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ABSTRACT

The sustainability of the ocean ecosystem is threatened
by increased levels of sound pollution, making monitor-
ing crucial to understand its variability and impact. Pas-
sive acoustic monitoring (PAM) systems collect a large
amount of underwater sound recordings, but the large vol-
ume of data makes manual analysis impossible, creating
the need for automation. Although machine learning of-
fers a potential solution, most underwater acoustic record-
ings are unlabeled. Self-supervised learning models have
demonstrated success in learning from large-scale unla-
beled data in various domains like computer vision, Natu-
ral Language Processing, and audio. However, these mod-
els require large, diverse, and balanced datasets for train-
ing in order to generalize well. To address this, a fully
automated self-supervised data curation pipeline is pro-
posed to create a diverse and balanced dataset from raw
PAM data. It integrates Automatic Identification System
(AIS) data with recordings from various hydrophones in
the U.S. waters. Using hierarchical k-means clustering,
the raw audio data is sampled and then combined with
AIS samples to create a balanced and diverse dataset. The
resulting curated dataset enables the development of self-
supervised learning models, facilitating various tasks such
as monitoring marine mammals and assessing sound pol-
lution.

Keywords: Data curation, Underwater Acoustics, Self-

*Corresponding author: h.i.hummel@cwi.nl.
Copyright: ©2025 Hummel et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution
3.0 Unported License, which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original au-
thor and source are credited.

Supervised Learning

1. INTRODUCTION

The increasing levels of sound pollution threaten the
preservation of ocean ecosystems, necessitating the moni-
toring of underwater sounds [1]. Passive Acoustic Mon-
itoring (PAM) systems are globally deployed and col-
lect a vast amount of diverse underwater sound record-
ings. The complexity of the marine environment, com-
bined with the large volume of data, makes manual analy-
sis impractical. As a result, annotating such data is time-
consuming and expensive, leaving most PAM recordings
unlabeled [1]. Although machine learning (ML) could po-
tentially facilitate automatic analysis, the performance of
supervised methods is limited by the scarce label avail-
ability. Self-Supervised Learning (SSL) has successfully
handled large-scale unlabeled data in domains like com-
puter vision, Natural Language Processing [2], and au-
dio [3]. However, the performance of SSL models is
reduced when they are optimized on uncurated data [4].
This makes balancing of the training data by data curation
a key aspect for SSL models to generalize on downstream
tasks. Despite the widespread availability of uncurated
PAM data, no prior research has focused on curating these
data to support the development of SSL-driven models for
automatic underwater acoustic analysis. To address this
gap, this article presents a fully automated pipeline for the
curation of large-scale, freely accessible PAM recordings.
This pipeline integrates Automatic Identification System
(AIS) data with PAM data to balance both the ship distri-
bution and the raw audio distributions. The key contribu-
tions of this paper are:

• A simple AIS curation method based on ship oc-
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currence;

• An online hierarchical clustering approach for raw
large-scale PAM data curation.

The curation method is evaluated by training an SSL
algorithm on the curated dataset. The embedding space
will be evaluated on a downstream task. The learned em-
beddings serve as input for the linear regression-based
classification, to classify ship types from the reference
datasets Deepship [5] and ShipsEar [6] containing under-
water recordings of ships labeled by the type of ship.

2. RELATED WORK

2.1 SSL in underwater acoustics

Several previous studies have shown the potential of SSL
in the automatic recognition of ship types [1]. With no
large, curated underwater acoustic dataset publicly avail-
able yet, [7] and [8] proposed pretraining on AudioSet
applying a mix-up strategy. Next, a Swin Transformer
encoder is optimized with masked log-Melspectrogram,
while a decoder is optimized to reconstruct the full spec-
trogram. A high masking rate was needed because of the
limited contrast in these spectrograms. The fine-tuning on
Deepship [5] yielded an accuracy of 80% - 86%. How-
ever, because of the complexity of the marine environ-
ment, tasks related to acoustics above the water may not
be representative of the marine environment. To address
this, [9] proposed a generative transformer model pre-
trained solely on underwater acoustic data. To reduce the
GPU demand during training, they proposed hierarchi-
cal token-convolutions and masked these for reconstruc-
tion. Deepship model pre-training and fine-tuning on both
Deepship and ShipsEar [6] improved performance over a
supervised transformer baseline. However, their method
is limited in real-world applications because of the lack
of diversity of ocean environments in their training data.
Our study overcomes this issue by representing a data cu-
ration pipeline to extract a diverse and balanced unlabeled
dataset for SSL algorithms.

