
Median Routing Problems:

Integrated optimisation of network

maintenance and emergency response

Dylan Huizing

Promotores: Prof.dr. R.D. van der Mei
Prof.dr. G. Schäfer

Co-promotor: Prof.dr. S. Bhulai

Other members: Prof.dr. G.M. Koole (chair)
Dr.ir. R. Sitters
Dr. F. Phillipson
Dr. P.L. van den Berg
Dr.ir. T. van Essen

This research has been carried out in the Networks and Optimization group at
the Centrum Wiskunde & Informatica in Amsterdam, in collaboration with the
Vrije Universiteit Amsterdam, and co-funded by ProRail Incidentenbestrijding
in Utrecht.

Printed and bound by [–]

[ISBN –]

Copyright c© 2021 by Dylan Huizing

VRIJE UNIVERSITEIT

Median Routing Problems:

Integrated optimisation of network

maintenance and emergency response

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor
aan de Vrije Universiteit Amsterdam,

op gezag van de rector magnificus ad interim
prof.dr. C.M. van Praag,

in het openbaar te verdedigen
ten overstaan van de promotiecommissie

van de Faculty of Science
op [– 2022 om – uur]

in [de aula van de universiteit,]
[De Boelelaan 1105]

door

Dylan Huizing

geboren te Zoetermeer

Promotores: Prof.dr. R.D. van der Mei
Prof.dr. G. Schäfer

Co-promotor: Prof.dr. S. Bhulai

Contents

1 Introduction 1
1.1 About this thesis . 2
1.2 Railway emergency response in the Netherlands 3
1.3 Overview and publications . 7

2 The Median Routing Problem 11
2.1 Introduction . 11
2.2 Related literature . 13
2.3 Problem definition . 16

2.3.1 Example instance . 18
2.3.2 Discussion of modelling choices 20
2.3.3 Complexity . 21

2.4 Methods . 22
2.4.1 Mixed Integer Linear Programming 22
2.4.2 WAIT-AT-MEDIANS-heuristic 24
2.4.3 MEDIATE-DIVIDE-SEQUENCE-AGREE-heuristic 26
2.4.4 Partial versions of MDSA . 30

2.5 Experimental setup . 31
2.5.1 Used instances . 31
2.5.2 Metrics and methods for solution structure 33
2.5.3 Hardware specifications . 33

2.6 Results . 34
2.7 Conclusions . 40

3 The Travelling k-Median Problem 43
3.1 Introduction . 43
3.2 Related literature . 45
3.3 Problem definition . 46
3.4 Hardness and bounds . 47
3.5 Rounding continuous graph movement 50
3.6 Topologies with constant-factor guarantees 53

3.6.1 Path case . 53
3.6.2 Cycle case . 55

v

3.7 Approximation algorithms for general graphs 56
3.8 Conclusions . 59

4 Representative Distance-preserving Graph Sparsifiers 61
4.1 Introduction . 61
4.2 Related literature . 63
4.3 Problem definition . 65
4.4 Four ways to compute representative subgraphs 66

4.4.1 The Smallest RDGS algorithm 68
4.4.2 The Realigned Smallest RDGS algorithm 70
4.4.3 The Greedy On-Ramps RDGS algorithm 71
4.4.4 The Greedy Centrality RDGS algorithm 71

4.5 Mixed Integer Jester Games . 74
4.5.1 α-iteration . 75
4.5.2 LP-rounding algorithms for usurpers 78

4.6 Examples of sparsification strategies 78
4.6.1 Facility Location Problems 78
4.6.2 Classical routing problems 79
4.6.3 Orienteering Problems . 80
4.6.4 The Two-Stage Stochastic Steiner Tree Problem 80

4.7 Bounding MRP performance loss as a Mixed Integer Jester Game . 81
4.8 Experiments . 85
4.9 Results . 86
4.10 Conclusions . 92

5 The Enriched Median Routing Problem 95
5.1 Introduction . 95
5.2 Related literature . 96
5.3 Enriched Median Routing Problem 98

5.3.1 Problem description . 98
5.3.2 Mixed Integer Linear Program formulation 102
5.3.3 An MDSA-inspired heuristic 103

5.4 Current Practice model . 108
5.5 Performance metrics, planning scenarios and use case description . 113

5.5.1 Performance metrics . 113
5.5.2 Planning scenarios . 113
5.5.3 Use case description . 115
5.5.4 Implementation details . 116

5.6 Results . 116
5.7 Conclusions . 120

6 Real-life Implementation and Next Steps 121

Summary 125

References 128

A Subroutines of Chapter 2 143
A.1 MILP for routing subroutine of WAM 143
A.2 Solving path-TSP . 144
A.3 Cheapest space-time path for sequence and node costs 145
A.4 Instance generator . 145

Chapter 1

Introduction

In 1954, George Dantzig and his colleagues computed the shortest tour over 49
American cities [34]. In 1970, Constantine Toregas and his peers computed at
which of 30 locations in New York State to build emergency facilities to pro-
vide optimal emergency response service throughout the state [147]. Ever since
those days, efficient routes and minimal emergency response times have both
been fundamental motivators of the field of Operations Research. The Travelling
Salesman Problem and Facility Location Problems still captivate scientists today:
they are problems that are easy to understand, yet notoriously difficult to solve.

Today, determining efficient tours over service points for preventive mainte-
nance and other plannable activities has become increasingly relevant and well
studied [22, 125, 155]. Emergency response has also become more efficient, partly
due to using computers to find optimal locations from which to await emergencies
[159]. The growth in both topics has been accompanied with decades of steady
literature and ever-improving algorithms [46, 108]. Evidently, how to minimise
emergency response times and how to efficiently route over non-urgent jobs have
both become increasingly well understood.

Although these two fields of application have advanced so far, it is surpris-
ing to see that their overlap is still in its infancy. An overlap certainly exists:
many emergency response organisations are also tasked with scheduling known
jobs of lesser urgency. Police officers may investigate suspicious sightings [65],
ambulances may perform scheduled patient transportation [150] and repairmen
may perform preventive maintenance [64]. When deciding where to stand still
and await emergencies with minimal response time, the literature is abundant
[45, 98, 101, 111]. When deciding how to optimally schedule and route over
tasks known upfront, the literature is overwhelming [4, 18, 21, 41, 92, 107]. How-
ever, when deciding how to do both things at the same time, i.e. how to perform
scheduled tasks while remaining prepared for emergencies, the literature suddenly
becomes much more sparse.

The overlap between emergency response and plannable tasks is a promising
one to explore. If emergency responders were to spend their idle time performing

1

2 Chapter 1. Introduction

preventive activities, then this would give them a much more productive way of
filling their shift than simply waiting for emergencies. Ideally, it would prevent
some emergencies and their corresponding tragedies from even occurring in the
first place. Of course, when assigned with plannable tasks, the agents would
have to retain a good spread over the region, so as to maintain a good emergency
response time. But if planned well, combining the emergency fleet with the
preventive fleet would be beneficial for the goals of both fleets: more preventive
work would get done and more agents would be available for emergency response,
allowing a finer weave of agents over the region, thus leading to potential decreases
in emergency response time.

However, in many current practices, the responders tend to sit at their sta-
tions and wait. It appears that this frustrating state is caused by the following.
For one, it is non-trivial how to form a planning in which both preventive jobs
and emergencies are handled efficiently. But the true difficulty arises as soon as
an emergency occurs: this event inevitably influences the planning, meaning an
adjusted plan must be formed and communicated rapidly and remotely, while
under stress from an emergency. It seems that without the proper support in-
frastructure, this task is too difficult to manage. Reasoning on that preventive
jobs are only ‘secondary’ to emergency response in the first place, emergency
organisations will often conclude it is more manageable to keep the emergency
fleet and the plannable fleet separate [77]. Productivity and responsiveness are
lost, simply because emergency response organisations do not have the means to
rapidly re-coordinate the planning of a joint fleet.

Motivated by this, this thesis will propose methods to assist emergency re-
sponse organisations computationally. The field of Operations Research offers
abundant knowledge on how to efficiently route, as well as on how to efficiently
prepare for emergencies. Therefore, we will propose models and algorithms which
combine and integrate the knowledge from both these fields. These explorations
should culminate in allowing emergency response organisations to both prevent
more emergencies and further reduce their emergency response times, to the
benefit of all.

1.1 About this thesis

This thesis is the result of four years of collaboration between the Centrum
Wiskunde & Informatica [24] (the Dutch centre for mathematics and computer
science) and ProRail Incidentenbestrijding [120] (the emergency response organ-
isation of the Dutch railway infrastructure manager). The collaboration was
carried out in the form of a PhD project. While the collaboration was ini-
tially proposed to involve the improving of emergency forecasting, it was quickly
recognised that the emergency response organisation had a desire to plan their
non-urgent tasks more systematically and that Operations Research techniques
could offer a solution. In parallel to developing and publishing mathematical
models and algorithms, the project also involved implementing a rapid solver

1.2. Railway emergency response in the Netherlands 3

for the emergency response organisation, culminating in an application that the
emergency response organisation has taken into operational use [119].

1.2 Railway emergency response in the Nether-
lands

To give context to the mathematical models developed in this thesis, we illustrate
the operational dynamics of the case study organisation.

ProRail BV is the sole manager of the Dutch railway infrastructure. Mul-
tiple companies operate trains on the Dutch railway system, with Nederlandse
Spoorwegen being the predominant transporter of passengers, but the actual
physical rail is owned and managed by ProRail. That the railway infrastructure
is managed by a different party than the trains are, is not at all uncommon in
the European Union: in fact, it is mandated by the Single European Railway
Directive 2012 [145].

One of the responsibilities of ProRail is to physically ensure that the railway
can be used. That is, if an incident occurs that makes a piece of the railway in-
operable, then it is the responsibility of ProRail to resolve the incident and bring
the railway back into its operational state as quickly as possible [122]. To this
end, ProRail created the specialised department “ProRail Incidentenbestrijding”
to manage railway emergencies. This department not only dispatches emergency
responders when incidents occur, but also oversees the preparation for emer-
gencies, by deciding on equipment and training among other things. ProRail
Incidentenbestrijding is the case study organisation of this thesis, as well as a
co-funder of the research.

ProRail Incidentenbestrijding has four major regional headquarters in the
Netherlands, namely in the cities of Utrecht, Rotterdam, Eindhoven and Zwolle.
See also Figure 1.1a. Roughly speaking, the country is divided into four emer-
gency response regions, corresponding to these four regional headquarters. At
the ProRail headquarters, there is also a support staff that facilitates opera-
tions on the national level, by managing things such as legislation and hardware
acquisition. Moreover, ProRail has many traffic control centres in the country
that can also be used as a minor base of operations for emergency responders.
The emergency responders are employed directly by ProRail Incidentenbestrijd-
ing and work on a shift basis, with the early shift overlapping the late shift by
an hour. In the two smallest regions, it is fairly customary that the emergency
responders start and end their shifts at the regional headquarters. In the two
largest regions, agents who live in the more remote corners of the region may also
sometimes start and end their shift at a more nearby ProRail location. Seeing
how these remote corners also need an emergency responder nearby, it is often
preferable that agents who live there will stay in those areas, rather than driving
almost two hours to the regional headquarters and back.

Emergency responders are typically active in either a car, a van with minor

4 Chapter 1. Introduction

(a) The four regional headquarters. (b) An emergency response car.

(c) An emergency response van. (d) An emergency response truck.

Figure 1.1: Photographs and visualisations describing the case study organisa-
tion, ProRail Incidentenbestrijding.

1.2. Railway emergency response in the Netherlands 5

equipment, or a truck with extensive equipment. See also Figures 1.1b, 1.1c and
1.1d. All these vehicles are owned by ProRail and equipped with a GPS module.
Whenever a railway emergency occurs, the “Slim Alarmeren” system [119] uses
those GPS coordinates to determine the nearest active responders, regardless of
what emergency response region they belong to. Depending on the type and
severity of the incident, a variable number of those agents are deployed. For
the heaviest of incidents, the emergency response truck is needed on site. At all
times, there is typically exactly one agent per region who has ‘truck duty’ for that
region: throughout the shift, this agent needs to stay nearby the truck, which is
typically parked at the regional headquarters. In the Rotterdam region, there is
also always one agent with ‘harbour duty’, who stays in the Rotterdam harbour
area to respond to railway incidents there. Finally, the Utrecht area contains the
largest airport of the Netherlands, and there is always someone on ‘airport duty’
specifically to respond to emergencies that would make it difficult to reach the
airport by train.

The emergency responders, aside from having access to different types of
vehicles, fall roughly into three categories. Most agents are active as ‘shift mem-
ber’, and they are typically the ones performing the physical activities needed to
resolve an incident, such as clearing obstacles and evacuating train passengers.
One agent per region is active as ‘shift leader’, who coordinates the work of the
‘shift members’. For most incidents, there is also one ‘general leader’ deployed
to manage communication with the other involved parties, such as the train op-
erator, fire department and local authorities. In some cases, these other parties
are strictly necessary to resolve the incident: for instance, if there is a fatality
connected to the incident, the scene may not be altered until local police and a
coroner have investigated it.

There are no formal KPIs on how quickly a railway emergency should be ‘re-
sponded to’, partly because the time needed to resolve the incident can depend
on these other parties. As a rule of thumb, ProRail desires that the first emer-
gency responder arrives at the site of the incident within 30 minutes in the two
smaller regions, or within 60 minutes in the two larger regions. A single agent
may not always be able to start resolving the incident on their own, but at the
very least, this agent can start assessing more closely which actions and parties
will be needed and start up the chain of communication. Most importantly, ev-
ery minute that a piece of railway is disturbed can cause significant economic
damage, and the case study organisation wants agents to arrive at the scene as
quickly as possible.

The case study organisation is unlike classical emergency response organi-
sations, like fire departments and ambulance service providers, in the following
way: if there are no active emergencies, the responders can perform ‘preventive
activities’ in the region, instead of waiting for the next emergency at a response
station. For instance, they can travel along a piece of railway to check for sus-
picious activities or defects. Surprisingly, citizens walking over or near the rail
account for an estimated 36% of train delays [121], meaning much can be gained

6 Chapter 1. Introduction

from intercepting them beforehand. Alternatively, the agents can patrol at road-
railway intersections and fine car drivers who cross when they are not allowed.
This latter activity requires at least two agents to be present, and at least one
of them must have a ‘Buitengewoon Opsporend Ambtenaar’ authorisation that
allows them to write out fines. Some preventive tasks, like weekly inspections
at railway freight stations, are contracted from outside the department and have
deadlines that should be met. However, in general, the preventive activities are
an effective way to spend idle time but they do not take priority over rapid
emergency response.

Perhaps for this reason, the planning of preventive activities has not received
as much support in the case study organisation. The different regions tend to
handle preventive activities in different, often decentral ways. In one of the
regions, the ‘shift leader’ of a shift will decide what activities the shift members
will do and where. Which tasks are considered ‘important’ is up to the discretion
and preference of that particular shift leader. The infrastructure supporting these
decisions is often not more than a brief text document recording what was done
last week, and a printed table of which freight stations have been inspected per
week, combined with requests sent over email. In another region, the shift-by-
shift decision making is mitigated somewhat by a weekly strategy meeting among
shift leaders in which a rough planning is decided for that week. A complicating
matter, however, is that it is entirely unclear when and where emergencies will
occur throughout that week. In yet another region, the activities are suggested
by the shift members themselves and accorded by the shift leader, trusting that
the shift members know ‘their’ piece of the railway network best. As we will see
in Chapter 5, this may occasionally result in shift members encountering each
other patrolling the same piece of railway, because they unknowingly decided
to perform the same preventive activity. In most regions, the ‘general leaders’
and ‘shift leaders’ are exempt from performing preventive activities, but not
from emergency response. In rare cases, agents may be exempt from emergency
response, but not from preventive activities. In all regions, it is well understood
that the shift leader should strive to maintain a reasonable spread of the shift
members during their preventive activities, so as to keep response times low.

The following conclusion can be drawn concerning the case study organisa-
tion, and with that, concerning railway emergency response in the Netherlands
in general. Despite the lack of concrete KPIs, the organisation of emergency
response itself is quite advanced. There are several response stations spread over
the country, with extra stations dedicated to key infrastructural points, namely
the largest airport and the Rotterdam harbour area. Emergency responders are
organised into three categories, and independently, their vehicles fall into three
size categories that allow for responding effectively to emergencies on different
scales. On the level of support software, GPS coordinates are used to auto-
matically find and notify the agents nearest to an incident, regardless of which
response region they are part of. However, in contrast to emergency response, the
planning of preventive activities is still largely decentral, and is likely to benefit

1.3. Overview and publications 7

from dedicated decision support software. The challenge lies in computing, and
quickly updating, a planning of these preventive activities that keeps the agents
well spread in case of emergencies.

1.3 Overview and publications

The remaining chapters of this thesis will investigate the problem of computing
a planning that efficiently handles both emergency response and plannable tasks,
from different perspectives. First, in Chapter 2, the Median Routing Problem
is introduced: this model for joint planning will be at the heart of this thesis.
Several algorithms with which to address this problem will be proposed, of which
one exact and the rest rapid heuristics. Most notably, in the so-called MDSA-
algorithm, the problem is split into steps that resemble the well-known k-Median
Problem and Multiple Travelling Salesman Problem. These problem instances
can still be solved quickly because they act on heavily compressed solution spaces.
It is concluded that, indeed, MDSA is both a fast and an empirically accurate
heuristic for both randomly generated and use-case inspired benchmark instances.
This chapter is based on the following publication [70]:

• D. Huizing, G. Schäfer, R. D. van der Mei, and S. Bhulai. The Median
Routing Problem for simultaneous planning of emergency response and non-
emergency jobs. European Journal of Operations Research, 285(2):712–727,
2020.

As it turns out, the Median Routing Problem is not only NP-hard, but it
is even NP-complete to decide whether a feasible solution exists. As such, no
polynomial-time approximation algorithms exist for this new problem, unless
P=NP. Briefly put, this theoretical difficulty is due to having both a hard con-
straint that all jobs should be processed and a hard limit on how much time
the agents have to do so and it is NP-complete to check whether there exists a
route that is efficient enough to abide by this time limit. Concluding that no
approximation algorithms exist for the Median Routing Problem, we investigate
in Chapter 3 whether they do exist for a special case of the Median Routing
Problem, namely when the jobs are removed. It may seem contradictory to
first introduce jobs and then take them away again, but the studied Travelling
k-Median Problem reveals that it is already non-trivial to add a notion of
movement to the k-Median Problem. However, constant-factor approximation
algorithms are derived for special cases. They are found using a novel notion
of solving the problem on a ‘continuous version’ of the graph and rounding this
solution back with bounded loss. Presumably, this technique may be interesting
for other graph-based problems as well. This chapter is based on the following
publication [69]:

• D. Huizing and G. Schäfer. The traveling k-median problem: approximat-
ing optimal network coverage. In International Workshop on Approxima-

8 Chapter 1. Introduction

tion and Online Algorithms. Springer (to appear).

Moving back towards application, it should be noted that the Median Rout-
ing Problem is only a simplification of the operational practice. In studying the
Median Routing Problem, one can study the fundamental difficulty of combining
emergency response and plannable tasks. However, many practical side con-
straints such as time windows are not a part of the basic model. Most notably,
in practice, some jobs may require more than one person to complete. Unfortu-
nately, this latter feature is not compatible with the successful MDSA-algorithm.
However, understanding that MDSA was effective because it solved decomposed
problems on compressed space, a new heuristic can be developed. A crucial part
in keeping this method fast is performing a strong compression of the solution
space. In Chapter 4, the essential subroutine is developed with which to perform
this compression. That is, several methods are discussed with which to take an
input graph and remove nodes from it that likely do not affect the optimal so-
lution value by much. The graph cannot be sparsified too heavily however: if
the graph distances increase because essential connections are removed, this may
suddenly mean that feasible solutions to the Median Routing Problem no longer
exist on the compressed graph.

Motivated by this, Representative Distance-preserving Graph Sparsi-
fiers are introduced in this chapter, and several methods by which to compute
them are proposed. To keep the discussion clear, these sparsifiers are introduced
in the context of the basic Median Routing Problem, not yet keeping the com-
plicated operational side constraints into account. Not only will it be seen that
this sparsification method is indeed effective for the Median Routing Problem,
in that the previous benchmark instances can be solved much more rapidly with
only marginal loss of optimal solution value, but the Mixed Integer Jester Game
framework will be introduced to prove an upper bound on how much solution
quality can be lost through sparsification. This chapter is based on the following
publication [71]:

• D. Huizing, G. Schäfer, R. D. van der Mei, and S. Bhulai. Distance-
preserving graph sparsification with bounded loss for network problems,
2021. Submitted.

Using this sparsification subroutine, an MDSA-based heuristic can finally be
derived for the Enriched Median Routing Problem, which includes fifteen
additional features that arise from practice. These features include, among oth-
ers, planned travel time and makespan and job assignment penalties as additional
terms in the objective function, non-contiguous time windows for jobs, jobs re-
quiring a mix of agent specialisations, variable start and end locations of agents
and the presence of subregions in which certain agents must remain. In Chapter
5, the Enriched Median Routing Problem is introduced more formally and the
MDSA-based heuristic is described. With all of these operational features included,
a more fair comparison can be made to the current operational practice of the

1.3. Overview and publications 9

case study emergency response organisation. While it is possible to compute a
planning for the case study organisation, it is difficult to measure how well this
plan is followed in practice. Therefore, a current practice model is developed, so
as to compare performance metrics in the current plans against the plans pro-
posed by the Enriched Median Routing Problem solutions. From this comparison
it is concluded that, indeed, the methods in this thesis can lead to a simultaneous
improvement in both the emergency response time and the amount of plannable
work performed during idle time. This chapter is based on the following publi-
cation [72]:

• D. Huizing, R. D. van der Mei, G. Schäfer, and S. Bhulai. The Enriched
Median Routing Problem and its usefulness in practice, 2021. Submitted.

Finally, in Chapter 6, other findings and related projects are mentioned briefly
and further outlooks are proposed.

Chapter 2

The Median Routing Problem

2.1 Introduction

Optimal positioning, in applications such as firefighting and ambulance man-
agement, is an important part of emergency logistics research [23]. In classical
models and settings, emergency responders are expected to remain at a base sta-
tion until an emergency occurs, and an optimal or near-optimal set of waiting
positions is determined [19, 111, 118].

However, in some real-world applications, including those discussed in Chap-
ter 1, it may be interesting to assign incident-preventing activities or other sched-
uled activities to responders when there are no active emergencies to resolve. To
recall those examples, one could want to assign routine railway inspections to
idle railway emergency responders, or to combine scheduled ambulance trans-
port with emergency response, or to plan routine patrols of the police force such
that good emergency coverage is guaranteed. This would allow the emergency
responders to spend their idle time much more effectively, namely by proactively
preventing emergencies, rather than by waiting at a base station.

Combining an ‘emergency response fleet’ with a ‘maintenance fleet’ is chal-
lenging, but worthwhile [86]: this would yield more manpower for the scheduled
work, as well as a larger pool of emergency responders. When an emergency
happens, however, the nearest agent should abort whatever task he or she is do-
ing and hurry towards the emergency. It would be undesirable if an emergency
occurs, but due to poor planning, all responders are performing a task at some
far-off location.

This gives rise to an interesting Operations Research challenge: how can we
schedule these preventive tasks in the network, such that we can guarantee a good
spread of emergency responders over the day and minimise the average response
time to potential emergencies? This is the central question of this thesis, in its
purest form. Answering this question should provide a worthwhile contribution
to the field of emergency logistics.

If one were to only care about minimising response time to emergencies, one

11

12 Chapter 2. The Median Routing Problem

could find an optimal distribution of agents over the network by solving a k-
Median Problem (K-MED) [35]. In K-MED, we have a finite set of nodes, each
with some non-negative weight, and a symmetric distance matrix between these
nodes. The goal is to select exactly k of these nodes which will act as ‘facilities’.
Each other node is then connected to its nearest facility, and contributes a cost
equal to the distance to that facility times the node’s weight. K-MED is the
problem of finding the k nodes for which this total weighted distance is minimal.
In this context, it would give the emergency responders optimal locations from
which to anticipate emergencies.

If one were to only care about processing many preventive tasks in the network
in the span of one work shift, one could find the fastest routing of agents over
jobs by solving a Distance-Constrained Vehicle Routing Problem (DVRP) [94].
DVRP is almost identical to the classical Vehicle Routing Problem (VRP), except
route lengths may not exceed some parameter ω. More specifically, suppose we
have again a finite set of nodes with a symmetric distance matrix. One node is
called the ‘depot’; the others are called the ‘customers’. Each customer has a
non-negative amount of processing time. Given a fixed number of vehicles k, a
feasible solution to DVRP consists of exactly k tours that start and end at the
depot, such that every client is visited exactly once, and such that every tour has
a length that does not exceed ω. DVRP is the problem of finding the k feasible
tours with the smallest total distance travelled. In this context, it would give the
fastest routing of the agents over the preventive tasks such that everyone is back
by the end of the shift.

The optimal solutions to these two problems would by definition be conflict-
ing: the former would have the agents standing still, while the latter would have
them move around with no explicit regard to emergency response times. In this
context, however, one cares about both minimal response time and efficient task
processing: one seeks to route agents over all given jobs, as in DVRP, but with
the objective to minimise emergency response time, as in K-MED. This problem
is therefore also interesting in that it lies on an unexpected boundary between
two well-studied Operations Research problems, namely K-MED and DVRP.

Despite these motivations from academia and industry, the literature review
in Section 2.2 suggests that this combined planning problem has received little
attention. Therefore, this chapter proposes the Median Routing Problem (MRP)
as a mathematical model for scheduling preventive tasks while minimising emer-
gency response time, and proposes methods to find optimal or near-optimal so-
lutions to this problem quickly.

The contribution of this chapter is twofold. First, we propose a mathematical
model for this planning problem. This model allows for discretisation of contin-
uous response time, is suited to deal with online re-planning when emergencies
occur, and can be solved with Mixed Integer Linear Programming. Second, we
propose a heuristic for this model, that for real-life benchmark instances needs
only 4.5 seconds to find solutions that are on average 3.4% away from optimal.
This heuristic has an unusual approach, in that it decomposes the decisions into

2.2. Related literature 13

several NP-hard subproblems, but these NP-hard decisions are so much com-
pressed that they can be solved within seconds in the benchmark instances. We
propose an explanation for the success of this heuristic by comparing it with
related heuristics under variation of instance parameters.

The remainder of this chapter is structured as follows. In Section 2.2, we
review literature concerning related problems. In Section 2.3, we give a rigorous
problem definition, including its complexity. In Section 2.4, we describe a solution
method and several heuristics. In Section 2.5, we detail the experimental setup
in which these methods are compared. In Section 2.6, we present the results of
computational experiments with some observations. In Section 2.7, we present
our conclusions.

2.2 Related literature

Vast literature exists on solving and approximating K-MED, going back at least
as early as the work of ReVelle and Swain [126]. The metric problem was first
shown to be NP-hard by Kariv and Hakimi [84]. Daskin and Maass [35] have
provided a recent overview of solution methods, construction and improvement
algorithms and metaheuristics for K-MED. Among these, they provide a Mixed
Integer Linear Program. They remark that the variables describing median se-
lection must be binary, but that the variables describing the assignment of nodes
to medians may be left continuous. We will exploit a similar result in Section
2.4.1. If the distance matrix satisfies the triangle inequality, K-MED can be ap-
proximated to within a factor of 6 2

3 due to an LP-rounding result by Charikar et
al. [25]. This approximation factor has since been improved by Arya et al. [6]
using a local search method with swaps. They approximate K-MED to a factor
3 + 2/k, where k is the number of swaps allowed to be made simultaneously. The
more general variant of the problem where the connection cost is non-negative
and symmetric (but does not necessarily satisfy the triangle inequality) was first
shown to be APX-hard by Lin and Vitter [99]. On the positive side, the problem
is polynomial-time solvable on trees [84, 141] and there exists a polynomial-time
approximation scheme if (V, d) constitutes a Euclidean space [5]. The current
best approximation algorithm for the problem achieves an approximation ratio
of α = 2.675 + ε [20]. In terms of negative results, the current best lower bound
is the (1 + 2/e)-inapproximability result by Guha and Khuller [61].

Laporte reviewed a number of exact and approximate algorithms for DVRP
[93]. Almoustafa et al. [3] solved large instances of the variant with asymmet-
ric travel costs using a modified branch-and-bound procedure with random tie-
breaking. If we wish to minimise the number of vehicles needed rather than the
travel costs, Nagarajan and Ravi [109] provide a 2-approximation on tree metrics
and an (O(log 1

ε), ε)-bicriteria approximation algorithm on general metrics.
Broader surveys of VRP variants were done by Eksioglu et al. [41], Toth

and Vigo [148] and Joubert [82]. In particular, in the Dynamic Vehicle Routing
Problem [115], the customers to be visited may appear during execution of the

14 Chapter 2. The Median Routing Problem

routes, and the decision maker is tasked with making a route over the known
customers and to adjust them whenever new customers appear. This is similar,
in some sense, to emergencies occurring and requiring a rescheduling. A key
difference is that new Dynamic VRP customers can be incorporated into existing
routes at any point, whereas emergencies demand an immediate response. The
inherent uncertainty in Dynamic VRP is dealt with in several ways, including
Multiple Scenario Approaches [116], a-priori routes [151, 161], rolling horizon
approaches [80, 112] and rollout policies [57].

Ichoua et al. [73] use Tabu Search to minimise a weighted sum of travelled
distance and lateness to both known and dynamically revealed jobs. One could
adapt this to the problem at hand by seeing the revealed jobs as ‘emergencies’,
and assigning zero weight to travelled distance and lateness to known jobs. How-
ever, their model would then prescribe that any feasible solution is optimal, as
long as it responds to revealed jobs as quickly as possible.

Our research also considers situations where agents must be routed over jobs,
but their start and end locations are not the same, despite this being a typical as-
sumption in VRP variants. Therefore, our research makes use of the (S,W)-path
Travelling Salesman Problem (path-TSP) [66]. In path-TSP, we again observe a
finite node set with a symmetric distance matrix. One node is called the ‘start
node’ S; one other node is called the ‘end node’ W . Path-TSP is the problem
of finding the shortest path that starts at S, ends at W , and visits each node
exactly once. It can be solved by means of the Mixed Integer Linear Program in
A.2, or approximated by the method of Zenklusen [160].

The problem at hand bears a strong resemblance to the k-Server Problem
[88]. In the k-Server Problem, requests appear dynamically in a metric space,
and whenever this happens, a decision-maker must immediately decide which of
k servers to send towards the request and how to reposition the rest. The goal
is to minimise the total amount of distance travelled. Typically, probabilities
for where requests may appear are not known, and researchers have focused
on finding algorithms with small competitive ratio against someone who knows
completely when and where the requests will appear.

Farahani and Hekmatfar [46] describe a number of different facility location
problems and concepts. In the Dynamic k-Median problems reviewed by Owen
and Daskin [111], locations may close and reopen in different time periods to
satisfy period-dependent demands. In the Capacitated Mobile Facility Location
Problem [124], initial facility locations have already been chosen, but one may
relocate facilities against distance-dependent costs. The goal is to minimise a
weighted sum of these facility relocation costs and the subsequent cost to serve
all clients. The Location-Routing Problem, reviewed also by Drexl and Schneider
[40], is concerned with simultaneously deciding delivery routes and the facility
locations from which they spring: the goal is to minimise the distance travelled
between jobs.

Bertsimas and Van Ryzin [13] study a dynamic Travelling Repairman Prob-
lem, where multiple agents may move freely over the Euclidean plane and must

2.2. Related literature 15

respond to dynamically revealed service requests as soon as possible. They de-
scribe policies with costs that are provably within a constant factor of the optimal
policy costs.

For ambulances, the combined planning of emergency response and non-
emergency patient transportation has received some attention. Kergosien et al.
[85] study when and from which hospital to temporarily expend emergency am-
bulances on non-emergency transportation, as do Van Den Berg and Van Essen
[150]. They seek to minimise the temporary loss in emergency response cover-
age when performing non-emergency transportation. In contrast, Kiechle et al.
[86] study a problem where emergencies are responded to by the nearest empty
ambulance, including the ones performing non-emergency transportation. Their
analysis is mostly focused on comparing whether it is better to arrive at the next
job as early as possible or as late as possible.

In other fields, research has been done into combined maintenance-routing,
which studies how to jointly determine when to perform maintenance and how to
route between maintenance jobs. The maintenance schedule affects the routes,
but the routes may also affect the maintenance schedule, depending on the piece
of research. Most of the maintenance-routing literature in air transportation
[7, 58, 63, 132, 140] and train transportation [103, 114] seems to focus on how to
execute a required transportation schedule with a set of vehicles, while ensuring
that these vehicles are routed over maintenance stations regularly. Cohn and
Barnhart [29] include the subsequent crew scheduling into the optimisation as
well.

López-Santana et al. [102] study a combined maintenance-routing problem in
the oil and gas industry where the goal is to determine the expected optimal times
and frequencies at which to perform maintenance, balancing the fixed cost of per-
forming maintenance against the expected cost incurred when a machine breaks
down and remains unrepaired until its next maintenance moment. Aside from
determining the optimal times and frequencies in a maintenance planning phase
(by optimising over continuous, non-linear functions numerically), they also try
to fit feasible repairmen routes on this (using Mixed Integer Linear Programming
on a space-time network) in a routing phase, and iterate between the two until
some stopping criterion is reached. Fontecha et al. [50] improve upon this work
in two notable ways. First, they expand the model to allow for re-planning after
breakdowns. Second, they replace the computation method with a more scalable
version: that is, they remove the need to iterate between the two phases and
they replace the Mixed Integer Linear Program by a matheuristic. They then
apply this to case studies in a large-scale sewage cleaning application. Irawan et
al. [76] study a maintenance-routing problem for off-shore wind farms, that more
closely resembles a Vehicle Routing Problem with Pick-up and Delivery. Inspired
by this similarity, they solve it using a Dantzig-Wolfe decomposition method.

Some work has been done in coordinating several unmanned vehicles to pro-
vide joint ‘coverage’ over a region [1, 39, 137, 156]. They focus on mapping
out the entire area once with mobile camera’s, rather than providing ‘emergency

16 Chapter 2. The Median Routing Problem

coverage’ whilst performing jobs in the region.
We conclude that many similar problems have been studied, but that each

differs fundamentally from the problem at hand, and that a new model is re-
quired.

2.3 Problem definition

In this section, we formally introduce MRP as a mathematical optimisation prob-
lem. We also describe the problem by means of a Mixed Integer Linear Program
in Section 2.4.1. In order to give a formal definition of the MRP, we employ the
notation listed in Table 2.1.

Set Description
A The set of agents
J The set of jobs
V The set of nodes
T The set of time steps, T = {0, 1, . . . , ω}
VP The set of nodes where incidents may occur (VP ⊆ V)
Vv The neighbourhood of v ∈ V
Parameter Domain Description
Sa V The start location of agent a ∈ A
Wa V The end location of agent a ∈ A
Lj V The node where job j ∈ J is located
Qj Z≥0 The number of time steps job j ∈ J takes
Pv (0, 1] The probability that the next emergency happens

at node v ∈ VP
Cuv Q≥0 The undiscretised emergency response time

from u ∈ V to v ∈ VP
Θv Z2 The coordinates of node v ∈ V
Variable Domain Description
xavt {0, 1} Whether or not agent a ∈ A is at v ∈ V at time t ∈ T
yuvt {0, 1} Whether or not a potential emergency at v ∈ VP ,

time t ∈ T will be responded to from u ∈ V
zajt {0, 1} Whether or not agent a ∈ A starts job j ∈ J

at time t ∈ T

Table 2.1: Notation for the Median Routing Problem.

In MRP, we observe a connected, undirected graph with node set V . The
neighbourhood of v ∈ V is denoted Vv ⊆ V . We demand that each node is in its
own neighbourhood. Each node v has known coordinates Θv ∈ Z2. We discretise
time into a finite time horizon T = {0, 1, . . . , ω}.

There is a set of agents A that can move over the network. That is: if agent

2.3. Problem definition 17

a is at node u at time t 6= ω, it can only be at v ∈ V at time t + 1 if v ∈ Vu.
At time 0, each agent a is at some start location Sa ∈ V . At time ω, each agent
must be at a specific end location Wa ∈ V .

There also exists a set of jobs J , distributed over the graph. Each job j ∈ J
has a location Lj ∈ V and a processing time Qj ∈ Z≥0. Each job must be
processed and the jobs must be processed non-preemptively to succeed: that is,
whenever an agent starts processing a job, that agent must stay at that location
to process the job for its full duration, unless an emergency occurs. If a job is
aborted halfway due to an emergency, the job fails and must be processed entirely
anew.

Note that we allow for distinct jobs to be at the same node: for example, the
depot may host several equipment maintenance and administrative jobs. Though
we could combine all jobs at a given location into one superjob, there exist
instances where doing so destroys feasibility. The only exception we make is that
if a job has length 0 and there is another job at the same location, we will merge
them into one. An alternative could be to place each job on its own virtual node,
but we believe having to distinguish between real and virtual nodes that describe
the same location is less elegant than simply allowing one node to host multiple
jobs.

Finally, emergencies may occur in any node v ∈ VP ⊆ V . An emergency
may occur at any time step t ∈ T against a time-independent probability. The
probability that the next emergency occurs in v ∈ VP is Pv > 0, with

∑
v∈VP

Pv =
1. If an emergency at v ∈ VP is responded to from an agent at u ∈ V , the
emergency response time is Cuv ∈ Q≥0. This distance matrix C does not need
to be symmetric, and the methods presented in Section 2.4 do not require C to
be symmetric, though the benchmark instances discussed in Section 2.5 do all
have a symmetric C. Note that, outside of emergency logistics, Pv can be more
broadly interpreted as node weights, and Cuv can be more broadly interpreted
as service costs.

A feasible solution of MRP must tell the agents where to be at each time
step and which jobs to start processing when, respecting the above constraints.
Moreover, for each v ∈ VP and each t ∈ T , a node u ∈ V must be appointed to
‘cover’ v in case of an emergency; in any optimal solution, u is always the node
with lowest response time Cuv that has at least one agent present at time t. We
encode any solution to MRP with binary variables xavt indicating whether agent
a ∈ A is at node v ∈ V at time t ∈ T , binary variables yuvt indicating whether
v ∈ VP is covered from u ∈ V at time t ∈ T , and binary variables zajt indicating
whether agent a ∈ A starts processing job j ∈ J at time t ∈ T .

Using this notation, we remark that if exactly one emergency occurs at some
time t and node v ∈ VP , the response time equals Cu∗v for some u∗ ∈ V , which
has yu∗vt = 1, while the other u ∈ V have yuvt = 0. In other words, the response
time equals

∑
u∈V Cuvyuvt. If indeed an emergency happens at time t, it happens

at node v ∈ VP with probability Pv, meaning the overall expected response time

18 Chapter 2. The Median Routing Problem

to an emergency at time t equals

∑
v∈VP

Pv

(∑
u∈V

Cuvyuvt

)

In MRP, the goal is to minimise
∑
t∈T

∑
v∈VP

Pv(
∑
u∈V Cuvyuvt) over the fea-

sible (x, y, z), where by the above discussion, the summed expression equals the
expected response time to an emergency if exactly one emergency happens at
time t ∈ T and none have happened earlier. Summing this expression over T and
dividing by |T | yields the expected response time to the next emergency, given
that at most one emergency can happen per time step. Note that dividing by |T |
makes no difference to the optimal solution, and we leave out the scalar 1/|T | for
legibility. Therefore, the objective in MRP is to minimise the expected response
time to the next emergency, under the condition that all jobs are processed and
that all agents are at their end location at the end of the time horizon.

2.3.1 Example instance

As MRP is the central problem of this thesis, the model is further clarified here
by means of a visual example.

3

3Normal node

Depot node

Node with emer-

gency risk

Large risk

Job (duration 3)3

Probability next

emergency here
Pv

Legend
Instance (2 agents, ω = 16)

job 2

job 1Pv = 0.3Pv = 0.3

Pv = 0.2 Pv = 0.2

Figure 2.1: An example instance of MRP. Two agents, starting at a depot at
t = 0, must process all jobs and be back at t = 16, whilst minimising average
expected emergency response time. The optimal solution is presented in Figure
2.2.

In the MRP example illustrated in Figure 2.1, we may move two agents dis-
cretely over a network. They both start and end their work shift at a central
node, which acts as a classical ‘depot’. At some of the nodes, an emergency may

2.3. Problem definition 19

3

3

Optimal solution (2 agents, ω = 16)

route

agent 1

r
o
u
t
e

a
g
e
n
t

2

job 2

job 1(wait 10 steps)

1 2 3 4

1

2

3

4

Figure 2.2: The optimal solution to the instance in Figure 2.1, detailed further
in Table 2.2. It is optimal to let agent 1 (purple, dotted) process both jobs and
be responsible for the ‘right half’ of the network, and to put agent 2 (orange,
solid) in a good position to respond to emergencies in the ‘left half’.

occur; each of these nodes has a probability Pv of being the site of the next emer-
gency. There are also two jobs to be processed at specific locations in the ‘right
half’ of the network, each with a processing time of 3. A feasible solution tells all
agents where to be at each time step and when to start processing which jobs.
The goal is to move the agents such that the weighted distance of all nodes to
their nearest agent is minimised, where weights may represent emergency proba-
bilities and distances may represent response times, while ensuring that all jobs
get done. In the optimal solution, presented in Figure 2.2, agent 1 processes both
jobs, thus giving ‘coverage’ to the right half of the network; meanwhile, agent 2
processes no jobs but moves to a good position to give coverage to the ‘left half’
of the network. Both agents make sure to be back at the depot just at the end
of the shift.

