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Chapter 1

Introduction

Over the past two decades the use of wireless communication networks has
grown at an unprecedented rate, and this growth is not likely to come to an
end in the near future. The main barrier to the sustained growth is the limited
capacity of radio resources that may fluctuate depending on the propagation
environment. In practical deployments these scarce resources have to be shared
among a multitude of users, each of which shows random behavior in terms of
application usage and mobility. In the competitive markets of wireless com-
munication services it is essential for network operators to deliver high-quality
services at sharp prices. This raises the need for smart and distinguishing meth-
ods to utilize and control the scarce wireless network resources in a cost-efficient
manner.

Many geographical locations are covered by a multitude of overlapping wire-
less networks. This phenomenon, throughout referred to as Concurrent Access
(CA), has opened up tremendous possibilities for increasing capacity, improving
robustness, and enhancing Quality of Service (QoS). Despite the enormous po-
tential for quality improvement, only little is known about how to fully exploit
the possibilities offered by CA. In this context, the goal of this thesis is to eval-
uate and optimize the efficiency of different CA approaches and traffic control
mechanisms.

1.1 Background and motivation

In traditional tactical or telecommunication networks, services are tightly cou-
pled with the underlying transmission medium. For example, in traditional
networks classical voice telephony services are offered via the circuit-switched
telephone networks, television services are offered via television broadcasting
networks and data services (e.g., financial transactions) are offered via dedi-
cated data networks. With the emergence of the Internet Protocol (IP) this
’stovepipe’ model has evolved into a model in which services and their trans-
mission medium are no longer strictly coupled. In fact, in most contemporary

1



2 Chapter 1 Introduction

communication systems a variety of services is transported by a plurality of
network types and technologies.

At the same time spectacular advances in networking technology have been
realized over the last few years, leading to a significant increase of the available
capacity in both wired and wireless networks. The possibilities offered by mod-
ern wireless networking technologies have boosted the demand for high-capacity
wireless services. This, in turn, has led to the introduction of new, and highly-
efficient, network technologies that achieve high peak data rates. Consequently,
many contemporary wireless network technologies have closely approached the
Shannon limit on channel capacity, leaving complex signal processing techniques
room for only modest improvements in the data transmission rate [34].

A promising solution to satisfy the increasing demand for high application data
rates is the concurrent use of multiple wireless networks. On multi-homed de-
vices, for example, the data rate available to the applications may strongly
benefit from the overlapping coverage of a wide range of wireless access tech-
nologies that operate in different frequency bands and already achieve very high
spectral efficiencies. The approach to benefit from accessing multiple networks
simultaneously, called CA, potentially delivers significant advantages, includ-
ing enhanced performance improvement and robustness. Today, however, little
is known about how to effectively exploit this enormous potential by smartly
splitting traffic streams over multiple concurrent wireless networks. This is the
motivation for the research pursued in this thesis.

1.2 Literature

In the context of communication systems the concurrent use of multiple net-
work resources in parallel was already described for a Public Switched Digital
Network (PSDN) [36]. Here inverse multiplexing was proposed as a technique to
perform the aggregation of multiple independent information channels across a
network to create a single higher-rate information channel. Many different forms
of parallelism occur throughout different protocol layers in communication sys-
tems to enhance reliability, e.g., protecting working channels that transfer voice
signaling using the Stream Control Transmission Protocol (SCTP) [111], or to
increase network performance for Wireless LANs (WLANs) using multiple an-
tennas in the IEEE 802.11n standard [6].

Many research efforts are focused on combining the capacity of multiple net-
works concentrate on the link layer, the transport layer and on the applica-
tion layer of communication systems. At the data link layer, approaches have
been proposed for switching between several homogeneous networks [31] and
scheduling over heterogeneous networks [72, 18]. However, approaches at this
layer require modifications for each different network interface that needs to be
supported and, moreover, switching the data segments of the same Transport
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Control Protocol (TCP) session over different network links, even in homoge-
neous networks, adversely affects TCP performance [31, 58]. At the transport
layer, two main areas can be distinguished: one concentrating on the use of
SCTP (e.g., see [61, 60, 59]) and the other on using or modifying TCP. Within
the IETF, SCTP has evolved from a transport protocol for voice-signaling traffic
into one that allows various types of information to be transported over different
network paths. It needs to be pointed out that the functionality for efficiently
using concurrent paths is not considered by the standard, meaning that dis-
tributing and re-sequencing the data should be implemented separately, and
that the flow- and congestion control mechanism is the same for the possibly
different networks used in parallel, which is not in the interest of overall efficient
link utilization nor application performance [58, 124]. Several proposals to mod-
ify, use and extend TCP for exploiting multiple networks have appeared. The
most prominent being a modification of TCP, called pTCP [58], later followed
by mTCP [124] that both aimed at enhancing TCP to be capable of using mul-
tiple networks concurrently. Finally, at the application layer, another approach
can be applied to establish multiple connections to one or more endpoints for
transferring information in a distributed manner, as is done by Peer-to-Peer
(P2P) techniques. In this thesis we concentrate on the transport layer for a
practical realization of CA, because it preserves existing applications, abstracts
from network particularities and seems the most promising layer to operate on
with respect to achieving high performance gains.

