opt, ρ).

We search for the θ∗
opt by taking the derivative of μ−1

α to θ∗
opt and then see what θ∗

opt results
in the lowest α. Table 3 shows the DD strategies leading to the DD baseline and which
θ∗
opt results in the lowest α for a subset of the selected performance metrics. Results for μα

substituted with θ∗
opt for TS are in the SupplementaryMaterial. The second column shows the

θ∗
opt leading to the lowest α ∈ [0, 1], and the third column gives the DS definitions using these
unique values, and we can exclude θ∗

opt from each function. Some metrics are independent
of θ∗

opt, so multiple θ∗
opt lead to the same indicator score.

4.6 Limitations for�

Ensuring an accurate approximation of the performance score of an “optimal” classifier by
the DO is crucial for two primary reasons. First, it establishes the target benchmark when
searching for the “optimal” model. Setting an incorrect target might result in prematurely
concluding the search upon discovering a suboptimal model, or conversely, the search may
persist indefinitely, even if finding the truly optimal model proves unattainable. Second,
any inaccuracies in this approximation can potentially compromise our proposed indicator’s
desired properties, as detailed in Section 4.1.

We must set ρ at a correct value to guarantee that the DO performs better than the DD
baseline. This can be accomplished by ensuring that μα exhibits a strictly increasing trend to
α. Table 4 shows the derivative of each performance metric in α and specifies which ρ should
be selected to satisfy both properties described in Section 4.1. Results for ρ in FM, MK, and
MCC are in the Supplementary Material. For most performance metrics, ρ < 0.5 implies
having a strictly increasingμα in α, while there are metrics where the limitation of ρ depends
on P and M (and β for the Fβ score). The last column specifies how ρ can be determined

Table 3 Optimal θ∗
opt selection for performance metrics

Metric argminθ∗
opt

{μ−1
α } μα with θ∗

opt substituted

PPVα { 1
M } P

M
α(M(1−ρ)−1)+1

α(ρ(N−P)+P−1)+1

NPVα { M−1
M } N

M
α(M(1−ρ)−1)+1

α(ρ(P−N )+N−1)+1

Accα if P = N → �∗
else→ {[P < M

2 ]}
α(min{P,N }−Mρ)+max{P,N }

M

BAccα �∗ α(1 − 2ρ) 12 + 1
2

Jα �∗ α(1 − 2ρ)

FMα {1} √
P 1−αρ√

α(ρ(N−P)−N )+M

Fβ
α {1} P(1 + β2)

1−αρ

α(ρ(N−P)−N )+M+Pβ2

κα if P = N → �∗
else → {[P < M

2 ]}
2PNα(1−2ρ)

α(ρ(N−P)2−(min{P,N })2+PN )+M min{P,N }

TSα if P = 1 and TSα = 1
N → �∗ \ {0}

if P = 1 and TSα > 1
N → { 1

M }
else → {1}

See Suppl. (A.8)
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Table 4 Limitations on ρ for ensuring indicator properties

Metric Derivative μα in α argmaxρ s.t .
∂μα
∂α

> 0 ρ = μ−1
1 (�μα )

Accα
min{P,N }

M − ρ min{ N
M , P

M } 1 − �Acc

BAccα 1
2 − ρ 0.5 1 − �BAcc

Jα 1 − 2ρ 0.5 1
2 − 1

2�J

PPVα
PN
M

1−2ρ
(α(ρ(N−P)+P−1)+1)2

0.5 P(1−�PPV)
�PPV(N−P)+P

NPVα
PN
M

1−2ρ
(α(ρ(P−N )+N−1)+1)2

0.5 N (1−�NPV)
�NPV(P−N )+N

Fβ
α

P(1+β2)(N (1−2ρ)−ρPβ2)

(α(ρ(N−P)−N )+M+Pβ2)2
N

2N+Pβ2

(1+β2)P(1−�Fβ )

�
F

β
α

(N−P)+P(1+β2)

κα
(1−2ρ)2PNM min{P,N }

(α(ρ(N−P)2+PN−(min{P,N })2)+M min{P,N })2 0.5 2PN (1−�κ)

�κ (N−P)2+4PN

FMα

√
P αρ2P+αNρ(1−ρ)+N (1−ρ)+ρ(P−2M)

2(M−α(N (1−ρ)+Pρ))
3
2

N
3N+P See Suppl. (A.11)

MKα (1 − 2ρ)PN
M2θ∗

opt+P̂2−2θ∗
optM P̂

(P̂ N̂ )2
0.5 See Suppl. (A.13)