In the optimal solution, at t = 3, there is one agent at (1,1) and one agent
at (4,4). This means that the expected response time (assuming Manhattan
distances) for an emergency at t = 3 equals

0.3 · 0 + 0.3 · 2 + 0.2 · 1 + 0.2 · 2 = 1.2

as this is, summed over the four possible emergency locations, the probability of
the emergency occurring there times the distance of the nearest agent.

20 Chapter 2. The Median Routing Problem

Time-step Location agent 1 Location agent 2 Expected response time

t = 0 (2,3), depot (2,3), depot 2.8
t = 1 (3,3) (2,2) 1.8
t = 2 (4,3) (2,1) 1.2
t = 3 (4,4), start job 2 (1,1), wait 1.2
t = 4 (4,4), process job 2 (1,1), wait 1.2
t = 5 (4,4), process job 2 (1,1), wait 1.2
t = 6 (4,4), job 2 finished (1,1), wait 1.2
t = 7 (4,3) (1,1), wait 1
t = 8 (4,2) (1,1), wait 0.8
t = 9 (4,1), start job 1 (1,1), wait 0.7
t = 10 (4,1), process job 1 (1,1), wait 0.7
t = 11 (4,1), process job 1 (1,1), wait 0.7
t = 12 (4,1), job 1 finished (1,1), wait 0.7
t = 13 (3,1) (1,1) 0.6
t = 14 (3,2) (1,2) 0.8
t = 15 (3,3) (2,2) 1.8
t = 16 (2,3), depot (2,3), depot 2.8

Average 1.247 (optimal)

Table 2.2: A detailed description of the solution illustrated in Figure 2.2.

The solution in Figure 2.2 is feasible because it visits all jobs and everyone
is back in time; it is optimal because it has minimal average expected response
time among feasible solutions.

Note that it is by no means necessary in MRP that the start and end location
for all agents are the same: this is simply the case for this example. In fact,
allowing any node to be an agent’s start location is necessary to allow for dynamic
re-solving after an emergency occurs. Also, in this example, the response time
between nodes is equal to the number of steps needed to get there via the graph;
in general, response times may follow a different metric.

2.3.2 Discussion of modelling choices

Two non-trivial modelling choices have been made in formulating MRP.

Remark 1. Discretising space-time allows us to use linear optimisation on an
approximation of continuous movement. Furthermore, it facilitates legible day
plans as output, and we can always reduce the lost accuracy to acceptable levels
by discretising more finely, at the cost of more computational effort. One may
interpret this discretisation as having agents move around over the set of potential
facility locations in an instance of K-MED. Though one could also take the DVRP
perspective of directing agents over jobs, rather than over discretised nodes, we
believe this would create too much inaccuracy in expected response times when
agents traverse long roads from one job to another. As a consequence of a discrete

2.3. Problem definition 21

space-time model, it is possible for agents to choose non-shortest roads between
jobs if these give better response times, and to roam the network freely for the
sake of coverage in their remaining time: these things would also not be possible
when simply routing over jobs.

Remark 2. MRP seeks to minimise the expected response time to the next emer-
gency, but in no way captures the actual processing of emergency events. Instead,
when an emergency actually occurs and agents are deployed, it is advised to make
a new planning for the rest of the shift and the remaining jobs by observing a
new MRP instance, in which the remaining agents have their current location as
their start location. In this model, we thus only prepare for the next emergency
with optimal expected response time and re-optimise whenever it actually occurs.
This ‘single coverage’-approach is in a sense similar to a rolling horizon approach,
where we keep the uncertainty tractable by only looking so far ahead, except we
look towards the next emergency rather than towards some rolling horizon.

2.3.3 Complexity

We discuss two complexity results in this section that guide the design of our
solution approaches. First, we remark that MRP on a complete graph without
jobs is equivalent to K-MED, implying that MRP is NP-hard. In practice, one
could view MRP as much harder than K-MED, because it involves solving (ω −
1) instances of K-MED, where the decision in any one instance influences the
decision space of all other instances. More importantly, we have the following
stronger complexity result.

Theorem 1. Deciding whether an instance of MRP admits a feasible solution is
NP-complete in general, even for the case with one agent.

Proof. First, note that the problem of deciding whether a feasible solution ex-
ists for an MRP instance is in NP, because any feasible solution can be stored
and checked in polynomial time and size with respect to the input. Next, take
any instance of the Hamiltonian Path problem: that is, observe some connected
graph with n nodes, some start node S and some end node W ; without loss
of generality, assume S 6= W . It is NP-complete to decide whether this graph
admits a Hamiltonian (S,W)-path [52]: that is, an (S,W)-path that visits all
nodes exactly once. Transform this into an instance of MRP by observing the
same graph, placing a job of length 0 on each node, setting ω = n and having
|A| = 1 agent start at S and end at W . Because ω = n = |V |, the only way
the agent can reach node W at time ω and process all jobs is if the agent visits
all nodes at least once and never twice. Therefore, every feasible solution of this
MRP instance corresponds to a Hamiltonian Path, meaning it is NP-complete to
decide whether this MRP instance admits a feasible solution.

Corollary 1. Unless P=NP, there exists no polynomial-time algorithm that is
guaranteed to return a feasible solution if one exists. In particular, no polynomial-
time approximation algorithms exist for MRP.

22 Chapter 2. The Median Routing Problem

These results validate the following design choices: that heuristics are needed
for MRP, and that these heuristics must contain NP-hard problems themselves
if they are to always return a feasible solution.

2.4 Methods

In this section, we describe a solution method and several heuristics for MRP.

2.4.1 Mixed Integer Linear Programming

Denote Γ := {(j, k) ∈ J2 : j 6= k, Lj = Lk}. Then in the notation already
presented, the MRP can be formulated as the following Mixed Integer Linear
Program (MILP):

min
∑
t∈T

∑
v∈VP

Pv
∑
u∈V

Cuvyuvt

s.t. xaSa0 = 1 (∀a ∈ A) (2.1)

xaWaω = 1 (∀a ∈ A) (2.2)∑
v∈V

xavt = 1 (∀a ∈ A)(∀t ∈ T) (2.3)

xav(t+1) ≤
∑
u∈Vv

xaut (∀a ∈ A)(∀v ∈ V)(∀t ∈ T\{ω}) (2.4)

∑
u∈V

yuvt = 1 (∀v ∈ VP)(∀t ∈ T) (2.5)

yuvt ≤
∑
a∈A

xaut (∀u ∈ V)(∀v ∈ VP)(∀t ∈ T) (2.6)∑
a∈A

∑
t∈T

zajt = 1 (∀j ∈ J) (2.7)

t+Qj∑
τ=t

xaLjτ ≥ (Qj + 1)zajt (∀a ∈ A)(∀j ∈ J)(∀t ∈ T) (2.8)

zajt +

t+Qj−1∑
τ=t

zakτ ≤ 1 (∀(j, k) ∈ Γ)(∀a ∈ A)(∀t ∈ T) (2.9)

xavt, zajt ∈ {0, 1}, yuvt ∈ [0, 1]

Here, the objective equals the expected response time to the next emergency
(up to a scalar |T |, as explained in Section 2.3).

Constraint (2.1) states that all agents must start at their start location, and
that they must end at their end location. Constraint states that an agent can
only be in one place at a time.

2.4. Methods 23

Constraint (2.4) states that an agent can only be at node v at time t+ 1 if he
or she was at some adjacent node u at time t, where the adjacency is indicated
by whether or not u ∈ Vv.

Constraint (2.5) states that each emergency node, at each time step, must
receive coverage from somewhere. Constraint (2.6) adds, however, that coverage
at time t can only be given from some node u ∈ V if there is someone actually
present at node u at time t.

Constraint (2.7) states that each job must be initiated by someone at some
point in time. Constraint (2.8) adds that when an agent starts a job j, that
agent must stay at location Lj for the duration of the job. The formulation also
ensures that the job is started early enough to be finished before the end of the
time horizon. For jobs that are in different places, this implies that they cannot
be processed at the same time by the same agent.

Recall, however, that we allow for multiple jobs to be hosted at the same
node. Suppose some pair of jobs j 6= k exists at the same location Lj = Lk.
Constraint (2.8) does not forbid one agent to process them simultaneously. We
thus need constraint (2.9) to address this fringe case. Suppose some agent a
wishes to process j at some time t. The constraint

zajt +

t+Qj−1∑
τ=t

zakτ ≤ 1

then states that a cannot also start processing k at any time between t and
t+Qj − 1: k can only be processed after j is done or before j is started. If k is
started very briefly before t, say at t′ := t− 1, then the constraint

zakt′ +

t′+Qk−1∑
τ=t′

zajτ ≤ 1

ensures that j is not started at t any more. Due to this symmetry, constraint
(2.9) ensures that if two jobs are at the same location, an agent cannot process
them simultaneously.

Though the variables xavt and zajt are explicitly constrained to be binary,
this is not necessary for the variables yuvt. The reason is as follows. Any feasible
solution has x binary. Therefore, any optimal solution obviously has yuvt = 1
for the closest u ∈ V to a given v ∈ V that has someone present at t ∈ T . If
several nodes are tied for closest, then dividing the coverage fractionally over
these nodes would still give a feasible solution with optimal solution value, but
breaking the tie arbitrarily would result in a feasible solution with strictly fewer
basic variables, meaning the original fractional solution cannot be a vertex of
the solution polytope. We conclude that the variables yuvt can be formulated as
continuous between 0 and 1 without fear of non-integral optimal solutions. This
is fortunate, as the variables yuvt comprise the vast majority of the variables. On
a random sample of benchmark instances (which are further described in Section
2.5), this indeed yields an average reduction of 29.1% in computation time.

24 Chapter 2. The Median Routing Problem

Though simply plugging this Mixed Integer Linear Program into a Mixed In-
teger Linear Programming solver (MILP solver) will eventually yield the optimal
solution, this approach can come with long and unpredictable computation times
as the instance size grows. This is indeed observed in Section 2.6 for the more
difficult instance classes.

2.4.2 WAIT-AT-MEDIANS-heuristic

3

3 job 2

job 1

se
q
u
e
n
c
e

a
g
e
n
t

2

se
quen

ce

agen
t

1

wait here wait here

Figure 2.3: The idea behind the WAIT-AT-MEDIANS-heuristic, applied to the ex-
ample in Figure 2.1. First, solve K-MED, which results in identifying the large
red triangles as the best places from which to offer emergency response. Then,
solve a variant of DVRP to minimise the total time spent travelling, so as to
maximise the total time spent waiting at the medians. The sequences thus ob-
tained are shown here; they must still be translated back to a feasible solution
in the discretised setting, but this can be done with ease.

In practical applications, solving the MILP proposed in Section 2.4.1 may
take excessively long. As an alternative, we discuss some heuristics here, starting
with the following simple one.

If there is a large gap of time in which agents do not process jobs, for example
when the instance has almost no jobs at all, then the optimal place for the agents
to be is at those places given by the solution of K-MED. It may sometimes be
costly or infeasible to reach those places within the time window. If the amount
of remaining time goes to infinity, however, it will be feasible to reach that steady
state, and any costs incurred while getting there are outweighed by the saved cost
of being optimally distributed over a long period of time.

One heuristic strategy could be to identify these medians, and spend as
much time as possible at these medians. This, indeed, is proposed by the
WAIT-AT-MEDIANS-heuristic (WAM), described by Algorithm 1 and illustrated in
Figure 2.3. WAM requires solving K-MED and a special variant of DVRP, which
are NP-hard problems in their own right; these subroutines themselves may be

2.4. Methods 25

approached with heuristics, though the results in Section 2.6 suggest that the
subroutines are easy enough to solve to optimality for the studied benchmark
instances. Note that, in practice, step 1 and part of step 2 can be done as pre-
processing, assuming the network is known beforehand but the daily tasks are
not. Though step 2 seems trivial, we remark that computing a distance matrix
is not necessary for the MILP in Section 2.4.1, and we include this step in the
description of WAM for the sake of fair computational comparison.

ALGORITHM 1: WAIT-AT-MEDIANS, high-level overview

1: Solve induced K-MED, with k = |A|
2: Obtain shortest paths between jobs, medians, starts and ends
3: Solve DVRP with one median and (Sa,Wa) per route
4: Infer x, y and z, with waiting done only at medians

More in-depth, WAM consists of the following:

1. Solve induced K-MED, with k = |A|. This can be done by solving the
MILP formulated by Charikar et al. [25], where the distances are given
by Cuv and the nodes have weight Pv if they are in VP and 0 otherwise.
Denote the obtained medians M⊆ V .

2. Obtain shortest paths between jobs, medians, starts and ends.
This can be done in polynomial time using Dijkstra’s algorithm [37] or the
Floyd-Warshall algorithm [31]. Denote Dij = Dji the minimum number
of steps needed to get from any job, median or start location i to any job,
median or end location j.

3. Solve DVRP with one median and (Sa,Wa) per route. This can be
done by solving the MILP in A.1. The result is a sequence for each a ∈ A,
starting at Sa and ending at Wa, such that the sequences together visit
all jobs, each median is visited by exactly one agent, each sequence admits
a feasible execution with respect to the finite time horizon, and the total
time spent travelling is minimised. This allows us to spend as much time
as possible on waiting at medians. Note that, if there is enough time to
visit all jobs but not enough time to also visit all medians, this subroutine
fails.

4. Infer x, y and z, with waiting done only at medians. The sequences
from the previous step can be translated to a feasible MRP solution easily.
For each agent, observe the sequence from step 3, and demand that move-
ment between any two goals follows the shortest path from step 2. If this
requires strictly less time than ω, allocate all remaining time to waiting at
the median. This directly implies the values of xavt and zajt. After thus
fixing x and z completely, set yuvt as follows: for any v ∈ V , t ∈ T , find
the closest u ∈ V with respect to Cuv which has someone present, so which
has

∑
a∈A xaut > 0, then set yuvt = 1.

26 Chapter 2. The Median Routing Problem

Though this heuristic seems intuitive, it comes with some immediately ap-
parent downsides:

• It does not explicitly take coverage into account while routing over jobs,
aside from creating as much median-waiting time as possible.

• It does not explicitly take coverage into account when translating routes
back to the discrete network; it instead follows arbitrary shortest paths.

• Agents do not take into account where the other agents are.

• There exist feasible MRP instances where this heuristic does not produce
a feasible solution, namely when there is not enough time to actually visit
all medians.

2.4.3 MEDIATE-DIVIDE-SEQUENCE-AGREE-heuristic

Observing the shortcomings of WAM, a heuristic is presented here which attempts
to overcome the shortcomings. The MEDIATE-DIVIDE-SEQUENCE-AGREE (MDSA)
heuristic is presented here as Algorithm 2 and illustrated in Figure 2.4.

ALGORITHM 2: MEDIATE-DIVIDE-SEQUENCE-AGREE, high-level overview

1: Solve induced |A|-MED, obtain coverage regions (MEDIATE)
2: Obtain shortest paths between jobs, medians, starts and ends
3: Assign medians optimally to nearest agents
4: Solve ‘job division’ (DIVIDE)
5: For each agent, solve path-TSP, take clockwise solution (SEQUENCE)
6: For each agent, given the sequence and region, find cheapest space-time path
7: Forget medians, refine to time-dependent regions (AGREE)
8: For each agent, given the sequence and time-dependent region, find cheapest

space-time path
9: Infer x, y and z

In more detail, MDSA consists of the following steps:

1. Solve induced |A|-MED, obtain coverage regions (MEDIATE). This
step is identical to the one in WAM, resulting in a set M of medians. For
any m ∈M, denote coverage region Vm ⊆ VP the nodes for which m is the
nearest median, breaking ties arbitrarily.

2. Obtain shortest paths between jobs, medians, starts and ends.
This step is again identical to the one in WAM. Denote again Dij = Dji

the minimum number of steps needed to get from any job, median or start
location i to any job, median or end location j.

3. Assign medians optimally to nearest agents. If all agents start and
end at one location, like a classical depot, then medians can be assigned

2.4. Methods 27

3

3

(a) The instance as depicted in
Figure 2.1.

(b) Step 1, 2, 3: Solve K-MED,
and split the instance into re-
gions. Assign regions to agents.
(MEDIATE)

3

3

(c) Step 4: Try to assign jobs to
the nearest median and its agent.
(DIVIDE)

3

3

(d) Step 5: For each agent,
solve path-TSP over the
assigned jobs, taking the
‘clockwise’ solution if possi-
ble. (SEQUENCE)

3

3

(e) Step 6: Find the cheap-
est path that follows these se-
quences, with respect to the as-
signed coverage regions.

3

3

(f) Step 7, 8, 9: Check where
agents are over time, and re-
determine the cheapest paths
with respect to where the other
agents are. (AGREE)

Figure 2.4: An illustration of the MEDIATE-DIVIDE-SEQUENCE-AGREE-heuristic.

28 Chapter 2. The Median Routing Problem

arbitrarily to agents. Otherwise, each median m has an average distance
(DSam +DmWa

)/2 to the start and end point of a given agent a ∈ A, and
we can find the optimal assignment of medians to agents in polynomial time
using the Hungarian algorithm [91]. Denote by m(a) the median assigned
to a, and abbreviate Va = Vm(a).

4. Solve ‘job division’ (DIVIDE). In this step, each job is assigned to its
nearest median and the corresponding agent, as well as possible. That
is, for any a ∈ A, j ∈ J , denote the proxy cost of assigning j to a as
Faj = (Qj+1)·

∑
v∈Va

PvCLjv; this quantity represents the cost incurred as
a processes j, under the assumption that the nodes covered by a are always
exactly Va. Blindly assigning jobs to their nearest median may result in
an agent getting more jobs than feasibly executable. Instead, we find the
feasible division of jobs over agents with minimal sum Faj as follows: we
again solve the MILP in A.1, except that we treat M as being empty, and
we replace the objective with

∑
a∈A

∑
j∈J Fajz

′
aj . Note that, in contrast

to WAM, this subroutine does not fail when there is not enough time to visit
all medians. Denote Ja ⊆ J the jobs assigned to agent a ∈ A.

5. For each agent, solve path-TSP, take clockwise solution (SEQUENCE).
Each agent a ∈ A now has a set of jobs Ja assigned to him or her. In this
step, we decide in which sequence these jobs are visited. We do so by solv-
ing the (Sa,Wa)-path Travelling Salesman Problem over Ja, as described
in A.2, for each a ∈ A.

If Sa = Wa, then the found sequence in reverse is also optimal. Of these
two optimal sequences, we choose the clockwise one, which we define as
follows. Denote (Xs, Ys) the 2D-coordinates of Sa. For any j ∈ Ja, denote
(Xj , Yj) the 2D-coordinates of the job location Lj , and define the angle of j
as atan2(Yj −Ys, Xj −Xs), where atan2(y, x) is a commonly used function
to compute the geometric angle between the vector (x, y) and the vector
(1, 0) [36]. When i is followed up by j, we define this move to be clockwise
if i has a greater angle than j. Of the two optimal sequences, we choose
the one that has the largest number of clockwise moves.

6. For each agent, given the region and sequence, find cheapest
space-time path. If an agent a ∈ A is assumed to give coverage to a
specific set of nodes Va, then each u ∈ V has a cost of a being there for one
time step, namely,

∑
v∈Va

PvCuv. Based on these node costs, we compute
for each a ∈ A the cheapest path starting at the space-time point (Sa, 0)
and ending at the space-time point (Wa, ω), such that the jobs Ja are vis-
ited in the predetermined sequence. This can be done using a Dynamic
Program, Algorithm 12 in A.3, which is essentially a modification of Dijk-
stra’s algorithm [37]. This results in temporary values x̃avt describing the
movement of the agents as they visit the jobs, while trying to keep optimal
coverage over Va. In particular, if Ja = ∅ for some a ∈ A and ω is large

2.4. Methods 29

enough, then this step results in a moving to median m(a) and staying until
it is time to go to end point Wa.

7. Forget medians, refine to time-dependent regions (AGREE). Up until
this point, we assumed that a ∈ A would always cover a fixed area Va, so
that a starting solution x̃avt could be constructed. In this step, we define
more finely tuned, time-dependent coverage regions Vat, by observing for
each v ∈ VP and t ∈ T which a ∈ A is ‘nearest’; that is, which a ∈ A
has minimal Cuv, where u is the location of a at time t according to the
movement x̃. This leads to the sets Vat, which at each time step partition
VP over the nearest agents.

8. For each agent, given the sequence and time-dependent region,
find cheapest space-time path. We repeat step 6, but with the node
cost of a ∈ A being at u ∈ V at time t ∈ T equal to

∑
v∈Vat

PvCuv, rather
than

∑
v∈Va

PvCuv. This results in final movement values xavt.

9. Infer x, y and z. The previous step has produced final values for move-
ment xavt. The corresponding values for zajt can be easily inferred from
Algorithm 12. The values for yuvt can again be determined by checking for
each v ∈ VP and t ∈ T which u ∈ V with someone present has lowest Cuv.

The intuition of MDSA is less transparent from the algorithm. It is illustrated
in Figure 2.4 and described here.

As in WAM, we observe that as ω →∞, it is optimal to have the agents spend
their remaining time at the medians. Therefore, in step 1, we determine where
the medians are. In step 2, we obtain the distances between the points of interest.
In step 3, we use this to assign the |A| medians to their most suitable agent, with
respect to start and end locations Sa and Wa. For the majority of the algorithm,
this not only assigns each agent a median, but also the region covered by that
median: all agents now have a region Va ⊆ VP that they are ‘responsible’ for.

In step 4, each job is assigned to its nearest median and handled by that
median’s agent if possible, so that all agents can try and stay in ‘their’ region;
if this leads to too many jobs for one agent, the MILP in step 4 instead tries to
divide jobs such that agents can stay as close to ‘their’ region as possible.

As soon as jobs are divided over the agents, each agent then determines
in step 5 in which sequence the jobs will be visited. This is done by solving
path-TSP, following again the logic that any time step saved can be used to
improve coverage. We synchronise all agents to move ‘clockwise’ if possible, so
that whenever one agent moves away from a node, another will hopefully already
be approaching to take over coverage.

In this discretised setting, there may exist many shortest paths between any
two nodes. By taking the cheapest space-time path in step 6 with respect to
coverage over Va, the ties between these shortest paths are broken sensibly rather
than arbitrarily. In fact, this also allows non-shortest paths with better coverage
to be chosen. Moreover, following the cheapest coverage paths is a more robust

30 Chapter 2. The Median Routing Problem

way of ‘visiting the medians’, rather than explicitly demanding they be visited:
if there is not enough time, the cheapest coverage path will likely only approach
the median the best it can.

However, assuming that some a ∈ A will always be the most appropriate agent
to cover every node in Va, is a somewhat crude assumption. As agents visit jobs
in a clockwise fashion, it may well be that nodes have one agent closest at one
point and another at another point. Now that an initial movement profile x̃ has
been created, this can be used to determine time-dependent coverage regions in
step 7 that are more fine and realistic than the coverage regions based on the
medians. Finding the cheapest space-time paths based on these finer regions in
step 8 produces a final movement profile in which agents actually observe where
the other agents are at a given time, albeit that they look at x̃ and hope that
the other agents do not deviate too much from x̃.

We remark that, if the MRP instance admits a feasible solution, then MDSA

finds a feasible solution as well. The argument is as follows. If a feasible solution
exists, then the MILP in step 4 will succeed in finding a feasible way to divide
jobs over agents. By construction of step 4, every instance of path-TSP in step 5
admits a feasible solution, which will be found by the MILP. By the feasibility of
step 5, the Dynamic Programs in the remaining steps will terminate successfully.

This guaranteed feasibility is one of the ways in which MDSA improves over
WAM. Furthermore, MDSA prioritises coverage over travel time when dividing jobs,
it breaks ties between fastest (and even non-fastest) paths by taking the cheapest
ones with respect to a coverage profile, and it allows agents to respond to what
the other agents have done in the final steps.

We acknowledge that this heuristic involves solving some NP-hard problems,
as well as pseudo-polynomial Dynamic Programs with a running time that de-
pends on ω. However, we observe in Section 2.6 that MDSA needs mere seconds
to run for the studied instances. An explanation for this speed is that, aside
from step 1, the NP-hard subproblems involve routing over a relatively tiny set
of jobs, rather than over a network with many nodes. In fact, one could say
that the point of MDSA is that it first takes the most restricting decisions on a
very small decision space with proxy costs, and then makes the best out of those
decisions in pseudo-polynomial time. If one still chooses to replace the complex
subroutines by heuristics, the guaranteed feasibility may be lost. As long as the
bottleneck in studying heuristics for larger instances of MRP lies in finding the
optimal solutions to compare against, developing a fully polynomial version of
MDSA is left as a point for future research.

2.4.4 Partial versions of MDSA

The MDSA-heuristic involves a number of complex steps, the added value of which
may not be immediately clear. To investigate this, the heuristic was modified
slightly to allow switching steps on and off. This resulted in the heuristics MDS,
MDA, DSA, MD, DS, DA and D, where for example MDA performs all steps except

2.5. Experimental setup 31

the SEQUENCE-step. That is to say, these seven heuristics are identical to MDSA,
except:

• If ‘M’ is not in the name, the MEDIATE-step is skipped, or in particular step
1 and step 3 are skipped. It also implies that in step 4, a normal DVRP is
solved, so simply the travelled distances are minimised; that step 5 can be
skipped because of this; and that in step 6, translation back to the discrete
graph is done by means of shortest paths, rather than paths that give the
best coverage to a predetermined region.

• If ‘S’ is not in the name, the SEQUENCE-step is skipped. The sequences in
which agents visit their jobs are then taken directly from step 4.

• If ‘A’ is not in the name, the AGREE-step is skipped. No re-optimisation to
observed coverage regions is done, or put simply, steps 7 and 8 are skipped.

Note that the DIVIDE-step is never skipped, as the division of jobs over agents
cannot be arbitrary. This procedure of skipping steps produces heuristics that are
faster and conceptually easier, but on average perform worse, as can be observed
in Section 2.6. In particular, D simply performs the jobs and returns to the depot
as quickly as possible. We view this as a benchmark heuristic, that models how
agents would move if they only cared about getting their jobs done as quickly as
possible.

2.5 Experimental setup

In Section 2.4, we discussed a solution method and several heuristics for MRP.
To compare how well these work in practice, it would be insightful to apply them
to a set of benchmark problems. Furthermore, it would be of interest to see what
typical solutions look like. In Section 2.2, however, we concluded that the MRP
or similar problems have received little academic attention. To the best of our
knowledge, benchmark instances for this problem did not yet exist prior to this
research. Therefore, we created benchmark instances from both a case study and
from an instance generator and compared the methods on these.

The code used to generate the benchmark instances is publicly available, as
is the code to perform the experiments.

2.5.1 Used instances

We compared the methods on benchmark instances from two sources.
First, we obtained six benchmark instances from a case study with a European

railway infrastructure manager. These six instances, denoted IR, are defined on
the same piece of the railway network, with emergency probabilities based on
historical incident data. The jobs have been sampled from a database of typical
jobs for this area. The six instances differ in which jobs have been sampled and

32 Chapter 2. The Median Routing Problem

how many. The instances have 143 nodes, 4 agents and ω = 16. They have 3, 4,
5, 7, 8 and 9 jobs, respectively.

Second, Algorithm 13 was developed to generate benchmark instances, in
order to also study algorithmic behaviour under variation of problem features.
The idea is simple: randomly draw node coordinates on the Euclidean plane,
connect them if their Euclidean distance is under a given threshold, let all agents
start and end at a central depot, scatter jobs randomly over the network and
check if the result admits a feasible solution. Because these ideas are simple and
the created instances are publicly available, further details on how the benchmark
instances were generated have been moved to A.4.

The classes we created are described in Table 2.3. The details of their param-
eters are described in A.4, but their features roughly represent the following:

• ‘Small’ problems have 3 agents and 20 nodes, where ‘medium’ problems
have 4 agents and 100 nodes;

• ‘Productive’ problems have more than two jobs per agent, where ‘unpro-
ductive’ problems have fewer than one;

• ‘Sparse’ problems have smaller node neighbourhoods than ‘dense’ problems,
meaning it will typically take more time steps to get from any one node to
another.

Class Amount Type Size Productivity Sparseness
I1 50 random small productive sparse
I2 50 I1-derived small unproductive sparse
I3 50 I1-derived small productive dense
I4 50 I1-derived small unproductive dense
I5 50 random medium productive sparse
I6 50 I5-derived medium unproductive sparse
I7 50 I5-derived medium productive dense
I8 50 I5-derived medium unproductive dense
IR 6 real-life ± medium both ± dense

Table 2.3: Brief description of the benchmark instance classes used.

Note that the medium size problems are of a comparable size to the real-life
instances in class IR.

In order to purely observe the differences in performance under variation
of features, only classes I1 and I5 were randomly generated: the unproductive
problems were created from the productive problems by deleting jobs, and the
dense problems were created from the sparse problems by updating adjacency
for a higher adjacency threshold. By construction, these operations preserve
feasibility of the instances.

2.5. Experimental setup 33

2.5.2 Metrics and methods for solution structure

For each instance and method, we computed the expected response time and the
computation time. On a selection of methods and a random sample of the in-
stances, we also computed three metrics that give more insight into the structure
of solutions.

First, we compare the response time to how much it would have been if
there had been no jobs at all. This indicates how much ‘response power’ we
have sacrificed to do jobs. Second, the solutions from the different methods are
compared by total travel distance, measured in the total number of ‘hops’. Third,
making many tiny steps back and forth to continually compensate the movement
of others can yield a marginal cost improvement, but may be irritating for the
agent. To measure how ‘jittery’ a solution is, we also counted the total number
of shortcuts, where a shortcut is defined as any occurrence of an agent visiting
the distinct locations u, v and w at times t, t + 1 and t + 2 respectively, while
the agent could also have gone from u to w directly. If the agent did so to
process a job of length 0 at location v, this is not counted as a shortcut. This
definition of a shortcut also accounts for an agent moving towards a destination
at an irritatingly slow pace.

To make a more meaningful comparison of these metrics, we applied two
additional solution methods to these instances. Optimal jobless means we
delete the jobs and run the MILP: this does not give a feasible solution, but
does provide a lower bound, and illustrates what solutions would have looked
like if we did not care about jobs. Recall that D illustrates what solutions would
have looked like if we did not care about coverage and simply solved VRP. Split
fleet means we cut the fleet in half, where the larger half is only concerned
with jobs, and the smaller half is only concerned with coverage. We apply D

to the larger half and Optimal jobless to the smaller half, with the two halves
ignoring each other’s existence. In the case of an emergency, however, the nearest
agent is still called upon, regardless of what half they are in. This illustrates what
solutions would look like if, with the same resources, we decided for simplicity not
to coordinate emergency response and non-urgent job processing jointly. Note
that this method may also fail to find a feasible solution. It is also possible, of
course, to split the fleet into portions of unequal size, but we believe examining
this fifty-fifty split should suffice for our goal of better understanding solution
structures.

2.5.3 Hardware specifications

All experiments were conducted on the Lisa Cluster, a computing cluster hosted
by Surfsara. Each benchmark instance was solved on its own 16-core 2.60 GHz
node with 64 GB QPI 8.00 GT/s memory. In particular, experiments were queued
until they could get a node of their own, meaning all processing power of the node
was dedicated to the experiment, and that clock times correspond to CPU times.
Here, an ‘experiment’ means either solving a benchmark instance with a MILP

34 Chapter 2. The Median Routing Problem

solver, or applying all heuristics on it. Gurobi 8.0.1 was used as a MILP solver,
using all 16 cores.

2.6 Results

The ten methods were applied to the nine classes of benchmark instances. The
running time of these methods was recorded, as well as how large the gap was
between the produced solution value and the optimal solution value, as a per-
centage of the optimal solution value. The full results are presented in Table 2.4,
Table 2.5 and Table 2.6 For ease of reading, some of the entries in this table have
been bold-faced: most notably, the best performing heuristics with respect to av-
erage solution quality and worst solution quality, and the computation times of
the MILP and MDSA. A summarised version of these tables is presented in Table
2.7. Table 2.8 presents comparisons of the other metrics. From the results in
these tables, we make several observations.

number of average average worst worst
Method feasible solutions gap (%) time (s) gap (%) time (s)
IR (real-life instances)

opt 6 0 1202.7 0 2871
WAM 6 5.9 14.0 9.3 62.9
D 6 27.0 0.4 40.2 0.9
MD 6 4.4 3.7 8.0 4.3
DS 6 27.4 0.7 40.2 2.0
DA 6 13.6 0.8 24.6 1.3
MDS 6 4.4 3.9 7.4 4.4
MDA 6 3.1 4.4 4.9 5.3
DSA 6 12.3 0.9 24.6 1.4
MDSA 6 3.4 4.5 7.4 5.5

Table 2.4: Results of applying the ten solution methods on the six real-life in-
stances.

In almost every class, MDSA is the best scoring heuristic in both average opti-
mality gap and worst optimality gap. Class I5 is the most difficult class to solve
for Gurobi, at an average of 140 minutes. Here, MDSA supplies a solution that is
on average 3.5% away from optimal in an average 4.1 seconds. Taken over all
406 instances, Gurobi needs an average of 39 minutes to solve MRP, while MDSA

needs 2.4 seconds to find a solution that is 3.2% away from optimal. It appears
that simultaneously timetabling jobs and managing coverage is difficult, but that
decomposing these decisions into different decision stages makes for an effective
heuristic.

Averaged over all instances, the benchmark algorithm D is 127.4% away from
optimal. The average optimality gap increases as the problem becomes denser

2.6. Results 35

number of average average worst worst
Method feasible solutions gap (%) time (s) gap (%) time (s)
I1 (small, productive, sparse)

opt 50 0 29.1 0 353
WAM 50 20.7 1.2 106.0 12.8
D 50 102.0 0.3 241.6 0.4
MD 50 9.3 0.4 35.3 0.8
DS 50 101.7 0.4 238.0 0.6
DA 50 30.0 0.3 85.3 0.5
MDS 50 8.4 0.6 34.2 0.9
MDA 50 8.0 0.5 35.3 0.8
DSA 50 32.9 0.4 85.3 0.6
MDSA 50 7.0 0.6 34.2 0.9
I2 (small, unproductive, sparse)

opt 50 0 2.7 0 9
WAM 50 10.5 0.3 80.8 0.5
D 50 167.2 0.1 314.6 0.1
MD 50 4.4 0.2 25.7 0.3
DS 50 167.2 0.1 314.6 0.2
DA 50 53.8 0.1 162.5 0.2
MDS 50 4.4 0.3 25.7 0.4
MDA 50 3.5 0.2 25.7 0.3
DSA 50 55.0 0.1 162.5 0.2
MDSA 50 3.5 0.3 25.7 0.5
I3 (small, productive, dense)

opt 50 0 5.7 0 48
WAM 50 29.4 3.2 140.5 16.6
D 50 180.7 0.2 314.5 0.4
MD 50 5.4 0.4 45.9 0.6
DS 50 180.6 0.3 314.5 0.5
DA 50 63.4 0.3 160.7 0.5
MDS 50 5.3 0.5 43.2 0.7
MDA 50 5.0 0.5 45.9 0.7
DSA 50 64.4 0.4 158.8 0.6
MDSA 50 4.3 0.6 43.0 0.8
I4 (small, unproductive, dense)

opt 50 0 0.7 0 5
WAM 50 8.0 0.3 56.6 0.6
D 50 258.9 0.1 520.5 0.1
MD 50 2.4 0.3 24.5 0.4
DS 50 258.9 0.1 520.5 0.2
DA 50 107.9 0.2 281.9 0.2
MDS 50 2.4 0.3 24.5 0.5
MDA 50 2.0 0.3 24.2 0.4
DSA 50 106.5 0.2 284.5 0.3
MDSA 50 2.0 0.4 24.2 0.5

Table 2.5: Results of applying the ten solution methods on the 200 small prob-
lems.

36 Chapter 2. The Median Routing Problem

number of average average worst worst
Method feasible solutions gap (%) time (s) gap (%) time (s)
I5 (medium, productive, sparse)

opt 50 0 8739.1 0 132750
WAM 50 7.7 11.4 24.0 101.8
D 50 60.5 0.5 82.3 0.8
MD 50 4.7 3.2 14.5 7.1
DS 50 60.4 0.7 83.0 1.1
DA 50 30.3 0.9 49.8 1.6
MDS 50 4.5 3.4 14.6 7.3
MDA 50 3.7 3.9 14.4 8.3
DSA 50 29.4 1.0 54.0 1.6
MDSA 50 3.5 4.1 14.3 8.1
I6 (medium, unproductive, sparse)

opt 50 0 1476.1 0 12839
WAM 50 4.6 2.4 21.7 3.6
D 50 88.0 0.1 115.6 0.3
MD 50 2.3 2.7 18.7 3.3
DS 50 88.1 0.2 115.6 0.3
DA 50 51.1 0.5 80.8 0.8
MDS 50 2.0 2.7 12.1 3.3
MDA 50 1.4 3.2 11.9 4.1
DSA 50 51.1 0.5 80.8 0.8
MDSA 50 1.5 3.3 11.9 3.9
I7 (medium, productive, dense)

opt 50 0 8390.3 0 72703
WAM 50 11.3 438.5 35.1 4749.7
D 50 73.9 1.1 101.9 6.0
MD 50 3.9 3.6 14.3 5.0
DS 50 74.0 1.2 101.9 6.1
DA 50 39.1 1.8 63.4 7.0
MDS 50 4.0 3.9 14.1 5.2
MDA 50 2.8 5.1 13.8 7.8
DSA 50 38.4 1.9 63.4 7.2
MDSA 50 2.8 5.4 13.3 7.8
I8 (medium, unproductive, dense)

opt 50 0 168.3 0 2963
WAM 50 4.1 2.6 12.6 3.5
D 50 100.1 0.2 128.1 0.6
MD 50 1.3 3.5 6.1 3.8
DS 50 100.0 0.2 128.1 0.4
DA 50 58.8 1.0 103.4 1.2
MDS 50 1.3 3.5 6.1 4.0
MDA 50 0.9 4.5 5.1 6.6
DSA 50 59.0 1.0 112.6 1.3
MDSA 50 0.9 4.6 5.1 5.2

Table 2.6: Results of applying the ten solution methods on the 200 medium-sized
problems.

2.6. Results 37

Method average gap (%) average time (s) worst gap (%) worst time (s)

opt 0 2334.5 0 132750.0
WAM 11.7 56.8 140.5 4749.7
D 127.4 0.3 520.5 6.0
MD 4.2 1.8 45.9 7.1
DS 127.4 0.4 520.5 6.1
DA 53.7 0.6 281.9 7.0
MDS 4.0 1.9 43.2 7.3
MDA 3.4 2.3 56.6 8.3
DSA 54.0 0.7 284.5 7.2
MDSA 3.2 2.4 43.0 8.1

Table 2.7: Summarised results of applying the ten solution methods on the 200
small instances, 200 medium instances and 6 real-life instances.

and less productive. This is easily explained: in D, all agents go to their end
point as fast as possible and stay there. In the benchmark instances, this end
point is the same for all agents, meaning that near the end of the time horizon,
everyone is in the same place, which is bad for coverage. The more unproductive
the problem is and the denser the network, the sooner in the time horizon this
occurs.

There is a large difference between the average optimality gap of heuristics D
and MDSA. Of this difference, examining marginal contributions shows that 70.0%
is due to step M, 29.95% is due to step A and 0.05% is due to step S. For the difficult
class I5, the absence of M, S and A explain 71.8%, 0.4% and 27.8% of the difference
respectively. In the case study instances IR, these marginal contributions are on
average 65.6%, −0.7%, and 35.1%, respectively.

The added value of step S is apparently small in the observed instances.
Unfortunately, the average added value of S is even negative in the case study
instances, though this is caused largely by one outlier. In particular, on a random
sample of the instances, the clockwising feature gives a strict improvement in only
13.3% of the cases, and the average objective improvement is less than 0.01%. On
the studied instances, clockwising may not be worth its implementational effort.
The ineffectiveness of S is understandable for unproductive problems, where by
construction agents are unlikely to get more than one job in the first place, so
there is not much to re-sequence. In general, we expect the added value of S to
increase with the average number of jobs per agent. We note, moreover, that the
added value of step S is at its largest in productive, sparse problems, which are
the most difficult to solve in terms of Gurobi time.

The added value of step A is more immediately apparent. Comparing heuristic
D to DA or DS to DSA indicates that in step A, taking routes that are good for
coverage rather than generic shortest routes has a significant amount of added
value. However, because step M is skipped, the coverage profiles are based on
earlier movement, and the earlier movement still sends everyone back to the

38 Chapter 2. The Median Routing Problem

depot as quickly as possible, meaning that near the end of the time horizon, only
one of the agents bunched up at the depot is given a coverage instruction in
step A. Indeed, we see that the difference between DSA and MDSA becomes larger
as the problem becomes denser and less productive, meaning agents bunch up
at the depot earlier. Therefore, the difference between MDS and MDSA is much
smaller: because of step M, agents have prioritised staying as well positioned in a
sub-region as possible over being back at the depot as quickly as possible.

