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Chapter 1

Introduction

Nowadays, IT services are expected to operate in a continuous, 24/7 fashion.
In our globally connected world, smartphones and tablets, among other de-
vices, are used as means to ensure access to all kind of services at any time
and place. The ever-growing demand for mobile communications and online
services increases both the traffic volumes and the Quality of Service (QoS)
expectations from the end users. In response, companies migrate their ser-
vices to online environments where they can meet and satisfy a larger group
of people. Furthermore, financial institutions implement an increasing num-
ber of ICT solutions, e.g., (mobile) Internet banking, iDeal in the context of
e-commerce, etc. These new technologies greatly facilitate our everyday lives,
but at the same time, make our society dependent on their availability and
quality. Therefore, at any time, even the slightest disruptions or malfunc-
tions are immediately being noticed and may cause a great impact on the user
experience, and consequently, on the service providers’ reputations.

In the last two decades, we have been witnessing a paradigm shift from the
traditional information-oriented Internet into an Internet of Services (IoS).
This shift brought the existence and the importance of concepts like software
as a service, shared platforms and cloud computing. Examples as self-driving
cars, online language translation and Amazons cashierless shops indicate the
extent to which digital technologies interact with the physical world. Next to
that, companies are able to create online marketplaces that allow both sup-
pliers and consumers to flourish, resulting in a tremendous growth of shared
platforms for booking hotels, renting cars, etc. This has opened up virtually
unbounded possibilities to introduce new services facilitating business pro-
cesses and improving the quality of life. However, in most of the cases, the
same innovations introduce complicated dependencies between various services
offered by a multitude of third parties, each having its own QoS requirements.

The increasing complexity of IT infrastructures poses significant challenges
in managing computer systems. Next to that, the growing dependence on IT
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services has increased the need for reliable implementations which are resilient
to malfunctions, cyber attacks, high-load traffic, etc. Therefore, studying the
performance of ICT service chains and their optimal control is of great impor-
tance. Ensuring efficient usage of the available resources while preserving the
desired QoS in such complex environments requires one to go beyond ad-hoc
solutions and develop quantitative QoS models and methods for controlling
QoS. Motivated by this, in this thesis we study techniques to derive funda-
mental insight into the performance and the optimal control of two common
system design paradigms in ICT service chains. More specifically, we ana-
lyze models of applications connected in either a (1) sequential or (2) nested
fashion.

1.1 Performance evaluation and optimal
control

Typically, there is a trade-off between the performance on the one hand and
the cost of a given computer system on the other hand. The goal to properly
balance this trade-off makes performance analysis crucial. A performance eval-
uation is required when a number of alternative designs have to be compared to
find the one that best meets the operational demands. As the field of computer
design matures, the computer industry is becoming more competitive, and it is
more important than ever to ensure that the alternative selected provides the
best cost-performance trade-off. For example, a system administrator would
have to evaluate the performance of a number of systems to decide which
one is best for a given set of applications. Even if there are no alternatives,
performance evaluation of the current system helps in determining how well
the system is operating and whether any improvements need to be made. Fur-
thermore, performance evaluation enables service providers to answer ‘what-if’
questions regarding the predicted performance for different system configura-
tions. Unfortunately, the types of applications are so numerous that it is not
possible to have a standard measure of performance, a standard measurement
environment, or a standard technique for all cases. Therefore, the first step
in performance evaluation is to select the right measures of performance, the
right measurement environments, and the right techniques.

For contrasting design alternatives, it is too time consuming to build these
different systems and test their performance in a practical setting. Even for
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a given design, large multiple-client testing is very time consuming if at all
feasible. Therefore, we develop models to assess the performance of the de-
sign alternatives quickly and quantitatively. The development of efficient QoS
mechanisms is complicated by the omnipresence of the phenomenon of uncer-
tainty. Stochastic models are instrumental to capture such uncertainties and
provide a basis for educated control of systems with uncertainty. In the next
paragraphs, we study performance problems where the stochastic nature of
certain processes complicates the analysis.

The term capacity management is used to denote the problem of ensur-
ing that the currently available computing resources are used to provide the
highest performance. The process of adjusting system parameters to optimize
the performance is also called performance tuning. While the alternatives for
capacity management consist of analyzing usage patterns and changing system
configurations to maximize the present performance, capacity planning is con-
cerned with the future. One of the important problems for managers of data
processing installations is to ensure that adequate computer resources will be
available to meet the future workload demands in a cost-effective manner while
meeting the performance objectives. However, in most of the cases this future
demand is uncertain. Therefore, stochastic models play a key role in capacity
planning.

Next to optimal usage of available resources, in this thesis we consider a
general class of dynamic resource allocation problems within a stochastic con-
trol framework. This class of problems arises in a wide variety of applications,
each of which intrinsically involves resources of different types and demand
with uncertainty and/or variability. The goal is to dynamically allocate ca-
pacity for each resource type in order to serve the uncertain/variable demand
and maximize the expected net-benefit over a time horizon of interest based
on the rewards and costs associated with the different resources.

In addition to variability in the service quality due to uncertainty in the
demand over time, the system might be prone to chaotic behavior or network
failures which would greatly influence resource availability. Chaotic behavior
may for example be caused by unexpected interactions between systems, often
due to configuration errors. In worst cases, a wrong configuration causes net-
work or system failures. To exemplify the implications of such a failure, one
could consider the online payment system of a given bank. A disruption in this
system during a few days is likely to cause bankruptcy of the corresponding
financial institution. Evidently, techniques to analyze ‘what-if’ scenarios and
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to identify the best decision in a given situation are of utmost importance.

1.2 Queueing Theory and Markov Decision
Processes

One way to evaluate (or predict) the performance of an existing computer sys-
tem is to create a complete virtual prototype of the system and simulate the
possible effect of altering system parameters. However, even a single simula-
tion for a specific instance of the analyzed system may require a considerable
amount of running time. Given that the search space of possible workloads
and input parameters is often huge, vast numbers of simulations are needed
to properly cover the range of alternative designs. A method to tackle such
a challenge would be to characterize the workload stochastically and create a
mathematical model. This way, by formal analysis of the parameter space one
can study the cases under which the computer system is likely to perform well
versus those under which it is likely to perform poorly.

In computer systems, many jobs require various system resources. In case
only one job can use the specific resource at a given time, all other jobs re-
quiring this resource would have to either wait in a queue or get canceled.
Therefore, queues are at the heart of any computer system. The CPU uses
a time-sharing scheduler to serve a queue of jobs waiting for CPU time. A
computer disk serves a queue of jobs waiting to read or write blocks. A router
in a network serves a queue of packets waiting to be routed. The router queue
is a finite capacity queue, in which packets are dropped when demand exceeds
the buffer space. Memory banks serve queues of threads requesting memory
blocks.

Queueing theory [2, 17, 44] provides a powerful means to determine the
time that the jobs spend in various queues in the system by modeling the
uncertain system dynamics (e.g., arrival and service patterns) as stochastic
processes. This way, by analyzing the corresponding mathematical models it
becomes possible to predict the performance metrics of interest. Therefore, it
is not surprising that queueing theory is one of the key analytical modeling
techniques used for computer systems performance analysis [31,73].

The items moving through a queueing system are often referred to as cus-
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Figure 1.1: Illustration of a queue, in which customers wait to be served, and
a server. The picture shows one customer being served at the server and three
others waiting in the queue.

tomers as real human waiting line may be envisioned (see Figure 1.1). On
the other hand, when a computer scientist writes about queues, he or she may
often refer to the items moving through the queueing system as jobs since
the application is often jobs circulating through a computer system which can
be modeled as a network of queues. Therefore, in our thesis we will use the
latter term. To analyze the behavior of the system one needs to keep track
of the state of the queueing network. However, even small queueing networks
may have a number of states so large as to produce computational problems.
A great deal of research has gone into devising techniques to overcome this
challenge.

One of the key concepts in queueing theory is the Markov property. A
stochastic process has the Markov property if the future states of this process
are independent of the past and depend only on the present. Such processes
are called Markov processes. The Markov property makes a process easier to
analyze since we do not have to keep track of the complete past trajectory
to make a statement about the future. That is, it is not necessary to include
in the state description the elapsed times in service or the time since the last
arrival. This implies that knowing the present state of the process is sufficient
to describe a queueing network at an instant of time, and furthermore, predict
the future behavior of the Markov process.

Therefore, analysis of Markov processes allows predicting the system per-
formance. Depending on the application, the performance might be measured
by the mean delay in the system, the probability that the delay exceeds some
threshold value, the maximum possible throughput of the system, the mean
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number of servers being utilized (e.g., total power needs), or any other such
metric. In some cases, it is required to predict more than one of these metrics
to evaluate the implications of alternative system designs. Hence, although
prediction is important, an even more important goal is finding how to up-
grade the system to improve performance (e.g., is it better to buy a faster disk
or a faster CPU). Typically to determine which resources would be best to
improve one needs to identify the limiting factor of the system often referred
to as the bottleneck. Note, however, that often without purchasing any addi-
tional resources, one can improve performance by deploying a smarter control
policy for the existing resources.

Markov Decision Processes (MDPs) provide a mathematical framework for
modeling control policies in a stochastic environment. MDPs are an extension
of Markov processes [69, 84]. The difference is that in addition to the state
space one defines a set of actions (allowing control of the system) and a set of
rewards (providing incentive in good decision making). More precisely, at each
time step, the decision maker may choose any action that is available in the
current system state. The process responds at the next time step by moving
into a new state with a probability that depends on the current state and the
taken action. Furthermore, the process acquires the reward corresponding to
this transition.

The core problem of MDPs is to find a decision policy maximizing the
obtained rewards and given in the form of a function mapping optimal actions
to each possible state of the system. Therefore, to ensure that the optimal
control policy resembles the one which optimizes the performance metric of
interest, one has to capture the relationship between the system states and the
desired performance metric when defining the MDP rewards. As an example,
to minimize the mean waiting time at a given queue in the system, one can
define negative rewards, i.e., costs, for each waiting job at the corresponding
server. Note that in this case the reward function depends only on the number
of jobs in the queue, which is captured solely by the system state.

1.3 Evolutionary algorithms

Next to the queueing theory, the machine learning field also provides power-
ful techniques to evaluate the performance of a system and study its optimal
control. More specifically, machine learning is a method of data analysis that
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automates analytical model building. There are numerous machine learning
algorithms designed to tackle challenges like computer vision, text and speech
recognition, self-driving cars, etc. In this thesis, we focus on the so-called evo-
lutionary algorithms [23,40] as they are suitable for analyzing the performance
of a given system and finding an optimal decision strategy.

The general underlying idea behind evolutionary algorithms is that a pop-
ulation of candidate solutions to an optimization problem is gradually evolved
toward better solutions via mechanisms inspired by biological evolution, such
as reproduction, mutation, recombination, and selection. The candidate solu-
tions to the optimization problem play the role of individuals in a population,
and the fitness function determines the quality of the solutions. The environ-
mental pressure causes natural selection (i.e., survival of the fittest) and this
results in a rise in the overall fitness of the population. Therefore, a typical
evolutionary algorithm requires (1) a genetic representation of the solution
domain, and (2) a fitness function to evaluate the solution domain. Based on
the fitness function, some of the better individuals are selected to seed the next
generation by applying a reproduction scheme, i.e., crossing, and/or mutation
to them. This procedure creates a set of new candidates, whose fitness is in
turn also evaluated and compared. The process can be iterated until a solu-
tion with sufficient quality (i.e., fitness) is found or a predefined computational
limit is reached. The following steps summarize the described procedure:

Step 1:
Randomly generate the initial population of individuals.

Step 2:
Evaluate the fitness of each individual in that population.

Step 3:
Repeat the following steps until termination:

Step 3.1: Select the ‘best-fit’ individuals for reproduction.
Step 3.2: Recombine and mutate to generate new individuals.
Step 3.3: Evaluate the fitness of new individuals.
Step 3.4: Replace least-fit part of the population with new individuals.

We emphasize that many parts of the evolutionary process are inherently
stochastic. For example, in Step 3.1 fitter individuals have a higher proba-
bility to be selected than less fit ones, but this does not imply that the weak
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individuals have no probability to become a parent or to survive. Next to that,
when crossing candidate solutions in Step 3.2 the choice of which parts will
be recombined is to certain extent random. Similarly for mutation, the parts
that will be mutated within an individual, and also the new parts replacing
them, are both chosen in a stochastic manner. Therefore, there are two fun-
damental forces that drive the population to evolve and produce solutions of
better quality in consecutive generations:

• Variation, creating the necessary diversity and thereby facilitating nov-
elty.

• Selection, acting as a force pushing quality.

1.4 Practical solutions

In practice, the usefulness of a given algorithm is evaluated based on two
metrics: accuracy and computational time. In real-world applications, the
cost of the method in terms of solution time is often as important as the
method’s accuracy in analyzing the performance or in identifying the optimal
decision policy. Certain techniques become computationally prohibitive, even
for systems of moderate complexity.

This implies that the concept of scalability is particularly important when
analyzing a given system. Scalable solutions are capable to cope with an in-
crease in the system size. Therefore, an extremely valuable type of techniques
is the class that obtains closed-form results (examples of such techniques in-
clude [9,47,63,89]). Closed-form expressions allow instant calculation of a new
solution for any change in the parameters. In addition, algebraic formulas give
the opportunity to study the performance sensitivity in the system parameters
and assess the robustness in the parameter estimation.

In this context, there is a trade-off when modeling the analyzed system.
Naturally, less complex models allow for more accurate and more computation-
ally efficient solutions. One conceptional difference between queueing theory
and machine learning is in the way the two fields approach this trade-off. Typ-
ically using machine learning techniques one would analyze data describing the
past behavior of the system. Therefore, the obtained insights are rarely trans-
ferable to other systems with different past realizations. Next to that, most of
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the algorithms for solving the system (e.g., predicting the performance) involve
approximations and do not allow sensitivity analysis or efficient recalculation
procedure in case of a change in the system specifics. On the other hand,
queueing theory generally deals with the analysis of a simplified model of the
system. The goal is to develop a model that (1) captures the most important
aspects of the system in question, and (2) can be solved with great precision
by an efficient numerical algorithm. Therefore, the results of the queueing
analysis are applicable to any system that shares the modeled system dynam-
ics.

A common way to combine these two approaches is to use machine learning
algorithms on a past data to uncover important patterns in the system behavior
and predict certain system parameters (e.g., the arrival rates). Next, these
patterns are modeled within a queueing framework and the optimal decision
policy is derived from an MDP analysis.

In this thesis, we present a novel technique to bring machine learning and
queueing theory together. Contrary to the former method, we start with
queueing theory and generate data by solving the corresponding queueing
model. Consequently, we use a specific type of evolutionary algorithm on
this data to produce a closed-form solution of the given model. In addition,
we enhance the accuracy and the efficiency of the evolutionary algorithm by
incorporating insights derived from queueing theory analysis.

1.5 Outline of the thesis

The main contribution of this thesis is the development of new methods to
evaluate the performance, and furthermore, to optimally control various ICT
service chains. Therefore, our research focuses on both the theoretical results
and the practical applications of these techniques. The explored concept of
combining the fields of queueing theory and machine learning proves to be a
highly promising idea. We believe that the pioneering studies in this thesis
are setting only the beginning of a new research direction that offers both
remarkably accurate and easily scalable solutions to real-world problems.

One of the most common ways to model two dependent (e.g., connected in a
chain) services is by a tandem queue. Namely, the output of one server becomes
the input of the second node. As an example of a system with such a feature,
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in Chapter 2 we analyze a simple database caching mechanism. We model the
system as a two-node tandem of single-server queues with holding costs and
a start-up cost for the second server. To optimize the long-term average costs
associated with the system, both of the servers can be switched on or off at
any point in time. For this model we develop an algorithm approximating the
optimal control of the servers that minimizes the long-term average costs. The
presented technique proves to be simple, intuitive and at the same time highly
accurate and computationally inexpensive.

In Chapter 3, we further explore methods to evaluate the performance of
database caching mechanisms and subsequently optimize these mechanisms.
In contrast to the preceding chapter, this one focuses on the so-called ‘write-
behind’ caching mechanism. Due to the dependency between the application
level and the cache, we model this system as a single server queue with a buffer
(instead of a tandem network). In the analyzed setting, requests arriving in
the system require pre-processing (i.e., being written in the cache) before being
post-processed (i.e., being written in the database). This mechanism allows
storing a number of requests in the buffer before serving them all at once
as a batch. We analyze the system with a fixed batch size and derive the
corresponding steady-state behavior. Furthermore, we present a method to
obtain a function that captures the relationship between the size of the batch
and the mean waiting time in the queue. Using our technique, we show how to
determine in a highly efficient and scalable way the ‘optimal’ batch size, i.e.,
the one that minimizes the mean waiting time.

In Chapter 4, we introduce a novel approach to solving MDPs with an
optimal policy that represents a threshold function. The method is based on
a specific type of evolutionary algorithms, the so-called Symbolic Regression.
Our technique results in an approximation of the optimal decision policy given
as a closed-form expression. Furthermore, we explore how the performance of
the evolutionary algorithm can be improved by taking into account specifics
of the corresponding MDP framework. To illustrate the technique we con-
sider two running examples. The first one is a generalization of the ‘write
behind’ cache studied in the preceding chapter. The second one is an M/M/1
queueing model with customer rejection. Applying our approach on these two
running examples results in analytic expressions that approximate the optimal
control policy with great accuracy. Next to that, we show that the obtained
mathematical formulas allow sensitivity analysis of the system parameters.

The potential of this technique is further studied in Chapter 5, where we
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extend it to evaluate the relevant performance metrics of a given queueing
network rather than the optimal decision policy. We show that the method is
able to benefit from insights and results derived from analysis of the queueing
model in specific cases (e.g., high or low traffic regimes, fluid or diffusion
analysis). Namely, we present a way to incorporate the vast body of research
on queueing theory into the evolutionary algorithm. By expanding on these
results, our technique generates an expression that is applicable to a broader
range of parameters.

Finally, Chapter 6 abstracts over the models considered to this point and
adopts a high-level view of ICT service chains. Namely, we analyze a layered
queueing network without restricting the possible number of servers in the
system. The nodes are organized in a nested fashion and therefore influence
each others service rate. This strong dependency between the servers has
proven to make such networks complicated and difficult to study. Moreover,
even when the utilization rates and the saturation throughput of the servers are
known, determining the limiting factor in the network is far from trivial. We
present a simple, computationally tractable and nevertheless highly accurate
method for approximating the above-mentioned performance measurements.
In addition, we propose an extension to the intuitive ‘slowest server rule’
for identification of the bottleneck, and show through extensive numerical
experiments that this method works very well.
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Chapter 2

Control of a Tandem Queue with

Start-up Costs

Many systems across a broad range of applications involve sequential process-
ing steps and can be modeled as tandem queues. Next to performance metrics
such as waiting time and sojourn time distributions, most often there are also
costs associated with running such systems (e.g., holding costs at the queues,
operational costs for the servers). Therefore, identifying a control policy that
minimizes the running costs of the system is of great interest both from a
theoretical and a practical point of view. In the present chapter, we study
database caching mechanisms as a specific example of a tandem queue.

The majority of modern data centers are using shared storage solutions to
improve performance. A main challenge is coordination of data persistence
between the application and the storage layer. In this context, there is a
delicate balance between the achievable throughput on the one hand and con-
tention on the other hand. The contention at the application layer can be
highly reduced by first writing the data on a cache, and subsequently syn-
chronizing the cached data with the storage layer. The question is how to
properly configure the cache-synchronization parameters, e.g., when to per-
form the cache-synchronization. To study this decision problem we model the
caching mechanism as a two-node tandem queue with linear holding costs and
a start-up cost for the second server, i.e., the cache. We present an intuitive,
easy to understand, and at the same time accurate, algorithm to approximate
the optimal control policy of the cache. Extensive numerical experimenta-
tion shows that the approximation works extremely well for a wide range of
parameter combinations.