2.2 Data curation methods

SSL models need a balanced and diverse dataset to com-
pete with supervised methods. The simple scraping of raw
data from the web results in an unbalanced dataset, creat-
ing the need for data curation [4]. Previous research pro-
posed an automatic data curation pipeline for data curation
from images scraped from the web [10]. They suggested

converting both a labeled curated dataset and an unlabeled
uncurated dataset to the embedding space and performed
deduplication by removing near-duplicate images in the
uncurated dataset. Finally, they retrieved images from the
uncurated dataset by calculating the relative distance to
the curated samples. Although they state that this method
is self-supervised, it still requires a large labeled dataset
for matching. In a follow-up article, [11], they proposed
a hierarchical KMeans algorithm to retrieve images from
an uncurated dataset. Here, they overcome the problem
that web-scraped big data is mostly long-tailed. Sam-
pling from traditional KMeans does not encounter this,
and therefore, hierarchical KMeans clustering and sam-
pling are proposed. In addition, the DINOv2 algorithm
was applied to text-image pairs [4]. In this paper, they per-
formed data curation. Here, they aligned the images to the
captions and sampled from the aligned captions to create
the image dataset. The addition of metadata for data cu-
ration has also been proposed for audio-visual video rep-
resentations in [12]. In this work, they tried to maximize
the estimated mutual information between the video im-
agery and the corresponding audio. Both studies showed
that the incorporation of metadata for data curation can
improve the quality of the curated data.

3. METHODS

3.1 PAM data

The raw audio data is collected from NOAA 1 , selecting
hydrophones which started recording in 2023 or later. All
these PAM audio recordings are combined into the result-
ing dataset D. In total, this combination covers the dura-
tion of 8 years, 6 months, 9 days, 15 hours, 19 minutes,
and 49 seconds from 11 individual hydrophones. These
hydrophones are visualized in Figure 1.

3.2 AIS data

Track records of ships are recovered by AIS. This system
captures information about ship characteristics, the loca-
tion, and movements of almost all ships worldwide. The
NOAA also provides freely accessible AIS data 2 cover-
ing the same regions as raw PAM data. The raw PAM
data were aligned with the AIS data by drawing a 4 km

1 https://console.cloud.google.com/
storage/browser/noaa-passive-bioacoustic;
tab=objects?inv=1&invt=AbnmXQ&prefix=
&forceOnObjectsSortingFiltering=false

2 https://marinecadastre.gov/accessais/
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Figure 1. The locations of the hydrophones from the
web scraped PAM data, indicated in red pointers.

× 4 km square with the hydrophone in the center (Figure
2). This square defines the range of the hydrophone, and
therefore, every AIS pulse within this range was consid-
ered recorded. The data set containing the AIS pulses will
be referred to asA. All recordings, with AIS information,
were gathered to create the dataset Ds.

3.3 AIS data curation

The low contrast of radiated ship noise against back-
ground noise makes it difficult for simple machine learn-
ing methods to encounter ship noise in a large volume of
data. To ensure a diverse representation of the acoustic
profiles of the ships in the curated dataset, the AIS data
A is also curated. A simple approach inspired by [4] is
proposed. Here, they proposed to curate the aligned cap-
tion to curate an image dataset from a caption-image pair
dataset. In this work, the AIS data are aligned with the
PAM data, creating a dataset Ds holding the aligned PAM
recordings and a datasetA holding the aligned AIS pulses.
These pulses are then sampled based on the occurrence of
individual ships, using a threshold value t. This thresh-
old is defined based on the incidents of individual ships
in the aligned PAM dataset Ds. Ships with a lower in-
cidence than t will not be sampled and kept complete in
the curated dataset, while ships that exceed t are sampled
according to their sample probability. This probability is
inversely proportional to the occurrence of the ship in Ds,
the higher the occurrence, the lower the sampling proba-
bility and vice versa. Here, the objective is to balance the
long-tailed distribution ofDs givenA, resulting in a more
balanced dataset D∗

s :

4 km

4 km

Figure 2. The defined range of the selected hy-
drophones to align raw PAM recordings with the AIS
pulses.

D∗
s ← f(Ds;A, t) (1)

3.4 Audio preprocessing

First, the raw audio was resampled to a sample rate of 16
kHz to ensure a common sample rate for all recordings.
Next, the audio was windowed using a 10-second window
size without overlap. From this windowed audio, embed-
dings were generated using the model presented in [13].
In this research, they state that this model is optimized on
a large quantity of unlabeled underwater acoustic data and
generates generalized embeddings with dimension 2048.

