
Optimization of hinterland container
transportation and terminal operations

Bernard Zweers

Contents

1 Introduction 1
1.1 Multimodal transportation 3

1.2 Terminal operations . 5

1.3 Overview of this dissertation 7

2 Optimizing barge utilization 11
2.1 Introduction . 11

2.2 Literature review . 13

2.3 Problem formulation . 14

2.4 Mathematical model . 20

2.5 Solution methods . 27

2.6 Numerical results . 39

2.7 Conclusion . 43

3 Planning hinterland transportation in congested deep-sea terminals 45
3.1 Introduction . 45

3.2 Literature review . 46

3.3 Problem formulation . 48

3.4 Mathematical model . 54

3.5 Solution methods . 58

3.6 Numerical results . 69

3.7 Conclusion . 80

4 Minimum cost paths with stochastic travel times and overbooking 83
4.1 Introduction . 83

4.2 Literature review . 85

4.3 Problem formulation . 87

4.4 Mathematical model . 88

4.5 Solution method . 91

iv

4.6 Numerical results . 99

4.7 Conclusion . 103

5 Pre-processing moves in container yards 105
5.1 Introduction . 105

5.2 Literature review . 106

5.3 Problem description . 110

5.4 Mathematical model . 116

6 Optimizing pre-processing and relocation moves 125
6.1 Solution methods . 125

6.2 Numerical results . 142

6.3 Conclusion . 148

7 Limited number of pre-processing moves 151
7.1 Solution methods . 151

7.2 Extension to multiple bays 163

7.3 Numerical results . 170

7.4 Conclusion . 178

8 Approximation algorithms for cluster capacitated problems 181
8.1 Introduction . 181

8.2 Literature review . 184

8.3 Preliminaries . 186

8.4 Maximum coverage problem with knapsack constraints 188

8.5 Maximum coverage problem with cluster constraints 198

8.6 Multiple knapsack problem with cluster constraints 203

8.7 Capacitated facility location problem with cluster constraints . 215

8.8 Conclusion . 218

9 Conclusion 221

Bibliography 225

Summary 235

Samenvatting 239

1
Introduction

Although they are just simple metal boxes, the influence of shipping containers
on the global economy cannot be overestimated. When we think of the impor-
tant inventions of the twentieth century, usually communication methods such
as radio, television, and computers come to mind. In the logistics and trans-
portation domain, the invention of airplanes and the mass production of cars
are the noticeable changes in that century. However, the rise of containerized
transport after World War II is one of the main driving forces of the economy’s
current state of globalization (Headrick, 2009, Chapter 8).

Before World War II, the introduction of steamships and trains made trans-
portation itself already rather cheap. However, loading and unloading a ship
or train was extremely time-consuming and labor-intensive (Krugman, 2011).
Goods were packed in barrels, bags, or wooden crates, but they often needed to
be loaded and unloaded one by one. This slow process resulted in the fact that
ships spent about two-thirds of their time in ports (Bernhofen et al., 2016).
Moreover, many longshoremen worked under harsh working conditions.

The introduction of the container made shipping inexpensive because the
process of loading and unloading a ship goes faster and fewer longshoremen are
needed. The benefit of containers is that they have standardized dimensions.
The size of a container is defined by Twenty-foot Equivalent Units (TEUs),
which corresponds to the length of the container. The most commonly used
containers have a length of twenty-foot and forty-foot, so 1 and 2 TEU, respec-
tively. Some containers have a length of forty-five feet, which is considered as
a 3 TEU container. The standardized dimension enables specialized equipment
to handle the containers. A single crane operator can unload a forty-foot long
container in less than two minutes (Levinson, 2016, Chapter 1). Consequently,
a single person can unload many more goods than before the introduction of
containers in the same amount of time. In the early years of the 1970s, labor
productivity in terms of tons per hour in ports was about twenty times higher
than at the beginning of the 1960s (Bernhofen et al., 2016). The drop in trans-
portation costs caused that goods produced in other parts of the world with
lower wages became cheaper than locally produced goods. Hence, nowadays,

2 1. Introduction

1980 1985 1990 1995 2000 2005 2010 2015 2017

0

500

1,000

1,500

2,000

Year

T
ra
de

in
m
ill
io
n
to
ns

Figure 1.1 International seaborne trade that is carried by containers (Statista,
2020).

consumers can choose out of a much wider variety of products (Levinson, 2016,
Chapter 1).

Nowadays, it is impossible to imagine trade without containers. About 75%
of the global trade volume is carried by sea, and half of that part is shipped in
containers (Lee and Song, 2017). In Figure 1.1, the historical amount of inter-
national seaborne trade shipped in containers is shown. We see a steady increase
in the containerized trade over the years, resulting in the fact that in 2017 the
number of goods shipped per container was 18 times higher than in 1980. The
deep-sea vessels that are transporting these containers are also increasing in
size, and the largest ships currently have a capacity of over 20,000 TEU. These
large vessels usually only visit a few ports, and consequently, at these ports,
many containers are transshipped. For instance, at the port of Rotterdam,
the largest container port outside Asia (World Shipping Counsel, 2020), about
8.8 million containers were transshipped in 2019 (Port of Rotterdam Authority,
2020a). This number of yearly containers transshipped corresponds to almost
25,000 containers per day. However, the deep-sea ports are usually not the
final destination of a container. The enormous number of containers requires
efficient transportation to the final destination. The transportation from the
deep-sea port to the final destination is referred to as hinterland transportation
or inland transportation.

1.1. Multimodal transportation 3

For efficient hinterland transportation, inland container terminals are crucial.
An inland terminal has a barge and/or a train connection to one or multiple
deep-sea ports. The barges and trains can be used to ship many containers
simultaneously from the deep-sea port to the inland terminal. The trip from
the inland to the destination is made with a truck because most customers do
not have their own rail or waterway connection. Inland terminals enable the
bundling of containers, which is more cost-efficient and releases some pressure
of the operations in deep-sea terminals.

To optimize hinterland transportation decisions have to be made on different
planning levels. In transportation problems, often three different planning levels
are considered: strategic, tactical, and operational. Strategic problems typi-
cally require a large capital investment, and thus, the planning horizon is often
multiple years. In tactical problems, the goal is to employ available resources
in the most efficient way. Operational problems have a short-term horizon and
a detailed description of the attributes of the planning (Crainic and Laporte,
1997). To illustrate these different levels, consider we would like to build an
inland terminal with a barge service. Examples of strategic problems are the
decision of the location of the inland terminal and the type of barges to buy.
These barges often sail to deep-sea ports according to a fixed weekly schedule.
Determining this schedule is a tactical problem. After we know which barge will
visit which port, it has to be decided which containers will be loaded on that
barge. This decision is an operational problem.

The motivation for this dissertation’s research comes from a close collabo-
ration with an inland terminal in the port of Amsterdam. In this dissertation,
we focus on two types of operational problems encountered by inland terminals.
The first problem is finding the cheapest and most reliable way to ship contain-
ers from the deep-sea port to the inland terminal. Second, the most efficient
deployment of cranes at container terminals during idle time is studied. In this
dissertation, efficient algorithms are developed to solve these problems.

1.1 Multimodal transportation
A term that is closely related to hinterland container transportation is multi-
modal transportation. It is a rather general term as it contains all types of
transportation in which two or more modalities are used. For multimodal trans-
portation, the use of a container is not a strict requirement, but as stated
before, a container makes the transshipment from one node to another much
more efficient. A specific variant of multimodal transportation in which the
goods need to be in the same transportation unit during the entire trip is
intermodal transportation (SteadieSeifi et al., 2014). The most commonly
used transportation unit is the shipping container, but a standard letter that is

4 1. Introduction

shipped using more than one modality is also an example of intermodal trans-
port (Crainic and Kim, 2007). Another variant of multimodal transportation
is synchromodal transportation. In synchromodal transportation, it is explicitly
allowed that the planned modality of a container can change if it is already in
transit (Dong et al., 2018). The main idea of synchromodal transport is to use
real-time information to select the best mode under the current circumstances
(SteadieSeifi et al., 2014). For instance, in synchromodal transportation, one
can adapt to an accident on the railway by shipping more containers by truck
and fewer by train. For overviews of these different types of transportation, we
refer to Caris et al. (2014), SteadieSeifi et al. (2014), and Van Riessen et al.
(2015). These three different definitions have significant overlap, and all are
relevant to describe the problems arising in hinterland container transportation.

A container has three possible modes for inland transportation, namely
barges, trains, and trucks. The fastest way to ship a container is with a truck.
However, the disadvantage of trucks is that they can transport at most two
TEU. On the other hand, trains and barges can ship around 100 to 250 TEU.
Consequently, barge and train transportation is much cheaper because a crew
consisting of a couple of people can ship the number of containers for which
hundred truck drivers are needed. In this dissertation, we do not consider the
option of train transportation, and only focus on barge and truck transportation.
However, the mathematical models and algorithms developed in this dissertation
can easily be extended to include train transportation.

Besides the fact that barge transportation is cheaper than truck transporta-
tion, there are two more advantages of barges. First of all, the CO2-emission
is lower for barges than for trucks (Den Boer et al., 2011). Second, deep-sea
ports are often located in urban areas, and trucks contribute to road conges-
tion. For instance, 40 percent of the vehicles visiting the port of Rotterdam
is delayed (Behdani et al., 2016). Therefore, both the European Commission
and the Port of Rotterdam stated in 2011 the ambition to achieve a modal
shift from trucks to trains and barges (European Commission, 2011; Port of
Rotterdam Authority, 2011). The aim of the European Commission is that
by 2030, 30 percent of the long-distance road freight is shifted to trains and
barges. The Port of Rotterdam has a similar ambition for 2030 (European
Commission, 2011). Their goal is to reduce, compared with 2009, the share
of road transportation from 45 to 35 percent and increase the percentage of
containers transported by barge and train, respectively, from 40 to 45 percent
and from 15 to 20 percent (Port of Rotterdam Authority, 2011).

However, this modal shift has not yet taken place. In the last decade, the
share of inland waterway, train, and truck transport all have remained constant
in the European Union (Eurostat, 2020). A major drawback of barge and
train transportation is that the planning process is much more challenging than

1.2. Terminal operations 5

for truck transportation. First of all, barges and trains have longer transit
times than trucks, and as a result, the transportation plan needs to be made
earlier. It often happens that not all the required information is available when
the planning for barges or trains needs to be made. Moreover, only if the
number of shipped containers is large enough, the economies of scale of barges
and trains ensure that these modes of transportation are cheaper than truck
transportation. Finally, the number of containers that can be loaded on a barge
is not fixed but depends on the water level of a river. On the one hand, if the
water level is high, the containers cannot be stacked high because the barge
cannot sail underneath bridges. On the other hand, if the water level is low, the
containers on a barge should not be too heavy because otherwise, the barge
will hit the bottom of the river (Caris et al., 2014).

Another disadvantage of barges is that deep-sea terminals focus mainly on
serving deep-sea vessels. The terminals give priority to deep-sea vessels’ service
because the costs of a delay for these vessels are much higher than the costs if
a barge is delayed. Furthermore, sea shipping companies are big multinational
firms that have better negotiating power than small barge operators and thus,
have better service contracts (Caris et al., 2012). Consequently, if a deep-
sea vessel is delayed, for instance, because of bad weather conditions or a late
departure in the previously visited port, the service of the barges is also affected.
To make things worse, if a barge is delayed at one terminal, it might also miss
the next terminal’s time window. The overall result is that the waiting times
for barges are large in deep-sea ports, such as Antwerp (Caris et al., 2012) and
Rotterdam (Port of Rotterdam Authority, 2020b). These waiting times make
barge transportation less reliable and more expensive.

In this dissertation, we formulate three operational multimodal transporta-
tion problems encountered by inland terminals and shippers in practice as a
mathematical optimization model. In each of these three problems, the goal is
to balance the transportation plan’s reliability with the costs. Furthermore, we
propose efficient algorithms to solve these problems. Solving the right planning
problems in real-time can help to overcome the earlier mentioned disadvan-
tages of barge transportation. Therefore, these algorithms can contribute to
the desired modal shift.

1.2 Terminal operations
At terminals, containers are unloaded from one mode of transportation and
loaded to another. Many different operational challenges arise in this pro-
cess. These operational problems can be divided into three categories: ship
planning problems, transportation problems, and storage and stacking prob-
lems (Steenken et al., 2004). Ship planning problems are concerned with the

6 1. Introduction

loading and unloading of a ship. The goal of these problems is to reduce the
unproductive time that a ship is in a port. Examples of ship planning prob-
lems are the allocation of a ship to a berth and the assignments of cranes to
parts of the ship to load and unload the containers (Kim and Günther, 2007).
Transportation problems deal with finding the right container sequence to load
a ship and ensuring that vehicles deliver containers to the crane. In stacking
problems, the storage of containers at a container terminal is studied. The goal
of both transportation and stacking problems is to enhance the productivity of
the crane. In the remainder of this dissertation, we focus on stacking problems,
so for an overview of the other operational problems in container terminals, we
refer to Steenken et al. (2004), Stahlbock and Voß (2008), and Vis and De
Koster (2003).

Storage and stacking problems would not exist if the different modes of
transportation were perfectly synchronized. In case a truck would be ready
when the container is unloaded from the ship, the container is not stored at the
terminal. However, there is usually time between the arrival and departure of a
container at a terminal. In general, a barge is sailing only once or twice a week
from a deep-sea terminal to an inland terminal. Hence, there could be multiple
days between the container’s arrival at a deep-sea port and the moment it is
picked up by a barge. Moreover, this problem arises also in inland terminals.
The container might arrive by barge multiple days before it needs to be delivered
by truck to the customer.

In the time between the arrival at and departure from a terminal, the con-
tainer is stored in a storage yard. The space in container terminals is limited,
and thus, containers are stacked on top of each other to save space. The stan-
dardized dimension of containers makes this fairly easy. However, the equipment
used in container terminals can only access the top container of a stack. There-
fore, if a container has other containers stacked on top of it at the moment it
needs to leave the storage yard, then these containers need to be re-positioned.
Hence, ideally, a container is on top of a stack at its retrieval moment. This
position might be possible if we know the exact time a container will leave the
terminal. Nevertheless, when a container arrives at a port, the departure time
is often unknown. Consequently, it is unavoidable that extra re-positioning of
a container is needed.

In the scientific literature, four different approaches exist that are concerned
with the re-positioning of containers (Carlo et al., 2014). The first type of
problem is the storage assignment problem. This problem deals with finding
the best location in a yard for a container that is unloaded. In this type of
problem, the goal is to minimize the number of future relocation moves. The
objective of the second problem, the container relocation problem, is the same.
The key difference is that in the container relocation problem, the container

1.3. Overview of this dissertation 7

for which we decide on the new location is already located in the storage yard.
However, this container is stored on top of a container that needs to be retrieved
from the yard. Hence, the blocking container needs to be relocated to another
stack (Carlo et al., 2014).

The third and fourth research directions, the pre-marshalling problem and
the re-marshalling problem are, as their names already suggest, similar. In
these problems, it is exploited that a few hours before containers will leave the
terminal, the sequence in which they need to be retrieved is known. Hence, the
containers can be reshuffled such that each container is on top of a stack at
its retrieval moment. The difference between the two problems is that in the
re-marshalling problem, the containers are positioned in an empty storage area,
whereas in the pre-marshalling the containers are reshuffled in their current
storage area (Carlo et al., 2014).

In this dissertation, we introduce a new type of problem, which is a combi-
nation of the pre-marshalling and the container relocation problem. The move-
ment of containers in the pre-marshalling problem has the advantage that it
can be performed at times the workload at the terminal is lower. However, to
reshuffle the containers so that all containers are in the correct position requires
more moves than needed in the container relocation problem. Nevertheless, the
moves in the container relocation problem are performed when there is already
a truck or ship waiting. Therefore, if a container is not on top of the stack at
the moment it is picked up, the truck or ship has to wait longer. If the turn-
around time of vessels and trucks is decreased, they can ship more containers,
which will eventually decrease the transportation costs. The benefits of the
pre-marshalling problem and the container relocation problem are combined us-
ing the concept of pre-processing moves. Similar to the pre-marshalling moves,
these pre-processing moves are performed before retrieving containers from the
storage yard. However, we do not require that all containers are in the correct
position after the pre-processing moves. As a result, fewer moves are needed
than in the pre-marshalling problem. On top of that, more moves than in the
container relocation are executed in relatively idle periods.

1.3 Overview of this dissertation
This dissertation contains three chapters in which operational problems in mul-
timodal transportation are discussed. Moreover, another three chapters are
devoted to the concept of pre-processing moves in container terminals. Fi-
nally, one chapter deals with approximation algorithms for problems that, on a
high-level, reflect the problems of the previous chapters.

In Chapter 2, we present a problem encountered by the inland terminal we
collaborated with. In this problem, a set of containers is located at different

8 1. Introduction

deep-sea terminals and needs to be transported to an inland terminal. The
objective is to assign these containers to the available barges and trucks such
that the costs are minimized. The costs do not only consist of the actual
transportation costs, but also the storage costs at both the deep-sea and inland
terminal are taken into account. A barge that visits more terminals is less
reliable, and thus, we penalize every terminal visit. We formulate an Integer
Linear Program (ILP) to solve this problem. However, as the problem is NP-
hard, the running time for realistic instances is too large. Therefore, we also
develop a heuristic that solves the ILP in two-phases. The running time of
the heuristic is only a couple of seconds and gives solutions extremely close
to optimal. We compare the solutions of the ILP and the heuristic with an
algorithm that mimics the planner who currently does the planning by hand
at the inland terminal. The results show that the ILP-based heuristic yields
significant better solutions than the planner algorithm. The content of this
chapter has been published in Zweers et al. (2019).

Chapter 3 focuses on the stochasticity of the barge service at deep-sea
terminals. At congested deep-sea ports, such as Rotterdam and Antwerp, the
exact number of containers that can be loaded and unloaded at a deep-sea
terminal is uncertain at the time the barge planning is made. Hence, more
containers might be loaded on a barge than can be unloaded at a terminal. In
this chapter, we model this problem as a two-stage stochastic problem with
recourse. We use the Sample Average Approximation (SAA) method to solve
this problem. The SAA method converges to the optimal solution, but the
method is not scalable. Therefore, we also give a heuristic based on the optimal
solution for a simplified problem. This heuristic computes in a few seconds
solutions for larger instances that are only 1% worse than the SAA solution,
which needs a couple of hours of computation time. Moreover, the heuristic
that we present gives better results than more general heuristics for stochastic
assignment problems. This chapter is based on Zweers et al. (2020b).

The focus of Chapter 4 is more on general multimodal transportation and
less specific on hinterland container transportation. In this chapter, we consider
a shipper concerned with the shipment of a single container through a network.
The problem’s goal is to find a minimal cost route such that the container arrives
before a deadline at its destination. However, in practice, the time it takes to
arrive at the destination is stochastic. We include two types of stochasticity:
the randomness of the travel times and the possibility of the overbooking of a
transportation leg. Due to this stochasticity, each route has an on-time arrival
probability, and Pareto-optimal solutions with this probability and the costs of
a route are constructed. An optimal algorithm is developed for this problem,
but also a heuristic to solve larger networks in short computation time. The
heuristic we develop replaces all stochastic variables by a deterministic risk-

1.3. Overview of this dissertation 9

measure. Afterward, the problem can be solved as an ILP. The running time
of the heuristic is only a fraction of the time needed by the optimal algorithm.
Furthermore, the optimality gap of the heuristic is about 2%. This research
has been conducted as part of the Lane Analysis and Route Advisor project,
which was funded by the Dutch Institute for Advanced Logistics (DINALOG),
and is based on Zweers and Van der Mei (2020).

Chapter 5 is an introduction into the next part of this dissertation in which
we discuss stacking operations in container yards. In this chapter, we intro-
duce the concept of pre-processing moves, and use that to define two new
problems: the Stochastic Container Relocation Problem with Pre-Processing
(SCRPPP) and the Stochastic Container Relocation Problem with Constrained
Pre-Processing (SCRPCPP). The objective of the SCRPPP is to minimize the
weighted sum of the number of pre-processing moves and the expected number
of relocation moves. The weight assigned to the pre-processing moves is an
input parameter that can take any value between zero and one, whereas the
weight of the relocation moves is normalized to one. This problem general-
izes the pre-marshalling problem and the container relocation problem. If the
weight factor for pre-processing moves is close to zero, the problem is equiva-
lent to the pre-marshalling problem. In contrast, if the weight factor is equal
to one, it corresponds to the container relocation problem. In the SCRPCPP,
a constraint is set on the number of pre-processing moves, and the goal is to
minimize the expected number of relocation moves. In practice, the SCRPCPP
can be applied when the time to perform pre-processing moves is limited. In
this chapter, we do not give solution methods for those problems, but we show
that they are NP-hard, and we derive bounds regarding the maximum number
of containers in a yard. Parts of this chapter have appeared in Zweers et al.
(2020a) and Zweers et al. (2020c).

In Chapter 6, we give solution methods for the SCRPPP. First, we present
a branch-and-bound (B&B) algorithm to solve the SCRPPP to optimality. For
this B&B algorithm, we derive a lower bound for the objective function of the
SCRPPP. Unfortunately, the SCRPPP is NP-hard, and the running time of
the B&B algorithm is too long for larger instances. Hence, we also develop a
local search heuristic to solve the SCRPPP. For this local search heuristic, it is
crucial to have an estimation for the number of expected relocation moves for
a bay. Therefore, in this chapter, we develop a method that estimates based
on a few rules the expected number of relocation moves. This chapter is based
on Zweers et al. (2020a).

The solution methods for the SCRPCPP are introduced in Chapter 7. We
can solve the SCPRCPP to optimality using a similar B&B algorithm as for the
SCRPPP, but the upper and lower bound are different for these two problems.
Therefore, these bounds will be derived in Chapter 7. Moreover, in this chapter,

10 1. Introduction

we use the B&B algorithm in a heuristic. In this heuristic, the expected number
of relocation moves for a bay is not calculated exactly but estimated using the
rule-based estimation method introduced in the previous chapter. Although
this heuristic is much faster than the optimal algorithm, its computation time
is still too long for the larger instance. Hence, another heuristic is developed
for the SCRPCPP to produce good solutions in a few seconds for realistic size
instances. Where the SCRPPP is only solved for a single row of containers, the
SCRPCPP can be naturally extended to multiple rows. Using the algorithms
for a single row, we use an ILP to solve the extension to multiple rows of
containers. The contributions of this chapter have been presented in Zweers
et al. (2020c).

In previous chapters, numerical experiments have been used to compare
heuristic methods’ performance with the optimal solution. In Chapter 8, we
study polynomial-time algorithms that have a theoretical proven approximation
guarantee, so-called approximation algorithms. The problems studied in Chap-
ters 2, 3, and 7 have in common that they can be seen as packing problems
with two levels of capacity constraints. In Chapter 8, we study a generalization
of these types of problems. We introduce a new variant of the Maximum Cov-
erage Problem with Knapsack constraints (MCPK) in which the knapsacks are
partitioned into clusters. These clusters impose additional capacity constraints
to the problem, which results in the Maximum Coverage Problem with Cluster
constraints (MCPC). We obtain a 1

3

(
1− 1

e

)
-approximation algorithm based on

the Linear Programming (LP) relaxation for this problem. In this algorithm,
we reformulate the natural ILP, enabling us to reduce the cluster capacitated
problem to a problem with only capacities on a knapsack level. Moreover,
we also use pipage rounding to round the solution of the LP-relaxation to a
partially integral solution. A specific case of the MCPC is the Multiple Knap-
sack Problem with Cluster constraints (MKPC). We show that the algorithm
for the MCPC gives a 1

3 -approximation algorithm for the MKPC. Moreover, if
the MKPC instance satisfies a certain property, an iterative rounding approach
gives a 1

2 -approximation algorithm. Finally, we show that the technique for re-
ducing the cluster capacity to a knapsack level also applies to the Capacitated
Facility Location Problem with Cluster constraints (CFLPC). For this problem,
we use an existing (4.562 + ε)-approximation algorithm for the Capacitated
Facility Location Problem and show that the approximation guarantee remains
the same if we add cluster constraints. This chapter is based on Schäfer and
Zweers (2020).

Finally, in Chapter 9, we conclude this dissertation and present an outlook
on further research directions.

2
Optimizing barge utilization

2.1 Introduction
In this chapter, we consider an operational barge planning problem from an in-
land terminal’s perspective. This problem contains detailed attributes to model
the operational planning process at an inland container terminal as realistic as
possible. A set of containers is located at multiple deep-sea terminals, and
they need to be transported to the inland terminal. The objective is to make a
cost-efficient and reliable transportation plan. Moreover, this planning should
be made in a few seconds to make real-time adjustments possible.

For each container, the inland terminal has to decide on the mode and day of
transportation. For the mode of transportation, there are two options: barges
and trucks. The inland terminal has contracts with barge operating companies
offering a barge service and trucking companies that have trucks available for
the transportation of containers. These companies deliver the container to
the inland terminal, from which a truck is used to transport the containers to
their final destination. However, this last-mile transport is not included in our
problem. For an operational planning problem for the delivery of containers by
trucks, we refer to Caris and Janssens (2013).

The possible transportation day is limited by the container’s arrival day at
the deep-sea terminal and the moment it has to be delivered at the customer.
Another critical factor in the decision for the day of transportation is the storage
costs at the inland and deep-sea terminal. The storage costs differ per day and
are not the same for the deep-sea terminal and the inland terminal. Since the
storage costs are substantial, optimizing the time at a terminal is an essential
aspect of hinterland container logistics (Iannone, 2012).

In our problem, we do not consider the route of barges. First of all, the
appointments a barge operator needs to make are restrictive and not negotiable,
and thus, they indirectly imply the route the barge needs to sail. Moreover, as

This chapter is based on B.G. Zweers, S. Bhulai, and R.D. van der Mei. Optimizing
barge utilization in hinterland container transportation. Naval Research Logistics, 66:253–
271, 2019.

12 2. Optimizing barge utilization

pointed out by Fazi et al. (2015), the deep-sea terminals are usually densely
clustered. Therefore, a good route is not hard to construct. Nevertheless,
mooring at a terminal is a time-consuming process; thus, if a barge moors at
a terminal, it is beneficial to load many containers. On top of that, at many
terminals, there is a big chance of incurring a delay. At the port of Rotterdam,
delays of a few hours are not uncommon for barges. Hence, we require that
terminals are visited as rarely as possible to reduce the delay of a barge.

Besides making a barge planning that does not visit many terminals, the
barges’ capacity should also be used as much as possible. If there are more
containers on a barge, fixed costs such as the skipper’s wage can be divided over
more containers. Consequently, the cost per container will decrease. Therefore,
one part of our barge planning objective is to minimize the empty container
spots of the barges. The combination of maximizing the number of containers
shipped by barge, minimizing the storage costs, and minimizing the number of
terminals visited by barge is a complicated and non-trivial problem. Sometimes,
it might be better to have more storage costs and to visit fewer terminals or
to ship more containers by barge. Making a transportation plan that deals with
all these aspects is now done by hand at the inland terminal. However, we will
propose an Integer Linear Program (ILP) model to solve this problem.

The contribution of this chapter is threefold. First, we discuss a problem
faced by an inland terminal, which has not been studied in the literature before.
This problem’s goal is to minimize the costs of container hinterland transporta-
tion and the number of terminals visited by barge. On the one hand, this
problem is richer than problems considering only the containers’ assignment to
existing services. On the other, it is easier than problems in which the routes
are part of the decision. The latter fact makes that the problem can be solved
much faster while still being relevant for practice. Second, we present an ILP
model that can be used to solve this problem. We test our model on real-
life data from an inland terminal based in the Netherlands, and we achieve a
cost reduction of about 20% compared to current practice. For large problem
instances, the computation time of the ILP might be too long to be used in
practice. Hence, our third contribution is that we propose a method that solves
the ILP in two steps. This method immensely reduces the computation time
of difficult instances while still producing solutions that are extremely close to
the optimal solution.

The organization of this chapter is as follows. We start by giving a re-
view of the existing literature for operational problems in container hinterland
transportation in Section 2.2. Afterward, we give a detailed description of the
problem in Section 2.3. This problem is formulated as a mathematical optimiza-
tion problem in Section 2.4, and in Section 2.5, we present three methods to
solve the problem. In Section 2.6, the three methods are used to solve medium-

2.2. Literature review 13

sized and large-sized instances, and the results are compared. Finally, we will
draw some conclusions and indicate further research directions in Section 2.7.

2.2 Literature review
In the multimodal literature, most attention has been paid to strategic problems,
such as network design, but little focus has been on operational problems (Mes
and Iacob, 2016). Nevertheless, there are a few recent papers that explicitly
deal with operational decision making in multimodal transportation. Based on
the decision made, the problems in the existing literature are divided into three
categories: (i) problems in which containers are assigned to existing barge
services, (ii) problems in which the routes of barges are determined for a given
demand, and (iii) problems in which both the assignment of containers to barges
and the route of barges are decided upon.

In the first category, the assignment of containers to services can be done
offline and online. In an offline planning problem, the assignment of containers
to services is done once the information of all containers is known, whereas,
in an online problem, the planner needs to decide the service of a container
immediately once the booking is made. In Baykasoglu and Subulan (2016), a
multi-objective offline planning problem of the loads in an intermodal network
is presented. In their model, the transportation costs, the service level, and
CO2-emissions are optimized for both the import and export flow of contain-
ers. Another offline problem is discussed in Tierney et al. (2014), in which the
inter-terminal transportation in a deep-sea terminal is analyzed. The goal of
this problem is not to minimize costs, but to minimize the delay from contain-
ers being transshipped within the port. Pérez Rivera and Mes (2016) study an
offline problem in which containers have to be assigned to modes of transporta-
tion in a synchromodal network in order to minimize the costs. They formulate
this problem as a Markov decision process in order to also take into account
uncertain future costs. In Heggen et al. (2019), an integrated approach for
the assignment of containers to a rail service and the delivery of containers per
truck to their final destination is studied. This integrated approach is solved
using a large neighborhood search heuristic, and results in cost savings and
better utilization of the capacity of the long-haul transportation mode.

In Van Riessen et al. (2016), optimal offline solutions are obtained for an
intermodal planning problem in which the objective is to minimize the trans-
portation costs and penalties of being late. These offline solutions are used to
infer a decision tree that is then used to make online decisions. Mes and Iacob
(2016) also consider an online planning problem. They propose a k-shortest
path approach in which the planner receives for each order the k best paths in
the network in terms of costs, delays, and CO2-emissions. Finally, the work of

14 2. Optimizing barge utilization

Wang et al. (2016) incorporates revenue management for barge transportation.
For every incoming order, a decision needs to be made whether to accept the
order or not and which service to use for the container.

The paper of Li et al. (2016) falls under the second category of the litera-
ture. In this paper, a distributed constraint optimization problem is formulated
to decide upon the route of vessels in a port. In this problem, it is known for
each vessel which terminals it should visit and how many containers to load at
these terminals, and the route of the vessel needs to be determined. In Kar-
laftis et al. (2009), a case study is presented in which containers have to be
transported between ports on islands in the Aegean Archipelago and mainland
Greece. If a ship is visiting a port, all containers have to be transported, so this
problem is formulated as a capacitated vehicle routing problem.

Finally, we discuss three studies that fall into the third category. In Fazi
et al. (2015), a decision tool is developed for planning hinterland transporta-
tion. Similar to our problem, Fazi et al. (2015) maximize barge utility and
penalize a barge visit at a terminal. Nevertheless, they account for sailing time,
and the transportation costs are per hour. Therefore, they need to calculate the
actual route the barge is sailing. Moreover, they are not considering any storage
costs at the deep-sea or inland terminal. The model of Behdani et al. (2016)
decides which containers to assign to a service and when that service should
leave a terminal. Their goal is to minimize both the transportation costs and
the waiting time of containers at terminals. Finally, in the work of Sharyapova
(2014), a scheduled service network design is introduced with synchronization
and transshipment constraints. The goal here is to minimize the total opera-
tional costs by selecting which services to use, determining the timing of the
vehicles, and deciding which containers to transport with which service. Since
the time of a service is incorporated in the decision making, we have chosen to
group this work in the third category and not in the first.

2.3 Problem formulation
Our problem focuses on the transportation of containers from multiple deep-
sea terminals to a single inland terminal. Each container arrives with a deep-
sea vessel at a deep-sea terminal. If a container is already at the deep-sea
terminal, the day of arrival is naturally known. In case a container arrives in
the future, only the estimated time of arrival (ETA) is known. We will refer
in both cases to ETA as the day of arrival. Moreover, for each container, the
so-called call date is given. The call date represents the day at which the
container has to be delivered to the customer. Customers are located in the
direct neighborhood of the inland terminal, and thus if the container arrives at
the inland terminal exactly at the call date, it can still be shipped on time to the

2.3. Problem formulation 15

customer. Therefore, the call date can also be seen as the day the container
has to arrive at the inland terminal.

As unloading a large deep-sea vessel may take hours, we assume that the
container is available for hinterland transportation a day after the ETA. In our
problem, transportation of the containers by barge takes one day, so the day
before the call date is the last day that a container can be shipped by barge.
As transportation by truck is much faster, the container can still be shipped by
truck on the call date. Our approach can easily be adjusted to a situation in
which transportation or unloading takes a different time length.

The ETA and the call date of the container impose hard constraints on the
possible days of shipments. On top of that, the ideal day of shipment is also
influenced by demurrage costs and storage costs. Demurrage costs are costs
paid to the carrier of the container if the container stays too long at the deep-sea
terminal. Usually, a container has a certain demurrage free period for which no
demurrage costs have to be paid. After that demurrage free period, demurrage
costs are paid per day that a container is located at a deep-sea terminal. Storage
costs are the costs associated with the number of days the container is located
at the inland terminal. Generally, the storage costs per day are much lower than
the demurrage costs per day because space at an inland terminal is less scarce
than at a deep-sea terminal. In other words, before the demurrage free period
has ended, it is cheaper to store the container at the deep-sea terminal than at
the inland terminal and vice versa after the demurrage free period has ended.
For each day, it is straightforward to calculate the demurrage and storage costs
that are incurred by transporting a container on that day. Given these costs,
finding the day for which the minimum demurrage and storage costs have to
be paid is easy.

The barge operator makes a schedule that specifies which barge is present
at the deep-sea port on which day. Therefore, we consider this barge schedule
as input for our model. We assume that each barge has only one day on
which it can load containers at the deep-sea port. Consequently, if we assign a
container to a barge, then the day of transportation is also known. Each barge
has a maximum capacity that cannot be exceeded. The size of a container
is measured in a Twenty-foot Equivalent Unit (TEU), and so is the maximum
capacity of the barge. For each barge, there are fixed costs to use that barge.
Moreover, transporting a unit of TEU on a barge has certain costs.

Besides a barge, it is also possible to ship a container by truck. We assume
that a truck can only transport a single container, irrespective of the size of
a container. As a result, the costs of shipping a container by truck are much
higher than the shipping costs by barge. However, the advantage of trucking
a container is that from a practical perspective it is reasonable to assume that

16 2. Optimizing barge utilization

every day there is a truck available. Furthermore, we also assume that the
number of trucks available for transportation is sufficient to ship all containers
by truck if needed. Consequently, the day of truck shipment is the day with the
minimum storage and demurrage costs. As a result, the transportation day of
a truck does not need to be determined. All in all, for each container, it has to
be decided on which barge it is shipped or if it is shipped by truck.

We consider a planning problem with a finite horizon. In determining the
length of the planning horizon, a trade-off has to be made between reliable
information and planning flexibility. If a short planning horizon is chosen, the
information of the containers is rather reliable and unlikely to be subject to
changes. On the other hand, only a few barges might be available for the
transportation of the containers. Hence, the assignment possibilities for each
container are restrictive. In case a long planning horizon is chosen, the flexibility
of assigning the containers to barges increases, but the available information
becomes unreliable.

A consequence of the finite planning horizon is that some containers have
a call date after the end of the planning horizon. We will call these containers
low-priority containers. Containers that need to be shipped during the planning
period will be called high-priority containers. In Section 2.4, a more formal
definition of low and high-priority containers will be given. When time pro-
gresses, each low-priority container will eventually become a high-priority con-
tainer. These low-priority containers do not necessarily need to be transported
in the planning period. Two standard approaches for dealing with low-priority
containers are either ignoring them for the current planning period or forcing
them to be transported anyway. These approaches work fine if the number
of arriving containers at the deep-sea port and the available barge capacity is
almost constant for each day. However, in practice, these numbers are far from
constant over the days.

To illustrate why these two methods might fail, consider a situation in which
a large batch of containers is available for transportation on a specific day, but
the call date of these containers is a day after the end of the planning horizon.
If there is a barge in the planning period with some unused capacity and the low-
priority containers are ignored, we face the risk that there is insufficient barge
capacity after the current planning period and we need to transport (part of)
the batch per truck, whereas it was possible to ship at least part of the batch per
barge. On the other hand, if there is not enough capacity on the barges in the
current planning period and one has decided that low-priority containers have
to be transported, some containers will be transported by truck in the current
planning period. However, it might be possible that there is a large amount of
barge capacity available on the day after the end of our planning horizon. So in
hindsight, it would have been possible to ship our batch of containers by barge.

2.3. Problem formulation 17

Ideally, we would like to ship the low-priority containers only if there is capac-
ity left on the barges in the current planning period and wait with transportation
of the low-priority containers if no barge capacity is left. Therefore, it is not
possible to take minimizing the transportation costs as an objective because
not transporting low-priority containers is always cheaper than transporting the
low-priority containers. To ensure that low-priority containers also have the
possibility of being transported, we have chosen to maximize the containers
transported by barge as the objective, instead of minimizing the transportation
costs. Since transportation by barge is much cheaper than by truck, a trans-
portation plan in which the number of containers shipped per barge is maximal
is also likely to be a plan in which the transportation costs are low.

The containers are located at multiple deep-sea terminals, and in order to
visit as few terminals as possible by barge, we impose penalty costs for each
visit. The penalty costs result in a situation in which a terminal is only visited
if there are enough containers that can benefit from the fact that they do not
have to be transported by truck. Achieving a situation in which there is a large
set of containers available for transportation might require that some containers
have to be shipped on another day than their ideal shipment day.

Instead of penalizing a terminal visit by barge, it is also possible to impose
a constraint on the number of terminals visited per barge. The reason why we
have not chosen this option is twofold. First, if visiting one more terminal than
the ‘maximum’ number of terminal visits reduces the transportation costs by a
large amount, we would like to visit that terminal anyway. Second, if there are
two schedules with the same total transportation costs and one is visiting fewer
terminals than the other, the schedule with fewer terminal visits is preferred.
In summary, a trade-off has to be made between the transportation costs, the
demurrage costs, the storage costs, and the number of terminals that are visited
by barge.

Running example

Throughout this paper, the same problem instance will be used as an example
to illustrate the problem. First, in Figure 2.1, we explain the different charac-
teristics of containers and afterward in Figures 2.2 and 2.3, we illustrate how
containers can be assigned to barges and trucks. In Figure 2.1, an example of
possible classes of containers at a deep-sea terminal is given. In this example,
there are ten containers, which all have a size of two TEU, and the planning
horizon is three days. A container can only be transported on a day if the
rectangle representing the container is in the column representing that day. For
instance, container 2 can be transported on all three days, but container 10
only on day 3. As container 2 is available for transportation on day 1 and needs
to be transported at the latest on day 3, it means that its ETA is day 0 and its

18 2. Optimizing barge utilization

Figure 2.1 Example of different container classes at a deep-sea terminal.

call date is day 4.

The fact that container 2 is light grey on day 3 means that demurrage costs
have to be paid if it is transported on that day. Containers 3 and 4 are colored
dark grey on day 3 because demurrage costs for two days have to be paid when
they are shipped on day 3. Containers 1, 2, 3, and 4 are rather flexible because
we can ship them on any of the three days, whereas containers 8, 9, and 10
can only be transported on one specific day. Besides, container 5 can also only
be transported on day 1 because it was not assigned to a truck or barge before
day 1. Container 7 is a low-priority container because its call date is after the
end of the planning period.

In the running example, we will consider a situation with two terminals:
terminal R and S. The ten containers, that are given in Figure 2.1, are located
at both terminal R and S. Moreover, barges are available on day 1 and day 3,
and both of these barges have a maximum capacity of 15 TEU. As there are
only containers of 2 TEU, each barge can ship at most seven containers. The
fixed costs of using the barges are set low enough to ensure that both barges
will always be used. Container 9 from Figure 2.1 is ignored in the remainder
of the running example because it can never be transported by a barge. In
Figures 2.2 and 2.3, two different examples are given of how the containers can
be allocated to barges and trucks.

At the top of Figure 2.2, the available containers are shown for each terminal
for each day. On day 1 in Figure 2.2, barge 1 is visiting terminal R, as indicated
by the arrow pointing from barge 1 to the box with all available containers at
terminal R on day 1. The available containers that are transported by a barge
are indicated with a circle within the square of the container. So in Figure 2.2,
all containers at terminal R that are available for transportation are transported
by barge 1. At terminal S on day 1 in Figure 2.2, there are containers with

2.3. Problem formulation 19

Figure 2.2 Example of container assignment with one terminal visit per barge.

a diamond inside their box. These containers, namely S5, S6, and S8, will be
transported by a truck. We need to ship these containers with a truck because
on day 3, when the next barge is available, they cannot be transported anymore.
If there is neither a circle nor a diamond inside the square of a container, it
means that a container is not transported on that day. For example, containers
S1, S2, S3, and S4 are not transported on day 1 in Figure 2.2. On day 3, in
Figure 2.2, container S2 has a light grey box and containers S3 and S4 have a
dark grey box. Similar to Figure 2.1, the light grey box represents a container
for which one day of demurrage costs have to be paid, and the dark grey box
represents a container for which two days of demurrage costs have to be paid.

In contrast to visiting only one terminal, it is also possible that a barge visits
two terminals, as is illustrated in Figure 2.3. If we compare the situations of
Figures 2.2 and 2.3, we see that in Figure 2.2 four containers are shipped per
truck and in Figure 2.3 only two. Besides, in Figure 2.3 seven containers are
shipped on the barge of day 3 and in Figure 2.2 only six. Moreover, in the
situation illustrated in Figure 2.2, there are in total five days with demurrage
costs and in Figure 2.3 only four. All in all, the barges in Figure 2.2 are visiting
fewer terminals than in Figure 2.3, but in Figure 2.2 more demurrage days
occur, fewer containers are shipped per barge and more per truck. It depends
on how severe a visit of a terminal is penalized if the situation of Figure 2.2
or 2.3 is preferred.

20 2. Optimizing barge utilization

Figure 2.3 Example of container assignment with two terminal visits per barge.

2.4 Mathematical model
In Section 2.4.1, the problem described in the previous section is formulated as
a mathematical optimization model. In this model, the penalty that needs to
be paid for a terminal visit is an important input parameter. In Section 2.4.2,
we present three properties of the optimal solution depending on the value of
this penalty.

2.4.1 Optimization model

First of all, some notation is introduced. The set of containers available for
transportation is given by C and consists of n containers. These containers
are located at R different deep-sea terminals. A container i arrives at day ai
at the deep-sea terminal mi . Moreover, the call date of container i is bi , and
its size is ti TEU. We denote the maximum size of all n containers as T , i.e.,
T = maxi=1,...,n ti .

The last day of the planning horizon is given by τ , and b barges are available
in the entire planning period. The set of these barges is given by B. A barge v
is at the deep-sea port at day dv and has a capacity of uv TEU. Using barge v

2.4. Mathematical model 21

cT Shipping costs per truck

cBv Shipping costs for one unit of TEU on barge v

cDiv Demurrage costs for container i if it is transported by vehicle v

cSiv Storage costs for container i if it is transported by vehicle v

πrv Penalty costs if barge v is visiting terminal r

ρv Fixed costs for barge v

uv Maximum capacity of barge v in TEU

dv Day that barge v is at the deep-sea port

ti Size in TEU of container i

ai Estimated arrival date of container i at the deep-sea terminal

bi Call date of container i

mi Deep-sea terminal where container i is located

τ Last day of the planning horizon

T Largest size in TEU of a container, i.e., T = maxi=1,...,n ti

B Set of all available barges

C Set of all containers

H Set of all high-priority containers

L Set of all low-priority containers

Table 2.1 Notation for the input parameters used in Chapter 2.

imposes fixed costs of ρv . Moreover, the visit of terminal r by barge v results
in a penalty of πrv . Each container could be assigned to b barges or a truck,
and thus, there are b + 1 vehicles: v = 0 is a truck, and v = 1, . . . , b are
the barges. Let the barges be numbered in increasing order of their day at the
deep-sea port. In other words, barge 1 is the first barge to be in the deep-sea
port and barge b the last. The demurrage and storage costs for container i on
vehicle v are given by, respectively, cDiv and c

S
iv . Finally, the transportation costs

for a container on a truck are given by cT , and cBv denotes the shipping costs
of one unit of TEU on barge v . The notation of input data is summarized in
Table 2.1.

In Section 2.3, high-priority containers were defined as containers that had
to be transported in the planning period. Now, a more formal definition will
be given. Two criteria determine the priority of a container. First, if the call
date of a container is before the end of the planning period, it is a high-priority
container. Second, if the total costs of shipping the container on the last barge
of the planning period are higher than the total costs of shipping a container
by truck, the container’s priority is also high.

The second criterion is based on the fact that the demurrage costs are
higher than the storage costs at the inland terminal. So after the end of the
demurrage free period, the total storage and demurrage costs will increase each

22 2. Optimizing barge utilization

day. Hence, if it is cheaper to transport a container per truck in the current
planning period than on the last barge, it is cheaper to transport the container
per truck in the current planning period than on a barge in the next planning
period.

Using the notation just introduced, the two criteria will be formalized in
Definition 2.1 below. If a container is not a high-priority container, it is auto-
matically a low-priority container, i.e., L = C \ H.

Definition 2.1 (High-priority container). Container i ∈ C is in the set of high-
priority containers H, if at least one of the two inequalities holds:

• bi ≤ τ

• cBb + cDib + cSib ≥ cT + cDi0 + cSi0.

Let us assume we have an assignment σ that assigns all containers to a
barge, a truck, or no transportation mode. Let us denote the set of containers
that are assigned to vehicle v = 0, 1, . . . , b in this assignment σ by Cσ(v).
Furthermore, let Bσ denote the set of barges that is used, and the set of
terminals visited by barge v in assignment σ is given Rσ(v). An assignment σ
is feasible if it satisfies the following conditions:

• H ⊆ ∪bv=0Cσ(v) ⊆ C

•
∑

i∈Cσ(v) ti ≤ uv for v ∈ Bσ

• ai < dv < bi for i ∈ Cσ(v) and v ∈ Bσ.

The first condition requires that each high-priority container is transported.
The second condition ensures that the number of TEU shipped on a barge
does not exceed the barge’s capacity. Finally, it is required that a container
is only transported on a barge that is at the deep-sea port one day after the
container’s ETA and a day before its call-date. The objective of the problem is
to find a feasible assignment σ that minimizes the expression

∑
v∈Bσ

ρv +
∑

r∈Rσ(v)

πrv + cBv

uv − ∑
i∈Cσ(v)

ti

+ cT |Cσ(0)|

+

b∑
v=0

∑
i∈Cσ(v)

cDiv + cSiv .

(2.1)

The objective consists of three parts, namely the costs associated with barge
transportation, the truck transportation costs, and the demurrage and storage

2.4. Mathematical model 23

costs. The barge transportation costs itself also consists of three sums. In the
first sum, the fixed costs for barge usage are minimized, and the penalties for
visiting a terminal are taken into account in the second sum. The expression
uv −

∑
i∈Cσ(v) ti corresponds to the unused capacity of barge v . By imposing

the costs of cBv for every unit of TEU not being transported on barge v , the
utilization of the capacity of barge v is maximized.

2.4.2 Bounds on properties of the optimal solution

The penalty πrv for visiting terminal r by barge v is an artificial penalty. Hence,
it could be set to any value. The value of πrv indirectly imposes certain bounds
on the optimal solution. In Lemmas 2.1, 2.2, and 2.3 below, we show the
relation between the value of πrv and respectively, the minimum number of
containers needed to visit terminal r by barge v , the maximum number of
terminals visited by barge v and the minimum number of TEU on barge v .

Lemma 2.1. If πrv ≥ λ(cT + TcBv) and barge v is visiting terminal r , then at
least λ containers from terminal r are loaded on barge v .

Proof. For the sake of contradiction, let K be a set consisting of k < λ con-
tainers from terminal r , which are loaded on barge v in the optimal solution.
The total costs of shipping the containers in set K are equal to:

πrv +
∑
i∈K

(
cDiv + cSiv − ticBv

)
. (2.2)

Using the fact that the size of a container is at most T TEU (ti ≤ T), we can
derive the following lower bound on the costs of shipping the k containers from
set K with barge v :

πrv +
∑
i∈K

(
cDiv + cSiv − ticBv

)
≥ πrv +

∑
i∈K

(
cDiv + cSiv − TcBv

)
= πrv − kTcBv +

∑
i∈K

(
cDiv + cSiv

)
.

(2.3)

The fact that each container could be transported by a truck is used below for
an upper bound for (2.2).

πrv +
∑
i∈K

(
cDiv + cSiv − ticBv

)
≤
∑
i∈K

(
cDi0 + cSi0 + cT

)
≤
∑
i∈K

(
cDiv + cSiv + cT

)
= kcT +

∑
i∈K

(
cDiv + cSiv

)
.

(2.4)

24 2. Optimizing barge utilization

The first inequality uses the fact that the total costs for trucking the containers
in the set K are an upper bound for the optimal costs of transporting the
containers in the set K. The second inequality follows from the property that
container i can be transported by a truck on any day, so we know that the sum of
the demurrage and storage costs when transporting the container by truck are
not larger than when the container is shipped on barge v : cDi0 + cSi0 ≤ cDiv + cSiv .
Combining the lower bound from (2.3) and the upper bound from (2.4) leads
to the following inequality:

πrv − kTcBv +
∑
i∈K

(
cDiv + cSiv

)
≤ kcT +

∑
i∈K

(
cDiv + cSiv

)
,

which implies that

πrv − kTcBv ≤ kcT .

Since k < λ, this leads to a contradiction of the assumption of this lemma:

πrv ≤ k(cT + TcBv) < λ(cT + TcBv).

Lemma 2.2. If πrv ≥
uv(cBv +cT)−ρv

λ for all terminals r and barge v , then barge
v will not visit more than λ terminals.

Proof. Let the set of terminals visited by barge v and the set of containers
transported on barge v be denoted as R and K, respectively. For the sake of
contradiction, assume that barge v is visiting m = |R| > λ terminals. The
costs of shipping the containers from K on barge v are equal to∑

r∈R
πrv +

∑
i∈K

(
cDiv + cSiv − ticBv

)
+ ρv .

Firstly, a lower bound on these total costs will be derived:∑
r∈R

πrv +
∑
i∈K

(
cDiv + cSiv − ticBv

)
+ ρv

≥
∑
r∈R

πrv − uvcBv +
∑
i∈K

(
cDiv + cSiv

)
+ ρv

≥
∑
r∈R

πrv − uvcBv +
∑
i∈K

(
cDi0 + cSi0

)
+ ρv

≥
m

λ

(
uv
(
cBv + cT

)
− ρv

)
− uvcBv +

∑
i∈K

(
cDi0 + cSi0

)
+ ρv .

(2.5)

2.4. Mathematical model 25

The first inequality follows from the fact that the total number of TEU as-
signed to a barge can never exceed the capacity. The second inequality holds
because the storage and demurrage costs for shipping a container by truck are
always lower than shipping a container by barge. The final inequality is a direct
consequence of the assumption of this lemma. Similar to Lemma 2.1, an upper
bound can be derived using the costs of transporting the containers per truck:∑

r∈R
πrv +

∑
i∈K

(
cDiv + cSiv − ticBv

)
+ ρv ≤

∑
i∈K

(
cDi0 + cSi0 + cT

)
= |K|cT +

∑
i∈K

(
cDi0 + cSi0

)
≤ uvcT +

∑
i∈K

(
cDi0 + cSi0

)
.

(2.6)

The final inequality follows from the fact that the smallest size of a container
is 1 TEU, so the cardinality of the set K is at most uv . Combining the lower
bound from (2.5) and the upper bound from (2.6), we get the relation

m

λ

(
uv
(
cBv + cT

)
− ρv

)
−uvcBv +

∑
i∈K

(
cDi0 + cSi0

)
+ρv ≤ uvcT +

∑
i∈K

(
cDi0 + cSi0

)
,

which implies that

m

λ

(
uv
(
cBv + cT

)
− ρv

)
− uvcBv + ρv ≤ uvcT .

This inequality can only hold if mλ ≤ 1, which is a contradiction to our assump-
tion that m > λ.

Lemma 2.3. If πrv ≥ αuv (cT + cBv) − ρv for every terminal r for barge v
and 0 ≤ α ≤ 1, then barge v is filled with at least αuv if barge v is used for
transportation.

Proof. Let the set of terminals visited by barge v and the set of containers
transported on barge v be denoted as R and K, respectively. For the sake of
contradiction, assume that barge v is filled with βuv TEU with β < α. The
costs of shipping the containers from K on barge v is equal to∑

r∈R
πrv +

∑
i∈K

(
cDiv + cSiv − ticBv

)
+ ρv .

Similar to the proofs of Lemmas 2.1 and 2.2, a lower bound and upper bound

26 2. Optimizing barge utilization

for these costs will be derived. The lower bound is equal to∑
r∈R

πrv +
∑
i∈K

(
cDiv + cSiv − ticBv

)
+ ρv

≥ πrv +
∑
i∈K

(
cDiv + cSiv − ticBv

)
+ ρv

≥ πrv − βuvcBv +
∑
i∈K

(
cDi0 + cSi0

)
+ ρv .

(2.7)

The final inequality uses the fact that we know that barge v is filled with
0 ≤ βuv TEU. The upper bound uses again the fact that all containers could
be shipped per truck and is as follows:∑

r∈R
πrv +

∑
i∈K

(
cDiv + cSiv − ticBv

)
+ ρv ≤

∑
i∈K

(
cDi0 + cSi0 + cT

)
≤ βuvcT +

∑
i∈K

(
cDi0 + cSi0

)
.
(2.8)

Combining the lower and upper bound from (2.7) and (2.8), we get

πrv − βuvcBv +
∑
i∈K

(
cDi0 + cSi0

)
+ ρv ≤ βuvcT +

∑
i∈K

(
cDi0 + cSi0

)
,

which implies that

πrv − βuvcBv + ρv ≤ βuvcT ,

and that leads to

πrv ≤ βuv (cT + cBv)− ρv < αuv (cT + cBv)− ρv ,

which is a contradiction to the assumption of this lemma.

The conclusion from these three lemmas is that the value πrv indirectly
imposes constraints on the optimal solution. Which of the bounds provided by
the three lemmas is the tightest depends on the parameters used. The bounds
from Lemmas 2.2 and 2.3 are tight if the fixed costs of using a barge are high.
However, in the upper bounds in the proof of both these lemmas all containers
that were originally assigned to the barge are transported per truck, which could
be a weak upper bound. In the upper bound of Lemma 2.1, a smaller number
of containers are transported per truck.

2.5. Solution methods 27

2.5 Solution methods
To solve the problem discussed in Section 2.4.1, we present three different
algorithms in this section. First of all, we present an optimal ILP formulation in
Section 2.5.1. Afterward, in Section 2.5.2 a two-stage heuristic that is based
on the ILP formulation from Section 2.5.1 is formulated. Finally, we present
in Section 2.5.3 an algorithm that mimics the behavior of experienced planners
who plan the containers to barges manually.

2.5.1 ILP formulation

In the ILP formulation, three types of binary decision variables are used: X,
Y , and Z. The variable Xiv indicates whether container i is transported by
vehicle v or not. Furthermore, Yrv is equal to 1 if terminal r is visited by barge
v , and zero otherwise. Finally, Zv represents whether barge v is used or not.
Using these variables we can define the following ILP:

min

b∑
v=1

(
cBv

(
uv −

n∑
i=1

tiXiv

))
+

n∑
i=1

cTXi0 +

b∑
v=0

n∑
i=1

(cDiv + cSiv)Xiv

+

b∑
v=1

R∑
r=1

πrvYrv +

b∑
v=1

ρvZv

(2.9)

subject to

n∑
i=1

tiXiv ≤ uv v = 1, . . . , b (2.10)

b∑
v=0

Xiv = 1 i ∈ H (2.11)

b∑
v=0

Xiv ≤ 1 i ∈ L (2.12)

Xiv ≤ Yrv i = 1, . . . , n v = 1, . . . , b r = mi (2.13)

Yrv ≤ Zv r = 1, . . . , R v = 1, . . . , v (2.14)

Xiv = 0 v = 1, . . . , b i = 1, . . . , n dv ≤ ai ∨ dv ≥ bi (2.15)
Xiv ∈ {0, 1} i = 1, . . . , n v = 0, . . . , b (2.16)

Yrv ∈ {0, 1} r = 1, . . . , R v = 1, . . . , b (2.17)

Zv ∈ {0, 1} v = 1, . . . , b. (2.18)

The objective function in (2.9) consists of five sums. The first sum makes that
for each unit of TEU that is not used on barge v

(
uv −

∑n
i=1 tiXiv

)
, a penalty of

28 2. Optimizing barge utilization

cBv has to be paid. The second sum contains all shipping costs that are made by
truck shipment. The third sum is the total of all demurrage and storage costs.
Furthermore, the fourth sum contains the penalties that are paid for visiting a
terminal by barge. Finally, the fifth sum corresponds to the fixed costs that need
to be paid to use the barges. Constraint (2.10) makes that each barge ships at
most its maximum capacity in TEU. Constraint (2.11) forces all high-priority
containers to be shipped exactly once, and constraint (2.12) ensures that all
low-priority containers are shipped at most once. Constraint (2.13) connects
the Xiv and Yrv variables. If a container is picked up by a barge, that barge also
needs to visit the container’s terminal. Similarly, constraint (2.14) connects
the Yrv and Zv variables. Terminal r can only be visited by barge v if barge v
is used. Constraint (2.15) ensures that a container is not transported before
its arrival at the deep-sea port or after its call date. Finally, constraints (2.16),
(2.17), and (2.18) are the integrality constraints.

In practice, one might require some additional properties of this model. We
will close this section with two features that can easily be included in the ILP
formulation.

First of all, it might be desirable to scale the costs of visiting a terminal
exponentially with the number of visits. Since the more terminals are visited, the
more likely it is that a barge is delayed. It is possible to model the exponentially
increasing costs as an ILP. To this end, a new type of binary decision variable is
needed, namely, Γv j ∈ {0, 1}, which indicates whether barge v visits exactly j
terminals or not. Moreover, let δv j be the total costs for visiting j terminals with
barge v . The sum

∑b
v=1

∑R
r=1 πrvYrv in the objective function (2.9) will have

to be replaced by
∑b

v=1

∑R
j=0 δv jΓv j . Besides, an extra constraint of the type:

R∑
r=1

Yrv = jΓv j for v = 1, . . . , b j = 0, . . . , R,

has to be added. An advantage of the exponential costs for visiting a terminal is
that the terminal visits will be divided more equally among the barges. For ex-
ample, with linear costs visiting eight terminals with one barge and two with the
other is equally expensive as visiting five terminals with both barges. In the case
of exponential costs, the latter scenario is cheaper. An obvious disadvantage
is the need to introduce more decision variables and constraints. Moreover,
with exponential costs, it is impossible to distinguish between the terminals:
each terminal has the same costs for visiting that terminal as j th terminal. In
practice, there are terminals for which it is harder to get an appointment or
which impose a higher chance of delay, so we would like to penalize a visit to
these terminals more severely.

The second property is that a deep-sea terminal might require a minimum

2.5. Solution methods 29

number of containers to be picked up by barge on a visit. This requirement is
caused by the fact that the number of available berths at a deep-sea terminal
is limited. If only a few containers are picked up at a single visit, the berth’s
occupation time of a ship is relatively high because mooring is a time-consuming
activity. On the other hand, a constraint to maximize the number of containers
picked up by a barge visit might also be needed because it often happens that
a terminal can handle only a limited number of containers. Let us denote the
maximum number of containers that can be picked by barge v at terminal r
as Mrv and the minimum number as µrv . For any combination of r and v the
following constraints could be added:∑

i :mi=r

Xiv ≥ µrv ,∑
i :mi=r

Xiv ≤ Mrv .

Running example continued

The running example introduced in Section 2.3 is continued. We define the
cost parameters as follows: cT = 150, cB1 = cB2 = 25, the demurrage costs
for each container are 60 per day and the storage costs 2 per day. Let the
fixed costs for the barges be ρ1 = ρ2 = 500. Figure 2.2 is the outcome if a
terminal visit is penalized with 100, and Figure 2.3 corresponds to a solution if
250 has to be paid for each terminal visit. Note that this problem has many
optimal solutions. For example, in Figure 2.3, switching one of the containers
on barge 1 with a container on the truck yields the same costs. Moreover,
container R3, which is transported on barge 2, can be switched with R4, S3,
or S4, yielding the same solution.

2.5.2 Two-stage ILP-based heuristic

An essential aspect of an operational transportation plan for synchromodal
transportation is that it can easily be adjusted. If new information becomes
available or if specific data changes, the planning should be recalculated. One
could think of the arrival of new containers or limitations imposed by the con-
tainer terminals. Therefore, it is crucial to have a fast algorithm to solve the
problem.

The problem formulation from Section 2.5.1 is a generalization of the Gen-
eralized Assignment Problem (GAP) (Fisher et al., 1986). In the GAP, a set
of jobs needs to be assigned for minimum costs to a set of agents, which have
a maximum capacity. In our generalization, the containers are the jobs, and
the barges and trucks are the agents. Furthermore, we set πrv and ρv to zero
and give infinite costs for the assignment of a container to a barge that is

30 2. Optimizing barge utilization

Algorithm 2.1: Two-stage ILP-based heuristic.
Input: ILP (2.9)-(2.18)
Step 1:
Solve ILP (2.9)-(2.18) in which the X-variables are relaxed in constraint (2.16),
i.e., 0 ≤ Xiv ≤ 1

Let X̃, Ȳ , and Z̄ be the optimal outcome for the, respectively, X-variables,
Y -variables, and Z-variables

Step 2:
Fix Ȳ and Z̄, and force all X-variables to be binary
Solve the resulting ILP and let X̄ denote the optimal solution for the X-variables
Output: X̄, Ȳ , and Z̄

at the deep-sea terminal on a wrong day. On top of that, all containers are
high-priority in the generalization.

The GAP is an NP-hard problem (Fisher et al., 1986), and as we will show
in Section 2.6, the running time of the ILP is for larger instances indeed too
long for practical purposes. Therefore, a heuristic based on the ILP model from
the previous section is developed in this section.

The main advantage of our problem, compared to other models in the lit-
erature, is that the route of a barge is not calculated, reducing the number of
decision variables by a factor R. Our formulation requires only a Yrv -variable
to indicate if terminal r is visited by a barge v . If the route is to be decided,
then a variable indicates which terminal is visited after the other terminal. In
real-life instances, containers are located at a relatively small number of deep-
sea terminals. In the ILP model (2.9)-(2.18), there is an X-variable for each
container-barge combination, a Y -variable for each barge-terminal combination,
and a Z-variable for each barge. As there are many more containers than ter-
minals and barges, the number of Y -variables and Z-variables is small compared
to the number of X-variables. To give an idea, in the instances we consider,
the number of containers is about 50 to 100 times larger than the number of
terminals and about 100 times larger than the number of barges. Therefore,
the number of integrality constraints decreases significantly if the X-variables
are relaxed.

This insight gives rise to the two-stage ILP-based heuristic described in
Algorithm 2.1. This heuristic determines in Step 1 the barges that are used
and which terminals are visited. In Step 2, it finds an allocation of the containers
to barges and trucks. For every potential set of visited terminals in Step 1, it
is possible to find a feasible allocation of the containers in Step 2 because each
container can be assigned to a truck. The assignment of the containers in
the second step of Algorithm 2.1 is equivalent to the GAP. In Corollary 2.1,
we exploit a property of the GAP to limit the number of fractionally assigned
containers in the first step of Algorithm 2.1.

2.5. Solution methods 31

Corollary 2.1. There exists an optimal solution for step 1 of Algorithm 2.1 for
which the number of containers that are not completely assigned to one vehicle
is at most the number of barges for which the total capacity is used.

Proof. Given that Ȳ and Z̄ are fixed, the value for X̃ is the LP-relaxation of the
GAP. In Benders and van Nunen (1983), it is shown that for a linear relaxation
of the GAP, the number of fractional assignments is at most the number of
machines scheduled to the maximum capacity. Since the number of trucks is
unlimited in our problem, the number of containers which is fractionally assigned
is at most the number of barges.

Since the number of barges is small compared to the number of containers,
the result of Corollary 2.1 is that the solution after Step 1 is almost feasible,
which has two consequences. First, it is easy to obtain a feasible solution for
Step 2 from the solution of Step 1. For instance, by assigning the fractional
assigned containers to a truck. Moreover, the value of the objective function
after Step 1 is likely to be close to the optimal value, so it is probably a tight
lower bound. Combining these two properties, it is likely that Step 2 does not
require much computation time.

Furthermore, if Algorithm 2.1 selects in Step 1 the optimal terminals to visit,
then the heuristic will produce an optimal solution, as we show in Lemma 2.4.
We show in Lemma 2.5 that if the visited terminals are different, the difference
in the objective function of the two methods can be bounded. In these lemmas,
we use X∗, Y ∗, and Z∗ to denote the optimal solution for the ILP (2.9)-(2.18).
Moreover, let v(X, Y, Z) be the value of the objective function for X, Y and Z.

Lemma 2.4. If Ȳ = Y ∗, then v
(
X̄, Ȳ , Z̄

)
= v (X∗, Y ∗, Z∗).

Proof. The first claim is that if Ȳ = Y ∗, then it must also be that Z̄ = Z∗.
To see that consider that there is at least one terminal r for which Ȳrv -variable
for barge v is equal to one, then constraint (2.14) implies that Z̄v = 1. If all
Ȳrv -variables for barge v are zero, the variable Z̄v could take value zero or one,
but since the objective is to minimize costs the Z̄ will always be zero. The
same arguments hold for Y ∗ and Z∗, so Ȳ = Y ∗ implies that Z̄v = Z∗.

By the optimality of the ILP, we have that v
(
X̄, Ȳ , Z̄

)
≥ v (X∗, Y ∗, Z∗).

Moreover, as the X̄-variables are the optimal variables, given the variables Ȳ
and Z̄, it must hold that

v
(
X̄, Ȳ , Z̄

)
= v

(
X̄, Y ∗, Z∗

)
≤ v (X∗, Y ∗, Z∗) .

Since v
(
X̄, Ȳ , Z̄

)
is both less than or equal to v(X∗, Y ∗, Z∗) and greater than

or equal to v(X∗, Y ∗, Z∗), these values should be the same.