The work in this chapter is based on A.V. Hristov, S. Bhulai, J.W. Bosman
and R.D. van der Mei. Control of a tandem queue with a start-up cost for the
second server. To appear in Stochastic Models [35].
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2.1 Introduction

Queueing systems in which the departures from one server become the arrivals
to a downstream server are often modeled as tandem queues. These mod-
els have proven to be very challenging to analyze [18, 53, 61, 88], and despite
decades of research, there are still many open problems without an analytic so-
lution [3,11,50,58]. At the same time, tandem queues abound in applications,
and therefore, the study of these systems is also important for practice. More-
over, in cases when one has a certain control over the network, the analysis of
the model becomes crucial for optimal management of the application [56,90].
For example, in some practical situations, it is possible to temporarily switch
off certain nodes in order to protect servers further down the network from
overflow. Systems with this feature can be found in traffic control [29], trans-
portation, manufacturing, and many other fields [34,45,54,98].

One particular application that can be modeled as a tandem network and
uses such control techniques is the caching in computer databases (illustrated
in Figure 2.1). By implementing the cache mechanism, the contention at the
application level might be strongly reduced by first accumulating write op-
erations in the cache and only afterwards processing them in the database.
Furthermore, to avoid overload, new writes to the cache are blocked when-
ever there are already a certain number of requests in it. The corresponding
threshold value is generally referred to as the high water mark. Motivated by
this application, in this chapter we study two-node tandem queueing networks
where one can switch on/off any of the nodes.

Note that switching off a server results in reducing the service capacity of
the system. Therefore, there is a trade-off for such tandem queues in balancing
the requirement for ‘good’ performance while minimizing the resource usage.
One common technique to capture this trade-off is to introduce different penal-
ties (i.e., holding costs) for jobs waiting in the various queues [16, 75]. This
way, one combines both metrics (e.g., the sojourn time spent in the system
and the required resources) in a single indicator. The problem is, therefore,
reduced to the following question: “How to control the system in order to
minimize the costs associated with it?”. However, this challenge is still ana-
lytically intractable, in spite of the considerable amount of research and the
great importance from a practical point of view.

Next to that, changing the ‘state’ of a server in such tandem networks (i.e.,
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Figure 2.1: Cache used for databases.

shutting it down or starting it up) might also require resources on its own. For
instance, there are certain costs associated with establishing a data transfer
between the cache and the corresponding database. Motivated by this, we
study a system with two servers that has a start-up cost associated with the
second node. Our framework can be considered as a generalization of the ones
researched in [28,75].

In the following section, we introduce the model. In Section 2.3 we illustrate
what the optimal decision policy for such systems looks like. Subsequently, in
Section 2.4 we propose an approximation algorithm for obtaining the optimal
control policy. The accuracy of the presented technique is discussed in Sec-
tion 2.5. Finally, in Section 2.6 we conclude with a summary and discuss ideas
for possible further research.

2.2 Model

We consider a two-node tandem queue with single servers at both queues. Jobs
arrive at the first node and after receiving service there, they are transferred to
the second one. Subsequently, jobs are served at the second node and leave the
system. We assume Poisson arrivals with rate λ at queue 1 and exponential
service times with mean βi = 1/µi at server i ∈ {1, 2}. Moreover, both nodes
are serving at maximum one job at a time according to the First In First Out
(FIFO) regime. The queues are taken to be of a finite size N and K for queue
1 and queue 2, respectively.
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Figure 2.2: Illustration of the model.

Each job in queue i ∈ {1, 2} generates a holding cost ci ≥ 0 per time unit.
Moreover, there is a start-up cost for the second server, denoted by c3 ≥ 0. To
optimize the cost, one can control the system by switching on or off any of the
two servers at any point in time with the exception of the following two cases:

• the first server cannot be working when the buffer space at the second
node is full (i.e., when there are K jobs in the second queue);

• the second server switches off whenever it becomes idle.

Furthermore, to avoid a trivial solution of never switching off the first server,
we assume that c2 > c1. This way, for certain system states when the sec-
ond server is not operating it might be optimal to keep the jobs in the first
queue. Next to that, the start-up cost of server 2 creates an additional trade-
off between serving jobs at the second node as soon as possible and waiting for
enough jobs before switching on the server. Therefore, the goal is to identify
the decision policy minimizing the average costs per time unit. Figure 2.2
gives an illustration of the model.

To calculate the optimal policy, we formulate the system as a Markov
Decision Process (MDP) with state space S := {0, 1, . . . , N}× {0, 1, . . . ,K}×
{0, 1}, where state (x1, x2, s2) corresponds to having xi number of jobs at node
i ∈ {1, 2} and server 2 being off for s2 = 0 or on for s2 = 1. Note that we
do not have to explicitly include the state of node 1 in our model due to the
following two model properties:
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• The service times are exponentially distributed and exhibit the memo-
ryless property.

• The first server can be switched on/off instantaneously at no cost.

The action space consists of four possible actions a ∈ A = {1, 2, 3, 4},
defined as follows:

• 1 - switch off both servers;

• 2 - switch on server 1 and switch off server 2;

• 3 - switch on server 2 and switch off server 1;

• 4 - switch on both of the servers.

Now, we can formulate the Bellman equations for this MDP:

g + V (x1, x2, s2) = c1x1 + c2x2 + min
a∈A

Ta(x1, x2, s2),

where V denotes the value function. Moreover, g denotes the long-term average
costs per time unit and Ta(x1, x2, s2) (for a ∈ A and (x1, x2, s2) ∈ S) are given
by:

T1(x1, x2, s2) := λV (min{x1 + 1, N}, x2, 0) + (1− λ)V (x1, x2, 0);

T2(x1, x2, s2) := λV (min{x1 + 1, N}, x2, 0) + µ1V (x1 − 1, x2 + 1, 0)

+ µ2V (x1, x2, 0);

T3(x1, x2, s2) := c3(1− s2) + λV (min{x1 + 1, N}, x2, 1)

+ µ2V (x1, x2 − 1, I (x2)) + µ1V (x1, x2, 1);

T4(x1, x2, s2) := c3(1− s2) + λV (min{x1 + 1, N}, x2, 1)

+ µ1V (x1 − 1, x2 + 1, 1) + µ2V (x1, x2 − 1, I (x2)) ,

where the rates are scaled in such a way that λ + µ1 + µ2 = 1. Furthermore,
we define I(x2) = 0 if x2 = 1, and I(x2) = 1 otherwise. Moreover, recall
that some actions are not possible under certain values for x1 and x2. More
precisely,

• for x1 = 0 or x2 = K, actions 2 and 4 (i.e., T2 and T4) are not permitted
as it is not possible to switch on server 1 when the first queue is empty,
or when the second buffer is full;
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(a) s2 = 0, i.e., second server is off (b) s2 = 1, i.e., second server is on

Figure 2.3: Optimal decision policy for µ1 = 2.2 and µ2 = 4.

• for x2 = 0, actions 3 and 4 (i.e., T3 and T4) are not permitted as it is
not possible to switch on server 2 when the second queue is empty.

2.3 Optimal policy

In this section, we study the optimal decision policy based on results derived
by numerically solving the MDP by applying the value iteration technique.
As an example, we use two systems with the following parameters: N = 750,
K = 200, c1 = 0.1, c2 = 1, c3 = 1500, λ = 1. The service rates of the servers
are taken to be:

• µ1 = 2.2 and µ2 = 4 in the first example,

• µ1 = 4 and µ2 = 2.2 in the second example.

The corresponding optimal decision policies are shown in Figures 2.3 and 2.4.
Note that we present only the states for which 0 ≤ x1 ≤ 400 and 0 ≤ x2 ≤ 100
in order to exclude possible boundary effects.

Analyzing numerous cases for various parameter sets, we suspect that the
optimal policy for such a queueing network is of a threshold type. We denote
the different state-space regions, where a certain action is optimal, as follows:
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(a) s2 = 0, i.e., second server is off (b) s2 = 1, i.e., second server is on

Figure 2.4: Optimal decision policy for µ1 = 4 and µ2 = 2.2.

• region (0, 0) - the optimal action is 1, namely, both of the servers should
be off;

• region (1, 0) - the optimal action is 2, namely, the first server should be
on, whereas the second one - off;

• region (0, 1) - the optimal action is 3, namely, the first server should be
off, whereas the second one - on;

• region (1, 1) - the optimal action is 4, namely, both of the servers should
be on.

Note that the numerical approach used in the current section can be used
only for systems of a relatively small size. In many real-world instances the
large buffer sizes, N andK, require a more computationally-efficient algorithm.
As an example, to optimize the running costs associated with the database
caching mechanism, one needs a method different than the value iteration
technique, as the latter becomes computationally unfeasible. On the other
hand, as discussed in Section 2.1, even the special case of no start-up cost
associated with the second server (i.e., the special case of c3 = 0) has withstood
an analytic analysis so far. Therefore, the goal of our research is to develop
a scalable algorithm with respect to N and K that approximates the optimal
policy.
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2.4 Approximation technique

In the following, we present our technique for approximating the optimal pol-
icy. Our approach to obtaining the control policy is to estimate the regions
described in Section 2.3, rather than deriving an approximation of the value
function. To do this, we decompose the original system into two sub-models.
We refer to the parameters for these sub-models by appending a superscript
(1) and (2), respectively.

Sub-model 1 consists of two single-server queues in a tandem setting. The
input is modeled as a Poisson process and the service times of the jobs are
assumed to be independent and exponentially distributed. There are holding

costs c
(1)
1 and c

(1)
2 per time unit for each job waiting at the corresponding

queue. In contrast to the main network analyzed in this chapter, there is
no start-up cost for the second server. The optimal policy for such a system
is proven to be defined by a switching curve, see [75]. In other words, for

any given number of jobs x
(1)
1 at the first queue, there is a threshold value

S(1)(x1) for the number of jobs at the second node, x
(1)
2 . If x

(1)
2 exceeds the

corresponding threshold, then it becomes optimal to switch off the first server.

We denote the arrival rate as λ(1) and the service rates as µ
(1)
1 and µ

(1)
2 .

Sub-model 2 consists of an M/M/1/N queue with holding costs c
(2)
2 per time

unit for each waiting job and a start-up cost c
(2)
3 . One can control the system

by switching on/off the server. As in the main system analyzed in this chapter,
the server cannot be idle, i.e., it switches off whenever there are no jobs. The
optimal policy for such a system is proven to be a threshold policy, see [33].
More specifically, it is optimal to switch on the server when the number of

jobs in the system, x
(2)
2 , exceeds a given threshold value, S(2). We denote the

arrival rate for this system as λ(2) and the service rate as µ
(2)
2 .

Recall from Section 2.1 that an analytic solution for sub-model 1 is unavail-
able. However, there are a number of studies that develop efficient numerical
algorithms for calculating the optimal threshold levels. Therefore, we assume
that the optimal policy for sub-model 1 is given.

On the other hand, there is a closed-form solution for the optimal threshold

24



value S(2) for sub-model 2, given by:

S(2)
(
λ(2), µ

(2)
2 , c

(2)
2 , c

(2)
3

)
=

√
2λ(2)

(
1− λ(2)/µ

(2)
2

)
c
(2)
3 /c

(2)
2 . (2.1)

Therefore, one can derive the optimal policy also for this sub-model.

Intuitively, it might seem that simply combining the solutions of those
two sub-models would give a good approximation of the optimal policy for
the main model. However, this is not the case, mainly due to the complex
dependency between the working regime of the first server and the arrival rate
at the second server. Therefore, in our algorithm, we try to take into account
this dependency.

2.4.1 Second server switched off

In this subsection, we show how to approximate each of the three switching
curves (see Figures 2.3a and 2.4a) in the optimal decision policy in case the
second server is switched off (i.e., for states (x1, x2, 0), where 0 ≤ x1 ≤ N
and 0 ≤ x2 ≤ K). Considering the (0, 0, 0) state (i.e., an empty system) as
a reference point, we denote the first threshold levels to correspond to the
decision when to switch on the first server, i.e., the curve separating region
(0, 0) from region (1, 0). We characterize this curve by the function p1(x1),
where 0 ≤ x1 ≤ N . The value of the function gives the threshold value of
x2 for the corresponding 0 ≤ x1 ≤ N . Consequently, as the second curve,
we consider the one describing when to switch on the second server, i.e., the
transition between region (1, 0) and region (1, 1). Similarly, we introduce the
function p2(x1) that defines this curve. Finally, the third set of threshold
levels, p3(x1), gives the states for which it is optimal to switch off the first
server and have only the second one working - region (0, 1). In the remainder
of this subsection we outline how to estimate those three switching curves.

Switching on the first server
Under certain system parameters, the optimal decision is to keep both servers
off whenever there are not many jobs in the network. Namely, if c2 > c1 it
would be optimal to keep jobs waiting at the first queue rather than at the
second one. Next to that, intuitively, the lower the load of the network is, the
bigger this region should be. As a first step of approximating this region, we
determine the endpoints of the corresponding switching curve. Namely, we are
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interested in the value of p1(0) and the specific i′1 for which p1(i′1) = 0. To
obtain these values, we use the following equations:

p1(0) = S(2)(λ, µ2, c1 + c2, c3),

i′1 =

⌊
S(2) (λ, µ2, c1, c3) + S(2) (µ1, µ2, c1 + c2, c3) + S(2) (λ, µ2, c2, c3)

3

⌋
,

where the operator S(2) denotes the threshold value determined by solving
sub-model 2 with the corresponding parameters (see Equation (2.1)) and bxc
denotes the floor function that outputs the largest integer less than or equal
to x.

The idea to take the average value over three solutions of sub-model 2 for
obtaining i′1 is to incorporate three different regimes of the system. The first
one being the regime just before taking the decision to switch on the first
server and having jobs only at the first server. The second regime is when
server 1 is switched on and there is a number of jobs in queue 1. This implies
that the arrival rate to the second node is µ1. In the third regime, the queue
at server 1 is empty, and hence, there are no holding costs acquired there and
the arrival rate to the second queue is λ.

Note that if µ1 > µ2, then sub-model 2 with arrival rate µ1 and service rate
µ2 becomes unstable, i.e., the inflow to the system exceeds the outflow. It is
clear that in such case the optimal policy is to switch on the server whenever
a job arrives, and therefore we take S(2)(µ1, µ2, c1 + c2, c3) = 1.

As a second step, we approximate the curve by a straight line that connects
the two endpoints p1(0) and i′1. This results in the following switching curve:

p1(x1) = p1(0)

(
1− x1

i′1

)+

,

for 0 ≤ x1 ≤ N .

Switching on the second server
Once there is a certain number of jobs at the second queue, it becomes optimal
to switch on the corresponding server. Following the same approach as the
previous case, we first estimate the endpoints of the switching curve p2(0) and
p2(N). We use sub-model 2 as follows:

p2(0) = S(2)(λ, µ2, c2, c3),

p2(N) = S(2)(µ1, µ2, c1 + c2, c3),
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where again S(2)(µ1, µ2, c1 + c2, c3) = 1 if µ1 > µ2. Our reason for choosing
these parameters for sub-model 2 is that when there are no jobs at server 1,
there are no holding costs c1 acquired. Furthermore, due to the fact that in
sub-model 2 the first queue is an M/M/1/N queue, the inflow to server 2
equals the inflow to the tandem system. On the other hand, when the first
queue is full, the arrival rate to the second server becomes µ1, and furthermore,
one should take into account also the holding costs c1.

As a next step, one has to approximate the shape of the curve. In this case,
a straight line proved to be a relatively inaccurate fit for the switching curve.
Analysis of the optimal policies, which were derived by numerically solving
systems with small buffer sizes N and K, lead us to the following fit:

p2(x1) = p2(N) +
p2(0)− p2(N)

√
x1

,

for 0 < x1 < N . We found this to be a good approximation while at the same
time has a simple, tractable form.

Switching off the first server
For sufficiently low holding costs at the first queue there will be certain cases
where it is optimal to switch off the first server. This will result in jobs waiting
at the first queue rather than waiting at the more expensive second queue. We
estimate the switching curve separating region (1, 1) and region (0, 1) by using
the results obtained from our approximation algorithm so far, together with
the solution for sub-model 1. More precisely, we obtain p3(x1) for 0 ≤ x1 ≤ N ,
by the following equation:

p3(x1) = p2(x1) + S(1)(x1;λ, µ1, µ2, c1, c2),

where the operator S(1) denotes the threshold value determined by solving
sub-model 1 with the corresponding parameters.

2.4.2 Second server switched on

It is clear that if the second server is working it is optimal to keep it on.
Therefore, the optimal decision when s2 = 1 can be either action 3 or action
4, corresponding to region (0, 1) and region (1, 1). Based on studying the
conducted numerical examples and evaluating the performance of different
approaches, we decided to approximate the switching curve between those two
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regions in the same manner as in Section 2.4.1, i.e., when s2 = 0. Namely, the
switching curve is given by the points p3(x1), where 0 ≤ x1 ≤ N . This way,
one can directly use the results derived from the above-described procedure,
which implies that this case does not increase the complexity of the algorithm.

2.5 Results

In this section, we evaluate the performance of the approximation algorithm.
Recall that our method is based on estimating the switching curves of the
optimal policy. Hence, the main idea is to derive a graph as similar as possible
to the optimal decision policy graph (see Figures 2.3, and 2.4). However, in
practice, the goal of ‘optimizing’ the system is often times to reduce the av-
erage costs. Therefore, although our algorithm is approximating the various
switching curves, in this section, we will not examine how close are the approx-
imated fitting functions to the optimal switching curves. Instead, we present
the relative difference, denoted as Er, between the acquired long-term average
cost if one uses the decision policy obtained by our procedure, gest, and the
optimal one, gopt, derived by numerically solving the MDP. More precisely,
the relative difference is defined by:

Er =
|gest − gopt|

gopt
× 100%.

To cover the full spectrum of parameter values, we created multiple test
suites with approximately 2000 parameter sets in total. We examine systems
with loads in the range [0.1, 0.9] for each of the queues, and ratios between the
two holding costs: c1/c2 ∈ [0.1, 0.9]. More precisely, we varied the parameters
as follows:

• systems where µ1 < µ2. We take µ2 fixed at 10, while varying µ1 from
1.1 to 9.9 with a step size of 1.1;

• systems where µ1 > µ2. We take µ1 fixed at 10, while varying µ2 from
1.1 to 9.9 with a step size of 1.1;

• systems where µ1 = µ2. Once again we take the same range of values
for the service rates - from 1.1 to 9.9 with a step size of 1.1.

In all three test suites, we further varied c1 between 0.1 and 0.9 with a step
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of 0.1 and c3 = 500, 1000 or 1500. Next to that, we fixed λ = 1. The reason is
that only the ratio between the various service rates is important with respect
to the approximation error. This comes from the fact that scaling the rates
is equivalent to scaling the time, which does not influence the results. Due to
the same reasoning, we also fixed one of the costs: c2 = 1. We note that in
all tests the start-up costs are considerably higher than the holding costs. We
chose such values to ensure that the optimal decision policy is not a trivial
one, i.e., switching the second server whenever there are jobs in the queue.

To evaluate the accuracy of the algorithm, we compared the average costs
acquired by implementing the approximated optimal policy to those derived
from numerically solving the MDP. Due to the computational complexity of
the numerical approach, we created a benchmark only for relatively small
buffer sizes. Therefore, we composed two test suits with the following system
configurations: N = 100,K = 50, and N = 1000,K = 100.

The results of the conducted tests are shown in Tables 2.1 and 2.2. We
present the approximation error of the algorithm in each of the three values for
the start-up cost c3. Furthermore, motivated by the differences of the optimal
policies from Figures 2.3 and 2.4, we aggregate the results according to the
following three cases for the service rates: µ1 < µ2, µ1 > µ2 and µ1 = µ2.
Finally, next to the median of the relative error, we also list the 80th, the 90th,
and the 95th percentile for the corresponding nine test suites.

Based on the results from Tables 2.1 and 2.2, we conclude that our algo-
rithm’s performance is not significantly influenced by the value of the start-up
cost, c3. Next to that, the errors for the two system sizes and the three service
rate configurations are also comparable. Nevertheless, the 80th percentiles are
two to three times larger than the median, which indicates that for specific
systems the algorithm performs significantly worse than on average.

Therefore, we further studied the cases corresponding to the highest ap-
proximation errors. We found a common pattern among these systems, which
shows that the algorithm performed worst in the following three service rate
configurations:

• µ1 = 1.1, µ2 = 9.9;

• µ1 = 9.9, µ2 = 1.1;

• µ1 = 1.1, µ2 = 1.1.
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Table 2.1: Approximation errors of the algorithm for test cases with
N = 100 and K = 50.