3.5 PAM data curation

The objective of the PAM data curation method is to re-
trieve a dataset with the target distribution U . This distri-
bution is defined as a uniform distribution with the sup-
port of the distribution P , where P represents the distri-
bution of dataset D. The data curation method is inspired
by the method proposed by [11]. The entire dataset D is
employed to optimize a hierarchical KMeans model us-
ing the resampling-clustering technique. This model con-
sists of four levels with cluster sizes of [6000, 400, 40, 10].
Here, the lower cluster levels focus on detailed informa-
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tion, while the upper levels capture global features. Au-
dio samples of 10 seconds are then drawn from each hi-
erarchical layer. Given the large size of the dataset D,
the hierarchical KMeans is optimized in a streaming man-
ner, which approximates the optimal solution [14]. After
training, the optimal HKmeans is utilized to sample the
data from each cluster level. A maximum of target size N
samples is selected from the first datastream based on the
relative distance of the datapoints to the assigned cluster
centers. As additional datastreams are processed, once the
target number of N samples is exceeded, the samples with
the greatest distance to the cluster center are replaced by
those closer to the center.

3.6 SSL algorithm training and evaluation

The proposed method is evaluated by training the
Data2vec base framework [15]. The base model pre-
trained on speech is completely fine-tuned using the cu-
rated dataset. This dataset is defined as:

D∗ = Da +D∗
s (2)

The model is optimized using a batch size of 64, where
each input sample for the student model is masked for
15% while the teacher model receives the full audio. The
teacher model weights ∆ keep track of the student model
weights θ by:

∆ = τ∆+ (1− τ)θ (3)

The parameter τ (τ0 ≤ τ ≤ τe) is gradually increased
from τ0 = 0.999 to τe = 0.9999 over 20 updates. The per-
formance of the model is compared by training the same
framework on a randomly curated dataset of the same size.
A simple logistic regression is optimized using the learned
embeddings for the classification of the type of ships.

4. RESULTS

4.1 Data curation

For the AIS curation method, the optimal threshold value
t is defined to correspond to the knee of the skewed dis-
tribution of Ds [4]. Figure 3 illustrates the number of
10-second audio windows per individual ship, revealing a
skewed distribution. The optimal threshold, aligning with
the knee of the distribution, is around 250. For this reason,
the threshold value t was set to 250, resulting in a dataset
D∗

s capturing 25,021 audio samples.
In addition to AIS samples, 323,532 samples were se-

lected during PAM data curation. These samples were
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Figure 3. AIS distribution of individual ships in dat-
set Ds with threshold value t = 250 in red, t = 500
in blue, t = 1000 in green

combined to create the dataset D∗ holding roughly 970
hours of PAM recordings.

4.2 SSL results curated dataset

The proposed method is evaluated using the labeled
benchmark datasets Deepship [5] and ShipsEar [6]. Both
datasets hold ship types recorded in two distinct regions.
Table 1 presents the accuracy scores of the Data2Vec
model trained on curated and random datasets. The re-
sults indicate that the curated model outperforms the ran-
dom model on both benchmark datasets. However, the
performance gain is smaller for ShipsEar, likely due to en-
vironmental factors. The ocean environment of ShipsEar
is quite different from the environment of the hydrophones
in the raw PAM data (Figure 1), making classification
more challenging. In contrast, the ocean environment of
Deepship is more comparable with the PAM data, leading
to a performance increase of more than 7%.

Table 1. Accuracy scores ship type classification
ShipsEar Deepship

Random 51.98% 49.16%
Curated 53.11% 56.72%
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5. CONCLUSION

This work describes the first automatic data curation
pipeline to curate large web-scraped PAM data. The study
demonstrates that curation is a key aspect in extracting
accurate SSL model representations from unlabeled un-
derwater recordings. Although this work focuses on data
curation, more research is still required on SSL methods
applied to underwater acoustics. Due to the stationar-
ity of the data, the masking strategy may be suboptimal,
and the results may benefit from a more contrastive ap-
proach. In addition to the raw web-scraped PAM data
used in this study, more diverse data is publicly avail-
able. Expanding the diversity by incorporating more hy-
drophones from various regions would make the represen-
tations more robust for various other underwater acoustic-
related tasks. This offers the possibility of training large-
scale SSL models from scratch, enabling more advanced
underwater acoustic applications.
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