32 2. Optimizing barge utilization

Lemma 2.5. The value of the objective function of the solution of Algo-
rithm 2.1 is bounded by

v(X̄, Ȳ , Z̄) ≤ v (X∗, Y ∗, Z∗) + (T − 1)

(
1

T
bcT +

b∑
v=1

cBv

)
.

Proof. In step 1 of Algorithm 2.1, the integrality of the X-variables is relaxed,
so the objective function after step 1 is a lower bound for the optimal solution
and the solution of the heuristic: v(X̃, Ȳ , Z̄) ≤ v (X∗, Y ∗, Z∗) ≤ v

(
X̄, Ȳ , Z̄

)
.

In the proof of this lemma, the fractional solution (X̃, Ȳ , Z̄) is transformed into
a feasible integral solution. Let F be the set of containers which is fractionally
assigned to a barge, i.e., F := {i ∈ C|∃v ∈ B : 0 < X̃iv < 1}. By Corollary 2.1,
we know that |F| ≤ b. We will construct a feasible solution

(
X ′, Ȳ , Z̄

)
from

the solution after Step 1 from the heuristic, in the following way:

• If i ∈ F ∩H, then X ′i0 = 1 and X ′iv = 0 for v = 1, . . . b;

• If i ∈ F ∩ L, then X ′iv = 0 for v = 0, . . . , b;

• If i /∈ F , then X ′iv = X̃iv for v = 0, . . . , b.

In other words, in the solution X ′ none of the containers in F are assigned
to a barge. All high-priority containers in F are assigned to a truck and all
low-priority containers in F are not transported. We will first show that the
sum of the demurrage and storage costs in X ′ is not higher than in X̃. We will
only focus on the containers in the set F because the other containers have the
same demurrage and storage costs in X ′ and X̃. The increase in storage and
demurrage costs for X ′ compared to X̃ equals for every high-priority container i :
cDi0 + cSi0

(
1− X̃i0

)
. On the other hand, for every container i ∈ F , the costs∑b

v=1

(
cDiv + cSiv

)
X̃iv are paid in the solution X̃ but not in X ′. Hence, the

difference between the storage and demurrage costs in X ′ and X̃ is given by

∑
i∈F∩H

(
cDi0 + cSi0

) (
1− X̃i0

)
−
∑
i∈F

b∑
v=1

(
cDiv + cSiv

)
X̃iv ,

which can be reformulated to

∑
i∈F∩H

(
cDi0 + cSi0 −

b∑
v=0

(
cDiv + cSiv

)
X̃iv

)
−
∑
i∈F∩L

b∑
v=1

(
cDiv + cSiv

)
X̃iv .

2.5. Solution methods 33

It can be shown that this expression is negative:

∑
i∈F∩H

(
cDi0 + cSi0 −

b∑
v=0

(
cDiv + cSiv

)
X̃iv

)
−
∑
i∈F∩L

b∑
v=1

(
cDiv + cSiv

)
X̃iv

≤
∑
i∈F∩H

(
cDi0 + cSi0 −

b∑
v=0

(
cDiv + cSiv

)
X̃iv

)

≤
∑
i∈F∩H

(
cDi0 + cSi0 − min

v=0,...,b
{cDiv + cSiv}

b∑
v=0

X̃iv

)

=
∑
i∈F∩H

(
cDi0 + cSi0 −

(
cDi0 + cSi0

) b∑
v=0

X̃iv

)
= 0.

In the final equality, the property from constraint (2.11) is used, which implies
that

∑b
v=0 X̃iv = 1, for i ∈ F ∩ H. Concluding, the storage and demurrage

costs are in solution X ′ at most the storage and demurrage costs in solution X̃.

Secondly, we will look at the increase in barge and truck shipping costs in
X ′ compared to X̃, which is equal to

∑
i∈F∩H

cT
(

1− X̃i0
)

+
∑
i∈F

b∑
v=1

tic
B
v X̃iv .

To derive a bound for these costs, we divide the set F ∩ H into the following
two subsets: J := {i ∈ F ∩ H : X̃i0 > 0} and K := {i ∈ F ∩ H : X̃i0 = 0}.
The containers in set J are partially assigned to a truck after the first step
of Algorithm 2.1. The containers in set K are fractionally assigned to at least
two barges. Without loss of generality, we assume that uv is integral, so if
a fraction of a container is assigned to a truck it should always be at least
one TEU. Hence, for all i ∈ J , the value X̃iv has to be at least 1

T . Using a
similar argument, the fraction of TEU from container i on barge v is always at
most ti − 1, which gives us the following upper bound for the truck and barge
transportation costs:

∑
i∈J

cT
(

1− X̃i0
)

+
∑
i∈K

cT +
∑
i∈F

b∑
v=1

tic
B
v X̃iv

≤
∑
i∈J

cT
(
T − 1

T

)
+
∑
i∈K

cT +
∑
i∈F

b∑
v=1

(ti − 1)cBv

≤
(
T − 1

T
|J |+ |K|

)
cT + (T − 1)

b∑
v=1

cBv .

(2.19)

34 2. Optimizing barge utilization

To derive a bound regardless of the sizes of J and K, the maximum of(
T−1
T |J |+ |K|

)
has to be calculated. From Corollary 2.1 it follows that |F| ≤ b,

and since every container i ∈ K is at least assigned to two different barges,
we know that |J | + 2|K| ≤ b. In case T = 1, the set F is empty because uv
is integral and each barge v has at most one fractionally assigned container.
Hence, T should be at least two, which implies that T−1

T ≥ 1
2 . Given this fact

and the constraint |J | + 2|K| ≤ b, the maximum of T−1
T |J | + |K| is attained

at |J | = b and |K| = 0. Thus the expression in (2.19) can be further bounded
by (

T − 1

T
|J |+ |K|

)
cT + (T − 1)

b∑
v=1

cBv ≤
T − 1

T
bcT + (T − 1)

b∑
v=1

cBv .

Combining the two bounds for the storage and demurrage costs and the barge
and truck transportation costs, the following bound for the value v(X̄, Ȳ , Z̄)

can be derived:

v
(
X̄, Ȳ , Z̄

)
≤ v

(
X ′, Ȳ , Z̄

)
≤ v

(
X̃, Ȳ , Z̄

)
+
T − 1

T
bcT + (T − 1)

b∑
v=1

cBv

≤ v (X∗, Y ∗, Z∗) + (T − 1)

(
1

T
bcT +

b∑
v=1

cBv

)
,

which proves the lemma.

The bound derived in Lemma 2.5 is tight, as the following example illus-
trates. Consider a small example with one barge with u1 = 3 and two terminals.
Let the planning period be a single day. At terminal 1, two containers with a
size of two TEU are located and at terminal 2 there is one container of size one
TEU. All those three containers are high-priority and since the planning period
is one day, the demurrage and storage costs for shipping them per truck or per
barge are the same. Therefore, we ignore those costs for the rest of the exam-
ple. Let the penalty costs for visiting a terminal be π11 = π21 = 1

2c
T + ε for

ε > 0. The optimal solution for this problem instance is to visit both terminals
and ship one container from terminal 1 and the container from terminal 2 per
barge and the other container from terminal 1 per truck. The total costs of
this solution are: 2cT + 2ε− 3cB1 .

However, the first step of the heuristic only visits terminal 1. At this ter-
minal, one container is assigned integrally to the barge and only half of the
other container is assigned to the barge. The other half of the container and
the container at terminal 2 are transported by truck. Hence, the barge in the
second step of the heuristic can only visit terminal 1 and load one of the two

2.5. Solution methods 35

Figure 2.4 Assignment of the containers from the running example after the first
step of Algorithm 2.1.

containers at that terminal. The other two containers are shipped per truck,
resulting in the following costs: 2 1

2c
T + ε − 2cB1 . All in all, the difference be-

tween the solution produced by the two-stage heuristic and the optimal solution
is: 1

2c
T − ε + cB1 . As we can take ε arbitrarily small, this is equivalent to the

difference (T − 1)
(

1
T bc

T +
∑b

v=1 c
B
v

)
from Lemma 2.5.

Running example continued

Similar as in Section 2.5.1, the running example instance is solved for both
πrv = 100 and πrv = 250. Contrary to the optimal ILP solution, the two-
stage heuristic produces the same solution for the two penalties. For both
penalties, the solution after Step 1 of the heuristic is the same and is given in
Figure 2.4. After the first stage of Algorithm 2.1, all containers but container S4
are assigned in the same way as in Figure 2.3. Half of container S4 is assigned to
barge 1, and half of container S4 is assigned to barge 2. With this assignment,
the full capacity of fifteen TEU of the two barges is used. In the second step
of Algorithm 2.1, container S4 is assigned to a truck, because it is not possible
to assign eight containers with a size of two TEU integrally to one of the two
barges.

All in all, the heuristic produces for both πrv = 100 and πrv = 250 the same
solution as in Figure 2.3. So for πrv = 100, the terminal visits after Step 1 are
the same as the optimal visits and thus by Lemma 2.4 the heuristic produces an
optimal solution. In the setting that πrv = 250, the terminal visits after Step 1

36 2. Optimizing barge utilization

Algorithm 2.2: Algorithm to select barges and terminal visits.
Input: characteristics of all containers and barges
Sort barges in non-decreasing order of the day they are present at the deep-sea port
for All barges do

Assign unassigned containers to barge according to Algorithm 2.3
for All terminals do

if Barge loads sufficient containers at terminal with respect to Lemma 2.1
then

Visit terminal
end

end
Assign all unassigned containers located at visited terminals according to
Algorithm 2.3

if Costs of shipping containers assigned to barge plus the barge rent is smaller
than costs of trucking all high-priority containers assigned to barge then

Use barge
end

end
for All unassigned high-priority containers do

Transport container by truck
end
Output: assignment of containers to barges and trucks

are not optimal, and the final solution of the heuristic is not optimal, either.
The optimal value of the objective function is 2,668, whereas the two-stage
heuristic produces a solution with a value of 2,754. The difference between
those two solutions, namely 86, is significantly smaller than the bound given by
Lemma 2.5, which is (2− 1)(1

2 ∗ 2 ∗ 150 + 25 + 25) = 200.

2.5.3 Planner algorithm

Current practice, at the inland terminal we have collaborated with, is that
experienced planners make a transportation plan by hand. Based on interviews
with practitioners, we have developed an algorithm that imitates the behavior
of that planner. This algorithm is a greedy algorithm that uses more or less the
first-come-first-serve approach. It was also pointed out by Van Riessen et al.
(2016) and Wang et al. (2016) that these kinds of methods are often used in
real-life planning. This planner algorithm is described in Algorithms 2.2 and 2.3.
In Algorithm 2.2, it is described how the planner decides which terminals to
visit and which barges to use. Algorithm 2.3 selects for a specific barge the
containers to assign to that barge.

In Algorithm 2.2, the barges are considered in chronological order of the
day they are at the deep-sea port. It uses Algorithm 2.3 as a subroutine to
determine the containers that will be assigned to the current barge. Afterward,
Lemma 2.1 is used to decide which terminals are visited. A terminal is only
visited if sufficient containers are loaded at that terminal. If there are terminals

2.5. Solution methods 37

Algorithm 2.3: Algorithm to select containers for a given barge.
Input: characteristics of all containers and one barge
Select containers which have ETA and call date such that they could be
transported on barge

Sort containers in non-decreasing order of their end of demurrage free period, ETA
and terminal

for All unscheduled containers do
if Call date of container is between arrival of current barge and next barge &
current barge has capacity to fit container then

Assign container to barge
end

end
for All unscheduled containers do

if Demurrage free period of container ends before next barge arrives & current
barge has capacity to fit container then

Assign container to barge
end

end
for All unscheduled high-priority containers do

if Current barge has capacity to fit container then
Assign container to barge

end
end
for All unscheduled low-priority containers do

if Current barge has capacity to fit container then
Assign container to barge

end
end
Output: set of containers assigned to barge

at which insufficient containers are loaded, the barge is not visiting them, so
it might be that some capacity on the barge becomes available. Therefore,
Algorithm 2.3 is rerun to see if there are unassigned containers available on
terminals that are already visited. If all containers are assigned to the barge,
the planner algorithm decides if it will use the current barge. If it is more
expensive to ship the high-priority containers assigned to the barge per truck
than by the barge, the barge is used. Otherwise, we do not use the barge.
After all barges are considered, it might be that there are still some unassigned
containers. If these containers have a high-priority, they are shipped by a truck.

Algorithm 2.3 uses a single barge as input and selects only the containers
that could be transported on that barge. These containers are sorted based on
the end of their demurrage free period, ETA, and deep-sea terminal. Afterward,
the algorithm goes four times through all containers and checks if a container
can be assigned to the barge. In every for-loop containers are only added
to the barge if it has free capacity left. In the first for-loop of Algorithm 2.3,
containers with a call date such that this barge can transport them, but not the
next barge, are added to the barge. In the second for-loop, the algorithm goes

38 2. Optimizing barge utilization

Figure 2.5 Assignment of containers from the running example via the planner al-
gorithm.

again through all unscheduled containers, and if the demurrage free period ends
before the next barge arrives, it is scheduled on the current barge. The third
part of Algorithm 2.3 goes through all unscheduled high-priority containers, and
these containers are added to the barge. If there is still capacity left on the
barge, the fourth for-loop assigns low-priority containers to the barge.

Running example continued

In Figure 2.5, containers from the running example are assigned according to
the planner algorithm. The containers are displayed at the terminal in this in
the way they are sorted at the beginning of Algorithm 2.3. The order from
left to right and top to bottom corresponds to the sorting of the containers at
the beginning of Algorithm 2.3. The demurrage free period of containers 3, 4,
and 6 ends on day 1, and they have the same ETA, so for these containers, the
ties are just broken by their container number. After the containers for which
the demurrage costs are relevant, container 5 is the first container because its
ETA is the lowest.

In the barges, the containers are shown from left to right and top to bot-
tom in the order they are assigned to that barge. Container R6 is the first
container to be assigned to barge 1 because it is the first container at Termi-
nal R whose call date is before the arrival day of the next barge. Container S6
is the next container because it has the same characteristics as container R6,
but it is only located at another terminal. All containers in Figure 2.5 that

2.6. Numerical results 39

are assigned to a barge are assigned in the first call of Algorithm 2.3 in Algo-
rithm 2.2. Container R3 is the only container assigned to a barge in the second
for-loop of Algorithm 2.3, in which the demurrage free period is decisive, all
other containers are already assigned in the first for-loop of Algorithm 2.3.

The planner algorithm produces a solution in which four terminals are visited.
The minimum containers picked up at a terminal by barge is three. According
to Lemma 2.1 with previously defined cost parameters, three is higher than the
minimum containers to be picked up given πrv = 100 or πrv = 250. Hence,
all terminals are visited, and Algorithm 2.3 will not be called a second time
in Algorithm 2.2. In the running example, we have assumed that the fixed
costs are set low enough that both barges are used. In the last for-loop of
Algorithm 2.2 containers R10 and S10 are assigned to a truck.

As the planner algorithm is visiting four terminals in total, it is interesting to
see how it performs compared to the outcome of Figure 2.3, which is the optimal
solution for visiting four terminals. In both scenarios, fourteen containers are
shipped per barge and two per truck. However, in Figure 2.3, demurrage costs
had to be paid for four days, and in Figure 2.5 there are eight demurrage days.
The planner algorithm is a greedy algorithm, which is not able to look into
the future. In this example, that results in the fact that it cannot detect that
it already has to ship a container by a truck on the first day. At the end of
the planner algorithm, it is decided to transport containers per truck on day 3,
which results in more demurrage costs.

2.6 Numerical results
In this section, the performance of the three methods introduced in Section 2.5
is compared. We are interested in how much improvement can be made by
implementing the ILP model from Section 2.5.1 compared to the planner algo-
rithm from Section 2.5.3 that models the current practice. Secondly, both the
running time and the solution quality of the two-stage heuristic are compared
with the ILP.

2.6.1 Medium-sized instances

To evaluate the performance of the three methods, we have used twelve in-
stances based on real-life data. Each instance consists of all containers that
are available for transportation and the barges that can be used for transporta-
tion. The planning horizon for each instance is set to a week. In Table 2.2,
some key properties of the different instances are given. In the second column
of Table 2.2, the number of containers for each instance is given. This number
varies roughly between 500 and 1,000. In the third column, the total number of
TEU of these containers is shown. The percentage of high-priority containers,

40 2. Optimizing barge utilization

Instance
Number

containers (n)

Total
TEU

% high prio
containers

Number
barges (b)

Total capa-
city barges

M1 670 957 35% 4 886
M2 1,163 1,636 38% 6 1,329
M3 549 843 91% 4 886
M4 651 990 90% 4 941
M5 753 1,083 60% 4 850
M6 863 1,279 95% 4 1,004
M7 892 1,221 91% 4 945
M8 596 877 96% 4 945
M9 503 770 91% 4 945

M10 1,064 1,584 91% 5 1,027
M11 855 1,177 72% 4 945
M12 924 1,300 83% 4 945

Table 2.2 Summary of properties of twelve medium-sized instances.

i.e., the containers that need to be shipped, differs between 35% and 96%.
In column 5, the number of barges is given, which is most of the time equal
to four, but because the capacity of the barges is not always the same, the
maximum capacity in TEU shown in the last column differs.

Besides the container and barge characteristics, the costs that are used need
to be defined. For transporting a container we use cT = 150 and cBv = 25 for
every barge. The demurrage costs are 40 for every day after the end of the
demurrage free period for containers of one TEU and 60 for larger containers.
The storage costs are 1 per TEU per day that a container is stored at the
inland terminal. Moreover, the fixed costs of using any barge are ρv = 4, 500.
Finally, we set πrv such that, according to Lemma 2.1, at least five containers
are picked up at every terminal. Hence, πrv = 1, 000 for every barge v and
terminal r .

In Table 2.3, the optimal value of the objective function of the ILP model is
compared to the outcome of the two-stage heuristic and the planner algorithm.
In the second column, the optimal solution of the ILP model is given. In the
third and fourth column, the objective function of the two-stage heuristic and
the percentage difference with the optimal solution is given. Finally, in the last
two columns, the costs of the solution from the planner algorithm are given
and the percentage difference with the optimal solution. The first thing to
note from Table 2.3 is that the two-stage heuristic produces for all but one
of the instances the optimal solution. For the instance for which the solution
of the two-stage heuristic is not optimal, it is only 0.2% more expensive than
the optimal solution. Second, the value of the planner algorithm is on average
20% higher than the optimal solution. Nevertheless, the solution quality of the
planner algorithm differs substantially per instance. For example, for M2 and
M9 it produces a solution that is within 2% of the optimal solution, but for

2.6. Numerical results 41

Instance
Optimal
solution

Two-stage
heuristic

∆%
Planner

algorithm
∆%

M1 58,213 58,213 0 69,002 18.5
M2 57,785 57,785 0 58,651 1.5
M3 48,429 48,429 0 54,954 13.5
M4 41,812 41,884 0.2 45,942 9.9
M5 47,575 47,575 0 55,679 17.0
M6 68,628 68,628 0 90,075 31.3
M7 63,833 63,833 0 76,198 19.4
M8 52,611 52,611 0 63,034 19.8
M9 42,476 42,476 0 43,320 1.8

M10 82,399 82,399 0 119,431 44.9
M11 71,428 71,428 0 96,970 35.8
M12 65,263 65,263 0 85,814 31.5

Table 2.3 The objective function of the solution of the planner heuristic and two-
stage heuristic compared with the optimal solution.

instance M10 the difference between the optimal solution and the solution of
the planner algorithm is almost 45%.

The total costs are split into different categories in Table 2.4 to understand
which aspect of the planning the ILP outperforms the planner algorithm. In the
second column of Table 2.4, the total costs for the planner solution for each
category are given. In the third column, the planner’s total costs are shown,
and in the fourth column, the difference between the optimistic planner and
the optimal solution is calculated. In general, the planner algorithm ships more
containers per barge and fewer containers per truck. However, in doing that,
the planner algorithm’s solution has 60% more terminal visits by barge than
the optimal solution. On top of that, the planner algorithm results in almost
four times as many demurrage costs. An intuitive explanation is that in the
optimal solution, a container is shipped more often per truck in order not to
visit a terminal or to reduce the demurrage costs than in the solution from the
planner algorithm. All in all, the ILP method potentially yields a great amount
of cost savings.

The running time for the ILP for all twelve medium-sized instances is less
than three seconds. The two-stage heuristic is, on average, about 1.4 times
faster. As the running time for the ILP is not that long, one could argue that a
heuristic solution is not needed for these instances. In the next section, we will
consider larger instances to see if the ILP is still a suitable solution method.

2.6.2 Large-sized instance

The ILP could solve the medium-sized instances from the previous section in
a reasonable time. This section will investigate how well the running time of
the ILP scales with the input sizes. For that purpose, we have constructed ten

42 2. Optimizing barge utilization

Optimal
solution

Planner
algorithm

Type costs Total costs Total costs ∆

Unused TEU barge penalty 77,250 56,475 20,775
Truck costs 211,800 173,850 37,950
Demurrage costs 47,780 176,340 -128,560
Storage costs 52,622 52,314 308
Terminal visit penalty 131,000 211,000 -80,000
Fixed barge costs 180,000 189,000 - 9,000

Table 2.4 Costs for the optimal ILP and the planner algorithm split out per category.

instances with 1,500 containers. These containers are randomly selected from
all medirum-sized instances. Since a large number of containers is selected
randomly, the characteristics of the containers in the large-sized instances are
quite similar for every instance. Moreover, the barge schedule consists of six
barges and is the same for every instance. The cost parameters are the same
for the large-sized instances as for the medium-sized instances.

The results for these large-sized instances are given in Table 2.5. In the
second, third, and fourth columns of the table, the running times of the, re-
spectively, ILP, two-stage heuristic, and planner algorithm are given. In the
fifth, sixth, and seventh column, the objective function of the solution from
these three methods is given. Although the instances are rather similar, the
running time of the ILP differs substantially. For instances L7 and L10, the
ILP did not find the optimal solution after three hours when the algorithm was
stopped. On top of that, instances L5 and L9 took almost five minutes to
produce the optimal solution. That might be too long if a planner needs to
recalculate the consequences of a change to the schedule.

The running time of the two-stage heuristic is for all ten instances about
ten seconds, even for the instances for which the ILP could not find the optimal
solution in three hours. The planner algorithm produces for all instances in a
fraction of a second a solution, which is represented by << 1 in Table 2.5.
However, the value of the objective function of the planner algorithm is about
50% higher than for the other two algorithms. Similarly, as was shown in
Table 2.4, the solution of the planner algorithm for the large-sized instances
has especially more demurrage costs and terminal visits.

The objective function for all ten instances is almost the same, which is not
surprising as the instances are similar. Out of the eight instances for which the
optimal solution is known, the two-stage heuristic produces the optimal solution
seven times. The two-stage heuristic does not provide the optimal solution for
instance L8, but its solution is only 0.03% worse. Moreover, the two-stage
heuristic produces the solutions for these eight instances on average almost ten
times faster than the ILP. Concluding, the ILP method does not work well for

2.7. Conclusion 43

Running time (sec.) Objective function
Instance ILP Two-stage Planner ILP Two-stage Planner

L1 13 8 << 1 96,595 96,595 152,703
L2 32 7 << 1 99,096 99,096 161,385
L3 24 8 << 1 98,167 98,167 157,132
L4 13 7 << 1 98,788 98,788 145,083
L5 297 11 << 1 101,777 101,777 162,332
L6 31 7 << 1 100,406 100,406 158,824
L7 - 7 << 1 - 102,378 162,919
L8 68 8 << 1 101,777 101,808 167,846
L9 280 10 << 1 101,055 101,055 153,598
L10 - 10 << 1 - 99,712 161,736

Table 2.5 Running times and objective function of the ILP, the two-stage heuristic
and the planner algorithm for ten large-sized instances.

the large-sized instances. For two instances, it could not produce the optimal
solution. Furthermore, for all instances, the two-stage heuristic provides an
almost always optimal solution in a fraction of the time of the ILP.

2.7 Conclusion
In this chapter, we have proposed an operational model to minimize the storage
and demurrage costs, the truck transportation costs, the empty space on barges
and the number of terminals visited by barge. In order to fill the barges as good
as possible, we have introduced the concept of high-priority and low-priority
containers. The high-priority containers need to be transported, whereas the
low-priority containers can be used to fill the barges. To evaluate the benefits
of the ILP, we have introduced the planner algorithm that produces a solution
in a similar way as an experienced planner.

The potential cost savings for the medium-sized instances are about 20%

and for large-sized instances it is about 50%. The fact that the number of
variables for assigning a container to a barge is much larger than the number
of variables indicating whether a barge is used and a terminal is visited by a
barge, is used in the two-stage heuristic. The theoretical difference between
the optimal solution and the solution of the heuristic is given. Nevertheless,
computational experiments show that the two-stage heuristic almost always
finds the optimal solution. Moreover, for the large-sized instances the two-
stage heuristic finds the solution much faster than the ILP, which could not
find the optimal solution within three hours for some instances.

Unfortunately, the IT infrastructure at the collaborating inland terminal was
not capable of making a comparison between the actual transportation plan and
our proposed plan. However, it would be interesting to make such a comparison.
The benefit of using algorithms does not only lie in finding a better solution

44 2. Optimizing barge utilization

but also in the speed that such a solution is obtained. As a result, using
algorithms it is also possible to compare many different scenarios. For instance,
the consequences of not visiting a specific terminal with a barge.

We have only included the import flow of containers because that is the
dominant flow in most of Europe (Fazi et al., 2015). In the next chapter, we
study an extension that also includes the export flow. Moreover, in the next
chapter, we also include a stochastic constraint on the maximum number of
containers that can be picked up by a barge.

3
Planning hinterland transportation in congested
deep-sea terminals

3.1 Introduction
In this chapter, we focus on the consequences of congestion for barges at deep-
sea ports. The growing volume of containers transshipped in combination with
the increasing size of deep-sea vessels puts immense pressure on the operation
of the deep-sea terminals. Hence, the number of containers that can be loaded
and unloaded on a barge is limited. We will refer to the number of containers
that can be loaded and unloaded at a terminal as the number of moves. Un-
fortunately, this number of moves at the deep-sea terminals is often unknown
when the transportation plan needs to be made because of the delay of deep-
sea vessels. These deep-sea vessels could be delayed, because of, for instance,
bad weather conditions or a late departure at a previous port.

The service of deep-sea vessels has priority over that of barges. Thus, the
delay of deep-sea vessels also influences barges’ service, which has become
rather unreliable. For example, in the port of Rotterdam, waiting times of more
than eight hours are not uncommon. At the moment, barges spend about
30-40% of the time they are in the port of Rotterdam waiting to be served
at container terminals. Furthermore, in the last year, 20% of the barges were
delayed (Port of Rotterdam Authority, 2020b). In this chapter’s problem, both
the import and export flow of containers must be assigned to barges and trucks.
If many containers are loaded, the expected costs for late minute adjustments,
that are incurred when the number of moves is insufficient, are high. On the
other hand, if only a few export containers are shipped per barge, a large number
will be shipped per truck, which results in higher transportation costs.

This chapter’s contribution is threefold: first, we present the first problem
in the literature in which the uncertain service of barges at deep-sea terminals
is studied. In this chapter, we formulate this problem as a two-stage stochas-

This chapter is based on B.G. Zweers, S. Bhulai, and R.D. van der Mei. Planning
hinterland container transportation in congested deep-sea terminals. Flexible Services and
Manufacturing Journal, 2020b. doi: 10.1007/s10696-020-09387-3.

46 3. Planning hinterland transportation in congested deep-sea terminals

tic problem with recourse. The second contribution is that we give a Sample
Average Approximation (SAA) method to solve this problem. This method
uses Monte Carlo sampling to solve stochastic optimization problems. To the
best of our knowledge, we are the first to apply SAA to the field of hinterland
container transportation. This technique allows us to solve more realistic prob-
lems than the existing methods in the literature. Although the SAA method
can produce (almost) optimal solutions for small instances, its running time for
larger instances is longer. Therefore, our third contribution is that we propose
a heuristic based on Stochastic Programming (SP).

The remainder of this chapter is organized as follows. The relevant literature
is discussed in Section 3.2. In Section 3.3, the problem is described in more
detail, and it is translated into a mathematical model in Section 3.4. Three
different solution methods will be discussed in Section 3.5, and the numerical
results for these three methods are given in Section 3.6. Finally, the conclusions
will be presented in Section 3.7.

3.2 Literature review
In this section, we focus on the operational problems in the multimodal litera-
ture that include stochasticity because the relevant literature on deterministic
problems has already been discussed in Section 2.2. Moreover, we also focus
on the relevant literature on the SAA method.

In stochastic assignment problems, part of the information is uncertain when
the transportation plan is made. To the best of our knowledge, there are only
three papers in the literature that consider stochastic assignment problems,
namely Pérez Rivera and Mes (2017), Zhang et al. (2016), and Zuidwijk and
Veenstra (2015). In these three papers, the unknown factor is the number
of containers that needs to be transported. This uncertainty is caused by the
fact that a deep-sea vessel’s arrival could be delayed or that the release of a
container by customs might take longer.

In Zuidwijk and Veenstra (2015), this problem is studied for the first time.
They consider a problem in which there is only a single barge that visits one
terminal. The moment the barge visits the terminal has to be decided. In this
decision, a trade-off is made between the number of containers transported
by barge and the barge arrival time at the inland terminal. Optimal Pareto-
frontiers are given for different information scenarios, and with that, the value
of information can be determined.

Zhang et al. (2016) study a problem in which a hinterland operator needs
to transport the containers on a deep-sea vessel that is approaching the port.
The planner needs to decide on the amount of capacity for each of the different
modes of transportation. Each mode of transportation incurs different costs

3.2. Literature review 47

but also has a different speed. Some containers need to be shipped with a fast
and expensive mode of transportation because otherwise, they will be too late
at their final destination. In contrast, other containers can go on the slow and
cheap mode of transportation. The total demand for containers is known, but
the number of containers that needs to go on each mode of transportation is
unknown. Similar to Zuidwijk and Veenstra (2015), Zhang et al. (2016) also
study a theoretical problem that they can solve to optimality and look into
different information scenarios.

The problem described in Pérez Rivera and Mes (2017) is the most similar
to our problem. In this problem, a barge makes every day a round-trip from a
single inland terminal to a set of deep-sea terminals. They formulate a Markov
Decision Problem to decide which terminals to visit with a barge and how many
containers of each type should be delivered to or be picked up from a certain
terminal. For each terminal that is visited by a barge, a penalty has to be paid.
The uncertainty in this model lies in the fact that the demand for each container
type is unknown.

The three problems studied by Pérez Rivera and Mes (2017), Zhang et al.
(2016), and Zuidwijk and Veenstra (2015) assume that the barge transportation
costs are the same for all containers on that barge. This assumption mainly
serves to make calculations easier, but it is often unrealistic in practice. To
include different costs per container, we will use the SAA method, introduced
by Kleywegt et al. (2001). In Shapiro et al. (2009), a theoretical overview of
the SAA method is given, and we refer to Kim et al. (2015) for an overview
that is more orientated to the application of the SAA method.

The SAA method has been applied to many different areas, but we focus on
problems in transportation. In Verweij et al. (2003), the SAA method is used to
solve the Stochastic Vehicle Routing Problem. Another transportation problem,
the Stochastic Multiperiod Location Transportation Problem, is also solved
using SAA in Klibi et al. (2010). In this problem, the design of a transportation
network and the routing decisions over multiple planning periods inside this
network are taken into account. As the SAA method is hard to solve for large
instances of this problem, also heuristics are proposed to solve the problem
hierarchically. Another application of the SAA that is related to our work is in
Long et al. (2012) in which SAA is used to solve a problem in empty container
repositioning.

Finally, Toktas et al. (2006) study the GAP with stochastic capacities, and
our problem can be seen as a generalization of this problem. In Toktas et al.
(2006), simple heuristics to deal with the uncertainty in the capacity constraints
are compared. We will use the two methods that perform best in their study
to our problem and discuss them in more detail in Section 3.5.3.

48 3. Planning hinterland transportation in congested deep-sea terminals

3.3 Problem formulation
We consider a problem in which a single inland terminal needs to export con-
tainers to multiple deep-sea terminals and import containers from the same
deep-sea terminals. This problem is slightly more stylized than the problem
of Chapter 2 because we want to focus on the stochasticity of the number
of moves and the export flow of containers. For both the import and export
containers, we assume that every container has the following properties:

• given size in TEU;

• fixed transportation costs for each barge and truck;

• deep-sea terminal at which it needs to be picked up (import containers)
or needs to be delivered (export containers).

In this problem, we assume that all containers need to be transported, i.e.,
all containers are high-priority containers (see Definition 2.1). The costs for
transporting a container are fixed for each barge and truck because the inland
terminal has a contract with barge operators and trucking companies to ship
containers for a given price. It is important to note that the costs for each con-
tainer and barge combination are potentially different because they containers
demurrage, storage, and detention costs. Demurrage costs have to be paid for
import containers located longer than a specified period at a deep-sea terminal.
Moreover, import and containers might need to be stored at the inland termi-
nal, which results in storage costs. Furthermore, an export container needs to
be back at the deep-sea terminal after a given number of days, because oth-
erwise, detention costs need to be paid per day that it is late. Especially, the
demurrage and detention costs are substantial and influence the transportation
plan. Allowing for different transportation costs for different barges also gives
us the flexibility to include the fact that some containers cannot be transported
on specific barges because it has, for instance, not arrived at the deep-sea ter-
minal. If the costs for transporting a container on a specific barge is set high
enough, the container will never be assigned to that barge.

Considering the barges, we make the following assumptions. Every barge

• makes a round trip starting at the inland terminal, going to the deep-sea
port and returning at the inland terminal;

• has a capacity in TEU;

• has a maximum number of terminals it can visit in a round trip;

• has an uncertain number of moves at every terminal.

3.3. Problem formulation 49

The barge operator decides the moment that a barge is leaving the inland
terminal and also the moment it needs to leave the deep-sea port. In a large
deep-sea port, there are too many terminals to be all visited by a single barge.
That is why the number of terminals that can be visited by a barge is limited.
The inland terminal can decide on the terminals that are visited, but the barge
operator decides the barge’s route.

The congestion at the deep-sea port causes deep-sea terminals to limit the
number of moves that can be done for every barge. The inland terminal is
allowed to use all these moves solely to unload containers or load containers,
but also each possible combination of the two. We have experimented with
imposing a penalty for a terminal visit by barge. However, the uncertainty in
the number of moves resulted that it was difficult to set the penalty such that
the outcome was desirable. It was the case that often either no terminals were
visited, or all terminals were visited.

For truck transportation, we make the following two assumptions:

• each truck can only ship a single container;

• there is an unlimited number of trucks.

Trucking a container is more expensive than shipping a container on a barge
because each truck can only transport a single container. Since truck trans-
portation is relatively expensive, not many trucks will be used in general for the
transportation of containers. Hence, the assumption that the number of avail-
able trucks is unlimited does not restrict us much from reality. Furthermore,
the benefit of this assumption is that there always exists a feasible solution. We
do not consider other modes of transportation, such as trains, in this problem,
although they could be incorporated in our framework.

In general, inland terminals are not located in the direct neighborhood of
a deep-sea terminal. Therefore, the transport plan is made several days in
advance. However, at that time, the number of moves at a deep-sea terminal
is unknown, or it is unreliable. Hence, the number of moves is modeled as
a stochastic variable. In this problem, we assume that the total number of
containers that can be loaded and unloaded at a terminal is only revealed after
all barges have left the inland terminal. At that time, all barges are already
loaded with export containers.

In case a barge is shipping more export containers for a particular terminal
than the number of moves, the barge cannot unload all its containers in the
allocated slot. For each container that cannot be unloaded, a recourse action
is required, which could be unloading the container at another terminal or re-
turning it to the inland terminal. In both cases, extra transportation costs are

50 3. Planning hinterland transportation in congested deep-sea terminals

Barge 1 Barge 2

E14

E13

E12

E11

E21

E22

E23

E24

E25

E31

E32

E33

E34

E35

Inland terminal

Deep-sea

terminal 3

Exp. Cont. Deep-

Sea Term. 1

Exp. Cont. Deep-

Sea Term. 2

Exp. Cont. Deep-

Sea Term. 3

I11

I12

I13

I14

I15

I21

I22

I23

I24

I25 I33

I32

I31

moves = (?,?) # moves = (?,?) # moves = (?,?)

Deep-sea

terminal 2

Deep-sea

terminal 1

Max terminal

visit = 2

Trucks

Figure 3.1 All available containers and barges.

incurred, and the planner at the inland terminal has to do extra work, which
may be costly. The main problem we are facing is determining which terminals
to visit with each barge and which export containers to load on each barge.
Below, we give an illustration of the problem.

Problem illustration

In Figures 3.1, 3.2, 3.3, and 3.4 an illustration is given of the problem we con-
sider and a possible solution. It is important to note that this is not necessarily
the optimal solution. In Figure 3.1, the input data of the problem is given.
For simplicity, we ignore the cost structure in this example. We consider an
example with two barges, and both barges can visit at most two of the three
deep-sea terminals. Besides that, the capacity of both barges is eight con-
tainers. The containers at the inland terminal are grouped with respect to the

3.3. Problem formulation 51

Barge 1 Barge 2

E35

Inland terminal

Deep-sea

terminal 3

Exp. Cont. Deep-

Sea Term. 1

Exp. Cont. Deep-

Sea Term. 2

Exp. Cont. Deep-

Sea Term. 3

I11

I12

I13

I14

I15

I21

I22

I23

I24

I25 I33

I32

I31

moves = (?,?) # moves = (?,?) # moves = (?,?)

Deep-sea

terminal 2

Deep-sea

terminal 1

E11

E12 E13 E14

E21 E22

E23 E24 E25

E31 E32

Trucks

E34

E33

Figure 3.2 Decision for deep-sea terminal visits by barge and shipment of export
containers.

deep-sea terminal to which they need to go. For instance, container E12 is the
export container with number 2 that needs to go to the first deep-sea terminal.
We assume that every container can be shipped on both of the barges. Ev-
ery deep-sea terminal has for every barge a certain number of moves available.
Nevertheless, at the beginning of the planning phase, this number is unknown,
and therefore it is represented by a question mark in Figure 3.1.

In Figure 3.2, it has been decided which deep-sea terminals are visited by
which barge and which export containers are loaded on which barge. Barge 1 is
visiting deep-sea terminals 1 and 2, and barge 2 is visiting deep-sea terminal 2
and 3. In Figure 3.2, it is also depicted which export containers are loaded
on the two barges. Although there is capacity left on the second barge, some
containers for deep-sea terminal 3 are shipped per truck (containers E33, E34,

52 3. Planning hinterland transportation in congested deep-sea terminals

Barge 1 Barge 2

E35

Deep-sea

terminal 3

I11

I12

I13

I14

I15

I21

I22

I23

I24

I25 I33

I32

I31

moves = (2,-) # moves = (6,3) # moves = (-,9)

Deep-sea

terminal 2

Deep-sea

terminal 1

E11

E12 E13 E14

E21 E22

E23 E24 E25

E31 E32

Trucks

E34

E33

Recourse

E12

E34

E11

Figure 3.3 Revealment number moves and recourse actions.

and E35). These containers are shipped per truck because the number of moves
at the deep-sea terminals is still unknown at this stage.

In Figure 3.3, the numbers of moves at the deep-sea terminals are revealed.
The number of moves at a deep-sea terminal is only revealed if a barge is visiting
the terminal. For instance, deep-sea terminal 1 is only visited by barge 1, and
thus, the number of moves for this barge is revealed (2), but the number of
moves for the second barge is not relevant. Four export containers for deep-
sea terminal 1 were loaded on barge 1, but the number of moves is only two,
meaning that for two of the four containers a recourse action is required.

In Figure 3.4, it is shown, for each barge, how many moves are left for the
import containers. The number of moves left is the same as the number of
moves in Figure 3.3 minus the number of export containers unloaded at that
terminal. For instance, the number of moves for barge 2 at deep-sea terminal 2

3.3. Problem formulation 53

Barge 1 Barge 2

I13

Deep-sea

terminal 3

I11

I12

I13

I14

I15

I21

I22

I23

I24

I25 I33

I32

I31

moves left =

(0,-)

moves left =

(4,0)

moves left =

(-,7)

Deep-sea

terminal 2

Deep-sea

terminal 1

I23 I24

I31

I32 I33

Trucks

E34

I11

I12

I22I21

I25

E34

I14

I15

Figure 3.4 Decision for shipment of import containers.

was three, but since also three export containers were unloaded at the deep-
sea terminal, no more moves are left for barge 2. As the first barge has four
moves left at the deep-sea terminal 2, that barge can ship four of the five
import containers located at the second deep-sea terminal. The fifth container
has to be shipped per truck, similar to the five containers located at deep-sea
terminal 1 because no moves are left at that terminal for barge 1.

The second barge has seven moves left at the third deep-sea terminal, but
only three import containers are located at that terminal. In retrospect, it would
have been better to load more export containers for terminal 3 on the second
barge, because the number of moves was sufficiently large. The assignment of
the import containers that is done in Figure 3.4 is relatively easy compared to
the assignment of the export containers in Figure 3.2 because the number of
moves has been revealed. Hence, the problem is entirely deterministic.

54 3. Planning hinterland transportation in congested deep-sea terminals

I(k) Set of import containers located at terminal k

E(k) Set of export containers with destination terminal k

ni Total types of import containers

ne Total types of export containers

m Total number of barges

l Total number of terminals

c itj Costs of transporting import container of type t with barge j

c it0 Costs of transporting import container of type t per truck

cetj Costs of transporting export container type t with barge j

cet0 Costs of transporting export container type t per truck

qjk Recourse costs for a move at terminal k for barge j

uj Capacity of barge j in TEU

Nj Maximum number of terminal to be visited by barge j

det Number of export containers of type t

d it Number of import containers of type t

w et Size of export container type t in TEU

w it Size of import container type t in TEU

Φjk Random variable indicating the maximum number of import and

export containers that can be collected from terminal k by barge j

F (·) Cumulative distribution function for number of moves for barge j at terminal k

φjk Realization of random variable Φjk

Table 3.1 Notation for the input parameters used in Chapter 3.

3.4 Mathematical model
In this section, the problem described in Section 3.3 is formulated as a two-
stage stochastic problem. We consider a problem in which there are m barges,
and we use j as an index for the barges. Each barge j has a capacity of uj TEU
and can visit at most Nj terminals. Furthermore, there are ne types of export
containers and ni types of import containers. We use t as an index both for
the type of import and export containers. To a type of container belong all
containers with the same characteristics. For an import (export) container
these characteristics are: the size in TEU of a container w it (w

e
t), the cost of

transporting a container of type t on barge j = 1, . . . , m is c itj (c
e
tj) and per

truck it is c it0 (cet0). Moreover, all containers in a type are located at the same
terminal. The total number of import container and export containers of type t
is given by, respectively, d it and d

e
t .

In total, there are l terminals, and we use the index k to refer to a terminal.
The set of import and export containers at terminal k is, respectively, I(k) and
E(k). The number of moves by barge j at terminal k is given by the stochastic
variable Φjk . We use φjk to refer to a realization of that stochastic variable.

3.4. Mathematical model 55

Finally, if more than φjk containers from the sets I(k) and E(k) are assigned
to barge j , then a cost of qjk per container above the threshold φjk is incurred.
The notation for the input parameters is summarized in Table 3.1.

The remainder of this section is organized as follows: first, we formulate
in Section 3.4.1 a model in which we assume that the number of moves at a
terminal is deterministic. In Section 3.4.2, the two-stage stochastic problem
with recourse is formulated.

3.4.1 Deterministic model

We first assume that the number of moves at terminal k for barge j is the
deterministic value φjk . We use three different types of decision variables: Xetj ,
X itj , and Yjk . The variable Yjk is a binary variable indicating that terminal k is
visited by barge j . The variable Xetj indicates the number of export containers
of type t that are transported on barge j , if j = 1, . . . , m; and if j = 0, it
gives the number of export containers of type t on a truck. The variables X itj
represent the same, but then for import containers. This deterministic problem
can be modeled as an ILP in the following way:

min

ni∑
t=1

m∑
j=0

c itjX
i
tj +

ne∑
t=1

m∑
j=0

cetjX
e
tj (3.1)

subject to

m∑
j=0

X itj = d it t = 1, . . . , ni (3.2)

m∑
j=0

Xetj = det t = 1, . . . , ne (3.3)

ni∑
t=1

w itX
i
tj ≤ uj j = 1, . . . , m (3.4)

ne∑
t=1

w et X
e
tj ≤ uj j = 1, . . . , m (3.5)∑

t∈I(k)

X itj +
∑
t∈E(k)

Xetj ≤ φjk j = 1, . . . , m k = 1, . . . , l (3.6)

l∑
k=1

Yjk ≤ Nj j = 1, . . . , m (3.7)

X itj ≤ d itYjk j = 1, . . . , m k = 1, . . . , l t = 1, . . . , ni (3.8)

Xetj ≤ det Yjk j = 1, . . . , m k = 1, . . . , l t = 1, . . . , ne (3.9)

56 3. Planning hinterland transportation in congested deep-sea terminals

X itj ∈ N0 t = 1, . . . ni j = 1, . . . , m (3.10)

Xetj ∈ N0 t = 1, . . . ne j = 1, . . . , m (3.11)

Yjk ∈ {0, 1} j = 1, . . . , m k = 1, . . . , l . (3.12)

The objective function (3.1) consists of two sums. The first sum represents
the total costs for barge and truck transportation of the import containers.
The second sum is the same as the first sum, except for the fact that it rep-
resents the total costs for the export containers. Constraints (3.2) and (3.3)
ensure that for each type of import, respectively export container, the entire
demand is transported. Moreover, constraints (3.4) and (3.5) enforce that the
total number of import and export containers assigned to a barge does not
violate the capacity of a barge. The number of containers on a barge that
can be transshipped at a terminal is limited by constraint (3.6). Furthermore,
in constraint (3.7) the number of terminals that can be visited by a barge is
limited. Constraints (3.8) and (3.9) couple the X-variables and Y -variables.
Constraints (3.10) and (3.11) ensure that the number of export and import
containers on a truck and barge is non-negative. The Y -variables are ensured
to be binary in constraint (3.12).

The capacity of the barge is considered for all import and export containers
in constraints (3.4) and (3.5). However, there is no constraint to enforce that
the number of export containers unloaded at, or after, the k th terminal and
the number of loaded import containers before visiting the k th terminals is not
exceeding the capacity of the barge. Hence, it might happen that, after a
terminal visit, the number of containers on the barge exceeds the capacity of
the barge. Nevertheless, if constraints (3.4) and (3.5) are satisfied, there exists
a route visiting the terminals such that the capacity constraint is never violated
during the entire trip.

To see that, let us denote the difference between the export containers un-
loaded at terminal k by barge j and the number of import containers loaded at
terminal k by barge j as δjk :=

∑
t∈E(k)X

e
tj −

∑
t∈I(k)X

i
tj . If barge j visits the

terminals in non-increasing order of δjk , then the total number of containers on
barge j will decrease after each terminal visit as long as δjk > 0 and thus the
capacity will never be exceeded. If δjk is negative for a terminal, more import
containers are loaded than export containers are unloaded for that terminal,
which could potentially lead to a violation of the capacity of the barge. Nev-
ertheless, for all following terminals that are visited by the barge j , the total
number of unloaded export containers is smaller than the import containers that
are loaded at those terminals. Since all import containers satisfy the capacity
constraint, it is impossible that, after a visit to a terminal, the total remaining
export containers in combination with the already loaded import containers are
violating the capacity constraint of a barge.

3.4. Mathematical model 57

3.4.2 Two-stage stochastic problem with recourse

To incorporate the uncertainty in the number of moves for a barge at a terminal,
we model the problem as a two-stage stochastic problem with recourse. For
an introduction to stochastic problems with recourse, we refer to Birge and
Louveaux (2011). The general idea of a two-stage stochastic problem is that
the decision variables can be divided into two groups: the first-stage and the
second-stage decision variables. The first-stage decision variables have to be
decided before any of the realizations of the stochastic variables are known,
whereas the value for the second-stage decision variables can be determined
when the realizations of the stochastic variables are known. In our problem,
the first-stage decisions are the decisions about which terminals to visit by
which barge and which export containers to ship on which barge or truck. The
second-stage decisions are the decisions concerning the transportation of import
containers.

In a recourse problem, it is assumed that besides the second-stage decision
variables, also recourse actions can be taken after the realization of the random
variables. Usually, these actions have high costs and are only chosen to ‘repair’
the first-stage decisions in case the realization of the random variables is ‘bad’.
In our problem, the recourse action is the opportunity to unload export contain-
ers at another terminal and use trucks to ship them to the original destination.
This action is chosen if, for a certain terminal, more export containers are on
a barge than the number of moves at that terminal.

In the ILP formulation of (3.1)-(3.12) above, the realization φjk was as-
sumed to be deterministic and known before any decision is made. However, in
the two-stage stochastic problem, the realization φjk is only known when the
decisions for the X i -variables need to be made. The decisions for Xe and Y
need to be made in such a way that the expected costs in the second stage are
minimized. In other words, the two-stage stochastic problem can be formulated
as follows:

min

ne∑
t=1

m∑
j=0

cetjX
e
tj + E [Q(Xe , Y,Φ)] (3.13)

subject to

Constraints (3.3), (3.5), (3.7), (3.9), (3.11), and (3.12), (3.14)

in which Q(Xe , Y, φ) is defined as:

Q(Xe , Y, φ) := min

ni∑
t=1

m∑
j=0

c itjX
i
tj +

m∑
j=1

l∑
k=1

qjkZjk (3.15)

58 3. Planning hinterland transportation in congested deep-sea terminals

subject to

m∑
j=1

ni∑
t=1

X itj +

m∑
j=1

ne∑
t=1

Xetj − Zjk ≤ φjk j = 1, . . . , m k = 1, . . . , l (3.16)

Constraints (3.2), (3.4), (3.8), and (3.10) (3.17)

Zjk ∈ N0 j = 1, . . . , m k = 1, . . . , l . (3.18)

The problem in (3.13)-(3.14) is the first stage problem and the second stage
problem is given in (3.15)-(3.18). The function Q(Xe , Y, φ) represents the
optimal costs for the import containers given the first-stage decision variables
Xe and Y , and realization φ. In the formulation (3.15)-(3.18), the variable Zjk
indicates the number of export containers on barge j that could not be unloaded
at terminal k because the maximum number of moves has been reached at that
terminal. For these containers, a recourse action is required.

The second stage is a deterministic assignment problem that can be solved
relatively easily to optimality. Nevertheless, computing E[Q(Xe , Y,Φ)] is com-
putationally very expensive because the number of realizations can be enormous,
and it is not possible to derive a closed-form expression for Q(Xe , Y, φ). There-
fore, in the following section, we describe three different methods to solve this
two-stage stochastic problem.

3.5 Solution methods
In this section, we describe five different methods to solve the problem (3.13)-
(3.18). Once the first-stage decision variables are fixed, and the realization
of φ is known, determining the optimal values for the second-stage variables
is a simple assignment problem. This problem is similar to the second step
of the two-stage algorithm of Chapter 2, and we have seen that this can be
computed efficiently. Therefore, we will only describe methods to find solutions
for the first-stage variables. Both the terminals to visit by each barge and the
transport decision of each export container are first-stage decision variables.
Nevertheless, from the decision which export containers to transport on which
barge follows which terminals are visited by a barge. Hence, only reporting
the transportation plan of the export containers is sufficient as a first-stage
decision.

The first method that we use to solve our problem is the SAA method.
The solution of this method is based on multiple realizations of the random
variable Φjk . The solution obtained by the SAA method converges to the opti-
mal solution if the number of realizations increases. Nevertheless, the running
time of this method also increases with a growing number of realizations. If all

3.5. Solution methods 59

input data is known long before the planning process has to finish, then it is
not problematic if the running time of the SAA method is long. However, in
many situations, the required information is only available a short amount of
time before the planning has to be made. Hence, also a faster method than
the SAA method is required.

We use Stochastic Programming (SP) to derive such a method, and thus,
we refer to this method as the SP-based method. The idea behind this method
is the following: if we simplify our problem enough, it can be solved to optimality
using stochastic programming. In the SP-based method, the characteristics of
this optimal solution are used to derive a fast solution for the original problem.
Although the solution SP-based method is based on the solution for a simplified
problem, the idea is that this simplified problem resembles enough of the original
problem, such that the SP-based solution is close to the optimal solution.

To compare the performance of the SP-based method, we also describe in
this section three fast methods that have been proposed before in the litera-
ture. These methods are applied with success to other stochastic assignment
problems but are less tailored towards our problem.

The remainder of this section is organized as follows: in Section 3.5.1, we
give the SAA method, and the SP-based method is given in Section 3.5.2.
Afterward, in Section 3.5.3, we give three methods that perform well in the
study of Toktas et al. (2006).

3.5.1 Sample Average Approximation method

The main idea of SAA is that in many stochastic optimization problems, the
expectation in the objective function is hard to compute exactly, but that for a
given realization of the random variable, the problem is easier to solve. This is
also the case in our problem, in which the ILP given in (3.1)-(3.12) is (relatively)
easy to solve and the stochastic problem (3.13)-(3.18) is hard to solve. The
goal of the SAA method is to approximate E [Q(Xe , Y,Φ)] by using a set of
N vectors of realizations φ̄N := (φ1, φ2, . . . , φN). We refer to a vector of
realizations φn as a scenario and use the index n to refer to a scenario. A
scenario φn consists of one realization φjk of Φjk for every j = 1, . . . , m and
k = 1, . . . , l . For each scenario, the value for Q(Xe , Y, φn) can be evaluated,
so E [Q(Xe , Y,Φ)] can be approximated by 1

N

∑N
n=1Q(Xe , Y, φn).

In the SAA-method, for each scenario n, the assignment of the import
containers depends on the value φn. Hence, a decision variable X intj is needed
that indicates the number of import containers of type t transported on barge j
for scenario n. On top of that, a variable Znjk is needed to indicate the number
of containers on barge j for terminal k for which a recourse action is required in
scenario n. Nevertheless, the export containers and the set of visited terminals

60 3. Planning hinterland transportation in congested deep-sea terminals

should be the same for every realization. Thus, the variables Xetj and Yjk do
not depend on the realization of φn. Using these variables, the SAA method
for our problem can be formulated as the following ILP:

min

ne∑
t=1

m∑
j=0

cetjX
e
tj +

1

N

N∑
n=1

 ni∑
t=1

m∑
j=0

c itjX
in
tj +

m∑
j=1

l∑
k=1

qjkZ
n
jk

 (3.19)

subject to

m∑
j=0

X intj = d it t = 1, . . . ni n = 1, . . . , N (3.20)

ni∑
t=1

w itX
in
tj ≤ uj j = 1, . . . , m n = 1, . . . , N (3.21)

X intj ≤ d itYjk j = 1, . . . , m k = 1, . . . , l

t = 1, . . . , ni n = 1, . . . , N (3.22)∑
t∈I(k)

X intj +
∑
t∈E(k)

Xetj − Znjk ≤ φnjk

j = 1, . . . , m k = 1, . . . , l n = 1, . . . , N (3.23)

Constraints (3.3), (3.5), (3.7), (3.9), (3.11) (3.24)

X intj ∈ N0 t = 1, . . . , ni j = 1, . . . , m n = 1, . . . , N (3.25)

Znjk ∈ N0 j = 1, . . . , m k = 1, . . . , m n = 1, . . . , N. (3.26)

Let us denote the optimal solution of the problem (3.19)-(3.26) by the quadru-
ple (Xe

∗
, X in

∗
, Y ∗, Zn

∗
). It is important to realize that this solution is optimal

for the objective function (3.19), but it is not necessarily the optimal solution
for the objective function (3.13). We will refer to the optimal first stage de-
cisions of the problem (3.19)-(3.26) as x̂N and to the value of the objective
function (3.19) under x̂N and φ̄N as ẑN(x̂N , φ̄N).

Let us denote the solution produced by the SAA method by xSAA. One
could take for xSAA the value of x̂N , but in order to get a better solution than
x̂N the problem (3.19)-(3.26) can be solved multiple times. We could solve the
problem (3.19)-(3.26) for M different sets of N samples, which we denote by
φ̄1
N , φ̄

2
N , . . . , φ̄

M
N . This will result in M solutions, x̂1

N , x̂
2
N , . . . , x̂

M
N . From these M

solutions, only one can be executed in practice. To select the best of these M
solutions, we use a different sample φ̄N ′ consisting of N ′ scenarios to calculate
ẑN ′(x̂

m
N , φ̄N ′), for m = 1, 2, . . . ,M. One could see the original M samples of

size N as a training set and this new set with a sample of size N ′ as a validation

3.5. Solution methods 61

set. It is common practice in SAA to select the solution xSAA that has the
lowest objective function under the validation set. In other words,

xSAA := arg min
{
ẑN ′
(
x̂N , φ̄N ′

)
: x̂N ∈ {x̂1

N , x̂
2
N , . . . , x̂

M
N }
}
.

An advantage of the SAA method is that it can also be used to calculate a
lower bound and an upper bound for the optimal solution, and these bound can
then be used to calculate an optimality gap. We first show how a lower bound
for the optimal solution can be obtained. As the solution x̂mN was determined
by using the sample φ̄mN , the value ẑN(x̂mN , φ̄

m
N) is negatively biased estimator for

the optimal value of the real objective function (3.13), which we denote by z∗.
In other words, ẑN(x̂mN , φ̄

m
N) is a lower bound for the optimal solution and the

following inequality holds (Mak et al., 1999):

E
[
ẑN(x̂mN , φ̄

m
N)
]
≤ z∗.

If we take the average over all M values for ẑN(x̂mN , φ̄
m
N) for m = 1, . . . ,M, we

get t̄MN := 1
M

∑M
m=1 ẑN(x̂mN , φ̄

m
N), which is in expectation equal to ẑN(x̂mN , φ̄

m
N).

Therefore, we use t̄MN as an estimation for the lower bound of the objective
function of the problem in (3.13)-(3.18).

Let us now focus on the upper bound for the optimal solution. As the
solution x̂mN is a feasible solution for (3.13)-(3.18), the value ẑN ′(x̂mN , φ̄N ′) is an
upper bound for the optimal objective function. Similar to t̄MN , we define v̄MN ′ as
the average over all M objective functions given the scenarios in the validation
set, i.e, v̄MN ′ := 1

M

∑M
m=1 ẑN ′(x̂

m
N , φ̄N ′). All in all, we have that E[v̄MN ′] ≥ z∗.

Therefore, an estimation for the optimality gap is given by v̄MN ′ − t̄MN . Since
both the t̄MN ′ and v̄

M
N are estimates, the Central Limit Theorem can be used

to take accuracy into account. An estimator of the optimality gap that takes
accuracy into account is (Kleywegt et al., 2001):

v̄MN ′ − t̄MN ′ + zα
S̄M√
M
, (3.27)

in which zα := Φ−1(1−α), where Φ(z) is the cumulative distribution function
of the standard normal distribution and S̄M√

M
is defined as:√√√√ 1

M(M − 1)

M∑
m=1

((
ẑN ′(x̂

m
N , φ̄N ′)− ẑN(x̂mN , φ̄

m
N)
)
−
(
v̄MN ′ − t̄MN

))2
. (3.28)

All in all, the SAA method consists of two phases: a training and a validation
phase. In the training phase, M different problems with N scenarios are solved
and in the validation phase, the quality of these solutions is investigated for N ′

62 3. Planning hinterland transportation in congested deep-sea terminals

d i Total number of import containers

de Total number of export containers

c i Costs of transporting import container by barge

c it Costs of transporting import container per truck

ce Costs of transporting export container by barge

cet Costs of transporting export container per truck

q Recourse costs

Φ Random variable indicating the number of moves

F (·) Cumulative distribution function for the number of moves

x Number of export containers transported by barge

Table 3.2 Notation used in simplified problem in Section 3.5.2.

different scenarios. It should be noted that the validation phase is less compu-
tationally intensive than the training phase. In the training phase, a decision
for both the first-stage and the second-stage variables needs to be made. To
do so, all scenarios in the training set have to be considered simultaneously.
On the other hand, in the validation phase, the first-stage decision variables
and the realization of the stochastic variables are fixed and only a decision for
the second-stage decision variables is needed. Consequently, each of the N ′

scenarios can be investigated independently.

3.5.2 Stochastic Programming method

In this section, we explain how the SP-based method is derived. We explain
first how to get an optimal solution for the simplified problem, and afterward
this solution will be used to derive a heuristic for the problem (3.13)-(3.18).

Optimal solution simplified problem

Let us consider a situation with only one barge and one terminal. The number
of export containers to be delivered to that terminal is given by de , and d i

denotes the number of import containers that must be collected from that
terminal. Moreover, we assume that the barge transportation costs for all
import and export containers are c i and ce , respectively. Furthermore, the costs
of transporting an import or an export container with a truck are denoted by
c it and c

e
t , respectively. The number of moves at the terminal is the stochastic

variable Φ, distributed according to the cumulative distribution function F (·).
Finally, the costs of a recourse action for an export container are q. The
notation for this simplified problem is summarized in Table 3.2.

Let us use x to denote the decision variable on the number of export con-
tainers on the barge. We assume that this decision variable is continuous. From
the decision x , the number of export containers on a truck, de − x , follows di-

3.5. Solution methods 63

rectly. Furthermore, we assume that the variable Φ is that restrictive that we
can ignore the capacity of a barge. If x export containers are transported, and
φ is the realization of the number of moves, then no import containers can be
shipped by barge if x ≥ φ. In case x < φ, at most φ− x import containers can
be shipped per barge. Hence, given x , the expected number of import contain-
ers per barge is equal to E[min{d i ,max{0,Φ − x}}]. Moreover, the expected
number of export containers for which we need to perform a recourse action is
given by E[max{0, x −Φ}].

For 0 ≤ x ≤ de , the expected total costs T (x) for this problem can be
given by the following expression:

T (x) = cex + cet (de − x) + c iE[min{d i ,max{0,Φ− x}}]
+ c it(d

i − E[min{d i ,max{0,Φ− x}}]) + qE[max{0, x −Φ}].
(3.29)

Equation (3.29) consists of five terms: the first two terms are deterministic
because they represent, respectively, the barge and truck costs for the export
containers. The third part of the sum gives the expected barge costs for the
import containers and the expected truck costs for the import containers are
given by the fourth part. Finally, the last term in Equation (3.29) corresponds
to the recourse costs for the export containers.

To simplify the expression as given in Equation (3.29), we rewrite the two
expectations in that sum, E[min{d i ,max{0,Φ − x}}] and E[max{0, x − Φ}].
First of all, E[min{d i ,max{0,Φ− x}}] can be rewritten as

E[min{d i ,max{0,Φ− x}}] =

∫ ∞
0

min{d i ,max{0, t − x}}dF (t)

=

∫ x

0

0dF (t) +

∫ d i+x

x

(t − x)dF (t) +

∫ ∞
d i+x

d idF (t)

= 0 +

(
d iF (d i + x)−

∫ d i+x

x

F (t)dt

)
+ d i

(
1− F (d i + x)

)
= d i −

∫ d i+x

x

F (t)dt.

In the derivation above, the expression min{d i ,max{0,Φ − x}} is split into
three parts: if Φ ≤ x , it is equal to 0, if x ≤ Φ ≤ x + d i then it equals Φ− x ,
and if Φ ≥ d i + x then it takes the value d i . The first integral is equal to
zero, integration by parts can be used to derive the second integral, and the
final integral of this equation can be simplified using the fact that F (·) is a
cumulative distribution function.

The expression E[max{0, x − Φ}] can be rewritten, by changing the order

64 3. Planning hinterland transportation in congested deep-sea terminals

of integration, as follows:

E[max{0, x −Φ}] =

∫ x

0

(x − z)dF (z) =

∫ x

0

∫ x

z

dtdF (z)

=

∫ x

0

∫ t

0

dF (z)dt =

∫ x

0

F (t)dt.

Combining the two equalities above, Equation (3.29) can be simplified into

T (x) = cex + cet (de − x) + c i

(
d i −

∫ d i+x

x

F (t)dt

)

+ c it

(∫ d i+x

x

F (t)dt

)
+ q

∫ x

0

F (t)dt.

The optimization problem can now be given as

min
x

T (x) (3.30)

subject to

g1(x) = x − de ≤ 0 (3.31)

g2(x) = −x ≤ 0. (3.32)

This is a problem with simple recourse and thus the expected recourse costs are
given by a function that is convex in x (Birge and Louveaux, 2011). In other
words, we can use the Karush-Kuhn-Tucker (KKT) conditions, to calculate the
optimal number of export containers on a barge. The KKT conditions are given
by the following set of equalities:

dT (x)

dx
= −λ1

dg1(x)

dx
− λ2

dg2(x)

dx

λ1g1(x) = 0

λ2g2(x) = 0

λ1, λ2 ≥ 0

g1(x), g2(x) ≤ 0,

which can be reformulated as

ce − cet +
(
c it − c i

)
F
(
d i + x

)
+
(
c i − c it + q

)
F (x) = −λ1 + λ2

λ1 (x − de) = 0

λ2(−x) = 0

λ ≥ 0

(x − de) ≤ 0

− x ≤ 0.

(3.33)

3.5. Solution methods 65

The system of equalities (3.33) above has four different types of solutions.
Namely, (i) λ1 > 0 and λ2 > 0, (ii) λ1 = 0 and λ2 > 0, (iii) λ1 > 0 and
λ2 = 0, and (iv) λ1 = λ2 = 0. A feasible solution for (3.33) with both λ1 > 0

and λ2 > 0 is only possible in the trivial case in which de = 0. If λ1 = 0 and
λ2 > 0, then the third equality gives us that x∗ = 0. Equivalently, if λ1 > 0

and λ2 = 0, then, because of the second equality, we know that x∗ should be
de . Finally, if λ1 = λ2 = 0, then the first equality implies that the optimal x∗

should satisfy

ce − cet +
(
c it − c i

)
F
(
d i + x∗

)
+
(
c i − c it + q

)
F (x∗) = 0. (3.34)

Although it is not possible to derive an analytical expression for x∗ for general
distributions, the equality of Equation (3.34) can be solved using, for instance,
the Newton-Raphson method. Since the cumulative distribution function F (·)
is a non-decreasing function, we know that the expression in Equation (3.34),
is also non-increasing in x . Consequently, there is at most one value x∗ ≥ 0

for which the equality in Equation (3.34) holds. Hence, there exists an easy
method to find the solution for the system of equalities in (3.33). If

dT (0)

dx
= ce − cet +

(
c it − c i

)
F
(
d i
)

+
(
c i − c it + q

)
F (0)

= ce − cet +
(
c it − c i

)
F
(
d i
)
≥ 0,

then x∗ = 0. Otherwise, the solution to the equality in Equation (3.34) has to
be calculated. If that solution is smaller than de , then it is the optimal solution,
otherwise x∗ = de .

Heuristic Stochastic Programming method

In the previous section, we have given the optimal solution for a simplified prob-
lem. There are two aspects in which the problem of the previous section was
easier than the problem described in Section 3.4. First of all, the assumption
that there is only a single barge visiting a single terminal and second, that the
transportation costs are the same for all containers. Nevertheless, the solution
to (3.30)-(3.32) can be used as a basis to find a solution to the problem de-
scribed in Section 3.4. The goal of the SP-based method is to find a constraint
for the number of export containers on a barge for a specific terminal.