This may well explain the large added value of step M: it gives agents a way to
use their remaining time more fruitfully than bunching up at the depot, and this
way of spending remaining time is clearly optimal as the amount of remaining
time goes to infinity. However, this alone is not a sufficient explanation for the
success of MDSA, as WAM operates by the same logic but does not perform as well.
First, it must be reiterated that WAM does not always succeed at finding a feasible
solution because it may not always be possible to actually visit a median in
the length of a shift; in such cases, MDSA is capable of merely approaching the
median as best as it can, among other options. More importantly, it appears that
agents in WAM have less ‘restraint’ in selecting jobs; job selection in MDSA seeks
to keep agents as close as possible to their respective medians, where agents in
WAM are encouraged to take on jobs anywhere if they can reduce the total amount
of distance travelled this way, even if this means taking on jobs that are closer
to the median of someone else. This can create unbalanced situations where
some agents move around a lot while others get no jobs; the agents without jobs
can cover their neighbourhood well, but other parts of the network can become
deserted because ‘their’ agent is out doing jobs everywhere. This argument is
supported by the fact that WAM performs worst for productive, dense problems,
where there exists most opportunity for agents to take on many jobs and spend
time away from ‘their’ median, thus creating poorly covered parts of the network.

We conclude that MDSA is likely a successful heuristic for two reasons: step
M allows agents to spend their remaining time in a way that is asymptotically
optimal, as opposed to spending it bunched up at the depot; and dividing jobs
by distance to medians rather than by total amount of distance travelled better
ensures that no part of the network is completely deserted for the sake of jobs,
unless absolutely necessary.

As a point for improvement, it deserves noting that while MDSA finds solu-
tions with near-optimal values, it only succeeds in finding a completely optimal
solution in 49 out of 406 instances, 22 of which are in the ‘easiest’ class I4. In
fact, the partitioning of jobs over agents found by MDSA only corresponds with
the partitioning in the optimal solution in 125 out of 406 instances. Further im-
provements to the heuristic may be achieved by better understanding the logic
by which jobs should be divided over agents.

The success of MDSA prompted us to see if the produced solutions are useful
for warm-starting: that is, to see if the MILP running time could be significantly
reduced by offering a good feasible solution to start from. For the easier problem
instances, this is not the case: apparently, the overhead of running MDSA and

2.6. Results 39

Average Average Average Average cost Average hop

gap to number number decrease versus increase versus

Method jobless (%) of hops of shortcuts split fleet (%) split fleet (%)

opt 11.5 20.8 1.7 28.3 69.9
Jobless 0 11.3 0 – –

D 158.0 9.8 0 -53.2 -33.0
WAM 23.0 16.5 0.7 21.7 34.3
MDSA 13.0 19.1 1.2 27.3 52.5

Split fleet 69.1 13.5 0.5 0 0

Table 2.8: Differences in solution structure when applying different methods on
a sample of instances.

feeding this solution into Gurobi is hardly worth the saved Gurobi run time,
which is often already in the order of a few seconds. For the difficult classes I5,
I7 and IR, however, the average computation time reduction is quite significant.
The average computation time in I5 goes down from 8739.1 seconds to 4949.7
seconds, which is a reduction of 43.4%. I7 drops 81.8% from 8390.3 seconds to
1523.1 seconds, and IR drops 18.7% from 1202.7 seconds to 977.5 seconds. These
average savings are largely incurred by the hardest instances suddenly being much
easier to solve. There exist instances, however, where warm-starting increases the
total run time by more than twenty minutes, and it is hard to predict whether
warm-starting will be helpful for any given instance. This could be dealt with by
solving instances in parallel, where one thread uses a warm start and the other
does not, and terminating when either finish. On average, though, warm-starting
seems very useful for difficult instance classes.

Looking at Table 2.8, we can see that the solutions produced by the different
methods have structural differences. Comparing the hops between D and opt,
we could observe that ‘caring about coverage’ more than doubles the number of
hops. Similarly, comparing Jobless and opt, we could observe that ‘caring about
jobs’ increases emergency response time by 11.5%. However, in making such
comparisons, we implicitly assume that there are |A| agents available solely for
jobs or for coverage, while in the opt-solutions, we only have |A| agents available
in total for both jobs and coverage. It is more fair, therefore, to compare these
metrics against the Split fleet-solutions. Then, we can observe that joining
the coverage fleet and the job fleet into one increases the number of hops by
69.9%, but we also cut our primary objective of expected response time by 28.3%.
The increase in hops is explained as follows: in a split fleet, we would run D on
half the agents and Jobless on the other, which are both very efficient methods
with respect to hops, as Jobless-solutions mainly go to medians and back. The
improvement in response time is due to having twice as many agents available
to be spread for effective emergency response. We remark that this trade-off
between increased travel costs and decreased emergency response costs is less
extreme when running MDSA instead of opt, and least extreme when running WAM

40 Chapter 2. The Median Routing Problem

instead of opt. Following the same trend, opt-solutions are most ‘jittery’ with
respect to the average number of shortcuts, MDSA-solutions are less jittery and
WAM-solutions are least jittery among these three. D is most efficient with respect
to hops and shortcuts, but offers even poorer emergency response than splitting
the fleet does.

As a final observation, we acknowledge that the average running time of WAM
sees a remarkable spike in class I7. Class I7 has the largest decision space for WAM,
as medium, productive problems have most variables, while dense problems have
more feasible solutions than sparse ones. This, apparently, is reflected in Gurobi
needing much more time to verify optimality of found routings. We presume
that this difficulty is not observed in step D because D does not demand that each
route has exactly one median, and because step M makes routes more distinct
in solution value. As WAM is typically outperformed by MDSA, resolving this issue
was not further considered in this research.

2.7 Conclusions

The problem of scheduling non-urgent jobs in a way that provides optimal emer-
gency response time has received little academic attention, although it is an
interesting problem from both academic and applied viewpoints.

We proposed the Median Routing Problem as a mathematical model for this
problem. An optimal solution method using Mixed Integer Linear Programming
was presented, as well as several heuristics. Of these, MDSA typically worked best:
on the benchmark instances, it found solutions that were on average 3.2% away
from optimal in 2.4 seconds, where solving them with a MILP solver takes 39
minutes. Using the MDSA solution to warm-start the MILP is especially useful for
the most difficult problem instances.

By studying partial versions of MDSA under parametric variation in the bench-
mark instances, and comparing it with the simpler WAM-algorithm, our experi-
ments suggest that the success MDSA is due to two factors, both of which rely on
the MEDIATE-step. First, the MEDIATE-step allows agents to spend their remaining
time in a way that is asymptotically optimal as the amount of free time goes to
infinity. Second, creating coverage subregions and trying to divide jobs as well
as possible into these subregions helps guarantee that no subregion is ever com-
pletely abandoned for the sake of jobs, unless absolutely necessary. The speed of
MDSA was due to first taking the most restrictive decisions in a very compressed
decision space, then making the best out of those decisions in pseudo-polynomial
time. Though MDSA contains NP-hard subroutines, this was not yet found to
be a bottleneck, even for the practical case study instances. Studying marginal
contributions showed that the MEDIATE-step contributed most; it is essential to
both success factors of MDSA.

Finally, we observed that combining an emergency response fleet and a job
processing fleet into one joint fleet produced a reduction in expected emergency
response time of 28.3%. This comes at the cost, however, of an increase in

2.7. Conclusions 41

total travelled distance, as the optimal solutions for the separated problems are
typically very efficient in travelled distance. This trade-off is strongest in optimal
solutions, then in MDSA-solutions, and mildest in WAM-solutions.

As venues for future research, we propose the following. Our model discre-
tises space and time so that joint coverage can be measured tractably, but other
strategies than discretisation may exist. MDSA contains NP-hard subroutines, and
for (much) larger instances, a fully polynomial version may be needed, though
Corollary 1 implies that we lose the guarantee of feasibility in the process. As
mentioned earlier, better understanding the logic by which optimal solutions clus-
ter jobs may lead to even stronger heuristics. The single-agent case of MRP is
much easier to analyse, as its coverage profile is always known, and interesting
solution properties may be discovered. We have studied a ‘single coverage’ prob-
lem, and it merits research how to well prepare for more emergencies than just
the next one. Perhaps most importantly, the set of jobs to be processed was given
as a hard constraint: it is an interesting and non-trivial question to decide which
jobs will be selected as input for a series of shifts, and what role multi-objective
optimisation can play in weighing responsiveness against productivity.

Chapter 3

The Travelling k-Median Problem

3.1 Introduction

In the previous chapter, Corollary 1 made clear that no polynomial-time algo-
rithm exists for MRP in general unless P=NP. The main difficulty lies in the fact
that it is NP-complete to decide whether a mandatory set of jobs can be visited
within a hard time limit. However, in order to explore the boundary of what can
be achieved in polynomial time, this chapter will focus on a special case of MRP:
namely, instances that feature no jobs. Without jobs, it is no longer NP-complete
to check for feasibility, as feasibility is simply a matter of whether all agents can
move from their start point to their end point within the fixed time horizon.

It may seem counterintuitive to first add jobs to the k-Medians Problem and
then remove them again. However, not only jobs were added, but also discrete
movement. In this chapter, we will essentially add a notion of discrete movement
to the k-Medians Problem, and obtain algorithmic results for this unusual and
already challenging extension of the k-Medians Problem. Results for this special
case of MRP, while not directly reusable for MRP itself, can help us develop
algorithmic techniques and insights for MRP.

Specifically, we consider the following natural extension of the k-Median Prob-
lem, which we term the Travelling k-Median Problem (TkMP): Suppose we are
given a fixed time horizon T = {0, . . . , ω} and a set A = {1, . . . , k} of k medians
(called agents in this context) which can move through the graph G = (V,E) in
discrete steps. Each agent a ∈ A starts at time t = 0 at a designated start node
Sa ∈ V , and ends at time t = ω at a designated end node Wa ∈ V . In each time
step, an agent may either hop from her current location u ∈ V to an adjacent
node v ∈ V , or simply stay at u. Our goal is to determine a set of k walks (one
for each agent) such that the total coverage costs (summed over all time steps)
is minimised. Here, the coverage cost at time t is defined the same way as in the
k-Median Problem (with respect to the locations of the agents at time t).

Aside from its relation to MRP, this problem in isolation already has merit
for being studied. Intuitively, in the Travelling k-Median Problem one wants to

43

44 Chapter 3. The Travelling k-Median Problem

distribute the agents over the graph such that they guarantee a low coverage cost,
ideally positioning them at the optimal k-median locations. However, in many
real-life applications we cannot simply assume that the agents can be ‘teleported’
to their ideal locations. Instead, the agents might have to move there over time,
which in turn influences the achievable coverage. For example, the agents might
correspond to an ‘emergency fleet’ (e.g., police patrol force, emergency medical
coverages, railway emergency responders) that one needs to schedule to provide a
good emergency response time over a pre-specified time horizon. This is especially
relevant in the current day, where advances in communication allow emergency
responders and their coordinators to communicate in real-time while on the move.
This means, namely, that emergency response organisations have the possibility
to optimise responsiveness even before the steady state coverage positions are
attained. Assuming that the time horizon is fixed adds some new characteristics
to the problem which are relevant to several applications in emergency logistics.

In this chapter, we study the Travelling k-Median Problem (TkMP). We
initiate the study of this topic by focusing on the uniform case (referred to as
U-TkMP), i.e., when all edge costs are uniform and all agents start from the same
start location and end at the same end location. The contribution of this chapter
is fivefold. First, we first argue that even U-TkMP is NP-hard in general by a
simple reduction from the Set Cover Problem. We then show that the problem
can be solved optimally in O(ω2n2k) time. Second, we derive a 5-approximation
algorithm for U-TkMP if the number of agents is large, i.e., k ≥ n/2. This allows
us to assume k ≤ n/2 in the remainder. Basically, the idea here is to let each
agent take care of an edge in a maximum matching of the underlying graph.
Third, we introduce a novel way of approximating U-TkMP by rounding an (ap-
proximate) solution to a ‘continuous movement’ relaxation of the problem to a
discrete solution, thereby incurring a bounded loss in the approximation factor.
Fourth, we use this Rounding Theorem to derive 10-approximation algorithms
for U-TkMP on path graphs and cycle graphs. (These results are given in Sec-
tion 3.6). Fifth and final, for U-TkMP on general graphs we obtain the following
results: If the shortest (S,W)-path distance d(S,W) satisfies d(S,W) ≤ 2

√
ω,

then we obtain an O(min{
√
ω, n})-approximation algorithm. If d(S,W) > 2

√
ω,

we instead have an O(d(S,W)+
√
ω)-approximation algorithm. This is useful for

those graph topologies for which we do not yet know how to solve or approximate
their continuous counterparts.

The remainder of this chapter is structured as follows. In Section 3.2, litera-
ture related to this problem is outlined. In Section 3.3, TkMP and its variants
are introduced formally, as well as some useful notation. In Section 3.4, the U-
TkMP and TkMP are shown to be NP-hard, but constant-factor approximation
algorithms are offered for special cases: this allows us to, for the remainder of the
chapter, make assumptions on the number of agents and time steps the problem
instances will feature. Using this, in Section 3.5, a Rounding Theorem is proven
that provides a constant-factor approximation algorithm for U-TkMP on ‘round-
able’ graph topologies. How to apply this Rounding Theorem is demonstrated

3.2. Related literature 45

for two topologies in Section 3.5. For other topologies, a O(d(S,W) +
√
ω)-

approximation algorithm is given in Section 3.7. Finally, some brief conclusions
are presented in Section 3.8.

3.2 Related literature

To the best of our knowledge, the Travelling k-Median Problem introduced in
this chapter has not been studied in the literature before. The following are the
key distinguishing features of TkMP with respect to other problems considered
in the literature: (i) We consider a fixed time horizon and all agents have to start
and end at designated nodes; in particular, this restricts the walks that can be
chosen by each median. (ii) The coverage cost accounts for the total connection
cost of each node to its closest median (K-MED-objective). However, there are
several other optimisation problems that are related to TkMP. Below is a partial
list of related problems.

At the core of TkMP lies the k-Median Problem which has been studied
extensively in the literature. An overview of literature related to this specific
problem was already presented in Section 2.2.

TkMP is also related to classic online problems such as the k-Server Problem
[89] or, more generally, the Metrical Task Systems [16]. In the k-Server Problem
[89], there are k servers that can move through a graph and have to serve a
sequence of requests. Also here, the servers incur some movement costs (given
by a metric). In each step a node is requested and a server has to move there. The
main difference with respect to TkMP is that the time horizon is not limited and
that there is no coverage cost. In Metrical Task Systems [16], an online algorithm
starts at a designated node of a given graph and has to cover a sequence of tasks.
Also here, the algorithm incurs some coverage cost and some movement cost
(given by a metric) to serve a sequence of tasks. However, the coverage cost is
given in terms of a non-negative cost incurred at the node in which the algorithm
resides; this is different from TkMP, where the coverage cost accounts for the
total connection cost of the nodes to the medians.

Dynamic facility location models are often on a strategic level [44]. Wesolowsky
[157] extends several static facility location models, including K-MED, to a prob-
lem where facility locations have to be chosen for several periods. If the facility
locations differ from one period to the next, then a period-dependent cost is
incurred, independent of how many facilities are relocated and how far.

Of the many dynamic facility location problems reviewed and classified by
Farahani et al. in 2012 [44], none fits our setting of one configuration determining
the decision space in the next time step. Distance-dependent relocation costs
appear to be less commonly discussed than time-dependent costs, but they are
studied by Huang et al. [68] and Gendreau et al. [55]. Galvão and Santibanez-
Gonzalez, instead, charge period-dependent costs for having a facility open [51].
Melo et al. consider a combination of facility opening, closing and maintenance
costs, and costs of reallocating capacity between facilities [105].

46 Chapter 3. The Travelling k-Median Problem

On a more operational level, ambulance relocation models seek to deploy an
ambulance to a revealed emergency and relocate the rest for optimal response
to the next emergency [56, 79]. Even these operational models assume ‘telepor-
tation’ from one steady-state configuration to the next. The same holds on the
online level for the classical k-Server Problem [88].

From a game-theoretical standpoint, Hotelling [67] discusses the Ice-Cream
Man Problem, in which two competing ice cream vendors position themselves on
the line to capture the largest portion for themselves. When moving to increase
the portion of the line they cover, they surprisingly reach an equilibrium when
their distance approaches zero. However, an equilibrium is no longer reached for
three vendors [143].

3.3 Problem definition

In the Travelling k-Median Problem (TkMP), we are given a connected graph
G = (V,E) with n nodes, a set A := {1, . . . , k} of k agents, and a discrete time
horizon T := {0, . . . , ω}. Each agent a ∈ A has their own start location Sa ∈ V ,
where they must be at time 0, and an end location Wa ∈ V , where they must
be at time ω. Between each time step and the next, agents may stay where they
are or ‘hop’ to adjacent nodes.

At each time step, we evaluate how well ‘spread’ the agents currently are.
A configuration σ = (σ1, . . . , σk) ∈ V A specifies for each agent a ∈ A the node
σa ∈ V at which a resides. Let d(u, v) denote the cost function for covering v ∈ V
from u ∈ V . We assume that every node will be covered from its nearest median
in σ, i.e., the cost of node v is D(σ, v) := mina∈A d(σa, v), and the total cost of
this configuration is D(σ) :=

∑
v∈V D(σ, v). We say that a configuration σ is

optimal if it minimises the total cost D(σ) (over all possible configurations).

A feasible solution µ ∈ V A×T = (µ0, . . . , µω) is a sequence of (ω + 1) config-
urations, with µ0 and µω given by the start and end locations, respectively, and
each configuration µt being adjacent to the previous configuration µt−1 for every
t ∈ {1, . . . , ω}. We say that µt is adjacent to configuration µt−1 if for each agent
a ∈ A, either µt−1

a = µta = u (agent a remains at node u), or µt−1
a = u, µta = v

and (u, v) ∈ E (agent a moves along edge (u, v) from u to v). For any feasible
solution µ, we define the cost as D(µ) :=

∑ω
t=0D(µt). TkMP is the problem of

finding a solution µ with minimal D(µ).

Given a feasible solution µ, we call the sequence (µ0
a, . . . , µ

ω
a) of nodes visited

by agent a also the walk of a. The cost of the walk of agent a ∈ A with respect
to some fixed node v is defined as

∑ω
t=0D(µta, v).

In the Uniform Travelling k-Median Problem (U-TkMP), which is a special
case of TkMP, we make the following three assumptions: (i) d is defined as the
shortest path distance (with respect to the number of edges) induced by the
underlying graph G, (ii) all agents start at the same node S, and (iii) all agents
end at the same node W .

3.4. Hardness and bounds 47

3.4 Hardness and bounds

In this section, we will derive some lemmas and observations that will serve as
instrumental building blocks for the approximation algorithms in this chapter.
As a first result, it deserves mentioning that even U-TkMP is NP-hard.

Theorem 2. U-TkMP and its generalisation TkMP are NP-hard.

Proof. U-TkMP is obviously in NP. We will prove that U-TkMP is at least as hard
as the Set Cover Problem, which is NP-hard. Let I1 be the following instance of
the decision version of the Set Cover Problem: given universe U and a collection
S of subsets of U , can we find k (or fewer) members of S which have union U?
Let I2 be an instance of the decision version of U-TkMP that we construct as
follows. Let the node set be V := VU ∪ VS ∪ {S}, where each element in U is
represented by its own node in VU , and each member in S is represented by its
own node in VS , and S is some additional node. In the graph G = (V,E), we
have (u, v) ∈ E for nodes u, v ∈ V exactly when either of these two conditions
holds: u, v ∈ VS ∪ {S}, or u ∈ VU and v ∈ VS and the element that corresponds
to u is contained in the subset that corresponds to v. In I2, we set ω = 2, and let
all k agents start and end at S, and we ask: can we find a feasible solution with
cost at most 2|S|+ 4|U |+ (n−k)? I2 can be constructed in polynomial time and
space with respect to the input of I1. In any feasible solution, all agents are at S
at times t = 0 and t = 2, so we incur a cost of |S|+ 2|U |. So the answer to I2 is
‘yes’ if and only if we can find a configuration at t = 1 with cost (n−k), meaning
every node is adjacent to at least one agent position. The agents can only be in
VS ∪ {S}, which is a clique. Adjacency to all nodes in VU is achieved if and only
if the chosen positions in VS correspond to members of S which have union U .
(If agents stay at S, this corresponds to choosing fewer than k subsets in I1.) So
any ‘yes’-answer to I1 supplies positions that will give a ‘yes’-answer to I2, and
any ‘yes’-answer to I2 gives a ‘yes’-answer to I1 by reading out the positions at
t = 1. So I1 and I2 are equivalent, implying U-TkMP is NP-hard.

Theorem 3. TkMP is solvable in O(ω2n2k).

Proof. Let G = (V,E) be the original graph of our TkMP-instance. We construct
a weighted, expanded graph G+ = (V +, E+) as follows. First, make a ‘directed
looping version’ of G: take V , and for every u, v ∈ V , include arc (u, v) if edge

{u, v} ∈ E or u = v. Let this digraph be denoted by G′. Next, let ~T be the

digraph with node set T , and arc set ∪t∈T\{ω}{(t, t+ 1)}, so ~T is a path digraph
representing the time horizon.

Then, letG+ be the tensor product (G′)k×~T . So every node (u1, u2, . . . , uk, t1)
in G+ represents a position for each agent, and a time step. There is an arc in
G+ from node (u1, u2, . . . , uk, t1) to node (v1, v2, . . . , vk, t2) if and only if the arc
(ua, va) is in G′ for each agent a, and t2 = t1 + 1.

Finally, let each such arc in G+ have weight D(σ2), where σ2 is the visited
configuration (v1, v2, . . . , vk). This means that, walking through G+, we incur

48 Chapter 3. The Travelling k-Median Problem

at each time step t = 1, . . . , ω the cost of the configuration currently visited.
The cost made at t = 0 is a constant that is the same for each feasible solution.
Therefore, finding an optimal TkMP-solution is equivalent to finding a cheapest
(S1, S2, . . . , Sk, 0) − (W1,W2, . . . ,Wk, ω)-path. Because G+ has O(ωnk) nodes,
finding this path with Dijkstra’s algorithm has time complexity O(ω2n2k).

However, if we want to determine a minimum cost walk of one agent with
respect to a given node v, we can do this quite easily.

Lemma 1. In U-TkMP, given any node v and an agent a ∈ A, we can find a
minimum cost (S,W)-walk π = (π0, . . . , πω) of agent a with respect to v in O(n4)
time.

Proof. Suppose first that ω ≥ 2n. Then, certainly, a walk exists from S to v and
then W . We take a shortest (S, v)-walk and a shortest (v,W)-walk, and spend
all remaining time ‘looping’ at v. This is obviously a walk π that minimises∑ω
t=0 d(πt, v), because at every time step, the agent is as near to v as the start

and end conditions allow.
Suppose now that ω < 2n. In this case, we construct G+ exactly as in the

proof of Theorem 3, setting k = 1. Each arc ((u, t), (u′, t + 1)) in G+ now has
weight d(u′, v). Because ω < 2n, we find our walk in O(n4) by applying Dijkstra’s
algorithm on G+ from (S, 0) to (W,ω).

We now provide several bounds on performance and parameters.

Lemma 2. Consider U-TkMP. Then an optimal configuration σ∗ has cost at
least D(σ∗) ≥ (n− k). Further, any feasible solution µ has cost at least D(µ) ≥
(ω + 1)D(σ∗) ≥ (ω + 1)(n− k).

Proof. In any configuration σ, at most k nodes can be occupied. All other nodes
account for at least a cost of 1, implying D(σ∗) ≥ (n− k). Because any solution
µ decomposes into (ω + 1) feasible configurations, D(µ) ≥ (ω + 1)D(σ∗).

Theorem 4. In U-TkMP, if k ≥ n/2, we can find a 5-approximation in O(n5)
time.

Proof. We construct the approximate solution µ as follows. Using a greedy O(n2)
algorithm, find any (inclusion-wise) maximal matching on G. For every edge in
this matching, assign an agent to one of its end points: we have enough agents
to do this, because no matching can consist of more than n/2 edges. Assign
the remaining agents to W . For every agent, determine a minimum cost walk
with respect to the assigned node by using Lemma 1 (which requires at most
O(n4) time). We need to determine at most n/2 + 1 such walks, resulting in an
algorithm that needs at most O(n5) time.

We can compare µ to the hypothetical solution µn where the number of
available agents is n, and we assign each node its own agent. In µn, we again
send each agent over a walk that minimises the total distance to their picked

3.4. Hardness and bounds 49

node. Note that D(µn) is minimal, because every node that gets its own agent
is served optimally.1 If node v is ‘picked’ by µ, v contributes this same optimal
amount to D(µ). If v is not ‘picked’, we show here that the cost increases by at
most 4 per time step.

Take any node v and time step t, and let us examine the contribution of (v, t)
to the cost function. Let a be the agent in µn assigned to v. Let u ∈ V be the
location of a at time t. In µ, there may or may not be someone at u at time
t. If there is, the request (v, t) has the same cost contribution to D(µ) as to
D(µn), remarking again that nodes with their own agent are served optimally.
If not, there is a node u′ ∈ V that was picked, at most 2 hops away from u;
otherwise, the underlying matching would not be maximal. If the agent in µ
assigned to u′ is still headed for it, that agent is at most 2 hops away from u′,
because d(S, u′) ≤ d(S, u) + d(u, u′) ≤ t + 2. Similarly, if the agent is moving
away from u′ towards W , the agent is at most 2 hops away from u′ because
d(u′,W) ≤ d(u′, u) + d(u,W) ≤ (ω − t) + 2. That is, there are only ω − t hops
left to get to W , and while this is no problem when d(u′,W) is small, the agent
will be pulled away by at most 2 hops if d(u′,W) is large. So indeed, by having
fewer agents then in µn, each unpicked node v (at most n − k) contributes at
most 4 extra per time step. Thus, if µ∗ is some optimal solution, then

D(µ) ≤ D(µn) + 4(ω + 1)(n− k) ≤ D(µ∗) + 4(ω + 1)(n− k) ≤ 5D(µ∗).

As a result of Theorem 4, we will often assume in the remainder that k ≤ n/2,
which yields the following useful refinement of Lemma 2.

Corollary 2. Consider U-TkMP and assume that k ≤ n/2. Then an optimal
configuration σ∗ has cost at least D(σ∗) ≥ 1

2n. Further, any feasible solution µ
has cost at least D(µ) ≥ (ω + 1)D(σ∗) ≥ 1

2 (ω + 1)n.

Lemma 3. In U-TkMP, for any feasible solution µ and time steps t1 and t2, we
have D(µt2) ≤ D(µt1) + |t2 − t1|n.

Proof. For any v ∈ V , let a be the agent nearest to it in µt1 . The contribution of
v to D(µt2) cannot exceed the distance of v to a, who cannot have moved more
than |t2 − t1| hops away from their position in µt1 .

Theorem 5. Suppose we have an α-approximation algorithm for K-MED that
runs in O(kmed(n)) time. In U-TkMP, if k ≤ n/2 and ω ≥ 4n2 + 2n, we can
find an (α+ 1)-approximation in O(kmed(n) + n5) time.

Proof. We construct our solution as follows. First, if σ∗ is an optimal K-MED-
configuration, we use the α-approximation algorithm to find a good configuration

1That is, for every node v, there exists an agent who, through Lemma 1, is always as nearby
as possible, so far as the start and end conditions allow. While it may seem nontrivial which
nodes this agent could give coverage to on the way to v, in fact those intermediate nodes have
agents of their own serving them optimally, and the agent never has to cover anything else but
v.

50 Chapter 3. The Travelling k-Median Problem

σ with D(σ) ≤ αD(σ∗), requiring a running time of O(kmed(n)). Next, we assign
these medians to agents arbitrarily. Finally, for each of the k ≤ n/2 agents, we
find in O(n4) time the (S,W)-walk that minimises the total distance to that
agent’s median, using Lemma 1. This adds a running time of O(n/2 · n4), for a
total of O(kmed(n) + n5).

We now prove that this yields an (α+ 1)-approximation. Let µ be the found
solution, and µ∗ an optimal solution. Obviously, µ consists of shortest paths
from S to points in σ, a lot of waiting in σ, then shortest paths to W .

Observe any time step t. If n − 1 ≤ t ≤ (ω + 1) − (n − 1), then clearly all
agents have reached their position in σ and have not departed them yet. In each
of those time steps, we have D(µt) ≤ αD(σ∗). In the other time steps t, we at
least know that D(µt) ≤ n2, because each of the n nodes has an agent at most n
hops away.

So, recalling Corollary 2, we find

D(µ)

D(µ∗)
≤ 2n · n2

1
2ωn

+
(ω + 1− 2n) · αD(σ)

(ω + 1)D(σ∗)
≤ 2n · n2

1
2 · 4n2 · n

+ α = α+ 1,

meaning that µ is an (α+ 1)-approximation.

Note that this theorem helps us in the following way: instances with ω ≥
4n2 +2n are ‘easy’, and we can assume in the remainder that ω ≤ 4n2 +2n. This,
in turn, means that algorithms with runtime depending on ω (polynomially) can
still be considered polynomial-time.

We also remark that by combining Theorem 3 and Theorem 5, U-TkMP can
be solved in O(n6) if there is only one agent.

3.5 Rounding continuous graph movement

A related problem to U-TkMP is the Continuous Uniform Travelling k-Median
Problem (CU-TkMP), which we can use to approximate U-TkMP. In CU-TkMP,
the allowed positions for agents are not only the nodes, but also any point on the
edges.

Technically, we define CU-TkMP as follows. Given an unweighted, undirected
graph G = (V,E), we construct its ‘continuous version’ as the following metric
space (Ẽ, c). Assuming an arbitrary orientation on the edges of E, we build Ẽ
out of V and all points ‘strictly on’ edges: Ẽ := V ∪ E × (0, 1), where a point
((u, v), θ) ∈ E × (0, 1) represents the point that is on the oriented edge (u, v), at
a fraction θ from u to v.

As for the distance metric c, we base it on a continuous version of the shortest
path distance as follows. Take any x ∈ Ẽ and y ∈ Ẽ. If both are in V , then
c(x, y) = d(x, y), where d is the shortest path distance on G. If x ∈ V but y 6∈ V ,
let y = ((u, v), θ). Then c(x, y) = min{θ + d(u, x), 1 − θ + d(v, x)}. We uphold
an analogous definition if y ∈ V but x 6∈ V . Finally, if both points are not in V ,
let again y = ((u, v), θ). Then c(x, y) = min{θ + c(u, x), 1− θ + c(v, x)}.

3.5. Rounding continuous graph movement 51

Now, in CU-TkMP, we are again given k agents and a discrete time horizon
{0, . . . , ω}. The agents must start at S ∈ V at time t = 0 and must be at their end
location W ∈ V at time t = ω. If an agent is at position x ∈ Ẽ at time t, then at
time t+1, they may only be at a position y ∈ Ẽ with c(x, y) ≤ 1. The continuous
cost of a configuration σ ∈ ẼA is not the discrete sum of distances to nodes, but
the integrated distance to all points in Ẽ, i.e., C(σ) :=

∫
Ẽ

minx∈C c(x, y)dy.

The continuous cost of a solution ν ∈ ẼA×T is again the sum over time, i.e.,
C(ν) :=

∑
t∈T C(νt).

Suppose G has maximum degree ∆, and k ≤ n/2. Suppose also we can find
a β-approximate solution ν to CU-TkMP. We prove that we can ‘round’ ν to a
(4β∆ + 2)-approximate solution ν̃ for the original, ‘discrete’ problem.

We first show that the cost functions D and C are related. Remark that, if
ρ is a continuous configuration, we mean by D(ρ) that we sum distances to V
rather than integrating over Ẽ: we define D(ρ) :=

∑
v∈V minu∈ρ c(u, v). If ν is a

continuous solution, we define D(ν) similarly.

Lemma 4. Let ρ ∈ ẼA be a continuous configuration. Then D(ρ) ≤ 2C(ρ) + k.

Proof. Given ρ, we split E into three classes. Denote by E0 ⊂ E all edges {u, v}
that have at least one agent ‘strictly’ on them, meaning we disregard agents on u
and v. Note that |E0| ≤ k. Let E1 ⊂ E \ E0 denote all unoccupied edges {u, v}
with d(ρ, u) 6= d(ρ, v), oriented as (u, v) if d(ρ, u) < d(ρ, v) and as (v, u) otherwise.
Let E2 ⊂ E \ E0 refer to all unoccupied edges {u, v} for which d(ρ, u) = d(ρ, v).
We orient E0 and E2 arbitrarily.

For any edge (u, v) ∈ E0, we have d(ρ, u) + d(ρ, v) ≤ 1, as any one agent
on (u, v) is 0 < θ < 1 away from u and 1 − θ away from v. Notice that {u :
(u, v) ∈ E0} ∪ {v : (u, v) ∈ E0} ∪ {v : (u, v) ∈ E1} = V , as any node v ∈ V
is either incident to E0, or has a neighbour u on the shortest (v, ρ)-path, thus
(u, v) ∈ E1. Thus summing over these three node sets is sufficient, though we
may be over-counting:

D(ρ) ≤
∑

(u,v)∈E0

(d(ρ, u) + d(ρ, v)) +
∑

(u,v)∈E1

d(ρ, v) ≤ |E0|+
∑

(u,v)∈E1

(d(ρ, u) + 1)

Each (u, v) ∈ E1 has
∫ v
u
d(ρ, w)dw = d(ρ, u) +

∫ 1

0
wdw = d(ρ, u) + 1

2 . So

C(ρ) =
∑

(u,v)∈E

∫ v

u

d(ρ, w)dw ≥
∑

(u,v)∈E1

(d(ρ, u) + 1
2) ≥ 1

2 |E1|

Putting this together, we find

D(ρ) ≤
∑

(u,v)∈E1

(d(ρ, u) + 1
2) + 1

2 |E1|+ |E0| ≤ 2C(ρ) + k.

Lemma 5. Let σ ∈ V A be a discrete configuration and n ≥ 2k. Then C(σ) ≤
2∆D(σ).

52 Chapter 3. The Travelling k-Median Problem

Proof. Because σ is a discrete configuration, E0 = ∅. Each (u, v) ∈ E1

has
∫ v
u
d(σ,w)dw = d(σ, u) +

∫ 1

0
wdw = d(σ, u) + 1

2 . Each (u, v) ∈ E2 has∫ v
u
d(σ,w)dw = d(σ, u) + 2

∫ 1
2

0
wdw = d(σ, u) + 1

4 .

Observe some oriented version ~E of E, such that if (v, u) ∈ ~E, then d(σ, u) ≤
d(σ, v). For any u ∈ V , let δ−(u) be the edges in E such that, in ~E, they point
at u. Then |δ−(u)| ≤ ∆ for any u ∈ V .

C(σ) =
∑

(u,v)∈E1

(d(σ, u) + 1
2) +

∑
(u,v)∈E2

(d(σ, u) + 1
4) ≤

∑
u∈V
|δ−(u)|(d(σ, u) + 1

2)

≤ ∆
∑
u∈V

d(σ, u) + 1
2∆n ≤ ∆D(σ) + ∆ · (n− k) ≤ 2∆D(σ)

Suppose we have some continuous solution ν = (ν0, . . . , νω), which has C(ν) ≤
βC∗, with C∗ the optimal coverage solution value for CU-TkMP. We can for
each agent a find a continuous movement line across (ν0)a, . . . , (νω)a by taking
shortest walks through Ẽ from each (νt)a to (νt+1)a, waiting at (νt+1)a until t+1
if necessary. We can obtain a ‘rounded solution’ ν̃ by setting (ν̃t)a equal to (νt)a
if that is a node. If instead it is a point on an edge (u, v), because the agent is
moving from u to v in the continuous movement line, then we set (ν̃t)a to the
closest of these two to (νt)a. If the point is exactly halfway between u and v, we
set (ν̃t)a to the destination v. Assuming again that k ≤ n/2 and ω ≤ 4n2, we
can perform this rounding in O(kω) = O(n3).

Theorem 6 (Rounding Theorem). If n ≥ 2k, then rounding ν to the solution ν̃
yields a (4β∆ + 2)-approximation with respect to D(µ∗), where µ∗ is an optimal
solution.

Proof. Take some instance of U-TkMP with n ≥ 2k. Let µ∗ be an optimal
solution for this instance, and ν∗ an optimal solution for its CU-TkMP-equivalent.
Let ν be a β-approximate solution to the CU-TkMP-instance, and let ν̃ be the
result of rounding ν in the way described above.

Solution ν̃ is feasible for the discrete problem. That is, each agent still starts
at their start point and ends at their end point; we show that they also only move
from nodes to neighbouring nodes. Take any agent a and any time step t < ω.
Define q := (νt)a and r := (νt+1)a. By feasibility of ν in CU-TkMP, d(q, r) ≤ 1.
If q and r are on the same edge (u, v), including the end points, then they are
rounded to u and/or v, which are neighbouring. If q is on (u, v) and r is not,
then r is on some (v, w). If q or r is rounded to v, then q and r are rounded
to neighbouring nodes. Suppose not, so q is rounded to u and r to w. Then
d(q, v) > 1

2 and d(v, r) ≥ 1
2 , so d(q, r) = d(q, v) + d(v, r) > 1, but this contradicts

feasibility of ν in CU-TkMP.

It remains to show the approximation factor. Using Corollary 2 for OPT , we

3.6. Topologies with constant-factor guarantees 53

have

OPT := D(µ∗) ≥ (ω + 1)(n− k) ≥ (ω + 1)n2 ≥ (ω + 1)k

D(ν̃) ≤ D(ν) + (ω + 1)n · 1
2 ≤ D(ν) +OPT (3.1)

D(ν) ≤
ω∑
t=0

(2C(νt) + k) ≤ 2C(ν) +OPT (3.2)

C(ν) ≤ βC(ν∗) ≤ βC(µ∗) (3.3)

C(µ∗) ≤ 2∆D(µ∗) = 2∆ ·OPT (3.4)

(3.1) follows from the fact that every demand point (v, t) has its median shifted
away at most 1

2 in rounding. (3.2) follows from Lemma 4. (3.3) follows from the
fact that ν is β-approximate for CU-TkMP, while µ∗ is feasible. (3.4) follows
from Lemma 5.

3.6 Topologies with constant-factor guarantees

In this section, we show how to compute an optimal solution to the continu-
ous problem CU-TkMP on two simple graph topologies, namely on a path and
on a cycle. In both cases, we need to solve a Linear Program with a convex
minimisation objective, which can be done in polynomial time (see, e.g., [110]).
Throughout this section, we use convex(k1, k2) to refer to the time that is needed
to solve such a program consisting of k1 variables and k2 constraints. Recall that
in light of Theorem 5, we can assume that k ≤ n/2 and ω ≤ 4n2 + 2n; in
particular, this implies that O(kω) = O(n3).

3.6.1 Path case

We show that one can compute an optimal solution to the continuous problem
CU-TkMP if the underlying topology is a line of length L, i.e., Ẽ = [0, L]. By
applying our Rounding Theorem (Theorem 6) to the optimal solution, we obtain
the result stated in Theorem 7 below (with β = 1 and ∆ = 2).

Theorem 7. Let n ≥ 2k. Then there is a 10-approximation algorithm for U-
TkMP on the path graph that runs in O(convex(k1, k2) + n3) time, where k1 =
k2 = O(kω).

A key observation that we can exploit in the path case is that we can im-
pose an order on the positions of the agents. More precisely, let σ ∈ ẼA be
a configuration. Assume that the agents in A = {1, . . . , k} are indexed such
that σ1 ≤ σ2 ≤ · · · ≤ σk (break ties arbitrarily). For notational convenience,
we introduce two dummy agents 0 and k + 1 which are fixed at σ0 = 0 and
σk+1 = L, respectively. Further, let λa be a scalar that is defined as λa = 1

4 for
all a ∈ {1, . . . , k − 1} and λ0 = λk = 1

2 .

54 Chapter 3. The Travelling k-Median Problem

Note that we do not have to worry about agents ‘switching’ their index:
because everyone has the same start and end location, there obviously exists an
optimal solution in which they do not switch their index. This is because for any
feasible solution with a switch, there also exists a feasible solution with identical
cost in which the switch is not made, namely the solution in which the agents
approach each other for the switch but go back again. Therefore, we are free to
enforce in our Convex Program that agents will always keep their index.

The following lemma shows that the coverage cost reduces to a function that
depends on the distances between consecutive agents.

Lemma 6. Consider a continuous configuration σ ∈ ẼA and suppose that the
agents are indexed as stated above. Then the coverage cost is

C(σ) =

k∑
a=0

λa(σa+1 − σa)2

Proof. Consider the cost of an interior line segment [σa, σa+1] between two con-
secutive agents σa and σa+1 with a ∈ {1, . . . , k − 1}. In this case, each point
of the segment is covered by the closest agent among σa and σa+1. Thus, the
coverage cost is∫ σa+1

σa

min
u∈{σa,σa+1}

c(u, v)dv = 2

∫ 1
2 (σa+1−σa)

0

vdv =
1

4
(σa+1 − σa)2

Next, consider the first line segment [0, σ1]. In this case, each point of the
segment is covered by σ1. Thus, the coverage cost is∫ σ1

0

c(σ1, v)dv =

∫ σ1

σ0

vdv =
1

2
(σ1 − σ0)2

A similar argument proves that the coverage cost of the last line segment
[σk, σk+1] is 1

2 (σk+1−σk)2. Summing over all line segments proves the claim.

Exploiting the above observation, we can solve CU-TkMP for the path case
simply by formulating the problem as a Linear Program with a convex (in fact
quadratic) objective function.