Start-up Service Median Er percentiles

cost rates Er 80th 90th 95th

c3 = 500

µ1 < µ2 1.27% 3.55% 6.69% 8.44%

µ1 > µ2 1.95% 5.29% 8.82% 11.38%

µ1 = µ2 1.97% 5.22% 8.35% 9.28%

c3 = 1000

µ1 < µ2 1.68% 4.27% 9.12% 10.31%

µ1 > µ2 1.97% 4.34% 7.28% 11.14%

µ1 = µ2 1.67% 4.35% 8.42% 10.20%

c3 = 1500

µ1 < µ2 1.89% 4.68% 9.64% 11.25%

µ1 > µ2 1.85% 4.43% 7.94% 10.29%

µ1 = µ2 1.41% 4.26% 7.27% 9.85%

Note that these parameter sets correspond to systems where both of the servers
operate under either very low or very high load. We believe that this feature
differentiates the above-described cases from the rest and perhaps creates spe-
cific server dynamics that are not fully captured by our approximation algo-
rithm.

Nevertheless, in all nine test suites, the median for the relative error is
less than 2%. We believe that this approximation accuracy together with the
intuitive and easy to implement nature of our algorithm makes it a suitable
choice in practice.

2.6 Conclusion

In this chapter, we analyzed the control of a two-node tandem queuing net-
work with holding costs at both queues. Next to the holding costs acquired
at each time unit we introduced a start-up cost for the second server. This
framework allows modeling of various real-world systems that exist in com-
puter science, logistics, manufacturing, and many other fields. We presented
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Table 2.2: Approximation errors of the algorithm for test cases with
N = 1000 and K = 100.

Start-up Service Median Er percentiles

cost rates Er 80th 90th 95th

c3 = 500

µ1 < µ2 1.22% 3.50% 6.64% 8.34%

µ1 > µ2 1.93% 5.27% 8.78% 11.28%

µ1 = µ2 1.96% 5.20% 8.32% 9.24%

c3 = 1000

µ1 < µ2 1.67% 4.23% 8.92% 10.01%

µ1 > µ2 1.91% 4.28% 7.24% 11.02%

µ1 = µ2 1.63% 4.31% 8.36% 10.09%

c3 = 1500

µ1 < µ2 1.86% 4.58% 9.34% 10.75%

µ1 > µ2 1.83% 4.40% 7.90% 10.18%

µ1 = µ2 1.38% 4.25% 7.24% 9.80%

an efficient algorithm to approximate the optimal decision policy for such tan-
dem models. The conducted numerical evaluation showed that our technique
is highly accurate for any parameter combination tested.

Another advantage of our algorithm is that it is simple and rather intuitive,
which facilitates its implementation in practice. Therefore, together with the
achieved average costs within a few percentages of the optimal, we believe that
the technique is a reasonable choice for managing such systems.

Finally, we address a few topics for further research. We find promising
the idea of extending the algorithm in order to solve tandem queues composed
of more than two nodes. Next to that, it might be of a practical interest to
also study a model in which there is a start-up cost for the first server or a
start-up time associated with the nodes.
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Chapter 3

Analysis and Control of a Single

Server Queue with Backlog

Processing

In Chapter 2, we analyzed the generic cache mechanisms by modeling them
as a two-node tandem queueing network. However, certain cache implemen-
tations introduce system dynamics that require different modeling. Motivated
by this, in the current chapter we focus on a specific cache mechanism and
model the corresponding system as a single server that switches between two
processing stages. The first stage corresponds to pre-processing jobs one at a
time. Next, the job is accumulated into a finite capacity buffer of jobs that
require post-processing. In the second stage jobs in the buffer are processed,
possibly multiple at once. Once processed, the jobs leave the system. Switch-
ing between modes involves initialization time. Therefore, accumulating jobs
into a batch may greatly improve the overall performance. On the other hand,
a larger batch size will increase the waiting time of new jobs.

In this study, we analyze such a system with a fixed batch size and derive
the corresponding steady-state behavior. Next to that, we prove that the case
of a batch of size two can be solved analytically by finding the roots of a poly-
nomial of degree three. In addition, we obtain an approximation for a system
with a large batch size. The main contribution is that we present a tech-
nique that combines the above-described results and obtains a function that
captures the relationship between the size of the batch and the mean waiting
time in the queue. Using our method, one can determine in a computationally
efficient way the ‘optimal’ group size, i.e., the one that minimizes the mean
waiting time. Extensive numerical experimentation shows that the approxi-
mation works extremely well for a wide range of parameter combinations.

The work in this chapter is based on A.V. Hristov, J.W. Bosman, R.D.
van der Mei and S. Bhulai. Analysis and control of a single server queue with
backlog processing (2018) [39]. Submitted.
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3.1 Introduction

The majority of modern data centers are using shared storage solutions in
order to improve performance (see, e.g., [70]). Caching mechanisms play an
important role in the reduction of storage contention. Caching solutions op-
erate as a data exchange buffer between application and storage. We are in
particular interested in the behavior of write requests. The ‘write behind’ [93]
caching mechanism is a means to improve write performance. In contrast to
the more simple ‘write through’ caching, where a write to the cache results in
an immediate write to the application, in a ‘write behind’ results are accumu-
lated in the cache and processed at a specific point in time in a batch. In such
a way, the ‘write behind’ mechanism reduces the number of writes to storage.
Moreover, it improves performance as applications handle asynchronous re-
quests faster than synchronous updates with a few records each [93]. A main
challenge is to properly balance the trade-off between the achievable through-
put on the one hand and contention at the application layer on the other hand.
The contention can be highly reduced by first writing the data on the cache,
and subsequently synchronizing the cached data with the storage layer. As
a consequence of the ‘write behind’ mechanism, requests might have to wait
for the cache in two cases: namely, the cache can be busy managing another
write, or transferring the accumulated results to the storage. In general, this
‘flush’ of updates from the cache to storage is triggered by one of the following
events: a specific time elapsed, or a given number of results that were written
since the last flush [59].

The contribution in this study is fourfold. First, we propose a new perfor-
mance model that captures the trade-off between throughput and contention
on synchronizing data. Second, for this model we propose a simple analytic
approximation of the expected contention level as a function of the cache-level
thresholdK. Third, we use this method to approximate the optimal cache-level
threshold. This enables caching mechanisms to promptly adapt to changing
circumstances. Fourth, we show by extensive numerical experimentation that
the approximation works extremely well for a wide range of parameter values.

The model proposed in this research is related to the class of so-called
polling systems, which have been extensively studied in the literature. We
refer to [92] for an overview of the available results, and to [10] for a survey
on the applicability of such systems. In polling models, the server works on
multiple queues in some order.
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One switching strategy is the k-limited serving discipline. In k-limited
polling models the switch between queues is triggered by one of the following
two events: a predefined number of k customers get served, or the queue
becomes empty. This discipline does not satisfy the branching property [72],
which complicates the analysis and makes exact results very hard to obtain.
Most of the papers [52,94] that derive exact solutions consider models with two
queues. Such systems can be related to the one described in the present chapter
by modeling the customers from one of the queues as the requests to be written
to the cache, whereas the jobs in the other queue to stand for the accumulated
requests, waiting to be written to the storage. Nevertheless, there are two
major differences between the k-limited service discipline and the system policy
considered in the present study. First, in the former models, the server switches
queues whenever it becomes idle, and second, the arrival processes of customers
in the two queues are usually assumed to be independent.

Service of customers in groups is also considered in networks with “bulk
service” [1, 21]. Of particular interest for the current research are systems
that have batch-size-dependent service [30] and that incorporate a two-phase
policy [13, 22]. For a survey on this type of queues, the reader is referred
to [68]. Furthermore, [83] reviews a broad range of papers on the subject of
optimal control of queues.

The remainder of this chapter is organized as follows. In Section 3.2, we
introduce the model. In Section 3.3, we illustrate how the system performance
varies depending on the batch size, and we analyze two specific cases of K,
namely, K = 2 and K →∞. Next, in Section 3.4, we present how one can use
the obtained results to find the optimal value for the batch size in a scalable
and efficient way. We conclude with numerical results and a summary together
with ideas for possible further research.

3.2 Model

We model the ‘write behind’ mechanism by considering a single server queueing
network. For an illustration of the model, the reader is referred to Figure 3.1.

Jobs are assumed to arrive according to a Poisson process with rate λ.
Initially, each job has to be pre-processed by the server. The server will send
a response after a job has been pre-processed. Each pre-processed job will be
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Figure 3.1: The ‘write behind’ mechanism as a queueing model.

accumulated in a second queue, i.e., the buffer, until a threshold of K ≥ 1 jobs
has been reached. At this threshold the server switches to the post-processing
mode where all jobs from the second queue are processed in one batch of K
jobs. Note that this is actually the case in practice when the system is heavily
loaded, which is indeed the conditions under which it is crucial to analyze
and optimize the system from a practical point of view. After the batch has
completed, the corresponding jobs leave the system. If a job arrives and finds
the server busy, it will be queued until the server takes this job from the first,
pre-processing queue.

In order to model this serving policy, we distinguish two classes of jobs. The
first class represents the jobs that are sent to the second queue, whereas the
second class job triggers the server to switch to the batch mode. We strictly
impose that every K-th job is class 2, and all others are class 1. In such a
way, we assure that the server starts the service of the batch exactly when it
contains K jobs. The service time of the first class is taken to be exponentially
distributed, with mean β1 and corresponding service rate µ1 = 1

β1
. This

corresponds to the required time to pre-process a request. For the sake of
simplicity, the service time of the second class is modeled as one exponentially
distributed phase, with mean β2,K with corresponding service rate µ2,K =

1
β2,K

. This service time includes the time required to pre-process the K-th

job and post-process the corresponding batch of size K. We assume β2,K to
increase proportionally to the batch size and therefore we take β2,K = a+ bK,
where a and b are parameters. One can interpret a ≥ β1 as the time required
to pre-process the K-th job and subsequently the required initialization time
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for post-processing the K jobs in the buffer, i.e., the batch service. On the
other hand, b > 0 represents the expected time to post-process one single job.
In the sequel, we omit the second subindex K and replace β2,K by β2 when it
is clear from the context.

To analyze the system, we consider a continuous-time Markov chain with
two-dimensional states (i, j) and state space S such that

S := N0 × {0, 1, . . . ,K − 1},

where i corresponds to the number of jobs waiting for completion of the pre-
process step, while j represents the number of jobs in the post-process buffer.
One can easily verify that this Markov chain has a generator matrix Q with
the following non-zero, non-diagonal entries:

q(i,l),(i+1,l) = λ for i ≥ 0 and 0 ≤ l ≤ K,
q(i,l),(i−1,l+1) = µ1 for i > 0 and 0 ≤ l < K,

q(i,K),(i−1,0) = µ2 for i > 0,

(3.1)

where qs1,s2 is the transition rate from state s1 to state s2. Furthermore, the
load of the system for a given K is :

ρK = λ

(
(K − 1)β1

K
+
β2,K

K

)
. (3.2)

For stability, we assume that ρK < 1. Also, note that standard balancing
arguments show that the system is idle for a fraction 1 − ρK of the time. In
other words, if π = {πi,j , (i, j) ∈ S} stands for the stationary distribution, it
follows that

π0,0 + π0,1 + · · ·+ π0,K−1 = 1− ρK . (3.3)

3.3 Analysis

In this section, we analyze the impact of the batch size on the system behavior.
Recall that the rationale behind ‘write behind’ mechanism is to reduce the
delay experienced by write requests on the application level, i.e., at the server’s
queue. In our model, we incorporate the required time to empty the internal
buffer in the service time of the K-th job. Please observe that this modeling
choice does not influence the waiting time at the buffer for any of the writing
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requests. I.e., jobs that find the server in post-processing mode have to wait
anyway until the post-processing has completed. Therefore, in this chapter,
we consider the mean waiting time in the pre-processing queue as our main
performance metric. The waiting time W is defined as the time between a job
arrival until that job has started pre-processing, i.e., the waiting time in the
first queue. This leads to the following two main goals of the current research:
(1) to determine the expected waiting time until a job will be post-processed
for a given batch size K, and (2) to find the optimal value of K for which this
metric is minimized. The mean waiting time E[W ] can be expressed in terms
of stationary distribution π as follows:

E[W ] :=
1

λ

∞∑
i=1

K−1∑
j=0

(i− 1)πi,j , for K > 0. (3.4)

In the remainder of this section we analyze the mean waiting time for
given values of K. First, we note that the case of K = 1 corresponds to
an M/M/1 queue, and therefore, the system performance can be obtained
easily. Furthermore, in the Appendix we describe how the matrix-geometric
method (MGM) [60] can be used to calculate the mean waiting time for any
given K. Although in theory, this method applies to any value of K, due to
its computational complexity, the MGM approach becomes inefficient or even
unfeasible for large buffer sizes. Therefore, in Sections 3.3.1 and 3.3.2, we
present techniques that result in analytic expressions. In contrast to MGM,
these two approaches are related to specific cases of K. Namely, we derive an
exact solution for K = 2 and a fluid approximation for K →∞.

3.3.1 Analytic solution for K = 2

In this subsection, we analyze the system in the special case K = 2. This
means that every second job that arrives is of class 2; in other words, the two
different classes of jobs arrive in strictly alternating fashion. Since β1 ≤ β2

and the PASTA property, one can conclude that an arriving job will find the
server working on a class 1 job with less or equal probability than working on
a class 2 job. Therefore, conditioned on a given number of jobs in the system,
one knows that there is a higher or equal probability that the server is working
on (or waiting) a client of class 2 rather than class 1. In particular, for any
given i ≥ 0 it holds that πi,0 ≤ πi,1. Note that in the special case of β1 = β2,
the two classes become identical and indeed trivially πi,0 = πi,1 for any given
i ≥ 0.
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We denote by ci = λ/µi for i = 1, 2 the potential load of the system in case
of only class i arrivals. By the transition rates in (3.1) for states (0, 0) and
(0, 1), it follows:

π1,1 = (λπ0,0) /µ2 = c2π0,0,

π1,0 = (λπ0,1) /µ1 = c1(1− ρ− π0,0),
(3.5)

where we also used Equation (3.3) to express π0,1 in terms of π0,0. Moreover,
from Equation (3.2) it follows that ρ = 1

2 (c1 + c2). Now, using Equation (3.5)
in the balance equations for states π1,0 and π1,1, gives us:

π2,1 =
−λπ0,0 + (λ+ µ1)π1,0

µ2

=
1

2
c2 ((−c1 − 1) (c1 + c2 − 2)− 2 (c1 + 2)π0,0) ,

π2,0 =
−λπ0,1 + (λ+ µ2)π1,1

µ1

=
1

2
c1 (c1 + c2 + 2 (c2 + 2)π0,0 − 2) .

(3.6)

As shown in the Appendix, there exists a unique 2-by-2 matrix R that satisfies
the following equation:(

π0,0 π0,1

π1,0 π1,1

)
R−

(
π1,0 π1,1

π2,0 π2,1

)
=

(
0
0

)
.

Now, using equations (3.5) and (3.6) together and denoting by rij the element
in the i-th row and j-th column in the matrix R, we can derive the following
expressions:

r11 =
c1(1−ρ−π0,0)(1−ρ−2π0,0)

π2
0,0c2−c1(1−ρ−π0,0)2

,

r12 =
c2((1−ρ)(π0,0(2c1+3)−(c1+1)(1−ρ))−π2

0,0(c1−c2+2))
π2
0,0c2−c1(1−ρ−π0,0)2

,

r21 =
c1((1−ρ)(π0,0(2c1−1)−c1(1−ρ))−π2

0,0(c1−c2−2))
π2
0,0c2−c1(1−ρ−π0,0)2

,

r22 =
π0,0c2(1−ρ−2π0,0)

π2
0,0c2−c1(1−ρ−π0,0)2

.

(3.7)

Next to that, normalizing the stationary distribution gives us one more con-
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straint with regard to the matrix R:

∞∑
i=0

(
πi,0
πi,1

)T
Ri
(

1
1

)
=

(
π0,0

1− ρ− π0,0

)T
[I −R]

−1

(
1
1

)
= 1.

(3.8)

Finally, using the derived substitutions from Equations (3.3) and (3.7) into (3.8)
leads us to a real-valued third-degree polynomial with a root π0,0:

f(x) = a+ bx+ cx2 + dx3, (3.9)

where the coefficients are:
a
b
c
d

 =


c21 (c1 + c2 − 2) 2

2 (c1 + c2 − 2) (c2 + c1 (3c1 + c2 − 1))
12 (c1 − 1) c1 + 4 (c1 + 3) c2

8 (c1 − c2)

 .

Note that in the special case of c1 = c2 the leading coefficient of the polynomial
defined in Equation (3.9) becomes 0, hence it simplifies to a quadratic equation.
The solutions to this quadratic equation are:

x1,2 =
−16c21(c1−1)±

√
(16c21(c1−1))

2−4(4c21(c1−1)2)(16c21)

32c21

=
1− c1

2
.

On the other hand, c1 = c2 corresponds to µ1 = µ2, i.e., the two classes are
identical. Using the well-known result for an M/M/1 queueing system, one
can derive

π0,0 = π0,1 =
1− ρ

2
=

1− c1
2

,

which verifies that the two results are the same. Therefore, in the following
we take c2 > c1 > 0. Furthermore, we consider the system to be stable, hence
c1 + c2 < 2.

Lemma 1 The third-degree polynomial defined in Equation (3.9) has a nega-
tive value for a given lower bound of π0,0.
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Proof: First, we show that

π0,0 ≥
c1(1− (c1 + c2)/2)

c1 + c2
.

Indeed, as discussed in this section where π1,0 ≤ π1,1, and therefore, using
Equation (3.5) we derive that

c1(1− ρ− π0,0) ≤ c2π0,0,

which after trivial manipulation leads us to the desired lower bound for π0,0.
Now, evaluating the polynomial defined in Equation (3.9) for this lower bound
and simplifying the resulted expression gives us:

f

(
c1(1− (c1 + c2)/2)

c1 + c2

)
= −c1(c1 − c2)2c2(−2 + c1 + c2)2

(c1 + c2)3
.

Therefore, we conclude that under the conditions that c2 > c1 > 0 and
c1 +c2 6= 2, the third-degree polynomial has a strictly lower value than 0 when
evaluated for a given lower bound of π0,0.

Lemma 2 The third-degree polynomial defined in Equation (3.9) has a strictly
positive value for a given upper bound of π0,0.

Proof: To find an upper bound for π0,0 we use the following two observations
from the beginning of the section:

π0,0 ≤ π0,1 and π0,0 + π0,1 = 1− ρ.

Substituting and working out the expression gives:

π0,0 ≤
1− ρ

2
=

1− (c1 + c2)/2

2
.

Evaluating the polynomial defined in Equation (3.9) for this upper bound and
simplifying the resulted expression leads to the following value:

f

(
1− (c1 + c2)/2

2

)
=

1

8
(c1 − c2)2(−2 + c1 + c2)2.

From this, we conclude that under the conditions that c1 +c2 6= 2 and c1 6= c2,
the third-degree polynomial has a strictly larger value than 0 when evaluated
for a given upper bound of π0,0.
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Theorem 3 The third-degree polynomial defined in Equation (3.9) has three
real roots and uniquely identifies π0,0.

Proof Due to the condition that c2 > c1 > 0, the leading coefficient of the
third-degree polynomial defined in Equation (3.9) is 8(c1 − c2) < 0. Together
with the results from Lemmas 1 and 2 we derive the following inequalities:

f(−∞) > 0;

f

(
c1(1− (c1 + c2)/2)

c1 + c2

)
< 0;

f

(
1− (c1 + c2)/2

2

)
> 0;

f(∞) < 0.

(3.10)

Moreover, under the considered conditions with regards to c1 and c2 we have:

c1
c1 + c2

(1− (c1 + c2)/2) <
1

2
(1− (c1 + c2)/2) ,

and therefore the upper bound found in Lemma 2 is indeed strictly larger
than the lower bound from Lemma 1. Together with the derived inequalities
in (3.10) we conclude that the polynomial is changing signs three times which
proves that there are three real roots. In addition, there is exactly one root
smaller than the lower bound for π0,0; one larger than the upper bound and
one in between.