MCCα (1 − 2ρ)
√
PNM

P̂(1−θ∗
opt)+N̂θ∗

opt

(P̂ N̂ )
3
2

0.5 See Suppl. (A.14)

TSα ∗ → M 2N−ρ(M+2N )

(M+N−αN (1−Mρ))2

∗∗ → P N−ρ(M+N )

(M−Nα(1−ρ))2

N
M+N

P(1−�TS)
�TSN+P

G(2)
α N.A. 0.5 1 − �G(2)

∗ = {P = 1 ∧ 1
N (1−2ρ)

≤ α ≤ 1} , ∗∗ = {P > 1} or {P = 1 ∧ 0 ≤ α ≤ 1
N (1−2ρ)

}

when the user knows the expected performance metric score of the “optimal” model. This
information is valuable if the user wants to estimate ρ on empirical estimates. The derivative
ofμα should be strictly increasing in α, and ρ should be smaller than the inverse DS function
at the expected performance score of the “optimal” classifier. In the next section, we will
elaborate on categorizing performance metrics based on their second derivative.

5 Concavity Analysis of the DSPI

In the previous section, we demonstrated how the DS enables the transformation of metric
scores into a uniform interval with reference points. We also examined the conditions under
which theDSmeets the twodesirable properties of an indicator.However, the secondproperty,
a positive monotonic relationship between realized scores and the DSPI, raises questions
about the concavity of the transformation, which is still unaddressed.We conduct a concavity
analysis of the DSPI to explore this aspect further. Figure 1 shows three visualizations of
the effect of α on μα for the selected metrics. Plot (a) shows that some performance metric
combinations have identical starting points with the same DD baseline, but their concavity
differs. In plot (b), we transformed each metric with a simple min-max transformation to the
same starting and ending point to emphasize concavity differences. Plot (c) shows the effect
of increasing ρ on the concavity of the performancemetrics. The graphs collectively illustrate
how the concavity of various evaluation metrics behaves under different transformations and
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Fig. 1 Visualizations of DSPI for M = 100 and P = 10

parameter adjustments. It can be observed that the impact of increasing ρ is that the slope
of the curves and the “optimal” classifier bound decreases. The progression in these graphs
highlights how the metrics’ concavity is sensitive to the DS standardization and parameter
variation.

Figure 1 indicates concavity differences between the metrics. The critical question
remains: what are the implications of the specific form of concavity, and do metrics con-
sistently exhibit the same type of concavity? Let us use the following definition to categorize
metrics under the DS on their second derivative.

Definition 1 (from Adams and Essex 2010) Suppose f (x) is a function twice continuously
differentiable on an interval I ; then it is concave up, concave down, or linear, depending on

whether for all x ∈ I it holds that ∂2 f (x)
∂x2

> 0, ∂2 f (x)
∂x2

< 0, or ∂2 f (x)
∂x2

= 0, respectively.

A concave-up relationship between performance metric scores and their corresponding DSPI
value exhibits a pattern that mirrors the essence of the Pareto principle (although not pre-
cisely): a disproportionate big DSPI increment is achieved for a relatively low metric score.
Achieving an increment in DSPI becomes harder when increasing the performance score.
For concave-down, it is exactly the other way around: a disproportionate large metric score is
required for a relatively small increment in the DSPI. This concavity analysis helps determine
howmuch better one model is over another when outperforming it in the performance metric
score.

Table 5 shows the second derivative of each metric under the DS and indicates whether
metrics are concave up/down or linear. The second derivative shows the curvature of each
performance metric under the DS. All first derivatives are non-decreasing/positive, but the
concavity of the performancemetrics depends on the second derivative. The second derivative
for the MKα and MCCα are derived, but whether the curvature is concave up/down or linear
depends on the corresponding θ∗

opt. Accuracy, balanced accuracy, and the J statistic are always
linear metrics in α. This means that the relative performance metric increase, starting from
the DD baseline and ending at the DO, is one-to-one with an increment in howmuch a model
has learned. There are only some situations where learning occurs linearly for precision, the
negative predictive value, and the kappa. With this categorization of the performance metric,
we can better interpret the relationship between increasing the performance metric score and
the achieved quantification of how much a classifier has learned.
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Table 5 Derivative analysis of the DS

Metric Second derivative μα to α Conc. Up? Conc. Down? Linear?