We introduce a variable xta ∈ [0, L] for each a ∈ {0, . . . , k + 1} and time step
t ∈ T . Our interpretation is that xta represents the position of the a-th leftmost
agent (breaking ties arbitrarily). The following Convex Program then captures
the continuous version of the problem:

min
∑
t∈T

∑k
a=0 λa(σa+1 − σa)2

s.t. 0 = xt0 ≤ xt1 ≤ · · · ≤ xtk ≤ xtk+1 = L ∀t ∈ T
xta − xt−1

a ≤ 1 ∀a ∈ A ∀t ∈ T
−xta + xt−1

a ≤ 1 ∀a ∈ A ∀t ∈ T
xta ∈ [0, L] ∀a ∈ A ∀t ∈ T

(QP1)

3.6. Topologies with constant-factor guarantees 55

Note that the second and third set of constraints together ensure that the
distance that each agent a ∈ A (more precisely, the a-th leftmost agent) moves
in each time step t ∈ T is at most 1, i.e., |xta − xt−1

a | ≤ 1.
(QP1) is a Linear Program with a convex minimisation objective and can

thus be solved in polynomial time, e.g., by using standard interior point methods
(see [110]). Let ν ∈ ẼA×T be the continuous solution that we obtain by solving
(QP1). If we then round ν according to our Rounding Theorem, we obtain a
discrete solution which is a 10-approximation for the corresponding U-TkMP
problem on the path graph. This completes the proof of Theorem 7.

3.6.2 Cycle case

We show that ideas similar to the ones used for the path case above, can be
used to compute an optimal solution for the continuous problem CU-TkMP if
the underlying topology is a cycle of length L, i.e., Ẽ = ([0, L] mod L).2

We obtain the following result from our Rounding Theorem (with β = 1 and
∆ = 2):

Theorem 8. Let n ≥ 2k. Then there is a 10-approximation algorithm for U-
TkMP on the cycle graph O(convex(k1, k2) + n3) time, where k1 = k2 = O(kω).

As before, given a configuration σ ∈ ẼA we assume that the agents in A =
{1, . . . , k} are indexed such that σ1 ≤ σ2 ≤ · · · ≤ σk. We introduce a single
dummy agent k + 1 whose position is defined as σk+1 = L + σ1. We can again
assume that the agents will never want to switch index, because there exists an
optimal solution in which they never switch. Note that we have (σk+1 mod L) =
σ1.

Lemma 7. Consider a continuous configuration σ ∈ ẼA and suppose that the
agents are indexed as stated above. Then the coverage cost is

C(σ) =
1

4

k∑
a=1

(σa+1 − σa)2

Proof. As in the proof of Lemma 6, we subdivide the cycle into k line segments
and argue for each segment separately. Using the same arguments as in the proof
of Lemma 6, the cost of each line segment [σa, σa+1] with a ∈ {1, . . . , k − 1} is
1
4 (σa+1 − σa)2.

It remains to consider the (cyclic) segment ([σk, σk+1] mod L) covered by
agents k and 1. It is not hard to see that the coverage cost of this segment is∫ σk+1

σk

min
u∈{σk,σk+1}

|v − u|dv = 2

∫ 1
2 (σk+1−σk)

0

vdv =
1

4
(σk+1 − σk)2

Summing over all line segments proves the claim.

2Note that the modulo operator ensures that 0 and L correspond to the same point.

56 Chapter 3. The Travelling k-Median Problem

In light of the above lemma, we can now adapt the Convex Program for the
path case to the cycle case as follows:

min 1
4

∑
t∈T

∑k
a=1(σa+1 − σa)2

s.t. 0 ≤ xt1 ≤ · · · ≤ xtk ≤ L ∀t ∈ T
xtk+1 = L+ xt1 ∀t ∈ T

xta − xt−1
a ≤ 1 ∀a ∈ A ∀t ∈ T

−xta + xt−1
a ≤ 1 ∀a ∈ A ∀t ∈ T
xta ∈ [0, L] ∀a ∈ A ∀t ∈ T

(QP2)

As before, we can solve this program efficiently and use our Rounding Theo-
rem to obtain a 10-approximation for U-TkMP in the cycle case.

3.7 Approximation algorithms for general graphs

Our Rounding Theorem can be used whenever we can solve (or approximate)
the corresponding continuous version CU-TkMP of the problem. In this section,
we derive approximation algorithms that do not rely on this rounding scheme.
We first derive an O(min{

√
ω, n})-approximation algorithm if the distance be-

tween S and W satisfies d(S,W) ≤ 2
√
ω. We then show that we can obtain an

O(d(S,W) +
√
ω)-approximation algorithm if d(S,W) > 2

√
ω.

Our first algorithm is described in Algorithm 3. The idea of this algorithm is
as follows: We first find approximate medians, and then try to stay as close as
possible to these medians. We do not only try to find good medians for all of V ,
but also for a smaller subset Ω that we can cover well without moving more than√
ω hops from S and W . If the ‘optimal medians’ are indeed within

√
ω hops

from S and W , then the V -medians will give us a constant-factor approximation;
otherwise, the Ω-medians will give us an O(

√
ω)-approximation.

We assume we have access to an α-approximation algorithm that runs in
O(kmed(n)) time for K-MED for some given facility and client sets; e.g., like the
6-approximation by Jain and Vazirani [81].

ALGORITHM 3: A ‘mediate at
√
ω’-algorithm for U-TkMP if d(S,W) ≤ 2

√
ω

1: Find the reachable set Ω := {v ∈ V : d(S, v) ≤ θ ∧ d(v,W) ≤ θ}, with θ := b
√
ωc.

2: Find medians σ by approximating K-MED with facilities V and clients V .
3: Take any bijection between agents and medians in σ, then form solution µ by

minimising each agent’s summed distance to their median, using Lemma 1.
4: Find medians σ[Ω] by approximating K-MED with facilities Ω and clients Ω.
5: Take any bijection between agents to medians in σ[Ω], then form solution µ[Ω] by

minimising each agent’s summed distance to their median, using Lemma 1.
6: return µ← arg min{D(µ), D(µ[Ω])}

3.7. Approximation algorithms for general graphs 57

Lemma 8. Algorithm 3 runs in O(kmed(n) + n5) time.

Proof. Line 1 costs O(n) time. Lines 2 and 4 cost O(kmed(n)) time. In lines
3 and 5, we seek k ≤ n/2 walks, which according to Lemma 1, each cost O(n4)
time to find.

Theorem 9. If there exists an optimal configuration σ∗ that is within b
√
ωc hops

from the starting configuration and the ending configuration, then Algorithm 3 is
an (α+ 2 +

√
2)-approximation that runs in O(kmed(n) + n5) time.

Proof. Let OPT be the optimal solution value, and ALG the value of the solution
from Algorithm 3. In µ, the agents are at some configuration σ (as determined
by the algorithm) throughout t = θ, θ+ 1, . . . , ω+ 1− θ. We assumed that there
is some optimal configuration σ∗ ⊆ Ω, so D(σ) ≤ αD(σ∗). With Lemma 3 and
Corollary 2, we obtain

D(µ) ≤ (ω + 1)D(σ) + n ·
θ∑
t=1

t+ n ·
θ∑
t=1

t = (ω + 1)D(σ) + (θ + 1)θn

≤ α · (ω + 1)D(σ∗) + ωn+
√
ωn ≤ (α+ 2 +

√
2)OPT

where the last inequality holds because
√
ωn

1
2 (ω+1)n

≤ 2√
ω
≤
√

2 for ω ≥ 2 (which

we can assume). We conclude that ALG ≤ D(µ) ≤ (α+ 2 +
√

2)OPT .

Theorem 10. If d(S,W) ≤ 2
√
ω, Algorithm 3 is an O(

√
ω)-approximation al-

gorithm that runs in O(kmed(n) + n5) time.

Proof. For any configuration σ and U ⊆ V , define D(σ, U) :=
∑
u∈U d(σ, u). Let

V ′ := V \Ω be the nodes that are not reachable in 2θ hops, with Ω as defined in

Algorithm 3. Also let ~D :=
∑
v∈V ′ minu∈Ω d(u, v) be the summed distance of V ′

to Ω. Let σ∗ be an optimal configuration, and σ∗Ω be a minimiser of D(σ,Ω).
We can split the value of some optimal solution µ∗ over its contribution to Ω

and V ′. The former can be lower-bounded with a configuration σ∗Ω that minimises
D(σ,Ω) instead of D(σ). The latter can be lower-bounded by the fact that there
can be no agents in V ′ if t ≤

√
ω − 1 or t ≥ ω + 1 − (

√
ω − 1), so in those time

steps, at least a cost ~D is incurred. If ~D = 0 or θ = 0, then Theorem 9 gives us
a constant-factor approximation, so assume ~D > 0. Then

OPT ≥ (ω + 1)D(σ∗,Ω) +D(µ∗, V ′) ≥ (ω + 1)D(σ∗Ω,Ω) + (
√
ω +
√
ω) ~D.

In D(µ[Ω]), the agents will be at σ[Ω] throughout t = θ, θ + 1, . . . , ω + 1 − θ.
By Lemma 3, we again know that the total cost cannot exceed (ω+ 1)D(σ[Ω]) +
(θ + 1)θn. While we know that σ[Ω] is favourable for serving Ω, we need to
upper-bound the cost of V ′ as well. For any v ∈ V ′, if u is the nearest node in
Ω to v, then we know that there is a median m at most 2θ hops away, because

58 Chapter 3. The Travelling k-Median Problem

d(u,m) ≤ d(u, S) + d(S,m) ≤ 2θ. So D(σ[Ω]) ≤ D(σ[Ω],Ω) + ~D + |V ′| · 2θ. We
have

ALG ≤ D(µ[Ω]) ≤ (ω + 1)D(σ[Ω]) + (θ + 1)θn ≤ (ω + 1)D(σ[Ω]) + ωn+
√
ωn

≤ (ω + 1)
(
D(σ[Ω],Ω) + ~D + |V ′| · 2

√
ω
)

+ ωn+
√
ωn,

ALG

OPT
≤ (ω + 1)D(σ[Ω],Ω)

(ω + 1)D(σ∗Ω,Ω)
+

(ω + 1) ~D

(2
√
ω) ~D

+
(ω + 1)|V ′| · 2θ
|V ′| · 1

2 (θ + 1)θ
+
ωn+

√
ωn

1
2 (ω + 1)n

≤ α+
ω + 1

2
√
ω

+
4(ω + 1)√
ω + 1

+ 2 +
√

2 = O(
√
ω)

Though it is true that
√
ω can become arbitrarily large, we can always apply

Theorem 9 when
√
ω exceeds n. Therefore, these results together make Algorithm

3 an O(min{
√
ω, n})-approximation algorithm.

Next, we consider the case d(S,W) > 2
√
ω. Then it may occur that Ω is

empty. In that case, we resort to Algorithm 4, the performance of which is
O(d(S,W) +

√
ω). Analogous statements of Lemma 8 and Theorem 9 clearly

hold for Algorithm 4, but we explain the weaker performance bound in Theorem
11.

ALGORITHM 4: A ‘mediate at
√
ω’-algorithm for U-TkMP if d(S,W) > 2

√
ω

1: Find the reachable set Ψ := {v ∈ V : d(S, v) + d(v,W) ≤ d(S,W) + θ}, with
θ := b

√
ωc.

2: Find medians σ by approximating K-MED with facilities V and clients V .
3: Take any bijection between agents and medians in σ, then form solution µ by

minimising each agent’s summed distance to their median, using Lemma 1.
4: Find medians σ[Ψ] by approximating K-MED with facilities Ψ and clients Ψ.
5: Take any bijection between agents to medians in σ[Ψ], then form solution µ[Ψ] by

minimising each agent’s summed distance to their median, using Lemma 1.
6: return µ← arg min{D(µ), D(µ[Ψ])}

Theorem 11. Assuming d(S,W) > 2
√
ω, Algorithm 3 is an O(d(S,W) +

√
ω)-

approximation algorithm that runs in O(kmed(n) + n5) time.

Proof. We follow a similar argument as in Theorem 10. That is, we separately
bound the cost that Ψ incurs in µ[Ψ] and that Ṽ ′ := V \Ψ incurs. Denote ~Ψ :=∑
v∈Ṽ ′ minu∈Ψ d(u, v) the summed distance of Ṽ ′ to Ψ. Note first that any u ∈ Ψ

and v ∈ Ψ can have distance at most d(u, v) ≤ d(S,W) +
√
ω:

2d(u, v) ≤ d(u, S) + d(S, v) + d(u,W) + d(W, v) ≤ 2(d(S,W) +
√
ω)

Let µ∗ be an optimal solution, let σ∗[Ψ] be an optimal K-MED-configuration if
the client set and facility set are both Ψ, and let µ∗[Ψ] be an optimal U-TkMP-
solution for the induced subgraph G[Ψ]. Note also that OPT := D(µ∗) ≥

√
ω~Ψ,

because for at least
√
ω time steps, no agent can be in Ṽ ′. Therefore:

3.8. Conclusions 59

ALG ≤ D(µ[Ψ]) = D(µ[Ψ],Ψ) +D(µ[Ψ], Ṽ ′) (3.5)

D(µ[Ψ],Ψ) ≤ (ω + 1)D(σ[Ψ],Ψ) +
(d(S,W) +

√
ω)(d(S,W) +

√
ω + 1)n

2
(3.6)

D(σ[Ψ],Ψ) ≤ αD(σ∗[Ψ],Ψ) ≤ αD(µ∗)

(ω + 1)
(3.7)

D(µ[Ψ],Ψ)

OPT
≤ αD(µ∗)

D(µ∗)
+

1
2n(d(S,W) +

√
ω)(d(S,W) +

√
ω + 1)

1
2n(ω + 1)

(3.8)

≤ α+
d(S,W)2 + 2d(S,W)

√
ω + ω + d(S,W) +

√
ω

ω
(3.9)

D(µ[Ψ], Ṽ ′) ≤ (ω + 1)(~Ψ + (d(S,W) +
√
ω)n) (3.10)

D(µ[Ψ], Ṽ ′)

OPT
≤ (ω + 1)~Ψ

√
ω~Ψ

+
(ω + 1)n(d(S,W) +

√
ω)

1
2 (ω + 1)n

(3.11)

In (3.6), we use Lemma 3 repeatedly, knowing that movement occurs in at
most (d(S,W) +

√
ω) hops. In (3.10), we use the fact that the diameter of Ψ

does not exceed d(S,W) +
√
ω. So if v ∈ Ṽ ′ and u = minu∈Ψ d(u, v), then the

cost contribution of v cannot exceed d(u, v) + d(S,W) +
√
ω. So in every time

step, the nodes of Ṽ ′ together cannot contribute more than ~Ψ+n(d(S,W)+
√
ω)

to the cost. Put together, this means that ALG
OPT ≤

D(µ[Ψ],Ψ)
OPT + D(µ[Ψ],Ṽ ′)

OPT is an
O(
√
ω + d(S,W))-approximation factor.

Studying the approximation factor in the proof of Theorem 11, it would seem
that Algorithm 4 performs poorly for high d(S,W) and low ω. However, we
remark that the most extreme version of this is observed only in the path graph,
which is again ‘easy’. It could be interesting to see if this ‘gradual transition to
path graphs’ can help strengthen the performance bound.

3.8 Conclusions

We introduced TkMP and its uniform variant, U-TkMP. We provided several
approximation algorithms for U-TkMP, including a novel method in which we
round back an optimal or β-approximate solution to a ‘continuous graph move-
ment relaxation’.

As venues for future research, we suggest the following. There are likely more
topologies than just path graphs and cycle graphs for which we can solve or
approximate CU-TkMP. Extending the results of this chapter to heterogeneous
start and end locations seems imaginable, once an equivalent to Lemma 4 can
be found that allows us to again lower-bound D(σ) by some function of only
n. (It seems more difficult to let go of the edge lengths being uniform, because

60 Chapter 3. The Travelling k-Median Problem

this makes rounding back non-trivial, and we can no longer bound distances to
unoccupied nodes to be between 1 and n.)

Chapter 4

Representative
Distance-preserving Graph
Sparsifiers

4.1 Introduction

In the previous chapter, we have explored the boundary of guaranteed approxi-
mation algorithms for MRP, by focussing on several special cases of MRP. From
this chapter onward, instead of a special case, the thesis will move towards a gen-
eralisation of MRP: namely, a model that is rich enough to model the practical
considerations that go into using MRP in a realistic application. This enriched
problem will be the focus of the next chapter, Chapter 5. However, a key part
of the algorithm proposed in that chapter is a graph sparsification subroutine
that is already involved enough to merit a chapter of its own. In this chapter,
therefore, we discuss this graph sparsification subroutine and demonstrate its
use for MRP. Although on its own it does not improve a stronger algorithm for
MRP than MDSA, we discuss the subroutine in the context of MRP instead of the
generalisation it will be used for. This is because it is less convoluted to explain
how this subroutine could be used for MRP, and once this is understood, it is
not difficult to understand how it would be used for the generalisation of MRP.

In many network optimisation problems, having an overfitted network may
cost us a lot of computation time, while offering only marginal improvements to
accuracy. In the Uncapacitated Facility Location Problem [153], for instance, if
two potential facilities are very close together, it should hardly matter for the
optimal solution cost if we delete one of these two facilities from the instance
(namely the one with higher opening cost). In fact, if we can prune all facilities
that are very close together and leave only one as local representative, we can
probably strongly reduce computation time, while only marginally sacrificing so-
lution quality. This idea, of replacing node clusters with just one representative

61

62 Chapter 4. Representative Distance-preserving Graph Sparsifiers

to save computation time while losing only little solution quality, seems sensible
for many NP-hard problems, including the Vehicle Routing Problem [18] and
its variants, various Facility Location Problems [153], the Travelling Salesman
Problem [49] and variants of the Orienteering Problem [152]. It appears an espe-
cially promising idea in real-life applications such as delivery logistics, emergency
response systems and road-side assistance, because these tend to contain many
closely clustered data points arising from cities and settlements.

However, whatever problem we choose to apply this pruning on, we should
be careful that our pruned network preserves feasibility. That is, if a feasible
solution to our problem exists in the original network, there should still exist a
feasible solution in the simplified network.

(a) Original graph (143 nodes, 8312 edges). (b) A simpler, ‘representative’ subgraph
(36 nodes, 530 edges).

Figure 4.1: A network from a Median Routing Problem use case, and a sparsified
version.

In this chapter, essentially, we will transform the graph in Figure 4.1a into the
simpler graph in Figure 4.1b, and discuss the methods by which we do so. Solving
MRP on the simpler graph should lead to significantly shorter computation times,
while hardly changing the optimal solution value. We will not only validate this
empirically, but we will also compute a proven bound on how much solution
quality we lose: that is, given a set of possible problem instances and a sparsified
network, we will compute a tight upper bound on how much worse the optimal
solution value can be when solving the problem instance on the sparsified network
instead of the original network.

While one could simply interpret data in a coarser graph, we require the
following four non-trivial characteristics of our sparsification: (1) the graph dis-
tances between kept nodes should not change (because we need to preserve fea-
sibility), (2) a given set of nodes that are essential for feasible solutions (like a
‘depot node’) must be kept, (3) the number of kept nodes should be as small as
possible (because we want optimal speed-up), and (4) how much accuracy we lose
in our simplification should be quantified. To enable the latter, we will introduce
a framework that allows us to compute worst cases.

4.2. Related literature 63

Put together, this chapter addresses the fundamental question of how we can
simplify graphs for NP-hard network problems and bound the loss of accuracy in
doing so.

The contribution of this chapter is fivefold. First, representative distance-
preserving graph sparsifiers are introduced, as well as a useful equivalence theo-
rem for determining distance preservation. Second, we introduce four methods
to compute representative distance-preserving graph sparsifiers. Third, we com-
pare these methods on a Median Routing Problem use case, and see that we
can indeed save 91.2% computation time while losing only 3.3% solution quality.
Fourth, we introduce the Mixed Integer Jester Game framework for worst-case
computation. Lastly, using this framework, we prove that for any allowed realisa-
tion in our Median Routing Problem use case, using a sparsified network instead
of the original use case network leads to increases in optimal solution value that
cannot exceed a factor 2.175.

The remainder of this chapter is structured as follows. In Section 4.2, we
review related graph sparsification literature. In Section 4.3, we formally define
our problem and introduce notation. In Section 4.4, we define distance-preserving
graph sparsifiers and demonstrate four ways to determine them. In Section 4.5,
we introduce Mixed Integer Jester Games. In Section 4.6, we briefly discuss
for several OR problems how we could use such an RDGS to quickly compute
heuristic solutions. In Section 4.7, we show how to use the MIJG framework to
bound the performance loss for our chosen network optimisation problem. In
Section 4.8, we describe the setup of our experiments, and in Section 4.9, we
discuss the results. We end with our conclusions and outlook in Section 4.10.

4.2 Related literature

There are many applications for which the simplification of graphs has been
studied, as outlined by Liu et al. [100]. These include social network analysis
[104], improving privacy of social network data [96], reducing data storage and
transfer [83, 158], clearer visualisation of graphs [75], solving linear systems [27,
87, 139], noise elimination [136], and most importantly for us, speeding up graph
algorithms. In particular, graph sparsification has been used to speed up the
computation of all-pairs shortest paths [47], k-skip shortest paths [142], maximum
bipartite matchings [47], vertex and edge connectivity [47], approximate max-cut
and min-flows [27], network flows [14, 106], flows and effective resistances in
electrical networks [27], cover times of random walks [38], and for faster learning
of labelled graph data [162].

Liu et al. categorise four different approaches to simplifying a graph [100]:
graph aggregation, bit compression, graph sparsification and influence descrip-
tion. Technically, we will consider a graph sparsification problem, meaning that
we will simplify a given graph merely by deleting nodes and edges from it. How-
ever, our goal is akin to that of graph aggregation, where nearby nodes are
combined into supernodes. We will discuss the advances in both fields.

64 Chapter 4. Representative Distance-preserving Graph Sparsifiers

In the sparsification literature, many authors focus on spectral sparsification;
that is, finding a subgraph that is ‘σ-spectrally similar’ [9] to the original graph,
but only has a given fraction of the nodes. Many of the sped-up algorithms
mentioned above make use of spectral sparsification. It was also used by Sad-
hanala et al. [130], who remove edges through spectral sparsification or sampling
sparsification to perform Laplacean smoothing against much less computational
effort, with proven bounds on accuracy loss. One of the currently most powerful
spectral sparsifiers is the (1 + 2ε, 4/ε2)-sparsifier by Batson et al. [8].

In distance-preserving sparsification and simplification, we see that many au-
thors allow small mistakes in the distance preservation. Peleg and Schäffer [113]
first introduced t-spanners: subgraphs obtained by removing edges, but such that
the shortest-path distance between any pair of nodes does not increase by more
than a factor t. Since then, many advances have been made in this field, as
summarised recently by Ahmed et al. [2]. The recent work of Bodwin [15] dis-
cusses upper bounds on how many edges we need for a subgraph that preserves
distance exactly, as well as for ‘+k-spanners’, by which we mean that an additive
error of k is allowed. Salim et al. [131] iteratively merge nodes and determine
the new lengths of edges by solving a linear system of equations that minimises
the shortest path error, achieving an average error of only 1%. On the contrary,
Ruan et al. seek to preserve distances exactly between any pair of nodes [129]
and seek a smallest ‘gate vertex graph’: a representation such that, for any pair
of nodes in the original graph, there exists a path through the gate vertex graph
where each next node is at most some threshold ε away from the current node,
meaning we can transform a shortest path in the gate vertex graph back to a
shortest path in the original graph by finding ‘local’ shortest paths of length at
most ε.

We also outline here some relevant results in graph aggregation. LeFevre and
Terzi [96] formalised the answering of queries on summarised graphs, like adja-
cency, degree and eigenvector centrality, using a random-worlds framework. In
addition, they developed different algorithms to find summarised graphs with a
focus on either data compression or strong protection of privacy. These algo-
rithms make use of an expected adjacency matrix in a more or less greedy way.
Riondato et al. [127] improved on their GraSS-algorithm by finding summaries
with guaranteed quality in polynomial time. Toivonen et al. [146] seek to aggre-
gate nodes into supernodes and weighted edges into weighted superedges, such
that given any desired number of superedges, the ‘Euclidean’ distance between
the original graph and the summarised graph is minimal after decompression.
This ‘Euclidean’ distance is initially based on how similar the weights are on
edges between any two nodes, but they generalise this notion to seeking similar
path distances between nodes. Using their semi-greedy method, among others,
they manage to compress a 16,000 edge graph in two seconds with little loss of
information.

We conclude that our problem is atypical against the common literature, in
two ways. First, instead of summarising massive graphs for relatively ‘easy’ graph

4.3. Problem definition 65

queries, we aim to summarise modestly sized graphs for NP-hard queries. This
means our focus is less on the complexity of simplifying the graph, but more
on the approximation guarantees for the optimisation problem on that graph.
Second, we are allowed to completely disconnect and disregard nodes (except for
a given set), but do not allow any changes in distance between the nodes we do
keep, in order to maintain feasibility.

4.3 Problem definition

Our goal, in loose terms, is to simplify a given minimisation problem on a graph
by limiting ourselves to solutions that only use a ‘representative’ subgraph. This
way, we want to compute a solution in much less time, with this solution hopefully
being not far from optimal.

Suppose we have a graph G = (V,E, d), with d the (potentially unit) weights
of the edges. Denote n := |V |. We do not need G to be connected, directed or
undirected, and we do not need d to be non-negative. However, we assume that
no negative cost cycles exist, which can be checked in polynomial time [97]. For
convenience, denote by DG(u, v) the shortest path distance in G from any node
u ∈ V to node v ∈ V , which equals ∞ if v is not reachable from u. For any
V ′ ⊆ V , denote G[V ′] the induced subgraph of V ′.

Suppose also that we want to solve a scenario-based minimisation problem on
this graph. That is, the problem instance is drawn from some set of scenarios Z.
We assume Z can be described as the set of feasible vectors of a Mixed Integer
Linear Program. When the scenario z ∈ Z is revealed, we want to use a Mixed
Integer Linear Programming solver to solve the minimisation problem

Π(z) := min
x
{fTx|Ax ≤ b+ Ãz, x mixed integer}

That is, we have some formulation for our minimisation problem as a Mixed Inte-
ger Linear Program, with z only affecting the right-hand side of the constraints.
For convenience of definitions, we make the natural assumption that Π(z) > 0
for all z ∈ Z.

In order to speed-up computation, suppose we decide to only ‘use’ a subgraph
G′ of G in our solutions. For instance, in the Uncapacitated Facility Location
Problem, we decide to disregard a subset of possible facility locations. More
generally, we have a ‘mechanism’ that modifies Π(z) based on our decision to
only use G′, and instead of solving Π(z), we solve

ΠG′(z) := min
x
{fTG′x|AG′x ≤ bG′ + ÃG′z, x mixed integer}

How the matrices fG′ , AG′ , bG′ and ÃG′ differ from f , A, b and Ã will depend on
the problem and sparsification strategy. However, in many applications, ΠG′(z)
will only differ from Π(z) in that it has additional constraints that fix certain
variables to 0, because they ‘use’ nodes and edges outside of G′. Regardless of

66 Chapter 4. Representative Distance-preserving Graph Sparsifiers

what mechanism is used, we also need a function ψG′(x) that translates feasible
solutions of ΠG′(z) back to feasible solutions of Π(z); in many applications, the
identity function suffices. In Section 4.6, examples of sparsification mechanisms
for different problems are proposed.

Given this graph, problem and scenario set, we want to design a sparsification
mechanism (ΠG′ , ψG′) and obtain a factor α ≥ 1 for which the following hold:

1. For any z ∈ Z, if Π(z) has an optimal solution x∗, then an optimal solution
x̂ of ΠG′(z) exists and x′ := ψG′(x̂) is feasible for Π(z).

2. Empirically, we need much less time after z ∈ Z is revealed to find x′ than
to find x∗.

3. Empirically, fTx′ is not much larger than fTx∗.

4. Provably, fTx′ ≤ αfTx∗ for any scenario z ∈ Z.

We distinguish between two approaches to attain these goals. In reactive
sparsification, we ‘wait until z ∈ Z is revealed’: that is, we take the revealed z
as part of the input in determining (ΠG′ , ψG′). In universal sparsification, we
already determine (ΠG′ , ψG′) before z ∈ Z is revealed. The upside of reactive
sparsification is that we have more information to perform our sparsification with.
The downside is that, with respect to the goal of saving time, any computations
needed to determine (ΠG′ , ψG′) are counted towards the time needed to determine
x′. Put differently, the upside of universal sparsification is that we are allowed
to count computing (ΠG′ , ψG′) as a ‘preprocessing’ step.

4.4 Four ways to compute representative sub-
graphs

In this section, we will formally define representative distance-preserving graph
sparsifiers, and discuss four algorithms by which to obtain them.

Given our graph G = (V,E, d), suppose we choose R ∈ {0, 1}V×V as a ‘rep-
resentation matrix’: that is, Ruv = 1 if and only if node u ∈ V can ‘represent’
node v ∈ V . For example, we could say that u and v can represent each other if
their Euclidean distance is below some threshold. If some node u is crucial for
feasible solutions, like the ‘depot’ node, we can encode this by letting the only
node that can represent u be u itself. We define an induced subgraph G[V ′] to be
R-representative of G if, for every v ∈ V , there exists a u ∈ V ′ with Ruv = 1. In
the remainder of this thesis, we will refer to subgraphs as simply being ‘represen-
tative’ instead of R-representative, trusting that which R they are representative
of is clear from the context. We also define an induced subgraph G[V ′] to be
distance-preserving if, for every pair of nodes u ∈ V ′, v ∈ V ′, the shortest path
length from u to v is the same in both G and G′, so DG(u, v) = DG′(u, v).

4.4. Four ways to compute representative subgraphs 67

Definition 1. Given a weighted directed graph G = (V,E, d), a representation
matrix R ∈ {0, 1}V×V and a subset V ′ ⊆ V , we will say that G[V ′] is a represen-
tative distance-preserving graph sparsifier (RDGS) if G[V ′] is distance-preserving
and R-representative.

In this chapter, we will look for an RDGS that is ‘good’ to solve an NP-
hard network problem on. This means that we want G[V ′] to be as small as
possible, so as to speed up computation, but that we must keep certain nodes
that each feasible solution uses (like the ‘depot node’). Moreover, the graph
distances between these mandatory nodes should not increase, because it may
be that feasible solutions only exist if shortest paths are used. That is, in many
applications, an RDGS will preserve feasibility because the mandatory nodes can
still be visited and the distance between them does not change. In addition to
finding an RDGS that saves as much computation time as possible, we also want
to lose as little solution quality as possible when solving an NP-hard problem on
this RDGS.

We present here four different algorithms that can be used to obtain an RDGS.
The first two are geared more towards universal sparsification, the other two
towards reactive sparsification. That is, the latter two aim to have lower build
time, accepting that they may produce a larger subgraph than more extensive
methods would. All four methods, however, can be used both for universal and
reactive sparsification.

Remark that it is NP-hard to find a smallest RDGS. In fact, it is already
NP-hard to find a smallest subset V ′ such that G[V ′] is R-representative for
general R, as well as finding a smallest completion V ′′ ⊆ V ′ such that G[V ′′]
is distance-preserving for a general (possibly mandatory) starting set V ′. These
facts are proven in Theorems 12 and 13 respectively.

Theorem 12. Given a representation matrix R : V 2 → {0, 1}, finding a smallest
subset V ′ ⊆ V such that (∀v ∈ V)(∃u ∈ V ′ : Ruv = 1) is NP-hard in general.

Proof. Take any instance of the Set Cover Problem, that is, a universe U and
subsets S ⊆ P(U). Create an instance of the above problem by creating an
‘element node’ for each u ∈ U and a ‘set node’ for each s ∈ S. Let Rij = 1 if
i ∈ S and j ∈ i, or if j ∈ S; if neither, then Rij = 0. The ‘j ∈ i’-case ensures
that we only cover U when we add set nodes i to V ′ that together span U . The
‘j ∈ S’-case implies that once we add one set node to V ′, all set nodes have a
representative and are no longer a worry. We implicitly assume that there exists
no Set Cover of size 0, but this follows under the natural assumption that U 6= ∅.
In conclusion, creating this problem instance can be done in polynomial time
with respect to the Set Cover Problem input, the problem is in NP, and the two
problem instances are equivalent.

Theorem 13. Suppose we are given a weighted digraph G = (V,E, d) and some
initial, ‘mandatory’ nodes V ′ ⊂ V . Suppose we want to add as few nodes to V ′

as possible such that G[V ′] is distance-preserving. This problem in NP-hard in
general.

68 Chapter 4. Representative Distance-preserving Graph Sparsifiers

Proof. We construct an instance of this problem based on an arbitrary instance
of the Set Cover Problem: that is, take any universe U and collection of non-
empty subsets S ⊆ P(S). Now, create the following undirected, unit weighted
graph G. Take as node set V = U ∪ V2, with V2 :=

⋃
s∈S{s1, s2}. Create the

edge set E by, for each u ∈ U and s ∈ S, adding edges {u, s1} and {u, s2} to E if
and only if u ∈ s. Finally, add {u, v} to E for every u ∈ U and v ∈ U , so that U
is a clique in G. Note that this instance construction can be done in polynomial
time with respect to the set cover instance, and that the problem is in NP.

Take as initial, ‘mandatory’ node subset V ′ ← V2. Note that, at this point,
DG[V ′](u, v) = ∞ for every u ∈ V ′ and v ∈ V ′ with u 6= v, so G[V ′] is not
distance-preserving. We will prove that adding the fewest nodes such that G[V ′]
is distance-preserving is equivalent to finding a smallest set cover.

Remark first that distances in G are as follows, for any u ∈ V and v ∈ V with
u 6= v:

• If u ∈ U and v ∈ U , then DG(u, v) = 1 (because U is a clique in G);

• If u ∈ U and v = si ∈ V2, then DG(u, v) = DG(v, u) equals 1 if u ∈ s and
2 otherwise (because {u, si} 6∈ E, but for any w ∈ s, the path (si, w, u)
exists);

• If u = si ∈ V2 and v = tj ∈ V2, then DG(u, v) equals 2 if s∩ t 6= ∅ (because
{si, tj} 6∈ E, but for any w ∈ s, the path (si, w, tj) exists) and 3 otherwise
(because there is no w1 ∈ V with {si, w1} ∈ E and {w1, tj} ∈ E, but if
w1 ∈ s and w2 ∈ t, then the path (si, w1, w2, tj) exists).

While, for any V ′ that is a strict superset of V2, we have the following distances
in G′ := G[V ′] for any u ∈ V ′ and v ∈ V ′ with u 6= v:

• If u = si ∈ V2 and V ′ ∩ s = ∅, then DG′(u, v) = DG′(v, u) = ∞ for all
v ∈ V ′;

• If ¬(u = si ∈ V2 ∧ V ′ ∩ s = ∅) and ¬(v = tj ∈ V2 ∧ V ′ ∩ t = ∅), then if
DG(u, v) = d due to some argument given above, DG′(u, v) = d due to the
same argument, except we replace all instances of “w ∈ s” by “w ∈ V ′∩s”,
and likewise for “w1 ∈ s” and “w2 ∈ t”.

So indeed, G[V ′] is distance-preserving if and only if V ′∩U is a set cover. There-
fore, finding a smallest V ′ ⊃ V2 such that G[V ′] is distance-preserving is equiva-
lent to solving the Set Cover Problem.

4.4.1 The Smallest RDGS algorithm

Because it is NP-hard to find a smallest RDGS, we will first describe a Mixed
Integer Linear Program (MILP) approach to find one.

When formulating a MILP for finding a smallest RDGS, it is non-trivial how
to encode that the subgraph should be distance-preserving. It may be tempting

4.4. Four ways to compute representative subgraphs 69

to do so by demanding that, for every u ∈ V ′ and v ∈ V ′, a unit (u, v)-flow
must go from u and v and that the total weight of edges used for this does
not exceed DG(u, v). However, such a formulation would require the inclusion
of O(|V |4) flow variables into the MILP. Instead, our first contribution is that
we can write the distance-preservation constraint much more leanly using the
following equivalence theorem with ‘on-ramps’.

Definition 2. Nodes u ∈ V and v ∈ V are distant if v is reachable from u in
G, u 6= v and (u, v) 6∈ E. Given graph G, we denote by ~F ⊂ V 2 its set of distant
nodes.

Definition 3. For any distant nodes (u, v) ∈ ~F , we define the set of on-ramps
from u to v as Λ(u, v) := {w ∈ V : (u,w) ∈ E, DG(u, v) = d(u,w) +DG(w, v)}.

In words, node w is an on-ramp from u to v if there exists a shortest (u, v)-
path that has w as its first stop after u. See also Figure 4.2. The name ‘on-ramp’
is symbolic to the idea that if one wishes to drive to another city, the first target
in the road network is likely one of the on-ramps onto the motorway; however,
one will not use the on-ramps on the opposite side of the city, or any on-ramps
at all if the destination is within the same city.

u w1

w2 v

Figure 4.2: In this undirected graph with unit edge length, w1 and w2 are (all
of the) on-ramps from u to v. In other words, Λ(u, v) = {w1, w2}. Indeed, all
shortest (u, v)-paths first pass through w1 or w2.

Theorem 14 (On-ramp equivalence). G′ = G[V ′] is distance-preserving if and

only if, for every u ∈ V ′ and v ∈ V ′ with (u, v) ∈ ~F , Λ(u, v) ∩ V ′ 6= ∅.

Proof. Suppose G[V ′] is distance-preserving. Take any u ∈ V ′ and v ∈ V ′ with

(u, v) ∈ ~F . Observe any shortest (u, v)-path in G′, and denote by w ∈ V ′ the
first node visited after u. Because G[V ′] is distance-preserving, this path is also
a shortest path in G, meaning w ∈ Λ(u, v). Therefore, Λ(u, v) ∩ V ′ 6= ∅.

Suppose, for every u ∈ V ′ and v ∈ V ′ with (u, v) ∈ ~F , Λ(u, v) ∩ V ′ 6= ∅. Pick
some u ∈ V ′ and v ∈ V ′. If u = v or (u, v) ∈ E or v is not reachable from u in
G, the distance from u to v is trivially preserved in G′.

70 Chapter 4. Representative Distance-preserving Graph Sparsifiers

Otherwise, (u, v) ∈ ~F , and we construct a (u, v)-path p in G[V ′] through the
following recursion. Initialise p node-wise as (u). Denote by u′ the currently
last entry of p. If (u′, v) ∈ E, we add v to p and p is completed. Otherwise,

(u′, v) ∈ ~F , so we take some w ∈ Λ(u′, v)∩V ′ and append w to p, repeating until
p is completed. By definition of B, every arc (wi, wi+1) traversed by this p has
length d(wi, wi+1) = DG(wi, v)−DG(wi+1, v). Substituting this expression into∑|p|−1
i=1 d(wi, wi+1), we find that the total length of p equals DG(u, v)−DG(v, v) =

DG(u, v). So DG′(u, v) ≤ DG(u, v). G′ is a subgraph, so DG′(u, v) ≥ DG(u, v).
So DG(u, v) = DG′(u, v) and G′ is distance-preserving.

Interestingly, this equivalence theorem is similar to an observation made by
Ruan et al. [129] for ‘gate vertices’. Because of Theorem 14, we can find a
smallest subgraph with the following MILP, of only n binary variables and fewer
than n2 + n constraints. Let variable xv ∈ {0, 1} denote whether node v ∈ V is
included into V ′. Then we solve:

min
∑
v∈V

xv

s.t.
∑
u∈V

Ruvxu ≥ 1 (∀v ∈ V) (4.1)∑
w∈Λ(u,v)

xw ≥ xu + xv − 1 (∀(u, v) ∈ ~F) (4.2)

xu ∈ {0, 1} (∀u ∈ V)

Constraint (4.1) ensures that G[V ′] is R-representative, and constraint (4.2)
ensures that it is distance-preserving, as implied by Theorem 14. If V ′ is the
subset of nodes selected by this MILP, we name G[V ′] the Smallest RDGS.

4.4.2 The Realigned Smallest RDGS algorithm

The outcome of the Smallest RDGS algorithm is typically not unique. That
is, if n′ is the number of nodes in any smallest RDGS, there are likely several
solutions of n′ nodes. Recalling our goal of finding a subgraph that represents
the original graph as well as possible, we will try to break this tie by choosing
an RDGS which is ‘as near as possible’ to the original graph. We assume we
have some notion of distance Cuv between any two nodes u ∈ V and v ∈ V :
depending on the application, this could for instance be the Euclidean distance
or the graph distance DG. We then find a ‘nearest’ RDGS by solving an n′-
Median Problem [35], with an additional representation constraint and distance-
preservation constraint. That is, if we let binary variable yuv indicate whether
u ∈ V is the nearest selected node to v ∈ V , we find an RDGS by solving the
following MILP:

4.4. Four ways to compute representative subgraphs 71

min
∑

u∈V,v∈V
Cuvyuv

s.t. (4.1)− (4.2)∑
u∈V

xu ≤ n′ (4.3)∑
u∈V

yuv = 1 (∀v ∈ V) (4.4)

yuv ≤ xu (∀u ∈ V)(∀v ∈ V) (4.5)

xu, yuv ∈ {0, 1} (∀u ∈ V)(∀v ∈ V)

Constraints (4.1) and (4.2) still ensure that the subgraph is representative
and distance-preserving, respectively. The objective and constraints (4.3) – (4.5)
form the typical k-Median Problem representation: we want to minimise the
total distance from unpicked nodes to our picked nodes or ‘medians’. Constraint
(4.3) tells us that we can pick at most n′ nodes; constraint (4.4) implies that
each client needs ‘coverage’ from somewhere, but constraint (4.5) ensures that
coverage can only be given from nodes that were picked as medians.

We name the resulting subgraph the Realigned Smallest RDGS. We could
also, at this stage, allow more medians than just n′ to get a subgraph G[V ′] with
less loss of accuracy, at the cost of including more nodes.

4.4.3 The Greedy On-Ramps RDGS algorithm

Despite the fact that we focus on simplifying ‘modestly sized’ graphs, we still
have reasons to study how to construct an RDGS heuristically. First, including
more scalable methods in our study makes our results generalisable to a larger
range of applications. Second, if a user wants to heuristically solve a network
problem as quickly as possible, sparsifying the network only heuristically may
save a lot of valuable computation time. For these two reasons, we will discuss
two greedy sparsification algorithms.