In conclusion, from Theorem 3 it directly follows that π0,0 is uniquely
identified by solving the third-degree polynomial (3.9). Consequently, one can
derive the steady-state distribution π for the analyzed system by πi = π1R

i−1

for i > 0, where and R is obtained from (3.7).

3.3.2 Fluid approximation for large K

In this section we study the asymptotic growth in waiting time when K →∞
by means of a fluid-limit approximation. We outline the technique and present
the results of the approximation.

The idea behind the approach is to let K →∞ while speeding up time by
the same factor K. Observe that when there are no class 2 jobs active, the
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service time seen by individual class 1 jobs vanishes:

β1/K
K→∞

= 0.

In this case, no class 1 jobs have been accumulated due to class 2 job processing.
When the system contains class 2 jobs, fresh arriving jobs will be preceded by
the service time of class 1 jobs that wait together with class 2 jobs. I.e., each
class 2 job is preceded by (K − 1) class 1 jobs. The additional service time
brought by the other K − 1 class 1 jobs is a convolution of K − 1 exponential
service times. Due to the law of large numbers this additional service time will
converge to a deterministic value β1:

(K − 1)β1/K
K→∞

= β1.

Also the inter-arrival time between class 2 jobs becomes deterministic with
mean 1

λ . However, the service time of each K-th job remains exponentially
distributed with mean:

(a+ bK)/K
K→∞

= b.

In the limit, the system becomes a single server queueing system with deter-
ministic inter-arrival times and service times that are the convolution of two
distributions: an exponential distribution with mean b and a deterministic one
with mean β1.

Because we are interested in the mean waiting time, one can analyze an
equivalent queueing system where the service time is exponentially distributed
with mean b and the inter-arrival time is 1/λ−β1. This implies that the scaled
process can be analyzed by aD/M/1 queueing system with corresponding load:

ρ̃ =
b

1
λ − β1

. (3.11)

Now, using Theorem X.5.1b from [2], we obtain the average workload for
this queue as ρ̃ 1

η , where η is the unique solution > 0 of:

1 =
1/b

1/b− η
e−η(1/λ−β1).

From this expression we derive the following fixed-point equation for ob-
taining η:

η =
1

b
(1− e−η(1/λ−β1)). (3.12)
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Using the expected workload of the fluid scaling we can characterize the
asymptotic growth of the mean waiting time, E[W (K)], as a function of batch
size K:

E[W (K)] = f(K)→ ξ1 +Kξ2, (3.13)

where the constant ξ2 is given by

ξ2 =
ρ̃

η
. (3.14)

3.4 Optimization of the batch size K

In this section, we describe an efficient and scalable method to find the optimal
batch size for a given set of parameters (N,λ, β1, a, b). As we are interested
in the mean waiting time in the queue, E[W (K)], we want to capture how
K relates to the value of this specific performance metric. One way to find
the optimal batch size is to use the matrix-geometric method described in
the Appendix and calculate the corresponding E[W (K)] for all 1 ≤ K ≤ N .
However, this approach is not efficient and might even be infeasible for large
N . In many real-world applications, the maximum buffer size, N , prohibits
such a straightforward approach. In such cases, one needs a scalable algorithm
for estimating the optimal K.

Another approach is to simplify the model and assume that on average
(instead of strictly) every K-th job has a service time β2. This results in an
M/G/1 queue where the service time is a random variable S, whose distribu-
tion is a mixture of two random variables. Namely, with probability (K−1)/K
it is exponentially distributed with mean β1, and otherwise – with mean β2.
This implies:

E[S] =
(K − 1)β1 + β2

K
,

E[S2] =
2
(
(K − 1)β2

1 + β2
2

)
K

.

Consequently, the mean waiting time in the queue, E[W ]M/G/1, for thisM/G/1
queue can be derived by the Pollaczek-Khinchin formula:

E[W ]M/G/1 =
λE[S2]

2(1− ρ)
=
λ
(
a2 − β2

1

)
+ λ

(
2ab+ β2

1

)
K + λb2K2

λ (β1 − a) + (1− λ (β1 + b))K
. (3.15)
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Although this model simplification results in an analytic solution, the obtained
estimation for the mean waiting time is rather inaccurate (see also Section 3.5
below). Therefore, in the following, we develop an approximation approach
which is both scalable and accurate.

In Section 3.3.2, we outlined a method to derive the mean waiting time
for large K. As discussed, the fluid approximation implies a linear relationship
between the batch size K and the mean waiting time E[W (K)] for large values
of K. On the other hand, in Section 3.3 we showed that there is rarely a linear
dependence between K and E[W (K)] for the whole range 1 ≤ K ≤ N and in
most of the cases there is a non-trivial optimal batch sizeK. These two findings
together with the form of the above-derived Equation (3.15) for the M/G/1
simplification, led us to choose the following function as an approximation of
E[W (K)]:

f(K) :=
l +mK + nK2

s+K
, (3.16)

where l,m, n, and s are parameters.

In the following, we describe how one can estimate l,m, n, and s. First,
we note that n corresponds to the asymptotic slope for K → ∞. Using, the
results from the fluid approximation, we derive n = ξ2, where ξ2 is given by
Equation (3.14). Now, to estimate the remaining three parameters, l,m, and
s, we obtain the value of f for three distinct values of K. As discussed, the
case of K = 1 stands for an M/M/1 queue with an arrival rate λ and service
rate 1/(a+b), and therefore f(1) = E[W (1)] = λ(a+b)2/(1−λ(a+b)). Next to
that, as depicted in Theorem 3, the stationary distribution for K = 2 can be
analytically derived, from which consequently one can easily compute f(2) =
E[W (2)]. Finally, we numerically compute E[W (K)] for a third value of K
using the MGM from the Appendix. As we have already obtained E[W (K)]
at the beginning and at the end of the range of possible batch sizes, we use
the MGM to calculate E[W (K)] for K = bN/2c.

Now, using f(K) in Equation (3.16), and the estimated parameter values,
one can approximate the optimal batch size by finding 1 ≤ K ≤ N that
minimizes f(K). Namely, if we denote with x :=

√
s2 − (ms− l)/n − s the

larger root of f ′(K):

Kest =


1, for x ≤ 1,

bxc or dxe, for 1 < x ≤ N,
N, for N ≤ x,
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where for the case 1 < x ≤ N , one can simply compute f (bxc) and f (dxe)
and take the one for which the function has the lower value.

Our technique approximates the optimal value of the batch size using the
MGM only once. Moreover, although ideally one would apply the MGM to a
system with K = bN/2c, we note that our approximation algorithm works with
any value of K > 2. Therefore, one might use a constant value of K, which
allows for a computationally feasible numerical solution, in case this is not
possible for K = bN/2c. In such a way, the computational complexity of our
algorithm becomes a constant, O(1). We emphasize that this is a significant
improvement in comparison to the alternative approach of running MGM for
all possible values of the batch size, which would result in a complexity of
O
(
13 + 23 + · · ·+N3

)
= O

(
N4
)

[42]. Furthermore, the fact that for many
practical applications our technique would be the only feasible approach is of
even greater importance.

3.5 Results

In the following, we evaluate the proposed method for estimating the optimal
batch size. To create a benchmark for a system with a specific set of parameters
we apply the matrix-geometric approach for each possible K. Therefore, to
obtain this benchmark for a broad range of combinations for the parameters
(β1, a, b), our choice for N is limited to relatively small values. More precisely,
we examine the accuracy for N = 20, 50 and 100, β1 varying from 0.01 to 0.96
with a step of 0.05, and a and b from 0.01 to 1 with a step size of 0.01. In
all test cases, we fix λ = 1 as scaling λ, β1, a and b with the same factor is
equivalent to scaling time which does not influence the steady-state behavior
of the system. Furthermore, we decided to exclude trivial cases in which the
optimal batch size is 1, as those are straightforward to identify by simply
checking whether E [W (1)] ≤ E [W (2)], and thus not representative for the
algorithm’s accuracy in general. In addition, we also omitted cases in which
the system was unstable. This procedure resulted in nearly 50,000 test cases.

As discussed, we consider the mean waiting time in the queue as the key
performance metric of the system. Moreover, we are interested in the value of
the batch size that minimizes this metric. Therefore, we evaluate the accuracy
of the algorithm by comparing the mean waiting times in the system with the
estimated Kest and the one with the real optimal batch size. More precisely,
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as an error metric we define:

Er =
|E[W ]est − E[W ]opt|

E[W ]opt
× 100%,

where E[W ]est and E[W ]opt are the mean waiting times given the estimated
batch size and the optimal one, respectively.

In Figure 3.2, we examine the test case for which the accuracy of our
algorithm was the lowest. Note that even in this worst case, the fitting curve is
a good approximation of the mean waiting time. However, the optimal value
of K is not the estimated one. The relative difference in the performance
metric in case the approximated optimal value of K is applied instead of the
real one is |E[W (3)]− E[W (2)]| /E[W (2)] = 0.69%. On the other hand, this
error becomes more than 9% if the batch size is chosen to be 1 instead of the
optimal value of 2. Therefore, we believe that the relative difference in the
mean waiting time is more relevant than the one in the corresponding values
of K.

The aggregated results of the tests are shown in Table 3.1. We calculate
in what percentage of the cases our algorithm derived the optimal value of
K and output the result in the column “Exact” of Table 3.1. Next to that,
we present the highest error from the tests where the estimated K was not
the optimal one. As discussed, we measure the error as the relative difference
between the mean waiting times in a system with the optimal K and with the
estimated one. As a comparison, we include the results of the M/G/1 model
simplification discussed in Section 3.4.

Table 3.1: Accuracy of the approximation of the optimal batch size.

Method Exact Max Er

Our approximation 99.8% 0.69%
M/G/1 77.0% 10.11%

After analyzing the 0.2% of test cases in which our algorithm made an
error, we found out that for all of them the optimal batch size is 2. We believe
that system parameters that lead to such a solution with optimal K = 2
are rarely observed in practice. In contrast, the parameters that result in
wrong approximation by the M/G/1 technique do not follow any particular
pattern, and moreover, are significantly more in comparison to our algorithm.
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Figure 3.2: Mean waiting time as a function of the batch size K for the system
with parameters N = 50, λ = 1, β1 = 0.51, a = 0.55 and b = 0.23.

In addition, the relative errors of the two approximation approaches differ
by one order of magnitude. Tables 3.2 and 3.3 provide the result details for
ten parameter configurations corresponding to some of the worst cases for
each of the two approximation algorithms (i.e., our technique and the M/G/1
approach, respectively).

Based on the results from these test cases we conclude that our algorithm
identifies the optimal batch size with remarkably high precision. Next to that,
the systems for which the approximated K is not the optimal one are rather
unrealistic from a practical point of view. Moreover, even in these cases the
relative error in the performance metric of interest is negligibly small.
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Table 3.2: Result details for system configurations corresponding to some of
the worst cases for our approximation technique.

System parameters K values Errors

N β1 a b Kopt Kest KM/G/1 Er,est Er,M/G/1

50 0.51 0.55 0.23 2 3 2 0.69 0.00

20 0.41 0.46 0.18 2 3 2 0.66 0.00

50 0.41 0.48 0.25 2 3 2 0.64 0.00

50 0.46 0.51 0.22 2 3 2 0.64 0.00

50 0.36 0.46 0.34 2 3 2 0.59 0.00

20 0.61 0.63 0.20 2 3 2 0.59 0.00

50 0.36 0.41 0.15 2 3 2 0.58 0.00

20 0.56 0.59 0.22 2 3 2 0.56 0.00

50 0.31 0.41 0.23 2 3 2 0.54 0.00

100 0.51 0.54 0.17 2 3 2 0.52 0.00

Table 3.3: Result details for system configurations corresponding to some of
the worst cases for the M/G/1 approach.

System parameters K values Errors

N β1 a b Kopt Kest KM/G/1 Er,est Er,M/G/1

20 0.31 0.39 0.30 2 2 1 0.00 10.11

100 0.46 0.54 0.41 3 3 2 0.00 6.83

50 0.41 0.61 0.37 4 4 3 0.00 4.75

20 0.56 0.66 0.30 5 5 3 0.00 3.77

50 0.61 0.73 0.23 6 6 4 0.00 2.57

50 0.71 0.79 0.19 7 7 5 0.00 2.02

50 0.86 0.89 0.09 12 12 9 0.00 0.58

20 0.81 0.89 0.08 15 15 11 0.00 0.55

100 0.76 0.89 0.09 14 14 11 0.00 0.54

50 0.86 0.89 0.08 13 13 9 0.00 0.51
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3.6 Conclusion

Inspired by the ‘write behind’ caching mechanism that is used in data center
storage solutions we formulated and analyzed a queueing model. Each job
in this queueing model represents a write operation request from application
to storage. Each job is processed by a single server in two stages. In the
first stage service jobs are pre-processed. After the pre-processing stage a
response will be sent. However, the job will remain in the system until the post-
processing stage has completed. The server alternates between pre- and post-
processing stages. Jobs that require post-processing will be accumulated in a
cache until a threshold of K jobs has been reached. When this threshold has
been reached, all K-jobs in cache are served at once in a batch. The goal is to
minimize expected waiting time of jobs in the pre-processing stage by choosing
the proper batch size K. This model is representative for various real-world
systems that exist in computer science, manufacturing, logistics, and many
others. We showed how one can analyze and derive the stationary distribution
of jobs in such systems with a fixed batch size. In addition, we considered a
special case where an analytic exact solution is possible by finding the roots of
a third-degree polynomial. Next to that, we outlined a fluid approach which
results in approximation of the expected waiting time for large batch sizes.
Finally, we presented how one can combine the insights from these techniques
in order to find the optimal static control policy in an efficient and scalable
way. Extensive numerical tests showed that this method works extremely well.

By using explicit results for K = 1 and K = 2 in combination with the
asymptotic factor from the fluid analysis of Subsection 3.3.2 we only require
the application of the MGM for a moderate size of K. In this way we are able
to significantly reduce required memory and computation time.

Finally, we address a few topics for further research. A practical relevant
challenge would be to analyze a system with time-varying arrival and service
rates. We believe that the low computational requirements of our algorithm
allow an extension which can tackle such models. Nevertheless, in order to
verify that, one should thoroughly test the possible generalization of our tech-
nique. Another open problem is the dynamic control of the ‘write behind’
cache. Motivated by this, in the next chapter we analyze the corresponding
system within the Markov Decision Processes framework.

50



3.7 Appendix

In the following, we show how the matrix-geometric method [60] can be ap-
plied to find the stationary distribution of the system for a given K. Using
the transition rates in (3.1), one derives the following block structure of the
generator matrix Q:

Q =


B0 A0 0 0 0 · · ·
A2 A1 A0 0 0 · · ·
0 A2 A1 A0 0 · · ·
0 0 A2 A1 A0 · · ·
...

...
...

. . .
. . .

. . .

 ,

where

−B0 = A0 =


λ 0 · · · 0
0 λ · · · 0
...

. . .
. . .

...
0 0 · · · λ

 , A2 =


0 µ1 0 · · · 0
0 0 µ1 · · · 0
...

. . .
. . .

. . .
...

0 0 · · · 0 µ1

µ2 0 · · · 0 0

 ,

and A1 = diag(−(A0+A2)e) are K-by-K square matrices. By definition this is
a Quasi Birth Death (QBD) process and the following normalization equation
holds:

1 =

∞∑
i=0

πie = π0e+ π1(I +R+R2 + · · · )e = πoe+ π1(I −R)−1e, (3.17)

where e is the unit vector, πi = (πi,0, πi,1, . . . , πi,K) are the equilibrium proba-
bility vectors and R is such that πi = π1R

i−1. It follows that R is the minimal
non-negative solution of the matrix-quadratic equation

A0 +RA1 +R2A2 = 0. (3.18)

One simple scheme to compute R is to iteratively solve (3.18) by the fol-
lowing successive substitutions:

Rk+1 = −(A0 +R2
kA2)A−1

1 , k = 0, 1, 2, . . . , (3.19)

starting with R0 = 0. More complicated and efficient techniques to find R
have been developed in the literature (see, for example, [51]). Next, to find
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the stationary distribution one can compute π0 and π1 using the boundary
condition:

π0B0 + π1A2 = 0, (3.20)

together with (3.17), and subsequently πi for any i > 1 by the following
equation:

πi = π1R
i−1. (3.21)

Once the stationary distribution of the system is obtained, one can derive
the mean waiting time in the queue by Equation (3.4).
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Chapter 4

Closed-Form Control Policies of

Markov Decision Processes Using

Symbolic Regression

In this chapter, we introduce a new approach to optimize the control of systems
that can be modeled as Markov Decision Processes (MDPs) with a threshold-
based optimal policy. Our method is based on a specific type of evolutionary
algorithm known as Symbolic Regression (SR). We present how both the ex-
ecution time and the accuracy of this algorithm can be greatly improved by
taking into account the corresponding MDP framework in which we apply it.

The proposed method has two main advantages: (1) it results in near-
optimal decision policies, and (2) in contrast to other algorithms, it generates
closed-form approximations. Obtaining an explicit expression for the decision
policy gives the opportunity to conduct sensitivity analysis, and allows instant
calculation of a new threshold function for any change in the parameters. We
emphasize that the introduced technique is highly generic and applicable to
MDPs that have a threshold-based policy. Extensive numerical experimenta-
tion demonstrates the usefulness of the method.

The work in this chapter is based on A. Hristov, S. Bhulai, R.D. van der
Mei and J.W. Bosman. Deriving explicit control policies for Markov Decision
Processes using Symbolic Regression (2018) [36]. Submitted.

4.1 Introduction

In practice, many stochastic control problems exhibit an optimal policy that is
of a threshold type. In most cases, this structure can be proven by mathemat-
ical induction within the MDP framework [46]. In real applications, however,
one does not only need to know the structure of the optimal policy, but also
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the threshold value for implementation purposes. Unfortunately, deriving this
value explicitly remains a hard problem and usually has to be solved by nu-
merical computation.

There are several advantages of having the threshold value in an explicit
form. First, it allows one to easily implement a threshold for different system
parameters without having to solve the corresponding MDP. Second, the ro-
bustness of the threshold function can be assessed through sensitivity analysis,
which is important when system parameters are estimated from real data.

In this chapter, we propose a new approach to obtain an analytic expres-
sion for the decision policy of a given MDP. The main idea of our method is
to combine the field of Markov decision theory with a specific evolutionary
algorithm: the SR algorithm. In the current study, we focus on threshold-
based decision policies. We examine this sub-class of policies as they can be
expressed in a natural and easy to interpret closed-form. Namely, one can
examine the threshold value for one of the dimensions of the system’s state
space as a function of the other dimensions and the system parameters. We
outline guidelines and useful practices when tailoring the algorithm.

An introduction to MDPs and the classical numerical techniques to solve
such problems (e.g., value iteration and function iteration) is described in [62,
69,84]. Next to the numerical approach, one might tackle the challenge of opti-
mal control also by using algebraic techniques. However, due to the complexity
of most of the MDP problems, obtaining an algebraic solution is usually not
feasible. Therefore, the vast body of literature deals with proving structural
properties of various Markov decision problems rather than finding the explicit
structure of the decision policy (see [7, 46,77]).

On the other hand, mostly due to practical reasons, there is a need for
an efficient procedure that yields an implementable decision policy. There are
several papers that show how one can make use of machine learning techniques
to obtain such a solution. Most of the research is focusing on one of the
following two types of algorithms: reinforcement learning [81, 82], or genetic
programs [4, 15,57,96].

We believe that the method proposed in this chapter can serve as a link
between the above described two major approaches. Our technique exploits
certain structural properties of the given MDP to produce a closed-form so-
lution. To obtain the function characterizing the decision policy, we use SR
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(see [43,48,80] for an introduction to SR). A related research that applies SR
within an MDP framework is the one conducted in [63]. However, in con-
trast to [63], our research aims at finding the control policy rather than the
value function. Therefore, with our approach one can incorporate in the SR
algorithm possible domain knowledge and insights for the optimal policy.