In the literature, many models have been proposed that can predict the per-
formance of several networks separately. Most prominently, the application
performance of file transfers is often modeled by Processor Sharing (PS)-based
models [22, 76, 120] that have shown to be applicable to a wide variety of wireless
access networks, including CDMA 1xEV-DO, WLAN, and UMTS-HSDPA. In
fact, when proper parameterization is applied, PS models may accurately pre-
dict the performance of file transfers over WLANs [51] by taking into account
the complex dynamics of the application and its underlying protocol-stack. PS
models provide an abstraction from the highly complicated packet-level details
of a network that reduces the model complexity significantly. By accounting for
those essential factors that determine the network performance, highly accurate
model predictions can be obtained, while an exact mathematical analysis of the
model is still feasible.

Despite the applicability of PS-based models to real communication networks,
little is known on PS-based models suitable for modeling the use of multiple
networks concurrently. In a queueing-theoretical context, the distribution and
re-assembly of tasks into subtasks are typically modeled by fork-join construc-
tions [71]. In cases where the processing times of the subtasks are independent,
exact or numerical analysis is relatively simple (e.g., [32]), whereas the inclusion
of dependent processing times (e.g., due to queueing or job splitting) typically
leads to very complex analysis (e.g., [37, 81]) and no closed-form solution exists.
In [75] and [74], the author analyzes a similar model but with FCFS queues
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and with probabilistic splitting. We further refer to Altman et al. [11], who
consider routing policies in a distributed versus centralized environment. In
general our queueing model falls within the framework of fork-join queueing
networks, see [12] for an extensive overview.

For PS-queues that process the tasks of a job in parallel, the complex corre-
lation structure between the sojourn times at the PS-queues makes an exact
detailed mathematical analysis of the model impossible. As a result, the avail-
able literature on queueing models with regard to traffic-splitting is not widely
adopted and hence leaves a gap between theory and practice. As an exception,
Key et al. investigate the efficiency of combining multipath routing and con-
gestion control in TCP-based networks. In [68] they show that under certain
conditions the allocation of flows to paths is optimal and independent to the
flow control algorithm used. In [69] it is shown that with RTT bias uncoordi-
nated control can lead to inefficient equilibria, while without RTT bias, both
coordinated and uncoordinated Nash equilibria correspond to desirable welfare
maximizing states.

The literature leaves a clear gap between theory and practice: the existing
theory provides important fundamental insight, but the models often rely on
simplifying assumptions that cannot be met by practical deployments. On the
practical side, the research efforts on splitting algorithms and implementations
were concentrated at increasing the throughput on multiple networks (often in
the absence of background traffic) without having a notion of the user-level per-
formance in the presence of background traffic. In fact, the impact that CA
approaches in networks have on the performance of other traffic is a subject
that is not well-known in literature.

In this thesis a three-stage approach is applied. First, a network model is
devised that accurately describes the application-level performance by prop-
erly parameterizing a queueing abstraction. Second, several CA approaches are
considered in the context of an abstract queueing system. By doing so, the
performance that various CA approaches achieved in a queueing system can be
described, optimized and mutually compared. The third, most essential, stage
closes the circle by applying the results from the queueing models to simulation
environments and testbed networks to demonstrate their practical impact.

1.3 Overview of the thesis

In Chapter 2 we introduce a new concept for modeling data traffic flows in a
communication network by jobs that are processed by a Processor Sharing (PS)
queue. The influence of complex combined dynamics and protocol overhead of
multiple communication layers on data traffic flows in real networks can be ac-
counted for in an explicit expression for a single parameter which will be called
the effective service time. Based on the effective service time, the effective load
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is defined to describe the performance of data flows in a network with anM/G/1
PS model. Extensive validation by means of simulations and experiments con-
ducted with network equipment show that accurate predictions can be obtained
from our model for a wide range of parameter combinations. Additionally, our
model can be used to parameterize a PS-based queueing network, such that the
outcomes correspond to the performance of real networks or vice versa.

In Chapter 3 we consider a CA network that consists of parallel communi-
cation networks, each of which is modeled as a PS-queue that handles two types
of traffic: foreground and background streams. The foreground traffic stream
consists of jobs, each of which is split into fragments according to a fixed split-
ting rule. These fragments are processed by the parallel PS-queues. Upon
completion of all fragments, the job is re-assembled at the receiving end. The
background streams use dedicated queues without being split. By applying a
fixed job splitting rule, the approach is referred to as static job splitting. The
aim of static job splitting of files and transferring the portions through parallel
networks is to reduce the transfer time of a foreground file transfer. Based on the
model for effective service time from Chapter 2 the network may be represented
by PS-queues and the files by jobs to study a file-splitting rule in a queueing
theoretical context. The corresponding queueing network is called a CA job-
split queueing network that consists of parallel PS-queues. Based on a Reduced
Load Approximation (RLA) it is proven that a simple splitting rule achieves tail
optimality with respect to the sojourn time of jobs that are split. Extensive sim-
ulations demonstrate that this simple rule indeed performs well, not only with
respect to the tail asymptotics, but also with respect to the mean sojourn times.