In the Greedy On-Ramps RDGS algorithm, we will again use Theorem 14 to
pursue distance-preservation. First, we greedily construct a subset that is R-
representative, using Algorithm 5. Next, as long as our subgraph contains pairs
(u, v) ∈ ~F for which the distance is not yet preserved, we repeatedly add the on-
ramp that benefits most of these unfulfilled pairs. This procedure is described in
Algorithm 6 and illustrated in Figure 4.3.

4.4.4 The Greedy Centrality RDGS algorithm

The Greedy On-Ramps RDGS algorithm has quite a naive approach to extending
a representative subgraph into an RDGS. That is, if some (u, v) ∈ ~F still needs its
shortest path to be included, we literally look only one step ahead by adding an

72 Chapter 4. Representative Distance-preserving Graph Sparsifiers

1

1

1 1

3

33

3 1

1

1 1

(a) First pick, assuming the
four black nodes resulted from
Greedy Cover.

1

1

1 1

3

44

4 1

1

1 1

(b) Next pick. (c) End result.

Figure 4.3: Greedy On-Ramps selection for an undirected graph with unit edge
lengths. The black nodes are currently included in V ′. Each white ‘on-ramp’
node has a number in it, indicating for how many unconnected pairs it is an on-
ramp. Indeed, the first yellow node is an on-ramp for three connections: it’s the
first stop in a shortest path from the top-left black node to the top-right black
node, from top-left to bottom-right, and from top-left to bottom-left. In each
iteration, the yellow node is the one we greedily pick to include next, because it
is an on-ramp for the most unconnected pairs of black nodes.

on-ramp of (u, v). Moreover, though we try to add a node w that is an on-ramp
for as many unconnected pairs as possible, we expect this to result in arbitrary
tie-breaking very often.

Therefore, in our final RDGS algorithm, we try to look slightly further ahead
in our greedy selection: we will add the node with highest ‘centrality’, that is, the
node featured on a shortest path for as many unconnected pairs as possible. This
approach, which we name the Greedy Centrality RDGS algorithm, is described
in Algorithm 7 and illustrated in Figure 4.4.

ALGORITHM 5: The Greedy Cover algorithm.

1: Initialise the picked nodes as V ′ ← ∅
2: Initialise the nodes still in need of coverage as U ← V
3: while U 6= ∅ do
4: Find u = arg maxu′∈V \V ′

∑
v∈U Ru′v, the unpicked node that covers most

uncovered nodes
5: Add u to V ′, and remove all nodes represented by u from U
6: end while
7: return V ′

4.4. Four ways to compute representative subgraphs 73

ALGORITHM 6: The Greedy On-Ramps RDGS algorithm.

1: Initialise the picked nodes as V ′ ← Greedy Cover

2: Initialise the unconnected pairs as
U ← {(u, v) ∈ ~F : u ∈ V ′, v ∈ V ′,Λ(u, v) ∩ V ′ = ∅}

3: while U 6= ∅ do
4: Find w = arg maxw′∈V \V ′ | {(u, v) ∈ U : w′ ∈ Λ(u, v)} |, the unpicked node that

is an on-ramp for the most unconnected pairs
5: Add w to V ′, update U ← {(u, v) ∈ ~F : u ∈ V ′, v ∈ V ′,Λ(u, v) ∩ V ′ = ∅}
6: end while
7: return G[V ′]

ALGORITHM 7: The Greedy Centrality RDGS algorithm.

1: Initialise the picked nodes as V ′ ← Greedy Cover

2: Initialise the unconnected pairs as
U ← {(u, v) ∈ V ′ × V ′ : DG[V ′](u, v) > DG(u, v)}

3: Initialise S(u, v)← {w ∈ V \V ′ : DG(u,w) +DG(w, v) = DG(u, v)} for each
(u, v) ∈ U , the unpicked nodes on shortest (u, v)-paths of unconnected (u, v)

4: while U 6= ∅ do
5: Find w = arg maxw′∈V \V ′ | {(u, v) ∈ U : w′ ∈ S(u, v)} |, the unpicked node that

is on a shortest path for the most unconnected pairs
6: Add w to V ′

7: Update U ← {(u, v) ∈ V ′ × V ′ : DG[V ′](u, v) > DG(u, v)}, checking only those
(u, v) with w ∈ Λ(u, v)

8: Update S(u, v)← {w ∈ V \V ′ : DG(u,w) +DG(w, v) = DG(u, v)} for each
(u, v) ∈ U

9: end while
10: return G[V ′]

74 Chapter 4. Representative Distance-preserving Graph Sparsifiers

2

2

2

2 2 2

6

12

66

6 2

2

2

2 2 2

(a) First pick, assuming the
four black nodes resulted from
Greedy Cover.

2

2

2

2 2 2

8

88

8 2

2

2

2 2 2

(b) Next pick. (c) End result.

Figure 4.4: Greedy Centrality selection for an undirected graph with unit edge
lengths. The black nodes are currently included in V ′. Each white node has a
number in it, indicating for how many unconnected pairs it is on a shortest path.
The yellow node is the one we greedily pick to include next, because it is on a
shortest path for the most unconnected pairs of black nodes, namely all twelve
considered pairs.

4.5 Mixed Integer Jester Games

In this study, we are not only interested in sparsifying a graph: we also want to
know how this sparsification can affect the solution quality of network problems
solved on this graph. In order to track down the worst-case quality loss, we
introduce in this section a new algorithmic methodology.

We introduce here the notion of a Mixed Integer Jester Game (MIJG). In this
competitive game, we have three players, each solving their own optimisation
problem. Player 1 is the king, who has access to an MILP solver with which
to solve his minimisation problem. Player 2 is the usurper, who only has access
to an LP solver with which to solve his minimisation problem. Player 0 is the
jester : she controls some background variables z0 which influence the problem
that the king and the usurper have to solve. Let Z be the set of vectors z0 she
can choose from, namely the scenario set defined in Section 4.3. Her goal is to
set the background variables such that the king does well and the usurper does
poorly. That is, if M1(z0) is the solution value of the king given her choice of z0,
and M2(z0) is the solution value of the usurper given z0, then the jester wants
to find the z0 which maximises M2(z0)− αM1(z0) for some given factor α ≥ 1.
Note that the jester and the king can communicate freely to achieve this goal
together. Eventually, our goal is to claim that what the usurper does is always
an ‘α-approximation’ of what the king can do. That is, we want to show that
M2(z0) ≤ αM1(z0) for every possible scenario z0 ∈ Z. Given any feasible z ∈ Z,
denote

M1(z0) := min
mixed integers x1

{
(c1)Tx1 | A1x1 ≥ b1(z)

}

4.5. Mixed Integer Jester Games 75

and
M2(z0) := min

continuous x2

{
(c2(z0))Tx2 | A2x2 ≥ b2

}
to be the optimisation problems of the king and the usurper, respectively. We do
not allow z to appear in the cost coefficients c1 of M1, because we wish to avoid
Quadratic Programming. We do not allow z to appear in the right-hand side b2

of M2 for a similar reason, which we will discuss later in this section.
The question is: how do we determine maxz0{M1(z0)−αM2(z0)}? Unfortu-

nately, this is not just a matter of inputting max{(c2(z0))Tx2−α(c1)Tx1 |A1x1 ≥
b1(z0), A2x2 ≥ b2} into an MILP solver. Indeed, (c1)Tx1 would behave like a min-
imum, because to maximise the overall expression, (c1)Tx1 should be low. But
c2(z0)Tx2 would not behave like a minimum, because for the overall expression
to be maximal, c2(z0)Tx2 should be high instead of low. But because we de-
fined M2(z0) to use exclusively continuous variables, we can solve this issue by
replacing M2(z0) by its dual,

M̃2(z0) := max
continuous y2

{
(b2)T y2 | (A2)T y2 ≤ c2(z0)

}
which means that we can solve, for any α ≥ 1,

M0(α) := max
z0,x1,y2

{
(b2)T y2 − α(c1)Tx1 | A1x1 ≥ b1(z0), (A2)T y2 ≤ c2(z0)

}
This is something we can input into an MILP solver. Note that z0 does not
show up in the coefficients, because we only allowed it in the right-hand side of
M1(z0) and in the objective of M2(z0). However, if we want to assign player 2
a problem which has z0 in the right-hand side of some constraints, this is not an
issue: we can simply apply Lagrangian relaxation to move those constraints into
the objective, and set the Lagrangian multipliers arbitrarily high to ensure the
constraints are still abided by.

4.5.1 α-iteration

How can we find the strongest approximation factor α? Suppose that, for some
given α ≥ 1, we solve M0(α) and find that M0(α) < 0. Then we have succeeded
in finding an α with M2(z0) < αM1(z0) for every possible scenario z0. In
other words, we have validated that for every possible scenario z0, the usurper’s
algorithm ‘is an α-approximation’ of the king’s algorithm.

One can easily find a first α0 for which this holds: namely, α0 := 1 +
M0(1)/minzM

1(z). Indeed, for every scenario z0, we have M2(z0) ≤ α0M
1(z0):

M2(z0)−M1(z0) ≤ M0(1)

M2(z0) ≤ M1(z0) +M0(1) =

(
1 +

M0(1)

M1(z0)

)
·M1(z0)

≤
(

1 +
M0(1)

minzM1(z)

)
M1(z0) = α0M

1(z0)

76 Chapter 4. Representative Distance-preserving Graph Sparsifiers

Can we make our approximation claim stronger by finding a smaller α′ for
which it holds? In fact, can we track down the smallest α∗ with M2(z0) ≤
α∗M1(z0)? If we ever find a pair (α∗, z∗) with M0(α∗) = maxz0 M2(z0) −
α∗M1(z0) = M2(z∗)− α∗M1(z∗) = 0, then we have found a ‘tight’ α∗: namely,
because M2(z)−α∗M1(z) ≤ 0 for all z, and every smaller α′ < α∗ would give us
M2(z∗) − αM1(z∗) > 0. This means that, to find the strongest approximation
claim, we need to find the root α∗ of M0(α). Fortunately, under some natural
assumptions on M1 and M2, the Newton-Raphson method works quite well for
this. We describe this process as Algorithm 8, illustrate it in Figure 4.5 and
prove that it performs well in Theorem 15.

ALGORITHM 8: The α-iteration algorithm for Mixed Integer Jester Games.

1: Initialise α← 1 +M0(1)/minz M
1(z)

2: Initialise tight← false
3: while ¬tight do
4: Compute M0(α), denote z ← argM0(α)
5: Update α←M2(z)/M1(z)
6: if M0(α) = 0 then
7: tight← true
8: end if
9: end while

10: return α

Theorem 15. Suppose M2(z) ≥ M1(z) > 0 for every scenario z ∈ Z. Then
Algorithm 8 finds a tight pair (α∗, z∗) for the inequality M2(z) ≤ α∗M1(z) ∀z ∈ Z
after no more than |Z| iterations.

Proof. As earlier discussed, a pair (α∗, z∗) is tight if and only if α∗ is the root
of the function M0(α) = maxz∈ZM

2(z)− αM1(z), so if M2(z∗)− α∗M1(z∗) =
0. Note that, for every fixed z ∈ Z, the function α → M2(z) − αM1(z) is a
descending line that starts at M2(z) > 0. Therefore, the function M0(α) is the
maximum over |Z| such descending lines, which is a convex and piece-wise linear
function that has exactly one root.

Observe, therefore, that there exists an interval I around α∗ on which the
function α → M0(α) equals the line α → M2(z∗) − αM1(z∗). Suppose our
current guess α is in I, meaning argM0(α) = z∗. Then our next guess, α∗ =
M2(z∗)/M1(z∗), has M0(α∗) = M2(z∗) − α∗M1(z∗) = 0, meaning (α∗, z∗) is a
tight pair. Suppose instead our current guess α is greater than any value in I.
Then, because M0(α) consists of line pieces that become gradually less steep as
α grows, the next guess α′ has α′ < α∗. Suppose finally our current guess α is
smaller than any value in I. Then, because M0(α) consists of line pieces that
become gradually less steep as α grows, the next guess α′ has α < α′ < α∗.

Putting this together, we know that if we are ever on a line piece on the right
side of I, we go over to the left side of I and never come back. If we are on the

4.5. Mixed Integer Jester Games 77

Figure 4.5: Example of how to find the root α∗ of M0(α), given six scenarios.
Each scenario z ∈ Z is depicted as a blue dotted line α→M2(z)−αM1(z) which
always starts above 0 and descends. Our first guess of α∗ is very high, namely
α0 = 41.25. The least descending line is maximal (red) there, and we follow it
to its root, ending up with a next guess α1 = 1 which is probably too low. We
keep checking which line is maximal at the current α, find its root, thus moving
further to the right. After at most |Z| iterations, a guess will be in the interval
I, after which the next guess is exactly α∗ = 7. Remark that two of these six
scenarios are never maximal (‘red’) for α ≥ 1: they are ‘dominated’ by other
scenarios.

left side of I, we move to a line piece further to the right, thus closer to I. In the
worst case, we visit all of the |Z| line pieces once. But we must eventually reach
I, and when we do, we find (α∗, z∗).

Theoretically, it is true that the worst case of |Z| iterations is no better
than simply testing all scenarios z ∈ Z and determining α∗ from the outcomes.
However, Algorithm 8 only considers scenarios z that are Pareto optimal with
respect to low M1(z) and high M2(z), and these will typically be much fewer
than |Z|. Moreover, we will see in Section 4.9 that we tend to need much fewer
iterations than |Z| to find the optimal α∗.

78 Chapter 4. Representative Distance-preserving Graph Sparsifiers

4.5.2 LP-rounding algorithms for usurpers

As a further extension of the MIJG framework, suppose that the usurper has a
problem that can not be written as a (continuous) Linear Program, but that can
be written as a Mixed Integer Linear Program with known integrality gap γ. For
instance, it is known of the metric k-Median Problem that there always exists a
feasible solution with cost at most γ = 6 2

3 times the cost of the Linear Program-
ming relaxation [25]. Then we can use this Linear Programming relaxation as a
usurper problem M2(z). If this yields an approximation factor α∗ over the sce-
nario set Z, and if OPT (z) is the optimal solution cost for scenario z ∈ Z, then
we know OPT (z) ≤ γM2(z) ≤ α∗γM1(z)∀z ∈ Z. Therefore, for any problem
with known integrality gap γ and any scenario set, we can immediately apply the
MIJG framework to compute an upper bound α∗γ on the solution quality lost
through sparsification.

4.6 Examples of sparsification strategies

Recall that the goal of this chapter is to sparsify a given network minimisation
problem by means of an RDGS, and to bound the loss of performance in doing
so by an MIJG. In this section, we briefly discuss how sparsification could be
applied to various Operations Research problems.

4.6.1 Facility Location Problems

The idea that we can delete or aggregate nodes to save computation time while
losing comparatively little on the optimal solution cost, seems sensible for classi-
cal Facility Location Problems. In the k-Median Problem, for instance, one can
easily imagine that deleting nearby potential facility locations should not influ-
ence the optimal solution cost by much, while allowing a substantial fraction of
the solution space to be eliminated. That is, a distance threshold should work
well as a representation relation between facilities. Our strategy would thus be to
compute an RDGS with a threshold representation relation to find some sparsi-
fied G[V ′], then define the simplified problem ΠG[V ′](z) as solving k-Median but
not allowing facility locations not present in G[V ′], and use its solution directly
as a feasible solution for the original problem Π(z). That is, the function ψ that
translates feasible solutions of ΠG[V ′](z) back to feasible solutions of Π(z) can
simply be the identity function. Note that the original k-Median Problem has
no concept of scenarios within it: we could say its scenario set consists of exactly
one instance. On the other hand, one could easily imagine uncertain versions
of k-Median in which, for instance, it is not yet known which clients will need
coverage.

As a next step, in the Uncapacitated Facility Location Problem (UFLP) [153],
it makes sense to keep the facility that is cheapest: we could state that facility
location u can represent facility location v if the distance is below some threshold

4.6. Examples of sparsification strategies 79

and u has lower opening cost than v. Afterwards, we repeat the same sparsifi-
cation strategy as for k-Median. Finally, in the Capacitated Facility Location
Problem (CFLP) [153], we could additionally ensure that the remaining facilities
have enough capacity to admit feasible solutions, by creating a representation
relation between facilities and clients as follows: for each facility, we assume it
supplies the full demand of the nearest client, then the second nearest, et cetera
until the capacity is depleted. Then we say a facility represents a client if and
only if the demand of the client is fully supplied this way. This not only en-
sures that there is enough capacity to admit feasible solutions, but also steers
the sparsification such that the demands will likely be satisfied locally.

4.6.2 Classical routing problems

For routing problems, we may need a more sophisticated function ψ to translate
sparsified solutions back to feasible solutions for the original problem. For the
Travelling Salesman Problem (TSP) [49], we could let one client represent another
if their distance is below some threshold, and let a potential depot be represented
only by itself. In a sense, this would transform these routing problems into a
parallelisable two-stage heuristic. In the first stage, we would obtain an RDGS
G[V ′], meaning we omit many clients who are close together. Our simplified
problem ΠG[V ′](z) would then be to solve TSP on G[V ′]. Its solution, x̂, would
not be feasible for the original problem Π(z), because many clients are skipped by
it. However, computing x̂ would allow us to more quickly make routing decisions
on the macro level, trusting that the micro-level details can be accounted for
in the second stage. In this second stage, we could base a feasible solution x′

on x̂ by the following process ψ. First, for each u ∈ V ′, we would denote Vu
the set of all clients for which the nearest node in G[V ′] is u. Next, for each
(u, v) subsequently visited by x̂, we would determine the ‘connection points’
(q, r) := arg minq′∈Vu,r′∈Vv

{DG(q, r)}. Finally, knowing all connection points
between any node cluster Vu and the next, we could solve (path-)TSP [66] on
G[Vu] and patch all results together into the feasible solution x′. Though this
would require solving |V ′| + 1 instances of (path)-TSP, these would be much
smaller than the original, and the work done by ψ (the ‘second stage function’)
can be divided over |V ′| machines.

We can solve the same rough process for the Multiple Travelling Salesman
Problem (mTSP) [59] and the Capacitated Vehicle Routing Problem (CVRP)
[18]. In the latter, we would only need the additional modification to ΠG[V ′](z)
that visiting u ∈ V ′ has a capacity requirement equal to the summed capacity
requirements of Vu. Technically speaking, trouble may arise if any set Vu requires
more capacity than any one vehicle can deliver. Even more technically speaking,
one could resolve this by solving the Capacitated Facility Location Problem on
these overloaded neighbourhoods Vu, because the resulting G[V ′] would still be
an RDGS if the original graph is complete; however, we consider it out of scope
for this chapter to describe this process further.

80 Chapter 4. Representative Distance-preserving Graph Sparsifiers

In all of this, we again remark that the traditional TSP and mTSP and CVRP
do not have scenario structures within them, meaning the scenario set would have
size 1. But versions with uncertainty exist, such as the universal and a-priori TSP
[134].

4.6.3 Orienteering Problems

Another field of routing concerns the Orienteering Problem (OP) [152], which is
similar to path-TSP, except we are rewarded for visiting clients instead of being
forced, and one seeks to collect the highest reward in a given distance limit.
Though we can again find an RDGS using a distance threshold representation
relation, it becomes non-trivial to assume that if one node u ∈ V ′ is visited,
all nearby nodes Vu are visited: namely, visiting all of Vu does not require the
easily determined sum of node capacities, but the edge length of a path-TSP
solution over Vu, which is NP-hard to determine. Instead, we propose finding an
RDGS G[V ′], reserving only part of the allowed distance for the first ‘macro-level’
stage by modifying the distance limit in ΠG[V ′](z). Then in the second stage,
we would solve |V ′| ‘micro-level’ instances of the Orienteering Problem on each
visited cluster Vu, where the distance limit for these micro-instances follows from
dividing the remaining allowed distance ‘proportionally’ over the instances. A
good division strategy is certainly non-trivial, and we consider exploring it out
of scope for this chapter: we merely wish to sketch how a sparsification strategy
for the classical Orienteering Problem could be designed.

Two stochastic variants of the Orienteering Problem include the Orienteering
Problem with Stochastic Profits [74] and the Orienteering Problem with Stochas-
tic Edge Costs [144]. In the former, the collectable profits are stochastic and the
goal is to maximise the probability that a target amount of profit or better is
collected. In the latter, instead the lengths of edges are distributed with indepen-
dent, non-identical probabilities. Recently, node aggregation has in fact proven
successful for this latter problem.

4.6.4 The Two-Stage Stochastic Steiner Tree Problem

A problem in which graphs are typically not complete, is the Steiner Tree Prob-
lem, of finding a cheapest tree that spans a given subset of ‘terminal’ nodes. In
this problem, distance-preservation is relevant, because cheapest paths are useful
(but not mandatory) for cheap trees. Gupta et al. [62] included a stochastic
element in the Steiner Tree Problem by allowing edges to be bought cheaply in a
first stage, when knowing only the probability for each node that it will become a
terminal, then revealing the terminals and allowing additional edges to be bought
in a recourse stage. This Two-Stage Stochastic Steiner Tree Problem (2S-STP)
thus appears interesting from a lens of distance-preservation and bounded loss
over stochastic scenarios. It may also benefit from sparsification: we can let a
potential root node represent itself, and otherwise let nodes represent each other

4.7. Bounding MRP performance loss as a Mixed Integer Jester Game 81

if their graph distance is below some threshold. One would again obtain a heuris-
tic with a high-level problem and several parallelisable zoomed problems. Each
zoomed problem would involve solving another instance of 2S-TSP, taking as root
the included vertex that we zoom on, and as remaining nodes the omitted nodes
represented by this root. As such, the 2S-TSP could make another interesting
candidate to showcase our RDGS and MIJG methodology, though it will not be
the problem this chapter focuses on.

4.7 Bounding MRP performance loss as a Mixed
Integer Jester Game

In this section, we demonstrate how to use the MIJG framework to compute an
upper bound on how much solution quality we can lose due to solving a given
optimisation problem on a sparsified network instead of the original network.
As a showcase problem, we focus on the Median Routing Problem. One of the
reasons for this is that, more so than the problems discussed in Section 4.6, this
problem is a good example of a problem where exact distance preservation may
be necessary to preserve feasibility, because mandatory targets must be visited
within a hard time limit.

Suppose we want to perform universal sparsification for MRP, using any of
the algorithms in Section 4.4. That is, we know the graph G and its emergency
probabilities, and we know how many agents will be deployed, but there are
many things we do not yet know: we do not know where the agents will start,
how many non-urgent jobs will be scheduled, what the location and duration of
those jobs will be, and we only know an upper bound on the length of the time
horizon. This may be the case, for instance, if a daytime emergency logistics
organisation decides to perform universal sparsification during the night, so that
MRP plans and updated plans can be quickly computed throughout the next
day.

Let V̂ ⊂ V be the set of all locations where an agent or job might be placed,
so each v ∈ V for which there exists a scenario z ∈ Z in which an agent a has
start location Sa = v or end location Ea = v, or in which a job j has location
Lj = v. Let Cuv give the emergency response time from node u to the potential
emergency node v ∈ VP . Let τ be a threshold on response time. That is, we
would like every potential emergency node v ∈ VP to be represented by a node
u ∈ V within τ minutes of it. For nodes with emergency weight Pv = 0, it is all
right if they are not explicitly represented: they should only be included if they
are useful for covering emergency nodes or for preserving graph distances. Then
we can use the following representation matrix R ∈ {0, 1}V×V to perform our
sparsification:

• If v ∈ V̂ , Ruv = 1 if and only if u = v.

• Otherwise, if v ∈ VP , Ruv = 1 if and only if Cuv ≤ τ .

82 Chapter 4. Representative Distance-preserving Graph Sparsifiers

• Otherwise, Ruv = 1 for every u ∈ V , meaning v imposes no representation
constraints.

While it is possible to compute a sparsified graph this way and evaluate
afterwards how much better the solution would have been if the original graph
had been used, our MIJG framework allows us to already bound this quality
loss beforehand. We describe here an approach that comes with some slack, but
which is computationally manageable.

Suppose that, given some optimal MRP solution in the original graph, we
know that we can stay ‘nearby’ in the sparsified graph. Then, intuitively, the
optimal coverage in the sparsified network should not be much worse.

We define the projection radius ρ of G to G′ in T := {0, . . . , ω} under distance
function D : V 2 → [0,∞) as follows: it is the smallest number such that, for every
path in G of length at most ω hops that starts and ends in G′, there exists a
path in G′ that is at most ρ away from it at every time step, with respect to
D. For our MRP case, we will take D to be the Euclidean distance between any
two nodes. Fortunately, we can compute ρ in O(ωn6) time, using the Dynamic
Program in Algorithm 9. In it, we try increasing values of ρ from among the
O(n2) options, and compute states F (u, v, t), indicating whether any path to
(v, t) can be followed by a path to (u, t) which stays within ρ. If in line 10 we
find that there exists a path to (w, t) that cannot be followed in G[V ′], then
apparently, ρ is not large enough yet and we try its next value. If at some point
ρ becomes at least maxu∈V,v∈V Duv, then we are certainly done: after all, every
feasible path is within maxu∈V,v∈V Duv from any other feasible path. Therefore,
Algorithm 9 finds the projection radius after O(n2 · ωn4) time.

ALGORITHM 9: Computing the projection radius ρ of G to G′ in T :=
{0, . . . , ω}.

1: Compute ~D, the different distances in Duv in ascending order
2: for ρ ∈ ~D do
3: Initialise F (u, v, t)← 0 (∀u ∈ V ′, V ∈ V, t ∈ T)
4: Set F (u, u, 0)← 1 (∀u ∈ V ′)
5: for t ∈ {1, . . . , ω} do
6: for (v, w) ∈ E : (∃u ∈ V ′ : F (u, v, t− 1) = 1) do
7: for u ∈ V, u′ ∈ V : F (u, v, t− 1) = 1, (u, u′) ∈ E′, Cu′w ≤ ρ do
8: F (u′, w, t)← 1
9: end for

10: if 6 ∃u′ ∈ V ′ : F (u′, w, t) = 1 then
11: continue ρ
12: end if
13: end for
14: end for
15: return ρ
16: end for

With this projection radius ρ, we can immediately make the following claim:

4.7. Bounding MRP performance loss as a Mixed Integer Jester Game 83

for every feasible MRP solution in the original graph G, there exists a feasible
solution in G[V ′] in which every agent a always stays within a distance ρ of where
they are in the G-based solution. Note that this claim disregards the fact that
the agents have to visit jobs, which causes them to converge again in G and G′,
but that fact can only improve the projection radius.

If we can indeed always stay within ρ from a G-based solution, how much
worse can the coverage in G′ be at any given time? This is hard to bound
algebraically, because D and C may be completely unrelated. However, with
the use of the MIJG framework, we can answer this question. That is, we will
search for the largest difference in coverage between a configuration µ ∈ V A and
a configuration µ′ ∈ (V ′)A, knowing that D(µa, µ

′
a) ≤ ρ for every agent a.

In this MIJG, both the king and the usurper would like to try to find a
k-Median optimum on V and V ′, respectively. However, the usurper only has
access to an LP-solver, not a MILP-solver, so he cannot solve k-Median. Instead,
the jester will choose median locations for the usurper, and the usurper only gets
to draw the best connections from nodes to medians. If given absolute freedom,
the jester would choose terrible medians for the usurper to work with. Instead,
we demand that if the king chooses a median location u ∈ V for agent a, the
jester can only choose a median location v ∈ V ′ for agent a that has D(u, v) ≤ ρ,
since we know by the definition of ρ that the king’s agents can always be tracked
through V ′ up to a distance ρ. To conceptually fit our framework, we will say
that the jester first chooses medians for the usurper, then the king gets to choose
his medians at most ρ away.

Let x0
au ∈ {0, 1} denote whether or not the jester places agent a ∈ A at node

u ∈ V ′. Let m0
u ∈ {0, 1} denote whether any such agent is placed at u. Then

we denote all possible jester inputs as Z = {(x0,m0) ∈ {0, 1}A×V ′ × {0, 1}V ′ :∑
u∈V ′ x

0
au = 1 ∀a ∈ A,m0

u = 1 ⇔
∑
a∈A x

0
au ≥ 1}. Let x1

au ∈ {0, 1} denote
whether the king places agent a ∈ A at node u ∈ V , and let y1

uv ∈ {0, 1}
denote whether he provides coverage for v ∈ VP from node u ∈ V . Given any
z0 = (x0,m0) ∈ Z, we define the king’s problem as follows:

84 Chapter 4. Representative Distance-preserving Graph Sparsifiers

M1(z0) =

min
x1,y1

∑
u∈V

∑
v∈VP

PvCuvy
1
uv

s.t.
∑
u∈V

y1
uv = 1 (∀v ∈ VP) (4.6)

y1
uv −

∑
a∈A

x1
au ≤ 0 (∀u ∈ V)(∀v ∈ VP) (4.7)∑

u∈V
x1
au = 1 (∀a ∈ A) (4.8)

x1
av + 1[D(u, v) > ρ]x0

au ≤ 1 (∀a ∈ A)(∀u ∈ V ′)(∀v ∈ V) (4.9)

x1
au, y

1
uv ∈ {0, 1} (∀u ∈ V)(∀v ∈ VP)

The objective function, as well as constraints (4.6)–(4.8), are typical for a
k-Median Problem. The only addition is (4.9), which demands that the king
places his agents within ρ from their positions chosen by the jester.

The usurper’s problem is much simpler, because the jester has already chosen
agent positions. Ideally, we would use the same formulation as in M1(z0); how-
ever, the MIJG demands that we move the jester’s variables from the right-hand
side into the objective. Therefore, denote M̄ := maxuv PvCuv + 1 an arbitrarily
large penalty for giving coverage from a node that is not occupied by any agents.
Then we define the primal version of the usurper’s problem as follows:

min
y2

∑
u∈V ′

∑
v∈VP

(PvCuv + (1−m0
u)M̄)y2

uv

s.t.
∑
u∈V ′

y2
uv ≥ 1 (∀v ∈ VP) (4.10)

y2
uv ≥ 0 (∀u ∈ V)(∀v ∈ VP)

which essentially does nothing more than setting y2
uv = 1 instead of 0 if and

only if u = arg minu′∈V ′:m0
u′=1 Cu′v. Remark that this follows from the fact that

every column of the constraint matrix consists of zeroes and one entry 1, meaning
the matrix is totally unimodular [135], meaning the optimal y2 will be integer-
valued regardless of objective. Each element of the cost vector is non-negative, so
there exists an optimal solution where (4.10) is satisfied tightly for each v ∈ VP ,
meaning for each v ∈ VP we choose exactly one u ∈ V for which to set y2

uv = 1.
Choosing a u′ 6∈ V ′ incurs cost at least M̄ , so it is always better to choose a u′ ∈
V ′: by interchange, we always choose u = arg minu′∈V ′:m0

u′=1 Cu′v. Fortunately,

therefore, we can conclude that the usurper indeed has a problem that can be
solved solely with continuous variables. This problem has the following dual:

4.8. Experiments 85

M2(z0) =

max
λ2

∑
v∈VP

λ2
v

s.t. λ2
v ≤ PvCuv + (1−m0

u)M̄ (∀u ∈ V ′)(∀v ∈ VP) (4.11)

λ2
v ≥ 0 (∀v ∈ VP)

Put together, we obtain the MIJG problem

M0(α) =

max
x0,m0,x1,y1,λ2

∑
v∈VP

λ2
v − α

∑
u∈V

∑
v∈VP

PvCuvy
1
uv

s.t. (4.6)− (4.9), (4.11)∑
u∈V ′

x0
au = 1 (∀a ∈ A) (4.12)

m0
u ≥ x0

au (∀a ∈ A)(∀u ∈ V ′) (4.13)

x0
au,m

0
u, x

1
au, y

1
uv ∈ {0, 1}, λ2

v ≥ 0 (∀a ∈ A)(∀u ∈ V)(∀v ∈ VP)

where the new constraint (4.12) indicates that the jester must choose one
location for each agent, and (4.13) that the jester must admit someone is present
at node u if she chooses at least one agent a to be at u.

Suppose that we apply Algorithm 8 with M0(α) and obtain some α∗. Then
we know, for each configuration in the original graph G, that there exists a
configuration in G′ which costs no more than α∗ times as much.

In fact, it immediately follows from the definition of ρ that for each feasible
MRP solution in the original graph G, there exists a feasible solution in the
sparsified graph G′ that costs at most α∗ times as much. This is because we can
stay within ρ throughout the entire solution, so the factor α∗ holds at each time
step. Note that it is completely irrelevant where in V̂ ⊆ V ′ the job locations and
agent start locations are realised: whatever movement this incurs for the optimal
MRP solution in G, it can be matched with an α∗-approximate feasible solution
in G′.

With this, we have proven that we can bound the performance loss from a
universal sparsification by a factor α∗, which we compute through Algorithm 8
and the MIJG Program M0(α).

4.8 Experiments

In order to test the methods developed in this research, we made use of existing
MRP benchmark instances [70]. We ran three series of experiments, outlined
below.

86 Chapter 4. Representative Distance-preserving Graph Sparsifiers

First, we applied universal sparsification on the six instances in the MRP
class IR. That is, these six instances act on the same network G with the same
number of agents and time steps, but the jobs differ per instance. We took the
locations of all jobs and the depot as mandatory locations V̂ , so that whichever
combination of jobs would appear in the realisation, the RDGS would be capable
of producing a feasible solution for it. We applied all four RDGS methods on
G and V̂ . Aside from measuring the time of running the RDGS algorithm and
the number of nodes that remained after sparsification, we also optimised all six
MRP instances on each RDGS to see the median speed-up and quality loss, and
we used the method from Section 4.7 to compute a guaranteed bound α∗ on this
quality loss.

Second, to give more context to these results, we also applied reactive sparsifi-
cation on the six instances in IR: that is, we computed all four RDGS networks for
each instance separately, and measured the speed-up and quality loss. This could
give insight to the trade-off between universal and reactive sparsification. Note
that the guaranteed bound α∗ computed for universal sparsification also holds
for reactive sparsification, because the instances we sparsify for are instances we
have prepared for in universal sparsification.

Third, to diversify the measurements on more graphs than just the one be-
longing to IR, we performed reactive sparsification on MRP benchmark instance
I1,1, I2,2, et cetera until I8,8. We recall from [70] that these eight classes vary in
size, density and productivity. It did not make sense to perform universal spar-
sification on any of these instances, because there existed no benchmarks that
shared a graph, except those where the job set or edge set of one instance were a
subset of those in the other instance. Likewise, we did not compute guaranteed
bounds for these instances, as there are only two benchmark instances on each
such network, with one job set being a subset of the other.

All experiments were performed on a ThinkPad L470, running an Intel Core
i5-7200U CPU processor with 2.50GHz and 8GB RAM. The MILPs were solved
using Gurobi 9.0.2.

4.9 Results

We present the results of our universal sparsification experiments on the MRP
instance class IR in Table 4.1. In Figure 4.1, we can see the result of applying uni-
versal sparsification through the Smallest Realigned method on this network.
In Table 4.2, we present the results of our reactive sparsification experiments on
the same class. Finally, in Table 4.3 we see the results of reactive sparsification on
a wider sample of MRP benchmark instances. Rather than average observations,
we provide median observations to limit the effect of outliers, but these numeric
medians should not be confused with median nodes. For completeness, the raw
results that these three tables are based on are given in Tables 4.4, 4.5 and 4.6,
respectively.

Table 4.1 shows that all four RDGS methods are quite successful in finding

4.9. Results 87

Creation Size Median time Median Proven

time (s) (|V ′|) saved (%) quality loss (%) bound

Original 0 143 0 0 1.443
Smallest 11.4 36 91.2 3.3 2.175
Smallest Realigned 12.6 36 89.5 3.3 2.175
Greedy On-Ramps 7.7 37 88.3 3.2 2.175
Greedy Centrality 0.9 37 88.9 3.2 2.175

Table 4.1: Results of anticipatory sparsification testing for the MRP instance
class IR.

Median node Median time Median quality Proven

reduction (%) saved (%) loss (%) bound

Original 0.0 0.0 0.0 1.443
Smallest 93.0 97.1 7.29 2.175
Smallest Realigned 93.0 94.8 6.02 2.175
Greedy On-Ramps 91.6 92.8 7.54 2.175
Greedy Centrality 91.6 93.9 7.54 2.175

Table 4.2: Results of reactive sparsification testing for the MRP instance class
IR.

Median node Median time Median quality

reduction (%) saved (%) loss (%)

Original 0 0 0
Smallest 63.5 54.0 4.44
Smallest Realigned 63.5 36.2 4.19
Greedy On-Ramps 59.5 55.3 4.03
Greedy Centrality 59.0 56.1 4.06

Table 4.3: Results of reactive sparsification testing for a sample of MRP bench-
mark instances.

good MRP solutions in much less time. Even the Smallest algorithm and the
Smallest Realigned algorithm run in 12.6 seconds, possibly due to the lean
formulation that the on-ramp equivalence theorem allows. The found networks
hardly differ in size, possibly because they share a mandatory set V̂ ⊂ V that
pushes the solution in a certain direction. All four RDGS methods produce a
median quality loss of only around 3.3%, while saving a median 88.3% computa-
tion time or better. This supports our initial intuition that, indeed, we can save
a lot of time through sparsification while only marginally giving up on solution
quality.

Using our MIJG framework, we can prove that for any realisation of the
MRP data on this network, as long as the agent start and end locations and job

88 Chapter 4. Representative Distance-preserving Graph Sparsifiers

I R
,0

I R
,1

I R
,2

I R
,3

I R
,4

I R
,5

O
ri

g
in

a
l

va
lu

e
2
68

.8
17

2
82

.9
85

2
83

.8
19

31
0.

5
4
1

3
2
5
.6

0
9

3
0
1
.1

8
5

O
ri

g
in

a
l

ti
m

e
(s

)
17

7.
42

8
67

3.
05

7
31

72
.0

97
1
76

91
.4

5
5

7
4
3
9
.9

8
7

3
4
0
7
2
.0

6
6

S
m
a
l
l
e
s
t

va
lu

e
28

8.
11

7
29

8.
61

8
29

4.
92

4
3
18

.3
0
3

3
3
3
.4

5
4

3
0
9
.1

5
S
m
a
l
l
e
s
t

ti
m

e
(s

)
8
1.

78
3

70
.4

34
82

.2
67

94
5.

4
7
5

1
1
8
5
.6

3
4

1
5
3
6
.3

7
3

R
e
a
l
i
g
n
e
d

va
lu

e
28

8.
11

7
29

8.
61

8
29

4.
92

4
3
18

.3
0
3

3
3
3
.5

3
6

3
0
9
.1

5
R
e
a
l
i
g
n
e
d

ti
m

e
(s

)
1
44

.2
88

8
0.

29
4

9
6.

02
8

7
27

.9
3
3

1
5
3
7
.2

5
4

2
3
2
2
.7

0
2

O
n
-
R
a
m
p
s

va
lu

e
28

7.
12

4
29

8.
02

5
29

4.
60

6
3
17

.8
8
1

3
3
1
.2

1
5

3
0
8
.9

6
2

O
n
-
R
a
m
p
s

ti
m

e
(s

)
9
8.

21
2

8
4.

95
11

0.
76

3
8
13

.8
6
4

1
0
6
1
.3

4
1

3
1
6
3
.7

3
7

C
e
n
t
r
a
l
i
t
y

va
lu

e
2
87

.1
24

2
98

.0
25

2
94

.6
06

31
7.

8
8
1

3
3
1
.2

1
5

3
0
8
.9

6
2

C
e
n
t
r
a
l
i
t
y

ti
m

e
(s

)
97

.6
56

8
7.

02
7

10
9.

69
2

8
06

.7
1
2

1
0
5
2
.6

8
2

3
0
8
7
.6

1
8

Table 4.4: Optimal solution value and computation time of the instances in IR,
computed on the four different anticipatory RDGS networks. The network build
time and resulting number of nodes can be found in Table 4.1.

locations are among those found in IR,0 through IR,5 and the number of agents
is the same or more and the length of the time horizon is the same or shorter, the
quality loss can never exceed 117.5%, or a factor 2.175. For every RDGS method,
this is a tight factor found in merely 3 iterations of Algorithm 8, including the
computing of the initial factor. Seeing how the best-known approximation factor

4.9. Results 89

I R
,0

I R
,1

I R
,2

I R
,3

I R
,4

I R
,5

O
ri

gi
n

al
b

u
il

d
ti

m
e

(s
)

0
0

0
0

0
0

O
ri

gi
n

al
n

o
d

es
14

3.
0

14
3.

0
14

3.
0

1
4
3
.0

1
4
3
.0

1
4
3
.0

O
ri

gi
n

al
va

lu
e

26
8.

81
7

28
2.

98
5

28
3.