Let us first focus on terminal k and barge j . Let us assume that we have
an estimate for the number of import and export containers on terminal k that
could be transported on barge j (i.e., δijk and δejk), an estimate for the costs of
shipping an import and an export container from terminal k on barge j (i.e., γ ijk
and γejk), and an estimate for the transportation costs per truck for the import
(i.e., γ i0k) and export containers (i.e., γe0k) on terminal k . Furthermore, we

66 3. Planning hinterland transportation in congested deep-sea terminals

Algorithm 3.1: Algorithm to find a constraint for the maximum number of export
containers for a deep-sea terminal to load on a barge.

Input parameters: δijk , γ
i
jk and γ i0k .

for j = 1, . . . , m do
for k = 1, . . . , l do

Let Ek := |E(k)|.
Let the containers t ∈ E(k) be numbered 0, 1, . . . , Ek − 1 in decreasing
order of cet0 − cetj .

Set p = 0

while p < Ek − 1 and
cepj − c

e
p0 + (γ i0k

− γ ijk)Fjk(δijk + p+ 1) + (γ ijk − γ
i
0k

+ qjkFjk(p+ 1) < 0 do
p = p + 1.

end
Mjk = p.

end
end
Output: M

assume that barge j is the only barge visiting terminal k . Hence, if containers
from terminal k are not on barge j , they are transported by truck. Finally, we
denote the sum of all export containers for terminal k that are on barge j by Xejk .
Using these assumptions, the total transportation costs for all containers on
terminal k can be approximated in the same way as in the optimization problem
(3.30)-(3.32). Therefore, we can use an equality similar to the equality in
Equation (3.34), to find a solution for Xejk , namely

γejk − γe0k +
(
γ i0k − γ

i
jk

)
Fjk(δijk +Xejk) + (γ ijk − γ i0k + qjk)Fjk(Xejk) = 0. (3.35)

Besides, deciding how many export containers for terminal k will be on barge j ,
also the specific containers that will be loaded on this barge have to be selected.
These two decisions cannot be considered independently. If only one barge is
visiting a terminal and only a single export container for a terminal is transported
on that barge j , then it is easy to determine which container is the best to
transport on barge j . If a container is not transported on barge j , then it is
transported by truck.

The container that benefits most from being transported on barge j in-
stead of the truck is the container for which the difference between the truck
transportation costs and the barge transportation costs is the highest, i.e.,
τj = arg maxt∈E(k){cet0 − cetj}. Therefore, if Xejk = 1, the estimates γejk and γe0k
are not needed and can be replaced by ceτj j and c

e
τj0
. Similarly, if Xejk = 2, the

container for which the difference between the truck and barge transportation
costs is second largest is chosen. Consequently, it becomes clear that the esti-
mators γejk or γ

e
0k

are not needed but that the real value cet0 and cetj can be used
in Equation (3.35). Similar to the solution method described in Section 3.5.2,
we can increase the number of export containers for a terminal that is assigned

3.5. Solution methods 67

to a barge until the equality in (3.35) is satisfied.

In Algorithm 3.1, this procedure is formalized. This algorithm is used to
derive a constraint for the maximum number of export containers Mjk that can
be transported with barge j to terminal k . When determining Mjk , we assumed
that barge j was the only barge visiting terminal k . Consequently, all containers
can be selected for transportation on barge j . It might be that a container on
terminal k has extremely high truck transportation costs, and is therefore used
in calculating the Mjk -value for every barge j . Nevertheless, that container can
only be transported on one barge. Hence, even if there are multiple barges
visiting terminal k , the number of export containers on barge j to terminal k
is always less than Mjk . With the constraint from Algorithm 3.1, we get the
following deterministic ILP:

min

ni∑
t=1

m∑
j=0

c itjX
i
tj +

ne∑
t=1

m∑
j=0

cetjX
e
tj (3.36)

subject to∑
t∈E(k)

Xetj ≤ Mjk j = 1, . . . , m k = 1, . . . , l (3.37)

ni∑
t∈I(k)

X itj +
∑
t∈E(k)

Xetj ≤ E[Φjk] j = 1, . . . , m k = 1, . . . , l (3.38)

Constraints (3.2)− (3.5) and (3.7)− (3.12). (3.39)

If we only add constraint (3.37) to the ILP, then the import containers would
not be restricted by the number of moves at a terminal. As a consequence,
the solution of the ILP would probably overestimate the number of import
containers that can be shipped on a barge. Hence, constraint (3.38) is added
to limit the number of import containers shipped on a barge.

3.5.3 Other methods

In Toktas et al. (2006), three methods to solve assignment problems with
stochastic capacity constraints are given. We explain below how these methods
can be used to solve the problem (3.13)-(3.18).

Expectational method

In the expectational method, we replace the stochastic variable Φjk by its ex-
pectation. So the first-stage objective function is modified into

min

ne∑
t=1

m∑
j=0

cetjX
e
tj +Q(Xe , Y,E [Φ]).

68 3. Planning hinterland transportation in congested deep-sea terminals

Since the expectation is a deterministic value, the problem can be formulated
as an ILP, similar to the ILP given in (3.1)-(3.12). The only difference is that
constraint (3.6) is replaced by∑

t∈I(k)

X itj +
∑
t∈E(k)

Xetj ≤ E[Φjk] j = 1, . . . , m k = 1, . . . , l .

This expectational method is rather naive since it only uses the expectation and
no other information on the distribution. Nevertheless, it is a good benchmark
to see what one can gain by incorporating more knowledge of the distribution.

Risk-averse trimmed mean method

The risk-averse trimmed mean method is almost identical to the expectational
method. The only difference is that instead of the expectation, a more conser-
vative estimate for the number of moves is used, which is called the risk-averse
trimmed mean. This risk-averse trimmed mean is defined as follows:

Aρ [Φjk] := E [Φjk |F (φjk) ≤ ρ] .

The interpretation of the risk-averse trimmed mean is that the expectation
of the values less than or equal to the ρ-quantile is taken. In the risk-averse
trimmed mean method, the constraint (3.6) in the ILP (3.1)-(3.12) is replaced
by ∑

t∈I(k)

X itj +
∑
t∈E(k)

Xetj ≤ Aρ[Φjk] j = 1, . . . , m k = 1, . . . , l .

The idea behind the risk-averse trimmed mean method is that taking a more
conservative estimate for the number of moves than the expectation results in
fewer recourse costs. The parameter ρ can be used to indicate the risk one is
willing to take. If ρ = 0, then Aρ = 0 and if ρ = 1, then Aρ[Φjk] = E[Φjk].

Comparative performance evaluation method

The Comparative Performance Evaluation (CPE) method is, similar to the SAA
method, a sample based method. The difference between the CPE and SAA
method, is that in the former every scenario is solved independently. Let us
have a vector of N scenarios φ̄N :=

(
φ1, φ2, . . . , φN

)
. For a single scenario φn,

the deterministic problem (3.1)-(3.12) can (relatively) easily be solved, which
gives a solution (Xen, Y n). Using that solution, the value E [Q(Xen, Y n,Φ)] can
be estimated by: 1

N

∑N
n′=1Q

(
Xen, Y n, φn

′)
. The idea of the CPE method is to

select out of the N solutions (Xen, Y n) that are based on a single scenario, the
solution that has the lowest estimated costs over all scenarios in φ̄N . In other

3.6. Numerical results 69

words,

xCPE := arg min
n=1,...,N


ne∑
t=1

m∑
j=0

cetjX
en
tj +

1

N

N∑
n′=1

Q
(
Xen, Y n, φn

′
) .

3.6 Numerical results
The quality of the solution methods described in the previous section is in-
vestigated using numerical experiments. In all methods, a deterministic value
replaces the stochastic variable Φjk , and as a result, the problem could be
modeled as an ILP. Using a similar argumentation as in Section 2.5.2, it can be
shown that fixing the Yjk -variables for j = 1, . . . , m and k = 1, . . . , l , results in
a variant of the GAP. In the LP relaxation for the ILPs in this chapter, there are,
for each barge, at most Nj capacity constraints of the type of constraint (3.6),
and one capacity constraint of type (3.4) and one of type (3.5). Hence, also for
this chapter’s problem, the number of fractional variables in the LP-relaxation
is relatively small. We have seen in Chapter 2 that this relaxation (Step 1
of Algorithm 2.1) is close to the optimal solution. In this chapter, we have
decided only to solve this relaxation because then the SAA method can use
more realizations in the same amount of computation time. In other words, in
all solutions methods, we drop the integrality constraints for the Xe-variables,
X i -variables, and Z-variables.

In Section 3.6.1, we describe three different terminal types that are used
in the experiments. A terminal type reflects the distribution for the number of
moves at a deep-sea terminal. In Section 3.6.2, small instances are solved to
investigate the convergence rate of the SAA method to the optimal solution
and the quality of the solution produced by the other methods. Large instances
are solved in Section 3.6.3. In this section, we focus on the scalability of the
SAA method and compare the outcome of the best parameters for the SAA
with the SP-based method and the methods discussed in Section 3.5.3. Finally,
in Section 3.6.4, we look at the quality of the methods if the number of moves
is correlated between barges.

3.6.1 Terminal types

In practice, the congestion is not the same at each deep-sea terminal. Moreover,
the way the terminals deal with congestion also differs per terminal. Therefore,
we consider three different types of terminals: predictable, unpredictable and
open-closed terminals. For each of these terminal types we give a discrete
probability distribution for the number of moves that corresponds to the desired
behavior.

At a predictable terminal, as the name suggests, the available number of

70 3. Planning hinterland transportation in congested deep-sea terminals

moves for each barge does not vary much. This terminal might not be con-
gested, or it is conservative in the number of moves it allocates to barges, and
with that, it can always have a rather constant number of moves. We model
the predictable terminal with a Poisson distribution with expectation λ. On the
other hand, at an unpredictable terminal, the number of moves is sometimes
minimal and sometimes very large. Based on a limited amount of data for the
moves at container terminals, we conjecture that some terminals are of this
kind. We model these terminals with a geometric distribution with parameter p
and the support k = 0, 1,

Finally, we consider the open-closed terminals, which are either closed or
they are open. If the terminal is closed, not a single container can be loaded
or unloaded, but in case the terminal is open, then its moves are somewhat
predictable. We model the open-closed terminals with a bimodal distribution
that takes with probability 1

3 the value 0 and with probability 2
3 , the value is dis-

tributed according to a Poisson distribution with expectation µ. The difference
between an unpredictable terminal and an open-closed terminal is that the first
one is accepting barges also if the terminal has very limited time available for
loading and unloading. On the other hand, the open-closed terminal accepts a
barge visit only if it has enough time to handle many containers.

To investigate the consequences of the level of variability for the number
of moves, all distributions will have the same expectation, namely E[Φ]. For
the three different distributions, the variance of the number of moves can be
expressed in terms of this E[Φ]. The variance of the Poisson distribution is E[Φ],
for the bimodal distribution it is 1

2 (E[Φ])2 + E[Φ] and the variance of the
geometric distribution is (E[Φ])2 + E[Φ]. Thus, the variance of the geometric
distribution is about twice the variance of the bimodal distribution.

All these three distributions are discrete because not a fractional number of
containers can be loaded. Nevertheless, the methods described in Section 3.5
also apply to continuous probability distributions. Furthermore, we assume that,
for all terminals and barges, the moves have the same distribution. However,
the three solution methods described in Section 3.5 can all be applied to an
instance with different distributions for every barge and terminal combination.

3.6.2 Small instances

First, we solve ten relatively small instances to investigate the convergence of
the SAA solution to the optimal solution and to evaluate the quality of the other
methods. The small instances consist of 50 export and 50 import containers
that can be transported on two barges with a capacity of 50 TEU. The size of
every container is 1 or 2 TEU, and the barge transportation costs for an import
or export container are uniformly distributed between 25 and 100. In contrast,

3.6. Numerical results 71

N

Terminal type 10 50 100 250 500 1,000

Predictable
Objective function 9,701 9,467 9,427 9,344 9,339 9,310
Optimality gap (%) 3.6 1.4 0.9 0.5 0.3 0.3

Unpredictable
Objective function 12,705 12,235 12,103 12,044 11,993 11,977
Optimality gap (%) 9.5 2.3 1.0 0.4 0.1 0.0

Open-closed
Objective function 12,846 12,343 12,210 12,100 12,040 11,923
Optimality gap (%) 12.8 3.2 2.2 1.1 0.4 0.2

Table 3.3 Average objective function and optimality gap of the SAA solution for the
small instances with increasing numbers of scenarios.

the costs of transporting a container per truck are uniformly distributed between
150 and 200. The costs for a recourse action for an export container are 300.
The containers are distributed over five different deep-sea terminals, and each
barge is allowed to visit three of them. At each terminal, the expected number
of moves is 10 for all terminal types.

The number of scenarios in the training set, denoted by N, is varied to
evaluate the consequence of the size of the training set. We have used twenty
different runs of the SAA method, i.e., M = 20, and we have used N ′ = 5, 000;
in other words, the validation set consists of 5,000 samples. Out of the twenty
different solutions, we select the solution with the lowest objective function for
the validation set. This solution is a negatively biased estimate for the value
of the SAA solution. Thus, another validation set of 5,000 samples is used to
obtain an unbiased estimate for the objective function.

In Table 3.3, the average of this objective function and the optimality gap
for the SAA solution are given for the three different terminal types and different
numbers of scenarios in the training set (N). The optimality gap in this table
is calculated by dividing the outcome of Equation (3.27) by the lower bound
of the optimal solution t̄MN ′ . We use for this optimality gap and all remaining
optimality gaps α = 0.025. For each combination of N and terminal type, the
average over the ten instances’ optimality gaps is given.

The most important conclusion from Table 3.3 is that for N = 1, 000, the
average optimality gap for all three terminal types is small, namely 0.3% for
the predictable terminals, 0.2% for the open-closed terminals and 0.0% for the
unpredictable terminals. Hence, if 1,000 scenarios are used, the SAA method
can find a solution that is (close to) optimal.

Furthermore, it can be seen that for N = 10, the predictable terminal has
the smallest optimality gap. This observation can be explained by the fact
that the Poisson distribution has the smallest variance. Hence, the scenarios
in the training and validation are more similar than for the unpredictable and
open-closed terminals. For those two terminal types, a sharp decrease in the
optimality gap is seen for an increasing size of the training set.

72 3. Planning hinterland transportation in congested deep-sea terminals

γ i0k − γ
i
jk

Terminal type 50 100 150

Predictable 9,944 (139) 9,946 (138) 10,199 (133)
Unpredictable 12,630 (126) 12,684 (100) 12,824 (87)
Open-closed 12,757 (92) 12,773 (133) 12,780 (96)

Table 3.4 Average objective function and its standard deviation for the 10 small
instances for the SP-based method using different settings for γ i0k − γ ijk .

It becomes clear from Table 3.3 that the predictable terminal has signifi-
cantly lower costs than the two other terminal types. In other words, the inland
container terminal would greatly benefit from the deep-sea terminals having a
more reliable number of moves. On the other hand, the difference in the objec-
tive between the unpredictable and the open-closed terminal types is not that
large.

Finally, for all three terminal types, the objective function for N = 1, 000

is about 6% better than the solution found for N = 10. The running time for
the training phase of the SAA increases if N grows. Nevertheless, for the small
instances, even for N = 1, 000, the training phase was able to finish within ten
minutes. The validation phase’s running time only depends on M and N ′ and is
independent of N. If M = 20 and N ′ = 5, 000, the validation phase’s running
time is about twelve minutes.

Now that we have shown that the solution of the SAA method converges
to the optimal solution, it is also interesting to look into the quality of the
solutions for the SP-based method and the other three methods. For the SP-
based method, three different types of parameters need to be defined, namely
γ ijk , γ

i
0k , and δ

i
jk . For setting the value of δijk , we count how many import

containers are at terminal k available for transportation by barge j . After that,
we divide this value by the average number of times a barge visits a terminal.
In these small instances, the two barges visit both three terminals. Since there
are in total five terminals, the average number of times a barge visits a terminal
is 6

5 .

It is important to realize that in Algorithm 3.1, only the difference between
γ ijk and γ i0k is used. We have decided to perform some numerical experiments
to decide upon the best parameter setting for γ i0k − γ ijk . In Table 3.4, the
average objective function and, between brackets, its standard deviation are
given for all three terminal types, and γ i0k − γ ijk is 50, 100, and 150. We see
that for all three terminal types, the best results are obtained if γ i0k − γ ijk is set
to 50. So in the remaining of this section, we use these parameter settings for
the SP-based methods. For the risk-averse trimmed mean method, we have to
decide on the value for the parameter ρ. In Toktas et al. (2006), it is shown
that the best solutions are obtained if ρ = 0.8, so we also use this value.

3.6. Numerical results 73

Terminal type SAA EXP RAT CPE SP

Predictable
Objective function 9,310 9,963 10,221 9,983 9,944
Standard deviation 239 140 216 159 145
Gap SAA - 7.1% 9.8% 7.3% 6.9%

Unpredictable
Objective function 11,977 13,051 12,761 13,051 12,630
Standard deviation 219 182 137 140 140
GAP SAA - 9.0% 6.6% 9.0% 5.5%

Open-closed
Objective function 11,923 12,814 12,859 13,009 12,757
Standard deviation 322 107 144 93 96
Gap SAA - 7.6% 7.9% 9.2% 7.1%

Table 3.5 Average objective function and its standard deviation for the 10 small
instances for the five solution methods and for the three different terminal types.

In Table 3.5, the objective function for the expectational method (EXP), the
risk-averse trimmed mean method (RAT), the CPE method and the SP-based
method are compared with the SAA solution. For all methods, we give the
average objective function over the ten instances, and the standard deviation
of the objective function is given between brackets. The SAA solution in this
table is the solution obtained by using N = 1, 000, and we have seen above
that this solution is close to the optimal solution.

The first conclusion to draw from Table 3.5 is that the SP-based method is
the method that produces the best solutions, and the worst solutions are from
the CPE method. Moreover, the difference between the objective functions for
the expectational method and the SAA method is significant, and thus taking
the uncertainty for the number of moves is beneficial. The risk-averse trimmed
mean is too conservative for the predictable terminals, and it is better to choose
the expectation. In contrast, for the unpredictable terminals, the variance of
the number of moves is higher, and the risk-averse trimmed mean is performing
better than the expectation.

For the open-closed terminals, the difference between the objective func-
tion of the expectational method and the SAA solution is with 7.6% only
slightly larger than the difference between the objective function of the SP-
based method and the SAA solution (7.1%). The fact that these two methods
produce solutions with a somewhat similar objective function is mainly a coinci-
dence because the solutions themselves are quite different. The expectational
method ships more export containers per barge and fewer export containers
per truck than the SP-based method. Given the specific parameters that we
have used, the extra recourse costs incurred by the expectational method are
comparable with the costs it saves by using fewer trucks.

It should be noted that the standard deviations of the objective functions
are substantial, so the conclusion drawn above should be made with some
reservations. Moreover, it is remarkable to see that the SAA method has the

74 3. Planning hinterland transportation in congested deep-sea terminals

largest standard deviation from all methods. For three instances, the SAA
method finds solutions that result in a much lower objective function than for
the other instances. For these three instances, the other methods do not find
these good solutions, and thus the objective function of these methods has a
lower standard deviation.

The quality of the SP-based method is comparable to the SAA method for
N = 10. Nevertheless, the running time of the SP-based method is negligible
compared to the SAA method. Only Algorithm 3.1 and a single ILP have to be
solved to obtain a solution for the SP-based method, which is all done in about
a second, whereas for the SAA method with N = 10 the training phase takes
three to five seconds and the validation phase twelve minutes.

3.6.3 Large instances

For the small instances, we have shown that the SAA method converges to the
optimal solution and that the SP-based method is the best heuristic method.
In this section, we investigate the performance of the five methods for larger
instances. We consider ten instances that consist of 750 import containers, 750
export containers, and four barges with a capacity of 250 TEU. Similar to the
small instances, the containers have a size 1 or 2 TEU and the characteristics
of the costs are the same as for the small instances. On top of that, we have
added the condition that with probability 1

4 , a container cannot be transported
on a barge. With this condition, we model the situation in which containers
are not available for transportation on a certain barge because they have not
arrived at the deep-sea port yet or have to be at the customer earlier than the
arrival of the barge at the inland terminal. The containers are transshipped via
ten deep-sea terminals, and each barge is only allowed to visit five of them.
The expectation of the number of moves at a terminal is set to 75.

For the small instances, the SAA method’s running time is small enough to
solve the problem almost to optimality within a reasonable time. Nevertheless,
for large instances, the running times become too big for large values of M,
N, and N ′. In Table 3.6, the running times of the training phase are given
when M = 1 and for different values of N. For predictable terminals, the SAA
method takes much longer than for the two other terminal types. Moreover,
the running time for the predictable and unpredictable terminals when N = 50

is about twenty-five times larger than for N = 10. The running time for the
open-closed terminals when N = 50 is even about forty times larger than for
N = 10. For the predictable and open-closed terminals, the running time is
about five times larger for N = 100 than for N = 50.

Since we want to compute a solution in three to four hours, we have to
decide not to use N = 100 for the predictable terminals. We believe that the

3.6. Numerical results 75

N

Terminal type 10 50 100

Predictable 212 5,858 -
Unpredictable 20 534 2,810
Open-closed 7 294 1,454

Table 3.6 Average running time in seconds of the training phase of the SAA method
for the large instance, for the three terminal types and different numbers of scenarios.

running time for the predictable terminals is much larger because the variety in
the number of moves at a terminal is much lower. Thus, the scenarios are more
similar. Consequently, the value of the solutions for visiting different terminals
are close to each other. As a result, the branch-and-bound method in the ILP
solver needs longer to find the optimal solution.

The running time of the validation phase does not vary much for the different
terminal types and is linear in N ′. Solving the underlying ILP for a single scenario
takes about 0.06 seconds. Hence, if we denote the running time from Table 3.6
by r , the total running time for the SAA method with parameters is M, N and
N ′ isMr+0.06MN ′ seconds. We use this formula to create different parameter
settings, for which we expect the SAA method to be solved within three to four
hours.

For the unpredictable and open-closed terminal types, we have created six
different parameter settings. The average value and standard deviation of the
objective functions, the optimality gaps, and the running times for these six
different parameter settings are given in Table 3.7. Only four parameter set-
tings for predictable terminals are considered because the running time for this
terminal type is much larger. The average value and standard deviation of the
objective functions, the optimality gaps, and the running times for the pre-
dictable terminal type are given in Table 3.8. Similar to the small instances,
we use a set consisting of 5,000 scenarios to calculate the objective function
in Tables 3.7 and 3.8.

Based on the results from Table 3.7, the parameters M = 20, N = 50, and
N ′ = 1, 000 gives the best results for the unpredictable and the open-closed
terminal types. For both types of terminals, the objective function for N = 50

is substantially lower than for N = 10. Increasing the number of SAA runs
only decreases the objective function slightly. The difference between N = 50

and N = 100 is not as big as between N = 10 and N = 50. In Table 3.3,
we have already seen that for the small instances the biggest improvement was
also made by N going from 10 to 50. Moreover, for N = 100 only four runs of
the SAA algorithm could be performed.

At first it might be surprising that the optimality gap for both terminals for
N = 100,M = 4, N ′ = 5, 000 is smaller than for N = 50,M = 20, N ′ = 1, 000,

76 3. Planning hinterland transportation in congested deep-sea terminals

N 10 50 100
Terminal type (M;N ′) (10;5,000) (20;5,000) (50;3,500) (10;5,000) (20;1,000) (4;5,000)

Unpredictable
Objective function 169,933 169,465 169,070 166,846 166,181 166,777
Optimality gap (%) 14.3 12.6 12.3 3.9 4.1 2.7
Running time (s) 3,293 6,280 10,700 8,380 11,392 15,232

Open-closed
Objective function 191,129 190,908 190,486 187,894 186,898 187,093
Optimality gap (%) 18.2 16.1 17.7 6.4 5.2 4.2
Running time (s) 2,971 6,934 9,954 5,708 7,315 10,262

Table 3.7 The average objective function for the ten large instances for the
unpredictable and open-closed terminals and for different parameter settings of the
SAA method.

N 10 50
Terminal type (M;N ′) (10;5,000) (20;5,000) (50;1,500) (2;5,000)

Predictable
Objective function 104,997 104,979 104,953 104,972
Optimality gap(%) 0.4 0.3 0.2 0.2
Running time (s.) 5,032 10,068 15,237 12,290

Table 3.8 The average objective function for the ten large instances for the
predictable terminal type and different parameter settings of the SAA method.

but that the value of the objective function is larger. Nevertheless, this can be
explained by the fact that the lower bound (t̄MN ′) for larger N is stronger. If we
would use the lower bound for N = 100 for N = 50, the optimality gap for the
latter will be smaller than for the former.

The best parameters for the predictable terminals are, according to Ta-
ble 3.8, N = 10, M = 50, and N ′ = 1, 500. The objective function for N = 50,
M = 2, and N = 5, 000 is only slightly worse. If more runs of the SAA method
had been possible, the objective function would probably have been better for
N = 50. Compared with the unpredictable and open-closed terminal types, a
single run of the SAA method’s training phase has a longer running time. How-
ever, we see in Table 3.8 that the solution produced by the SAA method for the
predictable terminals has an optimality gap of only 0.2%, which is much smaller
than the optimality gaps for the unpredictable and open-closed terminals.

In Table 3.9, the consequences of different values for γ i0k − γ ijk for the
SP-based method are investigated. For the large instances, the best value for
the difference between the two gamma values is 150, compared to the small
instances for which 50 gave the best results. However, it should be noted that
for all three terminal types, the difference between the three different settings
for the gamma value is extremely small.

In Table 3.10, the SAA solutions are compared, in a similar fashion as
Table 3.5, to the solutions of the expectational method, the risk-averse trimmed
mean method, the CPE method, and the SP-based method. Also for the large
instances, the SP-based method has, on average, the smallest gap with the SAA
solution. However, in contrast to the small instances, the SP-based method is

3.6. Numerical results 77

γ i0k − γ
i
jk

Terminal type 50 100 150

Predictable 105,134 (3,914) 105,114 (3,931) 105,099 (3,926)
Unpredictable 167,506 (4,221) 167,165 (4,067) 166,819 (3,993)
Open-closed 188,566 (3,811) 188,596 (3,771) 188,566 (3,811)

Table 3.9 Average objective function and its standard deviation for the 10 large
instances for the SP-based method using different settings for γ i0k − γ ijk .

Terminal type SAA EXP RAT CPE SP

Predictable
Objective function 104,953 105,203 116,210 105,212 105,099
Standard deviation 4,136 4,112 3,853 4,093 3,926
Gap SAA - 0.2% 10.7% 0.2% 0.1%

Unpredictable
Objective function 166,181 176,177 168,362 178,326 166,819
Standard deviation 3,997 3,658 3,828 3,614 3,993
Gap SAA - 6.0% 1.3% 7.3% 0.4%

Open-closed
Objective function 186,898 190,064 187,040 191,731 188,566
Standard deviation 3,918 3,717 3,949 4,159 3,811
Gap SAA - 1.7% 0.1% 2.6% 0.9%

Table 3.10 Average objective function over ten large instances for the five solution
methods and for the three different terminal types.

not for all three terminal types the best: for the open-closed terminal, the risk-
averse trimmed mean method performs better. Nevertheless, the risk-averse
trimmed mean method gives for the predictable terminal type a solution that
is 10% worse than the SAA method. Hence, the SP-based method is more
robust for different terminal types than the risk-averse trimmed mean method.

For the predictable terminal types, we see that the expectational method,
the CPE method, and the SP-based method all produce solutions that are close
to the best SAA solution that is found. Therefore, we may conclude that it
might not be that beneficial to include the stochasticity of the number of moves
into account: only using the expectation already produces excellent results for
the predictable terminals. That is mainly due to the fact that if the moves
are Poisson distributed, then it will hardly happen that the number of moves is
exceeding the number of export containers loaded on the barge and thus few
recourse costs have to be paid. On the other hand, for the unpredictable and
open-closed terminal types, the expectational method results in much recourse
costs. The risk-averse trimmed mean method gives lower costs because fewer
export containers are loaded using this method.

For unpredictable and open-closed terminals, one should keep in mind that
the SAA solutions still had an optimality gap of a few percentages. Hence, for
the methods given in Table 3.10, the difference with the optimal solution is likely
to be bigger than the reported difference with the SAA solution. Another thing
to keep in mind is that the SP-based method’s running time is only a couple of

78 3. Planning hinterland transportation in congested deep-sea terminals

seconds. Hence, the SP-based method is an excellent scalable alternative for
the SAA method.

A final observation is that, similar to the small examples, predictable ter-
minals give by far the lowest costs. However, although for the small instances
the unpredictable and open-closed terminals had almost the same value for the
objective function, for the large instances, the objective function for the un-
predictable terminals is much lower than the open-closed terminals. A possible
explanation for this could be that the expectation for the number of moves for
the small and large instances differ. For the open-closed terminals, the number
of moves is either zero, or Poisson distributed. Since the expectation for the
number of moves for the small instances is lower than for the large instances,
the Poisson distribution for the small instances also has a lower expectation.
Consequently, the difference between being open or closed is less for small in-
stances than for large instances. Although the variance for the unpredictable
terminals is higher than for the open-closed terminals, the realizations are more
evenly distributed over the support of the probability distributions. Hence, it is
possible to have a better trade-off between recourse and transportation costs.

3.6.4 Correlated instances

In this section, we investigate the performances of the five methods when the
number of moves is correlated. The instances are the same as used for the
small instance in Section 3.6.2, but the difference is that there is a positive
correlation for the number of moves at terminal k between the two different
barges. Let Ψ1k and Ψ2k be the correlated number of moves at terminal k for
these two barges. Given the two uncorrelated random variables Φ1k and Φ2k

and a value α ∈ [0, 1], the variables Ψ1k and Ψ2k are defined as follows:

Ψ1k = Φ1k k = 1, . . . , l

Ψ2k = dαΦ1ke+ b(1− α)Φ2kc k = 1, . . . , l .

The value for α is a parameter to determine the amount of correlation: if α
is zero, then Ψ1k and Ψ2k are uncorrelated and if α = 1, then the variables
Ψ1k and Ψ2k always have the same value. We assume that Φ1k and Φ2k are
drawn from the same distribution. Consequently, the variables Ψ1k and Ψ2k

are uniquely determined by a value for α and a distribution for Φjk for j = 1, 2.
Moreover, the expectation of all four random variables Φ1k , Φ2k , Ψ1k , and Ψ2k

is the same. It is trivially to see that this statement is true for the first three
random variables and for the expectation of Ψ2k we have

E [Ψ2k] = E [dαΦ1ke+ b(1− α)Φ2kc]
= E [dαΦ1ke] + E [Φ2k]− E [dαΦ2ke]
= E [Φ2k] .

3.6. Numerical results 79

The distribution of Ψ1k is the same as used for Φ1k , but Ψ2k follows a different
distribution. To derive the distribution for Ψ2k we first need the distributions
for dαΦ1ke and b(1 − α)Φ2kc. The probability density function for dαΦ1ke is
as follows:

P (dαΦ1ke = φ) = P (φ− 1 < αΦ1k ≤ φ)

= P
(

Φ1k ≤
φ

α

)
− P

(
Φ1k ≤

φ− 1

α

)
= F

(
φ

α

)
− F

(
φ− 1

α

)
.

Furthermore, the probability density function for b(1− α)Φ2kc equals

P (b(1− α)Φ2kc = φ) = P (φ ≤ (1− α)Φ2k < φ+ 1)

= P
(

Φ2k <
φ+ 1

1− α

)
− P

(
Φ2k <

φ

1− α

)
= F

(⌈
φ+ 1

1− α − 1

⌉)
− F

(⌈
φ

1− α − 1

⌉)
= F

(⌈
φ+ α

1− α

⌉)
− F

(⌈
φ+ α− 1

1− α

⌉)
.

The variable Ψ2k is a convolution of dαΦ1ke and b(1 − α)Φ2kc and thus the
probability density function for Ψ2k is given by

P (Ψ2k = ψ) =

ψ∑
φ=0

P (dαΦ1ke = φ)P (b(1− α)Φ2kc = ψ − φ)

=

ψ∑
φ=0

(
F

(
φ

α

)
− F

(
φ− 1

α

))
(
F

(⌈
ψ − φ+ α

1− α

⌉)
− F

(⌈
ψ − φ+ α− 1

1− α

⌉))
.

Knowing the probability distribution for Ψ1k and Ψ2k , the expectational
method, the risk-averse trimmed mean method, and the SP-based method
can be applied to the correlated instances. Furthermore, it is also possible to
generate correlated samples, and thus the SAA and CPE methods can also be
used for the correlated instance.

In Table 3.11, the results for the five different solution methods for the pre-
dictable and unpredictable terminals and α = 0.25, 0.5, and 0.75 are given. We
have chosen not to use the open-closed distribution because the realizations
do longer follow the idea of being either 0 or having a high value in the corre-
lated distribution. The main conclusion for the correlated samples is that the

80 3. Planning hinterland transportation in congested deep-sea terminals

Terminal type α SAA EXP RAT CPE SP

Predictable

0.25
Objective function 9,753 9,968 10,199 10,012 9,913
Standard deviation 253 213 138 159 201
Gap SAA - 4.6% 2.2% 2.7% 1.6%

0.50
Objective function 9,764 9,960 10,166 9,996 9,940
Standard deviation 282 136 197 150 142
Gap SAA - 2.0% 4.1% 2.4% 1.8%

0.75
Objective function 9,698 9,964 10,193 9,959 9,909
Standard deviation 231 142 215 133 203
Gap SAA - 2.7% 5.1% 2.7% 2.2%

Unpredictable

0.25
Objective function 12,432 13,049 12,756 12,976 12,735
Standard deviation 172 173 134 126 95
Gap SAA - 5.0% 2.6% 4.4% 2.4%

0.50
Objective function 12,402 13,106 12,801 13,137 12,785
Standard deviation 172 150 116 184 124
Gap SAA - 5.7% 3.2% 5.9% 3.1%

0.75
Objective function 12,492 13,078 12,776 12,914 12,757
Standard deviation 173 176 126 102 88
Gap SAA - 4.7% 2.3% 3.4% 2.1%

Table 3.11 Average objective function over the 10 correlated instances for the five
solution methods and the predictable and unpredictable terminal types.

SP-based method is also the method that is the closest to the SAA method.
Nevertheless, for the unpredictable terminals, the risk-averse trimmed mean
method is performing almost as good. Furthermore, the value of α does not
have a big influence on the methods’ performance.

The only difference between the small instances and the correlated instances
is the distribution of the moves. If we compare the results of Table 3.11 with
the results for the small instances in Table 3.5, we see that the value of the
objective for the solution of the SAA method is slightly larger for the correlated
instances than for the small instances. However, for the other methods, the
objective function value for the correlated instances is about the same as for
the small instances. A possible explanation could be that in the SAA method,
it is not explicitly defined that the visits for a terminal by the two barges are
correlated. The method can only learn that from the data, which is also the
case for the CPE method. However, the other three methods can use the
correlated distribution function.

3.7 Conclusion
In this chapter, we have studied the question: how to ship containers from
and towards congested deep-sea terminals? In this problem, the number of
containers that is allowed to be loaded and unloaded at a deep-sea terminal is
unknown when the export containers are loaded on the barges. We have mod-
eled this problem as a two-stage stochastic program with recourse. We have
presented an SAA method that can solve small instances almost to optimality.

3.7. Conclusion 81

Nevertheless, the SAA method is not scalable, and thus, for larger instances, it
takes too long to produce almost optimal solutions.

In practice, fast solutions are required, so we have also developed a fast
heuristic method. The idea behind this method is that stochastic programming
can be used to find the optimal solution for a simplified problem. The char-
acteristics of this optimal solution to the simplified problem are used in the
SP-based method that we have presented to solve the original problem. We
have compared the results of this SP-based method with three methods for gen-
eral stochastic assignment problems: the expectational method, the risk-averse
trimmed mean method, and the comparative performance evaluation method.
We have tested these methods for three different terminal types: predictable,
unpredictable, and open-closed terminals. Moreover, we have also used three
different types of instances: instances with a small number of containers and
an uncorrelated number of moves, instances with a large number of containers
and an uncorrelated number of moves, and instances with a small number of
containers and a correlated number of moves.

The SAA method produces for small instances almost optimal solutions. For
the larger instances and certain terminal types, the solution that is produced by
the SAA method is about 2 to 4% from the optimal solution. The SP-based
method performs almost always better than the other three methods. For the
large instances, it can compute in a couple of seconds a solution that is less
than 1% worse than the SAA method’s solution, which requires a couple of
hours of computing time. We have also seen that the performance of the five
methods is not much different if the number of moves at a terminal is correlated
between all the barges. All in all, if the planning is allowed to take a few hours,
the SAA method is the best method to use, but the SP-based method is shown
to be a good alternative for a faster solution. Concerning the different terminal
types, we conclude that predictable terminals result in the lowest cost. For
the small instances, the difference between the unpredictable and open-closed
terminals are not that large. However, for the large instances, we conclude that
the inland terminal has lower costs if the terminal is unpredictable than if the
terminal is of the type open-closed.

The SAA method was not able to solve the large instances to optimality.
We have used a simple implementation of the SAA method. In further research,
it could be investigated if a more advanced decomposition to solve the SAA
method will result in faster solutions for the SAA method. Currently, the SAA
method takes up to a couple of hours to solve the problem, whereas the SP-
based method only uses a couple of seconds. However, in practice, one might
be willing to wait a couple of minutes for a good solution. Hence, a direction of
further research could be to find another method in which the running time and
the solution quality are in between the SAA method and the SP-based method.

82 3. Planning hinterland transportation in congested deep-sea terminals

In the current formulation of the problem, we have made some simplifying
assumptions which could also be relaxed in further research. Including train
transport as a mode of transportation that is cheaper than truck transporta-
tion, but more expensive barge transportation could be an interesting option.
Moreover, including the route a barge has to sail to visit the terminals is also
an option. In that case, one also has to make sure that the capacity of the
barge is not violating between two deep-sea terminals. Moreover, solving the
resulting ILP formulation is expected to take longer. Finally, one could also in-
clude that the number of moves for the first barge is revealed before the export
containers for the other barges has to be loaded. The resulting problem would
be a multi-stage stochastic problem.

4
Minimum cost paths with stochastic travel times
and overbooking

4.1 Introduction
In this chapter, we shift our focus from problems in which many containers are
transported to a problem with only a single container. The previous two chap-
ters determined the best day and mode of transportation for a container, such
that the total costs of transporting an entire set of containers was minimized.
Such a situation is only possible if a shipper is willing to be flexible in the way
a container is transported. It is likely that by minimizing the total costs, a part
of the containers is not transported in the cheapest possible way. Therefore,
the inland terminal, or another company that makes the consolidated planning,
has to charge a fixed price independent of the way a container is transported.
However, sometimes a shipper would like to decide for a specific container how
it is transported.

In this chapter, we study a problem faced by a shipper that ships specialized
cargo on a global scale. These specialized types of cargo could be pharmaceu-
ticals. For instance, medicines need to be transported in a specific temperature
range d. The goods are often shipped in cooling containers to control the tem-
perature, but these containers only cool for a limited amount of time. When
the shipment arrives after this period, it might not be at the right temperature.
For these types of shipments, the shipper wants to specify beforehand the en-
tire route and the conditions under which the goods are transported. Although
the research for this chapter originated from this context, the models and al-
gorithms presented in this chapter generalize also to the context of hinterland
container transportation.

Two main factors influencing the route choice of a shipment are the costs
and duration. Usually, one is looking for the cheapest option to transport freight
such that the arrival on at the destination is on time. However, the travel time is

This chapter is based on B.G. Zweers and R.D. van der Mei. Minimum costs paths in
intermodal transportation networks with stochastic travel times and overbookings. Submitted,
2020.

84 4. Minimum cost paths with stochastic travel times and overbooking

to a large extent stochastic. A vehicle might be delayed or a leg of the trip could
be overbooked. Therefore, it is impossible to guarantee that a shipment will
arrive on time. Possible options to deal with the travel time’s stochasticity are
to enforce the expected arrival time of the shipment to be before its deadline, or
to put a penalty on late arrival and minimize the expected costs. These methods
might work fine if a shipper transports many loads, but they are troublesome if
only incidentally goods are transported. In these types of problems, it is more
suitable to consider the probability of on-time arrival.

Since the shipper does not operate its own fleet, he or she has to obey the
predefined schedule of the carrier. This schedule results in large variations in
the duration of a shipment (Ziliaskopoulos and Wardell, 2000). Usually, there
is some time in the schedule between consecutive departures. Hence, if there is
a delay in one point of the transportation chain and a departure is missed, then
the next departure is often much later. As a result, the planned departure of
the next leg might also be missed, in which the delay could further propagate
through the network. In practice, it could also happen that a leg is overbooked.
In that case, the shipment can at best be transported in the next departure. The
overbooking probability usually increases if one is behind the planned schedule,
in which case the delay only gets worse.

In this freight network, we are interested in constructing Pareto-optimal
solutions in which the probability of arrival before the deadline is compared
with the costs of a route. With such a Pareto-front, the shipper can choose
how much risk he or she is willing to accept to transport goods at a specific
price. The number of routes grows exponentially with the number of nodes in a
network and there do not exist efficient optimal algorithms. Hence, for larger-
sized networks, we need to consider heuristics to find the most cost-efficient
route given a certain acceptance probability for risk.

The contribution of this chapter is three-fold. First, we model a problem
faced by a company delivering an online tool for shippers as a shortest path
problem with stochastic travel times and overbooking probabilities. The goal
of this problem is to find the cheapest path for which the probability of arrival
before a deadline is above a certain threshold. Second, we give an optimal
algorithm based on dynamic programming. Finally, we propose a heuristic in
which the stochastic travel times are replaced by deterministic values that are
a function of the risk one is willing to take. These deterministic values are used
in an ILP formulation.

The remainder of this chapter is organized as follows. In Section 4.2, a
description of the relevant literature is given. After that, we describe in Sec-
tion 4.3 in detail the problem that we are solving. This problem formulation
is translated into a mathematical model in Section 4.4. In Section 4.5, the

4.2. Literature review 85

optimal algorithm and heuristic are presented to solve the model described in
Section 4.4. The quality of this heuristic is investigated in Section 4.6. We
conclude this chapter in Section 4.7.

4.2 Literature review
In this section, we focus first on routing problems in multimodal networks. How-
ever, these problems are mainly deterministic. Since our problem is stochastic,
we also discuss the relevant literature concerning stochastic shortest paths. Fi-
nally, we review some works regarding risk measures that will be used in our
heuristic.

According to Chang (2008), routing problems in intermodal transport net-
works have three important characteristics. First, they deal with multiple objec-
tives, such as travel time and costs. Second, the schedules and delivery times
must be included to avoid a mismatch in practice. Finally, the calculation of
costs is complicated because it might be dependent on the weight or volume
transported. In this work, we only focus on the first two points. Ziliaskopoulos
and Wardell (2000) add that one should also account for delays at switching
locations. We implicitly do that by including overbookings.

The multiple objectives can be included as a weighted sum in the objective
function, or it can be decided to put one or more of the targets in the constraint.
In Cho et al. (2012), the latter is done by constructing Pareto-optimal solutions
regarding the travel time and transportation costs. They solve a weighted
constrained shortest path problem using a dynamic programming formulation.
In Gromicho et al. (2011), a problem faced by a logistic service provider is
studied in which the goal is to find the k-cheapest routes that have to be found
given time restrictions. This problem is also modeled as a recourse constraint
shortest path and is solved using a two-stage variant of Dijkstra’s algorithm.

A weighted sum of the travel time and the transportation costs is minimized
in Chang (2008). He enforces time-windows for the moment a path should
arrive in a node and solve the resulting problem using a Lagrangean relaxation.
In Yang et al. (2011), a goal programming approach is used to minimize the
weighted sum of transportation cost, transit time, and transit variability of an
intermodal route. This problem is entirely deterministic because the transit
variability is assumed to be a given constant. In multi-objective problems,
the travel time is also sometimes assumed to be time-dependent. A multi-
criteria time-dependent shortest path problem is studied in Androutsopoulos
and Zografos (2009). In this problem, the scheduled departure time of an arc
is fixed, and for every node, there is a strict time window for which the route
should visit that node. In Ziliaskopoulos and Wardell (2000), a deterministic
time-dependent shortest path problem is studied with a delay at the nodes. In

86 4. Minimum cost paths with stochastic travel times and overbooking

Chang et al. (2007), this problem is extended by not only minimizing the travel
time but also the costs that are associated with that path.

In most classical shortest path problems with stochastic travel times, the
goal is to find the path with the shortest expected duration (see, e.g., Hall
(1986), Fu and Rilett (1998), and Miller-Hooks and Mahmassani (2000)).
However, there is also some literature on stochastic shortest path problems
in which there is an arrival deadline. One concept that is applied in this con-
text is stochastic dominance. A distribution stochastically dominates another
distribution if, for every possible value in its domain, its cumulative distribu-
tion function is at least as large as that of the other distribution. Zhang and
Homen-de-Mello (2017) and Nie et al. (2012) study a problem in which the
goal is to find a path that minimizes the earliness and lateness and that stochas-
tically dominates a benchmark path. In Nie et al. (2012), this problem is solved
using a dynamic programming formulation, and in Zhang and Homen-de-Mello
(2017) a Sample Average Approximation method is proposed that can solve
larger instances. In Chang et al. (2005), an algorithm is presented to find
non-dominated paths with multiple time-dependent stochastic attributes.

General linear programming formulations in which the stochastic constraints
have specific properties have also been studied. For instance, Cheng and Lisser
(2012) consider a linear program with multiple stochastic constraints in which all
random variables are normally distributed. Under this assumption, the problem
can be approximated by a second-order conic program. Another example is the
work of Luedtke et al. (2010) in which an integer linear program formulation is
proposed for the situation in which only the right-hand side of the inequality is
random and has a finite distribution.

In Häme and Hakula (2013), a problem in a public transit network is studied
in which the goal is to find a path that arrives on time with maximum probability.
This problem is solved to optimality using a Markov decision process. The main
difference between this problem and our problem is that the one in Häme and
Hakula (2013) can be dynamically adjusted. In a situation where a person is
traveling, this is realistic, but it is often not applicable to freight transportation.

We conclude this section by reviewing the literature on risk measures. By
a risk measure, we mean a function that maps a stochastic variable to a real
value. A risk measure can be used to compare multiple stochastic variables.
In Cominetti and Torrico (2016), multiple risk measures for shortest paths are
considered. As they point out, most risk measures do not meet the additive
consistency property. This property states that if, under a particular risk mea-
sure, one stochastic variable is preferred to another stochastic variable, then
if to both these variables the same independent random variable is added, the
preference relation should not change. They state that the only risk measure

4.3. Problem formulation 87

that has this property is the entropic risk measure.

An entropic risk measure that has been used before in shortest path prob-
lems is the certainty equivalent under exponential disutility (Jaillet et al., 2016;
Zhang and Tang, 2018). In Zhang and Tang (2018), this measure is applied
in the context of a public transit network; their goal is to find a route that
minimizes the certainty equivalent under exponential disutility, given that the
arrival is before a deadline. Jaillet et al. (2016) study general routing problems
for which they put constraints on the certainty equivalent under exponential
disutility. They show how this framework can be applied in the case of distri-
butionally robust optimization. As a special case, they solve a shortest path in
which the least risky route with respect to the certainty equivalent under expo-
nential disutility has to be found such that the arrival is before the deadline.

Markowitz (1952) proposes the expectation-variance (EV) risk measure.
In this risk measure, the weighted sum of the expectation and variance of a
random variable is taken. The more weight that is given to variance, the more
risk-averse the outcome is. A disadvantage of this method is that it is not
monotone, which means that it could be the case that one stochastic variable
is almost surely dominated by another, but that the EV risk measure prefers
the latter (Cominetti and Torrico, 2016). In Hutson and Shier (2009), a more
general function of the expectation and the variance is applied to a shortest
path problem. The function they minimize is a sum of a convex function of the
mean and a concave function of the variance.

4.3 Problem formulation
We study a problem of a shipper who needs to ship goods through an intermodal
network. The shipper is a small company that does not have its own fleet
and needs to use the scheduled transport of carriers. Possible transportation
modes are airplanes, ships, trains, and trucks. The shipper has a given deadline
at which the shipment should be at its destination. This deadline could be
imposed by the customer that requires its shipment to arrive before a certain
moment, but it could also be caused by the packaging material that is used. For
instance, some packaging that is used to cool temperature sensitive material
stops working after a certain amount of time. A complete route is booked at
the carrier, so there is no option to change it during the transshipment. The
shipper is looking for the route of the shipment that has minimal costs but also
satisfies that the shipment arrives on time with a certain probability.

We assume that for each leg of the transportation network the costs are
known. The total costs of a route are simply the sum over all the legs it
contains. Furthermore, we assume that we know for each leg the distribution
of its duration. On top of that, these stochastic variables are independent of

88 4. Minimum cost paths with stochastic travel times and overbooking

each other. Nevertheless, there is some implicit dependency within a route.
Each leg has a planned departure time associated with it, which is the first
transportation possibility for that leg. Moreover, the next departure moments
are also given. Consequently, if a shipment arrives after its planned departure
at a hub, it can only leave that hub at the next departure time at the earliest.
This later departure could have the effect that the shipment also has to wait
for a more extended period at the next hub.

As the shipper is only shipping a single or a few containers through the
network, we are not concerned with the capacity of a transportation link. The
carrier decides if there is enough capacity left in each leg of the transportation
chain to transport the shipment. However, as no-shows occur frequently, air
carriers tend to overbook a flight. So it might be the case that a shipment
cannot be transported on the planned time but that it will be shipped at a later
moment.

We assume that for each leg in the transportation network, we know the
probability of how many departures a shipment has to miss after its arrival. This
probability depends on the planned departure. If the shipment arrives before its
scheduled departure at a hub, the expected number of missed departures is
less than if the shipment arrives after its planned departure. Moreover, the
probability could also depend on the booking classes offered by the carrier.
Standard booking classes are the cheapest option, but premium booking classes
have the advantage of having a higher priority when the leg is overbooked. So
for the same physical route, there could be a more expensive option that has a
larger probability of arriving on time.

In general, a shipper does not have a fixed value for the on-time arrival
probability of the shipment. Consider a situation in which one route has a
slightly larger chance of arriving too late at the destination than another route,
but the costs of the former path are only a fraction of the latter. In this
situation, most shippers will be inclined to take the riskier but cheaper route,
but the shipper should make that decision. Therefore, the goal of this problem is
to present a Pareto-front in which the probability of on-time arrival is compared
with the costs of a route.

4.4 Mathematical model
In this section, we present a mathematical model for the problem described in
Section 4.3. The notation that is used in this model is summarized in Table 4.1.
We model the intermodal transportation network as a directed acyclic graph
G := (V,A) with node set V and arc set A. Let n denote the number of
nodes in a graph. The graph has one source node and a destination node. We
will number the nodes in such a way that the source node gets number 1 and

4.4. Mathematical model 89

n Destination node

ci j Costs for arc (i , j)

di j Scheduled departure for arc (i , j)

fi j Frequency of departures on arc (i , j)

T Deadline for arrival at node n

P Path going from node 1 to node n

FP (·) Cumulative distribution function of the arrival time at node n

Φ0
i j Stochastic variable for the travel time on arc (i , j)

Φ1
i j Stochastic variable for the number of departures missed before

arc (i , j) is traversed if arrival at node i is before di j
Φ2
i j Stochastic variable for the number of departures missed before

arc (i , j) is traversed if arrival at node i is after di j
Φ
¯

Lower limit of domain of stochastic variable Φ

Φ̄ Upper limit of domain of stochastic variable Φ

β Risk acceptance parameter

V Set of all nodes

A Set of all arcs

P Set of all paths from node 1 to node n

Table 4.1 Overview of the notation used in Chapter 4.

destination node gets number n. Furthermore, since the graph is acyclic it is
possible to number the nodes such that there are no arcs between (i , j) if j < i .
It could be possible that there are multiple nodes that correspond to a single
hub. For instance, if the overbooking probability depends on the bookings class,
one needs to make a node for every combination of hub and bookings class.

Let P be the set of all possible paths between node 1 and node n and we
denote a single path by P ∈ P. An arc (i , j) has associated costs of ci j , and
the total costs of all arcs in path P is denoted by c(P). Moreover, an arc (i , j)

has a stochastic variable Φ0
i j for the time needed to traverse that edge and

a scheduled departure time di j . For the sake of simplicity, we assume that
there is a fixed time interval between the departures after di j . We call that
interval between consecutive departure the frequency of an edge and denote
it by fi j . Note that our approach would also work if the departure times do
not follow a specific pattern but are given beforehand. We assume that all
departure times and frequencies are integers. This is realistic from a practical
perspective because these times usually have a certain precision, for instance,
the planned departure of a flight is usually only given with a precision of five
minutes. Moreover, this assumption will be useful in computing the on-time
arrival probability, as we will see in Section 4.5.1.

If the shipment arrives at node i before the scheduled departure time di j

90 4. Minimum cost paths with stochastic travel times and overbooking

of arc (i , j), then the number of departures it has to miss because there is no
capacity left is the stochastic variable Φ1

i j . However, if the shipment arrives
after the scheduled departure di j at node i , then random variable Φ2

i j denotes
the number of departures that is missed. In practice the expectation of Φ2

i j

is larger than the expectation of Φ1
i j . The cumulative distribution function for

the arrival time at node n using path P is given by FP (·). Furthermore, we are
given a deadline T > 0 and a risk acceptance threshold β = [0, 1]. The risk
acceptance threshold is the probability for which we accept a late arrival. The
larger the value of β the more risk one is willing to accept. The goal is to find
a path with minimal cost such that the probability that the arrival at node n
is after T is less than or equal to β. In other words, the problem we need to
solve is the following:

min
P∈P

c(P) (4.1)

subject to

1− FP (T) ≤ β β ∈ [0, 1]. (4.2)

A Pareto-front can be constructed by varying the values of β. The larger the
value of β, the cheaper the path will be. So if we start with a value for β equal
to 1, the cheapest feasible route is found. Let us denote that path by P ∗. After
that, we calculate for path P ∗ the probability that it will arrive at node n after
time T . In other words, we find the value for β for which constraint (4.2) holds
with equality for path P ∗. If that value of β is found, we update the value of
β in constraint (4.2) such that it is just slightly lower. Consequently, P ∗ is no
longer feasible and a new path is found with higher costs and lower probability
of arriving too late. We repeat the entire procedure until there is no feasible
solution anymore.

Running example

We use a simple network to illustrate the problem and solution methods. This
network consists of four nodes and is given in Figure 4.1. On each arc, two
sets of three numbers are given. The first set consists of the parameters for
the departure. The first value represents the planned departure time, and the
second one is the frequency of the departures on that arc. Finally, the third
number, pi j , is the overbooking probability on that arc. For simplicity, we
assume that this is the same whether the shipment arrives before or after the
planned deadline. Moreover, it also does not change if more departures have
already be missed. Hence, the number of missed departures Φ1

i j is geometrically
distributed with parameter 1−pi j and 0 is in the domain of this random variable.
In other words, the probability of missing k departures on arc (i , j) is given by

P
(

Φ1
i j = k

)
= pkij(1− pi j) k = 0, 1, . . .

4.5. Solution method 91

1

2

3

4

[0,0,
0]

[15,4
,0.25

]

[0,0,0]
[10,9,1]

[0,0,0] [15,22,4]

[10,3,0.1]
[10,3,4]

[8,6,
0.1]

[10,3
,1]

Legend for arc (i , j): [di j , fi j , pi j]
[
ci j ,E

(
Φ0
i j

)
,Var

(
Φ0
i j

)]

T = 20

Figure 4.1 Toy example of a network to illustrate the model and the solution
methods.

All departures from node 1 leave at time 0 and have no possibility of overbook-
ing, thus the shipment will always leave that node at time 0. The second set of
three parameters are concerned with the actual transportation on that arc. The
first parameter represents the costs of that leg, the second the expected travel
time, and the third value corresponds with the variation of the transportation
time. All transportation time will follow the gamma distribution. Finally, the
deadline of arrival at node 4 is 20.

4.5 Solution method
In this section, we discuss solution methods to solve the problem presented in
Section 4.4. We first explain, in Section 4.5.1, how we compute the arrival
distribution at the destination in the intermodal network. This method can be
used in an optimal algorithm which is described in Section 4.5.2. However,
the running time of this method grows, in the worst case, exponentially in the
number of nodes in a network. Therefore, also a heuristic method is described
in Section 4.5.3. The high-level idea of this heuristic is to replace the stochastic
variable by deterministic risk measures.

4.5.1 Computing arrival and departure distributions

Consider a path in which l nodes are visited, and denote this path by P =

(p1, p2, . . . , pl). The first step in solving the problem (4.1)-(4.2) is to compute
FP (T). Although evaluating whether a sum of random variables is less than a
certain value is in general intractable (Khachiyan, 1989), we can exploit the fact

92 4. Minimum cost paths with stochastic travel times and overbooking

that we made the assumption that all departures are integral values. Hence, the
distribution of the departures can be seen as a discrete distribution. However,
as the travel time is continuous, the arrival distribution at the next node will also
be continuous. Nevertheless, this continuous distribution can be assumed to be
discrete as well because, as the departures only occur at discrete moments, we
can round up all fractional arrivals to the nearest integer.

Let us denote the probability mass function of the arrival time and the
departure at node pj by, respectively gAj (·) and gDj (·). We assume that the
shipment is available at time 0 at node 1, so gA1 (0) = 1. Then the arrival and
departure distributions for the others nodes can be computed by the following
three equations:

gDj (dj,j+1) =

dj,j+1∑
x=0

gAj (x)P
(

Φ1
j−1,j = 0

)
j = 1, . . . , l − 1

gDj (dj,j+1 + kfj,j+1) =

dj,j+1∑
x=0

gAj (x)P
(

Φ1
j−1,j = k

)
+

k−1∑
i=0

dj,j+1+(i+1)fj,j+1∑
x=dj,j+1+i fj,j+1+1

gAj (x)P
(

Φ2
j−1,j = i

)
j = 1, . . . , l − 1 k = 1, 2, . . .

gAj+1(x) =

∞∑
k=0

(
gD(dj,j+1 + kfj,j+1)

P
(
x − dj,j+1 + kfj,j+1 − 1 < Φ0

j,j+1 ≤ x − dj,j+1 + kfj,j+1

))
j = 1, 2, . . . , l − 1 x = 0, 1,

In the first equation, the probability of departing at the planned departure
from a node is calculated. For this to happen, the arrival at that node should
be before the planned departure and there should be no overbooking. The
probability of a departure at the other time epoch is calculated in the second
equation. This probability consist of two summations. The first summation is
the sum of the probability of arriving before the deadline but having to miss a
departure. The second summation represents the probability of arriving after
the deadline times the probability of missing the correct number of flights.

In the third equation, the probability of arriving at time x in node j + 1 is
calculated. This is a convolution of all possible departures at node j and the

4.5. Solution method 93

time it takes to traverse arc (j, j + 1) such that the arrival at node j + 1 is
between x−1 and x . All the convolutions required in these three equations can
be efficiently computed by standard Fast Fourier Transform algorithms. The
probability mass function gAn (x) can be used to compute the desired cumulative
distribution function FP (T).

4.5.2 Optimal algorithm

The problem (4.1)-(4.2) is a variant of the Resource Constrained Shortest
Path Problem (RCSPP), (see, e.g., (Pugliese and Guerriero, 2013)). For this
problem, two types of exact algorithms have been developed: Dynamic Pro-
gramming (DP) and Lagrangian Relaxation (Lozano and Medaglia, 2013). As
the Lagrangian subproblem is still hard to solve for our problem, we have to
decide to develop a DP algorithm.

In the DP algorithm, we iteratively go through all the nodes and keep track
of all paths entering a node. In node i , we can discard a path P1 if there exists
a path P2 with lower costs and that stochastically dominates P1. By the latter
we mean that the probability of arriving at node i before a given time is for path
P2 always greater than or equal to the probability for path P1. To formalize this
concept, let GAP,i(·) be the cumulative distribution function of the arrival time
in node i in path P . So path P2 stochastically dominates P1 in node i if

GAP2,i(x) ≥ GAP1,i(x) ∀x ≥ 0. (4.3)

The specifications of our problem make that it is not necessary to consider all
values of x in Equation (4.3). It is only possible to leave node i at a specific
number of departure times, namely D(i) := ∪j :(i ,j)∈A ∪∞k=0 {di j + kfi j}. Every
arrival in node i between two consecutive departure times can be treated as the
same. Hence, we can replace the condition of Equation (4.3) by

GAP2,i(x) ≥ GAP1,i(x) ∀x ∈ D(i).

If path P1 is more expensive than P2 and is stochastically dominated by P2,
then we know that path P1 will never be an optimal path for any acceptance
threshold β. Hence, we can discard path P1. However, the number of paths
that need to be stored can be large, especially if the set D(i) is large. Therefore,
we also propose a heuristic in the next section.

Running example continued

The network given in Figure 4.1 has three possible routes from node 1 to node 4,
namely a direct path, a route via node 2, and one via node 3. The direct path
is the cheapest option with costs 15, the route via node 3 has costs 20, and
the most expensive option is to ship via node 2 which has costs 25. In this

94 4. Minimum cost paths with stochastic travel times and overbooking

0 5 10 15 20 25 30
0

0.1

0.2

0.3

Arrival time at node 4

P
ro
ba
bi
lit
y
de
ns
it
y

Path 1− 4
Path 1− 3− 4
Path 1− 2− 4

Figure 4.2 Probability density function of the arrival time at node 4 for the three
different paths in the network from Figure 4.1.

example, the routes with lower costs also have a lower probability of arriving on
time. The probability that the direct route arrives before 20 at node 4 is about
0.16, for the route via node 3 this probability is approximately 0.91, and finally,
for the route via node 2 it is about 0.99.

In Figure 4.2, the distributions of the arrival time at node 4 for the differ-
ent paths are plotted. The path 1-3-4 clearly has three different peaks that
correspond to different planned departures. The first peak corresponds with
the departure from node 3 at time 8, this peak is small because the probability
of arriving before 8 at node 3 is not so large. The second peak resembles all
departures from node 3 at time 14 and this is peak is the largest because the
probability that the shipment arrives between time 8 and 14 at node 3 is large
and the probability of overbooking is only 0.1. The third and smallest peak
corresponds with the situation of an overbooking.

The fact that the distribution of path 1-2-4 has only one peak is caused by
the fact that the frequency of the departures on arc (2,4) is 3 and thus the
time between different departures is relatively short. Moreover, the travel time
on that arc also has a larger variance. In general, the more nodes are in a path
the more peaks are in the distribution of the arrival time at the final node.

If the three paths in this network would have been subpaths entering node 4
and there would have been an arc leaving node 4 with departure time 20, then
it would not be possible to discard any of the three paths because the cheaper
the path, the smaller the probability of arriving before 20 at node 4.

4.5. Solution method 95

4.5.3 Risk measure heuristic

In this section, we develop a heuristic for the problem presented in Section 4.4.
In this heuristic, all stochastic variables are replaced by a deterministic risk
measure. As we would like to give multiple solutions for different levels of
risk, we will define the level of risk one is willing to take by the risk tolerance
factor α. The larger the value of α the more risk one is willing to accept. A
risk measure for stochastic variable Φ and risk tolerance factor α is denoted
by ρα(Φ) and should be a decreasing function of α. We will use two different
functions: the expectation-variance (EV) function and the certainty equivalent
under exponentially disutility. In the remainder of this article, we will refer to
the latter as the certainty equivalent (CE).

Expectation-variance method

The expectation-variance function for stochastic variable Φ on the domain
[Φ
¯
, Φ̄] and risk tolerance factor α is defined as (Markowitz, 1952):

Eα(Φ) := max
{

Φ
¯
,min{E (Φ)− αVar (Φ) , Φ̄}

}
α ∈ (−∞,∞).

The idea behind the EV method is that for positive values of α a fraction of the
variance is subtracted from the expectation, and a fraction of the variance is
added to the expectation for positive values of α. As we replace Φ by Eα(Φ),
the value Eα(Φ) is restricted to values that are between the lower and upper
limit of Φ. The benefit of Eα(Φ) is that it is easy to compute and has a
relatively clear interpretation. Moreover, it can take any value in support of Φ

and thus it can also be used for a risk-tolerant shipper.

Certainty equivalent method

For a random variable Φ and risk tolerance factor α the certainty equivalent is
given as follows (Jaillet et al., 2016):

Cα(Φ) :=

{
α lnE

(
e

Φ
α

)
α > 0

limγ→0 Cγ(Φ) α = 0.

Using moment generating functions, Cα(Φ) can be easily computed for a given
distribution. For instance, Cα(Φ) = µ + σ2

2α if Φ is normally distributed with

mean µ and standard deviation σ or Cα(Φ) = α ln
((

1− θ
α

)−k)
for α > θ if Φ

is gamma distributed with mean kθ and standard deviation
√
kθ. The function

Cα(Φ) converges to the mean of Φ if α goes to infinity, and it converges to
the upper limit of its domain if α goes to zero (Jaillet et al., 2016). A possible
downside of this approach is that the value for Cα(Φ) can thus never be below
its mean, so it does not work very well for a risk-tolerant shipper. An advantage

96 4. Minimum cost paths with stochastic travel times and overbooking

of the certainty equivalent is that it grows exponentially for decreasing α, and
thus, it converges fast to the upper limit of the stochastic variable. Therefore,
it is a suitable risk measure for a risk-averse shipper.

Integer Linear Program Formulation

If each stochastic variable Φ is replaced by a risk measure ρα(Φ), the problem
becomes a deterministic optimization problem. For the moment, let us assume
that the value of α is fixed, then the resulting problem can be formulated by
the following ILP:

min
∑

(i ,j)∈A

ci jxi j (4.4)

subject to:∑
j :(x1j)∈A

x1j = 1 (4.5)

∑
i :(i ,j)∈A

xi j =
∑

k:(j,k)∈A

xjk j = 2, . . . n − 1 (4.6)

∑
i :(i ,n)∈A

xin = 1 (4.7)

ai ≤ di j + (1− yi j)M ∀(i , j) ∈ A (4.8)

ai ≤ di j + fi jzi j ∀(i , j) ∈ A (4.9)

di j + fi jzi j + fi j
(
ρα
(

Φ1
i j

)
yi j + ρα

(
Φ2
i j

)
(1− yi j)

)
+ ρα

(
Φ0
i j

)
≤ aj + (1− xi j)M ∀(i , j) ∈ A (4.10)

a1 = 0 (4.11)

an ≤ T (4.12)

ai ≥ 0 i = 1, . . . , n (4.13)

xi j ∈ {0, 1} ∀(i , j) ∈ A (4.14)

yi j ∈ {0, 1} ∀(i , j) ∈ A (4.15)

zi j ∈ N0 ∀(i , j) ∈ A. (4.16)

In this ILP, there are four types of decision variables. For each arc (i , j) we have
a binary variable xi j indicating whether that arc is traversed or not. Second,
for every node i the decision variable ai corresponds with the arrival moment at
node i . If a path does not visit node i , the value ai can take any value. Third,
the binary decision variable yi j is equal to 1 if the shipment arrives at node i
before the deadline di j . Finally, the decision variable zi j describes the number of
intervals after the deadline di j the arrival at node i is. Consequently, di j + fi jzi j
is the first possible departure from node i to node j .