In Chapter 4 the CA job-split queueing network from Chapter 3 is analyzed
with the aim to minimize the mean sojourn time by using static splitting. As a
result of static splitting, the sojourn times of a job’s fragments in the different
PS-queues are generally correlated, which prohibits an exact analysis. There-
fore, a new approximation is developed that combines light- and heavy-traffic
asymptotics, which then leads to an approximation for the optimal splitting
rule with respect to the mean sojourn time of foreground jobs. Extensive sim-
ulations demonstrate that the differences between the approximated optimal
splitting rule and the estimated optimum with respect to the expected fore-
ground sojourn time are extremely small for a wide range of the parameter
settings.

In Chapter 5 a CA network of parallel communication networks is considered in
which the files from the foreground traffic are assigned to one of the available
networks in the presence of background traffic streams in each of the parallel
networks. The assignment of foreground files to one of the available networks
is characterized in the context of this thesis by the term dynamic job assign-
ment. Similar to the CA job-split optimization problem, the dynamic assign-
ment problem in this chapter is studied in a queueing theoretical context using
a CA job-assignment model, where the networks are represented by PS-queues
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and the files by jobs that are served by these queues. The goal in this chap-
ter is to develop a dynamic policy that minimizes the mean sojourn time of
the foreground traffic. A full-information state policy is developed by solving
a Markov decision problem that requires information on the number of fore-
ground and background jobs in each queue. It is realized that the information
that is available to the decision maker does not allow to distinguish the number
of foreground and background jobs in the network, but instead only has partial
information on the total number of jobs. To this end, we develop and evaluate
a Bayesian learning algorithm that splits a stream by optimally assigning entire
jobs to different queues. The optimality of the partial information algorithm
is evaluated by comparing the performance of the algorithm with the “ideal”
performance of the optimal policy using full state information. Extensive exper-
iments are conducted, both numerically and in a network simulation tool that
contains an implementation of the full wireless protocol stack. The results show
that the Bayesian algorithm delivers close to optimal performance over a wide
range of parameter values.

In Chapter 6 a CA network of parallel communication networks is considered
where the foreground files are dynamically split among the networks in the pres-
ence of background traffic in each of the networks. Consequently, this approach
is characterized as dynamic job splitting, because the splitting rule dynamically
adapts based on full state information. In the corresponding job-split queueing
model dynamic splitting is performed at infinitely fine-grained granularity in
an effort to aim at ”optimal” traffic splitting performance. Next, we present a
practical realization of dynamic job splitting that uses a simple score function
to make on-the-fly decisions on the routing of individual TCP segments. Then,
we use a combination of the effective service time model from Chapter 2 and the
PS-based dynamic job split model as a benchmark to evaluate the efficiency and
practical usefulness of the practical realization of dynamic splitting TCP flows
over real wireless networks in a test-lab environment. Extensive experimenta-
tion demonstrates that our solution is extremely efficient and easily deployable,
and as such provides a powerful means to effectively split TCP traffic in the
presence of concurrently available access networks.

In Chapter 7 the model from Chapter 2 is partially re-used for realizing a traf-
fic control solution that aims at making QoS guarantees for wireless users in
a network where the available capacity may fluctuate. It is shown that the
throughput parameter bits/s does not provide sufficient insight in load condi-
tions and/or traffic demands in wireless networks. To this end, we define a
multi-service traffic profile that does provide this insight, which can be used to
define the notion of a QoS budget. The QoS budget is assigned to a terminal in
accordance with the method described in [47]. Using this method, the terminal
can determine locally if the network consumption does not exceed the assigned
budget and whether a new application session may fit within the QoS budget
given. Finally, it is shown how the QoS budget with its multi-service traffic
profiles can be used as a dynamic solution to guarantee the QoS of various ap-
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plications in a wireless network, where channel conditions may vary over time
and stations may move around.

In Chapter 8 a traffic policing solution is proposed and evaluated that is specifi-
cally developed for policing traffic of users in shared medium wireless networks.
The solution described in Chapter 7 may be used to determine and assign a QoS
budget to each terminal in a wireless network, based on a multi-service traffic
profile. Subsequently, the QoS budget serves as an input to the traffic policing
in Chapter 8. This policing solution takes advantage of the property of shared
medium wireless networks that the upstream and downstream traffic compete
for the medium when transmitting packets. This occurs in various types of
practical wireless communication systems and leads to an inefficient medium
utilization when a traffic contract maintains a strict separation between the two
directions. In this chapter a method for traffic policing is introduced and eval-
uated that uses shared communication media more efficiently by exchanging
the contract parameters between the uplink and the downlink directions dy-
namically, when desired. The solution is based upon a commonly used policing
mechanism. An extensive performance study shows the merits of this policing
mechanism and how it should be configured to use it effectively.