81
9

3
1
0
.5

4
1

3
2
5
.6

0
9

3
0
1
.1

8
5

O
ri

gi
n

al
so

lv
e

ti
m

e
(s

)
17

7.
42

8
67

3.
05

7
31

72
.0

97
1
7
6
9
1
.4

5
5

7
4
3
9
.9

8
7

3
4
0
7
2
.0

6
6

S
m
a
l
l
e
s
t

b
u

il
d

ti
m

e
(s

)
11

.6
08

11
.5

46
11

.7
6

1
2
.6

0
6

9
.2

2
7

1
1
.8

7
5

S
m
a
l
l
e
s
t

n
o
d

es
6

9
10

1
0

1
6

1
3

S
m
a
l
l
e
s
t

va
lu

e
32

5.
87

6
29

6.
47

1
31

9.
74

6
3
3
2
.5

4
3

3
3
2
.6

9
2

3
2
3
.7

4
3

S
m
a
l
l
e
s
t

so
lv

e
ti

m
e

(s
)

24
.1

16
52

.5
5

45
.2

2
2
2
1
.1

0
3

2
9
3
.9

1
9

3
1
3
.7

3
2

R
e
a
l
i
g
n
e
d

b
u

il
d

ti
m

e
(s

)
15

.6
26

17
.8

41
17

.6
34

1
5
.8

5
2

1
1
.3

8
9

1
2
.2

6
3

R
e
a
l
i
g
n
e
d

n
o
d

es
6

9
10

1
0

1
6

1
3

R
e
a
l
i
g
n
e
d

va
lu

e
30

1.
72

2
29

5.
84

6
31

0.
83

3
3
2
0
.8

9
3

3
3
3
.3

3
3
2
3
.7

4
3

R
e
a
l
i
g
n
e
d

so
lv

e
ti

m
e

(s
)

25
.9

86
50

.9
41

68
.3

61
2
4
3
.8

3
9

5
6
3
.6

5
1

3
0
3
.3

0
7

O
n
-
R
a
m
p
s

b
u

il
d

ti
m

e
(s

)
9.

28
1

10
.3

57
9.

55
9
.8

6
7

7
.0

2
6

7
.0

6
6

O
n
-
R
a
m
p
s

n
o
d

es
9

11
12

1
2

1
8

1
5

O
n
-
R
a
m
p
s

va
lu

e
31

1.
83

1
30

8.
35

1
31

5.
40

8
3
2
3
.4

4
1

3
2
9
.9

0
9

3
1
9
.5

8
8

O
n
-
R
a
m
p
s

so
lv

e
ti

m
e

(s
)

28
.6

81
63

.1
6

10
1.

62
6

4
2
4
.8

3
5

1
1
7
3
.7

0
4

2
9
2
.7

4
5

C
e
n
t
r
a
l
i
t
y

b
u

il
d

ti
m

e
(s

)
0.

83
7

0.
95

3
0.

96
3

0
.5

9
9

0
.6

4
6

0
.7

8
1

C
e
n
t
r
a
l
i
t
y

n
o
d

es
9

11
12

1
2

1
8

1
5

C
e
n
t
r
a
l
i
t
y

va
lu

e
31

1.
83

1
30

8.
35

1
31

5.
40

8
3
2
3
.4

4
1

3
2
9
.9

0
9

3
1
9
.5

8
8

C
e
n
t
r
a
l
i
t
y

so
lv

e
ti

m
e

(s
)

30
.0

98
60

.0
08

10
1.

17
2

3
3
9
.1

7
6

1
2
1
7
.9

0
4

3
0
6
.5

6
4

Table 4.5: RDGS build time, resulting number of nodes, optimal solution value
and computation time of IR instances under reactive sparsification, computed on
the four different RDGS networks.

for the simpler k-Median Problem is 1+2/e+ε for metric spaces [28], and seeing
how no polynomial-time approximation algorithms exist for MRP unless P = NP
[70], we consider an approximation factor of 2.175 to be significant, even if it only

90 Chapter 4. Representative Distance-preserving Graph Sparsifiers

I 1
,1

I 2
,2

I 3
,3

I 4
,4

I 5
,5

I 6
,6

I 7
,7

I 8
,8

O
ri

g
in

a
l

b
u

il
d

ti
m

e
(s

)
0

0
0

0
0

0
0

0
O

ri
g
in

a
l

n
o
d

es
2
0

2
0

2
0

2
0

1
0
0

1
0
0

1
0
0

1
0
0

O
ri

g
in

a
l

v
a
lu

e
2
0
5
3
.7

2
6
5
4
.9

2
0
9
7
.6

1
0
4
5
.8

3
4
5
7
.3

3
3
1
6
.6

3
0
8
2
.1

3
4
6
0
.8

O
ri

g
in

a
l

so
lv

e
ti

m
e

(s
)

1
8
4
.8

0
9

1
.5

4
2

2
.4

3
4

0
.5

7
4

6
3
6
9
.8

6
6
0
.2

7
3

1
4
5
9
7
.6

9
2

8
3
.6

1
2

S
m
a
l
l
e
s
t

b
u

il
d

ti
m

e
(s

)
0
.0

6
9

0
.0

6
2

0
.0

4
6

0
.0

4
6

3
.5

7
5

4
.2

0
1

2
.7

7
3

2
.5

9
8

S
m
a
l
l
e
s
t

n
o
d

es
1
6

1
5

1
3

9
2
8

2
3

2
3

2
0

S
m
a
l
l
e
s
t

v
a
lu

e
2
0
5
3
.7

2
6
5
4
.9

2
3
4
0
.7

1
2
2
4
.2

3
6
7
3
.0

3
4
1
8
.6

3
2
6
1
.2

3
4
9
0
.6

S
m
a
l
l
e
s
t

so
lv

e
ti

m
e

(s
)

9
0
.9

8
7

0
.8

1
0
.9

9
7

0
.4

4
8
9
.0

1
1

3
1
.1

3
1

2
5
2
.5

9
2

1
7
.3

1
2

R
e
a
l
i
g
n
e
d

b
u

il
d

ti
m

e
(s

)
0
.1

1
6

0
.1

2
2

0
.1

0
8

0
.1

0
5

4
.8

0
8

6
.8

3
1

3
.9

7
1

4
.0

2
8

R
e
a
l
i
g
n
e
d

n
o
d

es
1
6

1
5

1
3

9
2
8

2
3

2
3

2
0

R
e
a
l
i
g
n
e
d

v
a
lu

e
2
0
5
3
.7

2
6
5
4
.9

2
3
4
0
.7

1
0
8
7
.3

3
6
6
2
.2

3
4
1
8
.6

3
2
3
4
.2

3
6
1
3
.6

R
e
a
l
i
g
n
e
d

so
lv

e
ti

m
e

(s
)

9
3
.0

1
2

0
.9

1
9

1
.1

0
9

0
.4

6
4

1
3
7
.7

6
4

2
9
.5

2
7

9
8
2
9
.7

9
9

5
2
.9

9
8

O
n
-
R
a
m
p
s

b
u

il
d

ti
m

e
(s

)
0
.0

2
8

0
.0

2
9

0
.0

2
4

0
.0

2
4

3
.3

2
1

2
.9

9
3

1
.8

4
6

2
.1

5
O
n
-
R
a
m
p
s

n
o
d

es
1
6

1
6

1
3

9
3
6

3
1

2
5

2
4

O
n
-
R
a
m
p
s

v
a
lu

e
2
0
5
3
.7

2
6
5
4
.9

2
3
4
0
.7

1
2
2
7
.6

3
5
8
0
.8

3
4
6
6
.0

3
2
7
3
.3

3
5
7
1
.9

O
n
-
R
a
m
p
s

so
lv

e
ti

m
e

(s
)

9
1
.5

4
3

0
.8

1
0
.9

4
8

0
.4

2
4

1
9
1
4
.4

7
1

6
2
.5

5
5

1
8
3
0
.5

8
4

2
3
.4

4
5

C
e
n
t
r
a
l
i
t
y

b
u

il
d

ti
m

e
(s

)
0
.0

1
7

0
.0

1
4

0
.0

1
3

0
.0

1
0
.2

5
4

0
.2

0
5

0
.3

5
2

0
.3

2
2

C
e
n
t
r
a
l
i
t
y

n
o
d

es
1
6

1
6

1
3

9
3
7

3
3

2
5

2
4

C
e
n
t
r
a
l
i
t
y

v
a
lu

e
2
0
5
3
.7

2
6
5
4
.9

2
3
4
0
.7

1
2
2
7
.6

3
5
8
0
.8

3
4
6
7
.6

3
2
7
3
.3

3
5
7
1
.9

C
e
n
t
r
a
l
i
t
y

so
lv

e
ti

m
e

(s
)

9
1
.3

1
2

0
.7

5
5

0
.9

2
1

0
.3

8
8

9
0
5
.3

6
3

6
1
.9

6
5

1
8
3
8
.2

4
1

2
3
.3

0
2

Table 4.6: RDGS build time, resulting number of nodes, optimal solution value
and computation time of the instances sampled for reactive sparsification, com-
puted on the four different RDGS networks.

holds on this limited class of instances. If there is any doubt about that the MRP
data will not realise with these job locations, agent start and end locations, time
horizon length or number of agents, we can simply refine this factor for a larger,
‘more certain’ mandatory subset V ′, as well as other values of k and ω, using the

4.9. Results 91

same MIJG method.

It is interesting to note that our MIJG framework produces an approximation
factor of 1.443 for the unchanged, original network. We would expect a factor 1
here, because if σ∗ is an optimal MRP solution, then σ∗ is a feasible solution for
the unchanged network. It is true that the approach described in Section 4.7 has
some inherent slack; namely, it is very pessimistic to assume that the agents will
be in their worst allowed configuration at every time step. However, since the
projection radius of the graph to itself was confirmed to be 0, we should see that
the king and the usurper always have their agents in the same nodes, meaning
that this slack does not explain this factor exceeding 1. Instead, we offer two
explanations. First, we observed that 1.443 was computed as an initial approx-
imation factor in Algorithm 8, but that computing the next α failed, because
solving M0(1.443) resulted in an out-of-memory error. We thus have to settle
for the initial approximation factor, which has a slack of its own. We conclude
from this that it may be worthwhile to investigate more scalable alternatives for
Algorithm 8. Second, it appears that the network of the MRP instance class
IR has two pairs of nodes for which both nodes have the same coordinates, but
different distances to other nodes. Therefore, even if the projection radius is 0,
the jester can create some differences by placing the usurper’s agents at the ‘bad’
nodes in the pairs, while the king gets to occupy the ‘good’ nodes in the pairs.

In Table 4.2, where we applied reactive sparsification on the IR instances in-
stead of universal sparsification, we see larger variations between the outcomes of
the four RDGS methods. This is to be expected, as we now have fewer ‘manda-
tory’ nodes steering the solution. We see more time saved than in Table 4.1,
but the median quality loss is also worse. This is both likely due to the fact
that, as seen in Table 4.5, reactive sparsification for the IR instances leads to
networks with hardly half of the nodes that universal sparsification does. Indeed,
the RDGS methods succeed in removing at least 91.6% nodes from the network.
Having fewer nodes means there is less to compute, but also more room for error.
The time required for each RDGS method to build the sparsified network seems
roughly of the same order as in Table 4.1. We remark that we inherit the per-
formance guarantee from universal sparsification, as in theory, the realisations
for which we sparsified reactively are among the allowed realisations we are pre-
pared for. In other words: we know that the solution after sparsification is at
most α∗ times as expensive as the optimal solution over the scenario set Z, so
especially after z ∈ Z is revealed and we apply reactive sparsification, we have a
performance guarantee of α∗ over the new scenario set {z}.

Finally, in Table 4.3, we see that reactive sparsification on the instances I1,1,
I2,2, et cetera leads to significantly fewer nodes removed and less time saved than
it does on the IR instances. However, the median quality loss seems smaller
and less varied. We remark a large difference between the IR instances and the
instances from the other classes; the IR instances act on nodes in the real world,
where the other instances have nodes in uniformly randomly generated places.
We hypothesise that the nodes in IR are already more ‘clustered’ in nature,

92 Chapter 4. Representative Distance-preserving Graph Sparsifiers

as they often represent different train stations in the same city, meaning it is
possible to remove many more nodes from it while staying R-representative. If
fewer nodes can be removed, then it is also not surprising that the saved time
and lost quality are both smaller.

A most interesting conclusion would be to see which one of the four RDGS
methods works ‘best’, but at first glance, the results do not appear to point
conclusively in one direction. The sparsification time of the Greedy Centrality

method is surprisingly low, but none of the methods required more than 18 sec-
onds on any instance, not even the Smallest Realigned method. Moreover,
how much time is saved by using an RDGS method is determined primarily
by how much less time is needed to solve the MILP on the sparsified network.
Surprisingly, the Greedy On-Ramps method appears to find marginally smaller
representations than the Greedy Centrality method does, but neither is out-
performed much by the Smallest and Smallest Realigned methods.

If we take the ratio of percentual quality loss over percentual speed-up, we
would like this ratio to be low. We have computed this ratio for every method
and every instance, and have observed the median ratio per method. On basis of
this ratio, we can say that Smallest Realigned works best for universal sparsi-
fication, then Smallest, then Greedy On-Ramps, then Greedy Centrality. The
exact same ranking is observed for reactive sparsification as well. This would sug-
gest that Smallest Realigned performs best on the benchmarks among these
four methods. But all in all, we conclude that all four methods achieve sub-
stantial computational speed-up against only marginal loss of solution quality, in
both reactive and universal sparsification.

4.10 Conclusions

Though most graph sparsification methods focus on sparsifying enormous graphs
for simple queries, we initiated the study of sparsifying moderately sized graphs
for NP-hard queries. We introduced the notion of representative, distance-
preserving graph sparsifiers and introduced four algorithms by which to obtain
ones which are as small yet representative as possible.

Using reactive sparsification on real-life test cases, we have computed MRP
solutions in 94.8% percent less time while losing only 6.02% of the solution qual-
ity. Using universal sparsification on these same instances, we have computed
MRP solutions in 91.2% less time while losing only 3.3% of the solution quality.
Using reactive sparsification in a broader range of cases, we have computed MRP
solutions in 56.1% less time while losing only 4.06% of the solution quality. The
Smallest Realigned seems marginally strongest in terms of quality loss over
speed-up, but all four methods perform roughly equally well.

Moreover, we have computed an MRP performance guarantee of 2.175 over
all possible instances on this sparsified real-world graph. In order to provide
this worst-case performance guarantee, we introduced the Mixed Integer Jester
Game framework and showed how to apply it for computing this performance

4.10. Conclusions 93

upper bound.
As directions for future research, we propose the following. It could be inter-

esting to perform sparsification and apply the MIJG framework to the other prob-
lems listed in Section 4.6, and more deeply investigate which types of problems
and data are well suited for sparsification. Furthermore, the Greedy Centrality

sparsification algorithm is by far fastest in sparsification, yet marginally weakest
in the ratio between quality loss and speed-up. If the speed of this method could
be hybridised with the effectiveness of other methods, this may yield a stronger
RDGS algorithm. In the Mixed Integer Jester Game framework, the usurper
is limited to problems that can be written as a Linear Program, rather than a
Mixed Integer Linear Program, because we crucially exploit the fact that we can
dualise the usurper’s problem. The flexibility of this framework will increase if
this limitation is overcome. In finding the fixed point of a MIJG, other itera-
tive approaches might exist that scale better than the standard Newton-Raphson
method and which give more intermediary improvements. Finally, we believe the
MIJG framework may give new computational insights into the field of algorith-
mic approximation guarantees, and we are excited to see this line of thought
further explored.

Chapter 5

The Enriched Median Routing
Problem

5.1 Introduction

In this chapter, we will arrive at the final version of MRP that this research
project has culminated in. The RDGS algorithms of the previous chapter al-
low us to heuristically reduce computing times, even for very complicated graph
problems. In particular, the Greedy Centrality RDGS algorithm will allow us,
in this chapter, to generalise MRP to a version that is richly featured enough to
be used in practical implementations.

In previous chapters, we saw how the MRP model and proposed solution
methods provide new fundamental insight into how to balance the trade-off be-
tween urgent and non-urgent tasks properly. However, the application of the
results in a real-life pilot setting taught us that the model assumptions were too
limiting to be of real use in practice, and that many more limitations that occur
in practice should be taken into consideration. For example, in terms of objec-
tives, low emergency response times may be the most important goal, but the
distance travelled outside of emergencies is another relevant goal. Also, in terms
of constraints, the details of what makes a planning feasible can be numerous:
some agents may not be authorised to perform certain tasks; some tasks may
have specific time windows; some agents may have to stay close to the base sta-
tion at all times; some jobs may need several agents to perform; some agents may
have scheduled appointments within their shifts, during which they are unable to
perform jobs or respond to emergencies. These are just some of many examples
of limitations encountered in practice that are not covered by the MRP-model.

Motivated by this, the contribution of this chapter is fourfold. First, on the
basis of extensive feedback from our pilot study, we enrich the MRP-model with
the inclusion of fifteen extensions to cover the additional objectives and con-
straints that practical applications may require. Second, we adapt the solution
methodology to provide a solution for the E-MRP, demonstrating the flexibil-

95

96 Chapter 5. The Enriched Median Routing Problem

ity of the methodology. Third, based on extensive discussions with planners of
our partnering railway provider, we propose a Current Practice (CP) model that
accurately describes the way in which planners currently schedule tasks (today,
they do so without any support from MRP). Fourth, we perform extensive sim-
ulation experiments to compare the performance of planning in the CP-model
with the performance of E-MRP model in order to assess the gain that can be
obtained by using E-MRP. We do so by taking real-life case study data from our
partnering railway provider, modelling how they would currently plan with the
given data, and comparing that with the improved planning from our heuristic.
The results show that the E-MRP solution strongly improves the responsiveness
of the current system, even with an increased number of non-urgent tasks. This
leads to the conclusion that our E-MRP model provides a powerful means to
balance urgent and non-urgent tasks, and is applicable in practice.

The remainder of this chapter is structured as follows. In Section 5.2, we re-
view the related literature, including generalisations in related problems. In Sec-
tion 5.3, we describe the E-MRP model and solution algorithm. In Section 5.4,
we describe the CP-model that describes the way non-urgent task planning is
done in current operational practice. In Section 5.5, we elaborate on the simula-
tion environment in which we make comparisons. In Section 5.6, we discuss the
numerical results of our comparison. In Section 5.7, we present our conclusions
and recommendations.

5.2 Related literature

In the Multi-Period Median Routing Problem, formulated by Kraster et al. [90],
the jobs have to be divided over multiple shifts. They proposed doing so with
a constructive Median Heuristic. In this heuristic, a compatibility between any
two jobs is determined by scheduling one, computing which positions give good
coverage when that job is being performed, then seeing if the second job is near
one of those reactive positions.

The basic version of the k-Median Problem was discussed in Section 2.2. How-
ever, this classical k-Median Problem has been generalised in a number of ways.
In the Multi-Capacitated Location Problem by el Amrani et al. [42], we must
choose to which ‘degree’ each facility is opened. Rather than being allowed k
medians, the lower degrees take up less of a common facility budget, but they
also have less capacity with which to serve clients. They propose a ‘Greatest
Customer Demand First’ heuristic boosted with an initial Branch-and-Cut solu-
tion. In the Directional k-Median Problem by Jackson et al. [78], the points lie
in a k-dimensional space, and medians can only cover other nodes if they are in
the positive direction of the first l dimensions. They propose a polynomial-time
algorithm for the 1-dimensional case, which they use as a subroutine in their
heuristic for higher dimensions. In the k-Median Problem with Distance Selec-
tion by Benati and Garćıa [12], the nodes also lie in k-dimensional space, but we
select which q dimensions we care about, as well as the k corresponding medians.

5.2. Related literature 97

This is motivated by clustering on statistical data, where the interesting features
are the ones that allow for meaningful clustering. This non-linear problem is
linearised in different ways, and the radius formulation performs best. In the
Hamiltonian k-Median Problem, we divide the nodes in k directed cycles, rather
than k stars pointing at a median. Gouveia et al. [10] solve this problem at
competitive speed by combining subtour elimination constraints from the trav-
elling salesman problem with path elimination constraints from location-routing
problems and the concept of an ‘acting depot’. In the Bi-Criteria k-Median k-
Dispersion Problem, we not only minimise the summed distances of nodes to their
medians, but we also maximise the smallest distance between any two medians.
Colmenar et al. [30] propose a Scatter Search matheuristic to find solutions on
or near the Pareto front of these two objectives.

Even more so than K-MED, the basic VRP has been generalised in many
ways. VRP-REP lists 50 [154] VRP variants. In the VRP with Time Win-
dows [138], certain clients can only be visited within contiguous time windows.
In Orienteering Problems [149], we have bounded time to collect rewards from
visited clients, instead of minimising the distance to visit all of them. In the
Pollution Routing Problem [11], we may choose to drive more slowly to save fuel,
as long as we abide by the time windows. In Distance-Constrained VRPs [93],
routes cannot exceed a certain length. In Green VRPs [43], alternative fuel vehi-
cles must visit a specialised refuelling station periodically. In the Carrier-Vehicle
Travelling Salesman Problem [53], clients are visited by a vehicle that must stay
close to a mobile, but slow, carrier. In Two-Echelon VRPs [33], goods are first
brought to satellite stations, and from there to nearby destinations. In Dial-a-
Ride Problems [123] and VRPs with Pickup and Delivery [133], goods or persons
must be collected from a pickup node and brought to a delivery node. In Con-
sistent VRPs [60], it is important that a client who is visited in multiple time
periods is visited as much as possible by the same vehicle and around the same
time. In Periodic VRPs [54], some clients must be visited multiple times, but
certain combinations of visiting days are not allowed. In Location-Routing Prob-
lems [40], we must simultaneously decide where to open depots and how to route
over all clients from those depots. Perhaps most importantly, in the Technician
Routing and Scheduling Problem [117], the clients must be serviced by a tech-
nician with the right skills, tools and spare parts within the right time window.
Pillac et al. described a successful metaheuristic for this problem, combining a
Regret-based constructive heuristic, an Adaptive Large Neighbourhood Search
and post-processing by a Set-Covering-based Binary Program.

While there is other literature that is relevant for the contents of this chapter,
such as other publications that touch on both planned jobs and emergency re-
sponse in one way or another, much of this literature has already been presented
in Section 2.2.

98 Chapter 5. The Enriched Median Routing Problem

5.3 Enriched Median Routing Problem

We will now describe the central problem of this chapter. In Section 5.3.1, we
describe the E-MRP and its notation. In Section 5.3.2, we give a formulation of
the Mixed Integer Linear Program (MILP) for the E-MRP, and in Section 5.3.3
we propose a fast and scalable heuristic for the E-MRP.

5.3.1 Problem description

The E-MRP is an extended version of MRP, with additional constraints and
objectives. As in MRP, we are given a network and a set of agents, tasks (jobs)
and discrete time steps. Per time step, agents may hop to an adjacent node or
stay where they are. The goal is to decide for each job who will perform it when,
and for each agent where they should be throughout the discrete-time horizon.
We expand on MRP with the following extensive list of features:

1. The planned travel time is added to the objective function;

2. The makespan is added to the objective function;

3. Penalties for assigning certain jobs to certain agents are added to the ob-
jective function;

4. The start and end locations of agents are variable;

5. Agents start and end at heterogeneous times;

6. Some jobs may not be started at certain times;

7. Jobs can require more than one agent;

8. Jobs can require some or all of its agents to have certain qualifications;

9. Some agents are not available for emergency response during a part of their
shift;

10. Some agents are not available for processing jobs during a part of their
shift;

11. Agents have personal sub-networks they cannot leave;

12. There are mandatory appointments for certain agents to be at a place at a
certain time;

13. Jobs may end at a different location than where they start;

14. Aside from preferences, some assignments of jobs to agents are given as
hard constraints;

15. Emergency probabilities and response times are time-dependent.

5.3. Enriched Median Routing Problem 99

Set Description

A The set of agents

J The set of jobs

V The set of nodes

T The set of time steps, T = {0, 1, . . . , ω}
H The set of shifts in the planning horizon

A(h) The agents in shift h ∈ H, A(h) ⊆ A
T (a) The time steps in which agent a ∈ A is active

VP (t) At time t ∈ T , the nodes where incidents may occur (VP (t) ⊆ V)

V (u) The nodes within one hop distance of u ∈ V , including u

B The set of authorizations agents can have

X! Appointments (a, v, t) that agent a must be at node v at time t

Table 5.1: Notation for the sets in the Enriched Median Routing Problem.

Parameter Domain Description

Cuvt Q≥0 The response time at time t ∈ T from u ∈ V to v ∈ VP (t)

C→uv Q≥0 The non-emergency travel time from u ∈ V to v ∈ V (u)

Pvt (0, 1] Probability that the next emergency is at node v ∈ VP , time t ∈ T
Y Xat {0, 1} Whether agent a ∈ A is available for emergencies at time t ∈ T
ZXat {0, 1} Whether agent a ∈ A is available for non-urgent jobs at time t ∈ T
Sat {0, 1} Whether agent a ∈ A can start their shift at node v ∈ V
Wat {0, 1} Whether agent a ∈ A can end their shift at node v ∈ V
V n
a {0, 1} The current default start and end location of agent a ∈ A
XXav {0, 1} Whether agent a ∈ A is allowed to visit node v ∈ V
BXab {0, 1} Whether agent a ∈ A has authorization b ∈ B
L.
j V The start location of job j ∈ J

L�j V The end location of job j ∈ J
Rjt {0, 1} Whether job j ∈ J may be started at time step t ∈ T
Qj Z≥0 The number of time steps job j ∈ J takes

C×j Q≥0 The penalty for not planning job j ∈ J
Mjb Z≥0 How many agents with authorization b ∈ B job j ∈ J needs

Naj Q≥0 The penalty incurred when assigning job j ∈ J to agent a ∈ A
Z!
aj {0, 1} Whether it is mandatory that agent a ∈ A is assigned to job j ∈ J

φresponse Q≥0 The weight of the response time objective

φdistance Q≥0 The weight of the distance objective

φpreference Q≥0 The weight of the assignment preference objective

φmakespan Q≥0 The weight of the makespan objective

φignoring Q≥0 The weight of the job ignoring penalty objective

Table 5.2: Notation for the parameters in the Enriched Median Routing Problem.

100 Chapter 5. The Enriched Median Routing Problem

Variable Domain Description

xavt {0, 1} Whether agent a ∈ A is at v ∈ V at time t ∈ T
fat Q≥0 Distance travelled by a ∈ A between time t ∈ T and t+ 1

yuvt {0, 1} Whether a potential emergency at v ∈ VP , time t ∈ T will be
responded to from u ∈ V

zajt {0, 1} Whether agent a ∈ A starts job j ∈ J at time t ∈ T
z′aj {0, 1} Whether agent a ∈ A performs job j ∈ J
z′′jt {0, 1} Whether job j ∈ J is started at time t ∈ T
z′′′j {0, 1} Whether job j ∈ J is done at all

z [0, ω] The latest completion time among jobs

Table 5.3: Notation for the variables in the Enriched Median Routing Problem.

For the complete definition of E-MRP, we make use of the notation given in
Tables 5.1, 5.2 and 5.3. Denote A as the set of agents, J the set of jobs, V the
nodes of the network, V (v) the nodes adjacent or equal to v ∈ V , and T the set
of discrete time steps. Agents may have heterogeneous working hours, denote
T (a) ⊆ T the working hours of agent a ∈ A. There is a set of job authorizations
B an agent can have, and we denote BXab = 1 if agent a ∈ A has authorization
b ∈ B, and 0 otherwise.

We denote Sav = 1 if node v ∈ V is an allowed start location for agent a ∈ A,
and 0 otherwise. Likewise, Wav indicates whether a can end their shift at v. The
start time and end time of a ∈ A are the earliest and latest time steps respectively
in T (a). In each time step, each active agent a ∈ A may stay where they are or
move to an adjacent node. However, they have personal sub-networks in which
they must stay, and XXav equals 1 if a is allowed to visit v and 0 otherwise.

Each job must be performed. Once a job j ∈ J is started, the agents assigned
to it must stay at the location of the job for the entire duration Qj . They must
also be available for processing jobs throughout, and we indicate whether or not
an agent a ∈ A is available for job processing at time t ∈ T by setting ZXat equal
to 1 or 0. Unlike in MRP, the start location L.j ∈ V may be different from the

end location L�j ∈ V , as some jobs may consist of thoroughly inspecting an ‘edge’
of the network. For ease of notation, we assume that jobs do not share locations,
as we can easily introduce virtual locations. Some jobs have time constraints,
meaning j can only be started at time t ∈ T if Rjt equals 1 rather than 0. Note
that these ‘time windows’ are not contiguous per se: it may make sense for certain
jobs to be done during the morning peak hour or the afternoon peak hour, but
not somewhere in between.

The most impacting difference between MRP and E-MRP, is that a job may
require several agents. In fact, j ∈ J may require that Mjb agent with authoriza-
tion b ∈ B are assigned to it. We allow an agent with multiple authorizations to
count towards the requirement Mjb of each of those authorizations: for instance,
if a job requires two agents with basic training (Mj,basic = 2) and one agent with

5.3. Enriched Median Routing Problem 101

mechanical training (Mj,mechanic = 1), the job can be fulfilled by two agents, if
they both had basic training and at least one of them had mechanical training.

The decision variables are the following. We must decide for each agent a ∈ A
and each time step t ∈ T (a) where in the network they are, by setting xavt = 1
if a is at node v ∈ V at time t and 0 otherwise. We must also set z′aj to 1 or 0
to indicate whether agent a ∈ A is assigned to job j ∈ J , and z′′jt to 1 or 0 to
indicate whether j is initiated at time t ∈ T . Given the values of these variables,
the remaining variables have values that are easy to determine. We set zajt = 1 if
z′aj = z′′jt = 1 and 0 otherwise. If agent a ∈ A decides to move between time steps
t ∈ T and t+ 1, we denote the travelled distance by fat ≥ 0. If this movement is
from u ∈ V to v ∈ V , we set fat equal to the travel distance C→uv. Furthermore,
we keep track of the ‘makespan’ z: if job j ∈ J is initiated at time t ∈ T and
needs Qj time steps to process, then the completion time is t+Qj , and z is equal
to the latest completion time among the jobs. Finally, at every time step t ∈ T
there are nodes v ∈ VP (t) ⊆ V at which an emergency can occur, and we indicate
whether it will be responded to from node u ∈ V by setting yuvt to 1 or 0.

We wish to minimise a sum of four objectives, weighted with normalising fac-
tors φresponse, φdistance, φpreference and φmakespan, respectively. First, we want
to minimise the expected response time to emergencies in the network. At each
time step t ∈ T , we know of each danger-node v ∈ VP (t) the probability Pv,t of the
next emergency occurring there. Once we have decided the positions xavt of the
agents throughout time, we know from which nodes u ∈ V emergency coverage
can be given to (v, t). We only count agents who are available for response at that
time, as Y Xat ∈ {0, 1} indicates whether agent a ∈ A is available for emergency
response at time t. It is always optimal to choose the nearest remaining u for cov-
erage of v ∈ V . So we know the probability Pvt for the next emergency to be at
(v, t), and we know the corresponding response time Cuvt, meaning the expected
response time to the next emergency equals

∑
t∈T,v∈VP (t),u∈V PvtCuvtyuvt.

Second, we want to minimise the total time agents spend travelling, aside from
emergency response. Movement requires fuel, and preventive jobs often cannot
be performed while moving. This objective simply equals

∑
a∈A,t∈T (a) fat.

Third, planners may have their own preferences of assigning specific jobs to
specific agents for reasons beyond this model. It may be, for instance, that an
agent will soon have an exam for a certain type of job, and should practice that
job as much as possible. We therefore define a ‘penalty’ Nja ≥ 0 of assigning
agent a ∈ A to job j ∈ J to discourage unwanted assignments. This final cost
component is equal to

∑
a∈A,j∈J Njaz

′
aj .

Finally, we want to minimise the makespan z. If jobs are scheduled near the
end of the shift, then any emergency will make it likely that the planned jobs
can no longer be performed that day. Additionally, minimising the makespan
implicitly means that the workload is divided as ‘fairly’ over agents as possible.

102 Chapter 5. The Enriched Median Routing Problem

5.3.2 Mixed Integer Linear Program formulation

We present here a Mixed Integer Linear Program (MILP) formulation for the
E-MRP. Technically, it describes a generalisation, as we explain below.

min φresponse ·
(∑

t∈T,v∈VP (t),u∈V PvtCuvtyuvt

)
+ φmakespan · z

+ φpreference ·
(∑

a∈A,j∈J Njaz
′
aj

)
+ φdistance ·

(∑
a∈A,t∈T (a) fat

)
+ φignoring ·

(∑
j∈J C

×
j (1− z′′′j)

)
s.t.

∑
v∈V

Sav xavt.ah
= 1 (∀h ∈ H)(∀a ∈ A(h)) (5.1)∑

v∈V
Wav xavt�ah

= 1 (∀h ∈ H)(∀a ∈ A(h)) (5.2)∑
v∈V

xavt = 1 (∀a ∈ A)(∀t ∈ T (a)) (5.3)

xavt ≤
∑
u∈Vv

(xau(t−1) +
∑

j∈ ~J(u,v)

zaj(t−Qj))
(∀a ∈ A)(∀v ∈ V)
(∀t ∈ T (a)\{0}) (5.4)

∑
a∈A

BXabz
′
aj ≥Mjbz

′′′
j (∀j ∈ J)(∀b ∈ B) (5.5)

zajt ≤ z′′jt (∀a ∈ A)(∀j ∈ J)(∀t ∈ T) (5.6)

zajt ≤ z′aj (∀a ∈ A)(∀j ∈ J)(∀t ∈ T) (5.7)

zajt ≥ z′aj + z′′jt − 1 (∀a ∈ A)(∀j ∈ J)(∀t ∈ T) (5.8)∑
t∈T

z′′jt = z′′′j (∀j ∈ J) (5.9)

t+Qj−1∑
τ=t

ZXatxaL.
j τ
≥ Qjzajt (∀a ∈ A)(∀j ∈ J)(∀t ∈ T) (5.10)

ZXa(t+Qj)xaL�
j (t+Qj) ≥ zajt (∀a ∈ A)(∀j ∈ J)(∀t ∈ T) (5.11)

z ≥ (t+Qj)z
′′
jt (∀j ∈ J)(∀t ∈ T) (5.12)∑

u∈V
yuvt = 1 (∀t ∈ T)(∀v ∈ VP (t)) (5.13)

yuvt ≤
∑

a∈A:t∈T (a)

Y Xat xaut
(∀u ∈ V)(∀t ∈ T)
(∀v ∈ VP (t))

(5.14)

C→uv(xaut + xav(t+1) − 1) ≤ fat
(∀a ∈ A)(∀t ∈ T (a)\ω)
(∀u ∈ V)(∀v ∈ V (u))

(5.15)

xavt, zajt, z
′
aj , z

′′
jt, z

′′′
j ∈ {0, 1}, yuvt, z, fat ≥ 0

As mentioned, this MILP describes a problem more general than E-MRP:

5.3. Enriched Median Routing Problem 103

planning is done over several shifts, and allow jobs j ∈ J to be ignored against a
penalty C×j . We present this more general MILP, because it allows us to describe
most of the subroutines in this chapter as a small variation of this MILP.

Let H be the set of shifts. Denote T (h) ⊆ T the time steps in shift h ∈ H.
Let A(h) ⊆ A be the set of agents working shift h. For each a ∈ A(h), denote
t.ah ∈ T (h) and t�ah ∈ T (h) the start and end time of agent a in shift h. Denote
~J(u, v) := {j ∈ J : L. = u, L� = v} the jobs that start at u but end at v.
Let the binary decision variable z′′′j indicate whether you decide to do the job
j ∈ J . With this notation, we obtain the above MILP. We fix xavt = 1 for every
(a, v, t) ∈ X !, xavt = 0 for every t ∈ T if XXav = 0, and z′aj = 1 if Z !

aj = 1.

The objective function of the MILP consists of the four components described
in Section 5.3.1, with the added job ignoring penalties

∑
j∈J C

×
j (1− z′′′j). Con-

straints (5.1) and (5.2) indicate that agents must start and end each of their shifts
at locations that are allowed for them. Constraint (5.3) states that an agent can
be in only one place at a time. Constraint (5.4) states that agents can only
move to adjacent nodes. An exception is made when performing jobs that end
in different places than they start: if an agent initiates a job j ∈ J ∈ ~J(u, v)
at time t ∈ T , then we allow that agent to ‘teleport’ from u to v at time
t+Qj . Constraint (5.5) encodes that each job needs a certain number of agents
for each authorization. Constraints (5.6), (5.7) and (5.8) set the relation that
(zajt = 1) ⇔ (z′aj = z′′jt = 1). Constraint (5.9) states that if you decide to do
a job j ∈ J , it must get exactly one starting time. Constraint (5.10) ensures
that agents who start a job stay at its location for the duration, except in its
final step, when constraint (5.11) puts them at the job end location. Constraint
(5.12) makes z behave as the makespan, or the latest completion time among
jobs. Constraint (5.13) states that at every time t ∈ T , the danger-nodes VP (t)
need emergency coverage. Constraint (5.14) states, however, that coverage can
only be given from nodes with at least one agent on them who is available for
emergency response. Finally, constraint (5.15) encodes that if agent a ∈ A starts
moving at time t ∈ T from node u ∈ V to node v ∈ V (u), then the distance fat
should equal C→uv.

We obtain a MILP for E-MRP by observing only one shift, and demanding
z′′′j = 1 for all j ∈ J . We remark that constraints (5.1) – (5.5), (5.9), (5.13) and
(5.14) were already present in some form in MRP, as well as the response time
objective. The parameters, variables and indices added to those constraints, to-
gether with the new constraints and objectives, constitute the difference between
MRP and E-MRP.

5.3.3 An MDSA-inspired heuristic

While it is possible to solve an instance of E-MRP by plugging the MILP into
a MILP solver, the required computation times are much too long and unpre-
dictable for this specific application. Whenever an emergency occurs, planners
need to have a new planning within minutes, and they cannot afford to wait hours

104 Chapter 5. The Enriched Median Routing Problem

or days for the optimal one. Therefore, a fast heuristic is needed that provides
good solutions within a few minutes. In Chapter 2, MDSA was found to be the
most effective heuristic for MRP. We recall that, roughly speaking MDSA consists
of four steps, which are outlined below for later reference.

Step 1: MEDIATE
In this step, the ideal positions for emergency response are determined by solv-
ing a k-Median Problem. These medians are matched to agents, such that the
distance between the median and the agent’s start and end location are minimal
in total. Agents are temporarily solely responsible for emergency response in the
region belonging to their median.

Step 2: DIVIDE
In this step, jobs are assigned as much as possible to the nearest median and its
agent.

Step 3: SEQUENCE
In this step, each agent decides in what order to visit the jobs assigned to them.
Discrete routes over the network are then drawn with optimal response times to
the region of that agent.

Step 4: AGREE
In this step, it is evaluated if the current routes justify the initial division of
emergency nodes over agents, and a small re-optimisation is performed.

Adapting MDSA to E-MRP is non-trivial, due to the many new features. To
be more specific, the two main hurdles to be taken are the following: (1) it is no
longer given that any agent can do any task at any time, and (2) because some
tasks may require multiple agents, agents are no longer free to independently
sequence their jobs.

An example of the first hurdle is given in Figure 5.1. If we simply compute the
fastest route between all jobs assigned to an agent, we can no longer guarantee
that this is feasible. For instance, it may be that some jobs j are quite restrictive
in their allowed starting times Rjt. It no longer suffices to encode with decision
variables if one job is followed by another; we must also decide the starting
time t and check whether Rjt = 1. Similarly, appointments X ! must also be fit
into the schedule, giving us another reason that we must explicitly track arrival
times. These are only two of the many additional features to account for in
dividing and sequencing the jobs. The second hurdle, illustrated in Figure 5.2,
causes an even deeper issue in the methodology. In MDSA, we first divide jobs
over agents, then allow them to independently decide in what order to visit these
jobs. However, because we now have jobs that require multiple agents, we need
to ensure that agents arrive at such jobs at the same time. This makes it very
difficult to decouple the routing decisions per agent, especially in conjunction

5.3. Enriched Median Routing Problem 105

2

1

1

1

1

Allowed at t = 5, 8, 10

Allowed at t = 3, 4

×
×

(a) The route MDSA suggests is infeasible; in this
case, because some jobs cannot be initiated at all
times (Rjt = 0).

2

1

1

1

1

(b) A feasible alternative.

Figure 5.1: The first issue with MDSA: the most efficient route may be infeasible,
due to the many side constraints of E-MRP.

2

1 1

1

1

1

Arrives t = 4

1

Arrives t = 9

Figure 5.2: The second issue with MDSA: if agents draw their own routes, they
may arrive at cooperative jobs at completely different times. Due to time limits,
we cannot always wait until everyone is present. If ω = 13, then these two routes
are feasible in isolation, but infeasible when evaluated jointly.

with the routing challenges in the first hurdle. In conclusion, the arrival of each
agent at each key location must be synchronised much more closely, and MDSA as
is falls down. A new algorithm is needed.

Fortunately, by understanding what made MDSA successful, we can craft a
heuristic in the same spirit. To be more specific, for MDSA the quality of the so-
lutions was concluded to be mainly due to the MEDIATE-step (outlined above).
Because it is NP-complete to produce a feasible solution for MRP, MILP solvers
were required as subroutines, but they terminated very quickly due to the prob-
lem being split and heavily compressed.

For E-MRP, we propose the heuristic described in Algorithm 10. We again
start with determining good medians. Because finding a feasible solution is NP-
complete, we need a MILP solver as a subroutine, but we can greatly speed this

106 Chapter 5. The Enriched Median Routing Problem

up by compressing the underlying network. We again split the decisions over
several steps: the MILP mainly finds a feasible job schedule with reasonable dis-
tance to the medians, but we only explicitly optimise emergency response times
and travelled distances in later steps.

ALGORITHM 10: High-level overview of the MDSA-inspired algorithm for E-MRP.

1: Obtain |A| medians optimal with respect to
∑

t∈T PvtCuvt

2: Obtain an RDGS V ′ ⊆ V containing all medians and the start and end locations
of agents and jobs

3: Run the MILP, but with nodes V ′, and Pvt > 0 only for the medians, and |H| = 1,
and z′′′ = 1, and φdistance = 0, and an appropriate time-out.