In the following section, we outline our implementation of the SR method
for approximating the decision policy of a given MDP. To present our guidelines
more comprehensibly, we apply our technique to two running examples. In
Section 4.3, we analyze the ‘write-behind’ cache model and present how the
approximated decision policy performs compared to the optimal one. Next,
in Section 4.4 we discuss how the generated expressions from our method
resemble the real closed-form solution for an M/M/1 queueing model with
customer rejection. We conclude with a summary in Section 4.5.

4.2 Method

In this section, we introduce our method of finding a closed-form solution for
the control policy of a given MDP by using SR. Below, we briefly outline the
main concepts of this regression algorithm. The reader is referred to [43,48,80]
for more details on SR.

SR is a type of regression analysis that searches the space of algebraic
expressions to find the one that best fits a given dataset, both in terms of
accuracy and simplicity. Within the SR framework, an individual represents
a specific formula, which is expressed as a tree (for an example we refer to
Figure 4.1). Note that each leaf contains a parameter, whereas each node
gives the mathematical operator.

Like any other evolutionary algorithm, SR forms an initial population of
individuals. Next, it iteratively generates a new offspring of individuals (e.g.,
a new generation) by crossing and/or mutating already existing individuals.
Figure 4.2 illustrates a simple crossing scheme and Figure 4.3 shows a possible
mutation. The underlying idea is that over time the population’s accuracy
increases due to evolving the good performing individuals (i.e., survival of the
fittest).

Figure 4.4 presents the four main steps of our technique, outlined as follows:
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Figure 4.1: An example of individual: the formula 2x−y
y+x expressed as a tree.

Step 1: Model
The analyzed system is modeled as an MDP by defining the system states and
the corresponding transition probabilities, associated costs and action space.

Step 2: Data generation
The regression program requires a dataset on which the individuals will be
tested. Therefore, one needs to numerically solve a number of system instances,
e.g., to obtain the optimal decision policy with regards to specific parameter
values.

Step 3: Algorithm settings
The algorithm settings are configured to control the way the SR program
evolves the generations. One can specify the duration of the evolution, the
initial population, the set of mathematical operators, etc.

Step 4: Results
Different setting configurations lead to different results. Next to following
the guidelines that we present, one should iteratively analyze the obtained
expressions and further adjust additional settings that might lead to a better
result.

To evaluate the performance of the algorithm, we examine two specific
MDP models as running examples. The first one defines a system which anal-
ysis is highly challenging and, to the best of our knowledge, there is still no
efficient technique for obtaining the optimal policy. Furthermore, there is no
analytic solution available even for specific cases of this system. Therefore,
we take the corresponding MDP model as our first running example and as a
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(a) Tree 1 before crossing (b) Tree 2 before crossing

(c) Tree 1 after crossing (d) Tree 2 after crossing

Figure 4.2: The crossing operator illustrated on the two trees in Figures 4.2(a)
and 4.2(b). The encircled subtrees are exchanged, resulting in the trees in
Figures 4.2(c) and 4.2(d).

(a) Before mutation (b) After mutation

Figure 4.3: Mutation removing the subtree of the encircled node in Fig-
ure 4.3(a) (representing the term y + x) and replaces it by a randomly gener-
ated subtree. The new subtree contains, in this case, only the element x and
is encircled in Figure 4.3(b).
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Figure 4.4: The four steps of our technique.

benchmark for evaluating the algorithm’s accuracy in terms of achieved system
performance. In contrast, the optimal policy for our second MDP example,
namely, an M/M/1 queue with customer rejection, can be derived in a closed-
form. Hence, by comparing the expressions generated by our technique to
the optimal formula, we can study how well the algorithm approximates the
algebraic form of the decision policy.

4.3 Running example 1: The ‘write behind’
cache

In this section, we present our first running example. Recall that we are inter-
ested in studying the dynamic control of the ‘write behind’ caching mechanism.
Therefore, in the following, we briefly outline the model (see Section 3.2 for
more details).

4.3.1 Model

We consider a model with one server which has to complete a two-step process
for each job that arrives in the system (see Figure 3.1 for an illustration of the
model). Jobs receive an initial service in a FIFO fashion and are subsequently
accumulated in a buffer. The second phase consists of serving those jobs that
are in the buffer as a batch, i.e., perform a flush of the cache. This way, the
server can accumulate jobs in the buffer to some level before serving them all
together as a group.

In the following, we denote the maximum size of the server queue and the
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buffer as M and N , respectively. Next to that, jobs are assumed to arrive
according to a Poisson process with rate λ and join the queue if they find
the server busy at this moment. Furthermore, the time to store a job in the
buffer is taken to be exponentially distributed, with mean β1. The service time
required for serving K jobs from the buffer is also assumed to be exponentially
distributed, with mean β2,K . We model β2,K to increase proportionally to the
batch size and therefore we take β2,K = a + bK, where a and b are known
parameters. In addition, we note that the system load, ρ, is dependent on
the batch size and hence the decision policy. Therefore, in the following as
an approximation of ρ we use the case of a batch size two, which corresponds
to the decision policy with highest load (see Section 3.2). Hence, we define
ρ = 0.5λ(β1 + a+ 2b).

Minimizing the mean waiting time in the queue for the above-described sys-
tem has proven to be challenging. Due to the complexity of the problem [55],
there are studies on the simpler case of a static system control when the jobs in
the buffer are served whenever they reach a predefined number K, regardless
of the number of jobs at the server queue. However, even in this case, there
is still no analytic solution available. Therefore, we believe that finding an
analytic expression for a dynamic decision policy would greatly facilitate man-
aging such systems. At the same time, it promises a far better performance
than the static one, as it takes into account also the number of jobs at the
server queue.

4.3.2 Data generation

As discussed, we use SR to derive an expression for the threshold policy func-
tion for a given MDP. To produce an estimate, the regression needs a training
data set as an input. Once trained on the corresponding samples, the approx-
imation’s accuracy can be obtained by comparing the predictions on a given
set of test samples with the real values.

There are a few ways to solve an instance of a given MDP problem, e.g., by
running the value iteration technique [69,84], the policy iteration method [69,
84] or by Temporal Difference (TD) learning [81]. Once the optimal threshold
policy is obtained, one can transform it into a function f(Ps, x) = y, where
Ps denotes the specific system parameter vector and y gives the corresponding
threshold level for x. Note that for an MDP with an n-dimensional state
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space the vector x would be (n − 1)-dimensional and y an integer. In our
example, x is an integer and stands for the number of jobs at the server queue,
whereas y is the number of jobs that are already in the buffer. Next to that,
we believe that in addition to the initial core parameters for the system (e.g.,
the local variables), one might also consider including self-composed ones (e.g.,
structured features). This way, one can facilitate the algorithm in discovering
important dependencies between the parameters. For example, in most of the
cases, the system load, ρ, greatly influences the behavior of the MDP, and
hence, the optimal control. Therefore, in some of the generated SR instances
we include ρ as a structured feature.

In the following, we outline the procedure we have performed to gener-
ate the data set for our running example. Our objective is to obtain an ap-
proximation that can be used for a system with any parameters set, Ps =
(λ, β1, a, b). Therefore, we design model instances with the idea of gener-
ating samples for systems as diverse as possible: β1 ∈ {1.2, 2.4, 3.6, ..., 12},
a/β1 ∈ {1, 1.4, 1.8, ..., 5}, and b/β1 ∈ {0.01, 0.014, 0.18, ..., 0.5}. In all of these
cases we take λ = 1 to reduce the number of parameters without loss of gener-
ality. This way, we produce examples of systems with a load ranging from 0.1
to 0.9. Note that for a given set of system parameters, Ps, we have M+1 sam-
ples in the data. Namely, one for each 0 ≤ x ≤M (the number of jobs at the
queue cannot exceed the queue length), implemented with the corresponding
threshold value y indicating the optimal batch size.

Next to that, in the analyzed MDP system, scaling the arrival rate and
the service rates does not influence the optimal decision policy. Therefore, we
incorporate this insight by generating additional samples for systems with the
following parameter set transformation:

(λ/τ, β1τ, aτ, bτ),

where τ takes the values 100 and 1/100. Note that we append the already
derived x and y to these copies and use the result as additional data samples.
In this way, we assist SR in finding an expression that is scale-free with regards
to the parameter set, and therefore less probable to be over-fitting the specific
range of training values.

For the majority of cases, we took M = 100 and N = 50, so that we
could solve the above-described systems with the value iteration technique
within seconds. Nevertheless, we did also generate samples with M = 1000
and N = 500 and included them in the test set. As a final remark, note that
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we have split the obtained dataset in a training and test set by a 70/30 ratio,
including MDP instances with various loads in both subsets.

4.3.3 Algorithm settings

Once the MDP problem is modeled, and a dataset is generated by solving
instances of this problem, one needs to specify the desired algorithm settings.
We note that for an SR implementation we use the gplearn [80] Python pack-
age. Its efficiency together with the scikit-learn [64] inspired and compat-
ible API, made this package our choice for representative SR solution. An
extensive list of the possible settings for the gplearn’s SR implementation
is described in the corresponding package documentation (see [80]). There-
fore, in this chapter, we focus only on the features that we find particularly
interesting with regards to our technique, i.e., when one uses SR within an
MDP framework. Namely, settings that one should consider adjusting in a
way different than the default one are listed in the following paragraphs.

Set of operators
The set of operators contains a list of the mathematical operators that are
allowed in building and evolving the trees. Due to a trade-off between the
complexity of the formulas and their accuracy, our approach is to start with
the four basic binary operations: addition, subtraction, multiplication, and
division. Next to that, we believe that often the threshold function might
contain square root operation and/or logarithm. Therefore, we suggest running
a few SR instances where trees can use various subsets of those mathematical
operators. Comparing the outcomes of the configurations one can decide which
results suit better one’s goal. Note that there is no benefit in implicitly allowing
exponentiation if one does not expect an exponent higher than two, as the trees
exponent(a, 2) and multiply(a, a) have the same depth and length.

Initial depth and parsimony coefficient
One can control the length and the depth of the trees, i.e., the complexity
of the expressions, by adjusting the initial depth (init d) and the parsimony
coefficient (pc). More precisely, the init d is given by a tuple that defines
the minimum and the maximum size allowed for the first generation of trees,
whereas the pc is influencing how the further generations evolve by penalizing
longer expressions. In this way, one can control the “bloating” effect, which is
characterized as an increase in the trees’ size that corresponds to an insignif-
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icant improvement in their approximation accuracy. Larger values of the pc
penalize larger trees more and make them less favorable for selection. In our
MDP example, we generated instances with values for the pc between 0.001
and 0.1 and init d in ranges varying from as low as (2, 3) to the higher values
of (7, 8). Based on the conducted tests, we believe that setting the pc to 0.01 in
combination with init d range containing the number of system parameters,
|Ps|, would be a reasonable default choice for our technique. In particular,
we conclude that for our MDP problem init d = (3, 6) tends to produce the
best results as the first generation consists of relatively simple expressions that
nevertheless are complex enough to capture all system parameters.

Fitness function
The fitness of each individual is evaluated according to the fitness function,
which is based on the approximation accuracy of the training samples. This
implies that there are two important components of the fitness function – the
way the error on a single training sample is defined and the way the overall
fitness is obtained from those accuracy scores. Note that in our running exam-
ple each system instance is represented by M + 1 data samples, one for each
value of 0 ≤ x1 ≤M . Therefore, it is crucial to assign appropriate weights to
the various training samples associated with a common system instance. The
reason is that the more probable a system state is, the greater impact an error
in the corresponding decision has. Hence, one might consider using the steady
state probability of each state as its weight. However, in some models, it is
difficult to obtain the steady-state distribution. As a consequence, in our first
running example, we tested the two simpler weight functions, namely, ρx and
(M − x)2, where ρ is the load of the system from the corresponding sample
(Ps, x, y). Note that the second function does not require any additional com-
putations as the maximum queue length M is given as a system parameter.
Next to that, we believe that in the context of estimating a control policy
of a threshold-type one should consider a fitness function that computes the
relative error on a given sample instead of the absolute one. In conclusion, we
recommend to use the weighted mean absolute percentage error (wMAPE) or
weighted root mean squared error (wRMSE) [41].

4.3.4 Results

In this section, we evaluate the results from the various SR instances. The
output of the algorithm depends on the specific settings. Therefore, one has
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to decide whether it is possible to further adjust one or more of these settings to
produce an expression that fits better one’s goal: a simpler threshold function,
or a more accurate one. Nevertheless, we believe that certain settings result
in both better performing and less complex threshold decision policies. For
that reason, next to the provided setting recommendations, we advice that
one initially explores a larger number of various SR configurations and only
afterward further evolve a few of the best ones. In such a case, it might become
important to optimize the running time of each algorithm’s instance. One way
to achieve this is to train and/or test the first couple of configurations only on
a subset of the corresponding data instead of the full one. Furthermore, one
can keep track of the best fitness score for each generation and terminate the
instance earlier if there is not much of an improvement in the score for a few
generations in a row.

Next, we discuss the accuracy of our technique for our running example.
We configure the SR algorithm in accordance with the guidelines described
in Subsections 4.3.2 and 4.3.3. To study the possible generalization of our
technique, we test settings that can be derived for any system within the
studied MDP framework, e.g., weights and structured features that depend
only on the system parameters. To evaluate the added value of our approach
we compare it to SR instances with default settings. Next to that, we also
include cases where only part of our recommendations were implemented. In
Table 4.1, we list some of these instances, numbered with Roman numerals (i.e.,
I, II,..., VII) and the corresponding parameters. The first column, Instance,
is used for reference purposes, whereas the other columns are self-explanatory.

Table 4.1: Setting configurations for running example 1.

Instance Operators ρ as a feature Fitness function Weights

I +,−, ∗, / No RMSE

II +,−, ∗, / No wMAPE ρx

III +,−, ∗, / Yes wMAPE ρx

IV +,−, ∗, / Yes wRMSE ρx

V +,−, ∗, / Yes wRMSE (M − x)2

VI +,−, ∗, /,√ Yes wRMSE (M − x)2

VII +,−, ∗, /,√ Yes wRMSE (M − x)2

Our goal is to find the decision policy which minimizes the mean waiting
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time of the system. Therefore, although the algorithm is approximating the
threshold function, we will not examine how good of a fit the estimation is.
Instead, we present the relative difference, Er, between the mean waiting time
if one uses the threshold policy from the generated expression, gest, and the
optimal one, gopt. More precisely, we define

Er :=
|gest − gopt|

gopt
× 100%.

The generated expressions and their accuracies are shown in Table 4.2. Next
to the median, we state the 95th, and the 99th percentile of Er. Note that al-
though the formula from instance I approximates the optimal decision policy
relatively well on average, the 99th percentile error is extremely large. We be-
lieve that this is due to not using weighted score function for the corresponding
SR program. This way, the SR algorithm assigns equal importance for each
state whereas the mean waiting time depend mainly on the decision policy for
states associated with a high steady-state probability. Based on the results for
instances I to V, we conclude that incorporating the guidelines in accordance
with the MDP framework greatly improves the accuracy of the expressions
without adding complex terms.

Table 4.2: Numerical results for running example 1.

Instance Threshold function
Er percentiles

50th 95th 99th

I 3aλ−0.37
λβ1

− λ
λ−1/β1

+ 0.27x+ 0.96 1.31 5.05 1280.08

II λ(β1 + a) + a−bx
β1

+ x 0.32 1.65 2.60

III λ(β1 + a+ b) + a−2b
β1

+ 0.75x+ 0.4 0.30 1.10 1.45

IV 2λ(β1 + a+ b) + 0.75(a−2b)
β1

+ 0.5x 0.26 1.28 3.48

V 1.5λ(β1 + a+ b) + a(2λ+ 1/β1) + 0.33x 0.27 0.93 1.04

VI
√

0.4(aλ+ x)(1.6
√
a/β1 + 0.6λ) 0.03 0.34 0.60

VII aλ+
√
x(aλ+ 1.5) +

√√
x(aλ+ 1.5) 0.01 0.18 0.39

Next to that, we observe that including the square root operator can de-
crease the error even further. The significant accuracy improvement in both
VI and VII instances indicates that the function characterizing the optimal
decision policy might involve the square root operator. Indeed, in both cases
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the threshold value contains the term
√
x. However, the remarkable accuracy

of the threshold functions of VI and VII comes at the expense of an increased
complexity of the expressions.

4.4 Running example 2: The M/M/1 queue
with customer rejection

Next to numerically evaluating the performance of the generated functions, we
are also interested in how well these symbolic expressions resemble the optimal
one. Therefore, in this section, we apply our technique to an MDP system that
has a closed-form solution. This enables us to compare the derived expressions
to the real one. Moreover, we use this example to once again go through the
steps of our approach. In the following, we implement the algorithm according
to the guidelines described in Subsections 4.3.2 and 4.3.3. Furthermore, we
apply the default settings in order to examine our technique in its general
form, without any adjusting and tailoring to a specific model.

4.4.1 Model

We study a single server queue with Poisson arrivals with rate λ and expo-
nentially distributed service times with rate µ. There are holding costs, ch,
associated with each customer in the queue. Furthermore, one can decide to
reject a customer upon arrival. In such a case, rejection cost cr is acquired.
The control policy for this MDP problem is given by a threshold value τ . More
precisely, a customer is admitted if and only if there are less than τ waiting cus-
tomers at the queue. Even for such a simple system, obtaining a closed-form
expression for the optimal decision policy is very challenging. However, it was
shown in [6] that the long run average cost, g, for the special case ch = cr = 1
is given by:

g =
ρ− (τ+1)(1−ρ)ρ

(1/ρ)τ−ρ

1− ρ
+

(1− ρ)λ(
1
ρ

)τ
− ρ

,
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where ρ = λ/µ is the system load and τ is the rejection threshold value. Now,
minimizing g with respect to τ gives the optimal threshold value, denoted τopt:

τopt = µ− λ− 1

− 1

log(ρ)

− L (−ρ exp (log (ρ) (µ− 1− λ)− 1))

log(ρ)
,

(4.1)

where L(.) is the Lambert-W function [24,49], also called the omega function,
and given as the inverse function of

f(W ) = WeW .

4.4.2 Data generation

Note that the state space of this MDP is one-dimensional, namely, the number
of customers in the queue, and therefore each system configuration results in
exactly one data sample (λ, µ, ρ, y) where y denotes the threshold value. We
generated samples for systems with 100 equally spread values of µ in the range
[1 ... 1000] and 100 values of λ for each µ resulting in ρ from 0.05 to 0.95.

4.4.3 Algorithm settings

Three different setting configurations were tested. In the first one we used
only the four basic mathematical operators (addition, subtraction, multiplica-
tion and division), whereas in the second configuration we add one more that
is present in the closed-form expression: natural logarithm. Finally, we gener-
ated a third program instance including also the Lambert-W function [24, 49]
as a possible mathematical operator. In all configurations, the init d and the
pc were assigned to the suggested default values, namely (1, 3) and 0.01, re-
spectively. Furthermore, since each system instance is associated with exactly
one sample, there is no need of using weights in the fitness function.
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4.4.4 Results

The above-described three configurations and the corresponding approxima-
tions τ1, τ2, and τ3 for the optimal threshold policies are listed in Table 4.3.

Table 4.3: Setting configurations for running example 2.

Instance Operators Threshold value τ

I +,−, ∗, / τ1 = µ− λ− 0.657 + λ
µ−λ

II +,−, ∗, /, log(.) τ2 = µ− λ− 1− 1
log(ρ)

III +,−, ∗, /, log(.), L(.) τ3 = µ− λ− 0.597 + λ
µ−λ

Interestingly, the results show that the technique is able to find the most
influential terms (namely, µ − λ) in all three configurations. Furthermore, in
the first case (i.e., instance I) it approximated (−1− 1/ log(ρ)) using the term
λ/(λ − µ) and a constant. It is interesting to note that this is indeed a very
good estimation as it is exactly the first (and most important) term, ρ − 1,
from the Taylor expansion of log(ρ) at ρ ↑ 1, namely,

1

log(ρ)
≈ 1

ρ− 1
=

µ

λ− µ
=

λ

µ− λ
− 1, for ρ ↑ 1.

In addition, we believe that the high accuracy of this approximation led
the algorithm to use it also in τ3, although the log operand was allowed by
the third settings configuration. The fact that τ2 contains the exact term
−1−1/ log(ρ) shows that given more evolutionary time (e.g., more generations,
and/or different random seeds) would have helped the third configuration to
discover this term.