1.4 Publications

This thesis is based on the following publications that have appeared or have
been submitted for publication in the open literature:

1. G.J. Hoekstra, R.D. van der Mei and S. Bhulai. Optimal job splitting in
parallel processor sharing queues. To appear in Stochastic Models, 28(1),
2012.

2. G.J. Hoekstra, R.D. van der Mei and J.W. Bosman. On comparing the
performance of dynamic multi-network optimizations. In Proceedings
IEEE GlobeCom, Miami, U.S.A., 2010.

3. G.J. Hoekstra and R.D. van der Mei. Effective load for flow-level perfor-
mance modelling of file transfers in wireless LANs. Computer Communi-
cations, 33(16):1972-1981, 2010.

4. F.J.M. Panken and G.J. Hoekstra. Multi-service traffic profiles to realise
and maintain QoS guarantees in wireless LANs. Computer Communica-
tions, 32(6):1022-1033, 2009.
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cess strategies in mobile communication networks. In Proceedings 22nd
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bayesian approach. Performance Evaluation, 69(1):4152, 2012.
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Chapter 2

Concept of Effective Service Time in

Wireless Networks

Today, a wide range of wireless networks exist that provide users with data
services. For engineering purposes there is a need for very simple, explicit, yet
accurate, models that predict the performance under anticipated load condi-
tions. In this context, several detailed packet-level models have been proposed,
based on fixed-point equations. Despite the fact that these models generally
lead to accurate performance predictions, they do not lead to simple explicit
expressions for the performance. Instead, PS models may provide an abstrac-
tion from the highly complicated packet-level details of a network that reduces
the model complexity significantly. By accounting for those essential factors that
determine the network performance, highly accurate model predictions may be
obtained, while an exact analysis of the model is still feasible.

Motivated by this, we propose a new concept of modeling the complex combined
dynamics and protocol overhead of multiple layers into an explicit expression
for a single parameter which will be called the effective service time. Based on
the effective service time, we define the effective load to describe the flow-level
performance of file transfers with an M/G/1-PS model. Despite the fact that
PS models are heavily used in modeling flow-level performance in communica-
tion networks, an extensive validation of such models has not been published
in the field. To this end, our model is validated extensively by comparing the
model-based average response times against simulations and experiments con-
ducted with network equipment.

The results show that the model leads to highly accurate predictions over a
wide range of parameter combinations, including light- and heavy-tailed file-size
distributions and light- and heavy-load scenarios. The simplicity and accuracy
of the model make the results of high practical relevance and useful for perfor-
mance engineering purposes. Another application of the proposed model is that
it provides a mapping for parameterizing a PS-based queueing network, such
that the outcomes predict the performance of real networks. Vice-versa the

9



10 Chapter 2 Concept of Effective Service Time in Wireless Networks

model may be used to relate network performance measurements to outcomes
obtained from queueing networks. It is exactly this property of providing a
parameter mapping that makes our model particularly useful to relate the vast
knowledge in the field of PS-based queueing networks to the area of network
performance engineering. In Chapters 5 and 6 such parameter mappings are
applied to different queueing networks to predict network performance.

This chapter is based on the results presented in [52], [51] and [50].

2.1 Introduction

PS models are frequently used to describe the bandwidth sharing of TCP flows
in a network. A particularly attractive feature of PS models is that they abstract
from the highly complicated packet-level details of the network, but at the same
time maintain the essential factors that determine the performance, and also
allow for an exact analysis. PS models have been successfully applied to model
the flow-level behavior of a variety of communication networks, including CDMA
1xEV-DO [22], WLAN [76], UMTS-HSDPA [120] and ADSL [15].

An important property of PS models is the well-known insensitivity prop-
erty of the mean response times with respect to the file-size distribution. In an
excellent survey on statistical bandwidth sharing [105], it is stated that “Even
though the conditions for the insensitivity properties of this model are not re-
alized in practice, we can be fairly confident that actual performance does not
depend significantly on detailed flow and session characteristics, given the as-
sumption of Poisson session arrivals”.

WLANs are widely deployed to provide users with wireless access to private
or public data networks. Pioneering work on performance models for WLANs
was done by Bianchi [21], who proposed a packet-level model for the saturated
aggregated throughput of the Medium Access Control (MAC) layer. Combined
packet/flow-level models have been proposed to study the performance of non-
persistent data flows with [106, 87] or without [76] using the TCP protocol.