4.5. Solution method 97

The objective function in (4.4) minimizes the costs of the selected path.
Constraint (4.5) enforces that the path leaves node 1 and constraint (4.7) that
it arrives in node n. In constraint (4.6), it is ensured that if a path enters
a node other than 1 or n, it also has to leave that node. If the value M is
sufficiently large in constraint (4.8), then it enforces yi j to be 1 if ai > di . The
constraint (4.9) makes sure that the departure time di j + fi jzi j from node i is
after ai , the arrival at node i . In constraint (4.10), it is enforced that if arc (i , j)

is traversed in the path, then the arrival at node j is at least aj . Again here,
we will need that M is a sufficiently large constant. In this constraint, the term
di j +fi jzi j represents the first possible departure time on arc (i , j). Furthermore,
the number of missed departures is given by ρα

(
Φ1
i j

)
yi j + ρα

(
Φ2
i j

)
(1 − yi j),

which equals ρα
(

Φ1
i j

)
is yi j = 1 and ρα

(
Φ2
i j

)
otherwise. Finally, the term

ρα
(

Φ0
i j

)
represents the travel time on arc (i , j), which is independent of the

actual departure time of that arc. The constraints (4.11) and (4.12) ensure,
respectively that the arrival at node 1 equals 0 and the arrival at node n is
before the deadline T .

In practice, one might need multiple stochastic constraints. For instance, in
a situation in which the freight has to be temperature regulated, the time the
freight spends in a port without the right equipment to control the temperature
of the shipment could also be subject to a probabilistic constraint. These types
of constraints can easily be added to the ILP above. In such a situation, one
should consider carefully if also multiple values for α are needed to differentiate
between the risk tolerance for different constraints.

We solve the ILP (4.4)-(4.16) using a standard ILP solver. However, as this
problem is a special case of the RCSPP, it is NP-hard. Hence, for larger-sized
instances, the computation time might be too long. Nevertheless, many exact
approaches have been developed for the RCSPP and they can be applied if
needed. We refer to Pugliese and Guerriero (2013) for a survey on these exact
algorithms.

Iterative procedure

In the ILP (4.4)-(4.16), it was assumed that α was fixed. As the value α has
no clear interpretation, it is impossible for a practitioner to set a value of α
beforehand. However, we know that the larger the value of α the more risk is
taken and the cheaper the solution will be. Therefore, the Pareto-front can be
constructed in the following way: initialize α = M sufficiently large and P = ∅.
Solve for that value of α the ILP (4.4)-(4.16). Assume the path resulting path
consists of l visited nodes, and let us denote this path by P = (p1, p2, . . . , pl).
Add this path to the set P. After that, find the minimum value of α for which
the sum of all certainty equivalents of path P is less than T . In other words,
find the minimum value of α for which the solution is feasible.

98 4. Minimum cost paths with stochastic travel times and overbooking

Algorithm 4.1: Procedure to find the minimum α for which a given path P is
feasible for ILP (4.4)-(4.16).

Input: Path P = (p1, p2, . . . , dl)

Initialize s = 0, α
¯

= 0 if ρα(Φ) = Cα(Φ) and α
¯

= −M if ρα(Φ) = Eα(Φ), and
ᾱ = M with M being a sufficiently large number.

while ᾱ− α
¯
> 0.0001 or s < T − 1 do

α =
ᾱ−α

¯2
s = ρα

(
Φ0
p1p2

)
for i = 2, . . . , l do

if s ≤ dpipi+1 then

s = dpipi+1 + ρα

(
Φ0
pipi+1

)
+ ρα

(
Φ1
pipi+1

)
else

s = dpipi+1 +

⌈
s−dpi pi+1

fpi pi+1

⌉
fpipi+1 + ρα

(
Φ0
pipi+1

)
+ ρα

(
Φ2
pipi+1

)
end

end
if s ≤ T then

ᾱ = α

else
α
¯

= α

end
end
Output: α

A procedure to find this value for α is given in Algorithm 4.1. The idea of
Algorithm 4.1 is simple: for a given value of α, the arrival time of path P at the
final node n (s) is calculated. If this arrival time is lower than T , it means that
the value of α for which the path arrives exactly at time T is larger. Hence,
the lower bound for α, denoted by α

¯
needs to be updated. If s is larger than T ,

then the upper bound for ᾱ is updated. The function of the arrival time is
discontinuous in α because if a path arrives just after di j at node i then the
departure time at node i will be di j + fi j . That is why in the while-statement
in Algorithm 4.1, also the condition s < T − 1 is included. By this we ensure
that in these situations we return the larger value of α. If the value of α is
found in the way described in Algorithm 4.1, we subtract a small value ε from
it to obtain a new value for α for which the solution P is not longer feasible.
We again solve the ILP (4.4)-(4.16) and repeat the procedure until the ILP
(4.4)-(4.16) is infeasible.

Running example continued

We now solve our running example given in Figure 4.1 with the risk measure
heuristic. For this example, the solutions produced by the expectation-variance
and the certainty equivalent approach are different. Recall that for α sufficiently
large, the CE of a random variable is arbitrary close to its expectation. As the
expectation of the travel time on the arc from node 1 to node 4 is larger than

4.6. Numerical results 99

the deadline, the direct route is infeasible for the CE method. The bottom
route, via node 3, is feasible for the certainty equivalent. The travel time on
the first leg is 9, so the shipment is too late for the planned departure time
of 8. The first departure is at 14 and then the expected number of flights being
missed is the pi j

1−pi j = 1
9 . The expected travel time from node 3 to node 4 is 3,

so the arrival time at node 4 equals 17 1
9 . This route is feasible as long as α

is roughly larger than 3.10. If α is larger than 1.44 the route via node 2 is
feasible, so the heuristic using the certainty equivalent approach will also give
that route as an option.

The expectation-variance measure of a random variable takes a value smaller
than its expectation as long as α is positive. Hence, if this measure is used, the
direct route is found as long as α > 22−20

4 = 1
2 . If α is just smaller than a 1

2 ,
the values taken by the EV method are close to the expectation, so the route
via node 3 is also found in a similar way as for the certainty equivalent method.
However, for the lowest value of α for which this route is feasible, the route via
node 2 is infeasible. The EV method underestimates the risk of the path via
node 3. So the risk tolerance factor for which it is still feasible is rather low.

Concluding, both the certainty equivalent method and the expectation
variance method only find two of the three Pareto-optimal routes. The
most risk-tolerant route is not found by the certainty equivalent method and
the expectation-variance method does not return the most risk-averse route.
Hence, if we combine the solutions from these two methods we do find the
entire optimal Pareto-front.

4.6 Numerical results
In this section, we use numerical experiments to investigate the quality of the
different solution methods. We first describe in Section 4.6.1 how we generate
random instances. Afterward, in Section 4.6.2, these instances are solved using
the solution methods described in Section 4.5 and the results are presented.

4.6.1 Instance generation

The different solution methods will be compared on randomly generated net-
works. These networks consist of n nodes with random arcs. To ensure that
the graph is connected, we create an arc between every node i and i + 1. For
the other arcs, we assume that there is arc between node i and all nodes in{
i + 1, . . . ,min

{
n, i + n

2

}}
with probability 1

2 . This way, there could be a path
from 1 to n with only one stop, but most routes will visit multiple hubs. This
represents the dynamics of an intermodal network in which there is usually at
least one long-haul trip from one hub to another.

100 4. Minimum cost paths with stochastic travel times and overbooking

The costs of an arc (i , j) are randomly generated as follows: ci j = (j − i) ∗
Uniform(1, 4). This ensures that the expected costs of an arc are larger if the
destination of an arc is closer the final destination n. The mean duration of an
arc (i , j) is randomly uniform between 3 and 10, and thus, it is independent of
i and j . The standard deviation is randomly uniform between 0.2 and 3. We
assume that the travel times are gamma distributed for two reasons. First, it
is a right-skewed distribution, which reflects the situation that delays cause the
mean of the distribution to be larger than its median. Second, for the gamma
distribution the moment generating function and thus the certainty equivalent
is well-defined.

We assume that the number of departures missed because of overbooking
is geometrically distributed. The parameter of this distribution is 0.9 if the
shipment arrives before its planned departure at a node an 0.75 if it arrives
after its planned departure. In the first case, this reflects the situation with
10% overbooking probability. The value 0 is included in the domain of the
geometric distribution to make sure that it is possible to miss no departures.
We include the fact that a shipment is always shipped with the fifth departure,
so it cannot miss more than four departures. Hence, the probability distributions
for Φ1

i j and Φ2
i j are as follows for every arc (i , j):

P
(

Φ1
i j = k

)
=

{
0.1k0.9 k = 0, 1, 2, 3

0.14 k = 4

P
(

Φ2
i j = k

)
=

{
0.25k0.75 k = 0, 1, 2, 3

0.254 k = 4.

For the scheduled departure on an arc (i , j), we calculate the shortest path
with respect to the mean duration to node i and add a discrete random uniform
number between 3 and 13 to it. The frequency of an arc is also a discrete
number that is randomly generated from the uniform distribution between 4
and 20. We assume that every arc leaving node 1 has planned departure time 0
and is never overbooked, so it is always possible to leave this node at that time.
For the final deadline, the shortest path to the destination with respect to the
mean duration of the arcs is calculated. We multiply this shortest path with a
deadline factor (Tf). This deadline factor reflects the behavior of a shipper that
if there does not exist a route that gives a desired on-time arrival probability
that then the deadline is set later.

4.6.2 Comparison of solution methods

In this section, we compare the optimal solution with the heuristic method
using 100 instances of 50 nodes that are randomly generated as described in

4.6. Numerical results 101

β

Tf Method 0.5 0.25 0.1 0.05 0.025 0.01

2

Opt 87 45 1 0 0 0
EV 49 26 1 0 0 0
CE 9 30 1 0 0 0
EV+CE 67 35 1 0 0 0

3

Opt 100 100 87 71 57 21
EV 85 76 49 31 20 6
CE 96 94 73 57 46 19
EV+CE 97 96 77 60 48 19

4

Opt 100 100 100 100 100 85
EV 92 87 79 68 60 33
CE 95 93 90 86 84 66
EV+CE 96 95 92 86 86 69

5

Opt 100 100 100 100 100 100
EV 93 90 84 78 68 51
CE 96 93 91 91 89 86
EV+CE 97 95 93 93 91 87

Table 4.2 Number of instances for which for different solution methods and accep-
tance thresholds feasible paths are found.

Section 4.6.1. We have chosen for this network size because its a realistic size
and the optimal algorithm can still solve it in a few minutes. Nevertheless, for
larger instances the running time of the optimal algorithm becomes problematic.
For example, for a network consisting of 250 nodes, the average running is about
an hour. The heuristic can still solve the problem for this size of networks in a
few seconds.

To compare the quality of the heuristic paths with the optimal, we compute
the actual probability of arriving late at the destination for every heuristic path.
If it turns out that a path that was conceived as less risky by the heuristic
is actually riskier and more expensive than another heuristic path, then it is
removed from the set of heuristic paths. As the running time of the heuristic is
relatively short, it is also possible to compute the solution of both the certainty
equivalent and expected variance heuristic and take the best solution of the
two. So in this section we will compare the EV heuristic, the CE heuristic, and
the combination of these two (EV+CE) with the optimal solution. We assess
the quality of the heuristic at two levels. First, we check if for a certain value
of β a feasible solution is found. A good heuristic should have a high probability
of finding a path if there exists a solution. The second level is the cost of a
route produced by the heuristic. If the solution heuristic returns a path, then
its costs should ideally be close to the optimal costs.

In Table 4.2, for different values of β and Tf it is shown for how many
instances a solution is found by the different solution methods. By increasing
the value of β or Tf , we see that the number of feasible solutions increases.

102 4. Minimum cost paths with stochastic travel times and overbooking

β

Tf Method 0.5 0.25 0.1 0.05 0.025 0.01

2
EV 4.4% 3.4% 0.0% 0.0% 0.0% 0.0%
CE 15.6% 5.3% 0.0% 0.0% 0.0% 0.0%
EV+CE 5.4% 2.5% 0.0% 0.0% 0.0% 0.0%

3
EV 2.1% 2.7% 5.6% 3.7% 1.4% 0.0%
CE 10.0% 5.0% 2.7% 2.7% 2.2% 0.0%
EV+CE 3.1% 2.1% 1.5% 2.2% 2.1% 0.0%

4
EV 1.0% 5.2% 9.6% 12.1% 11.7% 5.9%
CE 4.2% 2.4% 1.6% 3.7% 3.5% 3.7%
EV+CE 1.5% 0.7% 1.0% 1.8% 2.5% 3.3%

5
EV 0.8% 2.2% 4.3% 8.0% 9.4% 6.6%
CE 2.5% 2.5% 2.4% 1.9% 0.9% 1.1%
EV+CE 0.5% 2.0% 1.5% 1.2% 0.8% 0.7%

Table 4.3 Average percentage difference in costs for a method with the optimal
solution if method has found a solution for that instance.

Moreover, it can be concluded that the number of instances for which a feasible
path is found by the EV and CE heuristic on their own is for certain combinations
of β and Tf much lower than the instances for which the optimal solution gives
a solution. However, by combining the two heuristics the number of feasible
paths is much higher. Hence, we can conclude that the two different risk
measures produce sufficiently different solutions. It should also be noted that
the CE heuristic returns for more instances a feasible path, which confirms the
idea that it is more risk-averse than the EV heuristic.

In Table 4.3, the costs of the solutions returned by the three heuristics is
compared with the optimal costs. To make a fair comparison, we condition the
costs for the optimal solution for all three methods only on the instances for
which that heuristic finds a feasible solution. Hence, the number of instances
for which we compute the optimality gap is the number given in Table 4.2. This
could lead to outcomes that at first sight might be unexpected. For instance,
for Tf = 2 and β = 0.5 the optimality gap for the EV heuristic is smaller than
the optimality gap for the combination of the EV and CE heuristic. The solution
returned by the combination of the EV and CE heuristic is at least as good as
the solution from the EV heuristic. However, the combination heuristic finds
solutions to more instances and these instances are likely to be harder. Hence,
it is correct that the optimality gap for the combination heuristic is larger than
for the EV heuristic. Nevertheless, in general the solutions that are obtained
by combining are much better than those of the single heuristics and have an
optimality gap of about 2%.

As we concluded before, the solutions from the CE heuristic are more con-
servative than those of the EV heuristic and this effect can also be seen in
Table 4.3. For β = 0.5, the solutions produced by the CE heuristic have a

4.7. Conclusion 103

Opt EV CE EV+CE
Tf Mean Std Mean Std Mean Std Mean Std
2 2.0 1.2 0.9 0.9 0.2 0.4 0.9 0.9
3 4.5 2.1 2.4 1.5 2.6 1.4 2.9 1.5
4 6.2 2.4 3.1 1.4 2.6 1.2 4.1 1.7
5 6.1 2.5 3.0 1.3 2.9 1.3 3.9 1.6

Table 4.4 Total number of paths found by the different methods

much larger gap with the optimal solutions than the solutions from the EV
heuristic. This is caused by the fact that the CE heuristic often only produces
solutions that have a much lower acceptance threshold than 0.5. For instance,
if there is a cheap route for which the probability of arriving too late is 0.4 it
is more likely to be found by the EV heuristic than by the CE heuristic. Never-
theless, if β decreases, the relative quality of the solutions by the CE method
improves compared with the EV heuristic.

Finally, we look at the number of solutions produced by the different meth-
ods. The objectives of finding a path that arrives on time with sufficient prob-
ability and that has minimal costs are not conflicting if only a single solu-
tion is returned. We again solved the hundred instances but now for every
β ∈ {0.01, 0.02, . . . , 0.98, 0.99}. In Table 4.4, we give the average number of
paths found for an instance and its standard deviation. We see that the average
number of optimal paths for an instance is about 4 to 6. The number of paths
returned by the two heuristics is lower with a value between 2 and 3. However,
again by combining these two heuristics, the number of paths that is found is
increased to an average value between 3 and 4. For Tf equals two, the number
of average paths that is found is lower because there are fewer feasible paths.
Furthermore, as we noted before the CE heuristic is more conservative than
the EV heuristic and thus, the number of paths returned by the CE heuristic is
also lower than for the EV heuristic.

4.7 Conclusion
We studied an intermodal routing problem inspired by a company that offers
shippers a tool to find the best route for their shipment. In deciding what the
best route is, a trade-off must be made between the shipment costs and the
probability of arriving before a deadline at the destination. A distinct feature of
our model is that it includes two types of stochasticity. First of all, the travel
time between two nodes is stochastic. Moreover, we also added the possibility of
overbooking as this happens regularly in practice and has a significant influence
on the arrival time of a shipment. All legs in our transportation network have
a planned departure time. If the shipment arrives after the planned departure
time at the origin of this leg, then the probability of overbooking increases.

104 4. Minimum cost paths with stochastic travel times and overbooking

We have shown how to calculate, for a given path, the probability of arriv-
ing on time at the destination. As it could be hard to find dominating paths in
our model, an optimal algorithm might need too much computation time for
practical use. Therefore, we have proposed a heuristic in which the stochastic
variables are replaced by two different deterministic risk-measures. The re-
sulting problem is an RCSPP that we solve using an ILP formulation. This
heuristic produces solutions that are close to the optimal solution. Moreover,
the heuristic can solve networks with 250 nodes in a few seconds, and the
optimal algorithm needs an hour for these networks.

Nevertheless, for even larger networks, also the running time of the heuristic
might become too long to use in practice because multiple ILPs need to be
solved. So an interesting direction for further research would be to find a
heuristic that can solve larger instances. One way to do this could be to use
exact algorithms tailored for the resource constraint shortest path problem,
instead of using the standard ILP implementation. Another way to improve the
running time of our heuristic could be to use a heuristic to solve the RCSPP.

In our current model, the planned departure time for a leg is assumed to
be given. An extension of this model would be to decide on the first possible
departure. This departure should then be in a set of possible departure times.
This model would better reflect reality, but it also adds extra complexity to the
problem. If one decides to plan the first departure later, then the probability
of arriving before that time increases, and thus the probability of overbooking
decreases. However, there is no option to leave earlier than the first departure,
so the probability of arriving on time at the destination could also decrease.

In the context of container hinterland transportation, it might be more
natural to investigate multiple containers simultaneously. Hence, a direction
for further research is to extend the problem to the transshipment of multiple
containers. One could think of a model that is in line with those of Chapters 2
and 3. In that case, a complicating factor is that an arc’s capacity should also
be taken into account. Moreover, the risk acceptance threshold and deadline
could differ per container. Hence, it is no longer possible to construct a two-
dimensional Pareto-front, unless one finds a way to represent the risk of a
transportation plan in a single value.

In hinterland transportation networks, the number of possible transportation
options is not that large. Therefore, in this context, a heuristic might not be
needed. However, an interesting feature would be to include the fact that one
can decide which terminals to visit with a barge. In Chapter 2, a barge visit
was penalized because it increases the probability of a delay. If the model of
this chapter is combined with that of Chapter 2, it might be possible to replace
the artificial penalty by a risk acceptance threshold.

5
Pre-processing moves in container yards

5.1 Introduction
In the previous chapters, we have focused on the best way to ship containers in
a multimodal network. In these networks, container terminals play an essential
role because there the containers are transshipped from one node to another.
As a result, it is possible to choose the most efficient mode of transportation
for every part of a container’s trip. Nevertheless, the handling of a container
at a terminal imposes extra costs and takes time. Therefore, the operations at
a terminal are essential to consider when optimizing the costs and reliability of
multimodal transportation.

After a container arrives at a terminal, it is temporarily stored in a con-
tainer yard. In order to save space, the containers are stacked on top of each
other. However, the handling equipment at a terminal can only access the top
container, so ideally, each container is at the top of its stack when it needs
to leave the terminal. Nevertheless, when a container arrives at the container
terminal, its departure moment is often unknown. Consequently, it frequently
occurs that when a container needs to leave the terminal, other containers are
stacked on top of that target container. These blocking containers will then
need to be relocated to other stacks. These moves are called relocation moves
and need to be prevented as much as possible since they impose extra costs
and delays,

At an inland terminal, all outbound import containers need to be delivered
to their final destinations by truck. A terminal is interested in reducing the
turnaround time of a truck because then a truck can serve as many trucks as
possible on a day. A reduction of the turnaround time is also beneficial for
a truck driver because he or she can make more trips on a day. One way to
reduce the truck’s turnaround time is to perform fewer relocation moves when

This chapter is partly based on B.G. Zweers, S. Bhulai, and R.D. van der Mei. Optimizing
pre-processing and relocation moves in the stochastic container relocation problem. European
Journal of Operational Research, 283:954–971, 2020a and B.G. Zweers, S. Bhulai, and R.D.
van der Mei. Pre-processing a container yard under limited available time. Computers &
Operations Research, 123-105045, 2020c.

106 5. Pre-processing moves in container yards

a truck is waiting at the terminal. Although the container’s departure time
is usually unknown when a container arrives at a terminal, a few hours before
containers are retrieved, it is known in which period that will be. At an inland
terminal, the crane to handle containers is more often idle than at a deep-sea
terminal because fewer containers are transshipped via an inland terminal. At
the time the crane is idle, it can perform pre-processing moves. The idea of
pre-processing moves is to move containers to reduce the number of future
relocation moves.

We are first to introduce the concept of these pre-processing moves in con-
tainer yards. Therefore, this chapter is an introduction to the pre-processing
moves. In Section 5.2, we review the relevant literature. The stacking problem
we are facing is described in Section 5.3. Finally, in Section 5.4, two mathe-
matical models are presented to solve the problem described in Section 5.3. In
Chapters 6 and 7, solution methods to solve these problems will be presented.

5.2 Literature review
There are two main problems in the literature concerning the stacking of out-
bound containers: (i) the Container Relocation Problem (CRP), sometimes
also called blocks relocation problem, and (ii) the Container Pre-Marshalling
Problem (CPMP). Since our problem can be seen as a combination of the CRP
and the CPMP, we will discuss the relevant literature for the two problems
below.

In the CRP, each container has a unique label indicating the pick-up order
of the containers. Containers that are on top of a container that is retrieved
need to be relocated to other stacks. The objective of the CRP is to use as few
of these relocation moves as possible. The CRP was introduced by Kim and
Hong (2006) and is proven to be NP-hard (Caserta et al., 2012). As a result
of this hardness, the literature concerning the container relocation problem can
be divided into two different categories. The first branch of the literature deals
with finding optimal solutions for the CRP, and the second stream of research
focuses on heuristics for the CRP. One way to solve the CRP to optimality is
to use integer programming. Caserta et al. (2012) were the first to introduce
such a formulation. However, that formulation needed hours to solve instances
of twenty to thirty possible locations of containers. In Zehender et al. (2015),
the formulation of Caserta et al. (2012) is improved, but it is still not able to
solve realistic instances.

Heuristics have been proposed for the CRP to solve larger instances in a
reasonable time. In Caserta et al. (2011), a heuristic for the CRP that is based
on dynamic programming is presented. As the number of states examined is
restricted, this heuristic runs fast, but a rule-based heuristic described in Caserta

5.2. Literature review 107

et al. (2012) gives better solutions. Another heuristic in which a restricted
number of states is considered is presented in Wu and Ting (2012). In this
article, the beam search procedure is applied. Also, a few meta-heuristics have
been developed for the CRP. In Jovanovic et al. (2019b), the CRP is solved
using ant colony optimization. A genetic algorithm is used in Hussein and
Petering (2012) to solve a CRP variant in which the energy consumption is
minimized. The energy consumption depends on the weight of a container, and
thus, heavy containers should not move too far. They use the genetic algorithm
to find the best parameter settings of a constructive heuristic.

The Stochastic Container Relocation Problem (SCRP), which is a gener-
alization of the CRP, was introduced by Zhao and Goodchild (2010). In the
SCRP, the exact order in which containers are retrieved is not known anymore.
It is only given in which time interval a container is retrieved, but multiple con-
tainers could have the same interval. The retrieval order of the containers in the
same time interval is a uniform random permutation. Using a simple heuristic,
Zhao and Goodchild (2010) conclude that the value of information is essential
for this problem. In Ku and Arthanhari (2016), a more advanced heuristic called
the Expected Reshuffling Index is introduced. The idea behind this heuristic is
to calculate a score for every stack based on the expected number of reshuffles
needed for that stack. A container is relocated to the stack with the smallest
number of reshuffles.

Another heuristic for the SCRP, the so-called Expected Minmax (EM)
heuristic, is proposed by Galle et al. (2018b). This heuristic first tries to place
a container in a stack where it does not need to be relocated. If such a stack
does not exist, a container is placed in a stack where its relocation move will be
the latest. In Galle et al. (2018b), an optimal formulation for the SCRP is also
given, which can solve small instances within a reasonable time. The solution
of the EM heuristic is close to the optimal solution and outperforms the ERI
heuristic of Ku and Arthanhari (2016).

In the Unrestricted Blocks Relocation Problem (UBRP), another variant of
the CRP, each container is allowed to be relocated and not only a container
that is blocking another container. The first mathematical formulation for the
UBRP is given in Caserta et al. (2012). In Petering and Hussein (2013), an
Integer Linear Program (ILP) formulation that uses fewer decision variables
than the model in Caserta et al. (2012) is proposed. Moreover, the running
time of the model of Petering and Hussein (2013) is faster. At the moment,
the best exact algorithm for the UBRP can be found in Tanaka and Mizuno
(2018), in which an exact branch-and-bound algorithm is presented.

Besides the ILP formulation, also a look-ahead heuristic is proposed in Pe-
tering and Hussein (2013). In Jin et al. (2015), a heuristic that constructs a

108 5. Pre-processing moves in container yards

partial tree with possible layouts is constructed. The layout for which a greedy
heuristic gives the lowest number of relocation moves is selected as the best
solution. In Tricoire et al. (2018), a metaheuristic for the UBRP is presented
in which a beam search is combined with constructive heuristics. Finally, Feillet
et al. (2019) present a local search heuristic for the UBRP that is incorporated
in a dynamic programming formulation.

In Ji et al. (2015), a variant of the CRP is introduced that also incorporates
loading plans of ships. In this problem, a ship’s stowage plan is given, and the
loading sequence has to be decided to minimize the number of relocations in
the container yard is minimized. Ji et al. (2015) use a genetic algorithm to
find good solutions for this problem. In Jovanovic et al. (2019a), a GRASP
heuristic is proposed for the same problem, and this heuristic gives significantly
better solutions than the method of Ji et al. (2015).

Contrary to the CRP and its variants, in the CPMP, containers are moved
before any container is retrieved. These moves are called pre-marshalling moves.
The goal of the CPMP is to use as few pre-marshalling moves as possible to
obtain a stacking of the containers in which no relocation moves are needed.
One way to solve the CPMP is to use ILP models. In the first paper about
the CPMP, Lee and Hsu (2007) model the CPMP as a multi-commodity flow
network that they solve using an ILP formulation. In De Melo da Silva et al.
(2018), an ILP formulation is presented that can solve both the CPMP as
the CRP. In Parreño-Torres et al. (2019), eight different ILP formulations for
the CPMP are given, which are currently the best mathematical models for
the CPMP.

Tree-based methods are another way to solve the CPMP to optimality. The
first tree-based method was an A∗ algorithm introduced by Expósito-Izquierdo
et al. (2012). An A∗ algorithm is a variant of a branch-and-bound algorithm in
which the expected costs of the nodes below the current node are estimated. In
Tierney et al. (2017), an improved A∗ algorithm is given in which they make use
of the lower bounds for the CPMP of Bortfeld and Forster (2012). The current
state-of-the-art algorithm for solving the CPMP to optimality is a branch-and-
bound algorithm that is first presented by Tanaka and Tierney (2018) and later
improved by Tanaka et al. (2019). This method can solve almost all real-sized
instances within an hour.

The CPMP has never been proven to be NP-hard, but since none of the
optimal algorithms produces a fast solution, also heuristics have been devel-
oped. A constructive heuristic is the Lowest Priority First Heuristic (LPFH)
of Expósito-Izquierdo et al. (2012). The idea behind the LPFH is to place
the containers with the largest time frames in the correct position first. This
heuristic consists of different phases, and in Jovanovic et al. (2017), multiple

5.2. Literature review 109

heuristics are applied to every single of these phases. Multiple different solutions
are obtained using this approach, and the best is chosen, which results in better
solutions than the heuristic of Expósito-Izquierdo et al. (2012). In Hottung
and Tierney (2016), a genetic algorithm is used to find the best parameters of
a constructive heuristic. In Hottung et al. (2020), a tree search heuristic for
the CPMP is developed in which the branching decisions are made based on a
model learned by a deep neural network. The results of this heuristic are better
than the heuristic of Hottung and Tierney (2016) but at the expense of longer
computation times.

To the best of our knowledge, there is only limited work dealing with uncer-
tainty in the CPMP, namely Rendl and Prandtstetter (2013) and Tierney and
Voß (2016). These works study the Robust Container Pre-Marshalling Prob-
lem in which for each container, an interval in which the containers could be
retrieved is given. The goal is to place containers such that the container’s lat-
est departure time is always earlier than the earliest possible departure time of
a container underneath it. The difference between the intervals in this problem
and the SCRP is that here the interval width is container-dependent. In Rendl
and Prandtstetter (2013), this problem is solved using constraint programming,
and in Tierney and Voß (2016), an IDA* heuristic is introduced that outper-
forms the earlier work of Rendl and Prandtstetter (2013) both in computation
time and solution quality.

In the papers described above, the objective has been to minimize the num-
ber of pre-marshalling or relocation moves. Nevertheless, one can also decide
to minimize the time needed to perform these moves. In Voß and Schwarze
(2019), it has been shown that if this objective is chosen, then the number of
relocation moves is often also minimal. In case the time needed is in the ob-
jective function, it is also natural to allow movement of containers to multiple
bays. The first paper that includes a time dimension in the objective function
is Lee and Lee (2010). In this paper, the objective is a weighted sum of the
relocation moves and the time needed to perform these relocation moves. Lee
and Lee (2010) propose a three-phase heuristic to solve this problem, but even
for small instances, the running time is too large to be used in practice.

A much faster heuristic that also has a higher solution quality is proposed in
Lin et al. (2015). This heuristic calculates for each stack a weighted sum of the
minimum time frame of that stack and the time needed to travel to that stack.
The stack for which this index is the lowest is chosen as a destination stack for
the container. In Da Silva Firmino et al. (2019), an optimal A∗ algorithm and a
GRASP heuristic are proposed to minimize the crane’s working time. A GRASP
heuristic is a meta-heuristic in which a greedy construction heuristic is combined
with a local search heuristic. In Galle et al. (2018a), a model is considered in
which only the retrieval order of the first set of containers is known. The

110 5. Pre-processing moves in container yards

objective is to minimize a weighted sum of the time needed to retrieve these
containers, and the remaining future number of relocation moves in the bay.
In Casey and Kozan (2012), a model is studied in which the objective is to
minimize the total time needed to perform all movements. They consider both
incoming and outgoing containers and propose both constructive and meta-
heuristics to solve the problem. However, they study a terminal that uses a
straddle carrier to handle containers, which is a different type of equipment
than used in the other papers mentioned.

5.3 Problem description
In order to formulate our problem, it is crucial to describe the operations at a
container terminal first in Section 5.3.1. In Section 5.3.2, we list all assumptions
that are made in our problem, and finally, in Section 5.3.3, the pre-processing
phase is introduced.

5.3.1 Terminal operations

In terminals, containers are stored in a rectangular yard, as illustrated in Fig-
ure 5.1(a). One row of containers in such a yard is called a bay. The commonly
used equipment to store and retrieve a container from a yard is a Rail Mounted
Gantry Crane (RMGC), which is also given in Figure 5.1(a). Other vehicles,
such as terminal tractors or trucks, are used to move the container to another
position. This position could, for instance, be the ship or the customer. In both
figures of Figure 5.1, such a vehicle is depicted.

In Figure 5.1(b), one sees one bay and an RMGC with a trolley attached
to it. The trolley can be lowered to pick up a container from the yard, but
only the top container of a stack can be picked up by the trolley. Afterward,
the trolley is lifted again to move the container over other containers to the
end of the bay to place it at the vehicle. As a result, the maximum number of
containers in a stack is limited, because otherwise, the trolley cannot move a
container from one side of the bay to the other. Moreover, the width of the
RMGC also imposes a constraint on the maximum number of stacks in a bay.
Consequently, the number of containers in a bay, called slots, is also limited.
For example, the bay in Figure 5.1(b) can contain at most four stacks that
have a maximum height of three and therefore has twelve slots.

The RMGC also moves the top container of a stack to another stack if it
has to be relocated. In case a container is moved to a stack in another bay, the
entire RMGC has to move. At the same time, only the trolley has to move if
the container is moved to a stack in the same bay. The former is much more
time-consuming, and on top of that, in some terminals, it is not even allowed
to move the crane if it is carrying a container (Lee and Hsu, 2007). Therefore,

5.3. Problem description 111

Figure 5.1 The layout of an RMGC and a container yard (Tierney et al., 2017).

it is not allowed to move a container from one bay to another bay, and thus,
the problem is two-dimensional, similar to Figure 5.1(b).

5.3.2 Assumptions

In order to have a good balance between the current practice at container
terminals and computational tractability, five assumptions are made.

Assumption 5.1. All containers in a bay will leave the bay before any new
containers arrive.

Assumption 5.1 is made because it imposes a natural end of the period that
needs to be considered. Moreover, most container terminals have specific areas
in which only outbound or inbound containers are stored. Consequently, it often
happens that no new containers arrive in a bay with outbound containers that
will leave the terminal this day. A problem that arises when this assumption
is not made is the Dynamic Container Relocation Problem (Akyüz and Lee,
2014).

Assumption 5.2. A container may only be moved in the relocation phase if it
blocks the container that needs to be retrieved.

In Section 5.2, we have already seen that Assumption 5.2 is sometimes re-
laxed and that then the unrestricted version of the CRP is obtained. However,
this assumption makes the relocation phase significantly easier, and it is also
common practice in container terminals (Caserta et al., 2012). Under Assump-
tion 5.2, the number of relocation moves performed when a single container is
retrieved is the same as the number of containers that are blocking this target
container. Whereas in the unrestricted version, there is no tight bound for the
number of relocation moves. On top of that, with this assumption, checking

112 5. Pre-processing moves in container yards

whether a container needs to be moved in the relocation phase is straightfor-
ward. If a container has only containers underneath it that are picked up later, it
will never be moved in the relocation phase. We say that a container for which
no relocation moves are needed is well-placed or correctly-placed. Contrary, a
container that is not well-placed is called badly-placed or poorly-placed.

Assumption 5.3. For each container, the time interval in which it is picked
up is known, but the retrieval order inside an interval is a random uniform
permutation.

Assumption 5.3 distinguishes the CRP from the SCRP because, in the CRP,
each container has its unique time interval in which it is picked up. This as-
sumption reflects the situation in which terminals have a truck appointment
system (Ku and Arthanhari, 2016). In such a system, the terminal has a fixed
number of time intervals in which trucks can arrive to pick up a container.
Multiple trucks can make an appointment to pick up a container in such a time
interval. After that, the terminal knows which containers will leave the terminal
in which interval, but it does not know anything about the order of the depar-
tures in such a time interval. As no information is available, it is most natural
to assume that the retrieval order is a uniform permutation, since then each
order is equally likely.

The moment the information of the retrieval order inside an interval becomes
known to the terminal can vary and leads to two slightly different variants of the
SCRP: the online model (Zhao and Goodchild, 2010; Ku and Arthanhari, 2016)
and the batch model (Galle et al., 2018b). In the batch model, a container is
only retrieved after all trucks have arrived at the terminal for that time interval.
Consequently, if the first container in a time interval is retrieved, then the exact
retrieval order for all containers in that time interval is known. Whereas in the
online model, each container is retrieved immediately after a truck has arrived
to pick it up. Therefore, no extra information about the containers that are
retrieved later during that interval is known when it needs to be relocated.

The batch model is more suitable for large terminals in which the time
intervals are short, and there is a significant amount of time between the arrival
of a truck at the terminal and the moment it is served. In contrast, the online
model better reflects smaller terminals in which trucks are served faster (Galle
et al., 2018b). As the batch model implicitly assumes that the crane does not
have any idle time, the online model is a variant in which pre-processing makes
more sense. Motivated by this, we use the online model.

Assumption 5.3 is the only assumption that makes the problem stochastic,
but the variability of the number of relocation moves is more than one might ex-
pect at first sight. For example, consider a stack that consists of two containers
from the same time interval. If the top container is the first to be retrieved and

5.3. Problem description 113

the bottom container the last, no relocation moves are needed. Whereas if the
bottom container is the first to be retrieved, one relocation move is needed for
the top container. Hence, with probability 1

2 no relocation moves are needed
and with probability 1

2 one relocation move is needed for the containers in that
interval.

On top of that, note that the fact that the retrieval order of containers in
one specific interval is stochastic does not only influence the expected number
of relocation moves needed to retrieve the containers from that interval. The
relocation moves performed in one time interval influence the layout of the bay
after that interval has ended. Because of Assumption5.2, it is only allowed
to move containers that are on top of the target container. Therefore, the
retrieval order of the containers inside an interval has a significant influence
on how relocation moves are performed. Consequently, it might be that each
retrieval order of an interval results in a different layout after the interval is fin-
ished. As a result, the first interval’s retrieval order might influence the number
of relocation moves needed for the last interval. Thus, the total number of re-
location moves can vary across a wide range of values. Finally, Assumption 5.3
implies that computing the expected number of relocation moves for a given
bay and relocation policy is computationally expensive. On the other hand, if a
certain relocation policy for the deterministic CRP is used, then the number of
relocation moves for a specific bay can be computed efficiently.

Assumption 5.4. The time to move a container from one stack to another
does not depend on the stack to which a container is moved.

Assumption 5.4 is based on the fact that the time needed to pick up and
release a container with a trolley is considerably larger than the time needed
to move the trolley. As a result, the stack to which a container is relocated
does not significantly influence the total relocation time of a container. In
Section 5.2, we have seen a few papers in which Assumption 5.4 is not made,
and the total objective is to minimize the weighted average of the number of
relocation moves and the total working time of the crane. A consequence of
Assumption 5.4 is that the order of the stacks is not relevant, and any permu-
tation of the stacks can be treated as if it were the same instance. Another
consequence of Assumption 5.4 is that only the number of moves is relevant in
a solution.

Assumption 5.5. It is physically possible to stack every container on every
other container.

Since containers have different sizes, Assumption 5.5 is not evident for
general containers. A container of forty feet cannot be stacked on top of
a single container of twenty feet. However, Assumption 5.5 is an assumption

114 5. Pre-processing moves in container yards

that is not restricting from a practical perspective because most terminals locate
containers with different sizes in different bays. Moreover, in case there would
be certain containers on which we cannot stack a container, the pre-processing
and relocation moves are easier: when we need to determine to which stack a
container is moved, we could simply ignore the stacks in which we cannot stack
the container.

5.3.3 Pre-processing phase

If the crane is idle, it can perform some pre-processing moves to position the
containers so that fewer relocation moves are needed. At first sight, the pre-
processing moves might look the same as the pre-marshalling moves in the
CPMP. However, the main difference is that after all pre-marshalling moves
are performed, no relocation moves are needed, and there might still be some
relocation moves after the pre-processing phase has finished. Therefore, we
can distinguish two phases in our problem: (i) the pre-processing phase and (ii)
the relocation phase. The pre-processing phase ends when the first container
is retrieved from the yard, and at that time, the relocation phase starts. The
relocation phase is equivalent to the SCRP.

There are two main advantages of pre-processing moves over pre-
marshalling moves. First of all, it could be that the crane’s idle time is too
short to perform all pre-marshalling moves. Second, positioning a container
such that it does not need to be relocated might require many moves. In that
case, the extra costs and time needed do not outweigh the reduction of a single
relocation move. These two different advantages result in two different prob-
lems: (i) the Stochastic Container Relocation Problem with Pre-Processing
(SCRPPP) and (ii) the Stochastic Container Relocation Problem with Con-
strained Pre-Processing (SCRPCPP).

In the SCRPPP, the pre-processing moves and relocation moves are jointly
minimized, whereas, in the SCRPCPP, the time that is available for the pre-
processing phase is limited. Hence, the SCRPPP is suitable if one wants to
set costs on the moves, and if the crane’s idle time is short, the SCRPCPP
should be used. In Sections 5.4.1 and 5.4.2, we give a formal definition of,
respectively, the SCRPPP and SCRPCPP.

Running example

Throughout Chapters 5, 6, and 7, an example will be used to illustrate the
problems and their solution methods. This example is given in Figure 5.2 and
the viewpoint in this figure is the same as in Figure 5.1(b). The bay in Figure 5.1
consists of five stacks that all have a maximum height of four containers. The
numbers inside each container represent the interval in which the container is

5.3. Problem description 115

Stack 1 Stack 2 Stack 3 Stack 4 Stack 5

4

4

1

5

5

1

4

1

2

5

3

3

2

Figure 5.2 Example of a bay with five stacks that have a maximum height of four
containers.

retrieved. Moreover, the stacks are numbered from left to right, so the leftmost
stack is stack number 1, and the rightmost stack is stack number 5.

Although it is easy to check that a container is relocated at least once,
computing the exact number of expected relocation moves for a container is
difficult. As then, one also needs to be able to compute the bay at the moment
that the container has to be relocated, and that, in turn, depends on the previ-
ous relocation moves. For example, the container with time frame 5 in stack 4
is relocated at least once, because the container underneath it is retrieved in
time interval 2. However, it is hard to consider all potential bays at the moment
that this container is relocated.

On the other hand, computing the exact expected number of relocation
moves for the top container of the first stack is easy. The retrieval order of the
containers in a time interval is a random uniform permutation. Thus, both the
probability that the top container of stack 1 is retrieved before and after the
bottom container is 1

2 . If the top has to be relocated, there are only containers
with time frames 4 and 5 left in the bay. All other containers have already
left the bay. Besides, the top container of stack 1, there are only two other
containers with time frame 4. Hence, there is always an empty stack or a stack
with only containers with time frame 5. Hence, if the top container of stack 1 is
relocated, it will only be relocated once, and its expected number of relocation
moves is 1

2 .

In the pre-processing phase, one could decide to move the container with

116 5. Pre-processing moves in container yards

time frame 3 in stack 4 to the first stack. In the fourth stack, this container
needs to be relocated at least once because that stack’s bottom container
is retrieved in time interval 2. However, in stack 1, the container with time
frame 3 is positioned correctly. Hence, with that pre-processing move, the
expected number of relocation moves is reduced by at least one.

5.4 Mathematical model
To describe the SCRPPP and SCRPCPP, we need to introduce some notation.
All notation that is used in Chapters 5, 6, and 7 is summarized Table 5.1. Let us
call the initial bay before the pre-processing phase B. We can denote the move-
ment of the top container from stack o to stack d as the pair (o, d). If p is the
number of pre-processing moves executed, the set of all pre-processing moves
can be denoted by: P = {p1, p2, . . . , pm} = {(o1, d1), (o2, d2), . . . , (om, dm)}.
The bay that is obtained by the pre-processing moves P will be called B(P).

Let n be the number of different retrieval orders in a bay and let σ =

{σ1, σ2, . . . , σn} be the set of those orders. We assume that the relocation
phase’s movements are made according to a certain relocation policy π that
potentially takes the complete bay and all possible retrieval orders into consid-
eration. Given a relocation policy π and a retrieval order σi , the number of
relocation moves for a bay B is denoted by Rπ(B, σi). Hence, the expected
number of relocation moves for a bay B is given by 1

n

∑n
i=1Rπ(B, σi).

Computing the exact expected number of relocation moves can be compu-
tationally intensive because the number n can be huge. Consider a bay with 28
containers that are partitioned into seven intervals. If every interval consists of
four containers, the number of retrieval orders is (4!)7, which is approximately
4.5 billion. Therefore, we will sometimes use a function to estimate the number
of relocation moves. For a given bay B and policy π, we use f (B,π) to refer
to such an estimate.

The remainder of this section is organized as follows. In Section 5.4.1,
the SCRPPP is defined as a mathematical optimization problem, and the
SCRPCPP is defined in Section 5.4.2. Furthermore, we show in Section 5.4.3
that both the SCRPPP and the SCRPCPP are NP-hard. Finally, we derive in
Section 5.4.4 bounds on the number of containers that can be in a bay to allow
pre-processing moves.

5.4.1 SCRPPP

The goal of the SCRPPP is to find the pre-processing moves P and the policy π
such that the weighted sum of the number of pre-processing moves and the ex-
pected number of relocation moves is minimized. The weight of pre-processing
move is denoted by α, which is a value between 0 and 1. The weight for a re-

5.4. Mathematical model 117

B Specific layout of a bay
S Set of all stacks in a bay
C Set of containers in a bay
P Set of all pre-processing moves
B(s1, s2) Layout of bay B after the top container of

stack s1 has moved to stack s2

B(P) Bay after the pre-processing moves in P
H Maximum height of a stack
C Number of containers in a bay
b Number of bays in a yard
Z Largest time frame in a bay
n(s) Number of containers in stack s
l(s) Smallest time frame of stack s
h(s) Largest time frame of stack s
s(c) Stack of container c
u(c) Smallest time frame of containers underneath c
t(c) Time frame of container c
q(c) Category of container c
p(c) Position of a container c in stack s(c)

1 is the lowest and H the highest position
C(t, s) Container that is positioned in stack s at tier t
UB Upper bound for the optimal solution
LB Lower bound for the optimal solution
π Relocation policy
f (B,π) Estimation of expected number of relocation moves in bay B

using policy π
pj The j th pre-processing move
τ Time needed to move a container within a bay from one stack

to the other
ti j Time needed to move the crane from bay i to bay j
T Time available for the pre-processing phase
ρ Maximum number of pre-processing moves

Table 5.1 Notation used in Chapters 5, 6, and 7.

location moves is normalized to 1. The pre-processing moves are given a lower
weight because they are performed at less busy periods. Formally, the goal of
the SCRPPP is to find the following minimum:

min
P,π

α|P|+
1

n

n∑
i=1

Rπ(B(P), σi). (5.1)

The part α|P| in Equation (5.1) is equivalent to the costs for the pre-processing
moves. By the pre-processing moves P, the bay B is transformed into bay
B(P), so the expected number of relocation moves for the bay after pre-
processing moves is calculated via 1

n

∑n
i=1Rπ(B(P), σi).

At first sight, one might think that it is beneficial to perform many pre-
processing moves such that no relocation moves are needed because pre-
processing moves have a lower weight than relocation moves. However, re-

118 5. Pre-processing moves in container yards

location moves have two advantages compared to pre-processing moves. The
first advantage is that during the pre-processing phase, all original containers
are still in the bay. In contrast, when a relocation move is executed, some
containers have already left the bay. The second advantage of a relocation
move is that when the container needs to be relocated, at least some part of
the retrieval order inside an interval is known. On the contrary, when a pre-
processing move is made, no information about the retrieval order inside an
interval is known.

If α is close to 1, the two benefits of the relocation moves outperform the
advantage of the pre-processing moves, which have a slightly smaller weight.
Hence, no pre-processing moves will be performed, and the problem is similar to
the SCRP. On the other hand, if α is close to 0, as many pre-processing moves
as needed will be performed to prevent any relocation move, and the problem
is equivalent to the CPMP. However, for more moderate values of α, it is hard
to find the right balance between pre-processing moves and relocation moves.

Running example continued

Let us now consider a situation in which we perform four pre-processing moves
to the bay in Figure 5.2, namely P = {(4, 1), (4, 5), (4, 1), (2, 1)}. In Fig-
ure 5.3, the bays after all these four pre-processing moves are shown. The idea
of the first three pre-processing moves is to empty the fourth stack such that
in the fourth pre-processing move the container with time frame 5 from the
second stack can be placed in the fourth stack. Note that this container with
time interval 5 was not placed correctly in stack 2, but that it is well-placed in
the fourth stack.

If we apply the optimal policy for the relocation moves to the bay in Fig-
ure 5.3(d), the expected number of relocation moves is 3. Hence, the objective
function for the bay in Figure 5.2 to which we apply these four pre-processing
moves and the optimal relocation policy is 4α + 3. If one would use the op-
timal policy for the relocation moves for the bay in Figure 5.2 without any
pre-processing moves, the expected number of relocation moves for the bay in

Figure 5.2 is 6 1
3 . Hence, the moves P are beneficial as long as α ≤ 3 1

3

4 = 5
6 .

5.4.2 SCRPCPP

In the SCRPCPP, it is assumed that there is a fixed time available for the
pre-processing phase, which we denote by T . In Assumption 5.4, we have
assumed that the time needed for a move is independent of the destination
stack. Consequently, we can assume that there is a fixed amount of time
needed to make a single pre-processing move, which we denote by τ . Using
these two time units, there is a maximum number of pre-processing moves that

5.4. Mathematical model 119

Stack 1 Stack 2 Stack 3 Stack 4 Stack 5

4

4

3

1

5

5

1

4

1

2

5

3

2

(a) (o1, d1) = (4, 1)

Stack 1 Stack 2 Stack 3 Stack 4 Stack 5

4

4

3

1

5

5

1

4

1

2 3

2

5

(b) (o2, d2) = (4, 5)

Stack 1 Stack 2 Stack 3 Stack 4 Stack 5

4

4

3

2

1

5

5

1

4

1

3

2

5

(c) (o3, d3) = (4, 1)

Stack 1 Stack 2 Stack 3 Stack 4 Stack 5

4

4

3

2

1 5

1

4

1

5 3

2

5

(d) (o4, d4) = (2, 4)

Figure 5.3 Four pre-processing moves for the bay of Figure 5.2.

can be performed, namely ρ :=
⌊
T
τ

⌋
. Note that if ρ is defined in this way,

it is an integer. Using this notation, the SCRPCPP is given by the following
mathematical optimization problem:

min
P,π

1

n

n∑
i=1

Rπ(B(P), σi) (5.2)

subject to

|P| ≤ ρ. (5.3)

The objective function in (5.2) represents the expected number of relocation
moves for bay B after the pre-processing moves in P if policy π is applied to the
relocation phase. Furthermore, the constraint in (5.3) ensures that no more
than ρ pre-processing moves are performed.

120 5. Pre-processing moves in container yards

Running example continued

If only a single pre-processing move is allowed for the bay of Figure 5.2, the
best pre-processing move is moving the top container of the fourth stack to
the first stack. The top container of stack 4 is poorly-placed in that stack and
will need to be relocated at least once. All containers in the first stack have
a higher time frame than 3, so the container will not need to be relocated if
placed in stack 1. The top container of stack 3 can also be correctly placed in
stacks 1, 4, and 5. However, its expected number of relocation moves is only 1

2

in the example bay of Figure 5.2, so less improvement is made by moving this
container. Nevertheless, if two pre-processing moves are allowed, this container
will be moved. If more than two pre-processing moves are allowed for the bay of
Figure 5.2, it is more complicated to determine the best pre-processing moves.

5.4.3 Complexity

In Caserta et al. (2012), the CRP is proven to be NP-hard. In this proof,
the decision problem of Mutual Exclusion Scheduling (MES) is reduced to an
instance of the decision version of the CRP. Solving that instance is shown to be
equivalent to a yes-instance of the MES by Caserta et al. (2012). That specific
instance is also an instance for the SCRPPP and the SCRPCPP, and it is trivial
to show that it can be solved in n pre-processing moves and no relocation moves
if and only if it corresponds to a yes-instance of the MES. Hence, deciding if
the objective function of the SCRPPP equals αn is equivalent to finding a yes-
instances of the MES. Furthermore, if ρ = n deciding if no relocation moves
are needed for the SCRPCPP is also equivalent to a yes-instance of the MES.
Therefore, both the SCRPPP and the SCRCPP are NP-hard.

5.4.4 Feasibility pre-processing moves

It could be that for a given bay, not all types of pre-processing moves are
possible. Therefore, in this section, we develop bounds on the maximum number
of containers in a bay such that pre-processing moves can be performed. It is
straightforward to see that all slots in a bay are occupied, then it is impossible to
move any container in the pre-processing phase. Moreover, if relocation moves
are needed to retrieve the first container, then there are no empty slots for the
containers that need to be relocated. Hence, it is likely that the SCRPPP and
the SCRCPP have no feasible solution. In Lemma 5.1, we give a bound on
the maximum number of containers that can be in a bay for the SCRPPP and
SCRCPP to have a feasible solution.

Lemma 5.1. If the number of containers C is bounded by C ≤ SH − (H − 1),
then there exists a feasible solution for the SCRPPP and SCRPCPP.

5.4. Mathematical model 121

The proof of Lemma 5.1 follows directly from the condition in Caserta et al.
(2012) that the number of containers in a bay does not exceed SH − (H − 1)

is sufficient for the feasibility of the CRP. The stochasticity of the SCRP does
not influence this bound, and since not performing any pre-processing moves is
always feasible, this bound also applies for the SCRPPP and SCRPCPP.

The bound given in Lemma 5.1 only considers the moves executed in the
relocation phase. However, if there are SH − (H − 1) containers in a bay, it
might not be possible to move a container in the pre-processing phase such that
it becomes well-placed. For example, consider a bay in which all stacks but one
have reached their maximum height, and the other stack contains only a single
container. In this bay, exactly SH − (H − 1) containers are situated. If one
of the completely filled stacks has a container with the largest time frame Z
as its top container, an empty stack is needed before this container can be
well-placed. The reason for that is that this container with time frame Z can
only be well-placed at the bottom of a stack. Since there are only H − 1 free
slots in the bay, it is impossible to get an empty stack and correctly place the
container with time frame Z. However, if we have H available slots in a bay,
it is possible to place any container to the bottom of a stack, as is shown in
Lemma 5.2.

Lemma 5.2. If there are H empty slots in a bay B with S > 2 stacks, it
is possible to move every container to the bottom of each stack in the pre-
processing phase.

Proof. Let us denote the container that we would like to place at the bottom of
a stack by c and the stack it is currently located by s. Furthermore, we name
the stack to which we would like to move container c in the pre-processing
phase s ′. Without loss of generality, we can assume that container c is the top
container of its stack. In the case that container c is not the top container, all
containers on top of it could be placed in different stacks, and container c is
the top container of its stack. For the remainder of the proof, we distinguish
two cases: (i) stack s 6= s ′, and (ii) s = s ′.

Let us consider the first case and choose one stack s ′′ ∈ S \ ({s} ∪ {s ′}).
We make sure that its height becomes H − 1. If its current height is H, we
move its top container to any stack in S \ {s}. In case its current height is less
than H − 1, we place containers from the stacks S \ {s} in stack s ′′ until it
has reached the height H − 1. If there are not enough containers in the stacks
S \ {s} to fill the stack s ′′ to the height H− 1, then all these stacks should be
empty. Hence, container c can be placed at the bottom of stack s ′. Therefore,
we can assume that stack s ′′ has reached the height H − 1. After stack s ′′

has reached the height H − 1, we place container c in stack s ′′. The stack s ′′

122 5. Pre-processing moves in container yards

has now reached its maximum height and in the stacks S \ {s ′′} are at least H
available slots.

By definition, the stack s ′ contains n(s ′) containers, which means that
there are H − n(s ′) free slots in that stack. Consequently, there are at least
H − (H − n(s ′)) = n(s ′) free slots in the stacks S \ ({s ′} ∪ {s ′′}), thus all
containers of stack s ′ can be placed in the stacks S \ {{s ′}∪{s ′′}). Afterward,
stack s ′ is empty, and the container c that is on top of the stack s ′′ can be
placed at the bottom of stack s ′.

Secondly, we will consider the case that s = s ′. Again a stack s ′′ ∈ S \ {s}
is chosen to get a height of H − 1. If there are not enough containers in the
stacks S\({s}∪{s ′′}) to fill stack s ′′ with H−1 containers, it means again that
the stacks S \ ({s}∪{s ′′}) are empty. Therefore, we could place container c in
stack s ′′ and all other containers from the stack s in the stacks S \({s}∪{s ′′}).
Afterward, container c can be placed at the bottom of stack s. In case that
stack s ′′ can be filled with H−1 containers, we place container c also in stack s ′′.
In the stacks S \ ({s}∪ {s ′}) are now at least H− n(s) free slots, thus all n(s)

containers from stack s can be placed in the stacks S \ ({s} ∪ {s ′}). Finally,
container c can be placed at the bottom of stack s.

Since we have shown above that it might not be possible to move a container
to the bottom of a stack if there are H − 1 free slots in a bay, we know that
the bound given in Lemma 5.2 has to be tight. A consequence of Lemma 5.2 is
that if the number of containers in a bay with more than two stacks is limited
by (S − 1)H, then each container can become well-placed.

Corollary 5.1. If a bay B with S > 2 stacks has at most C ≤ (S − 1)H

containers, every container could be moved in the pre-processing phase such
that it becomes well-placed.

Proof. By Lemma 5.2, we know that it is always possible to place a container
at the bottom of a stack if there are H free slots in a bay with more than two
stacks. Since a container at the bottom of a stack is always well-placed, we
know that each container can become well-placed if the number of free slots
is at least H. If the number of containers in a bay is bounded from above by
(S − 1)H, the number of free slots should be at least H.

In Lemma 5.2, we have shown that there always exists a feasible solution to
move a container from one stack s to the bottom of another stack s ′ if there are
H free slots in the bay. However, under that condition, one might need to move
containers from a third stack s ′′. In the heuristics we give in Chapters 6 and 7,
we would like to move a container in the pre-processing phase from a stack s
to a correct position in stack s ′ without moving containers from other stacks.

5.4. Mathematical model 123

In Lemma 5.3 and Corollary 5.2, we prove that that is possible if there are
2(H − 1) free slots.

Lemma 5.3. If a bay B has 2(H − 1) empty slots, each container in stack
s ∈ S can be moved in the pre-processing phase to the bottom of stack s ′ ∈ S
without moving containers from the stacks S \ ({s} ∪ {s ′}).

Proof. Let container c be the container that is moved in the pre-processing
phase such that it is placed at the bottom of stack s ′. As a result of Assump-
tion 5.4, we can reshuffle the stacks in any order without adjusting the problem.
Thus, if container c is already placed at the bottom of a stack, we can shuffle
the stacks so that the container c is placed at the bottom of any other stack.
Hence, without loss of generality, we assume that container c is not yet placed
at the bottom of a stack.

We distinguish two cases: (i) the situation in which the origin and destina-
tion stacks s and s ′ are different, and (ii) the situation in which they are the
same. In the first case, we need to have available slots for all containers in the
destination stack s ′, which are at most H containers. Moreover, at most H−2

containers are placed on top of container c . Hence, at most H−2 slots should
be available for containers from the stack s. Therefore, the total number of
free slots needed to move container c from the origin stack to the destination
stack is H +H − 2 = 2(H − 1).

In the second scenario, in which the origin and the destination stack are the
same, the reasoning is slightly different. It is essential to realize that we need
to store container c temporarily in another stack and that no other containers
from the origin stack might be placed on top of container c because otherwise,
it cannot be placed again in the origin stack. Hence, we need at least two
stacks with available slots. Since container c should block the smallest number
of empty slots as possible, it is placed on the stack that already consists of the
most containers. Let us denote the stack in which container c is temporarily
stored by s ′′ and let p(c) be the position of container c in stack s ′′. After
container c is placed in stack s ′′ we cannot use stack s ′′ anymore for the other
containers. The number of available slots that cannot be used in stack s ′′ equals
H − p(c). Hence, according to the condition of this lemma, there should be
at least 2(H − 1) − (H − p(c)) = H + p(c) − 2 slots available for the other
containers in the origin stack. Since p(c) is by definition at least 1, there are
at least H− 1 slots available for other containers, and they can thus be placed
in other stacks than stack s ′′. Afterward, container c can be placed at the
bottom of the origin stack.

Note that in Lemma 5.3, we do not impose the condition that there are
more than two stacks because this lemma also holds if the number of stacks is

124 5. Pre-processing moves in container yards

one or two. If there is only one stack, all 2(H − 1) free slots should be in that
single stack. The inequality 2(H−1) ≤ H only holds for the trivial bay in which
H = 1 and there is only one container, or H = 2, and there are no containers.
In case there are two stacks, there can be at most two containers in the bay
if the number of free slots is at least 2(H − 1). With two containers, both
containers can be placed at the bottom of a stack, so the lemma also holds.

The bound given in Lemma 5.3 is tight. Consider a bay with three stacks,
in which one has a height of H, the second has two containers, and the third
stack contains only a single container. The number of free slots in this bay
equals H−2 +H−1 = 2(H−1) + 1. To place the top container of the second
stack in the third stack, the third stack needs to be empty. However, there is
no place for the container of the third stack in the first stack. Furthermore, it
is also impossible to move the top container of the second stack at the bottom
of the second stack. We could move the top container of the second stack to
the third stack, but then the second stacks’ bottom container has no stack in
which it can be placed.

The minimum number of available slots given by Lemma 5.3 can be used
to get a bound on the maximum number of containers that can be in a bay
such that every container can become well-placed in a stack without moving
containers from a third stack. In Corollary 5.2, we derive a bound on this
number of containers. The proof of this corollary is similar to the proof of
Corollary 5.1.

Corollary 5.2. If the number of containers C is bounded by C ≤ SH−2(H−1),
then every container could be moved from stack s ∈ S in the pre-processing
phase to stack s ′ ∈ S such that it is well-placed without moving containers
from stacks S \ ({s} ∪ {s ′}).

6
Optimizing pre-processing and relocation moves

In this chapter, we describe solution methods to solve the SCRPPP, which is
defined in Section 5.4.1. We give in Section 6.1 both a heuristic method and
an optimal branch-and-bound algorithm. The solution quality and running time
of these methods are investigated in Section 6.2. We end this chapter with a
conclusion in Section 6.3.

6.1 Solution methods
In this section, we present both a heuristic method and an optimal branch-and-
bound algorithm for the SCRPPP. As shown in Section 5.4.3, the SCRPPP
is NP-hard. Thus we expect that for larger instances, the branch-and-bound
algorithm cannot produce an optimal solution in a reasonable time. Therefore,
the local search heuristic is needed to produce solutions for large-sized instances.
Moreover, the branch-and-bound algorithm needs a good upper bound for the
optimal solution in order to run efficiently, and the solution of the heuristic is a
good upper bound for the optimal solution.

In Section 6.1.1, we will describe a local search heuristic to solve the
SCRPPP. As a subroutine, this heuristic needs a fast method to get an estimate
for the expected number of relocation moves for a given bay. In Section 6.1.2,
we will describe the method that is used to get such an estimation. For the
optimal branch-and-bound algorithm that is described in Section 6.1.4, we need
a lower bound, which is derived in Section 6.1.3.

6.1.1 Local search heuristic

In this section, we will describe a local search method to solve the SCRPPP.
Our main focus is on the pre-processing phase because in Galle et al. (2018b)
it is shown that the Expected Minmax (EM) heuristic produces fast and good
solutions for the SCRP. Therefore, we will use that heuristic for the relocation
phase.

This chapter is based on B.G. Zweers, S. Bhulai, and R.D. van der Mei. Optimizing pre-
processing and relocation moves in the stochastic container relocation problem. European
Journal of Operational Research, 283:954–971, 2020a.

126 6. Optimizing pre-processing and relocation moves

Select largest
unexplored
time frame

Pre-processing phase
Algorithm 6.1

Algorithm 6.4

Different stack

Algorithm 6.2 Algorithm 6.4

Same stack

Algorithm 6.3 Algorithm 6.4

Perform best
improvement

move

While unex-
plored containers

Bay B
0 < α < 1

Relocation
phase

EM heuristic

Figure 6.1 Structure of the local search heuristic for the SCRPPP.

General overview

The general idea of the local search heuristic is to check for every container
that is poorly-placed if there is a stack to move that container to such that
the container is correctly-placed and the objective function improves. We call
this container the investigated container. Similar to the LPFH of Expósito-
Izquierdo et al. (2012) for the CPMP, we start with investigating the movement
of the highest time frame containers. These containers are the most difficult
containers to place in a correct position because they can only be placed at the
bottom of a stack. Let us call the stack to which we try to move the investigated
container, the destination stack. We try every stack as possible destination
stack, and if there is a stack that yields an improvement, then the investigated
container is moved to the stack that gives the largest improvement. If, for none
of the stacks, the investigated containers’ movement gives an improvement in
the objective function, then the next container is considered.

For the investigated container to be placed correctly in the destination stack,
two types of containers need to be moved to other stacks. First of all, the in-
vestigated container might not be at the top of a stack, so the containers above
the investigated container need to be moved to other stacks. Furthermore, to
place the investigated container correctly in the destination stack, it might be
needed to remove containers from that destination stack. Ideally, we would
like to place both types of containers in a stack in which all containers are
correctly-placed and in which itself is also correctly-placed. In that case, likely,

6.1. Solution methods 127

Algorithm 6.1: Local search heuristic for pre-processing phase of the SCRPPP.
Input: Bay B,0 0 < α < 1, and relocation policy π.
Initialize pre-processing moves P = ∅.
for p = Z,Z − 1, . . . , 1 do

Ap = {c ∈ C : t(c) = p}
for i = 1, . . . , |Ap| do

Select randomly a container c with time frame p that is not placed
correctly,

Use Algorithm 6.4 to get f (B,π).
for s ∈ S do

Move container c to stack s according to Algorithms 6.2 or 6.3.
Let m(s) be the number of performed pre-processing moves and Bs
the resulting bay.

Use Algorithm 6.4 to estimate f (Bs , π).
I(s) = f (B,π)− (αm(s) + f (Bs , π)).

end
if maxs∈S{I(s)} > 0 then

Place container c in stack s ′ = arg maxs∈S{I(s)}.
Add the respectively pre-processing moves to P.
The resulting bay is the new bay B.

end
Ap = Ap \ {c}.

end
end
Output: Set of pre-processing moves P.

we do not need to move the container a second time. If such a stack does not
exist, the container is placed in a stack where the minimum time frame is as
low as possible. That decision is based on the fact that in this stack, the fewest
containers can be correctly-placed.

Detailed description

We now give a more detailed description of the local search heuristic. The
structure of the local search is given in Figure 6.1. Algorithm 6.1 is the main
algorithm, and in this algorithm, it is decided which container is the investigated
container and to which stack it should be moved. In Algorithms 6.2 and 6.3,
it is decided how all containers should be moved such that the investigated
container can be placed in the destination stack. The difference between Al-
gorithms 6.2 and 6.3 is that Algorithm 6.2 is used if the destination stack
is different from the stack in which the investigated container is located and
Algorithm 6.3 if these two stacks are the same.