Finally, note that the last part of the exact threshold expression that in-
volves the Lambert-W function was not included by the algorithm. After
further analysis, we found that the mean and the variance of this term across
the sampled systems were −0.005 and 0.003, respectively. Therefore, given
that the mean threshold was 1252, we believe that this additional term is in-
deed negligible. Based on these findings, we conclude that one might use our
technique to both derive a very well-performing decision policy and study the
performance sensitivity in the system parameters.
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4.5 Conclusion

This study is a pioneering contribution, in which we present a new and promis-
ing technique to obtain an analytic solution to MDPs that have a threshold-
based optimal policy. The outlined method makes use of a specific machine
learning algorithm - the Symbolic Regression. We showed how one could apply
and tailor this evolutionary algorithm to the MDP framework. Our approach
obtains a near-optimal decision policy that is given in a closed-form expression.

Moreover, the technique introduced in this chapter was tested on two
MDP models, resulting in highly accurate approximations both in terms of
the achieved system performance and the form of the expression. To further
study the possible generalization of our method, we would have to apply it to
other MDP problems. In addition, we find promising the idea of incorporating
even more insights for the analyzed system to facilitate the SR algorithm.
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Chapter 5

Closed-Form Performance Evaluation

of Markov Decision Processes Using

Symbolic Regression

In the previous chapters, we studied networks in which jobs are incoming from
a single channel. However, in practice, there are also systems that manage
the demand from multiple sources using a common pool of resources modeled
as servers. The traditional approach would be to assign a number of these
servers for each of the incoming streams of jobs. In case the demand rates
vary over time, though, this technique would lead to congestion during peak
times and idle resources during off-peak periods. A common solution is to
dynamically allocate the resources to the different streams, hence the term
blending systems.

As a continuation of Chapter 4, we further explore the potential of combin-
ing queueing theory together with tools from machine learning, in particular
Symbolic Regression (SR). We present an approximation algorithm to obtain
closed-form expressions for the performance metrics of a given system. In
this chapter, we consider a two-stream blending model as a running example
to demonstrate how one can incorporate valuable insights of the analysis of
the system to greatly improve the algorithm’s performance. The proposed
method derives remarkably accurate algebraic expressions for the performance
metrics of interest. The obtained formulas allow for sensitivity analysis, and
furthermore, instant system resolving in case of a change in the parameters.

The work in this chapter is based on A. Hristov, S. Bhulai, R.D. van der
Mei and J.W. Bosman. Performance evaluation through symbolic regression
with an application to a two-stream blending system (2018) [37]. Submitted.
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5.1 Introduction

In this chapter, we present a new method to approximate the performance
metrics of a given system. Our algorithm exploits known results for special
cases of the analyzed system to tailor and facilitate SR in obtaining a closed-
form approximation (see Chapter 4 and [43, 48] for an introduction to SR).
The closed-form expressions greatly facilitate studying the performance sensi-
tivity in the system parameters and assessing the robustness in the parameter
estimation. In addition, exact expressions allow one to directly recalculate the
metrics for time-varying parameters. These advantages make our solution ap-
pealing for an application in real-time systems where parameters are changing
continuously. The main contributions of this chapter are the high accuracy of
the approximations and their explicit algebraic form. Next to that, we believe
that our technique is promising and can be further studied and used for a
broader range of queueing problems.

As a running example we analyze a specific two-stream blending system [8,
91]. One of the streams represents urgent jobs that are received according
to a given stochastic process. The other stream consists of non-urgent (e.g.,
backlog) jobs available in an infinite quantity. This naturally implies the fol-
lowing two objectives for such a system: (1) minimize the mean waiting time
of the former stream, and (2) maximize the throughput of the backlog work.
However, there is a trade-off between these two goals as the two demand types
share the same resource pool. This poses the question of how to control the
number of servers allocated for each of the demands. Due to the abundance
of such systems in practice and the challenging nature of the problem, there
are a number of papers on this topic. The research conducted in [8,91] models
the two-stream blending system as an MDP and derives the optimal thresh-
old value for the control policy given a specific performance constraint. In
our study, we consider the related subject of determining the expected perfor-
mance for a given threshold value. Despite the considerable amount of research
done on such systems, deriving analytic results remains a hard problem and
the solutions so far involve computationally intensive numerical procedures.

In the following section, we list the main steps of our technique. Next, in
Section 5.3, we demonstrate our approach by applying it to the two-stream
blending model. After discussing the obtained results, we conclude the chapter
with a summary in Section 5.4.
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5.2 Method

In this section, we adapt our method for finding closed-form expressions for
the performance metrics of a given MDP model (see Figure 4.4). Namely, the
main four steps of our technique are:

Step 1: Model
Model the analyzed system as a queueing network. We define the system
states, the corresponding transition rates and the performance metrics we are
interested in. Next to that, we present a way to numerically obtain these
metrics for a given system.

Step 2: Data generation
Generate data that is required by the SR algorithm. This data is a collection of
samples, where each sample contains the parameter values and the associated
performance metrics for a given system instance.

Step 3: Algorithm settings
Configure the algorithm parameters. There are many settings that determine
the speed and the accuracy of SR. By adjusting these parameters, one can
control the duration of the evolution, the initial population, and perhaps most
importantly, the way the generations evolve.

Step 4: Results
Evaluate the results. As mentioned, different setting configurations lead to
different results. There are certain choices that we believe are optimal, whereas
for others, we iteratively analyze the obtained expressions and further adjust
settings that might lead to a better result.

The contribution of our technique is twofold: (1) it derives very accurate
approximations of the key performance metrics, and (2) it generates a closed-
form expression, which allows both sensitivity analysis and instantaneous so-
lution for any instance of the system. Therefore, our goal is to obtain formulas
that are good approximations and at the same time relatively simple and easy
to interpret. We believe that our solutions can be used for deriving both opti-
mal system performance and fundamental insight into the dependency of the
specific performance metric with regards to various system parameters.
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5.3 Running example: Two-stream blending
system

In this section, we analyze the two-stream blending system and apply our
technique to obtain closed-form approximation of the mean waiting time and
the throughput of the network. We first define the queueing model which
we use to capture the characteristics of the system. Next, we present our
approach in the following two crucial procedures: preparing the data and
adjusting the settings of the algorithm. Furthermore, we evaluate the obtained
approximations.

5.3.1 Model

We consider a system of s servers with two queues, i.e., two classes of jobs.
For an illustration of the model, see Figure 5.1. Class 1 jobs arrive at the
corresponding queue according to a Poisson process with rate λ, whereas the
other queue is saturated and contains an infinite number of jobs. We will refer
to the former queue as the first one and the corresponding jobs as the first class,
and the latter as the second one with jobs of the second class. Furthermore,
we assume the required service times of jobs of class i = 1, 2 to be independent
and exponentially distributed with mean βi = 1/µi. Therefore, the load of the
system, ρ, is given by ρ = λ

sµ1
.

The first class of jobs represents the urgent jobs in the system. We are
interested in their mean waiting time and give them priority over the second
class of jobs, which stand for the backlog work. The case of preemptive service
leads to trivial optimal control where class 2 jobs are being processed whenever
there is an idle server. Hence, we assume that all s servers operate in a non-
preemptive manner. Next to the implementation of priority policy, a second
mechanism that is used in such systems is designating a number of servers,
0 ≤ c ≤ s, that can serve both classes of jobs and reserve the rest s − c only
for the urgent demand. This leads to the following threshold-type policy:

• The first class of jobs is taken into service as soon as a server becomes
available.

• The second class of jobs is taken into service only if the first queue is
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Figure 5.1: The two-stream blending model.

empty and there are fewer than c class 1 jobs in the system. This implies
that there cannot be more than c class 2 jobs being served simultaneously
as the rest s− c are kept solely for the first queue.

We capture the system state by a couple (x1, x2), where x1 ≥ 0 is the
number of class 1 jobs that are receiving service or are waiting in the first
queue, and 0 ≤ x2 ≤ c stands for the number of class 2 jobs in service.
Consequently, we can determine the transition rates and the generator matrix
Q of the corresponding continuous-time Markov chain. It is easy to verify that
the non-zero non-diagonal entries of Q are:

q(i,j),(i+1,j) = λ for i ≥ 0,

q(i,j),(i−1,j) = min{i, s− j}µ1 for i ≥ 1, max{c− i, 0} < j ≤ c,
q(i,j),(i−1,j+1) = iµ1 for 1 ≤ i ≤ c, j = c− i,
q(i,j),(i,j−1) = jµ2 for i > c− j and 1 ≤ j ≤ c.

(5.1)

Note that in our model c is not restricted to be an integer. Instead, we
handle the case x < c < x+ 1 where 0 ≤ x < s is an integer, by randomizing
between the following two threshold values: c = x and c = x + 1. The
probability of applying the lower value, x, is given by 0 < c− x < 1.
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5.3.2 Data generation

We use SR to derive an expression for the mean waiting time at the first queue
and the throughput of the second one. To produce an estimate, the regression
technique requires a set of training samples as input. Once trained on the
corresponding data, the performance of the approximation can be evaluated
on a separate set of test samples by comparing the predictions with the actual,
real values. This procedure ensures that the approximation works well also on
previously unseen examples, i.e., it does not overfit the specific training set.

In the following, we describe how we generate the data set for our approxi-
mations. Our objective is to obtain an estimate that can be used for a system
with any parameters set Ps = (λ, µ1, µ2, c, s). Therefore, we design model in-
stances with the idea of generating samples for systems as diverse as possible.
More precisely, we vary the parameters as follows:

• both µ1 and µ2 take value within {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100},

• s ∈ {10, 20, 30, . . . , 150}, and c ∈ {0, s/15, 2s/15, . . . , s},

• λ ∈ {0.1ρ, 0.3ρ, 0.5ρ, 0.7ρ, 0.9ρ}.

The above-listed choice of parameter values results in slightly more than
100000 samples. Next, we numerically solve these systems with the matrix-
geometric method as outlined in the Appendix.

In addition to these base parameters for the model (i.e., the local variables),
we also include self-composed ones (i.e., structured features). For example,
one such variable that we include in the data set is the system load ρ as this
metric is crucial for any queueing system. As discussed in Section 5.1, there
is already a number of studies on two-stream blending systems. We believe
that problem-specific insights should be used in order to further tailor the
algorithm and as a consequence obtain better predictions in a more efficient
manner. Although there is no closed-form solution for the general model that
we consider, there are a few results in specific cases, e.g., when the service
demands of the two classes of jobs are equal. Next to that, it is easy to verify
that when the threshold value is zero (i.e., c = 0) one might use the Erlang
C formula [27] to obtain the mean waiting time of the first stream. Based
on these results we also include the following two parameters: ρs−c and c!/s!,
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where x! denotes the factorial of x. Finally, we note that in case c = s, the
throughput of the second stream can be derived as (1 − ρ)cµ2, and therefore
we add this self-composed variable as well.

According to the common terminology for prediction problems, we refer to
the two metrics of interest, the mean waiting time and the throughput, as y1

and y2, respectively. We consider cases where one of the response variables
is less than 0.05 or larger than 500 as unrealistic from a practical point of
view, and therefore we exclude such cases from the data set. Next to that, we
make sure that the generated samples are indeed representing diverse systems
and there are instances with mean waiting time and throughput performance
across the desired range of values. Therefore, we define the following four
ranges for both y1 and y2: [0.05, 0.5], [0.5, 1], [1, 10] and [10, 500], which might
be interpreted as very low, low, high, and very high, respectively. To ensure that
the response variables are evenly spread among these categories, we randomly
sample an equal number of instances from each of the four ranges. More
precisely, for each performance metric and each category, we randomly select
1000 system instances for the training data set and another 1000 for the test
data set. Note that this procedure is required to avoid overfitting specific type
of systems (e.g., such that have very low throughput).

An analysis of the distribution of y1 within the above-described data set
shows that nearly 99% of the values are less than 1 (i.e., the mean waiting time
is very low or low). Therefore, to provide a reasonable number of instances
with y1 ∈ (1, 10) and y1 ∈ (10, 500), we introduce more samples with relatively
high load ρ. Namely:

• Both µ1 and µ2 take values within {0.1, 1, 10, 50, 100},

• s ∈ {1, 11, 21, . . . , 91}, and c ∈ {0, s/10, 2s/10, . . . , s},

• λ ∈ {0.91ρ, 0.92ρ, . . . , 0.99ρ}.

In such a way, we generate more than 6000 additional samples with target
variable y1 > 1. We note that the distribution of y2 is also heavily right-
skewed, but nevertheless, there are a considerable number of cases to sample
from for each of the four categories.
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5.3.3 Algorithm settings

After we generated the data set by solving the defined system instances and
adding the self-composed variables, we specify the desired algorithm settings.
An extensive list of the various settings is described in the corresponding
gplearn’s package documentation (see [80]). In this chapter, we focus only on
the settings that we find particularly relevant with regards to our technique,
i.e., using SR to analyze a given queueing model. Namely, we adjust in a way
different than the default the following parameters.

Set of operators
The set of operators contains a list of the mathematical operators that are al-
lowed in building and evolving the trees. Based on the closed-form expressions
for the special cases c = 0 and c = s, we decided to include addition, subtrac-
tion, multiplication, division, and exponentiation. For our running example,
adding the square root and the logarithm operator resulted in an increase in the
algebraic complexity of the expressions without corresponding improvement in
the approximation accuracy.

Initial depth and parsimony coefficient
By adjusting the initial depth (init d) and the parsimony coefficient (pc), we
control the depth and the length of the trees, i.e., the complexity of the expres-
sions. More precisely, the init d is given by a tuple that defines the minimum
and the maximum size allowed for the first generation of trees, whereas the
pc is influencing how the further generations evolve by penalizing longer ex-
pressions. In such a way, one can manage the “bloating” effect – an increase
in the trees’ size that corresponds to a not significant increase in their fitness.
Greater values of the pc penalize larger trees more and make them less favor-
able for selection. Based on the conducted tests, we believe that the optimal
values for these two parameters are: init d = (2, 6), and pc ∈ (0.001, 0.2).
Approximating the throughput performance metric in a closed-form expres-
sion proves to be more challenging, and therefore we use lower values of pc for
these SR programs. Next to that, we further decrease the pc in case we let
the specific SR instance evolve for more generations.

Fitness function
The fit of each individual (i.e., the tree representing a mathematical formula)
is evaluated based on its approximation accuracy on the training samples.
As discussed, our goal is to obtain approximations that are applicable for a
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broad range of system parameters. Hence we want to avoid overfitting specific
type of systems, while inaccurately predicting others. In other words, the
fitness function has to be sensitive to large errors. Next to that, we construct
our training set by including the same number of instances from each of the
considered performance ranges. Therefore, we should apply the same weight
for each estimation error, i.e., take their average. Due to these two observations
and its common usage when determining the quality of an estimator, we choose
the mean squared error (MSE) measurement as our fitness function:

MSE =
1

n

n∑
i=1

(
y(i) − ŷ(i)

)2

,

where n is the number of system instances in the data, y(i) the value to be
predicted for the i-th system instance, and ŷ(i) the estimated value for the i-th
system instance.

5.3.4 Results

As described, we produce a few SR algorithm instances with different settings
for both the mean waiting time at the first queue, y1, and the throughput
of the second queue, y2. We note that in most cases the approximation’s
accuracy might be further increased, e.g., by simply evolving the SR instance
for more generations, including additional mathematical operators, decreasing
pc, etc. However, there is a potential trade-off between the achieved accuracy
and the algebraic complexity of the closed-form expressions. Therefore, we
discuss only those results that we believe are relatively simple and at the same
time are highly accurate.

Approximating the mean waiting time
First, we analyze the mean waiting time, y1. Using only the four basic binary
operations together with the logarithm and evolving for 30 generations, we
could generate an extremely accurate closed-form prediction, y1,pred, resulting
in an MSE of 0.17 on both the train and the test data set for ρ < 1:

y1,pred =
ρ

sµ1 − λ
+

1

s

(
c

sµ2
− log (s)

µ1

)
. (5.2)

To establish a benchmark, we analyze the special case when the load of
the first queue is nearly 1 (i.e., ρ ↑ 1). In this setting, together with the
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fact that class 1 jobs have priority, one can argue that the system behaves
like an M/M/1 queue with a service rate sµ1. This implies the following
approximation, y1,ρ↑1, for ρ ↑ 1:

y1,ρ↑1 =
ρ

sµ1 − λ
. (5.3)

As a fair comparison, evaluating the two methods only on systems with
ρ = 0.99, results in an MSE value of 0.57 for the heavy-traffic estimation and
0.1 for our approximation, y1,pred. Therefore, we conclude that our closed-form
prediction is almost exact and at the same time allows sensitivity analysis. It
is interesting to note that the algorithm has derived the formula for the case
ρ ↑ 1 as it is part of the closed-form expression (5.2). Furthermore, it has
included additional terms that not only adjust the heavy-traffic approximation
to general cases, but even significantly increases the accuracy of the special
case ρ ↑ 1 itself.

As a final remark, we discuss the contribution of adding the self-composed
features, i.e., sµ1, sµ2, ρs−c, c!s!, c/s, and (1 − ρ)cµ2. We have run mul-
tiple SR instances without including these features and the most accurate
formula amongst these approximations achieved an MSE of 29.19 on the train
and 30.11 on the test data. Note that this error is more than 100 times
higher than the one of the above-discussed SR. In addition, omitting the self-
composed features resulted in significant increase in the algebraic complexity
of the closed-form expressions. Therefore, we conclude that by incorporating
these insights we could greatly facilitate the SR algorithm in finding an accu-
rate and algebraically simple closed-form approximation of the mean waiting
time.

Approximating the throughput
Approximating the throughput of the second queue, y2, proves to be more
involved. As discussed, we can explicitly derive y2 = (1− ρ)cµ2 for the special
case of c = s, and y = 0 for c = 0. Next to that, in [8] it was observed that
the throughput seems to increase nearly linearly with the threshold value c.
This leads to the approximation, (1 − ρ)cµ2, which we use as a benchmark.
Using our technique and the composed features we generated two SR instances.
We evolved the first one for twenty generations with pc = 0.005, whereas the
second one for thirty generations with pc = 0.001. As shown in Table 5.1,
instance I results in a relatively compact formula that is 40 times more accurate
than the benchmark. Furthermore, instance II achieves even lower MSE score.
However, this improvement is accompanied by rapid growth in the algebraic
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complexity and includes terms that are hard to interpret. We note that the
SR configurations that we have run without using the self-composed features
resulted in nearly five times higher error than instances I and II(i.e., MSE
of 848.20). Moreover, the algebraic complexity of the SR instances without
self-composed features prohibits listing them in Table 5.1.

Table 5.1: Approximation results for the expected throughput.

Instance Expression
MSE

Train Test

Benchmark (1− ρ)cµ2 6890.43 7898.91

I (1−ρ)c2µ2ρ
s−c

s 170.79 195.58

II (1−ρ)cµ2ρ
s−c

s + µ2c(1− ρ)(ρ− 0.867) 111.85 126.96

We conclude that our technique generates highly accurate approximations
for both the mean waiting time and the throughput of the analyzed queue-
ing system. Moreover, this accuracy is achieved without including too many
terms in the algebraic expressions, and as a result, the formulas are relatively
compact.

5.4 Conclusion

In this chapter, we further studied our method to learn the performance of a
queueing system by using the SR algorithm. We showed that this algorithm
is able to benefit from insights of the performance by analysis of the system
in specific cases. By expanding on these results, our algorithm generates an
expression for a broader range of parameters, and therefore, has the potential
to push the field of queueing theory further.

We applied our method to approximate two main performance metrics of
a given two-stream blending system. We showed how one could apply and
tailor the SR algorithm to this queueing framework by incorporating insights
of already known results for this system. The obtained closed-form expressions
result in remarkably accurate estimations for both performance metrics.

The results raise a number of questions for further research. For example:
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‘How do the generated approximations relate to the design of the training data
set?’ Next to that, an extensive analysis of the SR settings that might be opti-
mal in a typical queueing system would significantly facilitate the application
of the presented technique to other problems within this field of research.