In [87], the authors have studied HTTP throughput performance in WLANs
that operate in a specific (RTS/CTS) channel reservation mode with a detailed
MAC model, combined with a state-dependent PS model. The proposed ana-
lytic model uses the fixed-point approach proposed by [21] and takes the TCP
overhead associated with session set-up into account, specifically for HTTP ap-
plications. Users are assumed to alternate between activity periods (in which
a page is downloaded) and idle periods. In these circumstances, the number
of admitted HTTP sessions in the network is limited to the number of users.
Another contribution [76] proposes an integrated packet/flow-level model for
TCP flows in a WLAN, assuming that a station has no more than one active
TCP flow at a time (similar to [108]).
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In practice, most operational WLANs do not apply any form of per-flow ad-
mission control, operate in basic access mode (having disabled RTS/CTS), and
allow stations to download multiple files concurrently. For performance engi-
neering purposes there is a great need for simple, explicit, ready-to-implement
yet accurate models that predict the file transfer performance over WLANs.
However, previous work on flow-level performance [106, 108, 87, 76] meets at
most partially these requirements. This has motivated us to develop a new,
simple, yet accurate model that does take into account each of these require-
ments imposed by practical deployments. A first version of this model appeared
in [50], followed by a detailed model in [51] that was thoroughly validated by
OPNET simulations. In [52] the latter model is further extended and validated
against testbed experiments.

Our main interest in this chapter is in the application-layer performance that
depends on the combined dynamics of all underlying protocol layers. A cru-
cial observation is that the combined dynamics of the MAC and TCP-layer
yield a remarkably simple model, compared to separate and generally complex
MAC [21] and TCP-layer models.

The main contributions of this chapter are as follows: First, we propose a new
analytic flow-level model that translates the complex and detailed dynamics of
the various protocol layers (i.e., FTP/TCP/IP/MAC), and their interactions,
into an explicit expression for the ’effective service time’ (denoted by βeff ) of
the WLAN. Second, based on the effective service time we define the effective
load (denoted ρeff ) and use this to describe the flow-level behavior of TCP-
based file transfers over WLANs (without admission control) as an M/G/1-PS
model with load ρeff , instead of the classical load ρ := λβ, where λ is the ar-
rival rate and β is the mean service time. Third, using the M/G/1-PS model
we propose a simple analytic model to obtain the WLAN Access Point (AP)
buffer-content distribution. A practically useful guideline for the minimum size
of the AP buffer is given for the analytic flow-level model to apply. Fourth, we
provide an extensive validation of the PS model by comparing the model-based
outcomes against network simulations that implement the full range of lower-
layer protocol details [91]. The simulation results demonstrate that the mean
response times can be accurately predicted over a wide range of parameter com-
binations, including light- and heavy-tailed file-size distributions and light- and
heavy-load scenarios. As a by-product, the simulation results demonstrate that
the mean response times and AP buffer-content distribution are indeed fairly
(but not completely) insensitive to the file-size distribution, as suggested by the
M/G/1-PS model, which confirms the above-mentioned statement in [105].

The remainder of this chapter is organized as follows. In Section 2.2 we present
a new analytic model for the flow-level behavior of file transfers for various types
of WLANs, explicitly taking into account the details of the protocol stack at
the MAC-layer and above. In Section 2.3 we validate the model via network
simulations and testbed experiments, compare the outcomes against previous
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work [106, 108] and our proposed analytic model. The outcomes from simulation
and testbed experiments demonstrate near-insensitivity of the mean download
response times to the file-size distribution. This section concludes with practical
guidelines for performance engineering.

2.2 Modeling

WLAN performance models have received much attention from the research
community of which the vast majority concentrated on the Distributed Coor-
dination Function (DCF), as specified in the IEEE 802.11 standard [1]. The
work by Bianchi concerned the initial version of the IEEE 802.11 standard for
WLAN MAC and Physical (PHY) layer functionality. In 1999, the IEEE 802.11
standard was ratified [1] and served as the basis for higher data-rate amend-
ments, known as the IEEE 802.11 b/a/g/n standards [3, 2, 5, 6]. As a result
of using the same protocol basis, different parameterizations of Bianchi’s model
appeared [108, 35, 82] to capture the saturation throughput for the higher data-
rate WLAN standards. The most prominent analytic models are based on the
Markov chain approach of Bianchi [21]. Where Bianchi’s parameterization of
the model concerned the Frequency-Hopping Spread Spectrum (FHSS) method,
others [108, 35, 82] have applied the PHY/MAC parameters of the IEEE 802.11
b-, g- and a-standard, respectively. It has been observed [76, 21] that the ag-
gregate throughput performance strongly depends on whether medium access is
provided in basic access or RTS/CTS mode. In the former case, the aggregate
throughput strongly decays for an increasing number of active stations, whereas
in the latter case the throughput performance is far less dependent on the num-
ber of active users.

In more recent work [93] a detailed description is given about the use of the IEEE
802.11 a/b/e/g/n standards and a mixture thereof in the context of multi-service
QoS guarantees. For a detailed description of the PHY/MAC level aspects we
refer to [93], of which the IEEE 802.11 MAC parameterization details are used
as a basis for the analytic model presented below.