In Algorithm 6.1, the containers are considered in decreasing order of their
time frame. If there are multiple containers with the same time frame, a random
container is selected. We use Algorithm 6.4 to get an estimate for the number
of relocation moves in a bay using relocation policy π (f (B,π)). We use
Algorithm 6.2 and 6.3 to move the container to another stack. Afterward,

128 6. Optimizing pre-processing and relocation moves

Algorithm 6.2: Pre-processing moves to move container c to a correct position in
stack s 6= s(c).

Input: Bay B with S stacks, container c, stack s, 0 < α < 1, 1 ≤ λ1 ≤ S and
1 ≤ λ2 ≤ S.
P = ∅.
Oc = {c ′ ∈ C : s(c ′) = s(c) ∧ p(c ′) > p(c)}.
Mc = {c ′ ∈ C : s(c ′) = s ∧ u(c ′) < t(c)}.
while Oc ∪Mc 6= ∅ do

Let o and m be the top container of, respectively, the sets Oc and Mc .
if t(m) ≥ t(o) then

c ′ = m.
Mc = Mc \ {c ′}.
p1 = s.

else
c ′ = o.
Oc = Oc \ {c ′}.
p1 = s(c).

end
if There exists a stack s ′ ∈ S \ ({s(c)} ∪ {s}) for which n(s ′) < H and
l(s ′) > t(c) and f (s ′, π) ≤ α then

For all stacks s ′ ∈ S \ ({s} ∪ {s(c)} with n(s ′) < H and f (s ′, π) ≤ α,
select randomly a stack s ′′ out of the at most λ1 stacks with the smallest
values for l(s ′) > t.

else
For all stacks s ′ ∈ S \ ({s} ∪ {s(c)}) with n(s ′) < H, select randomly a
stack s ′′ out of the at most λ2 stacks with the smallest values for l(s ′).

end
Relocate container c ′ to stack s ′′.
P = P ∪ {(p1, s

′′)}.
end
P = P ∪ {(s(c), s)}.
Output: Pre-processing moves P and bay B.

Algorithm 6.4 is rerun to get an estimate for the number of relocation moves
in the new bay. With that estimate, the improvement in the objective function
(I(s)) can be calculated.

If the number of containers in a bay is less than or equal to SH− 2(H− 1),
we know by Corollary 5.2 that every container can be placed in every stack using
Algorithms 6.2 and 6.3. In case there are more than SH− 2(H− 1) containers
in the bay, it might be infeasible to place a container in a certain stack. If a
move is infeasible, the improvement is set to −∞. If there is a stack that gives
a strictly positive improvement, the container is moved to the stack that gives
the best improvement.

In Algorithm 6.2, we need to move three different types of containers. The
first type is container c itself that needs to move to its destination stack.
However, it is only possible to access container c if we have moved the set
of containers that are stacked on top of container c . We denote this second

6.1. Solution methods 129

set by Oc . Finally, container c needs to be positioned in stack s such that it
does not need to be relocated. All containers that need to be removed such
that container c can be placed correctly in stack s are in the set Mc . Before
container c can be moved, the containers in Oc and Mc need to be moved to
a different stack. From the containers in the sets Oc and Mc , only the top
container can be relocated. In Algorithm 6.2, the container with the largest
time frame of these two top containers is moved first. The container with the
largest time frame is selected because if that container can be correctly-placed,
the other container can be correctly-placed on top of it.

When a container is moved to a different stack, the algorithm checks first
if there exists a stack that satisfies the following three conditions: the first
condition is that the stack has an empty slot (n(s ′) < H). Secondly, the stack
should only contain containers with a higher time interval than the container
we are going to place in that stack l(s ′) > t(c) because then the container
does not need to be relocated. The final condition is that no pre-processing
moves are performed for containers in that stack. This condition is equivalent
to checking whether the expected number of relocation moves for that stack
is fewer than or equal to α (f (s ′, π) ≤ α). A stack that satisfies these three
conditions is referred to as a correct stack.

If there are multiple correct stacks, the stacks for which the smallest time
frame is as small as possible are preferred because they are for fewer containers
correct stacks. If there are fewer than λ1 correct stacks, a random correct
stack is selected. In case there are at least λ1 correct stacks, we randomly
pick one of the λ1 stacks with the smallest minimum time frame. If there are
no correct stacks for a container, we would like to place it in a stack with the
minimum smallest time frame. This approach is similar to the LPFH, and its
rationale is that a stack that has a container with a low time frame is less likely
to be a correct stack for other containers. Hence, it is better to fill this stack
with a container that has to be moved again than a stack with the potential to
be a correct stack for more containers. We select randomly one of at most λ2

stacks with the smallest minimum time frames.

Algorithm 6.3 is similar to Algorithm 6.2 when it comes to deciding the
destination stack of a container. However, the sets of containers that need to
be moved are different. Besides container c , there are again two different sets:
S1 and S2. Set S1 contains all containers placed on top of container c , and
set S2 consists of all containers placed below container c that need to be moved
to another stack for container c to be placed in a correct position. Contrary to
Algorithm 6.2, we do not need to determine which of the two top containers
from the sets need to be moved first because the containers in set S2 can only
be moved when the containers from the set S1 are moved to other stacks. After
all containers in the set S1 are moved to other stacks, container c needs to be

130 6. Optimizing pre-processing and relocation moves

Algorithm 6.3: Pre-processing moves to move container c to a correct position in
stack s = s(c).

Input: Bay B with S stacks, container c, stack s, 0 < α < 1, 1 ≤ λ1 ≤ S and
1 ≤ λ2 ≤ S.
P = ∅
S1 = {c ′ ∈ C : s(c ′) = s ∧ p(c ′) > p(c)}
S2 = {c ′ ∈ C : s(c ′) = s ∧ p(c ′) < p(c) ∧ u(c) < t(c)}
while S1 6= ∅ do

Let c ′ be the top container of stack s.
if There exists a stack s ′ ∈ S \ {s(c)} for which n(s ′) < H and l(s ′) > t(c ′)
and f (s ′) ≤ α then

For all stacks s ′ ∈ S \ {s} with n(s ′) < H and f (B, s ′) ≤ α, select
randomly a stack s ′′ out of the at most λ1 stacks with the smallest values
for l(s ′) > t(c ′).

else
For all stacks s ′ ∈ S \ s with n(s ′) < H, select randomly a stack s ′′ out of
the the at most λ2 stacks with the smallest values for l(s ′).

end
Relocate container c ′ to stack s ′′.
S1 = S1 \ {c ′}.
P = P ∪ {(s, s ′′)}.

end
Move container c to the highest stack s ′′′ with n(s ′′′) < H and update s(c)

P = P ∪ {(s, s ′′′)}.
while S2 6= ∅ do

Let c ′ be the top container of stack s.
if There exists a stack s ′ ∈ S \ ({s(c)} ∪ {s}) for which l(s ′) > t(c ′) and
n(s ′) < H and f (s ′) ≤ α then

For all stacks s ′ ∈ S \ ({s} ∪ {s(c)}) with n(s ′) < H and f (B, s ′) ≤ α,
select randomly a stack s ′′ out of the at most λ1 stacks with the smallest
values for l(s ′) > t(c ′).

else
For all stacks s ′ ∈ S \ ({s} ∪ {s(c)}) with n(s ′) < H, select randomly a
stack s ′′ out of the at most λ2 stacks with the smallest values for l(s ′).

end
Relocate container c ′ to stack s ′′.
S2 = S2 \ {c ′}.
P = P ∪ {(s, s ′′)}.

end
P = P ∪ {(s(c), s)}.

temporarily stored in another stack. The containers in set S2 cannot be placed
in that stack because then it is impossible to move container c back to stack s.
As a consequence, in Algorithm 6.3 container c is placed in the highest stack
because then the fewest slots for the containers in set S2 are blocked.

Running example continued

We will illustrate Algorithms 6.1, 6.2, and 6.3 with the bay as given in Figure 5.2.
Moreover, we set the value of α to α ≥ 1

2 , and the parameters λ1 and λ2 are

6.1. Solution methods 131

Stack 1 Stack 2 Stack 3 Stack 4 Stack 5

4

4

3

1

5 5

1

4

1

2 3

2

5

(a) Situation after the container with
time frame 5 from the fourth stack of
Figure 5.2 is placed in the second stack
according to Algorithm 6.2.

Stack 1 Stack 2 Stack 3 Stack 4 Stack 5

4

4

3

1

5

2

5

1

4

1

5 3

2

(b) Situation after the container with
time frame 5 from the fourth stack of
Figure 5.2 is placed in the fourth stack
according to Algorithm 6.3.

Figure 6.2 Two different outcomes after moving the container with time frame 5 in
the fourth stack of the bay of Figure 5.2 in the pre-processing phase if α ≥ 1

2
.

both set to 2. Algorithm 6.1 first examines the containers with the largest
time frame, in this case time frame 5. Let us say that the container with time
frame 5 in stack 4 is the first container to be moved in the pre-processing phase.
Furthermore, let us denote this container by c . We will first discuss how this
container is placed in the second stack using Algorithm 6.2, and then, how it is
placed according to Algorithm 6.3 in the fourth stack. Figure 6.2(a) shows the
situation after the placement of container c in the second stack, and the bay
after container c being moved to the fourth stack is depicted in Figure 6.2(b).

If container c is placed in stack 2, then set Oc is the container with time
frame 3 above container c , and the setMc is equal to the two containers located
in the second stack. Since the time frame of container c is larger than 1, also
the bottom container of the second stack needs to be removed. The order in
which the containers from the sets Oc and Mc are moved to other stacks is:
first the container with time frame 5 from Mc , second the container with time
frame 3 from Oc and finally the container with time frame 1 from Mc . When
the first container from Mc needs to be moved to another stack, there is no
correct stack. Hence, it is placed in one of the λ2 = 2 stacks with the smallest
time frames and an empty slot. Since stack 3 has no empty slot, there are only
two stacks possible, namely 1 and 5. Let us say that the container is placed in
the fifth stack. After that, the container with time frame 3 from the set Oc is
moved. The expected number of relocation moves for the first stack is 1

2 , and
because α ≥ 1

2 , the first stack is a correct stack for this container. Moreover,
it is the only correct stack for this container, so the container is always placed

132 6. Optimizing pre-processing and relocation moves

in that stack. Finally, the container with time frame 1 from Mc has stacks 1
and 5 as correct stacks. Let us assume that it is placed in the first stack,
then the situation after container c is placed in the second stack is as given in
Figure 6.2(a).

When container c is placed in the fourth stack, the set S1 is the container
with time frame 3 above container c , and the container with time frame 2
constitutes on its own the set S2. Similar to the situation in Figure 6.2(a),
the first stack is the only correct stack for the container with time frame 3.
Afterward, container c is also placed in the first stack because that is the
only stack that has a height of 3. After that, no correct stack exists for the
container with time frame 2 of set S2. It could be placed in both stack 2 and 5
because stacks 1 and 3 have reached their maximum height. In Figure 6.2(b),
we have assumed that the container is placed in the second stack, after which
container c could be placed back to the fourth stack.

In both Figures 6.2(a) and 6.2(b) four pre-processing moves have been
performed from the situation as shown in Figure 5.2. The final bays for both
scenarios share that container c is placed at the bottom of a stack and thus
is not relocated. However, to examine which situation is better, we need to
know the expected number of relocation moves for the complete bay. In the
next section, a method is discussed of how this number can be estimated.

6.1.2 Estimation number of relocation moves

For the local search heuristic described in Section 6.1.1, a fast estimation
method for a bay’s number of expected relocation moves is needed. It is im-
portant to note that in the heuristic, as sketched in Figure 6.1, the relocation
phase will not be solved to optimality, but instead, the EM heuristic is used.
Hence, we are not interested in estimating the optimal number of relocation
moves, but the number of moves for the EM heuristic. One way to obtain the
expected number of relocation moves for a bay is to simulate a set of retrieval
orders and use the EM heuristic to compute the average number of relocation
moves. However, in the local search heuristic of Algorithm 6.1, we need to
compute the expected number of relocation for many different bays, so a faster
method is preferred. Moreover, simulation will inherently result in stochastic
outcomes. We prefer to have a deterministic estimation since that is consistent
if the estimation method is called multiple times in Algorithm 6.1. Therefore,
we use a rule-based estimation method that is given in Algorithm 6.4.

The main idea of Algorithm 6.4 is to estimate the number of relocation
moves needed for one specific container. If a container has only containers with
a higher time frame underneath it, it is evident that it will never be relocated.
However, if a container needs to be relocated, it is hard to get the exact

6.1. Solution methods 133

Algorithm 6.4: Rule-based algorithm to estimate the expected number of relocation
moves for a bay B.

Input: Bay B
for All containers c in C do

if u(c) > t(c) then
q(c) = 1.

else
if u(c) = t(c) then

q(c) = 2.
else

if u(c) > mins∈S{h(s)} or t(c) < maxs∈S{l(s)} then
q(c) = 3.

else
q(c) = 4.

end
end

end
end
Output:

∑
c∈C 1.4 · 1q(c)=4 + 1q(c)=3 + 0.5 · 1q(c)=2.

number of relocation moves that will be needed for that container. In order
to get a reasonable estimation of the number of relocation moves, we divide
the containers into four categories, numbered 1 to 4. Containers in category 1
do not need to be relocated. For the containers in categories 2, 3, and 4,
we expect less than one, precisely one, and more than one relocation move,
respectively. It is important to note that we use the word ‘expect’ here because
it is hard to compute exactly how often a container needs to be relocated.

In Algorithm 6.4, the containers are divided into different categories, and
these categories are used to get an estimation for the expected number of
relocation moves. Algorithm 6.4 iterates through all containers in a bay and
consists of three if-statements. In the first if-statement, it is checked if the
smallest time frame of the containers underneath container c is higher than the
time frame of container c . If this is the case, container c will not be relocated,
and it is assigned to category 1.

Secondly, if the smallest time frame of the containers underneath c is the
same as the time frame of container c , container c is assigned to category 2. In
this situation, it is unsure if container c will need to be relocated. If it is to be
retrieved before the container(s) with the same time frame in the same stack, it
does not need to be relocated. However, it might also happen that container c
is retrieved after a container from the same stack and the same interval. In
that case, container c will have to be relocated to another stack. Nevertheless,
at that time, all containers with a lower time frame have already left the bay.
Thus, container c can, most likely, be placed in a stack where it does not have
to be relocated again. All in all, the expected number of relocation moves for

134 6. Optimizing pre-processing and relocation moves

containers in category 2 is likely less than one.

After the first two if-statements, all containers that are not yet assigned
to a category have at least one container with a lower time frame underneath
them. These containers will always be relocated at least once. In the third
if-statement, it is checked whether there may be a good stack available for
container c at the first time it will be relocated. A good stack is defined as a
stack in which container c will not need to be relocated a second time. It is
hard to determine precisely, in an efficient way, whether there is a good stack
for a container when it is relocated. This difficulty lies in the fact that we do
not know the bay’s layout before the container under consideration is relocated.
Hence, we use two rules of thumb to check whether it is likely that a good stack
is available for container c at the time it needs to be relocated.

The first rule of thumb exploits the fact that container c will be relocated
at time u(c). If there is a stack for which all containers have a lower time frame
than u(c), all containers from that stack will already be retrieved at time u(c).
Therefore, that stack might be empty at time u(c), and container c could
be placed in that stack without any further relocation moves. The second
rule of thumb checks whether there exists a stack for which all time frames
are higher than the time frame of container c . In case there exists such a
stack, it is likely that container c can be placed on that stack without any
further relocation moves. For both rules of thumb, it might be that the good
stack is not available anymore at the time the container needs to be relocated
because another container is already placed in that stack. If one of the two
rules is satisfied, container c belongs to category 3. Otherwise, it falls under
category 4.

After all containers have been assigned to a category, the number of relo-
cation moves for a bay is estimated using the formula∑

c∈C
1.4 · 1q(c)=4 + 1q(c)=3 + 0.5 · 1q(c)=2. (6.1)

The coefficients for the categories in this sum are both based on logical reason-
ing and numerical experiments. Below we will explain how these coefficients are
derived. We know that the containers in category 1 will never be relocated, so
they get a weight of 0 in the sum. To find a good coefficient for the containers
of categories 2, 3, and 4, we have used linear regression. The ‘true’ number of
relocation moves is determined by simulating 1,000 retrieval orders for each of
the 1,440 instances for the SCRP as created by Ku and Arthanhari (2016) and
using the EM heuristic to solve them. This average number of relocation moves
for an instance will act as an independent variable. For each instance, the num-
ber of containers in categories 2, 3, and 4 are explanatory variables. Hence,
1,440 independent variables could be explained by three dependent variables.

6.1. Solution methods 135

If linear regression is used, we get the coefficients 0.515 for the category 2
containers, 1.035 for category 3, 1.39 for category 4, and an R2 of 0.968. If
we round the coefficients for the categories 2, 3 and 4 to respectively 0.5, 1,
and 1.4 , then the R2 only slightly decreases to 0.966. Therefore, we choose
these values in Equation (6.1) and Algorithm 6.4.

The mean absolute percentage difference between the outcome of the sim-
ulations and Algorithm 6.4, which is only 5.16%. It should be noted that this
is based on solving the original SCRP instances of Ku and Arthanhari (2016).
Nevertheless, it is easier to predict the expected number of relocation moves
after some pre-processing moves have been performed. Since the more pre-
processing moves are made, the more containers are placed such that they do
not need to be relocated. These containers belong to category 1, which is the
only category for which we can derive the exact expected number of reloca-
tion moves. Hence, the further the local search heuristic proceeds, the more
accurate the prediction using Algorithm 6.4 will be.

Running example continued

To illustrate Algorithm 6.4, the containers as previously given in Figure 5.2 are
assigned to categories in Figure 6.3. The green containers are all containers
from the first category. All green containers have no containers at all under-
neath them or only containers with a strictly higher time frame. The containers
in the second category are colored yellow. For these containers, the container
with the smallest time frame underneath them has the same time frame as
they have. The fourth stack’s top container belongs to the third category and
is thus orange because the second criterion of the third if-statement is valid.
The maximum of the smallest time frame of the first stack is 4, which is strictly
smaller than 3. Hence, we expect that this container can be relocated to the
first stack and afterward does not need to be relocated again. The red con-
tainers are from category 4 because they do not satisfy any of the conditions
in the if-statements.

If Algorithm 6.4 is run for the bay of Figure 6.3, we get an estimation of
the total number of relocation moves that is equal to: 3 · 1.4 + 1 + 2 · 0.5 =

6.2. Since this is a small example, we can calculate the expected number of
relocation moves used by the EM exactly, which is 6 1

3 . All in all, the prediction
of Algorithm 6.4 is rather accurate for this bay.

After a method to estimate the number of relocation moves is developed,
we can look again at the two bays in Figure 6.2 to see if these pre-processing
moves improve the original bay. In the bay in Figure 6.2(a), there are two
containers from category 2, namely the upper container with time frame 4 in
the first stack and the upper container with time frame 1 in the third stack.

136 6. Optimizing pre-processing and relocation moves

Stack 1 Stack 2 Stack 3 Stack 4 Stack 5

4

4

1

5

5

1

4

1

2

5

3

3

2

Cat. 4

Cat. 3

Cat. 2

Cat. 1

Figure 6.3 Categories of containers in the bay from Figure 5.2. The colors green,
yellow, orange, and red correspond to category 1, 2, 3, and 4, respectively.

Furthermore, the container with time frame 4 in the third stack belongs to
category 3. This container belongs to category 3 because in stack 2 are only
containers with a larger time frame. Finally, the container with time frame 5 in
stack 5 is in category 4 because no stack is expected to be empty if it has to
be relocated, and no stacks contain only containers with a larger time frame.
All in all, the number of relocation moves can be estimated by

1.4 + 1 + 2 · 0.5 = 3.4.

In the bay of Figure 6.2(b), the same containers are in category 2 as in Fig-
ure 6.2(a). Besides that, the containers with time frame 4 in the third stack
and time frame 2 in stack 2 are in category 3. Both of these containers would
namely be well-placed if we would move them to stack 4. The container with
time frame 5 in the second stack belongs to category 4. Therefore, estimated
number of relocation moves for the bay of Figure 6.2(b) is

1 · 1.4 + 2 · 1 + 2 · 0.5 = 4.4.

Recall that both the bays in Figures 6.2(a) and 6.2(b) were obtained after four
pre-processing moves from Figure 5.2. Combined with the estimated number
of pre-processing moves, the estimated objective of the bay in Figure 6.2(a)
is 4α + 3.4 and for the bay in Figure 6.2(b) the estimated objective function
is 4α + 4.4. The bay in Figure 6.2(a) is thus always preferred over the bay in
Figure 6.2(b). Moreover, the four pre-processing moves that lead to the bay in

6.1. Solution methods 137

Figure 6.2(a) are only carried out in Algorithm 6.1 if 6.2− (4α+ 3.4) > 0, or
stated otherwise if α < 0.7.

6.1.3 Lower bound

The local search heuristic of Section 6.1.1 can be used as an upper bound for
the branch-and-bound algorithm that is discussed in Section 6.1.4. However,
besides a good upper bound, also a tight lower bound is needed. Multiple
lower bounds are known for the (S)CRP, (see, e.g., Galle et al. (2018b) and
Scholl et al. (2018)). One lower bound for the CRP is to count how many
containers have a container with a lower time frame underneath them. These
containers need to be relocated at least once, and all other containers will never
be relocated. Hence, a lower bound for the deterministic CRP for bay B is

LBCRP (B) =
∑
c∈C

1t(c)<u(c).

The lower bound for the SCRP from Galle et al. (2018b) is similar but also
takes into account the fact that two containers in a stack might have the same
time frame. In this lower bound, the probability that a container is blocking
another container is calculated. If for a container c holds that t(c) < u(c),
then it will never be relocated and if t(c) > u(c) the probability of a relocation
move is 1. If t(c) = u(c), it is slightly more complex to calculate the desired
probability. To derive that probability, let us define m(c) as follows:

m(c) := |{c ′ ∈ C : s(c) = s(c ′)∧p(c) > p(c ′)∧u(c) = t(c) = t(c ′)}|. (6.2)

The number m(c) represents the number of containers that are located under-
neath container c and that have the same time frame. The only possibility that
container c does not have to be relocated, is when it is retrieved before any of
the m(c) containers. This scenario occurs with probability 1

m(c)+1 . Hence, the

probability that container c does need to be relocated is 1− 1
m(c)+1 = m(c)

m(c)+1 .
Combining this expression with the lower bound for the CRP gives the lower
bound for the SCRP of Galle et al. (2018b), LBSCRP (B), is formally given by

LBSCRP (B) =
∑
c∈C

1t(c)<u(c) +
m(c)

m(c) + 1
. (6.3)

From this lower bound for the SCRP, we can derive a trivial lower bound for
the SCRPPP. The container c needs to be moved at least 1t(c)<u(c) + m(c)

m(c)+1

times. Ideally, this move is done in the pre-processing phase at a cost of α,
thus a lower bound for the SCRPPP is αLBSCRP (B).

One extra insight helps us get a tighter lower bound than αLBSCRP (B).
It is only possible to move a container in the pre-processing phase if all the

138 6. Optimizing pre-processing and relocation moves

Algorithm 6.5: Lower bound for the SCRPPP.
Input: Bay B and 0 < α < 1.
for c ∈ C do

if t(c) > u(c) then
lb(c) = 1.

else
if t(c) = u(c) then

lb(c) =
m(c)
m(c)+1

.

else
lb(c) = 0.

end
end

end
for s ∈ S do

for t = 0 : n(s)− 1 do
g1(t) :=

∑
c:s(c)=s∧p(c)≥n(s)−t lb(c).

g2(t) := (n(s)− t + 1)α.
if g2(t) < g1(t) then

for c ∈ C : s(c) = s ∧ p(c) ≥ n(s)− t do
lb(c) = α.

end
end

end
end
Output: LB =

∑
c∈C lb(c).

containers on top of it are also moved in the pre-processing phase. If only a
single container c is considered, the lower bound for the number of moves for
that container c is given by

min

{
1t(c)<u(c) +

m(c)

m(c) + 1
, α (n(s(c))− p(c) + 1)

}
. (6.4)

The first part of the minimum is the expected number of relocation moves if
the container is not moved in the pre-processing phase and is the same as in
Equation (6.3). The second part of the minimum is the cost associated with
moving the container in the pre-processing phase. The height of the stack
in which container c is positioned is given by n(s(c)). As p(c) indicates the
position of container c in stack s(c), in total n(s(c))− p(c) + 1 containers are
moved if container c is moved in the pre-processing phase. It is not possible
to sum the expression in Equation (6.4) over all containers because if there are
multiple containers in a stack for which α(n(s(c)) − p(c) + 1) ≤ 1t(c)<u(c) +
m(c)
m(c)+1 the pre-processing move of the top container of a stack is counted
twice. Nevertheless, if a stack is considered from the top to the bottom,
Equation (6.4) can be used to obtain a lower bound for an entire bay. In
Algorithm 6.5, it is shown in detail how this lower bound is constructed.

6.1. Solution methods 139

Stack 1 Stack 2 Stack 3

2

2

3

1

5

3

2

4

Figure 6.4 Example of a bay layout to illustrate the lower bound.

Algorithm 6.5 consists of two main for-loops. In the first for-loop, for every
container, the probability of relocating is calculated in the same way as in
Equation (6.3). In the second for-loop, for every container, the current lower
bound for that container and the containers on top of it is calculated. If the
sum of these lower bounds is larger than α times the number of containers
under consideration, pre-processing all these containers is beneficial. Hence,
for each of these containers, the lower bound is set to α. Otherwise, it is not
beneficial to perform any pre-processing moves, and the lower bound remains
the same.

The bay in Figure 6.4 will be used to illustrate the lower bound for the
SCRPPP. In this bay, all but two containers have only containers with a larger
time frame underneath them. The two containers with a positive number of
relocation moves are the containers with time frame 3 in the first stack and the
container with time frame 2 in stack 1 located on top of the other container with
time frame 2. The probability that the container with time frame 3 is relocated
is 1, and the probability that the container with time frame 2 is relocated is 1

2 .
Therefore, the lower bound of Equation (6.3) for this bay is 1 1

2 , so the trivial
lower bound for the SCRPPP would be 1 1

2α.

To move any container from the first stack, the top container of that stack
also needs to be relocated. Thus, if we would like to move the container with
time frame 3 from that stack in the pre-processing phase, at least two pre-
processing moves are needed. Since these two pre-processing moves are only
resulting in one relocation moves less, it is only beneficial if α ≤ 1

2 . So the

140 6. Optimizing pre-processing and relocation moves

lower bound produced by Algorithm 6.5 for the bay from Figure 6.4 is 3α if
α ≤ 1

2 and 1 1
2 if α ≥ 1

2 .

We will close this section with Lemma 6.1 that shows that the lower bound
that is given by Algorithm 6.5 is tight.

Lemma 6.1. The lower bound for the optimal solution of the SCRPPP given
by Algorithm 6.5 is tight.

Proof. The example in Figure 6.4 can be used to prove this lemma. As stated
previously, the lower bound for 0 < α ≤ 1

2 for this instance is 3α and for
1
2 ≤ α < 1 it is 1 1

2 . It can be easily verified that the expected number of
relocation moves for the bay in Figure 6.4 is 1 1

2 , thus if one decides to perform
no pre-processing moves, then the objective function for the SCRPPP is 1 1

2 .

If pre-processing moves are performed in an optimal solution, it is to position
the badly-placed containers. It is easy to see that the optimal way to position
the container with time interval 3 in stack 1 in the pre-processing phase is by
the pre-processing moves P = {(1, 2), (1, 3)}. After these two pre-processing
moves, the objective function is 2α+ 1

2 . In a third pre-processing move (1, 3),
it is also possible to position the top container with time frame 2 in a correct
position. Hence, then the objective function will be 3α. These three pre-
processing moves are optimal if α ≤ 1

2 . Hence, for any value of α, the lower
bound from Algorithm 6.5 is tight.

6.1.4 Branch-and-bound algorithm

In this section, a branch-and-bound algorithm is presented to solve the SCRPPP
to optimality. Similar to the local search heuristic in Section 6.1.1, we focus on
the pre-processing phase. Since the relocation phase is equivalent to the SCRP,
we use the Pruning-Best-First-Search (PBFS) algorithm of Galle et al. (2018b)
to solve the relocation phase to optimality. However, as the SCRP is NP-hard,
this algorithm does not run in polynomial time. The idea of the branch-and-
bound algorithm is to investigate all possible pre-processing moves in the most
efficient way. Lemma 6.2 shows that an upper bound on the optimal solution
can be used to derive a bound on the maximum number of pre-processing moves
in an optimal solution.

Lemma 6.2. The maximum number of pre-processing moves in the optimal
solution is bounded from above by

⌊
UB
α

⌋
.

This lemma follows directly from the fact that performing p pre-processing
moves yields an objective function of at least pα. Let us denote the maximum
number of pre-processing moves in the optimal solution by d :=

⌊
UB
α

⌋
. On top

of that, we could perform at most S(S − 1) different pre-processing moves for

6.1. Solution methods 141

Algorithm 6.6: Branch-and-bound algorithm for the SCRPPP.
Input: Bay B, relocation policy π, and 0 < α < 1

Let B′ be the bay after the pre-processing moves of Algorithm 6.1 with
λ1 = λ2 = 1 using p pre-processing moves. UB := pα+ f (B′, π)

d :=
⌊
UB
α

⌋
LB := the lower bound from Algorithm 6.5.
SOL := UB

Q := (B, d, LB)

I := ∅
while LB < SOL and Q 6= ∅ do

Find the triplet (B′, d ′, LB′) ∈ Q with the smallest LB′. If there are multiple
bays, choose the bay with the smallest value of d ′. In case there are still
multiple bays left, choose the bay that was the earliest added to Q.

Compute f (B′, π).
Q = Q \ {(B′, d ′, LB′)} and I = I ∪ {(B′, d ′, LB′)}
if f (B′, π) + (d − d ′)α < SOL then

SOL = f (B′, π) + (d − d ′)α
end
if d ′ > 0 then

for s1, s2 ∈ S and s1 6= s2, n(s1) > 0 and n(s2) < H do
Compute the lower bound LB′′ for bay B′′ = B′(s1, s2) using
Algorithm 6.5.

if LB′′ + (d − (d ′ − 1)) · α < SOL and
{(B, d, LB) ∈ Q ∪ I : B = B′′ ∧ d ≥ d ′ − 1} = ∅. then
Q = Q ∪ {(B′′, d ′ − 1, B′′)}

end
end

end
end
Output: SOL

a given bay because, for every stack s ∈ S, we could place its top container
in every other stack. Therefore, in total there are at most

∑d
i=0(S(S − 1))i

different solutions for the pre-processing phase of the SCRPPP. Even for small
instances with 5 stacks, the number of possible solutions of the pre-processing
phase is for d = 7 more than a billion. Fortunately, using the branch-and-bound
algorithm in Algorithm 6.6, it is possible to reduce the number of solutions of
the pre-processing phase for which we need to find the optimal number of
relocation moves.

In Algorithm 6.6, the branch-and-bound algorithm to solve the SCRPPP to
optimality is given. The first step of this algorithm is to compute an upper
bound for the optimal solution. Firstly, we use the local search heuristic of
Algorithm 6.1 with λ1 = λ2 = 1 for the pre-processing phase. The heuristic
solution is a feasible solution for the SCRPPP and, thus, an upper bound for the
optimal solution. Afterward, we estimate the expected number of relocation
moves for the resulting bay B′, denoted by f (B′, π). For Algorithm 6.6 to

142 6. Optimizing pre-processing and relocation moves

give the optimal solution, both the relocation policy should be optimal, and the
estimation of the number of relocation moves should be exact. Furthermore,
Algorithm 6.5 is used to compute a lower bound for the optimal solution. In
case the lower and upper bounds are the same, we have proven that the pre-
processing moves of Algorithm 6.1 with λ1 = λ2 = 1 result in an optimal
solution. Otherwise, we start by exploring all possible pre-processing moves in
the while-loop in Algorithm 6.6.

In this while-loop, we have a set of candidate solutions Q and a set I of
all solutions for which the optimal solution has already been computed. The
while-loop ends either if we have found a set of pre-processing moves for which
the objective function equals the lower bound of the initial bay or if the set Q
is empty. In the while-loop, we select the element in Q for which we have the
smallest lower bound. In the case of a tie, we select the solution for which
the most pre-processing moves have been performed. If there are still multiple
solutions, we select the element that was the first to be added to Q. We prefer
an element whose lower bound is smaller because this solution is the solution
that is the most likely to have the lowest objective function.

For the element in Q that we have selected, the objective function is com-
puted. In case the objective function is lower than the best-known solution
found so far, SOL is updated. Afterward, if the remaining number of pre-
processing moves in the current solution is larger than zero, we investigate all
possible pre-processing moves for the current solution. For every possible re-
sulting bay, we firstly compute its lower bound. In the case this lower bound is
smaller than OPT we check if the same bay with fewer pre-processing moves
is not already in either Q or I. If the element is not already in Q or I, it needs
to be investigated and added to Q. In checking whether a bay is already in Q
or I, we make use of the fact that a specific bay is considered the same as a
bay in which the same stacks are placed in a different order.

6.2 Numerical results
In this section, we will use numerical experiments to check the quality of the
local search heuristic and the branch-and-bound algorithm presented in Sec-
tion 6.1. Both these methods will be evaluated according to their solution
quality and running time. We will use the SCRP instances introduced by Ku
and Arthanhari (2016) as our problem instances for the SCRPPP. This set of
instances consists of 1,440 instances with the number of stacks ranging from
5 to 10. Furthermore, the maximum stack height ranges from 3 to 6. For half
of the instances, the number of containers is half of the available slots, and the
other half of the instances have a fill rate of 2

3 . For each specific combination
of the number of stacks, maximum stack height, and fill rate, there are 30

6.2. Numerical results 143

instances. All these instances satisfy the condition of Corollary 5.2, which is
that the number of containers is smaller than SH − 2(H − 1). Therefore, the
local search heuristic can be applied to all instances without checking whether
a move is feasible.

The remainder of this section is organized as follows. First, we will inves-
tigate in Section 6.2.1 the maximum size of an instance that can be solved to
optimality by the branch-and-bound algorithm. Second, in Section 6.2.2, we will
compare the results of the local search heuristic with the optimal solution. Fi-
nally, in Section 6.2.3, the solutions for the SCRPPP will be compared with the
solutions for the SCRP and CPMP to see the benefits of pre-processing moves.

6.2.1 Optimal solution

To test the efficiency of the branch-and-bound algorithm of Section 6.1.4, we
solve the instances of Ku and Arthanhari (2016) for different parameter settings.
As stated before, the minimum number of stacks for these instances is 5, and
the maximum is 10. We investigate the optimal solution for both this minimum
and maximum number of stacks. For each combination of numbers of stacks,
height of the stack and fill rate, 30 instances are solved for the following values
of α: α = 0.25, α = 0.5, and α = 0.75. For every single instance and value
of α the running time is set to at most one hour.

Table 6.1 shows how many of the 30 instances were solved to optimality
within the hour. Furthermore, the average running time of all instances that
were solved to optimality is given. As one can see, for the instances with five
stacks and a maximum stack height of three, all instances were solved and on
average it took at most a few seconds. However, for instances with a maximum
stack height of six, almost none of the instances could be solved to optimality
within an hour. The running time of the branch-and-bound algorithm increases
extremely fast as the stack size increases. It can be concluded from Table 6.1
that the branch-and-bound algorithm can solve small instances for the SCRPPP
but that for larger instances, the running time is too large. However, it should
also be noted that there is a significant fluctuation in the running time for
different instances of the same size. For example, nineteen of the instance with
H = 4, S = 10, α = 0.75, and fill rate of 67% are not solved to optimality
within an hour. Nevertheless, the eleven instances that are solved to optimality
within an hour have an average running time of only 152.6 seconds.

The number of stacks has a much smaller influence on the running time
than the maximum height of a stack. The bays with S = 10 and T = 3 and
the bays with S = 5 and T = 6 have the same number of containers. However,
the former can be solved much faster than the latter. This observation can be
explained by the fact that the number of moves in a bay with lower stacks is

144 6. Optimizing pre-processing and relocation moves

α 0.25 0.5 0.75
H S Fill rate 50% 67% 50% 67% 50% 67%

3
5

Solved 30/30 30/30 30/30 30/30 30/30 30/30
Time (s) 0.03 3.1 0.03 0.9 0.02 0.5

10
Solved 30/30 27/30 30/30 29/30 30/30 30/30
Time (s) 1.6 265.1 1.0 90.3 0.1 3.3

4
5

Solved 30/30 28/30 30/30 30/30 30/30 30/30
Time (s) 1.6 426.1 0.6 94.3 0.2 0.5

10
Solved 22/30 3/30 25/30 7/30 29/30 11/30
Time (s) 644.0 1702.2 106.7 828.8 182.8 152.6

5
5

Solved 27/30 4/30 29/30 4/30 30/30 13/30
Time (s) 462.4 1174.4 82.9 495.5 45.4 552.2

10
Solved 3/30 0/30 7/30 1/30 16/30 4/30
Time (s) 1707.9 - 1593.8 518.9 303.5 2112.0

6
5

Solved 9/30 0/30 14/30 0/30 20/30 1/30
Time (s) 1068.9 - 722.4 - 271.4 81.9

10
Solved 0/30 0/30 2/30 0/30 6/30 0/30
Time (s) - - 73.9 - 917.2 -

Table 6.1 Number of instances solved to optimality using Algorithm 6.6 and their
running times.

smaller than in a bay with higher stacks. Hence, the lower and the upper bound
for the SCRPPP are stronger if the number of stacks is lower. In case the value
of the upper bound is larger, the value for d is also higher. Since the number
of possible pre-processing moves is given by

∑d
i=0 (S(S − 1))i , the value d has

a more significant impact on the size of the solution space than the value S.

Similar reasoning applies to instances with a fill rate of 67%. These in-
stances need more moves than instances with the same number of stacks and
maximum height, but a fill rate of 50%. Therefore, the upper bound and the
value of d is larger for instances with a fill rate of 67%. As a result, the running
time for instances with a higher fill rate is larger. For some values of S, H, and
α the running time that is given in Table 6.1 is sometimes lower for instances
with a fill rate of 67% than for 50%, see for instance S = 10, H = 6, and
α = 0.75. However, for these instances, fewer instances with a 67% fill rate
are solved within an hour than instances with a 50% fill rate.

Furthermore, from Table 6.1, it can be concluded that the larger the value
of α, the faster the branch-and-bound algorithm runs. An explanation for this
result is that the maximum number of pre-processing moves that can be used
in the optimal solution is bounded by

⌊
UB
α

⌋
. The larger the value of α, the

fewer pre-processing moves could be performed, and thus the fewer solutions
need to be investigated in Algorithm 6.6. Finally, it should also be noted that
the larger the value of α, the smaller the difference between the instances with
a fill rate of 50% and 67%.

6.2. Numerical results 145

6.2.2 Local search heuristic

In the previous section, we have seen that the branch-and-bound algorithm can
find the optimal solution for small instances but cannot solve larger instances
within a reasonable time. This observation should not be surprising because we
have shown that the SCRPPP is NP-hard. In this section, we will investigate
whether the quality of the local search heuristic is close to the optimal solution
for small instances and whether the heuristic running time is acceptable for
larger instances.

The quality of the pre-processing moves that are performed in Algorithm 6.1
is compared with the optimal pre-processing moves in Algorithm 6.6. In order
to make sure that we only look at the effect of the pre-processing moves, the
relocation phase is solved, for both scenarios, to optimality according to the
PBFS. We use two different variants of the local search heuristic. In the first
variant, λ1 = λ2 = 3 is used and the second method uses λ1 = λ2 = 1. If λ1 =

λ2 = 3, the local search heuristic is a randomized algorithm, and we refer to it
as Randomized Pre-Processing (RPP). Since it is a randomized algorithm, the
algorithm is run 150 times or stops after 100 runs without an improvement. This
set-up is the same as the set-up of the LPFH to make a fair comparison possible
in Section 6.2.3. After each of these runs, the optimal expected number of
relocation moves for the bay after pre-processing is calculated. If Algorithm 6.1
uses λ1 = λ2 = 1 as parameters, it is a deterministic algorithm and we refer
to it as Deterministic Pre-Processing (DPP). This deterministic algorithm is
obviously only run once.

In Table 6.2, we give the objective function for the three methods described
above for instances with five and ten stacks and a maximum height of three.
The value of α is set to 0.25, 0.5 and 0.75. The first thing to note is that
the RPP is performing better than the DPP, but that the difference between
them is quite small. Another observation is that the smaller the value of α,
the larger the difference between the heuristic values and the optimal solution.
This makes sense because for larger values of α fewer pre-processing moves are
performed in all solutions, and the relocation moves contribute for a large share
to the objective function. Furthermore, the difference between the optimal and
heuristic solution is larger for instances with ten stacks than five stacks. The
possible number of pre-processing moves is larger for instances with ten stacks
than five stacks, so it makes sense that the heuristic is performing worse for
these.

Although the gap between the heuristic and the optimal solution differs
per parameter setting, the average gap between the optimal branch-and-bound
algorithm and the RPP+PBFS and DPP+PBFS over all instances reported
in Table 6.2 is, respectively, 4.6% and 5.8%. It is important to realize that

146 6. Optimizing pre-processing and relocation moves

α 0.25 0.5 0.75
H S Fill rate 50% 67% 50% 67% 50% 67%

3

5
B&B 0.642 1.250 1.222 2.328 1.503 2.836
RPP+PBFS 0.725 1.356 1.222 2.439 1.508 2.916
DPP+PBFS 0.750 1.434 1.222 2.469 1.511 2.942

10
B&B 1.000 1.867 1.922 3.534 2.581 4.606
RPP+PBFS 1.192 2.083 2.172 3.622 2.592 4.631
DPP+PBFS 1.200 2.175 2.172 3.656 2.592 4.647

Table 6.2 Objective function under the optimal relocation policy for the bay obtained
after pre-processing according to the branch-and-bound algorithm (B&B), the local
search heuristic for λ1 = λ2 = 1 (DPP) and the local search heuristic with λ1 = λ2 =

3 (RPP).

the objective function for the SCRPPP is discontinuous. Consequently, if the
heuristic does not find the optimal solution, its solution will likely be substantially
worse than the optimal solution. For instance, if the pre-processing phase of
the heuristic results in the same bay as the optimal solution but takes one pre-
processing move extra, then the difference between the heuristic and optimal
solution is already α.

After it is shown that the value of the objective function of the DPP and
RPP is close to optimal for small instances, we will solve larger instances with
the DPP and RPP. In Galle et al. (2018b), it is shown that the PBFS is not
able to solve larger instances of the SCRP to optimality within an hour. Hence,
we decided to use the EM heuristic for the relocation phase. We have chosen
to use 1,000 simulations of the retrieval order to get the average number of
relocation moves.

In Table 6.3, the value of the objective function for both the DPP+EM and
RPP+EM is given. Furthermore, the average running time of the pre-processing
phase and the relocation phase for the RPP+EM per instance is given. The
deterministic DPP+EM is run only once. Therefore, the pre-processing and re-
location phase running times are an order of 100 smaller than for the RPP+EM.
As the total average running time of the DPP+EM is always less than a second
for every instance, we have chosen to only report the running times of the RPP
in combination with EM heuristic in Table 6.3. Contrary to Tables 6.1 and 6.2,
not only the results of the instances with five and ten stacks are given, but all
instances with stacks five up to ten are used.

The total running time of the RPP+EM heuristic increases when the maxi-
mum stack size and α increase. Notably, the time needed for the EM heuristic
in the relocation phase is more substantial when α = 0.75. For this value of α,
fewer pre-processing moves are performed, and thus the relocation phase is
harder. Although the running times of the RPP+EM are higher than for the
DPP+EM, the objective for the RPP+EM is also smaller than for the DPP+EM.

6.2. Numerical results 147

α 0.25 0.5 0.75
H Fill rate 50% 67% 50% 67% 50% 67%

3

DPP+EM Objective 0.98 1.79 1.72 3.15 2.08 3.93

RPP+EM
Objective 0.96 1.72 1.70 3.11 2.08 3.89
Time pre-processing (s) 0.2 0.4 0.1 0.4 0.1 0.4
Time relocation (s) 0.2 0.2 0.1 0.7 1.0 4.2

4

DPP+EM Objective 1.86 3.45 3.25 5.88 4.07 7.47

RPP+EM
Objective 1.80 3.11 3.22 5.66 4.04 7.32
Time pre-processing (s) 0.5 0.7 0.4 1.0 0.4 1.2
Time relocation (s) 0.3 0.8 0.4 4.0 3.4 19.7

5

DPP+EM Objective 3.14 5.65 5.46 9.81 6.83 12.55

RPP+EM
Objective 2.88 4.93 5.29 9.16 6.74 11.88
Time pre-processing (s) 0.9 1.6 0.9 1.9 1.1 2.7
Time relocation (s) 0.8 1.8 3.6 10.2 14.3 42.5

6

DPP+EM Objective 4.39 8.69 7.65 14.86 9.70 18.66

RPP+EM
Objective 3.93 7.03 7.17 13.00 9.41 17.20
Time pre-processing (s) 1.5 2.5 1.4 3.7 1.7 4.2
Time relocation (s) 1.9 4.1 4.8 18.9 25.7 67.3

Table 6.3 Objective function for the DPP+EM and RPP+EM and the average run-
ning time per instance for the RPP+EM.

For α = 0.25, the difference between the objective function for the two meth-
ods is the largest. This is caused by the fact that for α = 0.25, more containers
are moved in the pre-processing phase, and for α = 0.75, more containers are
moved in the relocation phase. Furthermore, the more containers are in the
bay, the more one can gain by performing different pre-processing moves, and
thus the percentage difference between the RPP+EM and DPP+EM is bigger
for larger values of H and a fill rate of 67%.

6.2.3 SCRP and CPMP

In this section, we will compare the newly proposed local search heuristic with
two existing heuristics for the CPMP and SCRP. The LPFH is a heuristic for
the CPMP and can be used for the pre-processing phase. The LPFH stops
the moment no relocation moves are left. It is also possible to perform no
relocation moves, after which we could apply the EM heuristic for the SCRP
for the relocation phase. The results of these two methods are compared with
the RPP+EM method in Table 6.4.

The EM method does not use any pre-processing moves, and thus the value
of the objective function is independent of α. The LPFH does perform pre-
processing moves, but the number of moves is not influenced by α because it
always tries to find the fewest moves such that no relocation moves are needed.
Hence, the value of the objective function is just a linear function of α. We see
in Table 6.4 that for α is 0.25 and 0.5, the LPFH results in a lower value of
the objective function than the EM heuristic. On the other hand, for α = 0.75,

148 6. Optimizing pre-processing and relocation moves

α 0.25 0.5 0.75
H Fill rate 50% 67% 50% 67% 50% 67%

3
RPP+EM 0.96 1.72 1.70 3.11 2.08 3.89
EM 2.47 4.34 2.47 4.34 2.47 4.34
LPFH 0.84 1.62 1.68 3.24 2.52 4.86

4
RPP+EM 1.80 3.11 3.22 5.66 4.04 7.32
EM 4.63 8.12 4.63 8.12 4.63 8.12
LPFH 1.63 3.16 3.26 6.33 4.89 9.49

5
RPP+EM 2.88 4.93 5.29 9.16 6.74 12.55
EM 7.48 13.00 7.48 13.00 7.48 13.00
LPFH 2.84 5.48 5.67 10.95 8.51 16.43

6
RPP+EM 3.93 7.03 7.17 13.00 9.41 17.20
EM 10.32 18.43 10.32 18.43 10.32 18.43
LPFH 4.03 9.55 8.07 19.10 12.10 28.65

Table 6.4 Objective function for the RPP+EM, the EM and the LPFH.

the EM heuristic gives a better solution.

The RPP+EM outperforms both the EM and LPFH for almost all instances.
On average, the objective function for RPP+EM is about 9% lower than that
of the minimum of the EM and LPFH. Only for the instances with a small
number of containers and α = 0.25, the LPFH is slightly better. For α = 0.25,
it is beneficial to move a container in four pre-processing moves to a correct
position. Hence, it is almost always possible for smaller instances to place
all containers in the correct position. Since the LPFH is tailored for placing
the containers in the correct position in the fewest moves, it is logical that it
outperforms the RPP+EM.

Furthermore, we see in Table 6.4 that the difference between the RPP+EM
and the EM and LPFH is bigger for large than for small instances. This dif-
ference can be explained by the fact that the more containers are in a bay,
the more difficult it is to place a container in the correct position in the pre-
processing phase. Moreover, if a container is moved in the relocation phase,
then for larger instances, it has more containers on top of it. Hence, for larger
instances, more pre-processing and relocation moves are needed, and the more
can be gained by balancing those two types of moves. Similarly, the trade-off
between pre-processing and relocation moves is more critical if α = 0.5. Thus
the difference between the RPP+EM and the EM and LPFH is also more sig-
nificant for this value of α. For instance, for α = 0.5, H = 6, and the fill rate
of 67%, the improvement is even more than 40%.

6.3 Conclusion
In this chapter, we have presented the first solution methods for the SCRPPP.
We have developed an optimal branch-and-bound algorithm to solve this prob-

6.3. Conclusion 149

lem. Since we have also proven that this problem is NP-hard, we have developed
a local search heuristic to solve larger instances. That heuristic makes use of
a newly developed estimation method for the number of relocation moves. For
small instances, the heuristic gives close to optimal solutions. Furthermore, for
larger instances and moderate values of α, a significant improvement is made
compared to only moving containers in the pre-processing or relocation phase.

The optimal branch-and-bound algorithm that we propose could be improved
if sharper upper and lower bounds are derived. If the upper bound is smaller,
then the search tree could be pruned earlier. Furthermore, if the lower bound is
larger, then the optimal number of relocation moves would need to be calculated
for fewer bays. In the lower bound that we use, the moves needed to remove
containers from a stack to place another container in that stack are not taken
into account. It is not straightforward how one would incorporate these moves
because if one stack is empty, it might be that many containers benefit from
that and could be placed in that stack. Nevertheless, taking these moves into
account would improve the lower bound.

The local search heuristic that we have proposed might improve if a better
estimation method for the number of relocation moves is used. The quality of
this estimation method is essential in our local search algorithm because it is
used in deciding whether the bay after pre-processing moves has improved. The
rule-based method is effective but simple. It might be that other estimation
methods will result in a better prediction and improve the local search heuristic
performance. If the local search heuristic is improved, a better upper bound for
the branch-and-bound algorithm is also available.

In this chapter, we have seen that the SCRPPP generalizes the well-studied
SCRP and CPMP. With the value of α, one has certain control over the length
of the pre-processing phase. If α = 0.5, then at most two pre-processing
moves are performed to have one relocation move less. If there is enough time
to make the pre-processing moves, then the SCRPPP can be a good problem to
balance the extra pre-processing moves with the reduction in relocation moves.
However, it might be that the crane is idle for a limited amount of time. In
this case, it might be better to use the SCRPCPP, which solution methods are
discussed in the next chapter.

7
Limited number of pre-processing moves

In this chapter, we solve the SCRPCPP, defined in Section 5.4.2. In Sec-
tion 7.1, two heuristic and a branch-and-bound algorithm are developed. It
is quite natural to extend the SCRPCPP to multiple bays, so we do that in
Section 7.2. We use, in Section 7.3, numerical experiments to compare the
solution methods and to see what can be gained by investigating multiple bays
simultaneously. Finally, we conclude this chapter in Section 7.4.

7.1 Solution methods
In this section, we discuss three solution methods to solve the SCRPCPP. Sim-
ilar to the SCRPPP, we only develop methods for the pre-processing phase
because a good heuristic and optimal formulation for the relocation phase have
already been given in Galle et al. (2018b). As we have shown in Section 5.4.3,
the SCRPCPP is NP-hard, thus we first give a heuristic for the pre-processing
phase in Section 7.1.1. In this heuristic, we need again the method of Sec-
tion 6.1.2 to estimate the number of relocation moves for a given bay.

After we have developed a heuristic, we derive in Section 7.1.2 a lower bound
for the SCRPCPP. This lower bound is used in a branch-and-bound method that
is presented in Section 7.1.3. In this branch-and-bound algorithm, the number
of expected relocation moves for a bay needs to be calculated. If the optimal
expected number of relocation moves is calculated in each node of the branch-
and-bound tree, then the branch-and-bound algorithm produces the optimal
solution for the SCRPCPP. However, the number of relocation moves for a bay
can also be estimated in a sub-optimal way using the rule-based method and
that gives us another heuristic for the SCRPCPP.

7.1.1 Top Correct heuristic

In this section, a heuristic to find good pre-processing moves is described. We
call this heuristic the Top Correct (TC) heuristic. The general idea of the

This chapter is based on B.G. Zweers, S. Bhulai, and R.D. van der Mei. Pre-processing a
container yard under limited available time. Computers & Operations Research, 123-105045,
2020c.

152 7. Limited number of pre-processing moves

Movement phase Improvement phase Selection phase

Post-optimization phase Stop

Improvement in objective function and |P| < ρ

|P| = ρ

|P| = ρ|P| < ρ
No improvement in
objective function
and |P| < ρ

Figure 7.1 Overview of the TC heuristic.

TC heuristic is that we try for each combination of two stacks, to move the
top container of one stack, called the origin stack, to the correct position
in another stack, called the destination stack. It is also possible to place a
container in a correct position in the same stack as it is currently located. In
this case, the origin and destination stack are the same stack. After that, we
calculate for each combination of origin and destination stacks the difference
in the number of expected relocation moves and choose the pair that yields the
largest decrease in the expected number of relocation moves without exceeding
the maximum number of pre-processing moves.

In total, the TC heuristic consists of four different phases that we call (i)
the movement, (ii) the improvement, (iii) the selection, and (iv) the post-
optimization phase. In the first three stages, two different decisions can be
made, thus the heuristic has 23 = 8 different variants. Below, the four different
phases are described. In Figure 7.1, an overview of the TC heuristic is given.

Phase 1: Movement

In the movement phase, the origin stack’s top container is moved into a cor-
rect position in the destination stack. To place the container correctly in the
destination stack, it might be necessary to move containers from the desti-
nation stack to other stacks before the top container of the origin stack can
be moved to the destination stack. We refer to these moves as the cleaning
moves. In cleaning moves, containers are ideally moved to stacks in which they
are correctly-placed.

Out of the stacks in which a container is correctly-placed, the stacks with
the fewest poorly-placed containers are selected. We prefer stacks in which
few containers are poorly-placed because if a container is placed in a stack in
which it is correctly-placed, while other containers are not correctly-placed, it

7.1. Solution methods 153

might still need to be moved a second time in the pre-processing phase. If there
are multiple stacks with the same number of poorly-placed containers and in
which the container that is moved will be correctly-placed, then the container
is moved to stack in which the minimum time frame is the lowest. If it is not
possible to move a container in the cleaning phase to a stack in which it will not
need to be relocated a second time, then it is moved to a stack in which it is
moved as late as possible in the relocation phase. This last step is equivalent to
the procedure applied in the EM heuristic for the SCRP (Galle et al., 2018b).

We have defined a container to be correctly-placed if it only has containers
with a lower time frame underneath it. However, if for a specific container,
the minimum time frame of all containers underneath it is the same as its own
time frame, then the probability that it does not need to be relocated is positive
but smaller than one. We call this type of container semi-correct. In case the
top container of the origin stack is allowed to be semi-correctly-placed in the
destination stack, it could be that fewer cleaning moves are necessary, and still,
the number of relocation moves is reduced. Hence, the two different variants
for the movement phase are whether we require the top container of the origin
stack to be semi-correct or correct in the destination stack.

Phase 2: Improvement

It could be that after the movement phase also other containers can be
correctly-placed. For instance, when the container that is correctly-placed in
the movement phase has a large time frame, many containers can be stacked
upon that container. So after the movement phase, the TC heuristic tries to
move poorly-placed containers to stacks in which they are correctly-placed. This
phase is called the improvement phase, and the moves performed in this phase
are called improving moves. Improving moves are equivalent to the “excellent
moves” in Hottung and Tierney (2016).

The containers with the largest time frames are first moved in this phase
because if these containers are correctly-placed in a stack, containers with a
lower time frame can be correctly-placed on top of them. At first sight, it
might seem wise always to perform the improving moves. However, in some
scenarios, it is better not to perform improving moves and use the remaining
pre-processing moves differently. Hence, the two variants of the improvement
phase are: performing improving and not performing improving moves.

Phase 3: Selection

The number of pre-processing moves in the movement and improvement phase
can be calculated for each combination of origin and destination stacks. There
are in total S2 possible combinations, but we only consider combinations of
stacks for which fewer pre-processing moves were needed than the available

154 7. Limited number of pre-processing moves

pre-processing moves. For all these combinations, the remaining number of re-
location moves are calculated using the rule-based estimation method presented
in Section 6.1.2. Hence, we can estimate how much the objective function
changes if the top container of the origin stack is placed correctly in the des-
tination stack for each combination of origin and destination stack. However,
even when for all feasible combinations of origin and destination stacks, the
number of expected relocation moves can be estimated, then it is still unclear
which combination to select. It might be that one combination yields a strong
decrease in the objective function and uses many pre-processing moves, while
another combination only uses a few pre-processing moves, but has a smaller
improvement.

In the TC heuristic selection phase, we distinguish two different selection
methods: the greedy and the ratio selection method. In the greedy method, the
combination of origin and destination stack that results in the largest decrease
in the objective function is selected. On the other hand, in the ratio method,
the improvement in the objective function is divided by the number of pre-
processing moves needed to obtain the improvement per pre-processing move.
As a result, the ratio selection method generally selects a solution in which a
moderate improvement is obtained in a relatively small number of pre-processing
moves. In contrast, in the greedy selection method, a solution is chosen that
produces the biggest improvement in a large number of pre-processing moves.
Although the improvement made by the ratio section method is lower than
by the greedy selection method, it might be that many improving moves are
possible for the bay that is selected. In that case, it is beneficial that a rather
large number of pre-processing moves is still available for upcoming iterations
of the improvement phase.

In both selection methods, there may be multiple combinations of origin
and destination stack that result in the same improvement of the objective
function. In that case, we select the leftmost origin stack and, after that, the
leftmost destination stack. If no pre-processing move results in a decrease in
the expected number of relocation moves, the TC heuristic continues to the
post-optimizing phase. Otherwise, it starts again in the movement phase.

Phase 4: Post-optimization

The three phases described above all have three two different options and thus
there are in total eight different variants possible. Each of these eight variants
terminates the moment that there is no feasible combination of origin and
destination stacks that result in an improvement of the objective function.
However, it could be that there are still some pre-processing moves available
that are unused. The idea of the post-optimizing phase is to use these moves
to change the bay without changing the estimate of the objective function.

7.1. Solution methods 155

After the bay has changed, we again try the first three phases to see if an
improvement can be made. It could be the case that a new top container can
be easily placed correctly and with that improve the objective function.

In the post-optimization phase, we use the concept of Good-Good (GG)
moves introduced by Tanaka and Tierney (2018) in the context of the CPMP.
In a GG move, a well-placed container is moved to a stack in which it is still well-
placed. It is likely that a GG move does not change the number of relocation
moves in a bay. A GG move can be beneficial if after that GG move new
improving moves are possible. The idea behind a GG move is to make the
most improving moves possible. Hence, the container that is moved in a GG
move is the container for which the difference between its time frame and the
container underneath it is maximized. The destination stack is chosen such
that the difference between the time frame of the top container and the time
frame of the container that is moved is minimized. We apply a single GG
move and then again the first three phases to improve the resulting bay. If no
improvement is possible, another GG move is applied until the moment that
either all pre-processing moves are performed or no GG moves are available.

Running example continued

Let us apply the TC heuristic to the bay of our running example in Figure 5.2. In
total, the TC heuristic produces eight solutions for this bay, but if the maximum
number of pre-processing moves is three, then there are only two different
solutions which are shown in Figure 7.2. All four variants in which the greedy
selection method is used in the selection phase gives the bay in Figure 7.2(a),
whereas the bay in Figure 7.2(b) is obtained using the ratio selection method.

Placing the top container of the fourth stack of the bay of Figure 5.2 at
a correct position in the second stack needs three moves, and then the bay in
Figure 7.2(a) is obtained. In this case, the containers in stack 2 need to be
moved to a different stack. These moves are the cleaning moves. It is infeasible
to position these containers in the third stack because that stack already has
the maximum number of containers. Moreover, these containers can neither
be positioned in stack 4 because we would like to move the fourth stack’s top
container. Hence, stacks 1 and 5 are the stacks to which they could be moved.

The first container to be moved from stack 2 is the container with time
frame 5. This container cannot be correctly placed in any of the two stacks,
and thus, it is positioned in the stack in stack 1 because, in this stack, it will
be relocated in time interval 4, which is later than interval 2 of the fifth stack.
Afterward, the container with time frame 1 can be positioned correctly in both
stacks 1 and 5. Since stack 1 has two poorly-placed containers, and stack 5
does not contain any poorly-placed containers, it is moved to stack 5. In the

156 7. Limited number of pre-processing moves

Stack 1 Stack 2 Stack 3 Stack 4 Stack 5

4

4

5

3 5

1

4

1

2

5

3

2

1

(a) Bay of Figure 5.2 after performing
three pre-processing moves using
greedy selection.

Stack 1 Stack 2 Stack 3 Stack 4 Stack 5

4

4

3

1

5

5

1

4

2

5

3

2

1

(b) Bay of Figure 5.2 after performing
three pre-processing moves using ratio
selection.

Figure 7.2 Two possible outcomes of the TC heuristic after three pre-processing
moves for the bay of Figure 5.2.

final third move, the top container from stack 4 is moved to the second stack.

The estimate of the number of relocation moves for the initial bay of Fig-
ure 5.2 using the rule-based method is 6.2. For the bay of Figure 7.2(a), the
estimate for the number of relocation moves is 4.8. This number is the lowest
that can be obtained by moving the top container of a stack in a correct po-
sition while using at most three pre-processing moves. Hence, that is why the
greedy method selects this bay as the best bay.

In the first move of the ratio method, the top container of the fourth stack
of the initial bay of Figure 5.2 is placed in the first stack. The estimated
number of relocation moves for the bay obtained after this bay is 5.2, and
thus the improvement per pre-processing move is exactly one. To compare
that with the bay in Figure 7.2(a), the improvement per move in that bay is
6.2−4.8

3 ≈ 0.47.

After the first pre-processing move, only two pre-processing moves are left.
The only top container that can be correctly positioned using one or two pre-
processing moves is the top container of the middle stack. The improvement
in the objective function is 0.5 if placed in stack 1, 4, or 5. Since stack 1 is
the most left stack of these three stacks, the container is placed in that stack.
Afterward, there is no top container that can be placed correctly in a stack with
improving the objective function. Hence, the post-optimizing phase is entered.

The top container of the first stack is now the container with time frame 1
that has been moved in the second pre-processing move. This container is
the only container for which we can apply a GG move. This container is still

7.1. Solution methods 157

correctly positioned if it is moved to the fourth or fifth stack. The fourth
stack’s top container has time frame 5, while the time frame of the fifth stack
is only 2. Therefore, the container with time frame 1 is moved to the fifth
stack, because then the difference with the top container is minimized. All in
all, the bay of Figure 7.2(b) is obtained with the greedy selection method.

The optimal number of expected relocation moves for the bay in Fig-
ure 7.2(a) is 5 1

6 , and for the bay in Figure 7.2(b), it is 5. Hence, for the
bay of Figure 5.2, if three pre-processing moves are allowed, any variant of the
TC heuristic that uses the ratio selection method produces a better solution
than the variants that use the greedy selection method. However, for other
bays or different maximum numbers of pre-processing moves, the greedy selec-
tion method might produce better pre-processing moves than the ratio selection
method.

7.1.2 Lower bound

In this section, we present a lower bound for the SCRPCPP. For ease of expla-
nation, we first describe the lower bound in the scenario in which each container
has a unique time interval, i.e., the deterministic scenario. The lower bound for
the stochastic setting is based on the lower bound for this deterministic setting,
and it is described later.

Deterministic CRP

In the CRP, it is easy to check whether a container needs to be relocated or
not. If a container has a container with a smaller time frame underneath it, it
is relocated at least once, and otherwise, it is never relocated. Let us denote
the lower bound for the number of relocation moves for container c by lb(c),
then lb(c) = 1 if t(c) > u(c) and lb(c) = 0 otherwise. Hence, the lower
bound for the number of relocation moves can be expressed as

∑
c∈C lb(c). So

a lower bound for the number of relocation moves for the bay without any pre-
processing moves can easily be calculated. The pre-processing moves are used
to reduce the number of relocation moves, but each pre-processing move can
reduce the lower bound for the relocation moves by at most one. Hence, a trivial
lower bound for the CRP with pre-processing moves is max{0,

∑
c∈C lb(c)−ρ}.

However, it has to be possible for that lower bound to place each poorly-
placed container in a correct position with only a single pre-processing move.
There are two reasons why that might not be possible for a bay. The first
reason is that there could be no stack with only containers with a higher time
frame than the poorly-placed container. Secondly, it could be that the poorly-
placed container has a well-placed container on top of it. In this case, the
well-placed container needs to be moved before the poorly-placed container

158 7. Limited number of pre-processing moves

can be accessed.

In case not all poorly-placed containers can become well-placed with a sin-
gle pre-processing move, it might be possible to strengthen the lower bound.
We divide the poorly-placed containers into two groups: the one-move and
multiple-moves containers. The one-move containers can be moved to a cor-
rect position in a single pre-processing move, and the multiple-moves containers
need more than one pre-processing move to be placed correctly. If the number
of one-move containers is less than or equal to the number of pre-processing
moves, then the lower bound for the CRP with pre-processing moves remains
max{0,

∑
c∈C lb(c)− ρ}. Otherwise, at least one of the pre-processing moves

is needed for a multiple-moves container, and thus the lower bound is equal to
max{0,

∑
c∈C lb(c)−ρ+ 1}. The improved lower bound is inspired by the lower

bound of the CPMP given in Tanaka and Tierney (2018).

To check which containers are one-move containers, the bay needs to be
investigated stack on stack level. If the top container of a stack is poorly-placed
and can be placed correctly in another stack, it is a one-move container, and
the container underneath it can be investigated. Otherwise, the top container
is a multiple-moves container, and with that, all poorly-placed containers in
that stack are multiple-moves containers. If the top container is a one-move
container, then for the container underneath it, we can check if there is a stack
in which it will be correctly-placed. If that is the case, that container is also a
one-move container, and that stack’s next container is considered. Otherwise,
the container is a multiple-moves container, and the next stack is considered.

It is important to realize that no multiple-moves containers will become a
one-move container after a one-move container has been moved in the pre-
processing phase to a stack in which it is correctly-placed. If a one-move
container has been moved to a stack in which it is correctly-placed, then the
container with the minimum time frame of that stack is the one-move container
that has just been moved. Hence, the minimum time frame of that stack has
increased. Furthermore, the one-move container was poorly-placed in its origin
stack, and thus the minimum time frame of that stack has to be lower than
the time frame of the one-move container. Consequently, after a movement
of a one-move container, the layout has not improved for any multiple-moves
container, and no multiple-moves container will ever become a one-move con-
tainer.