Accα 0 ✓

BAccα 0 ✓

Jα 0 ✓

PPVα
∂PPVα

∂α
−2(ρ(N−P)+P−1)

P̂
✓ P = N = 1,P =

1 ∧ ρ = 0

NPVα
∂NPVα

∂α
−2(ρ(P−N )+N−1)

N̂
✓ P = N = 1, N =

1 ∧ ρ = 0

Fβ
α

∂Fβ
α

∂α
2(N (1−ρ)+Pρ)

Pβ2+P̂
✓

κα
∂κα
∂α

−2(ρ(N−P)2+PN−(min{P,N })2)
P̂ N+N̂ P

✓ P = N

TSα
∂TSα
∂α

2N (θ∗
opt−ρ)

FPα+P ✓

FMα
∂FMα

∂α
N (1−ρ)+ρP

2 P̂
✓

6 Dutch Scaler in Practice

Now that all theDSPI’s theoretical properties have been discussed, it is time to demonstrate its
value in practice. First, we compare the DSPI with the ACCBAR and show their differences.
Second, we demonstrate how the DS provides a means to compare classifiers on multiple
selected metrics.

6.1 DSPI Versus ACCBAR

Let us compare the DSPI with the values produced by the indicator ACCBAR. We used the
same 28 studies to gather DSPI scores as were obtained for the ACCBAR (Canbek et al.,
2020). The ACCBAR is derived by subtracting the baseline from the performance metric
score. The resulting DSPI, ACCBAR, and scaled ACCBAR scores for the metric accuracy
are shown in Fig. 2. As shown in Table 5, accuracy is a measure for which learning is linearly
in the increment of the performance metric scores when transformed by the DS. Therefore,
when we min-max scale the ACCBAR scores with the baseline and the upper-performance
metric score of the optimal model as reference points, it can be observed that these scaled
scores are identical to the DSPI scores. The absolute values differ, but when scaled, they are
identical. This means that for performance metrics that are linear in α, ACCBAR and DSPI
assessments are identical.

Differences between the scaled ACCBAR andDSPI arrive whenwe consider performance
metrics that, under the DS transformation, are not linear in α. Figure 3 shows computed
ACCBAR, scaled ACCBAR, and DSPI scores for the F1 score. Unlike Fig. 2, only seven
studies reported the F1 score of their method, allowing us to compute the ACCBAR and
DSPI on the F1 scores only for these studies. For this metric, it can be observed that the
DSPI is higher than the scaled ACCBAR in all cases. This means the DSPI assesses that
the model has learned more than the quantification computed with the ACCBAR. The Fβ

performance metric under the DS is a concave-up function, so the learning quantity assessed
by the DS will always be higher for these kinds of metrics. When performance metrics
are concave-down in the DS, the quantitative assessment of the prediction performance of a
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Fig. 2 Performance indicator scores of DSPI and ACCBAR on accuracy for 28 different studies

model will be lower than the ACCBARwill indicate. In general, the quality assessment of the
DSPI, when compared to the scaled ACCBAR, will be more conservative when the metrics
exhibit concave-down behavior. At the same time, a concave-up trend will result in a more
favorable evaluation. Still, the DSPI scores have more practical meaning as they consider
absolute prediction quality in contrast to the relative baseline performance quantification by
the ACCBAR.

6.2 Comparing Classifiers with the DSPI

As previously discussed, individual metrics often emphasize distinct aspects of the confusion
matrix, making direct comparisons unfounded. For instance, a recall of 0.9 and a precision

Fig. 3 Performance indicator scores of DSPI and ACCBAR on the F1 score for seven studies
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of 0.3 are meaningful when interpreted together but cannot be directly compared. The DSPI
addresses this challenge by converting metrics into a unified scale, allowing for more coher-
ent evaluations across classifiers. When applying this transformation, it makes more sense
to average the standardized scores. This enables a more accurate and holistic assessment
of a classifier’s effectiveness. To demonstrate this, let us consider the results of a binary
classification study. In Sidey-Gibbons and Sidey-Gibbons (2019), three machine learning
classifiers were used on the Breast Cancer Wisconsin Diagnostic Data Set, an often studied
classification problem (Wolberg et al., 1993). The task here is to predict whether tumors are
benign or malignant.

Table 6 shows the basemeasure scores of these classifiers when evaluated on a test dataset,
the corresponding metric scores, derived DSPI, and scaled ACCBAR scores. Three machine
learning models, generalized linear models (GLM), support vector machines (SVM), and
artificial neural networks (ANN), were trained to classify M = 227 tumor instances into
benign (N = 150) or malignant (P = 77). DSPI scores are more conservative in their
prediction quality assessment than acquired metric scores, especially for PPV and NPV. One
exception to this rule is the threat score, where theDSPI gives higher scores.Metrics concave-
up under the DS aremetrics where the DSPI gives higher scores than scaled ACCBAR scores,
while metrics that are linear or concave-down under the DSwill always haveDSPI scores that
are equal ormore conservative. The scaledACCBARscores provide a performance indication
of a classifier but fail to make valid comparisons between scores of different metrics. Looking
at the average DSPI scores and metrics scores, it is valid to average the DSPI scores as they
belong to the same uniform framework. A remark here is that it would only be appropriate to
average metrics if they are all either naturally maximized or minimized. With these averaged
DSPI scores, we can get a better holistic performance assessment.