An important observation with regard to applying PS-based models to file down-
loads using TCP in infrastructure-based WLANs is made by Roijers et al. [106]
and Sakurai and Hanley [108], who both state that the need to apply PS with
state-dependent service rates (suggested by [22, 87] for the WLAN Medium Ac-
cess Control (MAC)) vanishes when considering TCP flows in WLAN. This is
because the stations hardly contend for the medium as the WLAN AP carries
most of the traffic due to its equal medium access rights. This property allows
us to assume that the total available capacity in the network is constant and
to subsequently obtain the effective service time for a given average file size. A
simple, explicit model for the effective service time is formulated in Section 2.2.
This model lays the foundation for the notion of effective load, which captures
the protocol dynamics in a single parameter that can be used to describe the
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flow-level performance as a PS model.

Section 2.2.2 forms a brief introduction on modeling the IEEE 802.11 MAC
aspects, followed by an analytic model suitable for network simulations in Sec-
tion 2.2.3 that translates the main aspects from the MAC/IP/TCP-level dynam-
ics into an explicit expression of effective service time at the application-layer.
Further enhancements for the analytic model are proposed in Section 2.2.4 to
describe the performance that can be observed in real network deployments. In
Section 2.2.5 we use the latter expression to introduce the notion of effective
load and use this to give an expression for the expected file transfer time for
simulated and experimental networks.

2.2.1 Introduction to IEEE LAN standards

The 802.11 standard from the Institute of Electrical and Electronics Engineers
(IEEE) is part of the 802 family of standards, which consists of several spec-
ifications that concern LAN technologies (see for example page 3 from [1], or
page 389 from [57]). Each specification is indicated by a second number behind
the 802 number. In 1980, Project 802 was started by the IEEE with the aim
to define specifications for intercommunication of equipment from several man-
ufacturers within the scope of the lower two layers of the OSI reference model;
the data link layer and the physical (PHY) layer. The data link layer is subdi-
vided into the Logical Link Control (LLC) and Medium Access Control (MAC)
sublayers, of which the LLC sublayer is a common specification, indicated as
IEEE 802.2. Every 802 network has a MAC-and a PHY (sub)layer, where the
MAC defines the rules to gain access to the medium and to send data, and the
PHY layer governs the transmission and reception of data to and from the MAC
sublayer. In the remainder of this thesis, the MAC sublayer is for convenience
referred to as a layer rather than sublayer although it is a sublayer in the context
of 802 networks.

One of the most prominent examples of IEEE 802 standards specifications is
the 802.3 specification that defines the Carrier Sense Multiple Access network
with Collision Detection (CSMA/CD), which is commonly referred to as Eth-
ernet. Similar to the IEEE 802.3 standard, the IEEE 802.11 standard is a link
specification of the MAC-and PHY layer functionality and may be used for
LLC/802.2 encapsulation. The IEEE 802.11 standard [1] defines the basic set
of MAC-and PHY layer functionality that is enhanced in later standard amend-
ments for i.e., higher transmission rates (IEEE 802.11 a/g/n), security (IEEE
802.11i) or Quality of Service enhancements (IEEE 802.11e). Compared to the
wired IEEE 802 standards, the MAC-and PHY functionality is relatively com-
plex due to the many additional features in the MAC and the use of the wireless
medium at the physical layer. As a result, the PHY layer is split into two parts,
first, the Physical Layer Convergence Protocol (PLCP) and, second, the Phys-
ical Medium Dependent (PMD) layer. The PLCP maps the MAC frames into
an additional framing format suitable for the underlying PMD layer, and the
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PMD defines the characteristics of, and method of transmitting and receiving
data through the wireless medium. Any device that contains an IEEE 802.11
conformant medium access control (MAC) and physical layer (PHY) interface
to the wireless medium is called a station.

In practice, a wide range of vendors deliver equipment that is conformant to
one or more of the IEEE 802.11 standards on which contemporary WLANs are
based. Certified compliancy to these standards means that the equipment of
several vendors is tested to be interoperable. However, not all aspects that af-
fect the performance of network equipment have been covered by the standard.
For example, the standard does not specify the size of transmission buffers nor
the method of dynamically adapting the transmission rate to changing chan-
nel conditions. Certain settings can be made to WLAN devices through user
menus to change the functional behavior and the associated performance of the
concerned device. When considering the performance of end-user applications,
also the end-user equipment may have a decisive impact due to the hardware
or software used or the settings applied to the various communication protocols.

In the remainder of this thesis the use of IEEE 802.11 systems is limited to
equipment that operates as a wireless extension of a fixed or wireless infras-
tructure and therefore operates in, so called, infrastructure mode. Stations that
provide access to the infrastructure are called APs and may allow other stations
to associate to join the Basic Service Set (BSS), which consists of a set of sta-
tions and is ruled by a certain coordination function to distribute the access to
the wireless medium and the infrastructure.