Running example continued

The bay of Figure 5.2 has been slightly adjusted to illustrate the lower bound
for the deterministic case. In Figure 7.3, the containers are positioned in the
same way as in Figure 5.2, but each container has a unique time interval. The

7.1. Solution methods 159

Stack 1 Stack 2 Stack 3 Stack 4 Stack 5

9

10

3

13

12

1

8

2

5

11

7

6

4

Figure 7.3 Deterministic variant of the bay in Figure 5.2 in which every container
has a unique time interval.

order in which the containers in Figure 7.3 are retrieved is a possible retrieval
order for the containers in Figure 5.2. Six containers need to be relocated at
least once in the bay of Figure 7.3, namely the containers with time interval
2, 7, 8, 10, 11, and 13. Hence, the lower bound for the number of relocation
moves for the bay in Figure 7.3 is six.

Out of these six containers, the containers with time frames 2, 7, and 8 are
one-move containers, and the other containers are multiple-moves containers.
When placed in stack 1, the container with time interval 7 does not need to
be relocated anymore. Furthermore, the containers with time frame 2 can
be correctly positioned in every other stack, and if that container is moved,
the container with time frame 8 is examined. This container can be placed in
a correct position in stack 1. It is important to realize that, in this specific
example, the order in which the containers are moved in the pre-processing
phase is crucial. If container 7 is moved to the first stack before container 8,
then container 8 cannot be correctly positioned in that stack.

If the number of pre-processing moves is three or less, then the three one-
move containers can be moved, and the lower bound equals six minus the
number of pre-processing moves. For instance, the lower bound for two pre-
processing moves equals four. If there are more than three pre-processing
moves, then there is at least one multiple-moves container that needs to be
moved to reduce the number of relocation moves further. Therefore, the lower
bound equals six minus the number of pre-processing moves plus one. For

160 7. Limited number of pre-processing moves

instance, the lower bound for five pre-processing moves is two. For seven and
more pre-processing moves, the lower bound is zero.

Stochastic CRP

In the stochastic setting, both the lower bound for the number of expected
relocation moves and the gain that can be achieved with pre-processing moves
are different from the deterministic setting. However, the general idea of the
lower bound is the same. In Algorithm 7.1, the lower bound for the SCRPCPP
is described. The lower bound for the expected number of relocation moves is
calculated in the first for-loop of Algorithm 7.1 and is the same as the expression
in Equation (6.3).

In the second for-loop of Algorithm 7.1, it is determined whether a container
is a one-move or a multiple-moves container. Two aspects are different in the
stochastic setting than in the deterministic setting. In the deterministic setting,
it was only beneficial to place a container c in a stack in which the minimum
time frame of all containers was higher than the time frame of c . However, in
the stochastic setting, it might also be beneficial to place container c in a stack
in which the minimum time frame is the same as the time frame of container c .
The value a in Algorithm 7.1 represents the relocation probability in the best
stack for container c . Hence, the best improvement that can be made for
moving container c in the pre-processing phase is given by G(c), which is a
value between 0 and 1.

A second difference with the deterministic setting is how one should deter-
mine if the next container of a stack should be checked for being a one-move
container. The value I(s) is the improvement that can be made by placing
one-move containers from stack s to other stacks. Only if I(s) +G(c) is larger
than the number of containers that needs to be moved before container c can
be moved plus one, then container c belongs to the one-move containers. Oth-
erwise, the improvement that can be made by moving container c is less than
the number of containers in its stack, plus one, and if there is one extra move
needed, the container belongs to the multiple-moves containers.

After the improvement that can be made by only moving one-move contain-
ers is calculated, i.e.,

∑
s∈S I(s), the final lower bound can be calculated. Similar

to the deterministic case, if the number of pre-processing moves is less than
the improvement made by one-move containers, then the lower bound equals
the lower bound for the relocation moves of the initial bay minus the number
of pre-processing moves. If the number of pre-processing moves lies between
the improvement made by the one-move containers and that improvement plus
one, then the lower bound equals the lower bound for the number of relocation
moves for the initial bay minus the improvement of the one-move containers.

7.1. Solution methods 161

Algorithm 7.1: Lower bound for the objective function of the SCRPCPP.
Input: Bay B and maximum number of pre-processing moves ρ.
for c ∈ C do

if t(c) > u(c) then
lb(c) = 1

else
if t(c) = u(c) then

m(c) = |{c ′ ∈ C : s(c ′) = s(c) ∧ p(c ′) < p(c) ∧ t(c ′) = t(c) = u(c)}|
lb(c) =

m(c)
m(c)+1

else
lb(c) = 0

end
end

end
for s ∈ S do

t = n(s)

I(s) = 0

while t > 1 do
c = C(t, s)

if lb(c) > 0 ∧ t(c) ≤ max{l(s ′) : s ′ ∈ S \ s ∧ n(s ′) < H} then
a = min{ |{c

′∈C:t(c)=t(c ′)∧s(c ′)=s ′}|
|{c ′∈C:t(c)=t(c ′)∧s(c ′)=s ′}|+1

: s ′ ∈ S \ s ∧ t(c) ≤ l(s ′) ∧ n(s ′) < H}
G(c) = max{lb(c)− a, 0}
if I(s) + G(c) > n(s)− t then

I(s) = I(s) + G(c)

t = t − 1
else

t = 0

end
else

t = 0

end
end

end
if ρ ≤

∑
s∈S I(s) then

LB =
∑

c∈C lb(c)− ρ
else

if ρ ≤
∑

s∈S I(s) + 1 then
LB =

∑
c∈C lb(c)−

∑
s∈S I(s)

else
LB = max{

∑
c∈C lb(c)− ρ+ 1, 0}

end
end
Output: LB.

162 7. Limited number of pre-processing moves

Finally, in all other scenarios, the lower bound equals the lower bound for the
relocation moves of the initial bay minus the number of pre-processing moves
plus one.

Running example continued

Let us now compute the lower bound for the bay of the running example of
Figure 5.2. The top container of the first and third stack has a relocation
probability of 1

2 because there are no containers with a strictly smaller time
frame underneath them and only a single container with the same time frame.
If the first stack consisted of three containers with time frame 4, then the top
container would have had a relocation probability of 2

3 and the middle container
of 1

2 . For the containers with time frame 5 in stack 2, time frame 4 in stack 3,
time frame 3 in stack 4, and time frame 5 in stack 4 at least one relocation
move is needed and all other containers are correctly-placed. Hence, the lower
bound for the relocation moves of the bay in Figure 5.2 is 4 + 2× 1

2 = 5.

Although, the lower bound for the number of relocation moves for the top
containers of the first two stacks is larger than zero, there is no stack in which
they could be moved such that they are correctly-placed. Hence, the improve-
ment that can be made for these two stacks is zero. The improvement for the
fifth stack is also zero, because the top container is already correctly-placed.
The top container of stack 4 can be placed correctly in the first stack, but
there is no stack in which the container with time frame 5 underneath it can be
placed such that the lower bound for the number of relocation moves for that
container decreases. Therefore, the improvement for stack 4 is one.

Finally, we consider the most interesting stack, which is stack 3. If the top
container of that stack is placed in stack 1, 4, or 5, then the lower bound for the
relocation moves of that container decreases from 1

2 to zero, thus the gain for
that container is 1

2 . The container below it with time frame 4 has a lower bound
for the number of relocation moves of 1, which can be improved by placing the
container in stack 1. If it is placed there, then the lower bound for the number
of relocation moves of that container is 2

3 , thus the gain obtained by moving
that is 1

3 . The total gain of these two containers is 5
6 for which two containers

need to be moved. However, if a multiple-moves container is moved, then the
total gain with two moves could be one. Therefore, in the third stack, only the
top container is considered as a one-move container and the total improvement
of that stack is 1

2 .

All in all, the top containers of stacks 3 and 4 are one-move containers,
and moving these containers into a correct position reduces the number of
relocation moves by at least 1 1

2 . Given that the lower bound for the number
of relocation moves for the original bay is five, the lower bound with a single

7.2. Extension to multiple bays 163

pre-processing move is four. With two pre-processing moves, the lower bound
equals 3 1

2 , and with three or more pre-processing moves, the lower bound is the
maximum of zero and five minus the number of pre-processing moves plus one.

7.1.3 Branch-and-bound

The branch-and-bound algorithm of the SCRPCPP is similar to that of the
SCRPPP given in Algorithm 6.6. In this section, we will only focus on the dif-
ferences. The first difference is that the maximum depth of the search tree (d)

is equal to the maximum number of pre-processing moves. Furthermore, the
upper bound is calculated using the TC heuristic, and for the lower bound, we
use Algorithm 7.1.

The final difference between the branch-and-bound algorithm for the
SCRPPP and SCRPCPP is that in the latter, the best solutions are likely to
be solutions with many pre-processing moves. In contrast, the SCRPPP usu-
ally has better solutions with fewer pre-processing moves. Hence, we change
the order in which bays are investigated for the SCRPCPP compared to Algo-
rithm 6.6. In Algorithm 6.6, first, the solution with the smallest lower bound
was investigated, and in case of a tie, the bay with the most pre-processing
moves was chosen. For the SCRPCPP, the first selection criterion is the num-
ber of pre-processing moves, and the lower bound is only a tie-breaker for bays
with the same number of pre-processing moves.

Similar to the SCRPPP, also for the SCRCPP, the branch-and-bound al-
gorithm will take too much computational time for practical instances for two
reasons. The first reason is that the number of branches of the tree grows
exponentially in the number of pre-processing moves. Second, the expected
number of relocation moves has to be computed for each bay. However, we
have seen in Section 6.1.2 that the number of relocation moves can also be
estimated. If we use the rule-based estimation method of Section 6.1.2 instead
of computing the optimal expected number of relocation moves, then the so-
lution is not anymore guaranteed to be optimal, but the running time is also
shorter. Hence, this could be an interesting heuristic for the SCRPCPP.

We refer to the branch-and-bound algorithm in which the optimal number of
relocation moves is calculated as BB-O, and use BB-H to indicate the variant
of Algorithm 6.6 in which the rule-based estimation method is used to calculate
the number of relocation moves for a bay.

7.2 Extension to multiple bays
In this section, we show how we can apply the methods described in the previous
section to a situation in which we consider multiple bays. We first give, in
Section 7.2.1, the exact problem formulation for the extension to multiple bays.

164 7. Limited number of pre-processing moves

Afterward, in Section 7.2.2, we present a method to solve this problem.

7.2.1 Problem formulation for multiple bays

Some containers in a bay become correctly-placed in one or a few pre-processing
moves, while other containers require many pre-processing moves to decrease
their expected number of relocation moves. Hence, the improvement in the ob-
jective function per pre-processing move becomes smaller if more pre-processing
moves are performed. Therefore, if the crane driver is idle for a longer time,
it could be better to visit multiple bays. Driving from one bay to the other is
time-consuming, but if there are some containers that can be easily placed in a
better position it might be worth moving the crane. Thus, in this section, we
consider an extension of the SCRPCPP in which multiple bays are visited.

We assume that the bays are positioned in a line and are numbered from
left to right as is shown in Figure 7.4. The crane in this figure is positioned
above bay B4, but at the beginning of the pre-processing phase it could be
positioned above any bay. We call the bay above which the crane is positioned
before the pre-processing phase the starting bay, which we denote by Bs . We
do not require the crane to return to bay Bs at the end of the pre-processing
phase, so any bay could be the last bay. In the extension to multiple bays,
one needs to decide both the number of pre-processing moves to perform at
each bay and a path that visits each bay for which at least one pre-processing
move is performed. The total time needed to move the crane and perform
the pre-processing times should again not exceed T . To reduce the problem’s
complexity, we do not allow the crane to take a container from one bay and
place it in another bay.

The time needed to drive from bay Bi to bay Bj is given by ti j . We restrict
the travel times ti j to the class of times that satisfy the following properties:

• ti j = tj i for all Bi , Bj .

• ti j < tik for all Bi < Bj < Bk .

• ti j + tjk − tik = tlm + tmn − tln for all Bi < Bj < Bk and Bl < Bm < Bn.

In the first property, we assume the travel times to be symmetric. The second
property states that if one bay is closer than another bay, the travel time is
shorter. The last equality implies that the cost of stopping at a bay is indepen-
dent of the bay itself and the origin and destination of the visited bays before
and after that bay.

If one takes the layout of a container yard into account, as is illustrated in
Figure 7.4, then the first two properties are realistic. With the last property,
scenarios in which the crane drives at a constant speed and has no or a constant

7.2. Extension to multiple bays 165

B1 B2 B3 B4 B5 B6 B7 B8

RMGC

RMGC

Figure 7.4 Illustration of the numbering of the bays (view from above).

time needed to accelerate en decelerate are included. In the literature, these
types of travel times have been assumed before (Lee and Lee, 2010; Lin et al.,
2015). Nevertheless, we do not include the fact that a crane can accelerate
stronger if it has to drive for a longer distance.

These three properties for the travel time are useful to construct an optimal
path for the crane. Given that the bays that need to be visited are known, then
we can derive nice properties for the optimal path. In Lemma 7.1, it is shown
how an optimal tour can be constructed.

Lemma 7.1. There exists an optimal path P with the following properties:

1. The bays in between the leftmost and rightmost bay are visited in either
increasing or decreasing order.

2. The endpoint of the tour is either the leftmost or rightmost visited bay.

3. The bay visited directly after the start bay is either the leftmost or right-
most visited bay.

Proof. To prove that there exists an optimal path P with these three properties
we go through these properties one by one. For Properties 1 and 2, we consider
an optimal path P ′ for which these properties do not hold and show a contra-
diction. For the last property we show that an optimal path P ′ satisfying the
first two but not the last property can be changed into a path P that satisfies
all three properties without changing the objective function. We denote the
leftmost and rightmost visited bay by, respectively, Bl and Br .

1. For sake of contradiction, let us consider an optimal path P ′ in which the
first property does not hold. Without loss of generality, let us assume

166 7. Limited number of pre-processing moves

that bay Bl is visited before bay Br . Let bay Bm be the first bay that is
visited in path P ′ after bay Bn with n > m. On top of that, we denote
the bay that is directly visited before bay Bn in path P ′ as Bk and the
bay that is visited right after bay Bm as bay Bo .

Hence, the crane travels in path P ′ from bay Bk to Bn to Bm to Bo and
this partial route takes tkn + tnm + tmo time units. If the order of bays
Bm and Bn is swapped, then the total travel time to visit these bays is
tkm + tmn + tno . As it is given that tmn = tnm and that both tkm < tkn
and tno < tmo , we know that swapping the bays Bk and Bl in path P ′

reduces the travel time of that tour, which contradicts the optimality of
path P ′.

2. For sake of contradiction, consider an optimal path P ′ that satisfies the
first property, but that does not end at the rightmost or leftmost visited
bay. Let us denote the bay at which path P ′ ends by Be . Without loss of
generality, we assume that the rightmost visited bay Br is visited later than
the leftmost visited bay Bl . Furthermore, because of the first property,
we assume that the bays between Bl and Br are visited in increasing
order. We will show that visiting bay Be before bay Br reduces the cost
of path P ′. We distinguish between two different cases: the first case is
the situation in which bay Be is the only bay visited after bay Br , and in
the second case, multiple bays are visited after bay Br .

Consider the situation in which bay Be is the only bay visited after bay Br .
Let us change the path P ′ into path P such that bay Be is visited in
between bay Bl and Br . Using the first property, the optimal position in
the path can be easily determined. Let us denote the bay that is visited
before bay Be in the new path by Bd and the bay that is visited after
Be in path P by Bf . Note that bay Bf might be equal to bay Br . The
increase in cost of visiting bay Be in between bay Be and Bf , instead of
going directly from Bd to Bf equals tde + tef − tdf . Moreover, after bay
Br , bay Be does not need to be visited anymore which decreases the cost
by tre . Hence, the difference in cost by visiting bay Be between bays Bd
and Bf instead of after bay Br equals

tde + tef − tdf − tre < tef − tre ≤ 0.

Here, the first inequality holds because tde < tdf . The second inequality
holds with equality if Bf is bay Br . However, if Bf is not Br , then by
definition bay Bf is closer to bay Be than Br is to Be and thus tef < tre .

Now consider the case in which there are one or multiple bays visited in
between bay Br and bay Be . Let bay Bg be the bay visited directly before
bay Be and bay Bh be the bay directly before Bg. Again, we will show

7.2. Extension to multiple bays 167

that the cost of the tour decreases if bay Be is visited between Bd and
Bf . Note that now both Bf and Bh could be the same as bay Br . The
cost in path P ′ for going from Bd to Bf and from Bh via Bg to Be equals

tdf + thg + tge ,

which can be rewritten into

tdf + thg + tge − the + the = tdf + tde + tef − tdf + the

= tde + tef + the

> tde + tef + thg.

The first equality follows from the third property of the travel times and
the final inequality from the fact that the > thg. The last expression is
exactly the cost of the tour if bay Be is visited in between Bd and Bf
instead of after Bh. Therefore, the cost of P ′ can be reduced, which is
in contradiction with the optimality of path P ′.

3. Consider an optimal path P ′ in which the third property does not hold, but
the first two are satisfied. Again we assume without loss of generality that
bay Bl is visited before Br . Let us define the bay that is visited directly
after the start bay of the crane, namely Bs , in P ′ as Bt , and let bay Bu
be the bay visited after bay Bt . Consider a path P in which bay Bt is not
visited directly after bay Bs , but in the order that is suggested with the
first property, between bays Bd and Bf . Again, note that bays Bu and
Bd might be the same as Bl . The costs for going from Bs to Bt to Bu
and from Bd to Bf in path P equals tst + ttu + tdf . In the equation below
we see that these costs are exactly the same as tdt + ttf + tsu, which are
the costs in path P ′ of visiting bay Bt between bays Bd and Bf and bay
Bu directly after Bs :

tst + ttu + tdf = tst + ttu − tsu + tsu + tdf

= tdt + ttf − tdf + tsu + tdf

= tdt + ttf + tsu.

Hence, we can change path P ′ into a path P that satisfies the third
property without changing the length of the path.

All in all, there exists an optimal path that satisfies all three properties described
in the lemma.

Two paths satisfy the properties of Lemma 7.1: one that ends at the bay Bl
and one that ends at the bay Br . The starting bay determines which of the two

168 7. Limited number of pre-processing moves

paths is optimal. The only difference in the length of these two paths is in the
time needed to travel from the starting bay to the second visited bay. By the
third property of Lemma 7.1, this bay is either Br or Bl . The second property
ensures that the other extreme bay that is visited is the last bay of the path.
By the first property, we know that all bays in between bay Br and Bl are visited
in the order they appear on the line. Since the travel times are symmetric, the
costs of visiting the bays in between bays Br and Bl are the same for starting
in bay Br or in bay Bl .

As the only difference between the two paths is the time needed to go from
the starting bay to the second bay, the optimal path visits first of Br and Bl
the bay that is closest to Bs . Then the crane travels to the other bay, Bl or Br ,
and stops at every bay in between that needs to be visited. Consider the bay in
Figure 7.4 and assume that all bays of this figure should be visited. As bay B1

is closer to B4 than B8, the optimal path visits after bay B4 first B1 and then
all bays in increasing order without visiting bay B4 again.

Let Xkl be a binary decision variable indicating whether the crane drives
from bay Bk to bay Bl or not. A bay is never visited more than once because
all moves that would be done in the second or later visits could also be done at
the end of the first visit. Consequently, the constraint (5.3) for a single bay is
replaced by the following constraint if there are multiple bays:

m∑
k=1

m∑
l=1

tklXkl + τ |P| ≤ T.

7.2.2 Solution method for multiple bays

In Sections 7.1.1 and 7.1.3, we have given an optimal algorithm and two heuris-
tic methods to find pre-processing moves for a single bay. We use these methods
in this section to derive a solution method for the extension to multiple bays.
The idea of the method for multiple bays is to calculate, for each bay and num-
ber of pre-processing moves, the improvement that can be made by performing
that number of pre-processing moves in that bay. For a single bay k and any
number of λk pre-processing moves, the (optimal) pre-processing moves can
be determined using the methods from Sections 7.1.1 and 7.1.3.

Let us define S(Bk , λk) as (an estimation of) the expected number of
relocation moves for bay Bk after λk pre-processing moves have been per-
formed. Moreover, for a specific bay Bk , we can also determine the maxi-
mum number of pre-processing moves that will be done for that bay, which
we denote by mk . First of all, we know that mk cannot exceed ρ because
of the time limit. Second, if with λk pre-processing moves S(Bk , λk) = 0,
then it is useless to perform more than λk pre-processing moves. In other

7.2. Extension to multiple bays 169

words, mk := min{ρ, arg minµ{S(Bk , µ) = 0}}. Hence, the maximum number
of pre-processing moves that can be performed in a bay is different per bay.
Consequently, the values that λk can take is different for each bay k .

For each bay Bk we can calculate the value of S(Bk , λk) for λk =

0, 1, . . . , mk . If the optimal pre-processing moves are performed and the value
of S(Bk , λk) is the optimal number of relocation moves, then S(Bk , λk) ≥
S(Bk , λk + 1). However, if either the pre-processing moves or the estima-
tion of the relocation moves are not optimal, the inequality does not always
hold. Nevertheless, if the estimates S(Bk , λk) are calculated in an iterative
order starting at λk = 0, then one can set the value S(Bk , λk + 1) equal to
S(Bk , λk) if S(Bk , λk + 1) > S(Bk , λk). Hence, we know that for each bay Bk
it should hold that S(Bk , 0) ≥ S(Bk , 1) ≥ . . . , S(Bk , mk).

Using the values for S(Bk , λk), we can formulate an ILP to decide upon the
number of pre-processing moves for each bay and the crane’s route. Let Ykλk
be a binary variable that equals one if λk pre-processing moves are performed in
bay Bk . Furthermore, let Xjk be a binary variable indicating whether the crane
travels from bay Bj to bay Bk or not. In Lemma 7.1, it has been shown that,
given a set of bays that needs to be visited, an optimal path has some structural
properties. Therefore, we know that either the leftmost bay (Bl) or rightmost
bay (Br) is the first bay to be visited after the initial bay and the other of the
two is the last bay that is visited. We give the starting bay an index of 1. We
could number the other bays either from left to right or from right to left. If we
use the ILP below to solve both numberings, then the solution with the lowest
objective function is optimal. All in all, the SCRPCPP for multiple bays can be
formulated as the following ILP:

min

b∑
k=1

mk∑
λk=0

S(Bk , λk)Ykλk (7.1)

subject to

mk∑
λk=0

Ykλk ≤ 1 k = 1, . . . , b (7.2)

mk∑
λk=1

Ykλk ≤
b∑
l=1

Xlk k = 2, . . . , b (7.3)

b∑
o=1

Xlo ≤
b∑
k=1

Xkl l = 2, . . . , b (7.4)

b∑
k=1

b∑
l=1

tklXkl +

b∑
k=1

mk∑
λk=0

τkYkλk ≤ T (7.5)

170 7. Limited number of pre-processing moves

Xi j = 0 i = 1, . . . , b j = 1, . . . , i (7.6)

Xi j ∈ {0, 1} i = 1, . . . , b j = 1, . . . , b (7.7)

Ykλk ∈ {0, 1} k = 1, . . . , b λk = 0, . . . , mk . (7.8)

In the objective function in (7.1), the sum of S(Bk , λk) over all bays and
possible pre-processing moves in each bay is taken. In constraint (7.2), it is
forced that only a single number of pre-processing moves can be performed for
each bay. The X- and Y -variables are coupled in constraint (7.3) by forcing all
Ykλk to be zero if the crane does not visit bay k . Note that this does not hold
for bay 1, because the crane starts in that bay. Constraint (7.4) ensures that
the crane can only leave a bay if it has arrived at that specific bay. Again, this
does not apply to the starting bay. The first sum in constraint (7.5) represents
the total travel time of the crane between the bays, and the second sum of
this constraint gives the total time the crane spends on moving containers
inside the bays. Thus, in constraint (7.5), the total time the crane uses in
the pre-processing phase is limited to T . In constraint (7.6), the properties
of Lemma 7.1 are exploited. There exists an optimal tour in which the bays
are visited in the way they are numbered. Finally, constraints (7.7) and (7.8)
ensure that all variables are binary.

In the ILP above, the fact that the maximum number of pre-processing
moves in a bay is different per bay is used. One could also decide to refrain
from calculating mk for each bay k and decide to set mk equal to ρ. This
decision has the advantage that notation can be simplified because λk and mk
do not depend on k anymore. However, this comes at the costs of having more
Y -variables, and thus, we have decided not to do so.

7.3 Numerical results
In this section, numerical experiments are conducted to compare the three
solution methods for a single bay presented in the previous section: the TC
heuristic, the BB-H method, and the BB-O method. Moreover, the gain that
can be obtained by investigating multiple bays is investigated. First, we com-
pare in Section 7.3.1, the eight different variants of the TC heuristic. The
results of the TC heuristic are compared with the branch-and-bound methods
in Section 7.3.2. Finally, we compare the effects of extending the problem to
multiple bays in Section 7.3.3.

Similar to Chapter 6, all the numerical experiments are done using the set of
instances for the SCRP of Ku and Arthanhari (2016). We decided to restrict
the experiments to the instances with five and ten stacks. Furthermore, we
only focus on the instances with a fill rate of 67%, because they have more
containers per stack. Hence, we can assume that the instances with a fill rate

7.3. Numerical results 171

1 Correct, No improvement, Ratio
2 Correct, No improvement, Greedy
3 Correct, Improvement, Ratio
4 Correct, Improvement, Greedy
5 Semi-correct, No improvement, Ratio
6 Semi-correct, No improvement, Greedy
7 Semi-correct, Improvement, Ratio
8 Semi-correct, Improvement, Greedy

Table 7.1 Numbering of the TC heuristic.

of 67% are more complicated than those with a fill rate of 50%. Finally, we
solve every instance for three different number of pre-processing moves. We let
the number of pre-processing moves depend on the number of containers in a
bay. We set the number of pre-processing moves to 25%, 50%, and 75% of the
total number of containers in a bay. It is important to note that if the number
of pre-processing moves equals 25% of the total number of containers, some
instances might already be reshuffled so that no relocation moves are needed.
In that case, performing more pre-processing moves is not useful. However,
there will also be instances for which still relocation moves will be needed if the
number of pre-processing moves equals 75% of the total number of containers.

7.3.1 TC heuristic

In this section, the eight different variants of the TC heuristic, as discussed in
Section 7.1.1, are compared with each other. In order to refer easily to the
variants of the TC heuristic, we have given each variant of the TC heuristic
a number which is given in Table 7.1. In Table 7.2, the effect of using eight
variants of the TC heuristic is investigated. For each variant and instance,
we calculated the number of expected relocation moves of the bay after the
pre-processing phase. Calculating the optimal number of expected relocation
moves for some of the instances takes already more than an hour. Hence, we
decided to estimate the expected number of relocation moves by solving 10,000
realizations of the retrieval order using the EM heuristic.

On the rows of Table 7.2 are different subsets of the instances and on the
columns are the number of variants of the TC heuristic that are used. Both the
best combination of variants and the percentage difference with the objective
function if all eight variants were used are given. For example, if all instances
as described above, are considered, then heuristic 7 is the best if only a single
variant is allowed. The percentage difference in objective function between the
solution of heuristic 7 and the solution using all eight variants is 16.05%.

There are three main conclusions to be drawn from Table 7.2. The first is
that the TC heuristic solution dramatically improves in the beginning by adding
more variants, but that the contribution of the sixth, seventh, and eight best

172 7. Limited number of pre-processing moves

Instances # heuristics 1 2 3 4 5 6 7
All % diff 8 heur. 16.05% 5.16% 1.75% 0.93% 0.40% 0.13% 0.01%

Best heuristics 7 7,8 1,7,8 3,5,7,8 3,5,6,7,8 1,3,5,6,7,8 1,3,4,5,6,7,8
ρ = 0.25C % diff 8 heur. 5.08% 1.52% 0.39% 0.17% 0.05% 0.01% 0.01%

Best heuristics 8 5,8 5,7,8 2,5,7,8 2,3,5,7,8 3,4,5,6,7,8 1,3,4,5,6,7,8
ρ = 0.5C % diff 8 heur. 20.92% 6.42% 1.62% 0.65% 0.13% 0.05% 0.01%

Best heuristics 7 7,8 1,7,8 1,6,7,8 1,3,6,7,8 1,3,4,6,7,8 1,3,4,5,6,7,8
ρ = 0.75C % diff 8 heur. 40.09% 16.82% 6.18% 3.26% 1.20% 0.17% 0.03%

Best heuristics 3 3,8 3,5,8 1,3,7,8 1,3,6,7,8 1,3,5,6,7,8 1,3,4,5,6,7,8
H = 3 % diff 8 heur. 10,45% 2.55% 1.09% 0.55% 0.09% 0.00% 0.00%

Best heuristics 8 7,8 1,7,8 3,5,7,8 2,3,5,7,8 2,3,5,6,7,8 2,3,4,5,6,7,8
H = 4 % diff 8 heur. 13.16% 4.26% 2.09% 1.03% 0.53% 0.06% 0.03%

Best heuristics 8 3,8 3,6,8 3,5,6,8 3,5,6,7,8 3,4,5,6,7,8 1,3,4,5,6,7,8
H = 5 % diff 8 heur. 13.93% 3.81% 0.94% 0.41% 0.13% 0.02% 0.00%

Best heuristics 8 5,8 1,7,8 1,3,7,8 1,3,6,7,8 1,3,5,6,7,8 1,3,4,5,6,7,8
H = 6 % diff 8 heur. 13.01% 5.44% 1.97% 0.87% 0.34% 0.11% 0.02%

Best heuristics 7 7,8 1,7,8 3,5,7,8 3,5,6,7,8 1,3,5,6,7,8 1,3,4,5,6,7,8
S = 5 % diff 8 heur. 13.47% 4.51% 1.76% 0.71% 0.41% 0.13% 0.02%

Best heur. 8 7,8 1,7,8 1,6,7,8 1,5,6,7,8 1,3,5,6,7,8 1,3,4,5,6,7,8
S = 10 % diff 8 heuristics 16.65% 5.78% 1.54% 0.64% 0.26% 0.13% 0.01%

Best heuristics 7 7,8 3,5,8 3,5,7,8 3,5,6,7,8 3,4,5,6,7,8 1,3,4,5,6,7,8

Table 7.2 Comparison of different variants of the TC heuristic for different subsets
of the instances.

variants is marginal. For example, if the number of pre-processing moves is
75% of the total number of containers in the bay (ρ = 0.75C), heuristic 3 is
the best. The solution of heuristic 3 is more than 40% worse than the solution
with all eight variants. However, when allowing three variants, the solution is
already only 6.18% off from the solution using eight variants.

A second conclusion is that the number of stacks or the maximum height of
a stack has no significant impact on the number of heuristics needed to obtain a
solution close to the solution with eight variants. However, the number of pre-
processing moves has a big impact on the number of heuristics needed. If the
number of pre-processing moves is only 25% of the total number of containers,
then the variants do not have many options to vary in the suggested pre-
processing moves. In case the number of pre-processing moves is 75% of the
total number of containers, then the number of possible different solutions is
much bigger.

The third main conclusion is that no variant of the TC heuristic outperforms
the others in all subsets of the instances. Heuristic 7 is the best for all instances,
but that is partially caused by the fact that it performs well on the instances
with more relocation moves, namely H = 6 and S = 10. Although heuristic 7 is
the best for S = 10 if only a single heuristic is selected, the best three heuristics
do not include 7. Another observation is that if two heuristics can be chosen,
then heuristic 8 is always one of the two.

All in all, it is beneficial to include multiple variants in the TC heuristic.
Although certain heuristics give better results than others, no variant is outper-
forming all other heuristics for every type of instance. In the remainder of the

7.3. Numerical results 173

ρ = 0 ρ = 0.25C ρ = 0.5C ρ = 0.75C

BB-O BB-H TC BB-O BB-H TC BB-O BB-H TC

H = 3

Opt obj value 92.3 49.9 50.6 50.9 8.5 8.5 11.5 2 2 3
EM obj value 92.3 49.9 50.6 50.9 8.5 8.5 11.5 2 2 3
Avg run time (s.) - 0.9 0.9 0.9 0.9 0.9 0.9 1.2 0.9 0.9
Solved - 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30

H = 4

Opt obj value 167.4 95.2 97.5 99.5 39.6 41.3 45.3 7.0 7.2 25.3
EM obj value 169.4 95.3 97.6 99.6 39.6 41.6 45.3 7.0 7.2 25.3
Avg run time (s.) - 3.7 1.5 1.4 3.2 1.5 1.4 53.7 7.9 1.4
Solved - 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30

H = 5

Opt obj value - 187.0 191.4 193.1 101.2 95.7 115.6 58.2 35.3 72.6
EM obj value 314.4 191.2 202.0 198.6 102.8 98.7 117.1 58.8 35.3 72.8
Avg run time (s.) - 1200.6 2.2 2.2 1441.2 6.2 2.4 2864.7 1210.4 2.3
Solved - 22/30 30/30 30/30 22/30 30/30 30/30 8/30 22/30 30/30

H = 6

Opt obj value - - - - 199.9 145.5 210.1 136.7 92.8 140.7
EM obj value 439.5 286.6 292.8 312.6 204.8 149.4 215.4 139.3 95.3 143.3
Avg run time (s.) - 3018.0 15.1 2.8 3491.0 674.6 2.8 3483.8 3371.1 3.0
Solved - 6/30 30/30 30/30 2/30 27/30 30/30 1/30 2/30 30/30

Table 7.3 Sum of objective function and average running times of the BB-O, BB-H,
and TC solution methods over thirty instances for S = 5 and fill rate 67% for different
stack heights and number of pre-processing moves.

paper, all eight variants of the TC heuristic will be applied to obtain the best
possible results. However, if time does not allow to run all eight variants, only
including the best four or five heuristics is probably the best option.

7.3.2 Branch-and-bound methods

In this section, the TC heuristic performance is compared with the two branch-
and-bound methods introduced in Section 7.1.3: BB-H and BB-O. Again, we
only focus on the set of instances of Ku and Arthanhari (2016) with five and ten
stacks and a fill rate of 67%. In Table 7.3, the TC, BB-H, and BB-O methods
are compared for the instances with five stacks. In Table 7.4, the same is done,
but for the instances with ten stacks. Similar to the previous section, we set
the maximum number of pre-processing moves to 25%, 50%, and 75% of the
total number of containers in a bay. Moreover, we also include a column with
ρ = 0 to investigate the improvement made in the pre-processing phase. For
each combination of stack height and the maximum number of pre-processing
moves, there are thirty instances, and for each instance, the maximum running
time for the pre-processing phase is set to one hour.

We report in Tables 7.3 and 7.4 the average running time per instance. In
calculating the average running time, we include the instances for which the
pre-processing phase was stopped after one hour. For the TC heuristic, we ran
all eight heuristics, which all have about the same running time. The running
time of the TC heuristic reported in Tables 7.3 and 7.4 could be decreased
by solving only a subset of the eight variants, but in that case, the solution
quality also decreases as we have seen in Section 7.3.1. Furthermore, we show
in the row ‘Solved’ for how many of the thirty instances the pre-processing
phase terminated within one hour. This number is especially important for the

174 7. Limited number of pre-processing moves

ρ = 0 ρ = 0.25C ρ = 0.5C ρ = 0.75C

BB-O BB-H TC BB-O BB-H TC BB-O BB-H TC

H = 3

Opt obj value 158.2 40.5 40.7 50.0 1.0 1.0 2.5 0 0 0
EM obj value 158.4 40.5 40.7 50.0 1.0 1.0 2.5 0 0 0
Avg run time (s.) - 3.3 2.7 2.6 150.5 144.0 3.5 4.1 4.1 4.1
Solved - 30/30 30/30 30/30 29/30 29/30 30/30 30/30 30/30 30/30

H = 4

Opt obj value - 137.3 138.8 157.3 33.5 26.5 43.0 3.5 2.5 3.5
EM obj value 308.8 137.5 139.3 157.6 33.5 26.5 43.0 3.5 2.5 3.5
Avg run time (s.) - 1028.3 13.2 4.8 2708.4 2061.7 5.8 487.9 487.2 6.9
Solved - 25/30 30/30 30/30 15/30 9/30 30/30 26/30 26/30 30/30

H = 5

Opt obj value - - - - 125.7 104.0 128.2 48.6 47.6 48.6
EM obj value 485.7 271.9 253.4 284.5 125.7 104.0 128.2 48.6 47.6 48.6
Avg run time (s.) - 3094.4 331.8 7.0 3600.0 3564.3 9.4 3001.9 3001.7 10.7
Solved - 7/30 28/30 30/30 0/30 1/30 30/30 5/30 5/30 30/30

H = 6

Opt obj value - - - - - - - - - -
EM obj value 696.0 425.5 394.8 432.5 230.6 198.4 230.6 111.3 109.8 111.3
Avg run time (s.) - 3600.0 1252.4 9.0 3600.0 3600.0 11.8 3600.0 3600.0 13.0
Solved - 0/30 22/30 30/30 0/30 0/30 30/30 0/30 0/30 30/30

Table 7.4 Sum of objective function and average running times of the BB-O, BB-H,
and TC solution methods over thirty instances for S = 10 and fill rate 67% for different
stack heights and number of pre-processing moves.

BB-O because if this method solves an instance within one hour, the solution is
optimal. Therefore, if all thirty instances are solved, then the sum of objective
values is optimal.

In order to calculate the objective function of the SCRPCPP, we need to
calculate the remaining expected number of relocation moves after the pre-
processing phase. We calculate these expected relocation moves in two ways:
we use the optimal algorithm and the EM heuristic. We set the maximum run-
ning time for the relocation phase to one hour, and in that case, the relocation
phase cannot be solved to optimality for the larger instances. Therefore, we
also use the EM heuristic to obtain an estimate for the objective function for
these instances. For the EM heuristic, we use 10,000 simulations to calculate
the average number of relocation moves of an instance.

The first conclusion from Tables 7.3 and 7.4 is that the maximum height of
the stacks has the biggest influence on the running time for all methods. For
example, the number of containers in a bay is the same for S = 5 and H = 6,
and S = 10 and H = 3. However, in the latter, the average running time
of the optimal method is only a few seconds. In contrast, in the former, the
optimal method could only solve six instances to optimality within one hour.
Furthermore, the running times of the BB-O and BB-H methods also increase
significantly with the maximum number of pre-processing moves.

For some parameter settings, for example, S = 5, H = 5, and ρ = 0.5C and
S = 10, H = 4, and ρ = 0.25C, the BB-H method can still solve the instances
within seconds, whereas the BB-O method cannot find the optimal solution for
every instance within one hour. There are other parameter settings, especially
when S = 10, for which also the BB-H method cannot solve all instances
within one hour. Consequently, for instances in which the maximum stack size

7.3. Numerical results 175

or the number of pre-processing moves is large, only the running time of the
TC heuristic is small enough to be applied in practice.

We also see that if the optimal expected relocation moves could be calcu-
lated within one hour, the objective value approximated by the EM heuristic is
always within 5% of the optimal objective function. If the number of containers
in a bay is large, then it is impossible to calculate the optimal expected number
of relocation. More interestingly, this is also the case when fewer pre-processing
moves have been applied. For example, for S = 5 and H = 6, the optimal re-
location moves could only be calculated for ρ = 0.5C and ρ = 0.75C, but not
for ρ = 0 and ρ = 0.25C. Hence, we can conclude that the relocation phase is
simplified if more pre-processing moves are applied.

It is important to note that if the BB-O method does not solve all instances
within one hour, it is often outperformed by the BB-H method. At first, this
might be counterintuitive, but it can be explained by the fact that the BB-H
method needs less time to investigate the quality of a node in the branch-and-
bound tree. In the BB-O method, to investigate the quality of a node, the
optimal number of expected relocation moves needs to be calculated, whereas
only an estimation of the number of relocation moves is used in the BB-H
method. As a result, the BB-H method visits more nodes in the branch-and-
bound tree than the BB-O method and finds better solutions.

The instances used for the numerical experiments in this chapter are the
same as in Chapter 6. Although it does not make sense to compare the objective
functions for the two different problems, it is interesting to investigate the
optimal branch-and-bound algorithm’s running time. In Table 6.1, the running
time for the optimal branch-and-bound algorithm for the SCRPPP is given. If
we compare these results with the running time of the BB-O in Tables 6.1
and 7.3, then we can conclude that we have found more optimal solutions for
the SCRPCPP than for the SCRPPP. For example, for the instances with ten
stacks and a fill rate of 67%, only a few optimal solutions for the SCRPPP
were found within one hour if H was four or larger. In Table 7.4, we see that
for H = 4, the BB-O still solves the majority of the instances.

We have not looked into the reason why the branch-and-bound algorithm
is faster for the SCRPCPP than for the SCRPPP, but we hypothesize that the
difference lies in the depth of the tree. For the SCRPCPP, the depth of the tree
is given by the number of pre-processing moves, whereas for the SCRPPP, it
is derived from dividing the upper bound by α. Especially for small values of α,
the depth can be quite large. Furthermore, for the SCRPCPP, it is expected
that the best solutions can be found in the tree’s leaf nodes. Hence, we can
investigate these solutions early in the search. However, for the SCRPPP, it is
hard to say how many pre-processing moves are used in the optimal solution.

176 7. Limited number of pre-processing moves

If one wants to compute the optimality gap of the BB-H or TC method,
it is important to realize that this can be done in two different ways that give
entirely different results. For instance, for S = 5, H = 4, and ρ = 0.75C,
one could compare the values 7.0 and 25.3 and argue that the optimality gap
of the TC heuristic is more than 300%. However, one could also look at the
reduction of the objective function, compared with ρ = 0. In this situation, the
optimality gap of the TC heuristic is only about 10%.

Comparing the objective function for different values of ρ, we can also con-
clude that the first pre-processing moves yield the largest reduction in the num-
ber of relocation moves. For instance, looking at the difference of the objective
function between ρ = 0 and ρ = 0.75C, we see that about 40% to 50% of this
improvement is made for ρ = 0.25C. Whereas the improvement made between
ρ = 0.5C and ρ = 0.75C is only about 10% to 15%. The observation that
the first pre-processing moves yield a bigger reduction in the objective function
than later pre-processing moves supports the idea to investigate multiple bays.

7.3.3 Multiple bays

If the idea of pre-processing is extended to multiple bays, the time units that are
used are essential. We use as closely as possible the time units used in previous
works in the literature (Lee and Lee, 2010; Lin et al., 2015). We assume that
the time to move a container inside a bay is 30 seconds. Furthermore, the time
to accelerate and decelerate the crane is set to be 40 seconds, and the time to
move the crane a single bay is 3.5 seconds per bay. For example, going with
the crane to an adjacent bay takes 43.5 seconds, and to a bay that is separated
by two other bays in between takes 50.5 seconds.

As we are the first to study any variant of the SCRP in a multiple bay
setting, no benchmark instances are available. We have decided to use the
same instances from Ku and Arthanhari (2016) as for the single-bay case. For
each parameter setting, thirty single-bay instances are available. An instance
for multiple bays consists out of twenty randomly selected instances of these
thirty instances. We investigate the instances with five and ten stacks and with
a maximum height of five containers. For both of these parameter settings,
we have created thirty instances consisting of twenty bays. Furthermore, we
compare the effect of the starting position of the crane. The crane can be
positioned at the beginning or in the middle of the yard. If the crane is positioned
at the beginning of the yard, fewer bays are located nearby than if it is located
in the center of the yard. Finally, we use four different variants of T , namely
T = 300, T = 600, T = 900 and T = 1800, which corresponds to five, ten,
fifteen and thirty minutes.

In Table 7.5, the results of the ILP of Section 7.2.2 are shown for the

7.3. Numerical results 177

S = 5 S = 10

Start crane Begin Middle Begin Middle

T = 300

pre-proc. moves 7.80 7.63 7.73 7.70
bays visited 1.43 1.27 1.57 1.67
Reduction # reloc. moves 9.52 9.45 9.71 10.09

T = 600

pre-proc. moves 15.73 15.70 15.77 15.70
bays visited 2.93 2.70 2.60 2.83
Reduction # reloc. moves 19.05 18.75 19.37 19.62

T = 900

pre-proc. moves 24.40 24.10 23.87 24.37
bays visited 3.83 3.70 3.80 3.83
Reduction # reloc. moves 28.11 27.51 28.67 28.97

T = 1800

pre-proc. moves 48.30 48.43 49.70 49.83
bays visited 8.03 7.77 7.00 6.77
Reduction # reloc. moves 53.26 52.49 54.76 54.53

Table 7.5 The average number of pre-processing moves, number of bays visited and
the improvement made in the objective function for different values of T , S, and the
starting position of the crane.

parameter set described above. For the pre-processing phase, the TC heuristic
is used, and to estimate the number of relocation moves, we have used the EM
heuristic based on 10,000 simulations. We have chosen to do so because each
bay has to be solved with possibly a large number of pre-processing moves. One
conclusion that can be drawn from Table 7.5 is that the results are somewhat
similar for instances with five and ten stacks per bay. However, with ten stacks,
the number of relocation moves can be reduced slightly more.

There are two possible explanations of why the objective function can im-
prove more for instances with ten stacks than five stacks. The first is that
every initial bay has, on average, a larger number of relocation moves. Thus,
performing more pre-processing moves in a single bay is likely to give a greater
improvement in the objective function. This effect is the most clearly seen for
T = 1800. For S = 10, more pre-processing moves per bay are performed than
for S = 5.

A second explanation is that in a bay with ten stacks, a poorly-placed con-
tainer is more likely to be placed correctly using a single pre-processing move
than in a bay with five stacks. This property is caused by the fact that there
are more potential stacks in a bay with ten stacks than in a bay with five
stacks. Consequently, if S = 5, it is often the case that no pre-processing
moves are made in the starting bay, whereas if S = 10, usually at least a
few pre-processing moves are performed in the starting bay. The advantage of
performing pre-processing moves in the starting bay is that no travel time is
needed. Hence, if the time is limited, for instance, for T = 300, we see that
the instances with ten stacks have more bays visited.

If the crane is positioned at the center of the yard, then the other bays are on

178 7. Limited number of pre-processing moves

average closer than if the crane starts at the beginning of the yard. This position
might be beneficial if only one or two bays could be visited. Nevertheless, if
either the leftmost or rightmost bay is close to the end at which the crane is
positioned, then starting at the beginning of the yard is more beneficial, because
the crane does not need to travel that far in the beginning. If the available time
is larger and more bays are visited, the leftmost and rightmost visited bays are
likely closer to the end of the yards. Hence, we see that for T = 1800, the
improvement is larger if the crane is positioned at the beginning of the yard.
Obviously, these results heavily depend on the values for t and τ .

Furthermore, as expected, the improvement per pre-processing move de-
creases if T increases. If T is small, only the very best pre-processing moves
are performed, whereas if T gets larger, then also less profitable pre-processing
moves are performed. However, even for T = 1800, the improvement per pre-
processing move is still larger than one, meaning that one pre-processing move
reduces, on average, the number of relocation moves with more than one. If
one does not allow the crane to move and let it only be positioned above a single
bay, this improvement is much lower. For instance, if T = 900, the crane could
perform thirty pre-processing moves, which yields an average improvement of
10.22 for S = 5 and when S = 10 of 15.67. However, even when the available
time is only 300, already a substantial improvement can be made. In that case,
ten pre-processing moves can be performed for a single bay, which yields an
improvement of 7.05 and 8.34 for, respectively, S = 5 and S = 10.

A final remark to be made concerns the running time of the extension to
multiple bays. The ILP (7.1)-(7.8) runs in less than a second for the instances
we have considered. Hence, the only time-consuming part is to calculate the
values of S(Bk , λk) for each bay Bk and the number of pre-processing moves λk .
Here a trade-off has to be made between the solution quality and the running
time. If one uses a single variant of the TC heuristic for the pre-processing phase
and estimates the number of relocation moves by the rule-based method, then
even for the largest instances calculating S(Bk , λk) takes at most two seconds.
Nevertheless, for better solution quality, more computing time is needed. As
the values of S(Bk , λk) do not depend on the other bays, it could be possible
in practice to calculate them offline. Only if a container arrives or leaves in a
bay, the values of S(Bk , λk) have to be updated.

7.4 Conclusion
In this chapter, we have studied solution methods for the SCRPCPP. We have
adjusted the branch-and-bound algorithm of the previous chapter to solve this
problem to optimality. However, for the SCRPCPP, this method’s running time
is also too large to be used in practice. Therefore, we have also developed two

7.4. Conclusion 179

heuristics. The first heuristic, the TC heuristic, is fast, but the gap between
its solution and the optimal solution is for more difficult instances large. The
BB-H heuristic is based on the optimal branch-and-bound algorithm. However,
as it does not calculate the optimal number of relocation moves for a bay, its
solutions are not optimal. However, its running time is also significantly lower
than the optimal algorithm.

We have also developed a method for the pre-processing phase of a complete
yard consisting of multiple bays. Using multiple bays, one can make a significant
improvement per pre-processing move even when a large amount of time is
given for the pre-processing phase. A direction for further research could be
to improve the formulation for multiple bays. In the current method, for each
combination of bays and the possible number of pre-processing moves, one has
to calculate the improvement, which could be time-consuming. A fast method
to decide upon the allocation of the number of pre-processing moves to a bay
based on the initial layout would improve the current method. Nevertheless, in
allocating the pre-processing moves, one should also consider the position of
the bay in the yard. Furthermore, this new method might allow for moving a
container from one bay to the other.

The TC and BB-H heuristic rely on the rule-based estimation method to
estimate the number of relocation in a bay. If a better estimation method is
found, then the performance of both methods can be improved. Furthermore,
at the moment, the BB-O and BB-H heuristic do not use advanced branching
decisions, it might also be worth investigating if their performance could improve
if better branching decisions were used. Finally, one could speed up the BB-H
heuristic by only constructing a partial tree or using a beam search approach to
focus only on the tree’s promising parts. It has to be investigated if the solution
quality of such a method is much lower than the current BB-H heuristic.

The BB-H and TC heuristic can also be an inspiration for heuristics for the
SCRPPP. The idea of heuristically calculating the expected number of reloca-
tion moves in a branch-and-bound tree can also be applied for the SCRPPP.
However, as the optimal branch-and-bound tree had a longer running time for
the SCRPPP than for the SCRPCPP, it is expected that the same will hold
for the BB-H. The TC heuristic and the local search heuristic for the SCRPPP
share that they select the best solution out of multiple solutions. The difference
is that the local search heuristic from Chapter 6 uses randomization to create
different solutions, and in the TC heuristic, different decisions are taken.

Randomization has the advantage that it is easier to create many different
solutions. However, the drawback is a lack of explainability and consistency. If
a solution is randomly created, it is hard to tell how this solution was created.
Moreover, it is difficult to investigate what steps are often taken in a good

180 7. Limited number of pre-processing moves

solution. Finally, the heuristic might produce a different solution if it is run a
second time for the same instance, which might be undesirable. These differ-
ences make it worthwhile to develop a randomized heuristic for the SCRPCPP
and a deterministic multi-heuristic for the SCRPPP.

In the problem formulation for the SCRPPP and the SCRPCPP, we have
assumed that an RMGC was used to stack containers. However, some termi-
nals use different equipment, such as reach stackers, to handle the containers.
The concept of pre-processing moves is still relevant even if different termi-
nal equipment is used. Nevertheless, it might be that certain assumptions are
not valid anymore. For example, the assumption that the time of relocating is
independent of the stack to which a container is relocated.

8
Approximation algorithms for cluster capacitated
problems

8.1 Introduction
All problems studied in the previous chapters are NP-hard, so we have developed
heuristics to solve larger instances of these problems in a reasonable amount
of time. The quality of these heuristics has been investigated using numerical
experiments. Although these experiments are carefully conducted on a broad
range of instances, it could be that one of the heuristics has bad performance
on a new type of instance. Only for the two-stage heuristic in Chapter 2,
we were able to provide a theoretical bound for the objective function (see
Lemma 2.5). Nevertheless, that bound depends on the input parameter, so by
choosing certain parameters, the gap between the optimal and heuristic solution
could theoretically be arbitrarily bad.

In this chapter, we change our focus towards approximation algorithms,
which are defined as follows (Williamson and Shmoys, 2010).

Definition 8.1 (Approximation algorithm). An α-approximation algorithm is a
polynomial-time algorithm that, for all instances of the problem, produces a
solution whose value is within a factor α of the optimal solution.

The value α is referred to as the approximation ratio or performance guar-
antee. For maximization problems, the approximation ratio is always less than
or equal to 1, whereas α ≥ 1 for minimization problems. For example, a 2-
approximation algorithm returns, for any instance of a minimization problem, a
solution that is at most twice the optimal solution.

A key problem in approximating the optimal solution is that we usually do not
know the optimal solution. Fortunately, if a problem can be formulated as an
ILP, then its linear relaxation provides a lower bound for the optimal solution for
minimization problems and an upper bound for maximization problems. Hence,

This chapter is based on G. Schäfer and B.G. Zweers. Maximum coverage with cluster
constraints: an LP-based approximation technique. In Proceedings of Workshop on Approxi-
mation and Online Algorithms, Lecture Notes in Computer Science, 2020. To appear.

182 8. Approximation algorithms for cluster capacitated problems

an often-used technique is to round the fractional solution of the LP relaxation
to an integral solution. In this rounding, one has to make sure that the value
of the integral solution remains within a certain factor of the value of the LP
relaxation and thus the optimal solution value. In this chapter, we will focus on
the development of LP-based approximation algorithms.

Many problems addressed before in this dissertation share the characteris-
tic of having multiple levels of capacity. For instance, consider the problems
discussed in Chapters 2 and 3. The number of containers that could be trans-
ported on a barge was constrained by both the capacity of a barge and the
number of containers loaded on a terminal. Another example is the extension
of the SCRPCPP to multiple bays in Chapter 7. The number of pre-processing
moves that could be performed in a single bay was both limited by the maximum
time for the pre-processing phase and the number of pre-processing moves after
which the bay is perfectly ordered.

Many classical problems in the literature encompass only a single tier of
capacity constraints. For instance, more than 20 variants of the Knapsack
Problem are discussed in Kellerer et al. (2004), but none of these have mul-
tiple levels of capacities. For the sake of concreteness, consider the Multiple
Knapsack Problem (MKP). In this problem, the goal is to find a most profitable
selection of items that can be assigned to the multiple knapsacks without vi-
olating their capacities, i.e., there is a single capacity constraint per knapsack
that needs to be satisfied. This problem can be extended by partitioning the
knapsacks into clusters, each imposing an additional capacity constraint on all
knapsacks contained in it. This extension results in a new optimization problem
that we call the Multiple Knapsack Problem with Cluster Constraints (MKPC).

In this chapter, we present a technique that can be used to extend LP-based
approximation algorithms for capacitated problems to problems with an addi-
tional cluster capacity. Our idea is to extend the ILP formulation of the original
problem (i.e., without cluster capacities) by incorporating the respective cluster
capacity constraints. However, crucially, these new constraints are set up in
such a way that an optimal solution to the LP relaxation of this formulation de-
fines some reduced capacities for each knapsack individually. These constraints
enable us to reduce the cluster capacitated problem to the respective original
problem with knapsack constraints only. We then use an LP-based approxima-
tion algorithm for the original problem to round the optimal LP solution. This
rounding requires some care because of the reduced capacities.

We apply this technique to three new problems, namely the MKPC, the
Maximum Coverage Problem with Cluster Constraints (MCPC), and the Ca-
pacitated Facility Location Problem with Cluster Constraints (CFLPC). The
MCPC is a generalization of the MKPC in which we are given a collection of

8.1. Introduction 183

subsets of items. Each subset is associated with some cost, and each item has
a profit. The goal is to determine a feasible assignment of a selection of the
subsets to the knapsacks such that both the knapsack and the cluster capaci-
ties are not exceeded, and the total profit of all items covered by the selected
subsets is maximized. For this problem, we derive a 1

3

(
1− 1

e

)
-approximation

algorithm. In deriving the approximation algorithm for the MCPC, we use a
new 1

2

(
1− 1

e

)
-approximation algorithm for the Maximum Coverage Problem

with Knapsack Constraints (MCPK), which is the problem arising from MCPC
without cluster constraints. In this algorithm, we adapt the pipage rouding
technique of (Ageev and Sviridenko, 2004) to partially round the solution of
the LP relaxation.

The MCPC is a generalization of the MKPC, and for the latter problem
we can improve the approximation ratio from 1

3

(
1− 1

e

)
to 1

3 . If the clusters
satisfy a certain isolation property, this performance guarantee can be improved
further to 1

2 by applying a more sophisticated iterative rounding technique. This
isolation property implies that after removing an arbitrary set of clusters, there
always exists an isolated cluster. An isolated cluster is a cluster to which, in the
LP relaxation, no items are assigned that are also assigned to smaller knapsacks.

For the MCPC and MKPC, we lose something in the approximation ratio
compared to the problems without cluster capacity. However, the CFLPC is
different because we do not lose anything in the performance guarantee for
this problem. In Aardal et al. (2015), a (4.562 + ε)-approximation algorithm
is presented for the Capacitated Facility Location Problem (CFLP) with fixed
opening costs. We will show that this algorithm can be used to derive a (4.562+

ε)-approximation algorithm for the CFLPC.

The remainder of this chapter is organized as follows. First, we review
in Section 8.2 the relevant literature. In Section 8.3, we give the preliminaries
needed for formally describing the MCPC and its generalizations. In Section 8.4,
we first study the MCKP and present a 1

2

(
1− 1

e

)
-approximation algorithm for

this problem. Afterward, we show in Section 8.5 how this approach can be ex-
tended to a problem with cluster capacities, and give a 1

3

(
1− 1

e

)
-approximation

algorithm for the MCPC. In Section 8.6, we show that the algorithm for the
MCPC, gives a 1

3 -approximation algorithm for the MKPC. Furthermore, we
show that we can improve the approximation ratio to 1

2 for instances of the
MKPC that satisfy a specific condition. The (4.562 + ε)-approximation algo-
rithm for the CFLPC is given in Section 8.7. Finally, we conclude this chapter
in Section 8.8.

184 8. Approximation algorithms for cluster capacitated problems

8.2 Literature review

The objective of the MCPC is a special case of a submodular function and
there is a vast literature concerning the problem of maximizing a (monotone)
submodular function. Nemhauser and Wolsey (1978) were the first to study
this problem under a cardinality constraint. Note that a cardinality constraint
is a special case of a budget constraint with unit costs. Nemhauser and Wolsey
(1978) propose a natural greedy algorithm to solve this problem and showed
that it achieves a (1− 1

e)-approximation ratio. Later, Feige (1998) showed that
the factor of (1− 1

e) is best possible for this problem, unless P = NP.

Khuller et al. (1999) use a modification of the greedy algorithm of
Nemhauser and Wolsey (1978) in combination with partial enumeration to ob-
tain a (1 − 1

e)-approximation algorithm for the Maximum Coverage Problem
with a budget constraint. Ageev and Sviridenko (2004) introduce the tech-
nique of pipage rounding and also derive a (1 − 1

e)-approximation algorithm
for this problem. Sviridenko (2004) observed that the algorithm of Khuller
et al. (1999) can be applied to submodular functions and achieves a (1 − 1

e)-
approximation ratio. Badanidiyuru and Vondrák (2014) use another approach
for maximizing a submodular function given a knapsack constraint. They derive
a (1− 1

e − ε)-approximation algorithm whose running time decreases in ε > 0.
Ene and Nguyen (2019) show that there are some technical issues with the ap-
proach of Badanidiyuru and Vondrák (2014), but they build upon their idea to
derive a faster algorithm with the same approximation ratio. For non-monotone
submodular functions, a (1− 1

e − ε)-approximation algorithm is given by Kulik
et al. (2013).

Further, the problem of maximizing a submodular function subject to multi-
ple knapsack constraints has also been studied (see Chekuri et al. (2014), Kulik
et al. (2013), and Lee et al. (2010)): Kulik et al. (2013) obtain a randomized
(1− ε)(1− 1

e)-approximation algorithm (for any ε > 0) for the Maximum Cov-
erage Problem with a d-dimensional knapsack constraint. The technique also
extends to (monotone) submodular maximization with a d-dimensional knap-
sack constraint. Lee et al. (2010) give a (1

5 − ε)-approximation algorithm for
non-monotone submodular maximization with a d-dimensional knapsack. The
randomized rounding technique that is used in Lee et al. (2010) is similar to
that of Kulik et al. (2013), but the algorithm to solve the fractional relaxation
is different. However, in all these three works the interpretation of multiple
knapsack constraints is different from the one we use here. In particular, in
their setting the costs of the sets and the capacity of a single knapsack are
d-dimensional and a feasible assignment needs to satisfy the capacity in every
dimension. On the other hand, in our definition there are multiple knapsacks,
but their capacity is only one-dimensional. Hence, the techniques in Chekuri

8.2. Literature review 185

et al. (2014), Kulik et al. (2013), and Lee et al. (2010) do not apply to our
problem.

Parallel to our work, two papers have appeared that also discuss the MCPK,
namely Fairstein et al. (2020) and Sun et al. (2020). Fairstein et al. (2020),
present a randomized

(
1− 1

e − ε
)
-approximation algorithm for the MCPK in

which a greedy approach for submodular maximization is combined with a par-
titioning of knapsacks in groups of approximately the same size. In Sun et al.
(2020), a deterministic greedy

(
1− 1

e − ε
)
-approximation algorithm is given for

the case in which all knapsacks have the same size. For the general case, their
deterministic algorithm has an approximation ratio of 1

2 − ε, and they present
a randomized

(
1− 1

e − ε
)
-approximation algorithm.

Chekuri et al. (2014) show that the approximation ratio for non-monotone
submodular maximization can be improved to 0.309 if the dimension of the
knapsack is assumed to be a constant. They use the technique of Vondrák
(2013) to solve the relaxation of the problem and then apply a contention res-
olution scheme to round the solution. The contention resolution scheme and
the method of Badanidiyuru and Vondrák (2014) can also be applied to poly-
topes that are an intersection of knapsack and matroid constraints. Bansal
et al. (2012) consider a different type of packing constraint. They assume that
each set is in at most k packing constraints. They propose a randomized algo-
rithm with an approximation ratio of e − 1/(ke2 + (e − 1)o(k)) for monotone
submodular functions.

Another problem that is related to our MCPC is the Cost-Restricted Max-
imum Coverage Problem with Group Budget Constraints (CMCG) introduced
by Chekuri and Kumar (2004). In this problem, there are predefined groups
that consist of a union of sets. Each group has a budget that must not be
exceeded by its assigned sets, and there is a single knapsack constraint for all
selected sets. The authors give a greedy algorithm that achieves an approxima-
tion ratio of 1

12 . Besides this cost-restricted version, Chekuri and Kumar (2004)
also study the cardinality-restricted version for the number of sets assigned to
a group. For this problem, they obtain a 1

α+1 -approximation algorithm that
uses an oracle that, given a current solution, returns a set which contribution
to the current solution is within a factor α of the optimal contribution of a
single set. For the cost-restricted version, Farbstein and Levin (2017) obtain a
1
5 -approximation. Guo et al. (2019) present a pseudo-polynomial algorithm for
CMCG whose approximation ratio is 1− 1

e .

The MCPC with a single cluster is a special case CMCG, in which each
group corresponds to a knapsack and each set has a copy for each feasible
knapsack. If the solution for a single cluster is seen as a new set, then the
MCPC with multiple clusters can be seen as the cardinality restricted version

186 8. Approximation algorithms for cluster capacitated problems

in which each cluster corresponds to a group to which at most one set can be
assigned. Combining the approaches of Farbstein and Levin (2017) and Chekuri
and Kumar (2004) for the cost-restricted and cardinalty-restricted version, re-
spectively, we obtain a 1

6 -approximation algorithm. In this chapter, we improve
this ratio to 1

3

(
1− 1

e

)
.

Finally, we elaborate on the relationship between MKPC and closely related
problems. We focus on three knapsack problems that look similar to MKPC
but are still slightly different. Nip and Wang (2018) consider the Two-Phase
Knapsack Problem (2-PKP) and obtain a 1

4 -approximation algorithm for this
problem. In 2-PKP, items are assigned to knapsacks and the full knapsack
needs to be packed in a cluster. Note that MKPC and 2-PKP are different
because in MPKC only the costs assigned to a knapsack are restricted by the
cluster capacity, whereas in 2-PKP each knapsack contributes with its maximum
budget to the cluster.

Dudzinski and Walukiewicz (1987) study the Nested Knapsack Problem
(NKP), where there are multiple subsets of items and each subset has a capac-
ity. That is, in NKP there are no predefined knapsacks to which the items can
be assigned, but from each set we have to select the most profitable items. If
these sets are disjoint, the problem is called the Decomposed Knapsack Prob-
lem. The authors present an exact branch-and-bound method, based on the
Lagrangean relaxation.

Xavier and Miyazawa (2006) consider the Class Constraint Shelf Knapsack
Problem (CCSKP). Here, there is one knapsack with a certain capacity and the
items assigned to the knapsack should also be assigned to a shelf. The shelf
has a maximum capacity, and between every two shelves a divisor needs to be
placed. In the CCSKP, each item belongs to a class and each shelf must only
have items of the same class. The authors derive a PTAS for CCSKP in Xavier
and Miyazawa (2006).

8.3 Preliminaries
In this section, we formally define the MCPC and with that also its general-
izations, the MCPK and MKPC. To start, we introduce some notation that
is also summarized in Table 8.1. The MCPC is defined as follows. We are
given a collection of m subsets S = {S1, . . . , Sm} over a ground set of items
I = 1, 2, . . . , n. Each subset Sj ⊆ I, j = 1, 2, . . . , m, is associated with
a cost cj > 0 and each item i ∈ I has a profit pi > 0. For notational
simplicity, we identify S = {1, 2, . . . , m}, and for every subset S ′ ⊆ S, define
∪S ′ = ∪j∈S ′Sj ⊆ I as the set of items covered by S ′. Further, we use S(i) ⊆ S
to refer to the subsets in S that contain item i ∈ I, i.e., S(i) = {j ∈ S | i ∈ Sj}.

In addition, we are given a set of knapsacks K = {1, 2, . . . , p} and each

8.3. Preliminaries 187

I Collection of items
S Collection of subsets
K Collection of knapsacks
C Collection of clusters
S(i) Collection of subsets containing item i

K(l) Collection of knapsacks contained in cluster l
C(k) Collection of clusters containing knapsack k
σ Assignment of subsets to knapsacks
Sσ Collection of assigned subsets under σ
Sσ(k) Collection of subsets assigned to knapsack k under σ
n Number of items
m Number of subsets
p Number of knapsacks
q Number of clusters
q(l) Number of knapsacks in cluster l
pi Value of item i

cj Cost of subset j
Bk Budget of knapsack k
Ul Capacity of cluster l

Table 8.1 Notation used in Chapter 8.

knapsack k ∈ K has a capacity Bk > 0. These knapsacks are partitioned into a
set of q clusters C = {1, 2, . . . , q} and each cluster l ∈ C has a separate capacity
Ul > 0. We denote by K(l) ⊆ K the subset of knapsacks that are contained in
cluster l . The number of knapsacks in the set K(l) is given by q(l) := |K(l)|.
Also, we use C(k) ∈ C to refer to the cluster containing knapsack k ∈ K.