4: Fixing z from the previous step, as well as X !, determine where in V any agent
a ∈ A can be at any time t ∈ T

5: Sort A on how many start locations they can still choose from, then greedily
choose start locations minimising response time and travel time to the first goal

6: For t ∈ T , for each active agent, greedily decide their next hop based on response
time and travel time

Below we elaborate on the steps in Algorithm 10.

1. Node weights and response times are now time-varying, but for simplicity,
we sum these over time. This is equivalent to taking average weights and
response times. This allows us to solve one k-Median problem for the entire
time horizon, which is much less computationally intensive than solving one
for each time step. The underlying assumption is that, though some time
steps will have more emergencies and higher travel times, each node will
retain more or less the same fraction of the emergency weight, and the
increase in response times behaves like a constant multiplication. This is
justifiable when emergency probabilities and response times increase mainly
due to the morning and afternoon rush hours, and these multiplication
factors are uniform over the network. Note that if Pvt and Cuvt are static
enough, then in practice, we can maintain a preprocessed list of medians
for the typical numbers of agents in a shift.

2. It is computationally costly to input many nodes into the MILP. Therefore,
we find the smallest subgraph that preserves the graph distances between
the points of interest, including the medians, using an RDGS algorithm
from Chapter 4. If the start and end locations of the agents and jobs are
static enough, this step can also be preprocessed. Otherwise, we propose
using the Greedy Centrality due to its low running time.

3. We run the MILP from Section 5.3.2 for a limited time. Because we use
it for an instance of E-MRP, we enforce that every job must be scheduled,
and we only observe one shift. We knowingly delay optimising the travelled
distance to a later step, trusting that a good makespan will imply an agent’s

5.3. Enriched Median Routing Problem 107

jobs being close together. This also allows us to skip constraint (15), which
is by far the most costly to build.

4. In later steps, we will greedily choose cost-improving hops. However, we
need to make sure that we do not make choices that turn out to be in-
feasible. Therefore, we perform this step to compute which nodes can be
visited at which times when abiding by the job schedule z from the pre-
vious step and X !. For each agent, we determine from z and X ! their
fixed locations at those times. Then, because this set of fixed locations is
small and the network adjacency is constant over time, we can make the
following computation. For each location of interest for an agent a ∈ A,
we use breadth-first search to determine how many hops away it is from
each node v ∈ V , remembering that a ∈ A can only visit nodes u ∈ V
with XXau = 1. Then if a has a fixed location (u1, t1) and next has to be
at (u2, t2), we know for each v ∈ V that a ∈ A can be there at times
t1 + hops(u1, v) ≤ τ ≤ t2 − hops(v, u2), which may be an empty set of τ .
The result of this step is, for each agent a ∈ A and each time step t ∈ T , a
list of nodes Vz(a, t) ⊆ V which that agent can visit at that time.

5. While agents can have multiple start locations to choose from, this selec-
tion may be further limited by fixing the job schedule z. We sort A in
increasing order of how many start locations they can still choose accord-
ing to Vz. We initiate the set U of chosen start locations empty. Then,
for each agent a ∈ A in the sorted A, and for each allowed start loca-
tion u, we determine the summed response cost for U ∪ {u} as (C)′u =∑
t∈T,v∈VP (t) Pvt minu′∈U∪{u} Cu′vt. If a visits any jobs or appointments,

and l is the starting location of the first such visit, we set (C→)′u = C→ul ;
otherwise, (C→)′u = 0. We then pick the start location u with minimal
φresponse(C)′u + φdistance(C

→)′u, set the location of a at their start time to
u, add u to U , and move on to the next agent.

6. For each time step t ∈ T\{ω}, and each agent active at that time step and
the next, we obtain their current location v and look at all nodes in Vz(a, t+
1). Let U be the (possibly empty) set of locations for which it is decided
that some response available agent will be there at t+1. Then for each u ∈
Vz(a, t+1), we again determine (C)′u =

∑
t∈T,v∈VP (t) Pvt minu′∈U∪{u} Cu′vt,

and we set (C→)′u = C→vu. We let the location of a at time t + 1 be
u := arg minu∈Vz(a,t+1)(φresponse(C)′u + φdistance(C

→)′u).

In summary, Algorithm 10 yields a schedule for the jobs, and a movement
instruction for the agents. By construction, this algorithm will find a feasible
solution if it exists, unless the time-out on step 3 is too narrow.

108 Chapter 5. The Enriched Median Routing Problem

5.4 Current Practice model

To assess the performance improvement of our E-MRP solution with the perfor-
mance obtained with the current way of planning, it is important to understand
how the planning is done in current practice. By making an accurate quantitative
model of the current practice, we can computationally investigate the influence
that certain decisions have on different metrics. This allows us to investigate a
large number of potential scenarios. Furthermore, a model allows us to compare
the performance in these scenarios, without having to track how well our pro-
posed solution is abided by in practice. To this end, we have set up extensive
interviews with task planners from our partnering railway provider. This has
led to a common understanding of the informal steps taken in the current way
of planning, which is mainly done manually (without any support from MRP).
Throughout, this model will be referred to as the Current Practice (CP) model,
and is described below. In the next section, this CP-model will be used as a
benchmark to compare the performance of the E-MRP model proposed in this
chapter for a realistic use case scenario obtained from our partnering railway
provider.

We have observed ten shifts in a single week. A shift consists of several agents,
and a shift leader responsible for their coordination. Some agents, including the
shift leader, have a role in a shift that requires them to stay at the base of
operations. Almost every shift has a designated truck driver, who cannot stray
too far from the garage of the heavy emergency-response truck, which is also at
the base station.

In the current way of working, agents in our case study make their planning
in a rather decentralised manner. Some of the preventive jobs require some
paperwork and planning, or collaboration, and these are typically planned and
assigned by the shift leader. After that, however, the shift leader asks the agents
to propose for themselves which jobs they will do, based on their own expertise
and preferences. Agents have often accumulated local knowledge in the area
around their home, and prefer to stay in that area. They will typically divide the
tasks close to their home over their shifts that week. Once they have performed
a sufficient amount of work, they are allowed to await emergencies from their
home base. See also Figure 5.3.

As long as this means someone is active in the ‘northern part of the region’, as
well as in the ‘middle part’ and ‘southern part’, the expected emergency response
time is low enough for the shift leader to be content. Working hours have been
designed around that logic, and typically, each shift contains an agent living in
the north, the middle and the south. For the ten shifts in our case study, the
active agents indeed have home bases in these three areas, and the decentral
plans of the agents were not interfered with.

In this way of working, agents may know roughly in what corners of the
networks their co-workers are, but they do not know where exactly or what they
are doing. Some agents in the late shift may choose to perform a periodic patrol

5.4. Current Practice model 109

t = 11

Figure 5.3: A schematic representation of the current practice. Two agents, living
at the green house-shaped nodes, determine which jobs are within a given radius
of their home base. They disregard jobs outside of that radius. One job in their
intersection has to be done by at least two people: a planner decides these two
should do it, at time t = 11. Apart from that, agents are free to divide jobs over
their shifts. The left agent divides eight jobs over his four shifts (solid orange
lines), the right agent divides five jobs over his three shifts (purple dotted lines).
They are unaware that the same job (just below the cooperative job) is visited
by both of them at some point, which is superfluous. The left agent could have
instead visited a job that now no one does.

110 Chapter 5. The Enriched Median Routing Problem

on a piece of the railway, not knowing that a co-worker has already patrolled there
the same morning. Moreover, agents in the same shift may encounter each other
patrolling the same piece of the railway, and continue their patrol together. Two
agents staying together is clearly suboptimal with respect to emergency response
times. Meanwhile, if some other part of the railway has been neglected for weeks
on end, this is untracked and unknown.

The current practice has some practical benefits: it requires very little com-
munication, which makes it robust in the face of emergencies. Furthermore,
experience with a given piece of the railway is undoubtedly beneficial to inspect-
ing it effectively. However, now that the communication infrastructure and the
size of the organisation are growing, we believe our model and heuristic can help
coordinate schedules and decrease response times. We will support this claim in
the remainder of this chapter.

We obtain all sets and parameters from the case study data, with one ex-
ception. For each agent a ∈ A, from among the variable starting and ending
locations, only V na is allowed, the one nearest to their home. If an agent works
from the base station or as a truck driver, the base station is taken as the start
location. Because the agents must select a subset of jobs to perform, we provide a
job ‘importance’ C×j that was also approved by the employee of the organisation.
We simulate the current practice as follows, with H the ten shifts in the observed
week.

Let MILP(A′, J ′, V ′, H ′, F) denote that we call the MILP from Section 5.3.2
with agent subset A′, job subset J ′, node subset V ′, shift subset H ′, and a collec-
tion F of fixed values for certain variables and parameters. Then Algorithm 11
describes the way plans are made in the CP-model.

In words, Algorithm 11 does the following.

• We compile the jobs J ′ ⊆ J that the shift leader decides on. These are
the jobs that require multiple agents, and the jobs that cannot be done by
agents without the shift leader providing some paperwork. We simulate
these jobs being planned over the week, by solving a variation of the MILP
from Section 5.3.2. That is, we fix z′aj to 0 if job j ∈ J is not within one
hour of the home of agent a ∈ A, measured in C→. We set the start and
end locations of the agents as discussed by fixing xavt = 1 if v ∈ V is the
default start and end location of a for that shift, and t ∈ T is a shift start or
end time for a that shift. If a is a driver or has to stay at the base station,
we forbid the other locations by setting xavt = 0. We demand all jobs J ′

are assigned, so we set z′′′j = 1 for all j ∈ J ′, as J ′ is quite small in this case
study. We set φresponse = φignoring = 0. As we care mainly about setting
start times for those few jobs in J ′, it suffices to use a simplified node set
V ′. J ′ is small enough that we believe a high-quality schedule can be found
even when setting a time-out on the MILP. The result is a decision of whom
the jobs in J ′ are assigned to, and in the case of multi-agent jobs, at what
time they will be performed.

5.4. Current Practice model 111

ALGORITHM 11: Mathematical interpretation of the current practice.

1: Obtain an RDGS, either precomputed (universal) or using Algorithm 7.
2: Encode in collection F2, for all shifts h ∈ H and agents a ∈ A(h) and time steps
t ∈ T (h), that xa,V n

a ,t.
ah

= 1, x
a,V n

a ,t�
ah

= 1 and that xavt = 0 if node v is not

accessible for agent a because of their role in the shift h. Also encode for each
agent a ∈ A and each job j ∈ J that z′aj = 0 if j is too far away, that is,
C→V n

a ,L.
j
> 60 or C→

V n
a ,L�

j

> 60.

3: Compile centralised jobs J ′: jobs that are only done once, and jobs j that must be
assigned at least two agents, meaning 6 ∃a ∈ A : (BXab ≥Mjb ∀b ∈ B).

4: The planner plans J ′. That is, encode in a new collection F that z′′′ = 1, and
φresponse = 0 and φignoring = 0. Then call MILP({a}, J ′, V ′, H, F ∪ F2). Encode in
collection F4 the following: z′aj = 1 if j ∈ J ′ is assigned to a ∈ A and 0 otherwise,
and z′′jt = 1 if multi-agent job j ∈ J ′ is scheduled at time step t ∈ T .

5: Each agent a ∈ A divides jobs over their shifts. That is, encode in a new collection
F that φresponse = φpreference = 0. Then call MILP({a}, J(a), V ′, H, F ∪ F2 ∪ F4).
For each shift h ∈ H and each agent a ∈ A(h), denote J(a, h) the jobs agent a ∈ A
schedules in shift h ∈ H.

6: Agents minimise their makespan in each shift. That is, for each h ∈ H and
a ∈ A(h), encode in a new collection F that z′′′j = 1 for all j ∈ J(a, h), and
φresponse = φpreference = φdistance = φignoring = 0. Then call
MILP({a}, J(a, h), V ′, {h}, F ∪ F2 ∪ F4). Encode in collection F6 that z′′jt = 1 if
start-time t was chosen for job j.

7: Agents minimise their distance, abiding by this makespan. That is, for each h ∈ H
and a ∈ A(h), compute the C→-shortest tour from V n

a across J(a, h), while not
violating F2 ∪ F4 ∪ F6. If this tour is shorter than T (h), let the agents spend the
remainder of their shift at V n

a .

112 Chapter 5. The Enriched Median Routing Problem

• Each agent a ∈ A assembles the jobs J(a) ⊆ J within one hour of their start
location, and divides these over the week using the MILP. Some values of
xavt and z′aj are fixed by the same rules as in the previous step. In addition,
the previous step assigned the jobs J ′ to specific people, and we further fix
z′aj accordingly. If those jobs were in J ′ because they required several
people, we also enforce z′′jt = 1 for the chosen start time t of job j ∈ J ′, to
ensure that everyone shows up at the same time.

However, after having those variables fixed, we allow a to decide which jobs
to do when. We use the agent set {a}, the simplified nodes V ′ ⊆ V , and
the nearby jobs J(a) ⊆ J . We do not constrain z′′′j , and we set φresponse =
φpreference = 0. We run the MILP with a time-out. The result is a decision,
for each agent, what jobs they will do in each of their shifts.

• Each agent a ∈ A then determines, for each of their shifts h ∈ H, how
to do the jobs J(a, h) they chose for that shift as quickly as possible. We
first minimise the makespan. This is done with the MILP, with agents {a},
jobs J(a, h), simplified nodes V ′, and shifts {h}. We fix z′′′j = 1, and set
φresponse and φdistance and φpreference and φignoring to 0. After running
this MILP to optimality, we use an adaptation of Dijkstra’s algorithm to
find the quickest route with respect to C→. This route starts at the start
location, visits the jobs at the times scheduled by the MILP, and goes
back to the start location as quickly as possible. The result is a complete
solution: for each shift, we know where the agents are at each time step and
what jobs they start performing, albeit that some jobs may be performed
multiple times.

We emphasise that the CP-model described above describes the informal steps
taken by planners in our partnering railways company in today’s practice. Sim-
ulation experiments show that the response times predicted by the CP-model
closely match those observed actually observed in current practice. As we will
see in Section 5.6, the CP-model predicts an expected response time of 41.1 min-
utes. In a recent sample from the partnering company, an average response time
of 43.9 minutes was measured over 45 incidents, with a standard deviation of
17.31 minutes. If our hypothesis is that these incidents were sampled from a
distribution with mean 41.1, then the measured 43.9 corresponds to a p-value of
0.285, which implies that the hypothesis can not be rejected.

From this, we conclude that the CP-model gives a good description of the
current way of working. In the remainder of this chapter, we will use this CP-
model to answer what-if questions about the performance under different, both
realistic and hypothetical, planning situations.

5.5. Performance metrics, planning scenarios and use case description 113

5.5 Performance metrics, planning scenarios and
use case description

In this section, we benchmark the performance of the proposed solution to the E-
MRP model with the performance of the CP-model. For this, we have performed
extensive simulations for a range of realistic planning scenarios. In Section 5.5.1,
we will discuss the performance metrics we wish to improve on. In Section 5.5.2,
we will describe the planning scenarios we have simulated to investigate the
potential improvements. In Section 5.5.3, we describe the real-life use case that
we used for our experiments. The remaining details of our simulation experiment
are given in Section 5.5.4.

5.5.1 Performance metrics

In our experiments, we consider the following seven relevant performance metrics:

• Expected response time: given the positions xavt of a solution, we
know the positions U(t) := {u ∈ V :

∑
a∈A Y

X
at xaut} from which emer-

gency response can be given. The expected response time then equals∑
t∈T,v∈VP (t) minu∈U(t) PvtCuvt.

• Percentage of incidents with response time under χ minutes:
Again given U(t), we define this metric as∑

t∈T,v∈VP (t)

Pvt · 1(∃u ∈ U(t) : Cuvt ≤ χ)

• Weighted unique jobs: While we have defined the value C×j of do-
ing job j ∈ J , this does not account for the fact that a set of decen-
tralised agents may unknowingly do a job multiple times in the same week,
which is considered ‘useless’. We thus define this metric as

∑
j∈J C

×
j ·

1(j is scheduled at least once).

• Planned travelling: Given the positions xavt, this is simply the sum of
C→uv for every movement from u ∈ V at time t ∈ T\{ω} to node v ∈ V at
time t+ 1.

We do not take computation time into account as a metric, because computa-
tion time is only meaningful in a small subset of the scenarios we compare. In our
experiments, however, our Algorithm 10-based solver needs only 19.8 seconds per
shift, even on modest hardware and without a time-out on Step 3. Computation
times, thus, are not a restricting issue in our application.

5.5.2 Planning scenarios

In practice, there are many choices to be made with respect to the restrictions in
the planning. To gain insight into the implications of these options, we define a

114 Chapter 5. The Enriched Median Routing Problem

number of planning scenarios, for which the performance for our use case study
is evaluated.

1. Current practice (“own jobs, own route”): agents pick their own
jobs, schedules and routes, as described in Section 5.4.

2. Jobless current practice (“no jobs, own route”): in the later parts
of shifts, agents are often already at home in the current practice. To see
what kind of emergency response this incurs, we ran the same analysis as in
Section 5.4, but with an empty set of jobs. The resulting solutions amount
to agents starting at their start location, and staying there until the end of
their shift.

3. New practice (“planned jobs, solver route”): as part of the case
study, jobs were picked by an experienced planner from our industry part-
ner, who had access to the solver running the heuristic from this chapter.
The planner picked jobs for all shifts in the case study, and did so without
interference from the researchers. These jobs were picked and divided over
the shifts so that jobs are not done multiple times, but agents still have
jobs somewhat near one of their start locations. In this planning scenario,
the job schedules and routes are determined by running the heuristic in
Section 5.3.3.

4. Current jobs with heuristic (“own jobs, solver route”): when com-
paring the current practice with the new practice, the quality of the new
solutions depends in part on how well the planner chose the jobs. To filter
out this effect, in this scenario, we ran the solver with the same set of jobs
as in the current practice. The aim of this scenario is to show that, even
without changing which jobs are done, the solver can still find job schedules
and positions which perform better. We compute this scenario by deciding
jobs for shifts as in Section 5.4, but then running the solver for each shift
with the jobs thus chosen.

5. Lower bound response time (“best response”): to give more context
to the results, we computed a lower bound on the expected response time
that can be achieved in this case study setting. We did so by running the
MILP from Section 5.3.2 for each shift, but with J = ∅, and φdistance = 0.

6. Upper bound weighted unique jobs (“best jobs”): likewise, to upper
bound the weighted unique jobs metric, we ran the MILP with φresponse =
φdistance = φpreference = φmakespan = 0.

7. Adjusted jobs with solver (“manual jobs, solver route”): as it
turned out, the planner selected significantly fewer jobs for the case study
than the simulated agents could handle. This was because at the time, this
new technology and way of working were unfamiliar, and not all available
agents were taken into account. To correct for this, we manually picked a
larger set of jobs to input into the heuristic.

5.5. Performance metrics, planning scenarios and use case description 115

5.5.3 Use case description

In this section, we describe the realistic use case, obtained from our industry
partners, which we have used for our simulation experiments. In this case study,
we observe a portion of the railway network. We have summarised this as a
graph with 294 nodes, which we can simplify to a graph of 126 nodes using
the node aggregation technique described in [71]. The nodes represent either
railway stations, the ‘midway points’ of railway sections between the stations,
cargo stations or a depot office. Figure 5.4 gives a visualisation of the studied
network section in the North-Eastern part of the Netherlands. A fleet of agents

Figure 5.4: The studied section of railway network in the North-Eastern part of
the Netherlands. Green edges have low incident rates, while orange and red ones
have high incident rates (based on historical incident data).

116 Chapter 5. The Enriched Median Routing Problem

live in or near this network, and for privacy reasons, their default start and end
locations are rounded to the nearest railway node. When using variable start
locations, agents have on average 4.11 different locations to choose from. We have
a collection of 45 regular tasks on this network: most of them consist of patrolling
from one major station to another, but some are facility inspections that should
happen exactly once per week. The jobs have different lengths, priorities and
locations, and need either one or two agents. The facility inspections require a
special training, and may only be performed during daylight hours.

We examine a working week of ten shifts: a morning shift and a late shift,
from Monday to Friday. After discretisation, the number of time steps in a shift
is either 14 or 12. The number of agents active in a shift lies somewhere between
4 and 10, averaging exactly at 7. Among these, there is always a ‘manager’ who
stays at the depot and is only available for emergency response, and there is often
a ‘truck driver’ who must stay within half an hour of the depot but can perform
nearby activities. By design, each shift has at least one agent with a default
location in the ‘northern’ part of the region, and an agent in the ‘southern’ part.

5.5.4 Implementation details

The case study organisation has access to a solver running this heuristic on a
dedicated server. However, for this chapter, all experiments were conducted on
a single ThinkPad L470, with an Intel Core i5-7200U CPU processor, 2.50GHz,
8GB RAM.

5.6 Results

In this section, we present the results of our simulation experiments for our case
study, and for the scenarios and KPIs listed above. Table 5.4 and Figures 5.5
and 5.6 give an overview of the results. Table 5.5 gives the relative improvements
of the KPIs compared to the CP-model.

Overall, the results show significant improvements compared to current prac-
tice. To elaborate, if we compare the CP (“Own jobs, Own route”) with the
E-MRP solution (“Planned jobs, Solver route”), our simulations indicate an im-
provement of 12.7% in average emergency response times. This number is signifi-
cant, since taking averages over many response times usually tends to flatten out
performance gains. Interestingly, looking at a 60-minute response-time target,
we observe that the fraction of late arrivals is reduced by as much as 41.1%. We
even see a small reduction in the planned travelling time; however, this is likely
due to the planned jobs being significantly fewer than the jobs agent picked for
themselves.

If we do not change the jobs of a shift, but only use a solver to redivide the
jobs and to determine positions of the agents, we see an even stronger reduction
in response time. However, this comes at the cost of 52.4% increased planned
travelling outside of jobs and emergencies. Movement is costly and irksome, and

5.6. Results 117

Figure 5.5: Weighted unique jobs versus expected response time in the computed
scenarios. On the horizontal axis, high is good; on the vertical axis, low is good.

Figure 5.6: Planned travel time versus expected response time in the computed
scenarios. On both axes, low is good.

118 Chapter 5. The Enriched Median Routing Problem

Own jobs No jobs Planned jobs Own jobs Manual jobs

Own route Own route Solver route Solver route Best C Solver route

Response (m) 41.1 41.8 35.9 32.7 30.4 35.3
≤ 15 min (%) 6.7 3.4 9.6 10.6 12.8 9.3
≤ 30 min (%) 30.5 29.0 42.1 46.6 53.1 41.4
≤ 45 min (%) 60.3 61.8 72.0 78.2 85.9 73.7
≤ 60 min (%) 83.6 82.6 90.4 94.9 97.2 93.1
Job score 71 0 45 71 0 93
Distance (m) 3580.8 0.0 3284.7 5457.7 2459.6 3697.0

Table 5.4: Computational results of the seven scenarios. The metrics are abbre-
viations of the metrics listed in Section 5.5.1. By ‘Best C’, we mean the ‘Best
response’ scenario. The ‘Best jobs’ scenario is omitted from this table, because
the only relevant result is that the weighted unique jobs (or ‘job score’) in this
scenario is 102, which provides an upper bound for the other scenarios.

Planned jobs Own jobs Manual jobs

Solver route Solver route Solver route

Improvement expected response time (%) 12.7 20.5 14.2
Reduction incidents later than 60 (%) 41.1 68.7 58.1
Improvement weighted unique jobs (%) -36.6 0 31.0
Improvement planned travelling (%) 8.3 -52.4 -3.3

Table 5.5: Improvements with respect to the current ‘Own jobs, Own route’
scenario. Only the three scenarios that include jobs, and in which we care about
response time, are taken into account.

it is debatable whether a 20.5% improvement in response time is worth a 52.4%
increase in travel time.

In the two scenarios where agents choose their own routes, we see expected
response times of 41.1 and 41.8 minutes, respectively. In the three scenarios
where the solver determines routes across non-empty sets of jobs, we see expected
response times of 35.9, 32.7, and 35.3 minutes, respectively. This suggests that
the improved response time is somewhat insensitive to the choice of jobs, but is
mainly due to the routing being done by a solver. We expect this improvement
in response time is mainly due to how ‘idle time’ is filled. If agents choose their
own routes, the latter part of their shifts are spent near their homes, which
are distributed somewhat arbitrarily. However, the solver often chooses waiting
locations and start locations that are distributed more intelligently with the
expected response times in mind. See also Figure 5.7.

The trade-off between improved the expected response time and the move-
ment needed to attain it is perhaps high-lit most by comparing the “No jobs,
Own route” and “Best C” scenarios. In the former, we hit the lower bound of 0
minutes on planned movement. In the latter, we hit the lower bound of 30.4 min-

5.6. Results 119

(a) Solution in current practice scenario.
Five out of seven agents start near the
centre of the network, and four of them
stay central.

(b) Solution in same shift in new prac-
tice scenario. The seven agents start
with a better spread and largely main-
tain it.

Figure 5.7: For one of the ten shifts, a visual comparison of the solutions in the
current practice and the new practice. The grey circles are the 126 nodes of the
simplified network. For each agent, a coloured pentagon shows where they start,
and the lines in the same colour illustrate their movement over the network. In
the new practice, agents are more equally spread over the network.

utes on the expected response time. In total, the latter requires 2459.6 minutes
of planned travelling. Over the ten shifts, there are 62 shifts worked by agents, so
a rough estimate amounts to an agent moving 39.7 minutes per shift to improve
the expected response time to emergencies by 9.1 minutes, and to be ‘late’ only
2.8% of the times instead of 17.4% of the times.

Alternatively, we can investigate the trade-off by comparing the current situ-
ation with the scenario where the same jobs are chosen, but they are scheduled
and routed by the solver. While doing the same jobs, agents have to move 30.3
minutes more on average over their shift to improve the expected response time
by 8.4 minutes, and to be late only 5.1% of the times instead of 16.4% of the
times. Our research is conducted under the notion that response time is much
more important than planned travelling time. However, these numerical results
could be valuable input for a management discussion concerning this trade-off.

As a final remark, our simulations demonstrate that for our realistic use case,
we can simultaneously improve the expected response times by 14.2% and the
number of weighted unique jobs by 31.0%. We observe this in our final scenario,
where we manually correct for the small number of jobs chosen by the case
study planner. While these improvements do come at the cost of more planned
movements, this increase is only 3.3%. In this scenario, the number of weighted
unique jobs is 93, which is only 9% away from the upper bound of 102. The
expected response time is 35.3 minutes, which is only 16% away from the lower
bound of 30.4. The jobs in this planning scenario were chosen manually, and if
this job selection were made methodical, these improvements would likely become

120 Chapter 5. The Enriched Median Routing Problem

even larger.

5.7 Conclusions

In this chapter, we have generalised the MRP-methodology to incorporate addi-
tional objectives and constraints that are required in practice. To quantify the
performance improvement that can be realised, we performed an extensive com-
parison study by simulations, comparing current practice to the results from our
optimisation heuristics. We observed that, between the current practice and the
new way of working allowed by our heuristic, we could strongly reduce response
times and late arrivals in a realistic setting provided by our partnering railway
provider. Most importantly, if the jobs are chosen ambitiously enough, we see
that we can significantly improve both the response time performance and the
(weighted) number of non-urgent tasks at the same time. We believe the re-
duction in response time is primarily due to agents being positioned in strategic
locations during their idle time, rather than the endpoints of their job tours.
This improvement can come at the expense of more planned movements outside
of emergency response. However, in the most favourable scenario examined, this
increase in planned movement is only marginal.

Finally, we address a number of topics for further investigation. Most impor-
tantly, we suspect that smartly assigning non-urgent jobs to agents intelligently
is crucial to improve performance. In this research, tasks were mostly chosen by
hand, which was seen as input to the model. But with an automated selection
methodology, a system could smartly plan several shifts ahead independently.
This requires further elaboration. Another promising direction is to include the
incorporation of planned travel times in such a way that it does not require as
many unfavourable constraints. Lastly, graph adjacency is currently independent
of time, but this may not be realistic in cases with heavy traffic congestion.

Chapter 6

Real-life Implementation and
Next Steps

The ultimate goal of this thesis project was to help improve the operations of
emergency response organisations, with the Dutch railway emergency response
organisation as a prime example. While an initial prototype was developed for
this organisation using the basic model from Chapter 2, it soon became appar-
ent that there were many additional constraints to take into account. Over the
course of this research project, these additional features were gradually intro-
duced, eventually culminating in the E-MRP from Chapter 5. Fortunately, these
improvements have indeed successfully yielded a solver, based on Algorithm 10
in Chapter 5, that has been taken into operational use by the Dutch railway
emergency response organisation [119].

The user application was co-developed by CWI, ProRail BV and Capgemini.
It consists of two modules. The planner module allows a planner, on a computer,
to select agents and jobs for a shift, call the Algorithm 10-based solve server,
visualise the result as a Gantt-chart (see Figure 6.1a) and as movements on the
map (see Figure 6.1b), make limited manual adjustments to the output, and
‘activate’ the result. Once activated, every agent can use the agent module on
his/her smart device to see what jobs and movements are planned for them.
Agents can also mark jobs as finished or interrupted, and through integration
with an already existing ProRail-app, report remarkable findings and propose
new jobs for the planner. The planner can see, when choosing jobs, how often
it has been marked as finished this year and how often it should be done this
year: in these two ways, agents can provide feedback that the planner can use to
choose jobs for subsequent plans.

Using this tool, there is reason to expect that the emergency response organ-
isation will see an increase of approximately 31.0% in the amount of preventive
work done and an improvement in emergency response time of approximately
14.2%; the results discussed in Section 5.6 indicate as much. After a period of
rigorous usage, it would be valuable to analyse and evaluate the observed changes

121

122 Chapter 6. Real-life Implementation and Next Steps

(a) Gantt-chart visualisation.

(b) Map visualisation.

Figure 6.1: Example output of the E-MRP-based application used by the case
study organisation, both in the Gantt-chart visualisation option and the map
visualisation option. Names of employees have been blurred out for anonymity.

numerically.

It is exciting to see that simultaneous planning of emergency response and
non-urgent jobs is gradually receiving more attention. At the time of writing,
Bos et al. [17] have begun comparing MRP to their own non-discretised model,
as well as to the ambulance dispatch model by Van den Berg and Van Essen
[150]. Some of the most fundamental assumptions in the MRP model, namely
that time is discretised and that we can only prepare one emergency ahead, will

123

be challenged by this comparison. The results of this comparison are likely to
give interesting new insights into the goal of combined planning of emergency
response and non-urgent jobs.

While the chapters of this thesis report on successful approaches and promis-
ing avenues for future research, it may be important for future researchers to
know of four approaches that have not yet been successful.

First, it was expected that Benders decomposition [95] would be a successful
approach, because the speed-up that Benders decomposition can create for the
k-Median Problem [48] was successfully reproduced, and the approach can be
straightforwardly adapted for MRP. However, the adapted procedure unexpect-
edly created a slow-down rather than a speed-up, even after several modifications,
implying that a non-trivial improvement on the Benders decomposition method
may be necessary.

Second, a primal-dual algorithm for TkMP can be derived based on the one
that exists for the k-Median Problem [81], by interpreting (S,W)-paths of length
ω as ‘facilities’ that are funded by ‘clients’ (v, t) ∈ V × T . Though the number
of such facilities is exponential, the path that currently collects the most ‘crowd-
funding’ from unserviced clients can be found with a modified shortest path
algorithm. The only reason that this procedure does not yield a constant-factor
approximation for general metric TkMP, is that we can no longer claim that
two clients (v, t) and (v′, t′) are ‘close together’ due to them being served by the
same ‘facility’: the ‘facility’ is the path of an agent, and that agent may be in an
entirely different place at t′ then they were at t. If this wrinkle could be resolved
or circumvented, a constant-factor approximation algorithm for TkMP may be
in reach.

Third, we remark that in TkMP, we have to decide for each agent their path
and which clients they serve: when one is fixed, the other becomes a trivial min-
cost flow problem. Perhaps this problem, and many others, would benefit from an
approach that can successfully ‘alternate’ between these two simple subproblems.

As a fourth and final observation, meta-heuristics like Genetic Algorithms
[32], Simulated Annealing [26] and Tabu Search [128] have not yet been success-
ful for MRP, because it is NP-complete to perform a ‘neighbourhood operation’
which preserves feasibility. That is, while any permutation of cities is trivially a
feasible solution for TSP, it is computationally costly to reschedule a job to an-
other agent and check whether this exchange admits a feasible solution. Because
meta-heuristics rely on testing very many potential solutions, one would have
to perform this NP-complete feasibility testing very many times, which quickly
becomes intractable.

Though the above partial results offer interesting challenges moving forward, one
topic deserves most attention for future research. At the heart of MRP and com-
parable models lies the assumption that the non-urgent jobs have already been
selected [17]. Given this hard input, the question is how to still make the most

124 Chapter 6. Real-life Implementation and Next Steps

of the response time to potential emergencies. Now that the Median Routing
Problem model has been sufficiently enriched to handle practical considerations,
users in the railway emergency response organisation face a new bottleneck: how
should the jobs be chosen in the first place?

In the case study organisation, there are hundreds of jobs that could poten-
tially be selected as input to the MRP. Some of them are more important than
others, in that there are financial consequences if these jobs are not performed
before a certain deadline. Other jobs, like patrolling at intersections between the
road and the railway, typically have no direct consequence, but neglecting them
for too long can increase the probability of emergencies. When selecting jobs,
the planner should not only weigh which jobs are currently most important, but
the chosen job set should also be ‘well spread’ enough to admit an MRP solution
with low emergency response time. Ideally, the job set should be large enough
that every agent can fill up their shift meaningfully, but if the job set is too large,
a feasible MRP solution no longer exists. Following the discussion in Section
2.3, it is clearly NP-hard to pack as many jobs as possible into a shift without it
becoming infeasible. On top of all this, the planner has to take the many prac-
tical considerations of Chapter 5 into account, such as authorisations and job
time windows and variable agent start locations. Putting all these considerations
together, selecting a decent subset from the hundreds of jobs can quickly result
in decision paralysis, and planners tend to resort to simple and static rules of
thumb. Offering decision support for job selection appears to be the venue where
most efficiency can be gained, both in terms of further improving MRP solution
quality and in terms of supporting the planners in the case study organisation.

Some initial work has already been put forward in this direction. Kraster et
al. have generalised the Median Routing Problem to the Multi-Period Median
Routing Problem [90], in which a fixed set of jobs is to be divided over multiple
shifts rather than one, so that each shift becomes an instance of MRP. Even with
this singular additional feature, case study data suggests that the emergency re-
sponse time can be further decreased by 3.51%, even with sparse job sets. One
could further generalise the job selection process by assigning each job a posi-
tive ‘reward value’, and designing a model to select jobs with the highest reward
such that the induced MRP instances still admit a solution with response time
above some threshold. Alternatively, one could design a bi-objective optimisa-
tion model, in which the goal is to simultaneously minimise response time and
penalties for skipping jobs. This latter model is a Lagrangian relaxation of MRP.
Though this latter model sounds somewhat more difficult to properly interpret,
a large benefit of this bi-objective model is that it is no longer NP-complete for
this model to decide whether a feasible solution exists. This opens up many al-
gorithmic venues that were not available to MRP. Remarking that job selection
is currently the bottleneck in the decision-making process, and observing from
the work of Kraster et al. that further reductions of response time can easily be
expected, researching job selection seems like a promising and exciting next step.

Summary

This thesis studies the shift planning of emergency response organisations and
how to include plannable, preventive tasks into the schedules of the responders,
such that they remain well spread in case of emergencies. Both halves of this plan-
ning have individually received significant attention throughout the past decades:
that is, much is known about either positioning responders in locations where they
will have minimal emergency response times (e.g. the k-Median Problem [35]) or
about efficiently visiting plannable jobs with a fleet of agents (e.g. the Vehicle
Routing Problem [18]). However, when trying to simultaneously visit plannable
jobs and retain a low emergency response time, the literature appears to still
be in its infancy. Such a simultaneous planning seems promising, compared to
the alternative of having responders wait at a response station: more preventive
work can get done, and if tasks are chosen that are spread well, then the spread
of agents can be better than if they are bunched together at the same response
station.

Forming a planning that both visits plannable jobs and minimises emergency
response times turns out to be challenging, both conceptually and computation-
ally. An additional complication is that emergencies will inevitably disturb the
planning, meaning rapid updates to the planning have to be made and commu-
nicated. This thesis seeks to develop computational decision support for this
difficult task. It does so by introducing a new mathematical model that hy-
bridises the k-Median Problem and Vehicle Routing Problem, studying different
variants of this problem, and developing various algorithms that offer either op-
timal solutions, rapidly computable solutions that perform well in practice, or
solutions with provable performance guarantees.

In Chapter 2, the Median Routing Problem is introduced as a model to com-
pute how to visit plannable jobs in a graph in a fixed-length time horizon using
a fleet of emergency response agents, while minimising the expected response
time to the next emergency in the graph. This Median Routing Problem forms
the backbone of this thesis. In this chapter, the foundational problem and its
complexity are explored, and several algorithms are proposed. Not only is this
problem found to be NP-hard, it is even NP-complete to decide whether a feasi-
ble solution exists. Therefore, aside from an exponential-time algorithm that can
compute the optimal solution, heuristics are developed that can be used in prac-
tice. Most notably, the MDSA-algorithm is found to be an effective heuristic: on

125

126 Chapter 6. Real-life Implementation and Next Steps

benchmark instances, including case study data, it finds a solution in 2.4 seconds
on average, which is on average only 3.2% away from optimal. The strength of
MDSA lies in decomposing this combined problem into several decision steps per
agent, which in isolation are less complex and/or act on much smaller decision
spaces.

Because it is NP-complete to decide for the Median Routing Problem whether
a feasible solution exists, it makes no sense to develop a polynomial-time approxi-
mation algorithm for the general problem. Instead, in Chapter 3, a special version
is studied in the form of the (Uniform) Travelling k-Median Problem. Constant-
factor approximation algorithms are demonstrated for very special cases, namely
the cases where the number of agents or the length of the time horizon are dispro-
portionally large compared to the number of nodes in the graph. By eliminating
these cases, thus assuming that the number of agents and time-steps are reason-
ably small, a constant-factor approximation is given for specific graph metrics:
namely, those graphs on which we can solve the problem in polynomial time if the
agents are allowed to move ‘continuously’ over the graph instead of ‘discretely’.
Using a rounding theorem, it is shown that these ‘continuous solutions’ can be
rounded back with bounded loss. For all other metrics, we provide a polynomial-
time algorithm with an approximation factor that depends linearly on the graph
diameter and sublinearly on the length of the time horizon.

Though Chapters 2 and 3 help us understand the basic Median Routing Prob-
lem, there are many more features that come into play in a practical application
of this model. In Chapter 5, the Enriched Median Routing Problem is posed
as an extension of the Median Routing Problem with fifteen additional features.
For instance, the Enriched Median Routing Problem can take into account that
jobs have time windows, or that some jobs need more than one agent. These
additional constraints, especially the latter one, make it much more difficult to
perform the decompositions that made MDSA successful. But in the same spirit
of MDSA, a more flexible algorithm is developed that still decomposes some of the
decisions into smaller problems. In order to have this simpler problem again act
on a small decision space, a subroutine is developed in Chapter 4 that can take
an input graph and ‘sparsify’ it into a graph with much fewer nodes and edges
that can still reasonably ‘represent’ the original graph. In Chapter 4, not only
is it demonstrated that this sparsification works well in a sample of practical
Median Routing Problem use cases, but a proven upper bound is also given on
how much quality loss can occur through sparsification, by introducing and using
the Mixed Integer Jester Game framework for explicit worst-case computation.

Finally, in the second half of Chapter 5, the Enriched Median Routing Prob-
lem and its MDSA-inspired heuristic are compared to the current practice of a
case study organisation. It is concluded that, indeed, the results of this the-
sis can help the case study organisation to simultaneously perform 31.0% more
plannable work and decrease emergency response times by 14.2%. A solver based
on this heuristic has been taken into use [119], and the further implementation of
this solver and other outlooks are discussed in Chapter 6. This thesis answers the

127

question of how to perform plannable tasks with (near-)optimal emergency re-
sponse time; the most important follow-up topic is how to choose which plannable
tasks go into the planning.

Bibliography

[1] A. Agarwal, L. M. Hiot, E. M. Joo, and N. T. Nghia. Rectilinear workspace
partitioning for parallel coverage using multiple unmanned aerial vehicles.
Advanced Robotics, 21(1-2):105–120, 2007.

[2] R. Ahmed, G. Bodwin, F. D. Sahneh, K. Hamm, M. J. L. Jebelli,
S. Kobourov, and R. Spence. Graph spanners: A tutorial review. Computer
Science Review, 37:100253, 2020.

[3] S. Almoustafa, S. Hanafi, and N. Mladenović. New exact method for large
asymmetric distance-constrained vehicle routing problem. European Jour-
nal of Operational Research, 226(3):386–394, 2013.

[4] W. K. Anuar, L. S. Lee, S. Pickl, and H.-V. Seow. Vehicle routing optimisa-
tion in humanitarian operations: A survey on modelling and optimisation
approaches. Applied Sciences, 11(2):667, 2021.

[5] S. Arora, P. Raghavan, and S. Rao. Approximation schemes for Euclidean
k-medians and related problems. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, page 106–113. Association for
Computing Machinery, 1998.

[6] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pan-
dit. Local search heuristics for k-median and facility location problems.
SIAM Journal on Computing, 33(3):544–562, 2004.

[7] M. Başdere and Ü. Bilge. Operational aircraft maintenance routing prob-
lem with remaining time consideration. European Journal of Operational
Research, 235(1):315–328, 2014.