2.2.2 Introduction to IEEE 802.11 overhead modeling

The CSMA/CA scheme to access the medium is used by IEEE 802.11-compliant
stations (abbreviated as STA) that use the DCF. In Figure 2.1 a transmission
cycle is shown in which two WLAN STAs (an AP and its associated station)
exchange several MAC data frames, Data1-3. These MAC data frames are
formally indicated as MAC Protocol Data Units (MPDUs) [1]. When a STA
wants to transmit an IP packet, it is encapsulated in a MAC data frame and
the STA will sense if the medium is busy or not. If the medium is idle and
remains so during the following Distributed InterFrame Space (DIFS) period,
the transmission may proceed. If the medium is determined to be busy, the STA
waits until the end of the current transmission. If the medium is not used for
a subsequent DIFS period the STA generates a random backoff period, unless
the backoff timer already contains a nonzero value. Subsequently, the STA
decrements its backoff timer for every time slot, τ , waited during this backoff
period (indicated by Cw1 − 3). If the backoff timer reaches zero, transmission
may commence.
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Figure 2.1: Transmission cycle of an IEEE 802.11-compliant station.

The random backoff time is generated from a uniform distribution, [0, ..., Cw].
Here the contention window parameter, Cw, is an integer within the range
Cwmin and Cwmax that are defined by the various PHY standards of WLAN
(cf. [3, 2, 5]). Initially, Cw is set to Cwmin, on every unsuccessful transmission
attempt the next Cw values take the sequentially ascending integer powers of 2,
minus 1, up to and including the Cwmax value. On every successful transmis-
sion attempt Cw is reset to Cwmin. On correctly receiving a MAC data frame
the destination STA will send a MAC acknowledgment (ACK) control frame
to the source STA after waiting for a Short InterFrame Space (SIFS) period.
Subsequently, new data transmissions may follow after sensing the medium idle
again as is illustrated in Figure 2.1. Note that the data frame is a unicast trans-
mission, that must be acknowledged with a MAC ACK frame.

If a source STA does not receive an ACK within the ACK timeout (as de-
fined in [1]), the source station must perform a retransmission of its last MAC
data unit. Retransmissions may be repeated up to the maximum retransmis-
sion threshold and cause the contention window to increase up to the value of
Cwmax is reached. On receiving an erroneous MAC data unit (e.g. due to a
collision), STAs backoff a sufficient amount of time equal to the Extended In-
terFrame Space (EIFS). The purpose of this backoff is to reserve enough time
for a MAC ACK transmission on what was the incorrectly received frame. If
a source does not receive a MAC ACK, the packet is assumed to be lost and
will be retransmitted after the EIFS period. This packet retransmission follows
the same procedure as on the expiration of the ACK timeout after a correct
transmission. In addition to the data-and control frames, a third type of frame
may be transmitted by the AP for channel management purposes. These man-
agement frames are formally indicated as Management MPDUs (MMPDU) [1],
some of which are broadcasted on the medium and are therefore not acknowl-
edged by the receiving stations.

Certain IEEE 802.11 PHYs offer the possibility for multi-rate transmissions
and allow dynamic rate switching to improve the network performance. The
switching algorithm itself is beyond the scope of the IEEE 802.11 standard. For
the sake of interoperability certain rules must be followed by stations for trans-
mitting the different types of frames at the various rates. Data frames directed
to another destination station may be transmitted at any of the rates supported
by the receiver, whereas control frames must be transmitted at a rate that is
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supported by all stations. In general, management frames may be transmit-
ted at a broad set of rates, similar to data frames. However, the purpose of a
management frame may vary and so may their transmission rate.

2.2.3 Analytic model for network simulations

We assume a network consisting of several WLAN stations and one AP, in which
the stations are downloading files from an FTP server that is located close (with
small propagation delay) to the AP. Each station generates FTP download re-
quests according to a Poisson process and may have multiple file transfers in
progress because there is no admission control mechanism on the number of file
transfers per station or in total. All file transfers are carried over TCP connec-
tions that use delayed acknowledgments.

Our model accounts for all overhead associated with a file download; the file
transfer itself, the FTP commands and TCP handshake for opening and closing
sessions on a WLAN network operating in basic access mode, using the DCF.
As explained in the previous section, STAs operating in CSMA/CA-mode that
sense the medium busy must first decrement their backoff timer prior to initiat-
ing their packet transmission. Similar to [106], it is assumed in our model that
a STA must perform a backoff before transmitting a TCP ACK because it finds
the medium busy when transmitting its MAC ACK on the previously received
TCP data segment to be acknowledged by TCP. Furthermore, the impact of
collisions on the length of the backoff is not taken into account because the
probability is small and the collided stations will perform their retransmissions
in competition again, and thus leaving the medium idle until the first station
may proceed. Finally, we assume that the handling of download requests im-
poses such limited CPU requirements that it can be ignored in comparison to
the delay imposed by the wireless network.

Practice shows that these assumptions are reasonable. Packet loss at the IP-
layer is not accounted for by the model because (1) the WLAN protocol retrans-
mits lost packets, and (2) the medium contention is low in the circumstances we
consider, see the remainder of this section. The observations and model funda-
mentals from [106] are used as a basis for the model proposed in this chapter,
but with the following extensions and modifications:

1. The flow-level model assumes the absence of admission control.

2. The model is generalized towards contemporary higher rate supplements
(IEEE 802.11 a/g/n).

3. The protocol overhead is modeled in more detail.

4. The backoff period modeling is refined.

5. Several MAC-level parameters are corrected.
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One may suspect that the above-mentioned modifications to the model in [106]
lead to a better estimation of the file download times (see Section 2.3 for a
validation).