Our goal is to determine a feasible assignment σ : S → K ∪ {0} of subsets
to knapsacks such that the total profit of all covered items is maximized. Each
subset j ∈ S can be assigned to at most one knapsack in K and we define
σ(j) = 0 if j remains unassigned. We say that an assignment σ is feasible if
(i) for every knapsack k ∈ K, the total cost of all subsets assigned to k is at
most Bk , and (ii) for every cluster l ∈ C, the total cost of all subsets assigned
to the knapsacks in K(l) of cluster l is at most Ul . Given an assignment σ, let
Sσ(k) ⊆ S be the set of subsets assigned to knapsack k ∈ K under σ, and let
Sσ = ∪k∈KSσ(k) ⊆ S be the set of all assigned subsets. Using this notation,
the MCPC problem is formally defined as follows:

max
σ

∑
i∈∪Sσ

pi

subject to:∑
j∈Sσ(k)

cj ≤ Bk ∀k ∈ K

∑
k∈K(l)

∑
j∈Sσ(k)

cj ≤ Ul ∀l ∈ C.

188 8. Approximation algorithms for cluster capacitated problems

For the MCPC, we make the following two assumptions.

Assumption 8.1. For every cluster l ∈ C and every knapsack k ∈ K(l), it holds
that Bk ≤ Ul .

Assumption 8.2. For every cluster l ∈ C, it holds that
∑

k∈K(l)Bk > Ul .

Note that these assumptions are without loss of generality. It is impossible
to assign more than Ul to any knapsack in K(l), so if Assumption 8.1 is violated
by some k ∈ K(l), then we can simply redefine Bk = Ul . If Assumption 8.2 is
not satisfied, then the capacity of cluster l is redundant. In that case, the sum
of all budget constraints of the individual knapsacks is more restrictive than the
cluster constraint.

The MCPK is the special case of MCPC in which all cluster capacities are
redundant. Another special case of MCPK is the classical MKP which we obtain
if S = {1, 2, . . . , n} and Si = {i} for all i ∈ S. We refer to the generalization
of MKP with non-redundant cluster capacities as the MKPC.

8.4 Maximum coverage problem with knapsack
constraints

We start by deriving an approximation algorithm for the Maximum Coverage
Problem with Knapsack Constraints. A natural ILP is given below.

max L(x) =
∑
i∈I

piyi (8.1)

subject to∑
j∈S

cjxjk ≤ Bk ∀k ∈ K (8.2)

∑
k∈K

xjk ≤ 1 ∀j ∈ S (8.3)∑
j∈S(i)

∑
k∈K

xjk ≥ yi ∀i ∈ I (8.4)

xjk ∈ {0, 1} ∀j ∈ S ∀k ∈ K (8.5)

yi ∈ {0, 1} ∀i ∈ I. (8.6)

The decision variable xjk indicates whether set j ∈ S is assigned to knapsack k ∈
K. In addition, the decision variable yi indicates whether item i ∈ I is covered.
Constraint (8.2) ensures that the total cost assigned to each knapsack is at
most its budget and constraint (8.3) makes sure that each set is assigned to at
most one knapsack. Constraint (8.4) enforces that an item can only be covered

8.4. Maximum coverage problem with knapsack constraints 189

if at least one of the sets containing it is assigned to a knapsack. We refer
to above ILP (8.1)–(8.6) as (IP) and to its corresponding linear programming
relaxation as (LP). Furhtermore, let OPT refer to the objective function value
of an optimal solution to (IP). It is important to realize that for any feasible
fixing of the xjk -variables, the optimal yi -variables are easily determined by
setting yi = min{1,

∑
j∈S(i)

∑
k∈K xjk}. As a consequence, an optimal solution

(x, y) of the above program is fully specified by the corresponding x-part.

A subtle but important point is that a set j ∈ S cannot be assigned to a
knapsack k ∈ K whenever cj > Bk . While these restrictions are taken care of
implicitly in the ILP formulation (IP), they are not in the LP relaxation (LP). In
fact, we would have to add these restrictions explicitly by defining variables xjk
only for all j ∈ S and k ∈ K(j), where K(j) ⊆ K is the set of knapsacks whose
capacity is at least cj , and adapt the constraints accordingly. However, these
adaptations are straightforward. For notational convenience, we do not state
them explicitly. In the remainder, whenever we refer to (LP), our understand-
ing is that we refer to the corresponding LP relaxation with these assignment
restrictions incorporated. No confusion shall arise.

In the approximation algorithm for the MCPC and its generalizations, we
crucially exploit the fact that we can find a solution to the LP relaxation, which
satisfies the bounded split property. The bounded split property is defined in
Definition 8.2, but we need to define some other concepts first. Let x be
a fractional solution of (LP). We define the support graph Hx of x as the
bipartite graph Hx := (S ∪ K, Ex) with node sets S and K on each side of the
bipartition, respectively, and the edge set Ex contains all edges {j, k} for which
xjk is non-integral, i.e., Ex = {{j, k} ∈ S × K | 0 < xjk < 1}. Let M ⊆ Ex
be a matching of the support graph Hx . A matching M ⊆ Ex is a subset of
the edges such that no two edges in M have a node in common. Matching
M saturates all nodes in S if for every (non-isolated) node j ∈ S there is a
matching edge {j, k} ∈ M. In that case, we say that M is an S-saturating
matching of Hx . The concept of the S-saturating matching is crucial in the
definition for the bounded split property below.

Definition 8.2 (Bounded split property). A feasible solution x of (LP) satisfies
the bounded split property if the support graph Hx of x has an S-saturating
matching.

For MKP, it is known that there exists an optimal solution x∗ of the LP
relaxation for which the bounded split property holds (see, e.g., Chekuri and
Khanna (2005) and Shmoys and Tardos (1993)). Deriving a 1

2 -approximation
algorithm for the problem is then easy. The idea behind this algorithm is to
decompose x∗ into an integral and a fractional part. The integral part nat-
urally corresponds to a feasible integral assignment. Exploiting the bounded

190 8. Approximation algorithms for cluster capacitated problems

S1

c1 = 3

1

p1 = M

2

p2 = 6

S2

c2 = 4

3

p3 = 5

S3

c3 = 2

4

p4 = 2

Figure 8.1 Illustration of the instance for which the (unique) optimal solution does
not satisfy the bounded split property if B1 = 6.

split property, the corresponding S-saturating matching gives rise to a feasible
integral assignment for the fractional part, namely assigning every fractional
assigned set to the knapsack to which it is matched in the S-saturating match-
ing. Thus, by taking the better of the two assignments, we recover at least
half of the optimal LP solution.

Unfortunately, for the more general MCPK problem the optimal solution
of (LP) does not necessarily satisfy the bounded split property. To see that
consider the following example, illustrated in Figure 8.1, with a collection S =

{S1, S2, S3} over the item set I = {1, 2, 3, 4}, where S1 = {1}, S2 = {2, 3}
and S3 = {3, 4} with corresponding costs c1 = 3, c2 = 4, and c3 = 2. There is
a single knapsack of capacity B1 = 6, and the profits of the items are p1 = M

(some large number), p2 = 6, p3 = 5, and p4 = 2. The unique optimal
solution to (LP) is x∗LP =

(
1, 1

2 ,
1
2

)
, meaning that there are two sets fractionally

assigned to the knapsack. Thus, the bounded split property does not hold for
this solution.

Instead, below we show that a solution to the LP relaxation of MCPK
exists that always satisfies the bounded split property and is only a factor 1− 1

e

away from the optimal solution. In order to do so, we use the technique of
pipage rounding (Ageev and Sviridenko, 2004). To this aim, we define a new
program (CP) as follows:

max F (x) =
∑
i∈I

pi

(
1−

∏
j∈S(i)

(
1−

∑
k∈K

xjk

))
(8.7)

8.4. Maximum coverage problem with knapsack constraints 191

subject to∑
j∈S

cjxjk ≤ Bk ∀k ∈ K (8.8)

∑
k∈K

xjk ≤ 1 ∀j ∈ S (8.9)

xjk ∈ [0, 1] ∀j ∈ S ∀k ∈ K. (8.10)

It is easy to see that a feasible solution x for the problem (LP) is also a feasible
solution for (CP). In addition, as is usually the case in pipage formulations,
the objective function values of (LP) and (CP) are the same for every integral
solution, i.e., L(x) = F (x) for every integer solution x . Our formulation (CP)
is even slightly stronger than standard pipage formulations in the sense that
L(x) = F (x) if for all j ∈ S it holds that

∑
k∈K xjk ∈ {0, 1}. Moreover, for

fractional solutions x the value F (x) is lower bounded by L(x) as we show in
the next lemma.

Lemma 8.1. For every feasible solution x of (LP), we have that F (x) ≥(
1− 1

e

)
L(x).

Proof. The proof of this lemma is similar to the one given in Ageev and Sviri-
denko (2004) for the maximum coverage problem. Let x be a feasible solution
for (LP). Fix an item i ∈ I and let s = |S(i)| be the number of sets containing i .
We obtain

1−
∏
j∈S(i)

(
1−

∑
k∈K

xjk

)
≥ 1−

(
1

s

∑
j∈S(i)

(
1−

∑
k∈K

xjk

))s
≥ 1−

(
1−

1

s

∑
j∈S(i)

∑
k∈K

xjk

)s
≥ 1−

(
1−

1

s
min

{
1,
∑
j∈S(i)

∑
k∈K

xjk

})s
≥
(

1−
(

1−
1

s

)s)
min

{
1,
∑
j∈S(i)

∑
k∈K

xjk

}

≥
(

1−
1

e

)
min

{
1,
∑
j∈S(i)

∑
k∈K

xjk

}

≥
(

1−
1

e

)
yi .

The first inequality follows from the arithmetic/geometric mean inequality
(see, e.g., Goemans and Williamson (1994)) which states that for any n non-

192 8. Approximation algorithms for cluster capacitated problems

negative numbers a1, a2, . . . , an, we have
∏n
i=1 ai ≤ (1

n

∑n
i=1 ai)

n. In the sec-
ond inequality, we take the 1 out of the summation, and the third inequal-
ity holds because min{1,

∑
j∈S(i)

∑
k∈K xjk} is always less than or equal to∑

j∈S(i)

∑
k∈K xjk . The fourth inequality follows from the concavity of the func-

tion in min{1,
∑

j∈S(i)

∑
k∈K xjk} on the interval between 0 and 1, and thus its

minimum is attained at those endpoints. Finally, the last inequality follows from
the fact that for every n ≥ 1 it holds that

(
1− 1

n

)n ≤ 1
e .

Using the above, we can conclude that

F (x) =
∑
i∈I

pi

(
1−

∏
j∈S(i)

(
1−

∑
k∈K

xjk

))
≥
∑
i∈I

pi

(
1−

1

e

)
yi

=

(
1−

1

e

)
L(x),

which proves the lemma.

In Theorem 8.1 below, we show that we can transform an optimal LP so-
lution x∗LP into a solution x that satisfies the bounded split property without
decreasing the objective value of (CP).

Theorem 8.1. There exists a feasible solution x of (LP) that satisfies the
bounded split property and for which F (x) ≥ F (x∗LP).

Before we proceed with the proof of Theorem 8.1, we introduce some more
terminology. Let x be a feasible solution to (LP) and let Hx = (S ∪ K, Ex) be
the support graph of x . Consider a maximal path P = 〈u1, . . . , ut〉 in Hx that
starts and ends with a node of degree one. We call P an S-S-path if u1, ut ∈ S,
an S-K-path if u1 ∈ S and ut ∈ K, and a K-K-path if u1, ut ∈ K.

We use Lemmas 8.2, 8.3, and 8.4 to prove Theorem 8.1. An outline of
the proof of Theorem 8.1 is as follows. First, we show in Lemma 8.2 that
there exists an optimal solution x∗ = x∗LP for (LP) such that the support graph
Hx∗ is acyclic. Second, we prove in Lemma 8.3 that from x∗ we can derive
a solution x ′ whose support graph Hx ′ does not contain any S-S-paths such
that the objective function value of (CP) does not decrease. Finally, we show in
Lemma 8.4 that this solution x ′ satisfies the bounded split property. Combining
these lemmas proves Theorem 8.1.

Lemma 8.2. There is an optimal solution x∗ = x∗LP of (LP) whose support
graph Hx∗ is acyclic.

Proof. Let x be an optimal solution for (LP) and suppose the support graph
Hx = (S ∪ K, Ex) of x contains a cycle that visits nodes u1, . . . , ut , u1, i.e.,

8.4. Maximum coverage problem with knapsack constraints 193

C = 〈u1, . . . , ut , u1〉. Note that the length, given in the number of edges, of
C is even because Hx is bipartite. We can, therefore, decompose C into two
matchings M1 and M2 with |M1| = |M2|. Define

ε := min
{

min
{j,k}∈M1

{cjxjk}, min
{j,k}∈M2

{cj(1− xjk)}
}
.

We call each edge on C for which the minimum is attained a critical edge; note
that by definition there is at least one critical edge. We use ε to define a new
solution x(ε) as follows:

xjk(ε) =


xjk + ε

cj
if {j, k} ∈ M1

xjk − ε
cj

if {j, k} ∈ M2

xjk otherwise.

(8.11)

In the way ε is defined, the value of each critical edge ê on C with respect to
x(ε) is integral, and more specifically, xê(ε) = 0 if ê ∈ M1 and xê(ε) = 1 if
ê ∈ M2. Thus, ê is not part of the support graph Hx(ε). As a consequence,
Hx(ε) is a subgraph of Hx that has at least one cycle less.

It remains to show that x(ε) is a feasible solution to (LP) and has the
same objective function value as x . Every node u = ui , i = 1, 2, . . . , t, on the
cycle C has two incident edges in C, one belonging to M1 and one to M2. We
distinguish two cases:

Case 1: u = k ∈ K. Let the two incident edges be {i , k} ∈ M1 and
{j, k} ∈ M2. The combined cost of these two edges in x(ε) is:

cixik(ε) + cjxjk(ε) = ci

(
xik +

ε

ci

)
+ cj

(
xjk −

ε

cj

)
= cixik + cjxjk .

That is, the total cost assigned to knapsack k in x(ε) is the same as in x . As
x satisfies constraint (8.2), we conclude that x(ε) also does that.

Case 2: u = j ∈ S. Let the two incident edges be {j, k} ∈ M1 and
{j, l} ∈ M2. By the definition of x(ε), we obtain

xjk(ε) + xj l(ε) = xjk +
ε

cj
+ xj l −

ε

cj
= xjk + xj l .

In particular, this implies that x(ε) satisfies constraints (8.3) and (8.4) because
x does. Furthermore, from the equation above, it also follows that the solutions
x(ε) and x result in the same objective function value of (LP), i.e., L(x(ε)) =

L(x).

By repeating the above procedure, we eventually obtain a feasible solution
x∗ of (LP) such that Hx∗ is a subgraph of Hx that does not contain any cycles
and L(x∗) = L(x), i.e., x∗ is an optimal solution.

194 8. Approximation algorithms for cluster capacitated problems

From Lemma 8.2, we can conclude that there exists an optimal solution
for (LP) which support graph does not contain any cycles. In Lemma 8.3, we
remove all S-S-paths form the support graph. After that transformation, the
solution is not longer the optimal solution for (LP), but the objective function
for (P) has not decreased.

Lemma 8.3. There exists a feasible solution x ′ of (LP) whose support graph
Hx ′ is acyclic and does not contain any S-S-paths, and which satisfies F (x ′) ≥
F (x∗LP).

Proof. Let x be an optimal solution for (LP) whose support graph Hx is acyclic;
we know that such a solution exists by Lemma 8.2. Suppose Hx contains an
S-S-path P = 〈u1, . . . , ut〉; recall that nodes u1 and ut have degree one in Hx .
The path P has even length because Hx is bipartite. We can thus decompose P
into two matchings M1 and M2 with |M1| = |M2|. We define x(ε) as in (8.11)
for every ε ∈ [−ε1, ε2], where

ε1 := min
{

min
{j,k}∈M1

{cjxjk}, min
{j,k}∈M2

{cj(1− xjk)}
}

ε2 := min
{

min
{j,k}∈M1

{cj(1− xjk)}, min
{j,k}∈M2

{cjxjk}
}
.

We first show that x(ε) is a feasible solution for (CP) for every ε ∈ [−ε1, ε2].
By following the same line of arguments as in the proof of Lemma 8.2, we
can show that the solution x(ε) satisfies constraint (8.8). Further, for every
j ∈ S, j 6= u1, ut , we can also show, as in the proof of Lemma 8.2, that∑

k∈K xjk(ε) =
∑

k∈K xjk and thus constraints (8.9) and (8.10) are satisfied
in x(ε). By definition, the endpoints j = u1, ut of P have degree one in Hx and
thus j is fractionally assigned to a single knapsack in x . Consider j = u1 and
let k = u2 be the knapsack to which j is assigned in x . We have xjk ∈ (0, 1)

and, from the definition of ε1 and ε2, it follows that xjk(ε) ∈ [0, 1]. The
same argument holds for j = ut . Thus, x(ε) also satisfies constraints (8.9)
and (8.10) for j = u1, ut if ε ∈ [−ε1, ε2]. We conclude that x(ε) is a feasible
solution for (CP) if ε ∈ [−ε1, ε2].

Next, we show that F (x(−ε1)) or F (x(ε2)) is at least as large as F (x). To
this aim, we show that F (x(ε)) as a function of ε is convex. In fact, we show
convexity for each item i ∈ I separately. Observe that the first and the last
edge of P are in different matchings. Without loss of generality, we assume
that {u1, u2} ∈ M1 and {ut−1, ut} ∈ M2. The contribution of i to the objective
function F (x(ε)) can be written as pi fi(ε), where

fi(ε) =

(
1−

∏
j∈S(i)

(
1−

∑
k∈K

xjk(ε)
))

8.4. Maximum coverage problem with knapsack constraints 195

=

(
1−

∏
j∈S(i)∩{u1,ut}

(
1−

∑
k∈K

xjk(ε)
) ∏
j∈S(i)\{u1,ut}

(
1−

∑
k∈K

xjk

))
.

Here, we adopt the convention that the empty product is defined to be 1. Note
that the latter product

∏
j∈S(i)\{u1,ut}(1 −

∑
k∈K xjk) is independent of ε and

has a value between 0 and 1. We can now distinguish three cases:

• |{u1, ut} ∩ S(i)| = 2. In this case, we have∏
j∈S(i)∩{u1,ut}

(
1−
∑
k∈K

xjk(ε)
)

=
(

1−
(
xu1u2 +

ε

cu1

))(
1−
(
xutut−1−

ε

cut

))
.

That is, fi(ε) is a quadratic function of ε and the coefficient of the
quadratic term is 1/(cu1cut), which is positive.

• |{u1, ut} ∩ S(i)| = 1. In this case, fi(ε) is a linear function in ε.

• |{u1, ut} ∩ S(i)| = 0. In this case, fi(ε) is independent of ε.

Concluding, the function fi(ε) is a quadratic function in ε with a positive
quadratic term. Hence, fi(ε) is convex in ε and so is F (x(ε)). Therefore,
the maximum of F (x(ε)) over [−ε1, ε2] is attained at one of the endpoints:

max{F (x(−ε1)), F (x(ε2))} = max
ε∈[−ε1,ε2]

{F (x(ε))} ≥ F (x(0)) = F (x).

As a result, we can find a feasible solution x ′ ∈ {x(−ε1), x(ε2)} with the
property that F (x ′) ≥ F (x). Further, x ′ has at least one fractional variable
on P less than x . Thus, Hx ′ is a subgraph of Hx with at least one edge of P
removed. By repeating this procedure, we eventually obtain a feasible solution
x ′ of (CP) whose support graph does not contain any S-S-paths, and for which
F (x ′) ≥ F (x).

In the previous two lemmas, we have constructed a solution x ′ that is feasible
for (LP), which support graph does not contain any cycles and S-S-paths, and
for which holds that F (x ′) ≥ F (x∗LP). In Lemma 8.4, we show that this solution
x ′ satisfies the bounded split property.

Lemma 8.4. Let x ′ be a feasible solution of (LP) whose support graph Hx ′
is acyclic and does not contain any S-S-paths. Then x ′ satisfies the bounded
split property.

Proof. In order to prove that the solution x ′ satisfies the bounded split property,
we have to show that there is a matching M in Hx ′ that saturates all (non-
isolated) nodes in S. For simplicity, we can assume in this proof that all isolated

196 8. Approximation algorithms for cluster capacitated problems

∈ S
∈ K

r

j ∈ S

Figure 8.2 Illustration of the matching procedure described in the proof of
Lemma 8.4.

nodes are removed from Hx ′ . Note that we assume that Hx ′ is acyclic, and thus
it is a forest. The idea of this proof is to construct a matching MT for each
tree T of the forest Hx ′ . Our final matching M is then simply the union of all
these matchings, i.e., M = ∪TMT .

Consider a tree T of Hx ′ and root it at an arbitrary node r ∈ K. By
assumption, T has at most one leaf in S because otherwise there would exist
an S-S-path in Hx ′ . Let us slightly abuse notation by letting T refer to both
the tree and the set of nodes it spans. We now show how to construct a
matching MT that matches all the nodes in T ∩S. This procedure is illustrated
in Figure 8.2. If there is a unique S-leaf, say j ∈ S, then we match each S-node
on the path from j to the root r to its unique parent in T . In Figure 8.2, this
matching is indicated with red arrows. Each remaining S-node in T is matched
to one of its children, which is illustrated with orange arrows in Figure 8.2. This
matching is done arbitrarily, which is possible because there is always at least
one child as j is the only S-leaf in T . Note that in this procedure, all nodes in
T ∩ S are matched in matching MT . Hence, we have created an S-saturating
matching.

Proof of Theorem 8.1. Using Lemmas 8.2, 8.3, and 8.4, we have shown how to
construct a feasible solution x that satisfies the bounded split property and for
which F (x) ≥ F (x∗LP). Hence, the claim from Theorem 8.1 follows immediately
from this procedure.

In Theorem 8.1, we have shown that there exists a feasible solution for
(LP) that satisfies the bounded split property. In Algorithm 8.1, we use that
fractional solution to construct two feasible solutions for the integral problem.
The first solution is equal to all integral assignments in the solution satisfying the
bounded split property. In the second solution, all fractional sets are integrally

8.4. Maximum coverage problem with knapsack constraints 197

Algorithm 8.1: 1
2

(1− 1
e

)-approximation algorithm for MCPK.

Compute an optimal solution x∗ to (LP).
Derive a solution x from x∗ satisfying the bounded split property using the
procedures described in the proofs of Lemmas 8.2, 8.3, and 8.4.

Let M be the corresponding S-saturating matching.
Decompose the fractional solution x into x1, x2 as follows:

x1
jk =

{
x1
jk = 1 if xjk = 1

x1
jk = 0 otherwise

and

x2
jk =

{
x2
jk = 1 if xjk ∈ (0, 1), {j, k} ∈ M
x2
jk = 0 otherwise.

Output: xalg ∈ arg max{L(x1), L(x2)}

assigned to the knapsack to which they are matched. In Theorem 8.2, we show
that Algorithm 8.1 is a 1

2

(
1− 1

e

)
-approximation algorithm for MCPK.

Theorem 8.2. Algorithm 8.1 is a 1
2

(
1− 1

e

)
-approximation algorithm for

MCPK.

Proof. Note that all the procedures described in the proof of Theorem 8.1 to
derive a solution x from x∗ can be implemented to take polynomial time. The
running time of Algorithm 8.1 is thus polynomial.

The solution x1 constructed by the algorithm corresponds to the integral
part of the solution x satisfying the bounded split property. Clearly, this is a
feasible solution to MCPK. Further, the solution x2 is derived from the frac-
tional part of x using the S-saturating matching M. It is important to note
that in the procedures of Lemmas 8.2 and 8.3 only edges are removed from
the subgraph and no edges are added. Hence, by construction, every set j ∈ S
is matched to a knapsack k ∈ K for which x∗LP > 0, i.e., Bk ≥ cj . Thus, x2 is
also a feasible integral solution.

It remains to bound the approximation ratio of the algorithm. We have

L(xalg) = max{L(x1), L(x2)} ≥
1

2
(L(x1) + L(x2))

=
1

2
(L(x1 + x2) =

1

2
(F (x1 + x2)) ≥

1

2
F (x)

≥
1

2
F (x∗) ≥

1

2

(
1−

1

e

)
L(x∗) ≥

1

2

(
1−

1

e

)
OPT.

Here, the first inequality follows from the fact that the maximum of two ele-
ments is at least half of the sum of the elements. The second equality holds
because of the linearity of L(x) and the third equality follows from the fact

198 8. Approximation algorithms for cluster capacitated problems

that the objective function values of (LP) and (CP) are the same for integer
solutions, as we have observed before. To see that the second inequality holds,
note that by the definitions of x1 and x2 we have∑

j∈S

∑
k∈K

xjk ≤
∑
j∈S

∑
k∈K

(x1
jk + x2

jk),

and the function F (x) is non-decreasing in x . The third inequality follows from
Lemma 8.3 and the fourth inequality holds because of Lemma 8.1. The final
inequality holds because (LP) is a relaxation of the ILP (IP) of the MCPK.

8.5 Maximum coverage problem with cluster
constraints

In this section, we derive an approximation algorithm for the MCPC. Our
algorithm exploits the existence of an LP-based approximation algorithm for
the problem without cluster constraints. In particular, we use our algorithm for
MCPK derived in the previous section as a subroutine to obtain a 1

3 (1 − 1
e)-

approximation algorithm for MCPC.

Recall that in MCPC we have to determine a feasible assignment of sets
in S to the knapsacks in K such that the total profit of all covered items
is maximized. But, in addition, the knapsacks are partitioned into q clusters
C = [q] and the total cost of all sets assigned to the knapsacks k ∈ K(l) of
cluster l ∈ C may not exceed the given cluster capacity Ul .

The difficulty of the MCPC lies in the fact that one cannot look at a single
knapsack k ∈ K to determine whether an assignment is feasible. Instead, an
assignment has to satisfy, for every cluster l ∈ C, both the cluster capacity Ul
and the knapsack capacities Bk for every k ∈ K(l). A first approach for an
approximation algorithm for the MCPC might be to simply add the following
constraint to the ILP formulation of (8.1)-(8.6):∑

j∈S

∑
k∈K(l)

cjxjk ≤ Ul ∀l ∈ C. (8.12)

We could solve the LP relaxation of the resulting problem and let x∗LP be the
optimal solution. If this problem formulation is used, Theorem 8.1 is also true.
To see that, it is important to realize that in the transformation of x∗LP to
a solution that satisfies the bounded split property, the total costs that were
assigned to a knapsack did not change. Hence, it is tempting to believe that
Algorithm 8.1 also gives a 1

2

(
1− 1

e

)
-approximation algorithm for the MCPC.

However, the solution x2 in Algorithm 8.1 might be infeasible for the MCPC,
namely if

∑
j∈S
∑

k∈K(l) cjx
2
jk > Ul for any cluster l ∈ C. In the worst case, every

8.5. Maximum coverage problem with cluster constraints 199

knapsack k ∈ K(l) has a capacity B and the cluster capacity Ul = B. If for
every knapsack k ∈ K(l) holds that

∑
j∈S cjx

2
jk = B, then there does not exists

a feasible solution for MCPC for which two sets j ∈ S with x2
jk = 1 are assigned

to the knapsacks k ∈ K(l).

A key element of our approach is to integrate the cluster capacities into the
ILP formulation of MCPK by introducing a variable zkl for every cluster l ∈ C
and every knapsack k ∈ K(l), which specifies the fraction of the cluster capac-
ity Ul that is assigned to knapsack k . We obtain the following ILP formulation
for MCPC:

max L(x, z) =
∑
i∈I

piyi (8.13)

subject to

Constraints (8.2)− (8.6) (8.14)∑
j∈S

cjxjk ≤ Ulzkl ∀l ∈ C ∀k ∈ K(l) (8.15)

∑
k∈K(l)

zkl ≤ 1 ∀l ∈ C (8.16)

zkl ≥ 0 ∀l ∈ C ∀k ∈ K(l). (8.17)

Note that constraints (8.15)–(8.16) ensure that the capacity of cluster l ∈ C
is not exceeded. The advantage of this formulation is that, once we know the
optimal values of the zkl -variables, the remaining problem basically reduces to
an instance of MCPK. However, there is a subtle difference, as is explained
below. We use (IP) and (LP) to refer to the integer formulation above and its
relaxation. Let OPT refer to the objective function value of an optimal solution
to MCPC.

Similar to MCPK, any optimal solution (x, y , z) of the above program is
fully characterized by the respective (x, z)-part: given the values of the xjk and
the zkl -variables, we can infer the optimal values of the yi -variables as before.
As a consequence, an optimal solution (x, y , z) of the above program is fully
specified by (x, z).

It will be convenient to assume that the knapsacks K(l) = {1, . . . , q(l)} of
each cluster l ∈ C are ordered by non-increasing capacities, i.e., if k, k ′ ∈ K(l)

with k < k ′ then Bk ≥ Bk ′ . In every cluster, there is one critical knapsack,
which is crucial in the remainder of the analysis. This critical knapsack is defined
in Definition 8.3.

Definition 8.3 (Critical knapsack). The knapsack κ(l) ∈ K(l) which satisfies∑κ(l)−1
k=1 Bk ≤ Ul <

∑κ(l)
k=1Bk is called the critical knapsack of cluster l .

200 8. Approximation algorithms for cluster capacitated problems

Note that by Assumption 8.2 there always exists such a critical knapsack.
The concept of the critical knapsack is used in Lemma 8.5, to show that the
z-variables of an optimal LP solution admit a specific structure. Intuitively, the
lemma states that the capacity Ul of each cluster l is shared maximally among
the first κ(l) − 1 knapsacks in K(l) and the remaining capacity is assigned to
the critical knapsack κ(l).

Lemma 8.5. There is an optimal solution (x∗, z∗) of (LP) such that for every
cluster l ∈ C,

z∗kl =


Bk
Ul

for k < κ(l)

1−
∑κ(l)−1

t=1 z∗tl for k = κ(l)

0 otherwise.

Proof. First of all, we show that z∗ as defined above is feasible, i.e., satisfies
constraints (8.15), (8.16), and (8.17). Fix some cluster l ∈ C. Clearly, for all
k 6= κ(l) we have z∗kl ≥ 0 and by definition

∑q(l)
k=1 z

∗
kl = 1. It remains to show

that zκ(l)l ≥ 0 or, equivalently,
∑κ(l)−1

k=1 z∗kl ≤ 1. The latter follows by exploiting
the definition above and the fact that κ(l) is the critical knapsack of l and thus

κ(l)−1∑
k=1

z∗kl =

κ(l)−1∑
k=1

Bk
Ul
≤ 1.

Next, we show that any optimal solution (x, z) can be transformed into an
optimal solution (x∗, z∗), where z∗ is defined as above. We argue cluster by
cluster. Fix some cluster l ∈ C and let K(l) = {1, . . . , q(l)} be the (ordered)
set of knapsacks. First of all, we assume without loss of generality that there
is no knapsack k for which zkl > Bk

Ul
because the cost assigned to knapsack

k cannot exceed Bk . Furthermore, we assume that
∑

k∈K(l) zkl = 1 because
by Assumption 8.2, we know that a solution (x, z) for which

∑
k∈K(l) zkl < 1

cannot be an optimal solution.

Let k ∈ K(l) be the first knapsack (in this order) satisfying zkl < z∗kl . If no
such knapsack exists, then we are done because zkl ≥ z∗kl implies zkl = z∗kl for
all k by the definition of z∗. Let k ′ > k be the last knapsack with zk ′l > z∗k ′l .
We know that such knapsack exists because

∑
k∈K(l) zkl = 1 and any knapsack

k ′ < k has the property that z∗kl = Bk
Ul
. Hence, there has to be a knapsack

k ′ ∈ K(l) with zk ′l > z∗k ′l and that knapsack k ′ has to have a larger index
than k .

Let ∆(k, k ′) = min{(z∗kl − zkl)Bk , (zk ′l − z∗k ′l)Bk ′}. Given that the cost cj
of each set j ∈ S is independent of the knapsack to which it is assigned to
and Bk ′ ≥ Bk by our ordering, we can reassign a total contribution, in terms

8.5. Maximum coverage problem with cluster constraints 201

S1

c1 = 2

1

p1 = M

2

p2 = M

S2

c2 = 2

Figure 8.3 Illustration of the instance for which the (unique) optimal solution does
not satisfy the bounded split property if B1 = 3, B2 = 3, and U1 = 4.

of cost, of ∆(k, k ′) units from knapsack k ′ to k by changing some xjk , xjk ′-
variables accordingly. Note that this shift is feasible because every set j ∈ S
that is fractionally assigned to knapsack k ′ also fits on knapsack k . Further,
this shift does not change any of the y -variables and thus the objective function
value remains the same. By continuing this way, we eventually obtain a feasible
solution (x∗, z∗) which is also optimal.

Given that it is possible to construct an optimal solution for the z-values,
one might think of the following approximation algorithm for the MCPC. Fix
the z∗-values as in Lemma 8.5, and let LP(z∗) be the respective LP relaxation.
Note that LP(z∗) is basically the same as the LP relaxation of MCPK, where
each knapsack k ∈ K(l), l ∈ C, has a reduced capacity of min{Bk , Ulz∗kl}. So
we could compute an optimal solution x∗ to LP(z∗) and use Algorithm 8.1 to
derive an integral solution xalg satisfying

L(xalg) ≥
1

2
(1−

1

e
)L(x∗, z∗) ≥

1

2
(1−

1

e
)OPT.

Unfortunately, however, this approach fails because of the following subtle
point. If a set j ∈ S is fractionally assigned to some critical knapsack k ∈ K
in the optimal LP solution x∗ of LP(z∗), then it might be infeasible to assign
j to k integrally. We could exclude these infeasible assignments beforehand
by setting xjk = 0 whenever cj > Ulz

∗
kl for a critical knapsack k , but then an

optimal LP solution might not recover a sufficiently large fraction of OPT.

To see that consider a collection S = {S1, S2} over the item set I = [2],
where S1 = {1} and S2 = {2} with corresponding costs c1 = c2 = 2. The
profits of the items are p1 = p2 = M, in which M is an arbitrarily large number.
Moreover, there is a single cluster over the knapsack set K = [2] with a capacity
of U1 = 4. The two knapsacks have capacities B1 = B2 = 3. An illustration of
the instance is given in Figure 8.3.

The z∗-values as given by Lemma 8.5 are z∗11 = 3
4 and z∗21 = 1 − 3

4 = 1
4 .

Consequently, the first knapsack has a reduced capacity of B1 = 3 and the

202 8. Approximation algorithms for cluster capacitated problems

Algorithm 8.2: 1
3

(1− 1
e

)-approximation algorithm for the MCPC.

Fix z∗ as in Lemma 8.5 and compute an optimal solution x∗ to (LP(z∗)).
Derive a solution x from x∗ that satisfies the bounded split property.
Let M be the corresponding S-saturating matching.
Decompose the fractional solution x into x1, x2, x3 as follows:

x1
jk =

{
x1
jk = 1 if xjk = 1

x1
jk = 0 otherwise

x2
jk =

{
x2
jk = 1 if xjk ∈ (0, 1), k not critical, {j, k} ∈ M
x2
jk = 0 otherwise

x3
jk =

{
x3
jk = 1 if xjk ∈ (0, 1), k critical, {j, k} ∈ M
x3
jk = 0 otherwise

Output: xalg ∈ arg max{L(x1), L(x2), L(x3)}.

second knapsack has a reduced capacity of U1z
∗
21 = 1. If we exclude assigning

a set Sj to a knapsack k whenever its cost exceeds the reduced capacity of k ,
then neither S1 nor S2 can be assigned to knapsack 2. As a result, an optimal
LP solution recovers a total profit of 3

2M only. On the other hand, it is easy
to verify that assigning sets S1 and S2 to knapsacks 1 and 2, respectively, is a
feasible solution for MCPC and achieves a total profit of 2M > 3

2M.

Instead, we can fix this problem using a slightly more refined algorithm,
which is given in Algorithm 8.2. In this algorithm, we decompose the fractionally
assigned sets into two solutions, one using only non-critical knapsacks and one
that only uses the critical knapsacks. Choosing the better of those two solutions
and the integral solution, gives a 1

3 (1− 1
e)-approximation algorithm for MCPC,

as we prove in Theorem 8.3.

Theorem 8.3. Algorithm 8.2 is a 1
3 (1− 1

e)-approximation algorithm for MCPC.

Proof. Note that by Theorem 8.1 the fractional solution x derived in the al-
gorithm is a feasible solution to (LP(z∗)). Clearly, x1 is a feasible (integral)
solution. Further, the S-saturating matching M ensures that cj ≤ Bk for every
edge {j, k} ∈ M. In particular, this implies that the solution x2 is feasible be-
cause for every (non-critical) knapsack k ∈ K(l), l ∈ C, we have Bk = Ulz

∗
kl by

Lemma 8.5, and thus
∑

j∈S cjx
2
jk ≤ Bk = Ulz

∗
kl .

It remains to argue that x3 is feasible. This holds because for every cluster
l ∈ C there is at most one set j ∈ S assigned to this cluster, if there is any set
then it is the set assigned to the critical knapsack κ(l) ∈ K(l) with {j, k} ∈ M.
In particular, for k = κ(l) we have

∑
j∈S cjx

3
jk ≤ Bk ≤ Ul , where the latter

inequality holds because of Assumption 8.1.

It remains to bound the approximation factor of the algorithm. Using the

8.6. Multiple knapsack problem with cluster constraints 203

same arguments as in the proof of Theorem 8.2, we obtain

L(xalg) ≥
1

3
(L(x1) + L(x2) + L(x3)) =

1

3
(F (x1) + F (x2) + F (x3))

≥
1

3
F (x) ≥

1

3
F (x∗) ≥

1

3

(
1−

1

e

)
L(x∗) =

1

3

(
1−

1

e

)
L(x∗, z∗)

≥
1

3

(
1−

1

e

)
OPT.

The last equality holds because x∗ is an optimal solution to (LP(z∗)).

8.6 Multiple knapsack problem with cluster
constraints

The technique that we used in Section 8.5 to approximate the clustered variant
of the maximum coverage problem can also be applied to the MKPC. Recall
that in this problem we have S = I and each set contains a single item, i.e.,
Sj = {j} for all j ∈ S. We first derive, in Section 8.6.1, a 1

3 -approximation
algorithm for MKPC, and in Section 8.6.2, we present a more sophisticated
iterative rounding scheme that provides a 1

2 -approximation algorithm for certain
special cases of MKPC.

Note that for MKPC, the notions of sets and items coincide, and we simply
refer to them as items. In particular, each item j ∈ S now has a profit pj
and a cost cj . Thus, we can also drop the y -variables in the ILP formulation
of the problem. Throughout this section, we assume that the knapsacks in K
are ordered by non-increasing capacities, i.e., if k, k ′ ∈ K with k < k ′ then
Bk ≥ Bk ′ .

8.6.1 General clusters

The MKPC is a generalization of the classical multiple knapsack problem. For
the MKP, the optimal solution of the LP relaxation satisfies the bounded split
property (see, e.g., Shmoys and Tardos (1993)), and there is a natural greedy
algorithm to find an optimal solution of the LP relaxation (see, e.g., Kellerer
et al. (2004)). Here we exploit some ideas of the previous section to derive a
greedy algorithm for MKPC. This greedy algorithm is given in Algorithm 8.3. In
this section, we prove that it computes an optimal solution to the LP relaxation,
and show that the constructed solution satisfies the bounded split property. Ex-
ploiting this, we can then easily obtain a 1

3 -approximation algorithm for MKPC.

Algorithm 8.3 first fixes the optimal z∗-variables as defined in Lemma 8.5,
and then runs an adapted version of the greedy algorithm in Kellerer et al.
(2004) on the instance with the reduced capacities. There is one difference

204 8. Approximation algorithms for cluster capacitated problems

Algorithm 8.3: Algorithm to compute an optimal LP solution for MKPC.
Fix z∗ as in Lemma 8.5 and initialize x∗ = 0.
Order the items by non-increasing efficiency ratios: p1

c1
≥ · · · ≥ pn

cn
.

for j = 1, . . . , n do
while

∑
k∈K x

∗
jk < 1 do

Find the smallest capacity knapsack k that can hold j and has residual
capacity, i.e., k := arg maxk ′∈K{Bk ′ |Bk ′ ≥ cj and resC(k ′)(x∗, z∗) > 0}.

if No such knapsack exists then
Continue to the next item

else
Set x∗jk = min{1−

∑
k∈K x

∗
jk ,

1
cj
resC(k)(x∗, z∗)}.

end
end

end

in the assignment of items to knapsacks between our algorithm and that of
Kellerer et al. (2004). Their greedy algorithm operates on a per-knapsack
basis, while our algorithm proceeds on a per-item basis.

In Algorithm 8.3, the items are assigned in non-increasing order of their
efficiency ratios, where the efficiency ratio of item j ∈ S is defined as pj

cj
. When

item j is considered, it is assigned to the knapsack with the smallest capacity
that can hold the item and has some positive residual capacity. More formally,
a knapsack k ∈ K can hold item j ∈ S if Bk ≥ cj . Furthermore, we define the
residual capacity of knapsack k with respect to (x∗, z∗) as

resk(x∗, z∗) := UC(k)z
∗
kC(k) −

∑
j∈S

cjx
∗
jk .

We continue this way until either item j is assigned completely, possibly split over
several knapsacks, or all knapsacks that can hold j have zero residual capacity.
We then continue with the next item in the order. We show in Lemma 8.6 that
Algorithm 8.3 computes an optimal fractional solution.

Lemma 8.6. Algorithm 8.3 computes an optimal solution (x∗, z∗) to the LP
relaxation of MKPC.

Proof. We show that any optimal solution (x, z∗) can be transformed into the
solution (x∗, z∗) output by Algorithm 8.3. Let j ∈ S be the first item such
that

∑
k∈K x

∗
jk <

∑
k∈K xjk ≤ 1. If no such item exists we are done because

then the total profit of (x∗, z∗) is at least the profit of (x, z∗). Note that since∑
k∈K x

∗
jk < 1, the combined residual capacity on all knapsacks k ∈ K that can

hold j is
∑

k∈K cjx
∗
jk before iteration j of Algorithm 8.3. However, if we had

assign, in iterations 1, . . . , j − 1 of Algorithm 8.3, xjk instead of x∗jk , then the
residual capacity on all knapsacks that could hold item j would have been at

8.6. Multiple knapsack problem with cluster constraints 205

least
∑

k∈K cjxjk >
∑

k∈K cjx
∗
jk . Hence, we know that

j−1∑
j ′=1

∑
k∈K

xj ′k <

j−1∑
j ′=1

∑
k∈K

x∗j ′k .

In particular, this implies that there has to be an item j ′ ∈ S for which

1 ≥
∑
k∈K

x∗j ′k >
∑
k∈K

xj ′k ,

and
pj ′

cj ′
≥
pj
cj
.

Let k ′ be a knapsack for which x∗jk ′ < xjk ′ . Let us change the solution x such
that the contribution of item j on knapsack k ′ decreases and the contribution
of item j ′ on knapsack k ′ increases. Let

∆(j, j ′, k ′) := min

{
cj(xjk ′ − x∗jk ′), cj ′

(∑
k∈K

x∗j ′k −
∑
k∈K

xj ′k

)}
,

and let us define x(∆) as follows:

x(∆)jk ′ = xjk ′ −
∆(j, j ′, k ′)

cj

x(∆)j ′k ′ = xj ′k ′ +
∆(j, j ′, k ′)

cj ′
,

and otherwise x(∆) = x . We first show that the new solution x(∆) is feasible.
Since by definition xjk ′ > x∗jk ′ ,

∑
k∈K x

∗
j ′k >

∑
k∈K xj ′k , and cj , cj ′ > 0, we

know that ∆(j, j ′, k ′) > 0. An immediate consequence is that x(∆)j ′k ′ ≥ 0 and∑
k∈K x(∆)jk ≤ 1. Furthermore, from the definition of ∆(j, j ′, k ′) we obtain

the following two inequalities:

x(∆)jk ′ = xjk ′ −
∆(j, j ′, k ′)

cj
≥ xjk ′ −

cj(xjk ′ − x∗jk ′)
cj

= x∗jk ′ ≥ 0,

and ∑
k∈K

x(∆)j ′k =
∆(j, j ′, k ′)

cj ′
+
∑
k∈K

xj ′k

≤
cj ′
(∑

k∈K x
∗
j ′k −

∑
k∈K xj ′k

)
cj ′

+
∑
k∈K

xj ′k

=
∑
k∈K

x∗j ′k ≤ 1.

206 8. Approximation algorithms for cluster capacitated problems

Hence, we know that x(∆)jk ≥ 0 for every j ∈ S and k ∈ K, and that con-
straint (8.3) is satisfied for every for every j ∈ S. Remains to show that the
solution x(∆) satisfies the budget constraints. The only knapsack for which so-
lution x(∆) is different from x is knapsack k ′. The costs assigned on knapsack
k ′ for x(∆) are∑

j ′′∈S
cj ′′x(∆)j ′′k ′ = −cj

(
∆(j, j ′, k ′)

cj

)
+ cj ′

(
∆(j, j ′, k ′)

cj ′

)
+
∑
j ′′∈S

cj ′′xj ′′k ′

=
∑
j ′′∈S

cj ′′xj ′′k ′ ≤ Bk ′ .

As a result, the solution x(∆) is feasible. Finally, we show that he difference in
the objective for x(∆) and x is at least 0:

∑
j ′′∈S

pj ′′

(∑
k∈K

x(∆)j ′′k −
∑
k∈K

xj ′′k

)
= pj ′

∆(j, j ′, k ′)

cj ′
− pj

∆(j, j ′, k ′)

cj

= ∆(j, j ′, k ′)

(
pj ′

cj ′
−
pj
cj

)
≥ 0,

in which the last inequality follows from the fact that pj
cj
≤ pj ′

cj ′
. All in all,

it is possible to transform the solution (x, z∗) into the solution (x∗, z∗) as
constructed by Algorithm 8.3.

After we have shown that Algorithm 8.3 gives the optimal solution for the
LP relaxation, we need to show that its solution also satisfies the bounded split
property. For that reason, we need to introduce some definitions. We say that
an item j ∈ S is a split item if it is fractionally assigned to one or multiple
knapsacks. Let SS refer to the set of all split items. Next, we introduce the
notion of a split item of a knapsack.

Definition 8.4 (Split set). An item j ∈ SS is a split item of knapsack k ∈
K if k is the knapsack with the smallest capacity to which j is assigned in
Algorithm 8.3.

Using this definition, we show below that the solution obtained by Algo-
rithm 8.3 satisfies the bounded split property.

Lemma 8.7. Algorithm 8.3 computes a solution (x∗,z∗) to the LP relaxation
of MKPC which satisfies the bounded split property.

Proof. Let Hx∗ = (S∪K, Ex∗) be the support graph of x∗. Note that the set of
split items SS corresponds to the set of non-isolated nodes in S of the support

8.6. Multiple knapsack problem with cluster constraints 207

graph Hx∗ . Let M be the set of all edges {j, k} ∈ Ex∗ such that j ∈ SS is a
split item of knapsack k ∈ K. The proof follows if we can show that M is an
S-saturating matching.

Clearly, every node j ∈ SS is matched to some knapsack. Consider an
item j ∈ SS and let k be the knapsack for which j is a knapsack split, i.e.,
{j, k} ∈ M. By definition, k is the first, i.e., the smallest capacity, knapsack to
which Algorithm 8.3 assigns some fractional contribution of j . By construction,
j is only fractionally assigned to knapsack k because the residual capacity of k
is insufficient to assign j integrally. However, this implies that no other item
can be a split item of knapsack k . Thus, M is a matching.

In the analysis of Algorithm 8.2 for the MCPC, a factor (1− 1
e) is lost in the

approximation ratio by transforming the optimal solution of the LP relaxation
to a solution that satisfies the bounded split property. By Lemmas 8.6 and 8.7,
we can avoid this loss here. Hence, it follows that Algorithm 8.2 is a 1

3 -
approximation algorithm for the MKPC. This claim is summarized in Theo-
rem 8.4.

Theorem 8.4. Algorithm 8.2 is a 1
3 -approximation algorithm for the MKPC.

8.6.2 Isolation property

In this section, we derive 1
2 -approximation algorithm for instances of MKPC

that satisfy a certain isolation property based on iterative rounding. We first
introduce some more notation to define the isolation property.

Let (x∗, z∗) be the optimal solution to the LP relaxation of MKPC computed
by Algorithm 8.3. We say that an item j ∈ S is an unsplit item if it is integrally
assigned to some knapsack, i.e., x∗jk = 1 for some k ∈ K. Recall that an item
j ∈ S is a split item if it is fractionally assigned to one or multiple knapsacks.
Let US and SS refer to the sets of unsplit and split items, respectively. Recall
from Definition 8.4, the definition of a split item of knapsack k . As argued in
the proof of Lemma 8.7, the split item j ∈ SS of knapsack k ∈ K is unique,
and we use ςk = j to refer to the split item of knapsack k . Furthermore, we
use US(k) to denote the set of all unsplit items assigned to knapsack k . For
each cluster l ∈ C, we denote by US(l) = ∪k∈K(l)US(k) the set of all unsplit
items and by SS(l) = ∪k∈K(l)ςk the set of all split items assigned to l . Using
these definitions, it is possible to define an isolated cluster.

Definition 8.5 (Isolated Cluster). A cluster ι ∈ C is said to be isolated if for
every item j ∈ US(l)∪SS(l) assigned to some cluster l 6= ι it holds that x∗jk = 0

for all k ∈ K(ι).

208 8. Approximation algorithms for cluster capacitated problems

Intuitively, a cluster ι is isolated if there is no x∗-contribution to cluster ι
coming from items assigned to other clusters l 6= ι or put differently, the total
x∗-contribution of items to knapsacks in ι is entirely due to the unsplit and split
items assigned to cluster ι. The definition of an isolated cluster is used below
to define when an instance of MKPC satisfies the isolation property.

Definition 8.6 (Isolation property). A class of instances of MKPC satisfies the
isolation property if, after removing an arbitrary set of clusters, there always
exists an isolated cluster.

A practical situation in which the isolation property holds is when stan-
dardized containers with the same capacity are used. Moreover, also the case
in which there is a single cluster satisfies the isolation property. In general,
the isolation property holds true for instances whose clusters can be disen-
tangled in the sense that we can impose an order on the set of clusters
C = {1, 2, . . . , q} such that for any two clusters l , l ′ ∈ C with l < l ′ it holds that
mink∈K(l){Bk} ≥ maxk∈K(l ′){Bk}. Lemma 8.8 below shows that the isolation
property is satisfied if the clusters are disentangled.

Lemma 8.8. If the set of clusters C = {1, 2, . . . , q} is disentangled then ι = q

is an isolated cluster.

Proof. Consider a cluster l 6= q and an arbitrary item j ∈ US(l)∪SS(l) assigned
to l . The claim follows if we can prove that x∗jk = 0 for all k ∈ K(q). Clearly,
this holds true if j ∈ US(l) because xjk ′ = 1 for some k ′ ∈ K(l) by definition.
Assume j ∈ SS(l) and let k ′ ∈ K(l) be the knapsack for which j is the split
item, i.e., ςk ′ = j . By definition, k ′ is the knapsack of smallest capacity to
which j was assigned fractionally by Algorithm 8.3. Further, it must hold that
Bk ′ ≥ Bk for each k ∈ K(q) because l < q and the clusters are disentangled.
But this implies that xjk = 0 for all k ∈ K(q).

After we have defined an isolated cluster, we now start with deriving the
1
2 -approximation algorithm for the MKPC that satisfies the isolation property.
The first step of our iterative rounding scheme is given in Lemma 8.9. In
this lemma, it is shown that we can always find a feasible assignment σ which
recovers at least half of the fractional profit of an isolated cluster ι. Recall that
Sσ refers to the set of items assigned under σ.

Lemma 8.9. Let ι be an isolated cluster. Then there exists a feasible assign-
ment σ : US(ι) ∪ SS(ι)→ K(ι) such that∑

j∈Sσ

pj ≥
∑
j∈Sσ

∑
k∈K(ι)

pjx
∗
jk ≥

1

2

(∑
j∈S

∑
k∈K(ι)

pjx
∗
jk

)
. (8.18)

8.6. Multiple knapsack problem with cluster constraints 209

Proof. We only consider the knapsacks k ∈ K(ι) for which z∗kι > 0. By
Lemma 8.5, there are κ(ι) such knapsacks, where κ(ι) denotes the critical
knapsack of cluster ι. Recall that we assume that the knapsacks are ordered
by non-increasing capacities.

Below, we use a few case distinctions to prove that we can always construct
two feasible assignments σ1 and σ2 such that Sσ1 ∪ Sσ2 = US(ι) ∪ SS(ι) and
Sσ1 ∩ Sσ2 = ∅. By exploiting that ι is an isolated cluster, we obtain∑

j∈S

∑
k∈K(ι)

pjx
∗
jk =

∑
j∈US(ι)∪SS(ι)

∑
k∈K(ι)

pjx
∗
jk

=
∑

j∈Sσ1∪Sσ2

∑
k∈K(ι)

pjx
∗
jk ≤

∑
j∈Sσ1∪Sσ2

pj .

Inequality (8.18) then follows by choosing σ ∈ {σ1, σ2} as the assignment of
maximum profit.

First, assume that
∑

j∈SS(ι) cj ≤ Uι. Then, assigning every split item ςk ∈
SS(ι) to knapsack k corresponds to a feasible assignment σ1. Further, assigning
each unsplit item j ∈ US(ι) to its respective knapsack corresponds to a feasible
assignment σ2. The claim follows.

We can thus assume that
∑

j∈SS(ι) cj > Uι. Let us define the set of frac-
tionally split items FS(ι) ⊆ SS(ι) of cluster ι as

FS(ι) = {ςk ′ ∈ SS(ι) |
∑
k∈K(ι)

x∗jk < 1}.

By definition, the split item of knapsack 1 is always a fractional split and thus
ς1 ∈ FS(ι).

We first consider the case |FS(ι)| = 1 and thus ς1 is the only fractional
split item. Note that then all items in US(ι) ∪ SS(ι) except ς1 are completely
assigned to cluster ι and ς1 is only partially assigned to cluster ι. Thus,∑

j∈US(ι)∪SS(ι)

cj − cς1 ≤ Uι <
∑

j∈US(ι)∪SS(ι)

cj .

Since
∑

j∈SS(ι) cj > Uι, the first inequality implies that
∑

j∈US(ι) cj ≤ cς1 . The
latter implies that assigning all unsplit items in US(ι) to the first knapsack
and each split item ςk ∈ SS(ι) \ {ς1} to its respective knapsack k is a feasible
assignment σ1. Assigning the only missing item ς1 by its own to knapsack 1 is
a feasible assignment σ2. The claim follows.

Next consider the case |FS(ι)| > 1. In this case, we focus on finding an
assignment for two knapsacks with a fractional split item. After that is done,
we are either left with none or a single fractional split item. The previously

210 8. Approximation algorithms for cluster capacitated problems

described assignment can be applied for finding an assignment for the remaining
knapsacks.

Let k1, k2 ∈ K(ι) be two knapsacks with k1 > k2 for which ςk1 , ςk2 ∈ FS(ι).
Note that by our ordering we have Bk1 ≤ Bk2 . We introduce some more
notation. Given a subset S ⊆ S of items, let P (S) and C(S) denote the total
fractional profit and cost, respectively, of the items in S in cluster ι, i.e.,

P (S) =
∑
j∈S

∑
k∈K(ι)

pjx
∗
jk and C(S) =

∑
j∈S

∑
k∈K(ι)

cjx
∗
jk .

For notational convenience, we use PUS
k = P (US(k)) and P ςkk = P ({ςk}) to

refer to the total (fractional) profit of the unsplit items in US(k) and the
fractional split item ςk , respectively. Similarly, we use CUS

k = C(US(k)) and
Cςkk = C({ςk}) to refer to the total (fractional) cost of the unsplit items in
US(k) and the fractional split item ςk , respectively. Finally, define Pk = PUS

k +

P ςkk and Ck = CUS
k + Cςkk .

We will exhibit an assignment for knapsacks k1 and k2 whose profit is at
least 1

2 (Pk1 + Pk2), and whose cost is at most Ck1 + Ck2 . To this aim, we
distinguish three cases:

1. cςk1
+ cςk2

≤ Ck1 + Ck2 ,

2. cςk1
+ cςk2

> Ck1 + Ck2 and CUS
k1

+ CUS
k2

+ cςk1
≤ Ck1 + Ck2 , and

3. cςk1
+ cςk2

> Ck1 + Ck2 and CUS
k1

+ CUS
k2

+ cςk1
> Ck1 + Ck2 .

In the first case, assigning the split items ςk1 and ςk2 to their respective
knapsacks k1 and k2 is a feasible assignment. Also, assigning US(k1) and US(k2)

to knapsacks k1 and k2, respectively, is a feasible assignment. Thus, choosing
the assignment of maximum fractional profit recovers at least 1

2 (Pk1 + Pk2) as
claimed.

In the second case, the conditions imply that

cςk2
> Ck1 + Ck2 − cςk1

≥ CUS
k1

+ CUS
k2
.

This, in combination with cςk2
≤ Bk2 , implies that assigning ςk1 to knapsack k1,

and US(k1) and US(k2) to knapsack k2 is a feasible assignment. Further,
assigning ςk2 on its own is a feasible assignment as well. Again, selecting the
assignment of maximum fractional profit recovers at least 1

2 (Pk1 + Pk2).

In the last case, we exploit the fact that ςk1 ∈ FS(ι), which implies that
knapsack k2 must have been completely filled already at the time when item
ςk1 was assigned to knapsack k1. As Bk1 ≤ Bk2 , we know that it is possible to
assign ςk1 to knapsack k2. As a consequence, the items in US(k2) were assigned

8.6. Multiple knapsack problem with cluster constraints 211

before ςk1 in Algorithm 8.3, and thus they have a larger efficiency ratio, i.e.,
pςk1

cςk1

≤ pj
cj

for every item j ∈ US(k2). In particular, this implies that
pςk1

cςk1

≤
PUS
k2

CUS
k2

.

Using this inequality, we can bound the fractional profit of ςk1 by

P
ςk1

k1
=
∑
k∈K(ι)

pςk1
x∗ςk1

k ≤
PUS
k2

CUS
k2

∑
k∈K(ι)

cςk1
x∗ςk1

k =
C
ςk1

k1

CUS
k2

PUS
k2
.

Finally, note that, by definition, the split item ςk2 is assigned after all items in
US(k2) were assigned to k2 and thus also

pςk2

cςk2

≤
PUS
k2

CUS
k2

.

Using the same arguments as above, we can conclude that

P
ςk2

k2
≤
C
ςk2

k2

CUS
k2

PUS
k2
.

Thus,

P
ςk1

k1
+ P

ςk2

k2
≤
C
ςk1

k1
+ C

ςk2

k2

CUS
k2

PUS
k2
. (8.19)

The second condition of the assumptions of Case 3 implies that cςk1
> C

ςk1

k1
+

C
ςk2

k2
. Using that each item j ∈ US(k2) was assigned before ςk1 in Algorithm 8.3,

it follows that cj > Bk1 . Thus, CUS
k2

> Bk1 ≥ cςk1
. Combining this with the

inequality above, we obtain CUS
k2
> C

ςk1

k1
+ C

ςk2

k2
. Exploiting this inequality with

inequality (8.19), we obtain that

P
ςk1

k1
+ P

ςk2

k2
< PUS

k2
.

As a consequence, assigning all unsplit items in US(k1) and US(k2) to their
respective knapsacks k1 and k2 is a feasible assignment of fractional profit

PUS
k1

+ PUS
k2

> PUS
k1

+
1

2
PUS
k2

+
1

2
(P

ςk1

k1
+ P

ςk2

k2
) ≥

1

2
(Pk1 + Pk2),

as desired.

Although the assignment constructed in the proof of Lemma 8.9 recovers
at least half of the fractional profit that is assigned to cluster ι, it does not take
into account the contribution of items in SS(ι) to other clusters. Suppose one
ignores the items in SS(ι) because they do not contribute sufficiently enough

212 8. Approximation algorithms for cluster capacitated problems

4 5 B4 = 2

B3 = 3

U2 = 4

1 2

2

3

B2 = 3

B1 = 4

U1 = 6

item j pj cj

1 2 1
5

2 1
10

2 2 9
10

2 9
10

3 1
2

4

4 1
10

9
10

5 1
5

2

Figure 8.4 Illustration of an instance and its optimal LP solution, for which ignoring
the contribution of SS(ι) outside cluster ι does not result in a recovery of half of the
fractional profit.

to the profit inside cluster ι. In that case, one might not be able to recover half
of the total fractional profit over all clusters. To see that consider the following
example.

In Figure 8.4, an instance with five items, four knapsacks, and two clusters
is given. The knapsacks have capacities B1 = 4, B2 = B3 = 3, and B4 = 2.
Cluster 1 contains knapsacks 1 and 2 and has capacity U1 = 6, and cluster 2
contains knapsacks 3 and 4 and has capacity U2 = 4. The optimal solution to
the LP relaxation computed by Algorithm 8.3 is as depicted in Figure 8.4. The
total value of the LP relaxation is 5 71

100 .

In cluster 2, an isolated cluster, two splits items are only fractionally assigned
to cluster 2, namely items 2 and 5. Both the set of items {2, 5} and {1, 4, 5}
have a cost higher than the cluster capacity and thus do not form a feasible
assignment. Consequently, as shown in Lemma 8.9, the unsplit items 1 and 4

recover at least half of the entire profit made in cluster 2 and are thus selected
as the assignment. These two items together have a profit of 2 3

10 . In cluster 1,
there is no split item and US(1) only consists of item 3. As a result, for cluster 2,
item 3 is selected as the assignment. The total profit of the resulting integral
assignment is p1 + p3 + p4 = 2 4

5 <
1
2 (5 71

100).

For this instance, assigning item 2 alone corresponds to a feasible assign-
ment that recovers half of the fractional profit as p2 = 2 9

10 ≥
1
2 (5 71

100). How-
ever, this is the split item of knapsack 3 in cluster 2, while its main contribution
is assigned in cluster 1. That is why it is not taken into account if one uses the
procedure described in Lemma 8.9.

Therefore, a more advanced iterative rounding scheme is needed that is de-
scribed in Algorithm 8.4. In this algorithm, we first compute an optimal solution
(x∗, y ∗) to the LP relaxation of MKPC using Algorithm 8.3. Because of the
isolation property, there exists an isolated cluster ι. We then apply Lemma 8.9
to obtain an assignment σ for cluster ι. After that, we fix the corresponding

8.6. Multiple knapsack problem with cluster constraints 213

Algorithm 8.4: Iterative rounding algorithm for MKPC with isolation property.

Let LP(1) be the original LP relaxation of MKPC.
for i = 1, . . . , q do

Compute an optimal solution (x (i), z (i)) to LP(i) using Algorithm 8.3.
Identify an isolated cluster ι(i) with respect to (x(i), z (i)).
Obtain a feasible assignment σ(i) for cluster ι(i) using Lemma 8.9.
Add the constraints (8.20)–(8.21) fixing the assignment σ(i) for ι(i) to obtain
LP(i+1).

end

variables in the LP relaxation accordingly and repeat. By iterating this proce-
dure, we obtain a sequence of isolated clusters ι(1), . . . , ι(q) and assignments
σ(1), . . . , σ(q), where σ(l) is the assignment obtained by applying Lemma 8.9 to
cluster ι(l).

Let σ(i) = 〈σ(1), . . . , σ(i)〉 be the combined assignment for the first i clus-
ters ι(1), . . . , ι(i) that we obtain at the end of iteration i . The LP relaxation
LP(i+1) that we solve in iteration i + 1 is then defined as the LP (8.13)–(8.17)
with the following additional constraints:

xjk = 1 ∀l ∈ {ι(1), . . . , ι(i)} ∀k ∈ K(l) ∀j ∈ Sσ(i)(k), (8.20)

xjk = 0 ∀l ∈ {ι(1), . . . , ι(i)} ∀k ∈ K(l) ∀j 6∈ Sσ(i)(k). (8.21)

Note that with these constraints no item that is not in Sσ(i) can be assigned
to knapsacks in clusters ι(1), . . . , ι(i), and every item that is in Sσ(i) cannot be
assigned to any knapsack in clusters ι(i+1), . . . , ι(q). Let (x (i+1), z (i+1)) be the
optimal solution of LP(i+1) computed by Algorithm 8.3 in iteration i + 1. The
next lemma establishes that the assignment for cluster i + 1 according to the
procedure of Lemma 8.9 recovers at least half of the optimal solution for the
clusters 1 up to i + 1.

Lemma 8.10. Fix some 1 ≤ i ≤ q and let σ(i) be the assignment at the end
of iteration i . Further, let (x∗, z∗) be the optimal solution to the original LP
relaxation constructed by Algorithm 8.3. Then∑

j∈Sσ(i)

pj ≥
1

2

∑
l∈{ι(1),...,ι(i)}

∑
k∈K(l)

∑
j∈S

pjx
∗
jk . (8.22)

Proof. Throughout this proof, we assume for notational convenience that the
clusters are renamed such that ι(l) = l for each 1 ≤ l ≤ i . For i = 1 the
inequality follows from Lemma 8.9. Suppose the claim is true for 1, . . . , i − 1,
then we prove by induction that it remains true for i as well. We construct the
assignment σ(i) using the procedure of Lemma 8.9 with the solution (x (i), z (i)).

214 8. Approximation algorithms for cluster capacitated problems

For the profit of all items in Sσ(i), we have∑
j∈Sσ(i)

pj =
∑

j∈Sσ(i−1)

pj +
∑
j∈S

σ(i)

pj

≥
∑

j∈Sσ(i−1)

pj +
1

2

(∑
j∈S

∑
k∈K(i)

pjx
(i)
jk

)

≥
∑

j∈Sσ(i−1)

(
i−1∑
l=1

∑
k∈K(l)

pjx
∗
jk +

∑
k∈K(i)

pjx
∗
jk

)

+
1

2

(∑
j∈S

∑
k∈K(i)

pjx
(i)
jk

)

≥
∑

j∈Sσ(i−1)

(
i−1∑
l=1

∑
k∈K(l)

pjx
∗
jk

)

+
1

2

(∑
k∈K(i)

(∑
j∈S

pjx
(i)
jk +

∑
j∈Sσ(i−1)

pjx
∗
jk

))

≥
∑

j∈Sσ(i−1)

(
i−1∑
l=1

∑
k∈K(l)

pjx
∗
jk

)
+

1

2

(∑
k∈K(i)

∑
j∈S

pjx
∗
jk

)

≥
1

2

(∑
j∈S

i−1∑
l=1

∑
k∈K(l)

pjx
∗
jk

)
+

1

2

(∑
k∈K(i)

∑
j∈S

pjx
∗
jk

)

=
1

2

(∑
j∈S

i∑
l=1

∑
k∈K(l)

pjx
∗
jk

)
.