Table 6 Comparison of metric (μ), DSPI (μα), and scaled ACCBAR () scores

GLM SVM ANN
Metric μ μα  μ μα  μ μα 

TN 148 146 148

FN 10 5 11

FP 2 4 2

TP 67 72 66

PPV 0.971 0.221 0.956 0.947 0.130 0.920 0.971 0.218 0.955

NPV 0.937 0.028 0.813 0.967 0.058 0.902 0.931 0.025 0.796

ACC 0.947 0.844 0.844 0.960 0.883 0.883 0.943 0.831 0.831

BACC 0.928 0.857 0.857 0.954 0.908 0.908 0.922 0.844 0.844

FBETA 0.918 0.908 0.833 0.941 0.936 0.881 0.910 0.899 0.818

MCC 0.882 0.842 0.882 0.911 0.882 0.911 0.872 0.829 0.872

J 0.857 0.857 0.857 0.908 0.908 0.908 0.844 0.844 0.844

MK 0.908 0.806 0.908 0.914 0.821 0.914 0.901 0.792 0.901

KAPPA 0.879 0.846 0.879 0.911 0.886 0.911 0.869 0.833 0.869

FM 0.919 0.906 0.806 0.941 0.934 0.859 0.912 0.896 0.790

TS 0.848 0.908 0.770 0.889 0.936 0.832 0.835 0.899 0.751

Average 0.909 0.729 0.855 0.931 0.753 0.894 0.901 0.719 0.843
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7 Discussion and Conclusion

In this research, we introduced theDS, a performance indicator to quantify howmuch amodel
actually has learned. Our indicator is an essential quantifier to interpret performance metric
scores and assess the prediction quality of classifiers. Classifiers can be compared under
the DS as it transforms metrics to a uniform reference framework, and we can determine
how much better one model is. We showed how the DSPI scores can be derived for a set of
commonly used performance metrics. We proposed two essential properties that an indicator
should possess and show under which conditions a DS metric satisfies them to have a valid
interpretation. If performance metrics under the DD baseline are linear in TPDDθ , it is shown
that the DD baseline equals the lower bound of the DS. If not, the quantification mechanism
to contextualize performance metric scores will not (necessarily) work. For example, the
DD baseline for the G-mean 2 score could be below the lower bound of the DS, making the
alignment incorrect.

We proposed the DO as an imperfect oracle classifier to approximate the expected perfor-
mance metric score of an “optimal” model. This classifier makes a correct prediction with
probability 1 − ρ independently of the instance. This ρ is a user-defined parameter. This
novel classifier is independent of data and does not look at correlations between instances, so
further research can propose better methods to improve this approximation. A better approx-
imation could improve the quantification of how much a model has learned. Fortunately, the
DS is a flexible framework in which the DO can easily be replaced with a more sophisticated
model that approximates the performance of the “optimal” model.

With our uniform reference framework, we categorized performance metrics on their con-
cavity under the DS and showed how some metrics are more similar than others. The DS
translates performance metrics scores into the same frame of reference to compare perfor-
mance metrics based on their curvature of the second derivative. The first derivative is always
positive as this is our desirable property, but this is not always true for the second derivative.
With visualizations, we have shown the impact of increasing the performance metric score
on the actual acquired prediction quality improvement. Performance metrics that are concave
up, down, or linearly increasing indicate whether or not it is relatively easy/hard to increase
the performance acquired by the model.

Although the primary focus of this research lies in quantifying the learning progress of
binary classification models, the concept can be expanded to encompass models of vari-
ous classifier types or those addressing different problem domains. For instance, one could
examine multi-classification classifiers or explore regression problems. To integrate the DS
framework into these problems, we first need to define the expected performance of both a
baseline and an “optimal” model. In this context, the baseline model is input-independent,
representing the expected score of a model that has not been learned. This approach allows
us to determine the metric score for a non-learning model. The key question then becomes
how to adjust the baseline measures in a multiclass classification problem or the output data
points in a regression problem in the direction of the “optimal” model to match the model’s
score. By doing so, we can quantify the extent to which models in these tasks have learned.
In essence, developing indicators in these contexts enhances interpretability and improves
the ability to assess the overall quality of models.
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