5.5 Appendix

In the following, we show how the matrix-geometric method [60] can be used
to find the stationary distribution of the system for given system parameters
λ, µ1, µ2, s and c. As discussed, the transition rates are given by (5.1). This
implies that the generator matrix, Q, has a block structure of the following
form:

Q =


B00 B01 0 0 0 · · ·
B10 A1 A0 0 0 · · ·
0 A2 A1 A0 0 · · ·
0 0 A2 A1 A0 · · ·
...

...
...

. . .
. . .

. . .

 ,

with corresponding matrices

A0 =


sµ1 0 · · · 0
0 (s− 1)µ1 · · · 0
...

. . .
. . .

...
0 0 · · · (s− dce)µ1

 , (5.4)

A1 =


q1,1 0 · · · · · · 0
µ2 q2,2 0 · · · 0
0 2µ2 q3,3 · · · 0
...

. . .
. . .

...
0 0 · · · dceµ2 qdce+1,dce+1

 , (5.5)

A2 =


λ 0 · · · 0
0 λ · · · 0
...

. . .
. . .

...
0 0 · · · λ

 , (5.6)

where dce and bcc stand for the least integer greater or equal to c and the
greatest integer less or equal to c correspondingly, and qi,i = −(A0 + A2)ei
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for 1 ≤ i ≤ dce + 1 and ei being the unit vector. Furthermore, A0, A1, and
A2 are (dce + 1)-by-(dce + 1) square matrices, whereas B00, B10, and B10 are
of size s(dce + 1)-by-s(dce + 1). Finally, we note that we do not explicitly
present the non-zero entities of B00, B10, and B10 due to readability and size
constraints. Nevertheless, the exact values can be easily derived from the
transition rates (5.1).

By definition this is a QBD process and the following normalization equa-
tion holds:

1 =

∞∑
i=0

πie = π0e+ π1(I +R+R2 + · · · )e = πoe+ π1(I −R)−1e, (5.7)

where e is the unit vector, πi = (πi,0, πi,1, . . . , πi,K) are the equilibrium prob-
ability vectors and R is such that πi = π1R

i−1.

Now, one can apply the technique outlined in Section 3.7 to derive R,
and consequently, the equilibrium probability vectors. Once the stationary
distribution of the system is obtained, one can derive the mean waiting time
of the priority jobs and the throughput of the rest.
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Chapter 6

Performance Evaluation of Nested

Systems

Various types of systems across a broad range of disciplines may be modeled by
tandem queues with nested sessions. Strong dependence between the servers
has proven to make such networks complicated and difficult to study. An
exact analysis is in most of the cases intractable. Moreover, even when perfor-
mance metrics such as the saturation throughput and the utilization rates of
the servers are known, determining the limiting factor of such a network can
be far from trivial. In this chapter, we present a simple, tractable and nev-
ertheless relatively accurate method for approximating the above-mentioned
performance measurements for any server in a given network. In addition, we
propose an extension to the intuitive ‘slowest server rule’ (SSR) for identifi-
cation of the bottleneck, and show through extensive numerical experiments
that this method works very well.

The work in this chapter is based on A. Hristov, J.W. Bosman, R.D. van der
Mei and S. Bhulai. Throughput and bottleneck analysis of tandem queues with
nested sessions. To appear in Probability in the Engineering and Informational
Sciences [38].

6.1 Introduction

Networks where the service time at a given server is dependent on the queueing
behavior of other queues are called Layered Queueing Networks (LQNs). Such
systems find application in various fields like computer science [25,74], health
care [97], telecommunication software systems [79], and assembly lines [12]. In
this chapter, we analyze a specific type of LQNs, which are characterized by
having exactly one serving node per layer. We refer to such systems as tandem
queues with nested sessions. As an example, consider a queueing network that
models the customer dynamics at a gas station. Drivers have to first fuel their
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cars at the fuel pump and then pay to a cashier inside the station. In this
case, there are two nodes, i.e., servers: the fuel dispensers and the cashiers.
Each one of these servers is characterized by a service rate and a number of
available slots, i.e., sessions. Note that the customers occupy a place at the
first node (the fuel dispensers) throughout the whole procedure – clients leave
and free the space at the fuel pump only after filling gas and paying the cashier.
Therefore, the service speed of the second server (the cashiers) influences the
sojourn time at the first node as well.

The dependency between the various layers in an LQN may be signifi-
cant and therefore must be taken into account. This makes the mathemat-
ical analysis of such networks challenging. Solutions based on approximate
versions [5, 14, 78] of the mean value analysis algorithm [71] are researched
in [25, 74, 95]. Other algorithms for obtaining estimates of the performance
metrics of LQNs include those developed in [32,86,87], where stochastic process
algebras are used for the analysis. Next to the above-mentioned approaches
for generalized LQNs, there is a number of studies on special cases of such
networks. A specific polling queueing system analyzed in [19] can be consid-
ered as an instance of an LQN. Other examples are systems with exactly two
layers. Such networks are studied in [20] by means of the power-series algo-
rithm [9] and in [65–67] with the help of matrix-analytic methods [60]. The
algorithm presented in our study is approximating the performance metrics of
an LQN without a restriction on the number of layers. However, each layer
should contain exactly one server.

The goal of any bottleneck identification technique is to find the limiting
factor for the performance of a given system. In queueing networks without a
layered structure this task is rather trivial – the most loaded server is the one
that is slowing down the system [76,85]. However, in an LQN it might be the
case that more than one server is influencing the throughput. In such cases,
we need a new definition of a bottleneck and a new technique to identify it. In
this chapter, by a bottleneck we refer to the server whose service rate modifi-
cation results in the largest change in throughput for the system as a whole.
This definition agrees with the one for traditional queueing models in case the
network is not layered: the most loaded server is the one whose service rate
modification is most influential for the throughput of the system. However, the
dependency of the service times among servers with nested sessions turns the
bottleneck identification in such networks into a far more complicated task.
This is due to the fact that the most utilized server is not always the one that
plays the biggest role in slowing down the system [26].
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The first contribution of this research is the presented algorithm for ap-
proximating the performance of tandem queues with nested sessions. Given
that the system is overloaded we estimate the throughput, i.e., the saturation
throughput, and the utilization rate of each server. As a second contribu-
tion, we formulate an extended definition for an LQN bottleneck. Finally, we
introduce a novel layer-specific measure that could be used as a bottleneck
identifier.

The remainder of the chapter is organized as follows. Section 6.2 intro-
duces the model that we consider throughout the chapter and the approxima-
tion algorithm that can be applied to such models in order to estimate the
performance metrics. Furthermore, Section 6.3 extends the analysis of those
systems by describing a method for bottleneck identification. The accuracy of
the presented algorithms is shown in Section 6.4 and Section 6.5, respectively.
Finally, in Section 6.6 we discuss further research and state our conclusions.

6.2 Model

In this section, we present the specific class of LQNs that we consider in the
chapter. The model assumptions and the notation that is used throughout the
chapter are introduced in this section. Finally, we further elaborate on our
definition of a bottleneck.

6.2.1 Saturated tandem queues with nested sessions

Figure 6.1 will serve as an example in this section. It models a system consist-
ing of three tandem queues with nested sessions. In such a network, customers
acquire service from all the nodes before leaving the system. They visit the
nodes according to a predefined path, which is the same for all of them. Cus-
tomers start at the first node and only after receiving full service there, they
go to the next node (the path is from left to right in Figure 6.1). Customers
free the resource they occupy at a given node only after they receive their ser-
vice from all the nodes in the network. In comparison, in traditional tandem
queueing networks without a nested structure, the customers free the resource
at a node as early as they finish with their service at the node itself. Further-
more, the terminology used in systems with a nested structure differs from
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the one describing traditional queueing networks in a few important aspects.
First, the nodes are referred to as servers. Second, the possible number of
places that can be occupied by customers at those nodes are called sessions.

As we are interested in the maximum possible throughput that can be
achieved for a given network and pinpoint the bottleneck in case a queue
starts to build up, we analyze the system under the assumption that it is
saturated. This implies that all sessions at the first server are constantly
occupied. Therefore, we can model the system as a closed network with the
number of customers equal to the number of sessions at the first node. Next
to that, we assume the service time of server i to be exponentially distributed.

As input parameters for such models we use:

N : = the number of layers in the network;

ci : = the number of sessions at the i-th server, where 1 ≤ i ≤ N ;

µi : = the service rate at the i-th server, where 1 ≤ i ≤ N and µi = 1/βi.

Furthermore, we denote the layer containing the first server as the top layer
or equivalently the first layer. On one layer lower, i.e., on the second layer, is
situated the second server and the queue behind it, and so on. The network
consisting of the i-th layer, together with all the layers below it, is referred to
as the i-th subsystem.

To illustrate, we refer to Figure 6.1. In the presented network, there are
N = 3 layers with a number of sessions per server: c1 = 12, c2 = 8, and c3 = 5.
The occupied sessions are marked with black or striped depending whether the
user is requiring service from the specific server or waiting for a service from
another node. For example, although all twelve sessions are occupied at the
first server, only three of them are being served there, whereas the other nine
are waiting for/receiving service from either the second or the third node.
Therefore, in total there are nine customers at the second subsystem.
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Figure 6.1: A three-layered model (with c1 = 12, c2 = 8, c3 = 5).

6.2.2 Performance metrics

The goal of our approximation algorithm is to derive the following performance
metrics:

T (i) : = the saturation throughput of the i-th subsystem;

T (i)
max : = the throughput of the i-th subsystem assuming no waiting times;

U (i)
norm : = the normal utilization rate of the i-th server;

U
(i)
eff : = the effective utilization rate of the i-th server,

where

• normal utilization is the average portion of sessions that are occupied at
the corresponding server. The sessions can be occupied due to a request
that currently receives service from the server or such that holds the
session because it still needs to receive service at the sub-layers.

• effective utilization is the average portion of sessions that are occupied
by requests that receive service from the corresponding server.

To show the difference between the normal and the effective utilization rate,
we again refer to the system in Figure 6.1. Assume that the specific state
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depicted there represents the average number of sessions occupied in the long
run across the three servers. To obtain the normal utilization of a given server

(i.e., U
(2)
norm), one has to calculate the fraction of the occupied sessions. This

gives U
(2)
norm = 1. However, only six out of the eight customers at the second

node are acquiring service there, whereas the other two are at the third server.

Therefore, U
(2)
eff = 0.75.

Furthermore, we argue that one may assume ci ≥ cj for i < j as, due to
the layered structure of the network, the maximum number of sessions that
can be occupied on a server j is min{ci | i < j}.

The models we consider have strictly one server per layer. Therefore, the
sojourn time of a client at a given server i is exactly the sum of the waiting
time at server i, wi, the service time acquired at this node βi, and the sojourn
time in the (i+ 1)th subsystem.

6.2.3 Bottleneck analysis

Having obtained the maximum possible throughput of a given system, we
determine what would be the most efficient way to increase this performance.
We identify the bottleneck as the server that has the highest impact on the
throughput of the network.

As an example, we take the model in Figure 6.1 with µ1 = µ2 = µ3 = 5 as
a baseline. We plot the throughput in the three cases of µ1, µ2, or µ3 varying
while having the other two parameters fixed at their baseline values. As it can
be seen in Figure 6.2, changes in the service rate of the third node correspond
to largest gains/losses of the overall throughput. Hence, we conclude that in
this case the bottleneck is the third server.

6.3 Performance analysis

In this section, we describe our algorithm for approximating the performance
metrics and our bottleneck identification technique for tandem queues with
nested sessions. We present the method used to estimate the throughput and
the utilization rates by first applying it to a two-layered system. Second, we
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Figure 6.2: Throughput as a function of the service rates.

show how one can use a recursive scheme for approximating the performance
metrics of a network with any given number of layers N > 2. Finally, we
describe our bottleneck identification technique, which relies on the saturation
throughput of the various subsystems.

6.3.1 Exact solution for N = 2

We analyze the special case of a two-layered system. We model the net-
work as a continuous time Markov chain with corresponding state space S :=
{0, 1, 2, . . . , c1}, where state i denotes the total number of occupied sessions at
the second server. One can easily verify that this Markov chain has a generator
matrix Q with the following non-zero, non-diagonal entries:

qk,k+1 = µ1(c1 − k), k = 0, 1, . . . , c1 − 1,

qk,k−1 = µ2 min{c2, k}, k = 1, 2, . . . , c1,

where qi,k is the transition rate from state i to state k. In addition, we define

ρk :=
qk−1,k

qk,k−1
, k = 1, 2, . . . , c1. (6.1)
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As the analyzed system is a birth-death process, one can obtain the stationary
distribution π = (π0, π1, . . . , πc1) as a product form:

π0 =

1 +

c1∑
i=1

i∏
j=1

ρj

−1

,

πk = π0

k∏
i=1

ρi, k = 1, 2, . . . , c1.

Furthermore, using the stationary distribution π, one can obtain the desired
performance metrics in the following manner:

T (1) =

c1∑
i=0

πi(c1 − i)µ1, (6.2)

U
(1)
eff =

c1∑
i=0

πi
(c1 − i)
c1

, (6.3)

U
(2)
eff = U (2)

norm =

c1∑
i=0

πi
min{i, c2}

c2
. (6.4)

6.3.2 Recursive scheme for N > 2

We introduce a few notations that are used in this section:

• π(i,j) := the stationary distribution of the i-th subsystem conditioned
that it contains exactly j customers;

• T (i,j) := the saturation throughput of the i-th subsystem conditioned
that it contains exactly j customers;

• U (`,i,j)
eff := the effective utilization rate of the `-th server in case the i-th

subsystem is studied in isolation and contains exactly j customers;

• U (`,i,j)
norm := the normal utilization rate of the `-th server in case the i-th

subsystem is studied in isolation and contains exactly j customers.

In the following, we describe how one can estimate π(i,j), T (i,j), U
(`,i,j)
eff , and

U
(`,i,j)
norm , for any given 1 ≤ i ≤ N − 1; 0 ≤ j ≤ ci+1, and 1 ≤ ` ≤ i. To analyze
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the i-th subsystem in isolation we assume it to be saturated. Therefore, all
the sessions on the i-th server should be occupied. Hence, we take min{j, ci}
as the number of sessions at the i-th server. Moreover, due to the assumption
that there is an infinite number of customers in the i-th queue, there is no
difference in the networks with j ≥ ci. Therefore, in the following analysis we
let j ≤ ci.

The approach is similar to the one described in the case of a two-layered
system. Again, we model the i-layered network as a continuous time Markov
chain with a state space S := {0, 1, 2, . . . , j}, where the state denotes the total
number of customers in the (i − 1)-layered subsystem. In this case, however,
we use the following approximation to the transition rates:

qk,k+1 = µi(j − k), k = 0, 1, . . . , j − 1,

qk,k−1 = T (i+1,k), k = 1, 2, . . . , j.

Having the approximated transition rates, one can use those values in Equa-
tion (6.1) to obtain ρk for 1 ≤ k ≤ j. Furthermore, by the same method
described in Section 6.3.1, one can derive the stationary state probabilities
π(i,j). Once the values of π(i,j) have been obtained, one can calculate the
performance metrics for the corresponding (i, j) tuple as follows:

T (i,j) =

j∑
k=0

π
(i,j)
k (j − k)µi,

U
(`,i,j)
eff =


j∑

k=0

π
(i,j)
k

j−k
ci
, ` = i,

j∑
k=0

π
(i,j)
k U

(`,i+1,j)
eff , i < ` ≤ N,

U (`,i,j)
norm =


j
ci
, ` = i,
j∑

k=0

π
(i,j)
k U

(`,i+1,j)
norm , i < ` ≤ N.

As can be seen, the results for the i-th subsystem depend on the values for the
(i+1)-th one. Therefore, starting from the last, i.e., the (N−1)-th, subsystem
one can obtain the desired metrics by the method for the two-layered network.
Using the technique described above, one can further recursively derive the
values for higher subsystems and eventually the ones for the initial system:

T (1,c1), U
(`,1,c1)
eff , and U

(`,1,c1)
norm for 1 ≤ ` ≤ N .
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6.3.3 Bottleneck identification technique

In this section, we explain our technique for bottleneck identification. We want
to determine the server whose service rate is the most influential one to the
overall throughput. Therefore, similar to the ‘slowest server rule’ (SSR), we
first calculate each server’s speed in isolation ciµi, where 1 ≤ i ≤ N . Next to
that, due to the nested structure of the system, one should take into account
the dependence between the various servers. Thus, we introduce a server-
specific metric, which we refer to as the effectiveness rate of the server. One
can obtain this metric as follows:

T (i)/T (i)
max =

ci∑
i≤k≤N (βk + wk)

/
ci∑

i≤k≤N βk
=

∑
i≤k≤N βk∑

i≤k≤N (βk + wk)
,

for 1 ≤ i < N . Note that this is exactly the ratio between the total service
time and the actual expected sojourn time. Therefore, the higher this ratio is
(i.e., the closer to 1 it is), the less waiting occurs in the nodes below it, and
hence the less influential this nested structure is for the specific server. On the
other hand, a small ratio would stand for a large waiting time in lower nodes,
which means that the server is not working at its full potential.

In the following, we summarize our bottleneck identification procedure:

Step 1: Obtain T (i) and T
(i)
max for all 1 ≤ i ≤ N . The value of T (i) can be

estimated by applying our approximation algorithm on the i-th subsystem,

whereas T
(i)
max can be directly derived from the model parameters:

T (i)
max =

ci∑
i≤k≤N βk

;

Step 2: Assign the following “Eff” score to each server:

Eff(i) =
T (i)

T
(i)
max

ciµi,

where 1 ≤ i ≤ N ;

Step 3: Determine the server with the smallest “Eff” score as the bottleneck.
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6.4 Results

In this section, we present the results of the approximation algorithm de-
scribed in Section 6.3.2. In addition, we also show how our technique relates
to methods introduced in similar studies.

The system parameters that we vary in the numerical tests are the number
of layers N , the number of sessions per server, c = (c1, c2, . . . , cN ), and the
service rate at each node, µ = (µ1, µ2, . . . , µN ). To evaluate our method we
want to identify a possible relationship between the model parameters and
the algorithm’s accuracy. Since each layer is associated with two variables,
extensive test suites for systems with many layers are unfeasible. Therefore,
we first analyzed the performance of the algorithm for N = 3, in which case
we could examine more than 2, 000, 000 different model instances with a broad
range of values for the vectors c and µ. We used the results of these initial
tests to find out how the number of sessions and the service rates influence the
estimation accuracy. Next to that, we identified the worst-case scenarios for
three-layered systems. Based on the findings, we could tailor the test settings
for networks with more layers in such a way that we get the average and the
worst case performance indicators for the algorithm. Moreover, we verified that
the observed relationship between the system parameters and the performance
of our method remain valid also for networks with more layers, e.g., ten layers.
In these cases, we compared the calculated estimates to values obtained by a
simulation as the exact solutions are computationally intractable.

6.4.1 Results for three-layered networks

First, we designed three test suites with a different number of sessions per
server c = (c1, c2, c3). Namely, one that represents a small system with c =
(3, 2, 1), one for c = (12, 8, 5), and the third having c = (100, 90, 70). In all
test suites we vary the values of the service rates µ1 and µ2 from 0.1 to 10
with a step size of 0.1. Next to that, without loss of generality, we have fixed
µ3 = 1. The reason is that only the ratio between the various service rates
is important with respect to the approximation error. This comes from the
fact that scaling the rates is equivalent to scaling the time, which does not
influence the performance metrics estimated by the algorithm.

At this point, we examine only three-layered systems as they can also be
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solved exactly, which makes the analysis faster and more accurate in compar-
ison to simulation. This allows us to perform a vast number of test cases and
draw conclusions based on the results.

As it can be seen from the plots in Figure 6.3 for the three-layered systems,
the throughput approximation error in each of the test suites is largest in a
specific region and goes to 0 outside of it. Therefore, we will not examine the
average approximation error as it would be highly dependent on the chosen
range of parameters. Instead, we focus on the worst-case scenarios.

Another observation is that the lower the number of sessions per server
there are, the greater the error is. For example, the maximum error in the
first test suite is 0.7%, which is more than twenty times higher than the one
in the case of a relatively large number of sessions.

In order to test these two conclusions, we design 220 additional test suites
of three-layered models. The service rates are again set to vary in the same
manner: µ1 and µ2 range from 0.1 to 10 with a step size of 0.1 and µ3 = 1.
However, this time we examine all possible tuples c = (c1, c2, c3) up to ten
sessions per server, i.e., all combinations of c1, c2, and c3 where c3 ≤ c2 ≤
c1 ≤ 10.