Here, the first inequality follows from Lemma 8.9. The second inequality ex-
ploits that for any j ∈ Sσ(i−1) it holds that

∑i
l=1

∑
k∈K(l) x

∗
jk ≤ 1. In the third

inequality, the terms are rearranged and a fraction of 1
2 (
∑

j∈Sσ(i−1)

∑
k∈K(i) pjx

∗
jk)

is discarded.

The fourth inequality trivially holds if for every j 6∈ Sσ(i−1) holds that∑
k∈K(i) x

(i)
jk ≥

∑
k∈K(i) x

∗
jk . Otherwise, we make use of the fact that the

solution x (i) is the optimal solution for the items in S \ Sσ(i−1) on clusters
i , i + 1, . . . , q constructed via Algorithm 8.3. Moreover, cluster i is an isolated
cluster, and thus∑

j 6∈US(i)∪SS(i)

∑
k∈K(i)

x
(i)
jk = 0.

8.7. Capacitated facility location problem with cluster constraints 215

Let j 6∈ Sσ(i−1) be an item for which∑
k∈K(i)

x
(i)
jk <

∑
k∈K(i)

x∗jk .

This implies that there was not enough residual capacity left on cluster i at iter-
ation j of Algorithm 8.3 to assign item j to an extent of

∑
k∈K(i) x

∗
jk . Therefore,

there must be an item j ′ with
pj ′

cj ′
≥ pj

cj
for which∑

k∈K(i)

x
(i)
j ′k >

∑
k∈K(i)

x∗j ′k .

Hence, it follows that∑
j 6∈Sσ(i)

∑
k∈K(i)

pjx
(i)
jk ≥

∑
j 6∈Sσ(i)

∑
k∈K(i)

pjx
∗
jk .

Finally, the fifth inequality holds by our induction hypothesis, and the final
equality follows from the combination of the two sums.

With the use of Lemma 8.10, the claim that Algorithm 8.4 is a 1
2 -

approximation algorithm follows, as is shown in the following theorem.

Theorem 8.5. Algorithm 8.4 is a 1
2 -approximation algorithm for instances of

MKPC satisfying the isolation property.

Proof. By Lemma 8.10, the final assignment σ = σ(q) returned by the algo-
rithm has profit at least∑

j∈Sσ

pj ≥
1

2

∑
l∈C

∑
k∈K(l)

∑
j∈S

pjx
∗
jk ≥

1

2
OPT.

8.7 Capacitated facility location problem with
cluster constraints

The technique to add a decision variable to the LP formulation to distribute
the cluster capacity over the knapsacks in a cluster does not only apply to
the MCPC and its variants. In this section, we consider a variation of the
Capacitated Facility Location Problem (CFLP). In Aardal et al. (2015), an LP-
based (4.562 + ε)-approximation algorithm (for any ε > 0) for the CFLP in
which all facilities have equal opening costs is given. We extend this problem
to a problem in which there are clusters of facilities that all have a capacity

216 8. Approximation algorithms for cluster capacitated problems

associated with them. The new problem is called the Capacitated Facility
Location Problem with Cluster constraints (CFLPC).

In the CFLPC, we have a set of customers I that needs to be served by a
set of facilities K. Every customer i ∈ I has a weight of wi that needs to be
covered by the facilities. A customer can be served by multiple facilities. The
costs of assigning the entire weight of customer i ∈ I to facility k ∈ K is given
by cik . If only a fraction of the weight of customer i is covered by facility k , then
only that fraction of cik needs to be paid. Every facility k ∈ K has opening costs
fk and capacity Bk . Furthermore, we are given a set of clusters C, and every
cluster l ∈ C has an associated capacity Ul . The set of facilities contained in
cluster l is given by K(l) ⊆ K but contrary to the MCPC, we do not assume the
sets K(l) to be disjoint. Hence, the set C(k) ⊆ C, which represents the clusters
in which knapsack k is contained, could have a cardinality larger than one.

Using the same technique as in Section 8.5, the capacity of the clusters can
be distributed over the facilities using the z-variables. Hence, the CFLPC can
be formulated as the following ILP.

min L(x, y , z) =
∑
k∈K

fkyk +
∑
i∈I

∑
k∈K

cikxik (8.23)

subject to∑
k∈K

xik ≥ 1 ∀i ∈ I (8.24)

xik ≤ yk ∀i ∈ I ∀k ∈ K (8.25)∑
i∈I

wixik ≤ Bk ∀k ∈ K (8.26)∑
i∈I

wixik ≤
∑
l∈C(k)

Ulzkl ∀k ∈ K (8.27)

∑
k∈K

zkl ≤ 1 ∀l ∈ C (8.28)

xik ≥ 0 ∀i ∈ I ∀k ∈ K (8.29)

yk ∈ {0, 1} ∀k ∈ K (8.30)

zkl ≥ 0 ∀k ∈ K ∀l ∈ C. (8.31)

In the objective function in (8.23), the opening costs of the facilities and the
costs to serve the customers are minimized. Constraint (8.24) ensures that
the demand of every customer is completely served by the facilities. In con-
straint (8.25), it is enforced that a customer can only be assigned to an open
facility. The total weight of the customers that can be assigned to a facility
is restricted by the facility capacity in constraint (8.26), and by the cluster ca-
pacity in constraint (8.27). Note that, in constrast to constraint (8.15), there

8.7. Capacitated facility location problem with cluster constraints 217

Algorithm 8.5: Algorithm for the CFLPC.
Solve the LP relaxation of problem (8.23)-(8.31).
Let (x∗, y∗, z∗) be the optimal solution.
Solve the capacitated facility location problem with each facility having a capacity
of min{Bk , z∗jkUl}, using the algorithm of Aardal et al. (2015)

are multiple clusters from which a knapsack k can get some cluster capacity
in constraint (8.27). The constraint (8.28) ensures that the fraction of the
capacity Ul that is assigned to the knapsacks does not exceed 1. The x and
z-variables are positive because of, respectively constraints (8.29) and (8.31),
and the y -variables are enforced to be binary in constraint (8.30).

If the constraints (8.27), (8.28), and (8.31) from the ILP formulation
(8.23)-(8.31), then the ILP formulation for the CFLP is obtained. We use
(IP) to refer to the ILP for the CFLP and (LP) for its LP relaxation. More-
over, (IPC) and (LPC) are used to denote the ILP (8.23)-(8.31) and its LP
relaxation.

The crucial difference between the CFLPC and the MCPC is that in the
CFLPC, fractional assignments of customers to facilities are allowed. Only the
y -variables are integral in (IPC). As a consequence, a fractional solution for the
x-variables that is feasible with respect to the reduced capacity of a knapsack
(min{Bk ,

∑
l∈C(k) Ulz

∗
kl}) is a feasible solution for (IP

C). In Aardal et al. (2015),
an LP-based (4.562 + ε)-approximation algorithm is given if all facilities have
the same opening costs, i.e., fk = f for all k ∈ K. In Algorithm 8.5, this approx-
imation algorithm for the CFLPC is used to derive a (4.562 + ε)-approximation
algorithm for the CFLPC with fixed opening costs.

Lemma 8.11. Algorithm 8.5 is a (4.562 + ε)-approximation algorithm for the
CFLPC if fk = f for all k ∈ K.

Proof. Let us start the proof of this lemma by introducing some notation. Let
(x∗, y ∗, z∗) be the optimal solution of (LPC). Furthermore, let (x̄ , ȳ , z∗) be
the optimal solution for (LP) with each facility having the reduced capacity
min{Bk ,

∑
l∈C(k) Ulz

∗
kl}, and let (x̂ , ŷ , z∗) be the solution produced by the al-

gorithm of Aardal et al. (2015) for the same problem. Hence, the solution
(x̂ , ŷ , z∗) is the solution produced by Algorithm 8.5.

From Aardal et al. (2015), we know that L(x̂ , ŷ , z∗) ≤ (4.562 +

ε)L(x̄ , ȳ , z∗). As the solution (x∗, y ∗, z∗) is the optimal solution for
(LPC), we know that L(x∗, y ∗, z∗) ≤ L(x̄ , ȳ , z∗). However, the solution (x∗,
y ∗, z∗) is also feasible for (LP) if each facility has a reduced capacity of
min{Bk ,

∑
l∈C(k) Ulz

∗
kl}. Consequently, L(x∗, y ∗, z∗) ≥ L(x̄ , ȳ , z∗), and thus

it must hold that L(x∗, y ∗, z∗) = L(x̄ , ȳ , z∗).

218 8. Approximation algorithms for cluster capacitated problems

All in all, we can conclude, if all facilities have the same opening costs, that

L(x̂ , ŷ , z∗) ≤ (4.562 + ε)L(x̄ , ȳ , z∗) = (4.562 + ε)L(x∗, y ∗, z∗)

≤ (4.562 + ε)OPT,

which proves the lemma.

Note that Algorithm 8.5 does not use any specific details of the algorithm
of Aardal et al. (2015) except that it is LP-based. Consequently, any LP-based
α-approximation algorithm for the CFLP can be used to give an approximation
algorithm for the CFLPC with the same approximation guarantee.

8.8 Conclusion
In the previous chapters, we have seen some problems in which there are two lev-
els of capacities. For these problems, we have only used numerical experiments
to evaluate the heuristic. Hence, in this chapter, we have developed approxima-
tion algorithms for cluster capacitated problems. We have introduced a decision
variable that decides on the fraction of the cluster capacity that is distributed
to lower tiers. With that decision variable, we can use (known) LP-based ap-
proximation algorithms for problems without cluster constraints for problems
with cluster constraints.

For the Capacitated Facility Location Problem with cluster constraints and
fixed opening costs and the Multiple Knapsack Problem with clusters that sat-
isfies the isolation property, the approximation ratio remains the same if cluster
constraints have been added. For the Capacitated Maximum Coverage Prob-
lem and the general case of the Multiple Knapsack problem, the approximation
ratio got slightly worse by adding a cluster, respectively, from 1

2

(
1− 1

e

)
to

1
3

(
1− 1

e

)
and from 1

2 to 1
3 . Hence, we can draw the tentative conclusion that

adding cluster capacities to an optimization problem does not make the problem
much harder. In further research, it has to be investigated if this claim indeed
also holds for other problems.

In this chapter, we have only introduced a single extra level of capacities,
namely the clusters. It would be interesting to develop approximation algorithms
for an arbitrary number of levels of capacity. What if the capacity of a cluster
is also restricted by the capacity of a super-cluster in which it is contained?
A problematic aspect of these problems lies in the distribution of capacity of
a super-cluster among clusters. In Lemma 8.5, it is shown that the cluster
capacity should be distributed among the largest knapsacks. Nevertheless, it is
unclear if it is better to distribute the capacity of a super-cluster to a cluster
with a large capacity but many knapsacks with a small capacity or to a cluster
with a smaller capacity but more knapsacks with a larger capacity.

8.8. Conclusion 219

We have not proven that our approximation ratios are tight, which means
that there might be better performance guarantees possible for the problems
presented. For instance, the pipage rounding technique is, in general, used to
round a fractional solution to an integral solution. In contrast, we have only
rounded it to a solution that satisfies the bounded split property. With a more
advanced rounding technique, it might be possible to use the pipage rounding
technique to obtain an integral solution. In that situation, we would obtain
a (1 − 1

e)-approximation algorithm for the MCPK. Moreover, we have found
using iterative rounding a method to improve the 1

3 -approximation algorithm
for the MKPC if it satisfies the isolation property to 1

2 . With another line
of argumentation, it might be possible to show that this is possible for more
general cases.

9
Conclusion

In this dissertation, we have studied operational problems arising in container
hinterland transportation. These problems can be partitioned into two cat-
egories: (i) the multimodal transportation part in which it is decided how a
container is transported and (ii) the terminal operations part in which the goal
is to place the container in the correct position at the terminal. For these prob-
lems, we have developed exact algorithms, that give the optimal solution, but
also efficient heuristics. The goal of these problems was to obtain cost-efficient
and reliable solutions.

All the problems discussed in this dissertation are new in the scientific lit-
erature. The reason why these problems have not been discussed before could
be that there has been little collaboration between academic researchers and
inland container terminals. However, as the number of containers that are trans-
ported around the world has increased significantly over the past few decades
(recall Figure 1.1 in Chapter 1), efficient hinterland transportation is getting
increasingly important. In future research, the exact gain of using the proposed
solution methods remains to be investigated. On the one hand, it is expected
that the obtained solutions result in lower transportation costs for containers
and more reliable transportation plans. On the other hand, the algorithms make
the planning process faster. Hence, the planner has more time to focus on the
difficult cases and to investigate multiple scenarios.

We have used a variety of different techniques to solve the problems in
this dissertation. The optimal algorithms, such as integer linear programming,
branch-and-bound and sample average approximation are only applicable in
practice if one has hours time to compute a solution. Due to the dynamic
environment of a container terminal in which continuously new information ar-
rives, fast solutions are essential. Nevertheless, the optimal solutions are useful
as a benchmark for the heuristics. One could try to find faster optimal al-
gorithms that exploit more of the specific problem structure. However, a big
improvement has to be made for the algorithms to be fast enough for practice.

The potential gain of improving the heuristics is likely to be bigger. The
heuristics presented in this dissertation are rather intuitive, which has the benefit

222 9. Conclusion

that the heuristics are no black boxes, and the solutions they provide can be
explained. A disadvantage could be that the solution quality of these heuristics
might not be the best possible. It is likely that applying metaheuristics, such
as simulated annealing, tabu search, and genetic algorithms, would result in
better solutions than the current heuristics. However, that comes at the price
of longer running times and less explainability.

Most of the problems studied in this dissertation exist because of the lack
of information sharing by different partners. The problem studied in Chapter 3
is the most obvious example because the number of containers that could be
loaded and unloaded is not communicated. Hence, we treated that number of
moves as a stochastic variable. If the number of moves is communicated well
in advance, then the deterministic model of Chapter 2 would be sufficient.

However, also the stacking problems studied in Chapters 5, 6, and 7 would
be easier, or maybe even non-existent, if the communication between different
partners in the transportation improves. First of all, the relocation phase’s
stochasticity resulted from the unknown retrieval order of the containers in
a time interval. As everyone before in the literature, we have assumed that
the retrieval order is a random uniform permutation because no information is
usually known about which truck will arrive earlier. However, as these trucks
have an appointment within the same time interval, they should be in the
terminal vicinity. Hence, if the truck that picks up a container shares its location,
it would be possible to change the uniform distribution to another distribution
that would result in fewer relocation moves.

The second aspect in which information could help is deciding where to
place a container the moment it arrives at the terminal. In case the exact
moment a container will leave the terminal is known at the time it arrives, it
could be possible to position a container such that it is on top of a stack at its
departure time. This storage assignment problem is not easy to solve, but it
would make the pre-processing phase redundant.

The models in this dissertation could support building a business case for
information sharing. The difference in the objective function between when
information is uncertain and when it is known is called the value of informa-
tion. In case this value of information is large, it makes sense to invest in
an infrastructure to share information. We have seen in Chapter 3 that there
was already a big difference between the total costs for the transportation of
containers if the number of moves follows a Poisson or geometric distribution.
Another example is that one could use the problem of Chapter 4 to calculate
how much a shipper is willing to pay to remove the possibility of its shipment
being overbooked.

It has to be said that information sharing could also lead to less flexibility.

223

If everything needs to be planned well in advance, it is no longer possible to
use real-time information to adjust the planning. In the end, some factors that
influence transportation, such as the weather, are almost inherently stochastic.
It is nowadays possible to make quite an accurate weather forecast, but it is
still impossible to forecast days in advance, precisely at what time the wind will
be too strong for cranes to operate. Therefore, it is crucial to have the right
balance in flexibility of the operations and predictability for other parts in the
chain.

This dissertation is all but a complete work on all operational problems
arising in hinterland transportation. We have merely focused on specific parts
of the entire process of getting a container from the deep-sea port to the final
destination. Examples of topics that have not been covered are the stowage
plan of a barge and the transportation from the inland terminal to the final
destination. An important direction of further research would be to use a more
integrated approach. For instance, consider an example in which x containers
need to be delivered to a single customer on the same day. Assume that a
single truck can ship in one day at most x − 1 containers from the inland
terminal to that customer. In that case, it could be wise transport only x − 1

containers per barge from the deep-sea terminal to the inland terminal and use
a truck to deliver a single container directly from the deep-sea terminal to the
customer. Another example in which an integrated approach could be beneficial
is the stowage plan. Suppose one considers already the storage assignment of
containers at the inland terminal when loading the barge. In that case, it
could be possible to obtain a stowage plan that results in fewer movements of
containers at the inland terminal.

There are two main problems with a more integrated approach. First, an
optimal solution in an integrated approach is usually sub-optimal for a specific
part of the transportation chain. Consequently, the benefits of an integrated
approach should be divided in a fair way among all participating partners. A cru-
cial aspect here is that all stakeholders trust each other. The second problem
is that integrated problems are generally much harder to solve from a computa-
tional perspective. For instance, if one combines the stowage and the storage
assignment plan in one problem, then the solution space is enormous. Further-
more, there are many dependencies. The position of a container in a barge has
a main influence on where it can be positioned at the terminal.

Another direction for further research is the use of machine learning. One
way machine learning has been applied before is determining the best branch-
ing strategy when solving an ILP (see, e.g., Lodi and Zarpellon (2017)). In
Chapter 6, we have developed a simple algorithm to estimate the number of
remaining relocation moves in a bay. A more sophisticated machine learning
algorithm will probably have higher accuracy. An improved prediction algorithm

224 9. Conclusion

is also likely to improve the quality of the heuristics of Chapters 6 and 7.

An exciting idea is that an algorithm with higher accuracy for predicting
the number of relocation moves does not necessarily lead to better outcomes
for the pre-processing phase. We use the method to estimate the number of
relocation moves in the heuristics of Chapters 6 and 7 to find the best pre-
processing move. Ideally, we do not want a method that gives the highest
accuracy for the expected number of relocation moves, but a method that
produces estimates which lead to the best pre-processing move. Ban and Rudin
(2019) show that for the newsvendor problem, better solutions can be obtained
if an integrated approach is used in which the demand estimation and the
decision on the inventory are combined.

Machine learning can also be used to find the difference between a human
planner’s solution and the solution produced by an algorithm. If both these
solutions are encoded as a solution from an ILP, then one could build a decision
tree to find the difference between the two solutions. The resulting problem is
then a classification problem. For example, consider the problem of Chapter 2.
Suppose the solution from the algorithm often visits three specific terminals
with a barge. However, the transportation plan made by the planner never
visits these three terminals with the same barge. In that case, that feature
distinguishes the optimal solution from the human solution.

When implementing an algorithm in practice, it could be beneficial to know
the difference between the current solution and the new algorithm for two
reasons. First of all, it might be that a specific constraint is missing in the
new model. Second, if the new solution is very different from the solution that
the planner would make, it is less likely that he or she will accept the solution
produced by the algorithm. If one adds specific constraints to the algorithm
such that the solution looks more like the solution that the planner would make,
then the acceptance will be higher. Afterward, it is possible to gradually remove
these constraints to get closer to the optimal solution.

All in all, this dissertation shows that it is possible to balance the costs
and reliability of hinterland transportation. This research can be seen as a step
toward obtaining a modal shift from trucks towards barges and trains. However,
many operational challenges remain to be solved.

Bibliography

K. Aardal, P.L van den Berg, D. Gijswijt, and S. Li. Approximation algorithms for hard
capacitated k-facility location problems. European Journal of Operational Research,
242:358–368, 2015.

A.A. Ageev and M.I. Sviridenko. Pipage rounding: a new method of constructing algo-
rithms with proven performance guarantee. Journal of Combinatorial Optimization,
8(3):307–328, 2004.

M.H. Akyüz and C.-Y. Lee. A mathematical formulation and efficient heuristics for the
dynamic container relocation problem. Naval Research Logistics, 61(2):101–118,
2014.

K. N. Androutsopoulos and K. G. Zografos. Solving the multi-criteria time-dependent
routing and scheduling problem in a multimodal fixed scheduled network. European
Journal of Operational Research, 192:18–28, 2009.

A. Badanidiyuru and J. Vondrák. Fast algorithms for maximizing submodular functions.
In Proceedings of the 2014 Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1497–1514, 2014.

G.-Y. Ban and C. Rudin. The big data newsvendor: Practical insights from machine
learning. Operations Research, 67(1):90–108, 2019.

N. Bansal, N. Korula, V. Nagarajan, and A. Srinivasan. Solving packing integer pro-
grams via randomized rounding with alternations. Theory of Computing, 8:533–
565, 2012.

A. Baykasoglu and K. Subulan. A multi-objective sustainable load planning model
for intermodal transportation networks with a real-life application. Transportation
Research Part E, 95(207-247), 2016.

B. Behdani, Y. Fan, B. Wiegmans, and R. Zuidwijk. Multimodal schedule design
for synchromodal freight transport systems. European Journal of Transport and
Infrastructure Research, 16(3):424–444, 2016.

J. Benders and J. van Nunen. A property of assignment type mixed integer linear
programming problems. Operations Research Letters, 2(2):47–52, 1983.

D. M. Bernhofen, Z. El-Sahli, and R. Kneller. Estimating the effects of the container
revolution on world trade. Journal of International Economics, 98:36–50, 2016.

J.R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer Series
in Operations Research and Financial Engineering. Springer, 2011.

E. den Boer, M. Otten, and H. van Essen. Comparison of various transport modes
on a EU scale with the STREAM database. Technical report, CE Delft, 2011.

226

A. Bortfeld and F. Forster. A tree search procedure for the container pre-marshalling
problem. European Journal of Operational Research, 217:531–540, 2012.

A. Caris and G. Janssens. Container drayage operations at intermodal terminals: a
deterministic annealing approach. In W. Wang and G. Wets, editors, Computational
Intelligence for Traffic and Mobility, volume 8. Atlantis Press, 2013.

A. Caris, C. Macharis, and G.K. Janssens. Corridor network design in hinterland
transportation systems. Flexible Services and Manufacturing Journal, 24:294–319,
2012.

A. Caris, S. Limbourg, C. Macharis, T. van Lier, and M. Cools. Integration of in-
land waterway transport in the intermodal supply chain: a taxonomy of research
challenges. Journal of Transport Geography, 41:126–136, 2014.

H.J. Carlo, I.F.A. Vis, and K.J. Roodbergen. Storage yard operations in container
terminals: Literature overview, trends, and research directions. European Journal
of Operational Research, 235:412–430, 2014.

M. Caserta, S. Voß, and M. Sniedovich. Applying the corridor method to a blocks
relocation problem. OR Spectrum, 33(4):915–929, 2011.

M. Caserta, S. Schwarze, and S. Voß. A mathematical formulation and complexity
considerations for the blocks relocation problem. European Journal of Operational
Research, 219:96–104, 2012.

B. Casey and E. Kozan. Optimising container storage processes at multimodal termi-
nals. The Journal of the Operational Research Society, 63(8):1126–1142, 2012.

E. Chang, E. Floros, and A. Ziliaskopoulos. An intermodal time-dependent minimum
cost path algorithm. In V. Zeimpekis, C. D. Tarantilis, G.M. Giaglis, and I. Minis,
editors, Dynamic Fleet Management, volume 38 of Operations Research/Computer
Science Interfaces Series. Springer, 2007.

T. Chang. Best routes selection in international intermodal networks. Computers &
Operations Research, 35:2877–2891, 2008.

T. Chang, L.K. Nozick, and M.A. Turnquist. Multiobjective path finding in stochas-
tic dynamic networks, with application to routing hazardous materials shipments.
Transportation Science, 39(3):383–399, 2005.

C. Chekuri and S. Khanna. A polynomial time approximation scheme for the multiple
knapsack problem. SIAM Journal on Computing, 35:719–728, 2005.

C. Chekuri and A. Kumar. Maximum coverage problem with group budget constraints
and applications. In K. Jansen, S. Khanna, J. D. P. Rolim, and D. Ron, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 72–83. Springer, 2004.

C. Chekuri, J. Vondrák, and R. Zenklusen. Submodular function maximization via
the multilinear relaxation and contention resolution schemes. SIAM Journal on
Computing, 43(6):1831–1879, 2014.

J. Cheng and A. Lisser. A second-order cone programming approach for linear pro-
grams with joint probabilistic constraints. Operations Research Letters, 40:325–

Bibliography 227

328, 2012.

J.H. Cho, H.S. Kim, and H.R. Choi. An intermodal transport network planning al-
gorithm using dynamic programming—a case study: from Busan to Rotterdam in
intermodal freight routing. Applied Intelligence, 36:529–541, 2012.

R. Cominetti and A. Torrico. Additive consistency of risk measures and its application
to risk-averse routing in networks. Mathematics of Operations Research, 41(4):
1510–1521, 2016.

T.G. Crainic and K.H. Kim. Intermodal transportation. In C. Barnhart and G. Laporte,
editors, Handbook in Operations Research and Management Science, volume 14,
chapter 8, pages 467–537. Elsevier, 2007.

T.G. Crainic and G. Laporte. Planning models for freight transportation. European
Journal of Operational Research, 97:409–438, 1997.

C. Dong, R. Boute, A. McKinnon, and M. Verelst. Investigating synchromodality
from a supply chain perspective. Transportation Research Part D, 61:42–57, 2018.

K. Dudzinski and S. Walukiewicz. Exact methods for the knapsack problem and its
generalizations. European Journal of Operational Research, 28:3–21, 1987.

A. Ene and H. L. Nguyen. A nearly-linear time algorithm for submodular maximiza-
tion with a knapsack constraint. In C. Baier, I. Chatzigiannakis, P. Flocchini,
and S. Leonardi, editors, 46th International Colloquium on Automata, Languages,
and Programming, volume 132 of Leibniz International Proceedings in Informatics,
pages 53:1–53:12, 2019.

European Commission. Roadmap to a single European transport area, 2011.

Eurostat. Modal split of freight transport. ec.europa.eu/eurostat/web/products-
datasets/product?code=t2020_rk320, 2020. Accessed: 15 July 2020.

C. Expósito-Izquierdo, B. Melián-Batista, and M. Moreno-Vega. Pre-marshalling prob-
lem: Heuristic solution method and instances generator. Expert Systems with
Applications, 39:8337–8349, 2012.

Y. Fairstein, A. Kulik, J. Naor, D. Raz, and H. Shachnai. A (1−e−1−ε)-approximation
for the monotone submodular multiple knapsack problem. arXiv, 2020. 2004.12224.

B. Farbstein and A. Levin. Maximum coverage problem with group budget constraints.
Journal of Combinatorial Optimization, 34:725–735, 2017.

S. Fazi, J. Fansoo, and T. van Woensel. A decision support system tool for the
transportation by barge of import containers: a case study. Decision Support
Systems, 79:33–45, 2015.

U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45
(4):634–652, 1998.

D. Feillet, S.N. Parragh, and F. Tricoire. A local-search based heuristic for the unre-
stricted block relocation problem. Computers & Operations Research, 108:44–56,
2019.

M. Fisher, R. Jaikumar, and L. van Wassenhove. A multiplier adjustment method for

ec.europa.eu/eurostat/web/products-datasets/product?code=t2020_rk320
ec.europa.eu/eurostat/web/products-datasets/product?code=t2020_rk320

228

the generalized assignment problem. Management Science, 3246(9):1095–1103,
1986.

L. Fu and L.R. Rilett. Expected shortest path in dynamic and stochastic traffic
networks. Transportation Research Part B, 32(7):499–516, 1998.

V. Galle, C. Barnhart, and P. Jaillet. Yard crane scheduling for container storage,
retrieval, and relocation. European Journal of Operational Research, 271:288–316,
2018a.

V. Galle, V.H. Manshadi, S. Borjian Boroujeni, C. Barnhart, and P. Jaillet. The
stochastic container relocation problem. Transportation Science, 52(5):1035–1058,
2018b.

M. X. Goemans and D. P. Williamson. New 3
4
-approximation algorithms for the

maximum satisfiability problem. SIAM Journal on Discrete Mathematics, 7(4):
656–11, 1994.

J.A.S. Gromicho, E. Oudshoorn, and G. Post. Generating price-effective intermodal
routes. Statistica Neerlandica, 65(4):432–445, 2011.

L. Guo, M. Li, and D. Xu. Efficient approximation algorithms for maximum coverage
with group budget constraints. Theoretical Computer Science, 788:53–65, 2019.

R.W. Hall. The fastest path through a network with random time-dependent travel
times. Transportation Science, 20(3):182–188, 1986.

D.R. Headrick. Technology: a world history. Oxford University Press, second edition,
2009.

H. Heggen, Y. Molenbruch, A. Caris, and K. Braekers. Intermodal container routing:
integrating long-haul routing and local drayage decisions. Sustainability, 11(6):
1–36, 2019.

A. Hottung and K. Tierney. A biased random-key genetic algorithm for the container
pre-marshalling problem. Computers & Operations Research, 75:83–102, 2016.

A. Hottung, S. Tanaka, and K. Tierney. Deep learning assisted heuristic tree search
for the container pre-marshalling problem. Computers & Operations Research,
113-104781, 2020.

M. Hussein and M. E. H. Petering. Genetic algorithm-based simulation optimization of
stacking algorithms for yard cranes to reduce fuel consumption at seaport container
transshipment terminals. In 2012 IEEE Congress on Evolutionary Computation,
pages 1–8, 2012.

K.R. Hutson and D.R. Shier. Extended dominance and a stochastic shortest path
problem. Computers & Operations Research, 36:584–596, 2009.

L. Häme and H. Hakula. Dynamic journeying under uncertainty. European Journal of
Operational Research, 225:455–471, 2013.

F. Iannone. A model optimizing the port-hinterland logistics of containers: the case of
Campania region in Southern Italy. Maritime Economics & Logistics, 14(1):33–72,
2012.

Bibliography 229

P. Jaillet, J. Qi, and M. Sim. Routing optimization under uncertainty. Operations
Research, 64(1):186–200, 2016.

M. Ji, W. Guo, H. Zhu, and Y. Yang. Optimization of loading sequence and rehandling
strategy for multi-quay crane operations in container terminals. Transportation
Research Part E, 80:1–19, 2015.

B. Jin, W. Zhu, and A. Lim. Solving the container relocation problem by an improved
greedy look-ahead heuristic. European Journal of Operational Research, 240:837–
847, 2015.

R. Jovanovic, M. Tuba, and S. Voß. A multi-heuristic approach for solving the pre-
marshalling problem. Central European Journal of Operations Research, 25(1):
1–28, 2017.

R. Jovanovic, S. Tanaka, T. Nishi, and S. Voß. A GRASP approach for solving the
blocks relocation problem with stowage plan. Flexible Services and Manufacturing
Journal, 31:702–729, 2019a.

R. Jovanovic, M. Tuba, and S. Voß. An efficient ant colony optimization algorithm
for the blocks relocation problem. European Journal of Operational Research, 274:
78–90, 2019b.

M. Karlaftis, K. Kepaptsoglou, and E. Sambracos. Containership routing with time
deadlines and simultaneous deliveries and pick-ups. Transportation Research Part
E, 45:210–221, 2009.

H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

L.G. Khachiyan. The problem of calculating the volume of a polyhedron is enumerably
hard. Russian Mathematical Surveys, 44(3):199–200, 1989.

S. Khuller, A. Moss, and J. Naor. The budgeted maximum coverage problem. Infor-
mation Processing Letters, 70:39–45, 1999.

K.H. Kim and H.-O. Günther. Container terminals and terminal operations. In Con-
tainer Terminals and Cargo Systems, chapter 1, pages 3–14. Springer, 2007.

K.H. Kim and G. Hong. A heuristic rule for relocating blocks. Computers & Operations
Research, 33(4):940–954, 2006.

S. Kim, R. Pasupathy, and S. G. Henderson. A guide to Sample Average Approxima-
tion. In M.C. Fu, editor, Handbook of Simulation Optimization. Springer, 2015.

A.J. Kleywegt, A. Shapiro, and T. Homem De Mello. The sample average approxima-
tion method for stochastic discrete optimization. SIAM Journal on Optimization,
12(2):479–502, 2001.

W. Klibi, F. Lasalle, A. Martel, and S. Ichoua. The stochastic multiperiod location
transportation problem. Transportation Science, 44(2):221–237, 2010.

P. Krugman. Citigroup foundation special lecture. In Comparative Advantage, Growth,
and the Gains from Trade and Globalization: a Festschrift in Honor of Alan V
Deardorff, pages 5–15. World Scientific Publishing Company, 2011.

D. Ku and T.S. Arthanhari. Container relocation problem with time windows for

230

container departure. European Journal of Operational Research, 252:1031–1039,
2016.

A. Kulik, H. Shachnai, and T. Tamir. Maximizing submodular set functions subject to
multiple linear constraints. Mathematics of Operations Research, 38(4):545–554,
2013.

C.-Y. Lee and D.-P. Song. Ocean container transport in global supply chains:
Overview and research opportunities. Transportation Research Part B, 95:442–
474, 2017.

J. Lee, V.S. Mirrokni, V. Nagarajan, and M. Sviridenko. Maximizing nonmonotone
submodular functions under matroid or knapsack constraints. SIAM Journal on
Discrete Mathematics, 23(4):2053–2078, 2010.

Y. Lee and N.-Y. Hsu. An optimization model for the container pre-marshalling
problem. Computers & Operations Research, 34(11):3295–3313, 2007.

Y. Lee and Y.-J. Lee. A heuristic for retrieving containers from a yard. Computers &
Operations Research, 37:1139–1147, 2010.

M. Levinson. The Box: How the shipping container made the world smaller and the
world economy bigger. Princeton University Press, second edition, 2016.

S. Li, R. Negenborn, and G. Lodewijks. Distributed constraint optimization for ad-
dressing vessel rotation planning problems. Engineering Applications of Artificial
Intelligence, 48:159–172, 2016.

D.-Y. Lin, Y.-L. Lee, and Y. Lee. The container retrieval problem with respect to
relocation. Transportation Research Part C, 52:132–143, 2015.

A. Lodi and G. Zarpellon. On learning and branching: a survey. TOP, 25:207–236,
2017.

Y. Long, L.H. Lee, and E.P. Chew. The sample average approximation method for
empty container repositioning with uncertainties. European Journal of Operational
Research, 222:65–75, 2012.

L. Lozano and A.L. Medaglia. On an exact method for the constrained shortest path
problem. Computers & Operations Research, 40:378–384, 2013.

J. Luedtke, S. Ahmed, and G.L. Nemhauser. An integer programming approach for
linear programs with probabilistic constraints. Mathematical Programming Series
A, 122:247–272, 2010.

W. Mak, D.P. Morton, and R.K. Wood. Monte Carlo bounding techniques for deter-
mining solution quality in stochastic programs. Operations Research Letters, 24:
47–56, 1999.

H. Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.

M de Melo da Silva, S. Toulouse, and R. Wolfler Calvo. A new effective unified model
for solving the pre-marshalling and block relocation problems. European Journal of
Operational Research, 271:40–56, 2018.

M. Mes and M. Iacob. Synchromodal transport planning at a logistics service provider.

Bibliography 231

In H. Zijm, M. Klumpp, U. Claussen, and M. ten Hompel, editors, Logistics and
Supply Chain Innovation: Bridging the Gap between Theory and Practice. Springer,
2016.

E.D. Miller-Hooks and H.S. Mahmassani. Least expected time paths in stochas-
tic, time-varying transportation networks. Transportation Science, 34(2):198–215,
2000.

G.L. Nemhauser and L.A. Wolsey. An analysis of approximations for maximizing
submodular set functions-I. Mathematical Programming, 14:265–294, 1978.

Y. Nie, X. Wu, and T. Honem de Mello. Optimal path problems with second-order
stochastic dominance constraints. Networks and Spatial Economics, 12:561–587,
2012.

K. Nip and Z. Wang. Approximation algorithms for a two-phase knapsack problem. In
International computing and combinatorics conference, volume 10976, of Lecture
Notes in Computer Science, pages 63–75, 2018.

C. Parreño-Torres, R. Alvarez-Valdes, and R. Ruiz. Integer programming models
for the pre-marshalling problem. European Journal of Operational Research, 274:
142–154, 2019.

A. Pérez Rivera and M. Mes. Service and transfer selection for freights in a synchro-
modal network. In A. Paias, M. Ruthmair, and S. Voß, editors, Computational
Logistics, volume 9855 of Lecture Notes in Computer Science. Springer, 2016.

A. Pérez Rivera and M. Mes. Anticipatory freight selection in intermodal long-haul
round-trips. Transportation Research Part E, 105:176–194, 2017.

M.E.H. Petering and M.I. Hussein. A new mixed integer program and extended look-
ahead heuristic algorithm for the block relocation problem. European Journal of
Operational Research, 231:120–130, 2013.

Port of Rotterdam Authority. Port vision 2030: Port compass, 2011.

Port of Rotterdam Authority. Facts and figures, 2020a.

Port of Rotterdam Authority. Barge performance monitor.
www.portofrotterdam.com/en/doing-business/logistics/connections/
barge-performance-monitor, 2020b. Accessed: 5 August 2020.

L. Di Puglia Pugliese and F. Guerriero. A survey of resource constrained shortest path
problems: Exact solution approaches. Networks, 62(3):183–200, 2013.

A. Rendl and M. Prandtstetter. Constraint models for the container pre-marshalling
problem. In G. Katsirelos and C.-G. Quimper, editors, ModRef 2013: 12th In-
ternational Workshop on Constraint Modelling and Reformulation, pages 44–56,
2013.

B. van Riessen, R. Negenborn, and R. Dekker. Synchromodal container transportation:
an overview of current topics and research opportunities. In F. Corman, S. Voß, and
R. Negenborn, editors, Computational Logistics, volume 9335 of Lecture Notes in
Computer Science. Springer, 2015.

B. van Riessen, R. Negenborn, and R. Dekker. Real-time container transport planning

www.portofrotterdam.com/en/doing-business/logistics/connections/barge-performance-monitor
www.portofrotterdam.com/en/doing-business/logistics/connections/barge-performance-monitor

232

with decision trees based on offline obtained optimal solutions. Decision Support
Systems, 89:1–16, 2016.

J. Scholl, D. Boywitz, and N. Boysen. On the quality of simple measures predicting
block relocations in container yards. International Journal of Production Research,
56(1-2):60–71, 2018.

G. Schäfer and B.G. Zweers. Maximum coverage with cluster constraints: an LP-
based approximation technique. In Proceedings of Workshop on Approximation and
Online Algorithms, Lecture Notes in Computer Science, 2020. To appear.

A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming.
SIAM, 2009.

K. Sharyapova. Optimization of Hinterland Intermodal Container Transportation. PhD
thesis, Eindhoven University of Technology, 2014.

D.B. Shmoys and E. Tardos. An approximation algorithm for the generalized assign-
ment problem. Mathematical Programming A, 62:461–474, 1993.

A. da Silva Firmino, R.M. de Abreu Silva, and V.C. Times. A reactive grasp meta-
heuristic for the container retrieval problem to reduce crane’s working time. Journal
of Heuristics, 25(2):141–173, 2019.

R. Stahlbock and S. Voß. Operations research at container terminals: a literature
update. OR Spectrum, 30(1):1–52, 2008.

Statista. International seaborne trade carried by container ships from 1980
to 2017. www.statista.com/statistics/253987/international-seaborne-
trade-carried-by-containers/, 2020. Accessed: 14 July 2020.

M. SteadieSeifi, N. Dellaert, W. Nuijten, T. van Woensel, and R. Raoufi. Multi-
modal freight transportation planning: a literature review. European Journal of
Operational Research, 233(1):1–15, 2014.

D. Steenken, S. Voß, and R. Stahlbock. Container terminal operation and operations
research - a classification and literature review. OR Spectrum, 26(1):3–49, 2004.

X. Sun, J. Zhang, and Z. Zhang. Deterministic algorithms for the submodular multiple
knapsack problem. arXiv, 2020. 2003.11450.

M. Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Operations Research Letters, 32:41–43, 2004.

S. Tanaka and F. Mizuno. An exact algorithm for the unrestricted block relocation
problem. Computers & Operations Research, 95:12–31, 2018.

S. Tanaka and K. Tierney. Solving real-world sized container pre-marshalling prob-
lems with an iterative deepening branch-and-bound algorithm. European Journal of
Operational Research, 264:165–180, 2018.

S. Tanaka, K. Tierney, C. Parreño-Torres, and R. Alvarez-Valdes. A branch and bound
approach for large pre-marshalling problems. European Journal of Operational Re-
search, 278:211–225, 2019.

K. Tierney and S. Voß. Solving the robust container pre-marshalling problem. In

www.statista.com/statistics/253987/international-seaborne-trade-carried-by-containers/
www.statista.com/statistics/253987/international-seaborne-trade-carried-by-containers/

Bibliography 233

A. Paias, M. Ruthmair, and S. Voß, editors, Computational Logistics, volume 9588
of Lecture Notes in Computer Science, pages 131–145. Springer, 2016.

K. Tierney, S. Voß, and R. Stahlbock. A mathematical model of inter-terminal trans-
portation. European Journal of Operational Research, 235:448–460, 2014.

K. Tierney, D. Pacino, and S. Voß. Solving the pre-marshalling problem to optimality
with A* and IDA*. Flexible Service and Manufacturing Journal, 29:223–259, 2017.

B. Toktas, J.W. Yen, and Z.B. Zabinsky. Addressing capacity uncertainty in resource-
constrained assignment problem. Computers & Operations Research, 33:724–745,
2006.

F. Tricoire, J. Scagnetti, and A. Beham. New insights on the block relocation problem.
Computers & Operations Research, 89:127–139, 2018.

B. Verweij, S. Ahmed, A.J. Kleywegt, G. Nemhauser, and A. Shapiro. The sample
average approximation method applied to stochastic routing problems: a compu-
tational study. Computational Optimization and Applications, 24(2-3):289–333,
2003.

I.F.A. Vis and R. de Koster. Transshipment of containers at a container terminal: an
overview. European Journal of Operational Research, 147:1–16, 2003.

J. Vondrák. Symmetry and approximability of submodular maximization problems.
SIAM Journal on Computing, 42(1):265–304, 2013.

S. Voß and S. Schwarze. A note on alternative objectives for the blocks relocation
problem. In C. Paternina-Arboleda and S. Voß, editors, Computational Logistics,
volume 11756 of Lecture Notes in Computer Science. Springer, 2019.

Y. Wang, I. Bilegan, and T. Crainic. A revenue management approach for network
capacity allocation of an intermodal barge transportation system. In A. Paias,
M. Ruthmair, and S. Voß, editors, Computational Logistics, volume 9588 of Lecture
Notes in Computer Science. Springer, 2016.

D.P. Williamson and D.B. Shmoys. The design of approximation algorithms. Cam-
bridge University Press, 2010.

World Shipping Counsel. Top 50 world container ports. www.worldshipping.org/
about-the-industry/global-trade/top-50-world-container-ports, 2020.
Accessed: 14 July 2020.

K.C. Wu and C.J. Ting. A beam search algorithm for minimizing reshuffle operations
at container yards. In Proceedings of the 2010 International Conference on Logistics
and Maritime Systems, 2012.

E.C. Xavier and F.K. Miyazawa. Approximation schemes for knapsack problems with
shelf divisions. Theoretical Computer Science, 352:71–84, 2006.

X. Yang, J.M.W. Low, and L.C. Tang. Analysis of intermodal freight from China to
Indian ocean: a goal programming approach. Journal of Transport Geography, 19:
515–527, 2011.

E. Zehender, M. Caserta, D. Feillet, S. Schwarze, and S. Voß. An improved mathemat-
ical formulation for the blocks relocation problem. European Journal of Operational

www.worldshipping.org/about-the-industry/global-trade/top-50-world-container-ports
www.worldshipping.org/about-the-industry/global-trade/top-50-world-container-ports

234

Research, 245:415–422, 2015.

H. Zhang, C.-Y. Lee, and T. Li. The value of specific cargo information for sub-
stitutable modes of inland transport. Transportation Research Part E, 85:23–39,
2016.

L. Zhang and T. Homen-de-Mello. An optimal path model for the risk-averse traveler.
Transportation Science, 51(2):518–535, 2017.

Y. Zhang and J. Tang. Itinerary planning with time budget for risk-averse travelers.
European Journal of Operational Research, 267:288–303, 2018.

W. Zhao and A.V. Goodchild. The impact of truck arrival information on container
terminal rehandling. Transportation Research Part E, 46:327–343, 2010.

A. Ziliaskopoulos and W. Wardell. An intermodal optimum path algorithm for mul-
timodal networks with dynamic arc travel times and switching delays. European
Journal of Operational Research, 125(3):486–502, 2000.

R. Zuidwijk and Albert Veenstra. The value of information in container transport.
Transportation Science, 49(3):675–685, 2015.

B.G. Zweers and R.D. van der Mei. Minimum costs paths in intermodal transportation
networks with stochastic travel times and overbookings. Submitted, 2020.

B.G. Zweers, S. Bhulai, and R.D. van der Mei. Optimizing barge utilization in hinter-
land container transportation. Naval Research Logistics, 66:253–271, 2019.

B.G. Zweers, S. Bhulai, and R.D. van der Mei. Optimizing pre-processing and relo-
cation moves in the stochastic container relocation problem. European Journal of
Operational Research, 283:954–971, 2020a.

B.G. Zweers, S. Bhulai, and R.D. van der Mei. Planning hinterland container trans-
portation in congested deep-sea terminals. Flexible Services and Manufacturing
Journal, 2020b. doi: 10.1007/s10696-020-09387-3.

B.G. Zweers, S. Bhulai, and R.D. van der Mei. Pre-processing a container yard under
limited available time. Computers & Operations Research, 123-105045, 2020c.

Summary

Since the introduction of container transportation in the 1960s, the number of
containers being transported worldwide has grown enormously. Moreover, the
size of the vessels on which the containers are transported is increasing. Nowa-
days, the largest deep-sea vessels can carry more than 20,000 TEU, a standard
size for a container. Consequently, a large number of containers are transhipped
via deep-sea ports. For instance, almost 25,000 containers were being loaded
and unloaded every day in the port of Rotterdam in 2019. The transshipment
of that many containers is only possible if the containers are efficiently delivered
to and picked up from the deep-sea port. This inland transportation, also called
hinterland transportation, is the focus of this dissertation.

For hinterland transportation three modalities are available: train, barge,
and truck. If containers are shipped by a truck, they can be delivered directly
to their final destination. Since most companies do not have a rail or water
connection, inland terminals are essential for the use of trains and barges.
The barges and trains bring containers from the deep-sea port to the inland
terminal, at which the containers are temporarily stored. Afterward, a truck
delivers the container to its final destination. The use of trains and barges has
many advantages over transportation by truck. First of all, it is considerably
cheaper, and second, the CO2-emission is much lower. A final advantage is that
the use of fewer trucks could lead to a reduction in traffic jams. Therefore, the
European Commission aims for a modal shift from trucks to barges and trains.

To utilize the advantages of barge and train transportation, several oper-
ational planning problems need to be solved. The problems studied in this
dissertation are based on challenges faced by an inland container terminal in
the port of Amsterdam. However, the methods that are developed are gener-
ally applicable. First of all, containers must be on the ‘best possible’ barge. To
determine which barge is optimal, not only the transportation costs are taken
into account but also other factors, such as the delay probability or the possi-
bility that a barge cannot be unloaded. These types of problems are discussed
in Chapters 2, 3, and 4. An efficient transshipment of containers at an inland
terminal is a second aspect that is important to transport more containers per
barge and train. Ideally, a container is moved as little as possible, and if it is
moved, then only when the workload at the terminal is low. In Chapters 5, 6,
and 7, these types of problems are solved.

236

In this dissertation, these two types of problems are studied from the per-
spective of an inland terminal. We use the same approach for every problem.
First of all, the problem is modeled as a mathematical optimization problem.
Afterward, an exact algorithm is developed that produces the optimal solution.
However, calculating the optimal solution often takes too long to apply these
algorithms in practice. Therefore, heuristics that produce fast solutions that
are close to the optimal solution are also developed.

In Chapter 2, the best plan for the transportation of a set of containers
located at multiple deep-sea terminals to the inland terminal is determined.
The objective of this problem is to ship as many containers as possible per
barge. However, at the same time, the barge must not visit too many terminals
because that increases the probability of a delay for the barge. A third important
aspect that is taken into account are the storage costs at both the deep-sea
and inland terminal. This problem is modeled as an integer linear optimization
problem. When using commercial solvers for this formulation, the optimal
solution is obtained, but the running time can be more than a few hours for
larger instances. We show that when this formulation is solved in two steps the
running time is only a few seconds. The first step determines which terminals
are visited, and which containers are shipped on which barge is decided in the
second step. The solutions of this are nearly optimal. Finally, a heuristic is
developed that simulates the behavior of a human planner. With that algorithm,
we show that there are strong improvements possible by implementing the other
two algorithms.

The problem of Chapter 3 is similar to that of Chapter 2, but there are
two main differences. First, in Chapter 3 containers are transported both to
and from the deep-sea terminal. Second, the number of containers that can
be loaded and unloaded is unknown at the moment when the planning is done
in Chapter 3. As a result, it might be that more containers are loaded on
the barge than can be unloaded at the terminal. We treat the number of
containers that can be loaded and unloaded at a single terminal as a stochas-
tic variable. Afterward, the problem is modeled as a stochastic problem with
recourse. Subsequently, this problem is solved using a technique called Sam-
ple Average Approximation. This method converges to the optimal solution if
sufficiently many samples of the stochastic variable are used. However, it is
also possible to generate faster solutions. We develop a heuristic in which the
original problem is simplified, such that the optimal solution can be calculated
using standard techniques of stochastic programming. This optimal solution
can then be used to replace the stochastic variable by a deterministic value.
This heuristic produces solutions that are better than those of other heuristics
in which a deterministic value replaces the stochastic variables.

In Chapter 4, the best transportation plan is not determined for a set of

Summary 237

containers but a single container. This container is transported through a
network in which the travel times are stochastic. Moreover, there is a probability
that a leg is overbooked. The goal of the problem is to find the cheapest route
for which the shipment arrives at the final destination before a specific deadline.
Each route has a certain on-time arrival probability because of the stochasticity.
Since determining an acceptable on-time arrival probability beforehand is hard,
Pareto-optimal solutions are constructed. In these solutions, the costs of a
route are compared with the probability of arriving before the deadline. Besides
an optimal algorithm based on dynamic programming, we also give a heuristic
in which a risk measure replaces all stochastic variables. This risk measure is
a deterministic value that is used in an integer linear optimization problem. By
varying the risk acceptance in the risk measure, this heuristic can also be used
to construct Pareto-optimal solutions.

In Chapter 5, we change our focus to stacking problems for containers at
terminals. When a container needs to leave the terminal, it frequently oc-
curs that other containers are stacked on top of it. These containers need to
be relocated to other stacks while a truck is waiting at the terminal. These
moves are called relocation moves. An alternative is that containers are already
positioned in the right order when it is less busy at the terminal, known as pre-
marshalling moves. The problem of pre-marshalling moves is that more moves
are needed than relocation moves. In this chapter, we introduce a new type
of movement, namely the pre-processing moves. These moves are performed
when the terminal equipment is idle, but in contrast to the pre-marshalling
moves, the containers do not need to be positioned entirely in the right order.
Consequently, fewer pre-processing moves are performed than pre-marshalling
moves, and the moment the pre-processing moves are performed is better than
for the relocation moves. We formulate two new problems in this chapter, and
in Chapters 6 and 7, solution methods are presented for these problems.

In the problem studied in Chapter 6, the weighted sum of the number of
pre-processing and relocation moves is minimized. We derive a heuristic for this
problem in which the first containers to be positioned correctly are those that
leave the terminal the latest. We need to calculate the expected number of
relocation moves for the resulting bay to know if these moves result in an im-
provement. In this chapter, a method is developed that uses a few decision rules
to determine the expected number of relocation moves. The optimal solution
is calculated using a branch-and-bound algorithm, but for problem instances
consisting of many containers, this method needs a couple of hours.

In Chapter 7, the number of pre-processing moves that can be performed
is limited. The optimal algorithm of the previous chapter can be used for this
problem with a few adjustments. Nevertheless, in this chapter, we use the
branch-and-bound method also in a heuristic in which the remaining relocation

238

moves are estimated. Another heuristic presented in this chapter tries to po-
sition every stack’s top container in a correct position. Eight different ways in
which this can be done are derived, and the one resulting in the largest decrease
in the objective function is chosen. In the problem studied in Chapter 6, we
assume the crane that handles the containers to move during the pre-processing
phase. Nevertheless, in this chapter we relax this assumption. The solutions
for the original problem can be used in an integer linear optimization problem to
determine how many moves need to be performed in which part of the terminal.

Finally, we study problems from a different perspective in Chapter 8. In the
previous chapters, numerical experiments are used to evaluate the quality of
heuristics. In contrast, in this chapter, we derive algorithms for which it can
theoretically be proven that a given factor bounds the difference between their
solution and the optimal solution. We develop these so-called approximation
algorithms for optimization problems with two levels of capacity. Well-known
problems with a single tier of capacity are the Multiple Knapsack Problem, the
Maximum Coverage Problem with Knapsack Constraint, and the Capacitated
Facility Location Problem. We extend these problems by partitioning the knap-
sacks in clusters, which also impose a capacity constraint. We introduce a
decision variable that determines how much capacity of the cluster is dedicated
to which knapsack. This decision variable can be applied to extend existing
approximation algorithms based on linear programming. For specific problems,
the approximation algorithm’s performance guarantee remains the same for the
extensions with clusters, and for other problems, it only becomes slightly worse.

Samenvatting

Sinds het begin van het containervervoer in de jaren zestig van de vorige eeuw
is het aantal containers dat wereldwijd vervoerd wordt enorm gegroeid. Om dit
stijgende aantal containers te vervoeren worden ook de schepen steeds groter:
de grootste schepen ter wereld hebben vandaag de dag een capaciteit van meer
dan 20,000 TEU, een standaardmaat voor een container. Dit heeft ook tot
gevolg dat een groot aantal containers wordt overgeslagen in een zeehaven. Zo
werden er in 2019, bijvoorbeeld, bijna 25.000 containers per dag geladen en
gelost in de haven van Rotterdam. Deze aantallen zijn alleen mogelijk als de
containers efficiënt worden aangeleverd en opgehaald. Dit binnenlandse vervoer
van containers is de focus van dit proefschrit.

Voor binnenlands vervoer bestaan drie mogelijkheden: treinen, binnenvaart-
schepen en vrachtwagens. Als containers met een vrachtwagen worden ver-
voerd kunnen ze direct naar de eindbestemming worden gebracht. Aangezien
de meeste bedrijven geen spoor- of waterwegverbinding hebben, worden binnen-
landse containerterminals gebruikt voor schepen en treinen. De binnenvaart-
schepen en treinen brengen containers vanuit de zeehaven naar de binnenlandse
terminal en op deze terminals worden de containers tijdelijk opgeslagen. Daarna
worden ze met de vrachtwagen naar hun eindbestemming vervoerd. Het gebruik
van treinen en binnenvaartschepen heeft veel voordelen ten opzichte van ver-
voer met vrachtwagens. Allereerst is het goedkoper en ten tweede levert het
ook minder CO2-uitstoot op. Een laatste voordeel is dat de capaciteit op vaar-
en spoorwegen vaak minder schaars is dan op autowegen. Hierdoor kan een
afname van het gebruik van vrachtwagens leiden tot minder files. Daarom
heeft de Europese Commissie de ambitie uitgesproken om minder containers
per vrachtwagen te vervoeren en meer per binnenvaartschip en trein.

Om de voordelen van vervoer via binnenvaartschepen en treinen ten volle te
benutten is, zijn er verschillende operationele planningsvraagstukken die opge-
lost moeten worden. De problemen die bestudeerd worden in dit proefschrift zijn
gebaseerd op uitdagingen die een binnenlandse containerterminal in de haven
van Amsterdam heeft. Echter zijn de methoden die ontwikkeld worden alge-
meen toepasbaar. Voor een effectief gebruik van binnenvaartschepen is het ten
eerste noodzakelijk dat de containers op het ‘best mogelijke schip’ worden ver-
voerd. Om te bepalen wat het beste schip is, worden niet alleen de kosten van
transport meegenomen, maar ook andere zaken zoals de kans op vertraging of

240

de mogelijkheid dat een schip niet gelost kan worden. Dit type probleem wordt
behandeld in Hoofdstukken 2, 3 en 4. Een efficiënte overslag van containers op
de binnenlandse terminal is een tweede aspect dat belangrijk is om meer con-
tainers per vaar- en spoorwegen te vervoeren. Idealiter wordt een container zo
min mogelijk verplaatst en als dat dan toch moet gebeuren, dan op een rustig
moment. In Hoofdstukken 5, 6 en 7 worden dit soort problemen opgelost.

In dit proefschrift worden deze twee type problemen bestudeerd vanuit het
perspectief van een binnenlandse containerterminal. Voor elk probleem ge-
bruiken we eenzelfde aanpak: allereerst wordt het probleem als een wiskundig
optimalisatieprobleem gemodelleerd. Vervolgens wordt een exact algoritme ge-
geven dat de optimale oplossing voor dit probleem uitrekent. Echter duurt het
bepalen van de optimale oplossing voor deze problemen vaak te lang om prak-
tisch toepasbaar te zijn. Vandaar dat ook een heuristiek wordt ontwikkeld die
snel een oplossing geeft die niet per se optimaal is, maar wel goed is.

In Hoofdstuk 2 wordt voor een groep containers, die op meerdere terminals
in een zeehaven staan, bepaald hoe ze het beste vervoerd kunnen worden. Het
doel van dit probleem is om zoveel mogelijk containers per binnenvaartschip te
vervoeren, maar tegelijkertijd mag een schip ook niet te veel terminals bezoe-
ken, omdat dit de kans vergroot dat het schip vertraging oploopt. Een derde
belangrijk aspect dat wordt meegenomen in het bepalen van het transportplan
zijn de opslagkosten op zowel de zeeterminal als de binnenlandse terminal. Dit
probleem wordt gemodelleerd als een geheeltallig lineair optimalisatieprobleem.
Als standaard oplossingsmethoden worden gebruikt voor deze formulering, dan
wordt de optimale oplossing verkregen, maar kan de rekentijd een paar uur of
meer zijn voor grotere probleeminstanties. We laten zien dat wanneer deze for-
mulering in twee stappen wordt opgelost, waarin in de eerste stap wordt bepaald
welke terminals worden bezocht en in de tweede welke containers op welk schip
gaan, dan is de rekentijd slechts enkele seconden. Bovendien zijn met deze heu-
ristiek de oplossingen bijna gelijk aan de optimale oplossing. Ten slotte is ook
een algoritme ontwikkeld dat het gedrag van een menselijke planner simuleert
en daarmee wordt aangetoond dat er veel potentie zit in het implementeren van
de andere twee methoden.

Het probleem dat wordt behandeld in Hoofdstuk 3 lijkt erg op dat van Hoofd-
stuk 2. De twee grote verschillen zijn dat containers nu zowel van als naar de
zeeterminals gebracht moeten worden en dat het aantal containers dat geladen
en gelost kan worden bij een zeeterminal nog onbekend is als de planning ge-
maakt moet worden. Hierdoor kan het zijn dat er meer containers op een schip
staan dan gelost kunnen worden bij een terminal. We behandelen het aantal
containers dat bij een enkele terminal geladen en gelost kunnen worden als een
stochastische variabele en modelleren het probleem als een stochastisch pro-
bleem met recourse. Dit probleem wordt vervolgens opgelost met een techniek

Samenvatting 241

die Sample Average Approximation heet. De oplossing van deze methode con-
vergeert naar de optimale oplossing als genoeg trekkingen van de stochastische
variabelen worden gebruikt. Het is echter ook mogelijk om sneller oplossingen
te genereren. Hiervoor wordt het oorspronkelijke probleem zodanig gesimplifi-
ceerd dat de optimale oplossing bepaald kan worden met standaard technieken
van stochastisch programmeren. Deze optimale oplossing van het versimpelde
probleem kan vervolgens gebruikt worden om de stochastische variabele te ver-
vangen door een deterministische waarde. Deze heuristiek die gebaseerd is
op stochastisch programmeren werkt beter dan bestaande technieken voor het
vervangen van een stochastische variabele door een deterministische waarde.

In Hoofdstuk 4 wordt niet het beste transportplan voor een groep containers
bepaald, maar voor één enkele container. Deze container moet vervoerd worden
door een netwerk waarin de reistijden stochastisch zijn. Bovendien bestaat de
kans dat een gepland vertrek gemist wordt, omdat deze overboekt is. Het
doel is om de goedkoopste route te vinden waarvoor de container vóór een
zekere deadline arriveert bij zijn eindbestemming. Vanwege de stochasticiteit
heeft elke route een bepaalde kans waarvoor de container te laat aankomt.
Aangezien het moeilijk van tevoren te bepalen is welke kans men acceptabel
vindt, worden Pareto-optimale oplossingen gegeven, waarin de kosten van een
route worden afgezet tegen de kans op een aankomst na de deadline. Naast
een optimaal algoritme dat gebaseerd is op dynamisch programmeren, geven we
ook een heuristiek waarin alle stochastische variabelen worden vervangen door
een risicomaat. Deze risicomaat is een deterministische waarde die vervolgens
in een geheeltallig lineair optimalisatieprobleem gebruikt kan worden. Door het
variëren van het risico in de risicomaat kunnen ook Pareto-optimale oplossingen
gevonden worden.

In Hoofdstuk 5 verleggen we onze focus naar het stapelen van containers op
een terminal. Het gebeurt regelmatig dat op een moment dat een container de
terminal moet verlaten, er andere containers bovenop hem staan. Deze contai-
ners moeten dan naar een andere plek verplaatst worden, terwijl een vrachtwa-
gen staat te wachten op de container die hij moet ophalen. Deze verplaatsingen
worden relocation moves genoemd. Een alternatief is om de containers al in
de juiste volgorde klaar te zetten als het rustiger is op de terminal, wat ook
bekend staat als pre-marshalling moves. Het probleem met de pre-marshalling
moves is dat veel meer verplaatsingen van containers nodig zijn dan voor de
relocation moves. In dit hoofdstuk introduceren we een nieuw soort verplaat-
sing, namelijk de pre-processing move. Deze verplaatsingen worden uitgevoerd
als het rustig is op de terminal, maar in tegenstelling tot de pre-marshalling
moves hoeven de containers niet volledig in de juiste volgorde te staan. We
formuleren twee nieuwe problemen in dit hoofdstuk en in Hoofdstukken 6 en 7
worden oplossingmethoden gepresenteerd voor deze problemen.

242

In het probleem dat we bestuderen in Hoofdstuk 6 wordt de gewogen som
van het aantal pre-processing en relocation moves geminimaliseerd. Voor dit
probleem ontwikkelen we een heuristiek waarin containers die het laatst de ter-
minal verlaten, het eerst op de juiste plek moeten worden gezet. Om te weten
of deze verplaatsing een verbetering oplevert, moet ook het verwachte aantal
relocation moves bepaald worden. Een methode die op basis van enkele beslis-
singsregels een schatting maakt wordt hiervoor gegeven in dit hoofdstuk. De
optimale oplossing wordt bepaald met een branch-and-bound algoritme, maar
voor probleeminstanties met veel containers kost deze methode vaak meerdere
uren aan rekentijd.

In Hoofdstuk 7 is het aantal pre-processing moves dat uitgevoerd kan wor-
den beperkt. Het optimale algoritme van het vorige hoofdstuk kan met een
paar kleine aanpassingen ook gebruikt worden voor dit probleem. Echter in dit
hoofdstuk gebruiken we de branch-and-bound methode ook in een heuristiek
waarin het aantal resterende relocation moves niet exact berekend wordt maar
wordt geschat. Een andere heurstiek die gepresenteerd wordt in dit hoofdstuk
probeert de bovenste container van elke stapel in de juiste positie te zetten.
Dit kan op acht verschillende manieren en de manier die de grootste daling in
het aantal relocation moves oplevert, wordt uitgevoerd. We hebben voor het
probleem dat we behandelen in Hoofdstuk 6 aangenomen dat de kraan niet
beweegt tijdens het uitvoeren van de pre-processing moves. In dit hoofdstuk
laten we deze aanname los en gebruiken we de oplossing voor het oorsprokelijke
probleem om met behulp van een een geheeltallig lineair optimalisatieprobleem
te bepalen hoeveel verplaatsingen in welk deel van de terminal moeten worden
uitgevoerd.

Ten slotte bekijken we in Hoofdstuk 8 problemen via een andere blik. Waar in
voorgaande hoofdstukken numerieke experimenten gebruikt zijn om de kwaliteit
van de heuristieken te evalueren, geven we in dit hoofdstuk algoritmes waarvoor
bewezen is dat hun oplossing gegarandeerd binnen een bepaalde marge van de
optimale oplossing zit. We ontwikkelen deze zogeheten approximation algo-
rithms voor optimalisatieproblemen met twee niveaus van capaciteit. Bekende
problemen met een enkel type capaciteit zijn het Multiple Knapsack Problem,
Maximum Coverage Problem with Knapsack Constraint en het Capacitated Fa-
cility Location Problem. Deze problemen breiden we uit door knapsacks onder
te verdelen in clusters, die elk ook weer een eigen capaciteit hebben. Met be-
hulp van een beslissingsvariabele die bepaalt hoeveel capaciteit van het cluster
naar ondergelegen knapsacks gaat, kunnen bestaande approximation algorithms
gebaseerd op lineair programmeren worden uitgebreid. Voor bepaalde proble-
men blijft de marge tussen de optimale oplossing en de oplossing gegeven door
het approximation algorithm gelijk als de clusters worden toegevoegd en voor
anderen wordt ze slechts een fractie groter.

	Introduction
	Multimodal transportation
	Terminal operations
	Overview of this dissertation

	Optimizing barge utilization
	Introduction
	Literature review
	Problem formulation
	Mathematical model
	Solution methods
	Numerical results
	Conclusion

	Planning hinterland transportation in congested deep-sea terminals
	Introduction
	Literature review
	Problem formulation
	Mathematical model
	Solution methods
	Numerical results
	Conclusion

	Minimum cost paths with stochastic travel times and overbooking
	Introduction
	Literature review
	Problem formulation
	Mathematical model
	Solution method
	Numerical results
	Conclusion

	Pre-processing moves in container yards
	Introduction
	Literature review
	Problem description
	Mathematical model

	Optimizing pre-processing and relocation moves
	Solution methods
	Numerical results
	Conclusion

	Limited number of pre-processing moves
	Solution methods
	Extension to multiple bays
	Numerical results
	Conclusion

	Approximation algorithms for cluster capacitated problems
	Introduction
	Literature review
	Preliminaries
	Maximum coverage problem with knapsack constraints
	Maximum coverage problem with cluster constraints
	Multiple knapsack problem with cluster constraints
	Capacitated facility location problem with cluster constraints
	Conclusion

	Conclusion
	Bibliography
	Summary
	Samenvatting