[8] J. Batson, D. A. Spielman, and N. Srivastava. Twice-Ramanujan sparsifiers.
SIAM Journal on Computing, 41(6):1704–1721, 2012.

[9] J. Batson, D. A. Spielman, N. Srivastava, and S.-H. Teng. Spectral spar-
sification of graphs: theory and algorithms. Communications of the ACM,
56(8):87–94, 2013.

129

130 BIBLIOGRAPHY

[10] T. Bektaş, L. Gouveia, and D. Santos. Revisiting the hamiltonian p-median
problem: A new formulation on directed graphs and a branch-and-cut al-
gorithm. European Journal of Operational Research, 276(1):40–64, 2019.

[11] T. Bektaş and G. Laporte. The pollution-routing problem. Transportation
Research Part B: Methodological, 45(8):1232–1250, 2011.

[12] S. Benati and S. Garćıa. A mixed integer linear model for clustering with
variable selection. Computers & Operations Research, 43:280–285, 2014.

[13] D. J. Bertsimas and G. Van Ryzin. Stochastic and dynamic vehicle rout-
ing in the Euclidean plane with multiple capacitated vehicles. Operations
Research, 41(1):60–76, 1993.

[14] T. C. Biedl, B. Brejová, and T. Vinař. Simplifying flow networks. In Inter-
national Symposium on Mathematical Foundations of Computer Science,
pages 192–201. Springer, 2000.

[15] G. Bodwin. A note on distance-preserving graph sparsification. arXiv
preprint arXiv:2001.07741, 2020.

[16] A. Borodin, N. Linial, and M. E. Saks. An optimal on-line algorithm for
metrical task system. Journal of the ACM, 39(4):745–763, Oct. 1992.

[17] J. Bos, D. Huizing, R. J. Boucherie, D. Pecin, and R. Spliet. Spread smart,
respond fast, 2022. Manuscript in preparation.

[18] K. Braekers, K. Ramaekers, and I. Van Nieuwenhuyse. The vehicle routing
problem: State of the art classification and review. Computers & Industrial
Engineering, 99:300–313, 2016.

[19] L. Brotcorne, G. Laporte, and F. Semet. Ambulance location and relocation
models. European Journal of Operational Research, 147(3):451–463, 2003.

[20] J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan, and K. Trinh. An im-
proved approximation for k-median and positive correlation in budgeted
optimization. ACM Transactions on Algorithms, 13(2), 2017.

[21] J. Caceres-Cruz, P. Arias, D. Guimarans, D. Riera, and A. A. Juan. Rich
vehicle routing problem: Survey. ACM Computing Surveys, 47(2):1–28,
2014.

[22] F. Camci. Maintenance scheduling of geographically distributed assets
with prognostics information. European Journal of Operational Research,
245(2):506–516, 2015.

[23] A. M. Caunhye, X. Nie, and S. Pokharel. Optimization models in emergency
logistics: A literature review. Socio-economic Planning Sciences, 46(1):4–
13, 2012.

BIBLIOGRAPHY 131

[24] Centrum Wiskunde & Informatica. Cwi official website, 2021.
https://www.cwi.nl. Accessed 30 November 2021.

[25] M. Charikar, S. Guha, É. Tardos, and D. B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. Journal of Computer
and System Sciences, 65(1):129–149, 2002.

[26] F. Chiyoshi and R. D. Galvao. A statistical analysis of simulated annealing
applied to the p-median problem. Annals of Operations Research, 96(1):61–
74, 2000.

[27] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S.-H. Teng.
Electrical flows, Laplacian systems, and faster approximation of maximum
flow in undirected graphs. In Proceedings of the Forty-Third Annual ACM
Symposium on Theory of Computing, pages 273–282, 2011.

[28] V. Cohen-Addad, A. Gupta, A. Kumar, E. Lee, and J. Li. Tight FPT ap-
proximations for k-median and k-means. arXiv preprint arXiv:1904.12334,
2019.

[29] A. M. Cohn and C. Barnhart. Improving crew scheduling by incorporating
key maintenance routing decisions. Operations Research, 51(3):387–396,
2003.

[30] J. M. Colmenar, A. Hoff, R. Mart́ı, and A. Duarte. Scatter search for the bi-
criteria p-median p-dispersion problem. Progress in Artificial Intelligence,
7(1):31–40, 2018.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT press, 2009.

[32] E. S. Correa, M. T. A. Steiner, A. A. Freitas, and C. Carnieri. A genetic
algorithm for solving a capacitated p-median problem. Numerical Algo-
rithms, 35(2):373–388, 2004.

[33] T. G. Crainic, G. Perboli, S. Mancini, and R. Tadei. Two-echelon vehicle
routing problem: a satellite location analysis. Procedia-Social and Behav-
ioral Sciences, 2(3):5944–5955, 2010.

[34] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale
traveling-salesman problem. Journal of the Operations Research Society
of America, 2(4):393–410, 1954.

[35] M. S. Daskin and K. L. Maass. The p-median problem. In Location Science,
pages 21–45. Springer, 2015.

[36] F. De Dinechin and M. Istoan. Hardware implementations of fixed-point
atan2. In 2015 IEEE 22nd Symposium on Computer Arithmetic, pages
34–41. IEEE, 2015.

132 BIBLIOGRAPHY

[37] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1(1):269–271, 1959.

[38] J. Ding, J. R. Lee, and Y. Peres. Cover times, blanket times, and majorizing
measures. In Proceedings of the Forty-Third Annual ACM Symposium on
Theory of Computing, pages 61–70, 2011.

[39] L. Doitsidis, S. Weiss, A. Renzaglia, M. W. Achtelik, E. Kosmatopoulos,
R. Siegwart, and D. Scaramuzza. Optimal surveillance coverage for teams
of micro aerial vehicles in GPS-denied environments using onboard vision.
Autonomous Robots, 33(1-2):173–188, 2012.

[40] M. Drexl and M. Schneider. A survey of variants and extensions of
the location-routing problem. European Journal of Operational Research,
241(2):283–308, 2015.

[41] B. Eksioglu, A. V. Vural, and A. Reisman. The vehicle routing problem: A
taxonomic review. Computers & Industrial Engineering, 57(4):1472–1483,
2009.

[42] M. El Amrani, Y. Benadada, and B. Gendron. Generalization of capac-
itated p-median location problem: modeling and resolution. In 2016 3rd
International Conference on Logistics Operations Management, pages 1–6.
IEEE, 2016.

[43] S. Erdougan and E. Miller-Hooks. A green vehicle routing problem. Trans-
portation Research Part E: Logistics and Transportation Review, 48(1):100–
114, 2012.

[44] R. Z. Farahani, M. Abedian, and S. Sharahi. Dynamic facility location
problem. In Facility Location, pages 347–372. Springer, 2009.

[45] R. Z. Farahani, S. Fallah, R. Ruiz, S. Hosseini, and N. Asgari. OR models
in urban service facility location: A critical review of applications and
future developments. European Journal of Operational Research, 276(1):1–
27, 2019.

[46] R. Z. Farahani and M. Hekmatfar. Facility Location: Concepts, Models,
Algorithms and Case Studies. Springer, 2009.

[47] T. Feder and R. Motwani. Clique partitions, graph compression and
speeding-up algorithms. Journal of Computer and System Sciences,
51(2):261–272, 1995.

[48] M. Fischetti, I. Ljubić, and M. Sinnl. Redesigning Benders decomposi-
tion for large-scale facility location. Management Science, 63(7):2146–2162,
2017.

BIBLIOGRAPHY 133

[49] M. M. Flood. The traveling-salesman problem. Operations Research,
4(1):61–75, 1956.

[50] J. E. Fontecha, O. O. Guaje, D. Duque, R. Akhavan-Tabatabaei, J. P.
Rodŕıguez, and A. L. Medaglia. Combined maintenance and routing opti-
mization for large-scale sewage cleaning. Annals of Operations Research,
pages 1–34, 2019.

[51] R. D. Galvão and E. d. R. Santibanez-Gonzalez. A Lagrangean heuristic for
the pk-median dynamic location problem. European Journal of Operational
Research, 58(2):250–262, 1992.

[52] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to
the theory of NP-completeness. Freeman, 1979.

[53] E. Garone, R. Naldi, A. Casavola, and E. Frazzoli. Cooperative mission
planning for a class of carrier-vehicle systems. In 49th IEEE Conference
on Decision and Control, pages 1354–1359. IEEE, 2010.

[54] M. Gaudioso and G. Paletta. A heuristic for the periodic vehicle routing
problem. Transportation Science, 26(2):86–92, 1992.

[55] M. Gendreau, G. Laporte, and F. Semet. A dynamic model and parallel
tabu search heuristic for real-time ambulance relocation. Parallel Comput-
ing, 27(12):1641–1653, 2001.

[56] M. Gendreau, G. Laporte, and F. Semet. The maximal expected cover-
age relocation problem for emergency vehicles. Journal of the Operational
Research Society, 57(1):22–28, 2006.

[57] J. C. Goodson, J. W. Ohlmann, and B. W. Thomas. Rollout policies
for dynamic solutions to the multivehicle routing problem with stochastic
demand and duration limits. Operations Research, 61(1):138–154, 2013.

[58] R. Gopalan and K. T. Talluri. The aircraft maintenance routing problem.
Operations Research, 46(2):260–271, 1998.

[59] S. Gorenstein. Printing press scheduling for multi-edition periodicals. Man-
agement Science, 16(6):B–373, 1970.

[60] C. Groër, B. Golden, and E. Wasil. The consistent vehicle routing problem.
Manufacturing & Service Operations Management, 11(4):630–643, 2009.

[61] S. Guha and S. Khuller. Greedy strikes back: Improved facility location
algorithms. Journal of Algorithms, 31(1):228 – 248, 1999.

[62] A. Gupta, M. Pál, R. Ravi, and A. Sinha. Boosted sampling: approximation
algorithms for stochastic optimization. In Proceedings of the Thirty-Sixth
Annual ACM Symposium on Theory of Computing, pages 417–426, 2004.

134 BIBLIOGRAPHY

[63] M. Haouari, S. Shao, and H. D. Sherali. A lifted compact formulation for
the daily aircraft maintenance routing problem. Transportation Science,
47(4):508–525, 2012.

[64] M. J. Havinga and B. de Jonge. Condition-based maintenance in the cyclic
patrolling repairman problem. International Journal of Production Eco-
nomics, 222:107497, 2020.

[65] J. Hochstetler, L. Hochstetler, and S. Fu. An optimal police patrol planning
strategy for smart city safety. In 2016 IEEE 18th International Conference
on High Performance Computing and Communications; IEEE 14th Inter-
national Conference on Smart City; IEEE 2nd International Conference
on Data Science and Systems, pages 1256–1263. IEEE, 2016.

[66] J. Hoogeveen. Analysis of Christofides’ heuristic: Some paths are more
difficult than cycles. Operations Research Letters, 10(5):291–295, 1991.

[67] H. Hotelling. Stability in competition. In The Collected Economics Articles
of Harold Hotelling, pages 50–63. Springer, 1990.

[68] W. V. Huang, R. Batta, and A. Babu. Relocation-promotion problem with
Euclidean distance. European Journal of Operational Research, 46(1):61–
72, 1990.

[69] D. Huizing and G. Schäfer. The traveling k-median problem: approximat-
ing optimal network coverage. In International Workshop on Approxima-
tion and Online Algorithms. Springer (to appear).

[70] D. Huizing, G. Schäfer, R. D. van der Mei, and S. Bhulai. The Median Rout-
ing Problem for simultaneous planning of emergency response and non-
emergency jobs. European Journal of Operational Research, 285(2):712–
727, 2020.

[71] D. Huizing, G. Schäfer, R. D. van der Mei, and S. Bhulai. Distance-
preserving graph sparsification with bounded loss for network problems,
2021. Submitted.

[72] D. Huizing, R. D. van der Mei, G. Schäfer, and S. Bhulai. The Enriched
Median Routing Problem and its usefulness in practice, 2021. Submitted.

[73] S. Ichoua, M. Gendreau, and J.-Y. Potvin. Diversion issues in real-time
vehicle dispatching. Transportation Science, 34(4):426–438, 2000.

[74] T. Ilhan, S. M. Iravani, and M. S. Daskin. The orienteering problem with
stochastic profits. IIE Transactions, 40(4):406–421, 2008.

[75] M. Imre, J. Tao, Y. Wang, Z. Zhao, Z. Feng, and C. Wang. Spectrum-
preserving sparsification for visualization of big graphs. Computers &
Graphics, 87:89–102, 2020.

BIBLIOGRAPHY 135

[76] C. A. Irawan, D. Ouelhadj, D. Jones, M. St̊alhane, and I. B. Sperstad. Op-
timisation of maintenance routing and scheduling for offshore wind farms.
European Journal of Operational Research, 256(1):76–89, 2017.

[77] A. Jackman and M. Beruvides. What emergency responders can learn from
the business world. Harvard Business Review.

[78] L. E. Jackson, G. N. Rouskas, and M. F. Stallmann. The directional p-
median problem: Definition, complexity, and algorithms. European Journal
of Operational Research, 179(3):1097–1108, 2007.

[79] C. J. Jagtenberg, S. Bhulai, and R. D. van der Mei. An efficient heuristic for
real-time ambulance redeployment. Operations Research for Health Care,
4:27–35, 2015.

[80] P. Jaillet, J. F. Bard, L. Huang, and M. Dror. Delivery cost approximations
for inventory routing problems in a rolling horizon framework. Transporta-
tion Science, 36(3):292–300, 2002.

[81] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility
location and k-median problems using the primal-dual schema and La-
grangian relaxation. Journal of the ACM, 48(2):274–296, 2001.

[82] J. W. Joubert. An integrated and intelligent metaheuristic for constrained
vehicle routing. Doctoral dissertation, University of Pretoria, 2007.

[83] C. Karande, K. Chellapilla, and R. Andersen. Speeding up algorithms on
compressed web graphs. Internet Mathematics, 6(3):373–398, 2009.

[84] O. Kariv and S. L. Hakimi. An algorithmic approach to network loca-
tion problems. II: The p-medians. SIAM Journal on Applied Mathematics,
37(3):539–560, 1979.

[85] Y. Kergosien, M. Gendreau, A. Ruiz, and P. Soriano. Managing a fleet of
ambulances to respond to emergency and transfer patient transportation
demands. In Proceedings of the International Conference on Health Care
Systems Engineering, pages 303–315. Springer, 2014.

[86] G. Kiechle, K. F. Doerner, M. Gendreau, and R. F. Hartl. Waiting strate-
gies for regular and emergency patient transportation. In Operations Re-
search Proceedings 2008, pages 271–276. Springer, 2009.

[87] I. Koutis, G. L. Miller, and R. Peng. A nearly-m log n time solver for SDD
linear systems. In 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science, pages 590–598. IEEE, 2011.

[88] E. Koutsoupias. The k-server problem. Computer Science Review,
3(2):105–118, 2009.

136 BIBLIOGRAPHY

[89] E. Koutsoupias and C. H. Papadimitriou. On the k-server conjecture. Jour-
nal of the ACM, 42(5):971–983, 1995.

[90] D. Kraster. Heuristic approaches for a multi-period
job scheduling and emergency coverage problem, 2020.
https://www.ubvu.vu.nl/pub/fulltext/scripties/27 2578856 1.pdf.

[91] H. W. Kuhn. The Hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2(1-2):83–97, 1955.

[92] S. N. Kumar and R. Panneerselvam. A survey on the vehicle routing
problem and its variants. Intelligent Information Management, 4(3):66–
74, 2012.

[93] G. Laporte. The vehicle routing problem: An overview of exact and approx-
imate algorithms. European Journal of Operational Research, 59(3):345–
358, 1992.

[94] G. Laporte, M. Desrochers, and Y. Nobert. Two exact algorithms for the
distance-constrained vehicle routing problem. Networks, 14(1):161–172,
1984.

[95] L. S. Lasdon. Optimization theory for large systems. Courier Corporation,
2002.

[96] K. LeFevre and E. Terzi. GraSS: Graph structure summarization. In Pro-
ceedings of the 2010 SIAM International Conference on Data Mining, pages
454–465. SIAM, 2010.

[97] S. Lewandowski. Shortest paths and negative cycle detection in graphs
with negative weights. Technical Report No. 2010/05, Stuttgart University,
2010.

[98] X. Li, Z. Zhao, X. Zhu, and T. Wyatt. Covering models and optimization
techniques for emergency response facility location and planning: a review.
Mathematical Methods of Operations Research, 74(3):281–310, 2011.

[99] J.-H. Lin and J. S. Vitter. e-approximations with minimum packing con-
straint violation. In Proceedings of the Twenty-Fourth Annual ACM Sym-
posium on Theory of Computing, page 771–782. Association for Computing
Machinery, 1992.

[100] Y. Liu, T. Safavi, A. Dighe, and D. Koutra. Graph summarization methods
and applications: a survey. ACM Computing Surveys, 51(3):1–34, 2018.

[101] Y. Liu, Y. Yuan, J. Shen, and W. Gao. Emergency response facility location
in transportation networks: a literature review. Journal of Traffic and
Transportation Engineering, 2021.

BIBLIOGRAPHY 137

[102] E. López-Santana, R. Akhavan-Tabatabaei, L. Dieulle, N. Labadie, and
A. L. Medaglia. On the combined maintenance and routing optimization
problem. Reliability Engineering & System Safety, 145:199–214, 2016.

[103] G. Maróti and L. Kroon. Maintenance routing for train units: the transition
model. Transportation Science, 39(4):518–525, 2005.

[104] Y. Mehmood, N. Barbieri, F. Bonchi, and A. Ukkonen. CSI: Community-
level social influence analysis. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 48–63. Springer,
2013.

[105] M. T. Melo, S. Nickel, and F. S. Da Gama. Dynamic multi-commodity ca-
pacitated facility location: a mathematical modeling framework for strate-
gic supply chain planning. Computers & Operations Research, 33(1):181–
208, 2006.

[106] E. Misio lek and D. Z. Chen. Two flow network simplification algorithms.
Information Processing Letters, 97(5):197–202, 2006.

[107] J. R. Montoya-Torres, J. L. Franco, S. N. Isaza, H. F. Jiménez, and
N. Herazo-Padilla. A literature review on the vehicle routing problem with
multiple depots. Computers & Industrial Engineering, 79:115–129, 2015.

[108] A. Mor and M. G. Speranza. Vehicle routing problems over time: a survey.
4OR, 18(2):129–149, 2020.

[109] V. Nagarajan and R. Ravi. Approximation algorithms for distance con-
strained vehicle routing problems. Networks, 59(2):209–214, 2012.

[110] Y. Nesterov and A. Nemirovskii. Interior-point Polynomial Algorithms in
Convex Programming. Society for Industrial and Applied Mathematics,
1994.

[111] S. H. Owen and M. S. Daskin. Strategic facility location: A review. Euro-
pean Journal of Operational Research, 111(3):423–447, 1998.

[112] R. Palma-Behnke, C. Benavides, F. Lanas, B. Severino, L. Reyes, J. Llanos,
and D. Sáez. A microgrid energy management system based on the rolling
horizon strategy. IEEE Transactions on Smart Grid, 4(2):996–1006, 2013.

[113] D. Peleg and A. A. Schäffer. Graph spanners. Journal of Graph Theory,
13(1):99–116, 1989.

[114] M. Penicka, A. K. Strupchanska, and D. Bjørner. Train maintenance rout-
ing. In FORMS’2003: Symposium on Formal Methods for Railway Opera-
tion and Control Systems, 2003.

138 BIBLIOGRAPHY

[115] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia. A review of dy-
namic vehicle routing problems. European Journal of Operational Research,
225(1):1–11, 2013.

[116] V. Pillac, C. Guéret, and A. L. Medaglia. An event-driven optimiza-
tion framework for dynamic vehicle routing. Decision Support Systems,
54(1):414–423, 2012.

[117] V. Pillac, C. Gueret, and A. L. Medaglia. A parallel matheuristic for
the technician routing and scheduling problem. Optimization Letters,
7(7):1525–1535, 2013.

[118] D. R. Plane and T. E. Hendrick. Mathematical programming and the loca-
tion of fire companies for the Denver fire department. Operations Research,
25(4):563–578, 1977.

[119] ProRail BV. Slim alarmeren bij incidenten op het spoor (in Dutch),
2020. https://www.prorail.nl/nieuws/slim-alarmeren-bij-incidenten-op-
het-spoor. Accessed 13 October 2021.

[120] ProRail BV. Prorail official website, 2021. https://www.prorail.nl. Ac-
cessed 30 November 2021.

[121] ProRail BV. Spoorlopen (in Dutch), 2021.
https://www.prorail.nl/veiligheid/spoorlopen. Accessed 11 November
2021.

[122] ProRail BV. Wat wij doen incidentenbestrijding (in Dutch), 2021.
https://www.prorail.nl/over-ons/wat-doet-prorail/incidentenbestrijding.
Accessed 11 November 2021.

[123] H. N. Psaraftis. A dynamic programming solution to the single vehicle
many-to-many immediate request dial-a-ride problem. Transportation Sci-
ence, 14(2):130–154, 1980.

[124] S. Raghavan, M. Sahin, and F. S. Salman. The capacitated mobile facility
location problem. European Journal of Operational Research, 277(2):507–
520, 2019.

[125] M. Rashidnejad, S. Ebrahimnejad, and J. Safari. A bi-objective model of
preventive maintenance planning in distributed systems considering vehicle
routing problem. Computers & Industrial Engineering, 120:360–381, 2018.

[126] C. S. ReVelle and R. W. Swain. Central facilities location. Geographical
Analysis, 2(1):30–42, 1970.

[127] M. Riondato, D. Garćıa-Soriano, and F. Bonchi. Graph summarization with
quality guarantees. Data Mining and Knowledge Discovery, 31(2):314–349,
2017.

BIBLIOGRAPHY 139

[128] E. Rolland, D. A. Schilling, and J. R. Current. An efficient tabu search
procedure for the p-median problem. European Journal of Operational
Research, 96(2):329–342, 1997.

[129] N. Ruan, R. Jin, and Y. Huang. Distance preserving graph simplification.
In 2011 IEEE 11th International Conference on Data Mining, pages 1200–
1205. IEEE, 2011.

[130] V. Sadhanala, Y.-X. Wang, and R. Tibshirani. Graph sparsification ap-
proaches for Laplacian smoothing. In Artificial Intelligence and Statistics,
pages 1250–1259. PMLR, 2016.

[131] A. Sadri, F. D. Salim, Y. Ren, M. Zameni, J. Chan, and T. Sellis. Shrink:
Distance preserving graph compression. Information Systems, 69:180–193,
2017.

[132] A. Sarac, R. Batta, and C. M. Rump. A branch-and-price approach for
operational aircraft maintenance routing. European Journal of Operational
Research, 175(3):1850–1869, 2006.

[133] M. W. Savelsbergh and M. Sol. The general pickup and delivery problem.
Transportation Science, 29(1):17–29, 1995.

[134] F. Schalekamp and D. B. Shmoys. Algorithms for the universal and a priori
TSP. Operations Research Letters, 36(1):1–3, 2008.

[135] A. Schrijver. Theory of Linear and Integer Programming. John Wiley &
Sons, 1998.

[136] S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro. Aggregation sampling
of graph signals in the presence of noise. In 2015 IEEE 6th International
Workshop on Computational Advances in Multi-Sensor Adaptive Process-
ing, pages 101–104. IEEE, 2015.

[137] L. Shu, W. Wang, F. Lin, Z. Liu, and J. Zhou. A sweep coverage scheme
based on vehicle routing problem. Indonesian Journal of Electrical Engi-
neering and Computer Science, 11(4):2029–2036, 2013.

[138] M. M. Solomon. Vehicle routing and scheduling with time window con-
straints: models and algorithms (heuristics). University of Pennsylvania,
1984.

[139] D. A. Spielman and S.-H. Teng. Nearly linear time algorithms for precondi-
tioning and solving symmetric, diagonally dominant linear systems. SIAM
Journal on Matrix Analysis and Applications, 35(3):835–885, 2014.

[140] K. T. Talluri. The four-day aircraft maintenance routing problem. Trans-
portation Science, 32(1):43–53, 1998.

140 BIBLIOGRAPHY

[141] A. Tamir. An O(pn2) algorithm for the p-median and related problems on
tree graphs. Operations Research Letters, 19(2):59–64, 1996.

[142] Y. Tao, C. Sheng, and J. Pei. On k-skip shortest paths. In Proceedings
of the 2011 ACM SIGMOD International Conference on Management of
Data, pages 421–432, 2011.

[143] M. B. Teitz. Locational strategies for competitive systems. Journal of
Regional Science, 8(2):135–148, 1968.

[144] T. C. Thayer and S. Carpin. Solving large-scale stochastic orienteering
problems with aggregation. In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2452–2458. IEEE, 2020.

[145] The European Parliament and the Council of European Union. Directive
2012/34/EU. Official Journal of the European Union.

[146] H. Toivonen, F. Zhou, A. Hartikainen, and A. Hinkka. Compression of
weighted graphs. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 965–973,
2011.

[147] C. Toregas, R. Swain, C. ReVelle, and L. Bergman. The location of emer-
gency service facilities. Operations Research, 19(6):1363–1373, 1971.

[148] P. Toth and D. Vigo. Vehicle Routing: Problems, Methods, and Applica-
tions. SIAM, 2014.

[149] T. Tsiligirides. Heuristic methods applied to orienteering. Journal of the
Operational Research Society, 35(9):797–809, 1984.

[150] P. van den Berg and T. Van Essen. Scheduling non-urgent patient trans-
portation while maximizing emergency coverage. Transportation Science,
53(2):319–622, 2019.

[151] M. van Ee and R. Sitters. Routing under uncertainty: the a priori travel-
ing repairman problem. In International Workshop on Approximation and
Online Algorithms, pages 248–259. Springer, 2014.

[152] P. Vansteenwegen, W. Souffriau, and D. Van Oudheusden. The orienteering
problem: a survey. European Journal of Operational Research, 209(1):1–10,
2011.

[153] V. Verter. Uncapacitated and capacitated facility location problems. In
Foundations of Location Analysis, pages 25–37. Springer, 2011.

[154] VRP-REP. Problem variants, 2021. http://www.vrp-
rep.org/variants.html. Accessed 7 April 2021.

BIBLIOGRAPHY 141

[155] X. Wang and E. Wasil. On the road to better routes: Five decades of
published research on the vehicle routing problem. Networks, 77(1):66–87,
2021.

[156] Y. Wang and I. I. Hussein. Cooperative vision-based multi-vehicle dynamic
coverage control for underwater applications. In IEEE International Con-
ference on Control Applications, pages 82–87. IEEE, 2007.

[157] G. O. Wesolowsky. Dynamic facility location. Management Science,
19(11):1241–1248, 1973.

[158] Y. Xiang, R. Jin, D. Fuhry, and F. F. Dragan. Summarizing transactional
databases with overlapped hyperrectangles. Data Mining and Knowledge
Discovery, 23(2):215–251, 2011.

[159] H. Xu, D. Fang, and Y. Jin. Emergency logistics theory, model and method:
A review and further research directions. Advances in Computer Science
Research, 65:188–192, 2018.

[160] R. Zenklusen. A 1.5-approximation for path TSP. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1539–1549. SIAM, 2019.

[161] S. Zhang, J. W. Ohlmann, and B. W. Thomas. A priori orienteering with
time windows and stochastic wait times at customers. European Journal
of Operational Research, 239(1):70–79, 2014.

[162] D. Zhou, J. Huang, and B. Schölkopf. Learning from labeled and unla-
beled data on a directed graph. In Proceedings of the 22nd International
Conference on Machine Learning, pages 1036–1043, 2005.

Appendix A

Subroutines of Chapter 2

A.1 MILP for routing subroutine of WAM

In step 1 of WAM, as described in Algorithm 1 of Section 2.4.2, several medians are
identified as points of interest. In step 2, a distance matrix D is obtained. In step
3, the agents are routed over the jobs and these medians in such a way that the
total amount of travelling time is minimised, so that the total amount of time that
can be spent at these medians is maximised. Aside from the standard condition
that all jobs and medians must be visited exactly once, each agent must visit
exactly one median. If there were one location where all agents start and end,
and the number of medians visited per agent were allowed to be arbitrary, then
this would simply be an instance of DVRP. However, these two side constraints
merit the explicit description of the MILP used to solve this subroutine.

Define a set S = {s1, . . . , s|A|} of virtual nodes, representing the start ‘lo-
cations’ of the agents. Similarly, define W = {w1, . . . , w|A|} the virtual end
locations of the agents. For any distinct pair i ∈ S ∪M ∪ J , j ∈ M ∪W ∪ J ,
let variable ζij ∈ {0, 1} indicate whether or not someone goes directly to j after
visiting i. For each j ∈ M∪W ∪ J , define a variable fj ∈ [0, ω] describing the
arrival time at j; for each j ∈ S, denote fj = 0. For j ∈ S ∪M ∪W, denote
‘processing time’ Qj = 0. Finally, for each a ∈ A and each j ∈ M ∪ J , define
a variable z′aj ∈ {0, 1} indicating whether or not j is visited by a. For ai ∈ A,
s ∈ S and e ∈ W, denote z′ais = 1 if s = si and 0 otherwise, and z′aiw = 1
if w = wi and 0 otherwise: in other words, encode that start point si and end
point wi are always assigned to agent ai. Then the following MILP produces the
optimal sequences:

143

144 Chapter A. Subroutines of Chapter 2

min
∑

i∈S∪M∪J

∑
j∈M∪W∪J

Dijζij

s.t.
∑

j∈M∪W∪J
ζij = 1 (∀i ∈ S ∪M∪ J) (A.1)

∑
i∈S∪M∪J

ζij = 1 (∀j ∈M∪W ∪ J) (A.2)

fj ≥ fi − ω + ζij(ω +Qi +Dij) (∀i ∈ S ∪M∪ J)

(∀j ∈M∪W ∪ J) (A.3)∑
m∈M

z′am = 1 (∀a ∈ A) (A.4)∑
a∈A

z′aj = 1 (∀j ∈ S ∪M∪W ∪ J) (A.5)

z′aj ≥ z′ai + ζij − 1 (∀a ∈ A)(∀i ∈ S ∪M∪ J)

(∀j ∈M∪W ∪ J) (A.6)

ζij , z
′
aj ∈ {0, 1}, fj ∈ [0, ω]

Here, the objective value equals the total number of time steps spent trav-
elling. Constraint (A.1) states that, aside from end points, each node must be
departed from exactly once. Constraint (A.2) states that, aside from start points,
each node must be visited exactly once. Constraint (A.3) has two functions: it
recursively ensures that agents are at their end points no later than ω, and acts
as a subtour elimination constraint. Constraint (A.4) states that each agent must
be assigned exactly one median. Constraint (A.5) states that each node must be
assigned to exactly one agent. Constraint (A.6) states that if i ∈ S ∪M ∪ J is
assigned to some agent a ∈ A, and i is followed up by some j ∈M∪W ∪J , then
j is assigned to a as well. These last three rules, combined with the fact that
each starting point is assigned to exactly one agent, ensure that each median
is assigned to exactly one agent. Furthermore, constraint (A.4) and constraint
(A.5) ensure that the route that starts at sa also ends in the right wa.

When this MILP is solved with a MILP solver, the values of ζij describe
the sequences that minimise the time spent travelling, thus creating a maximal
amount of time that can be spent waiting at medians.

A.2 Solving path-TSP

In this section, we go into more detail for step 5 of Algorithm 2 in Section 2.4.3.
Observe a node set Ja, a start node Sa, an end node Wa and a symmetric distance
matrix Dij . For brevity, denote J+ = {Sa}∪Ja∪{Wa}. For each distinct i ∈ J+,
i 6= Wa and j ∈ J+, j 6= Sa, define a variable ζij ∈ {0, 1} describing whether or
not j is the next node visited after i. Also define a variable uj ∈ [1, |J+| − 1],

A.3. Cheapest space-time path for sequence and node costs 145

indicating how many nodes have been visited before j. Denote uSa = 0. The
path-TSP, to find the shortest path that starts at Sa, ends at Wa and visits all
nodes exactly once, can be solved by the following MILP.

min
∑

i∈J+,i6=Wa

∑
j∈J+,j 6=Sa

Dijζij

s.t.
∑

j∈J+,j 6=Sa

ζij = 1 (∀i ∈ J+, i 6= Wa) (A.7)

∑
i∈J+,i6=Wa

ζij = 1 (∀j ∈ J+, j 6= Sa) (A.8)

uj ≥ ui + ζij − 1 (∀i ∈ J+, i 6= Wa)(∀j ∈ J+, j 6= Sa) (A.9)

ζij ∈ {0, 1}, uj ∈ [1, |J+| − 1]

Here, the objective value describes the total amount of distance travelled.
Constraint (A.7) states that each node, except the end node, must be departed
from exactly once. Constraint (A.8) states that each node, except the start node,
must be visited exactly once. Constraint (A.9) acts as a subtour elimination
constraint.

After solving this MILP with a MILP solver, reading out ζij produces a
sequence with minimal time spent travelling.

A.3 Cheapest space-time path for sequence and
node costs

The Dynamic Program Algorithm 12 (see Section 2.4.3) takes as input some
start point Sa, some end point Wa, some sequence over job set Ja and some cost
function on the nodes that may depend on the time step. It returns the cheapest
feasible space-time path with respect to these node costs.

A.4 Instance generator

To create an instance of the MRP, the following parameters should be provided:

• The desired number of agents, |A|;

• The desired number of jobs, |J |;

• The desired number of nodes, |V |;

• The desired number of time steps, ω;

• The width of a large square, SCALE;

146 Chapter A. Subroutines of Chapter 2

ALGORITHM 12: Optimal execution of job sequence against given node costs

1: Initialise the set of active nodes N := {(depot, 0, j0)}, with j0 the first job that has
to be visited, or j0 = Wa if the sequence has no jobs;

2: Initialise the reach cost reach : N → R≥0 as reach(Sa, 0, j0) = 0;
3: Initialise the explored nodes E := ∅;
4: Take (u, t, state) := arg minN reach(u, t, state), remove this from N and add it to
E ;

5: Observe each ‘neighbour’ (v, t+ 1, state′) of (u, t, state). (v, t+ 1, state′) is a
neighbour of (u, t, state) if v ∈ Vu, and either:

• state = j ∈ {Wa} ∪ Ja and state′ = j (the goal does not change);

• state = j ∈ J , Lj = v and state′ = (j,Qj) (the next job is started);

• state = (j, q), q > 1, u = v and state′ = (j, q − 1) (the job is processed
further);

• state = (j, 1), u = v, j′ is the next job if there is one and Wa otherwise, and
state′ = j′ (the job is finished, the next goal retrieved);

• state = (j, 1), u = v, j′ is the next job to be visited, Lj′ = v and
state′ = (j′, Qj′) (the job is finished, and the next job happens to be in the
same location).

6: For each neighbour (v, t+ 1, state′), if it is not already in N or E , add it to N and
set reach(v, t+ 1, state′) = reach(u, t, state) + nodecosta(v, t+ 1);

7: If the end node (Wa, ω,Wa) 6∈ N , go to step 4;
8: Using reach, backtrack the cheapest path to (Wa, ω,Wa) from (Sa, 0, j0).

A.4. Instance generator 147

• The threshold for adjacency, G CHOP ;

• The minimal distance between nodes (for visualisation and realism pur-
poses), MIN DIST ;

• The range of potential processing times for jobs, Q RANGE;

• The probabilities that a given node has large, medium or small emergency
demand,
PROB LARGE and PROB MEDIUM and PROB SMALL;

• The range of how many ‘emergency points’ nodes with large demand can
have,
P POINTS RANGE LARGE;

• The range of how many ‘emergency points’ nodes with medium demand
can have,
P POINTS RANGE MEDIUM ;

• The range of how many ‘emergency points’ nodes with small demand can
have,
P POINTS RANGE SMALL;

• The allowed number of ATTEMPTS to generate a feasible instance.

Given these parameters, an instance of MRP is generated using Algorithm
13.

The instances of class I1 were generated with the following parameters:

|A| = 3, |J | = 2|A|+ 1, |V | = 20, G CHOP = 300,
ω = 16, ATTEMPTS = 100, SCALE = 1000,
MIN DIST = 1, Q RANGE = {0, 1, 2},
P POINTS RANGE LARGE = {100, . . . , 300}, PROB LARGE = 0.15,
P POINTS RANGE MEDIUM = {10, . . . , 50}, PROB MEDIUM = 0.30,
P POINTS RANGE SMALL = {0, . . . , 5}, PROB SMALL = 0.55.

The class I5 instances were generated with identical parameters, except |A| =
4 and |V | = 100.

As mentioned in Table 2.3, the classes I1 and I5 contain instances that are
‘productive’ and ‘sparse’. The ‘dense’ instances were created from the ‘sparse’
instances by recomputing the node adjacencies for G CHOP = 600. The ‘un-
productive’ classes were created from the ‘productive’ classes by deleting jobs
until |J | = |A| − 1. We chose to set |J | equal to either 2|A|+ 1 or |A| − 1, rather
than 2|A| or |A|, to break symmetry and introduce the additional challenge of
assigning unequal amounts of jobs to agents.

148 Chapter A. Subroutines of Chapter 2

ALGORITHM 13: Generate an instance of MRP
1: Set attempt = 0;
2: Set attempt := attempt+ 1. If attempt > ATTEMPTS, QUIT;
3: Create |V | − |J | nodes with uniformly random integer X and Y coordinates

between 0 and SCALE;
4: Create the other |J | nodes with uniformly random integer X and Y coordinates

between 0 and SCALE. At each of these nodes, place one job, thus setting
L : J → V . For each job, pick its processing time uniformly randomly from
Q RANGE;

5: Check if none of the nodes are closer than MIN DIST to each other in Euclidean
norm (truncated to two decimals). If there exist nodes that are too close together,
go to Step 2;

6: Determine neighbour sets Vv by checking, for each pair of nodes (u, v), whether or
not their Euclidean distance (truncated to two decimals) is under G CHOP ;

7: Check if the graph implied by Vv is connected, by picking an arbitrary node and
checking neighbours in a width-first search. This width-first search terminates
before finding all nodes if and only if the graph is not connected. If the graph is
not connected, go to Step 2;

8: Check if the triangle inequality still holds after truncating Euclidean distances to
two decimals, by checking for each u,w ∈ V whether or not
Cuw ≤ minv∈V {Cuv + Cvw}. If there exists a pair where this inequality does not
hold, go to Step 2;

9: Denote depot the centremost non-job node, that is, the non-job node with smallest
Euclidean distance to (0.5 · SCALE, 0.5 · SCALE);

10: Determine the distance matrix between the job nodes and depot using the
Floyd-Warshall algorithm [31];

11: Check whether this instance of MRP admits a feasible solution, by checking
whether the DVRP over the jobs and depot has a feasible solution, for example by
solving the MILP describing the DVRP but with objective function 0. If the
DVRP is infeasible, go to Step 2;

12: Set Cuv equal to the Euclidean distance between each pair of nodes (u, v);
13: For each non-job, non-depot node v, first determine whether v has a large,

medium or small emergency demand against probabilities PROB LARGE,
PROB MEDIUM and PROB SMALL. Then, uniformly randomly draw a
number of ‘emergency points’ from P POINTS RANGE LARGE or
P POINTS RANGE MEDIUM or P POINTS RANGE SMALL.

14: Set Pv for all v ∈ VP by normalising until
∑

v∈VP
Pv = 1;

15: Create A = {a1, . . . , a|A|}, set Sa = depot and Wa = depot and RETURN this
instance.

	Introduction
	About this thesis
	Railway emergency response in the Netherlands
	Overview and publications

	The Median Routing Problem
	Introduction
	Related literature
	Problem definition
	Example instance
	Discussion of modelling choices
	Complexity

	Methods
	Mixed Integer Linear Programming
	WAIT-AT-MEDIANS-heuristic
	MEDIATE-DIVIDE-SEQUENCE-AGREE-heuristic
	Partial versions of MDSA

	Experimental setup
	Used instances
	Metrics and methods for solution structure
	Hardware specifications

	Results
	Conclusions

	The Travelling k-Median Problem
	Introduction
	Related literature
	Problem definition
	Hardness and bounds
	Rounding continuous graph movement
	Topologies with constant-factor guarantees
	Path case
	Cycle case

	Approximation algorithms for general graphs
	Conclusions

	Representative Distance-preserving Graph Sparsifiers
	Introduction
	Related literature
	Problem definition
	Four ways to compute representative subgraphs
	The Smallest RDGS algorithm
	The Realigned Smallest RDGS algorithm
	The Greedy On-Ramps RDGS algorithm
	The Greedy Centrality RDGS algorithm

	Mixed Integer Jester Games
	-iteration
	LP-rounding algorithms for usurpers

	Examples of sparsification strategies
	Facility Location Problems
	Classical routing problems
	Orienteering Problems
	The Two-Stage Stochastic Steiner Tree Problem

	Bounding MRP performance loss as a Mixed Integer Jester Game
	Experiments
	Results
	Conclusions

	The Enriched Median Routing Problem
	Introduction
	Related literature
	Enriched Median Routing Problem
	Problem description
	Mixed Integer Linear Program formulation
	An MDSA-inspired heuristic

	Current Practice model
	Performance metrics, planning scenarios and use case description
	Performance metrics
	Planning scenarios
	Use case description
	Implementation details

	Results
	Conclusions

	Real-life Implementation and Next Steps
	Summary
	References
	Subroutines of Chapter 2
	MILP for routing subroutine of WAM
	Solving path-TSP
	Cheapest space-time path for sequence and node costs
	Instance generator