As expected, all 220 plots of the approximation error look almost the same
as the one from Figure 6.3(a) – the relatively high error rates form a specific
region. In those test suites, the region is around the point for which c1µ1 =
c2µ2 = c3µ3. The results of those 2.2 million additional test cases also agree
with our second observation – the fewer the number of sessions, the worse the
algorithm performs. Based on these, one can correctly identify the worst cases
from all the tests conducted so far - the highest error of 2.4% is observed at
the systems with the following parameters: c = (2, 1, 1) and µ = (0.6, 1, 1);
c = (3, 1, 1) and µ = (0.3, 1, 1).

6.4.2 Results for ten-layered networks

With the test suites consisting of three-layered systems we examined the de-
pendency between the accuracy of the algorithm and the number of sessions
and the service rate of the various servers. Next to that, we want to analyze
the influence of the number of layers on the approximation error of the algo-
rithm. Therefore, we look at systems with more than three layers. However,

94



in those cases, we use simulation to obtain benchmark results as the exact
solution is computationally intractable.

(a) c = (3, 2, 1)

(b) c = (12, 8, 5)

(c) c = (100, 90, 70)

Figure 6.3: Throughput approximation errors for the various test suites for
three-layered systems.

In the following, we investigate systems with ten layers. As there are twenty
different parameters for those systems, extensive test suites where all those pa-
rameters are varied are not possible. First, we performed more than 10, 000
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test cases with random parameter sets. Complying with our observations so
far, the relative error of those tests was in most of the cases insignificant and
rarely larger than 0.1%. Therefore, we tried to tailor the parameters in order
to find the worst-case scenarios, which we can compare to those found in the
three-layered systems. The highest error that we found is 7.7% for the ten-
layered network with the following parameters: c = (4, 3, 3, 2, 2, 2, 1, 1, 1, 1),
and µ = (0.5, 0.75, 0.75, 0.9, 0.9, 0.9, 1, 1, 1, 1). Next to systems with the above
stated number of sessions per server, we analyzed two more test suites with pa-
rameters c = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1) and c = (15, 14, 13, 12, 11, 10, 9, 8, 7, 6).
We varied the service rates in the range 20% − 500% of the following values:
µ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and µ = (1, 1, 1, 2, 2, 2, 2, 3, 3, 3) correspondingly.
These two additional test suites were designed to examine the algorithm’s ac-
curacy error in unfavorable parameter sets - a few number of sessions per node
and similar servers’ speed. Nevertheless, the approximation error was rarely
significant with a 95th percentile value of 3.76%.

Due to its recursive nature, the accuracy of our algorithm indeed gets worse
with an increase in the number of layers. Nevertheless, even the largest errors
found for ten-layered systems are comparable with the average ones stated
for other algorithms [25, 87]. At the same time, one has to consider that
our method is designed specifically for tandem queues with nested sessions,
whereas the above-cited algorithms can be used to solve more general LQNs.

6.5 Bottleneck identification results

In the following, we present the results with regards to our bottleneck iden-
tification method. To the best of our knowledge, the prominent techniques
researched so far are the ones shown in [26] and the intuitive ‘slowest server
rule’ (SSR). Therefore, we compare those three bottleneck identification met-
rics.

Recall that the bottleneck identified by our method is the server with the
lowest Eff(i) score. Similarly, the server considered as the bottleneck according
to the SSR is the one with the smallest ciµi product. Note that the SSR is used
for traditional tandem queues without nested structure, where the throughput
of the whole network is determined by the speed of the slowest node in the
chain. Therefore, considering that the throughput of a given server i is the
number of sessions times the service rate of each one of them, ciµi, it follows
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directly that the node with the lowest ciµi is the limiting factor.

Following the technique in [26], we assign one more score BStrength(i) to
each server except for the last one. The main idea is to take the ratio of the

normal utilization rate U
(i)
norm of server i over the largest normal utilization

rate of a server below it, max{j>i} U
(j)
norm. The server with the largest score is

the one identified as the bottleneck, i.e.,

max
1≤i<N

BStrength(i) = max
1≤i<N

U
(i)
norm

maxj>i U
(j)
norm

.

Finally, we describe the method which we use to determine the real bottle-
neck. According to our definition, this is the server whose speed modification
results in the largest change in the saturation throughput of the system. There-
fore, given a system with N servers, we examine N modified networks. In each
one of those N systems, the service rate of one of the nodes is increased by
0.01%, whereas all other parameters are kept the same. Using exact analysis
we derive the saturation throughput of those modified networks and identify
the largest one. In this way, we find the server that is the most influential to
the performance of the initial system.

Based on the above-described test framework, we evaluate the Eff, SSR,
and BStrength techniques on test suites, similar to those described in Sec-
tion 6.4 above. Once again, for the three-layered systems we take: c = (3, 2, 1);
c = (12, 8, 5), and c = (100, 90, 70) with µ1 and µ2 vary from 0.1 to 10 with a
step size of 0.1. However, this time, next to the test cases where µ3 is fixed at
1, we include such with µ3 fixed at 10 and at 100. The test suites are extended
in such a way in order to achieve a fair number of cases in which a specific
server is the bottleneck. In addition, we evaluated the bottleneck identification
techniques for all the configurations of the ten-layer system that we described
previously.

The results from the test suites with three-layer systems are listed in Ta-
ble 6.1. The table shows the percentage of cases in which the corresponding
technique identified the bottleneck correctly. Due to the fact that no BStrength
score can be assigned to the last node, we exclude the cases that have the third
server as a bottleneck when evaluating this specific technique. From the re-
sults, one can conclude that our technique is performing better than the other
two. Note that the higher in the network the bottleneck is, the harder it is
for the three techniques to identify it correctly. This can be explained by the
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nested structure being more influential for those servers than for the lower
ones.

Table 6.1: Cases of correct bottleneck identification.

Technique Server 1 Server 2 Server 3 Total

Eff 85.07% 95.41% 99.98% 93.74%

SSR 83.42% 94.16% 100.00% 92.88%

BStrength 36.49% 100.00% − 72.24%

Figure 6.4(a) shows that the cases, in which our technique does not give
the correct result, lie on the borderline of the parameters ranges for which
the bottleneck shifts from one server to another. In those cases, two or more
servers are almost equally influential to the overall throughput, and hence
even though the server identified by our method is not the real bottleneck,
it still does limit the performance of the system. Therefore, we believe that
the following relative error gives more insight into the performance of the
algorithms:

Er =
Tnew − Talg
Tnew − Told

× 100%,

where Told denotes the saturated throughput of the tested system, Talg, the
one where the rate of the server identified as the bottleneck by the correspond-
ing algorithm is increased with 0.01%, and Tnew, the one where the rate of the
server that is the real bottleneck is modified with 0.01%. The average relative
error Er from all test cases (both the three-layered and the ten-layered con-
figurations) is 0.92% for our technique, 0.95% for the SSR and 38.49% for the
BStrength.

As a final remark, we would like to point out that our method for bottleneck
identification coincides with the SSR in case of a tandem queueing network or
in the similar case of an equal number of sessions per server. Therefore, we
believe that our method can be considered as a generalization of the SSR.

6.6 Conclusion

This chapter has studied the performance evaluation of tandem queues with
nested sessions. An approximation algorithm for obtaining the servers’ utiliza-
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(a) Eff method

(b) BStrength method

Figure 6.4: Bottleneck identification results for c = (3, 2, 1) and µ3 = 100.

tion rates and throughput was presented. We believe that the high estimation
accuracy of the algorithm is an indication of low approximation errors also in
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case the model is further extended to fit more general LQNs. To study the
generalization of our technique, we would have to apply it to LQNs that have
a non-linear structure. Therefore, a promising further research might allow
incorporating our method in more complicated layered networks.

In addition, we introduced a server-wise metric that extends the analysis
by identifying the bottleneck in a given queueing network. Even though it
did not pinpoint the most throughput-limiting server in a small percentage of
the cases, it still identified a server that is severely impeding the performance
of the system. Moreover, being an extension of the SSR, it is applicable to
queueing networks without a layered structure as well. Therefore, we believe
that this bottleneck identification method is more general and at the same
time more accurate than the existing techniques so far.
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Summary

The increasing complexity of IT infrastructures poses significant challenges
in managing computer systems. Ensuring efficient usage of the available re-
sources while preserving the desired Quality of Service (QoS) demands one to
go beyond ad-hoc solutions. Motivated by this, we develop tools and methods
to evaluate the performance of ICT service chains, and furthermore, to manage
their control in an optimal manner. One of the main goals of our research is
to bridge the gap between theory and practice. Therefore, we present possible
IT applications as a context for each of the studied techniques. We explore a
new solution concept by combining the fields of queueing theory and machine
learning. We believe that the introduced techniques have a great potential
offering remarkably accurate, and at the same time easily scalable, generic
solutions to real-world problems.

Motivated by caching in database application, in Chapter 2 we analyze a
tandem queueing model consisting of two servers where the output of one of
the servers becomes the input of the second node. More specifically, we model
the application level sending write requests to the cache as the first server
and the cache as the second one. Furthermore, we introduce the possibility
to switch on/off any of the two servers at any given moment. Next to that,
we assume holding costs at each of the two queues and a start-up cost for
the second server, i.e., the cache. This way, we formulate a Markov Decision
Process (MDP) with an optimal control policy defined as the one minimizing
the long-term average costs of the system. However, the existing numerical
techniques to compute this optimal policy are inefficient or even unfeasible for
some real-world applications. Therefore, we present a scalable approximation
algorithm to obtain a threshold-type decision policy. The researched technique
is rather intuitive and the approximated policy results in long-term average
costs within a few percentages of the optimal. Therefore, we believe that
our method contributes to expanding both the theoretical and the practical
knowledge on the matter.

Chapter 3 further explores the performance evaluation and optimal control

111



of database caching mechanisms. In contrast to the preceding chapter, this
chapter focuses on the so-called ‘write-behind’ cache mechanism. We model
the system as a single server that processes jobs in two stages. The first
stage corresponds to pre-processing jobs one at a time, i.e., requests being
written in the cache. After pre-processing the jobs are accumulated in a batch
of given size K and served at once, i.e., the requests are being transferred
from the cache to the database. The goal of the study is to identify the
batch size K that minimizes the expected waiting time of arriving jobs. To
approximate the optimal value of K, we first derive an analytic solution for the
stationary distribution of jobs in the system for two special cases: K = 1 and
K = 2. Next, we outline a fluid approach which results in an approximation
of the expected waiting time for large batch sizes. Finally, we show how
to combine the insights from these techniques to find the optimal batch size
in an efficient and scalable way. Extensive numerical experimentation shows
that the approximation works extremely well for a wide range of parameter
combinations.

In Chapter 4 we introduce a new technique to obtain closed-form approx-
imations of the optimal threshold-based policy for MDPs. Our method uses
the Symbolic Regression (SR) algorithm. We present how to significantly im-
prove both the accuracy and the execution time of this evolutionary algorithm
by tailoring it to the corresponding MDP framework. Applying our approach
on two running examples results in analytic expressions that approximate the
optimal control policy with great accuracy. Next to that, we show that the
obtained mathematical formulas allow sensitivity analysis of the system pa-
rameters. In addition, the opportunity to instantly calculate a new threshold
function for any change in the parameters makes our solution particularly ap-
pealing for an application in real-time systems. Furthermore, we believe that
the introduced technique is highly generic and is applicable to a broad range
of other MDPs.

In Chapter 5 we further research the potential of combining queueing the-
ory together with tools from machine learning. We introduce a way to incor-
porate insights and results derived from queueing theory techniques into SR.
The presented method leads to closed-form approximations for the relevant
performance metrics of a given system. To illustrate the technique, we apply
it to the so-called two-stream blending system. We use our method to obtain
closed-form expressions for the mean waiting time and the throughput. The
generated analytic formulas are remarkably accurate and at the same time
algebraically simple.

112



Finally, we abstract over the models considered to this point and adopt a
high-level view of the ICT service chains. In Chapter 6, we analyze a Layered
Queueing Network (LQN) in which a given number of servers are organized in
a nested fashion, and therefore influence each others service rate. We present
a simple, computationally tractable and nevertheless highly accurate approx-
imation algorithm for obtaining the servers’ utilization rates and throughput
of the given nested system. We believe that the high accuracy of the approx-
imation opens up opportunities to extend the model to more general LQNs.
Furthermore, we show that even when performance metrics such as the satura-
tion throughput and the utilization rates of the servers are known, determining
the limiting factor in the network is far from trivial. Therefore, we introduced a
server-wise metric for identification of the bottleneck that extends the intuitive
‘slowest server rule’. The conducted numerical tests show that the proposed
bottleneck identification technique is more accurate than the existing algo-
rithms so far. Next to that, being an extension of the ‘slowest server rule’, our
method is applicable to queueing networks without a layered structure as well.
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Samenvatting

De toenemende complexiteit van IT infrastructuren vormt een grote uitdag-
ing voor de beheersbaarheid van computersystemen. Hierbij is het van groot
belang de beschikbare bronnen efficiënt in te zetten onder voorwaarde dat
de gewenste Quality of Service (QoS) wordt behaald. Om deze complex-
iteit en schaal het hoofd te kunnen bieden moet er verder worden gedacht
dan voor de hand liggende ad-hoc oplossingen. Dit heeft ons gëınspireerd
om prestatiemodellen en algoritmen te ontwikkelen die het gedrag van ICT-
serviceketens beschrijven. De modellen en algoritmen kunnen bovendien ge-
bruikt worden voor het bepalen van besturingsregels voor deze ICT-systemen.
Een van de hoofddoelen van ons onderzoek is het overbruggen van de kloof
tussen theorie en praktijk. Om dit te bewerkstelligen plaatsen we elk van
de bestudeerde modellen en algoritmen in de context van een beoogde ICT-
toepassing. We introduceren een nieuwe oplossingsmethode waarin technieken
uit de wachtrijanalyse en machine learning vakgebieden worden gecombineerd.
In deze methode passen we machine learning toe op concepten uit de wachtri-
janalyse. De resulterende modellen zijn in staat om variëteit van relevante
externe invloeden mee te nemen. Dit maakt de ontwikkeling mogelijk van ac-
curate en schaalbare modellen en algoritmen met een bredere toepasbaarheid.

Het model in hoofdstuk 1 is gëınspireerd door de interactie tussen database
toepassingen en de onderliggende opslag. Deze interactie vind plaats doormid-
del van een cache die schrijfverzoeken tijdelijk opslaat in werkgeheugen. Ons
model kan worden gezien als een tandemmodel waarbij de uitvoer van de eerste
server genereert de invoer van de tweede server. De eerste server representeert
het verzenden van schrijfverzoeken vanuit applicatieniveau naar de cache. De
tweede server modelleert het schrijven van de cache naar de onderliggende
opslag. Elk van de twee servers kan op elk gewenst moment worden in- of
uitgeschakeld. Daarnaast veronderstellen we wachtkosten bij elk van de twee
wachtrijen en opstartkosten voor de tweede server, d.w.z. de cache. We con-
strueren een Markov Decision Process (MDP) om de optimale strategie te
bepalen die de gemiddelde langetermijnkosten van het systeem minimaliseert.
De bestaande numerieke technieken om de bedieningsstrategie te optimalis-
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eren zijn inefficiënt en zelfs onhaalbaar voor bepaalde systemen in de realiteit.
Daarom presenteren we een schaalbaare benadering om de dempelwaarde-
strategie te bepalen voor het in en uitschakelen van de servers. De onderzochte
techniek is intüıtief en resulterende strategie zorgt dat de gemiddelde kosten
over de lange termijn binnen enkele procenten van optimale strategie liggen.

Hoofdstuk 3 beschouwt de prestatiemodellen en bijhorende optimalisering
van database caching-mechanismen vanuit een ander perspectief. In tegen-
stelling tot het vorige hoofdstuk, richt dit hoofdstuk zich op het zogenaamde
‘write-behind’ cachemechanisme. We modelleren het systeem doormiddel van
een Markovmodel waarin een enkele server de betreffende taken in twee stap-
pen verwerkt. De eerste stap correspondeert met plaatsen en voorbereiden van
de binnenkomende taken in de cache. Na de voorverwerking worden de taken
verzameld in een batch ter grootte K die in ëën keer wordt verwerkt als een
grote schrijfopdracht. Het doel is om de grootte van de batch te bepalen die
de verwachte wachttijd voor aankomende opdrachten minimaliseert. Om de
optimale waarde van K te schatten, leiden we eerst een analytische oplossing
af voor de stationaire verdeling van taken in het systeem voor twee speciale
gevallen: K = 1 en K = 2. Vervolgens leiden we een vloeistofmodel af om de
verwachte wachttijd van grote batches te benaderen. Ten slotte combineren we
deze technieken tot een uitdrukking waarmee de optimale batchgrootte op een
efficiënte en schaalbare manier kan worden bepaald. Uitgebreide numerieke
experimenten tonen aan dat de benadering heel goed werkt voor een veelvoud
van parametercombinaties.

In hoofdstuk 4 introduceren we een nieuwe techniek om expliciete be-
naderingen te bepalen voor drempelwaardestrategiën in MDP’s. Onze meth-
ode maakt gebruik van het Symbolic Regression (SR) -algoritme. We zijn
in staat zowel de nauwkeurigheid als de rekentijd van dit algoritme aanzien-
lijk verbeteren door gebruik te maken van domeinspecifieke kennis uit het
MDP-raamwerk. We passen onze aanpak toe op twee voorbeelden. Voor
deze voorbeelden hebben we analytische uitdrukkingen afgeleid die de opti-
male strategie met grote nauwkeurigheid benaderen. De gesloten vorm van
deze uitdrukkingen stelt ons bovendien in staat een gevoeligheidsanalyse uit
te voeren op de systeemparameters. De gevonden uitdrukkingen maken het
mogelijk om drempelwaardestrategiën direct aan te passen aan veranderingen
in de systeemparameters. Dit maakt onze oplossing bijzonder aantrekkelijk
voor een toepassing in real-time systemen. We zijn er van overtuigd dat onze
aanpak zeer generiek is en van toepassing is op een breed spectrum van MDP
formuleringen.
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In hoofdstuk 5 breiden we ons onderzoek uit naar de combinatie van
wachtrijtheorie met technieken uit de machine learning. We introduceren een
manier om de technieken en modelcomponenten uit wachtrijtheorie te vertalen
naar SR. De gepresenteerde methode kan gesloten vorm benaderingen afleiden
voor de belangrijkste prestatiematen van wachtrijmodellen. Ter demonstratie
passen we onze aanpak toe op het zogenaamde ‘two-stream blending’ systeem.
Ook voor dit model hebben we uitdrukkingen in gesloten vorm afgeleid voor de
gemiddelde wachttijd en de maximale doorvoersnelheid. De gegenereerde ana-
lytische uitdrukkingen zijn nauwkeurig en tegelijkertijd algebräısch eenvoudig.

Tenslotte beschouwen we een model dat op een hoger abstractieniveau ligt
dan de modellen in voorgaande hoofdstukken. In hoofdstuk 6 analyseren we
een Layered Queuing Network (LQN) waarin servers een gelaagde keten vor-
men en daarom elkaars doorvoersnelheid bëınvloeden. We presenteren een een-
voudig benaderingsalgoritme voor het bepalen van de bezettingsgraad en door-
voersnelheid van de gelaagde servers. Wij geloven dat de hoge nauwkeurigheid
van de benadering potentie biedt voor uitbreiding naar generiekere gelaagde
wachtrijmodellen. Verder laten we zien dat zelfs wanneer prestatiematen zoals
de maximale doorvoersnelheid en de bezettingsgraad van de servers bekend
zijn, het bepalen van de beperkende factor in het netwerk niet triviaal is.
Daarom introduceren we een prestatieindex die een uitbreiding is van de ‘slow-
est server rule’. Uit de uitgevoerde numerieke tests blijkt dat de voorgestelde
bottleneckidentificatie techniek nauwkeuriger is dan de bestaande algoritmen.
Daarnaast is onze methode ook toepasbaar op klassieke wachtrijnetwerken
zonder gelaagde structuur.
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