When considering the IEEE 802.11a/g/n standards, one can express the time,
Td(x), spent by a WLAN station on transmitting a TCP data segment of x bits
and its associated IEEE 802.11 MPDU, IP and TCP overhead as:

Td(x) = PHY +

⌈

MAC +Xhloh + x

TS · STT

⌉

· STT, (2.1)

with MAC the IEEE 802.11 MAC-layer overhead bits, SST the Symbol Trans-
mission Time and TS the transmission rate or speed used by the sending station.
The overhead associated with the higher-layer protocols of the IEEE 802.11
MAC is represented by Xhloh. In the case of using TCP and IP as higher-
layer protocols Xhloh is set to Xtcp/ip bits. Note that the TCP segment and
the TCP/IP/MAC overhead are transmitted in a whole number of transmis-
sion symbols. Additionally, a fixed amount of time, PHY , is consumed on
the medium by transmitting the overhead associated with the Physical Layer
Convergence Protocol (PLCP) and by the signal extension (depending on the
standard used).
We refer to Table 2.1 for representative parameters of the various IEEE 802.11
standards. Note that these sets may differ from one network to another because
the IEEE 802.11 standards allow optional capabilities and different system con-
figurations.

After successful transmission of a data segment, the destination WLAN station
is considered to reply by transmitting a MAC acknowledgment control frame.
This occupies the medium for Tc seconds:

Tc = PHY +

⌈

ack

TSc · STT

⌉

· STT, (2.2)

where instead of the MAC overhead bits a smaller ack overhead and a trans-
mission rate, TSc, is used. Note that TSc depends on the transmission rate of
the data frame to be acknowledged and on the BSS basic rate set configuration
of the network, which defines a pre-configured set of transmission rates that
must be supported by all stations in the BSS. Management frames of size Xm

may be transmitted on the medium at a transmission rate equal to TSm (bps)
that depends on the BSS basic rate set configuration. The transmission of a
management frame of size x occupies the medium for Tm(x) seconds:

Tm(x) = PHY +

⌈

Xm

TSm · STT

⌉

· STT. (2.3)

For the IEEE 802.11b standard, the following, very similar, equations apply
to the time spent on transmitting the same TCP data segment, Td(x), on the



18 Chapter 2 Concept of Effective Service Time in Wireless Networks

associated WLAN acknowledgment, Tc, and on a WLAN management frame,
Tm(x):

Td(x) = PHY +
MAC +Xhloh + x

TS
, (2.4)

Tc = PHY +
ack

TSc
, (2.5)

Tm(x) = PHY +
x

TSm
, (2.6)

where TS represents the WLAN transmission rate (in bps) for data segments
and TSc for the WLAN acknowledgments and TSm management frames. When
WLAN stations operate in basic access mode, source and destination stations
should wait for certain inter-frame spacing times (DIFS and SIFS) between
the transmission of WLAN MAC data and acknowledgment frames. Time
Tda(x) is defined as the time needed for MAC-acknowledged reception of a
TCP segment consisting of x bits, taking into account a propagation delay of
Tp seconds:

Tda(x) = DIFS + Td(x) + Tp + SIFS + Tc + Tp. (2.7)

Depending on the IEEE 802.11 standard, Td(x) and Tc, may either be used from
(2.1) and (2.2) or alternatively from (2.4) and (2.5). When applying TCP with
delayed acknowledgments for acknowledging (the de facto) every other TCP
data segment, the data is transmitted by repeated execution of a transmission
cycle, encompassing the transmission of two TCP data segments by the source
station and one TCP ACK segment by the destination station (depicted in Fig-
ure 2.1). During such a transmission cycle typically one station and the AP
contend for the medium to send a TCP ACK and two TCP data segments re-
spectively. Consequently, the AP is responsible for transmitting approximately
2/3 of all packets in the network.

As explained in [106, 108] the collision probability (and the total TCP through-
put) is insensitive to the number of ongoing file transfers: as all flows pass
through the AP, while the AP has equal MAC rights and develops a large back-
log of packets in its transmission buffer. When the WLAN MAC behavior is
combined with the TCP acknowledgment mechanism, only the station that has
received two TCP data segments from the AP is enabled by TCP to contend
for the medium. TCP will simply inhibit all other stations (apart from those
initiating a new transfer) to become active on the WLAN MAC. As a result,
packet loss at the IP-layer can be neglected in our analysis because the WLAN
protocol will retransmit lost packets.

In the process of contending for the medium, WLAN stations must wait a
backoff time before initiating their data transmission. Still collisions may be
experienced. However, in view of the observation by [106] that there is, in ad-
dition to the AP, only one station contending for the medium, we may expect
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that the backoff distribution is bounded by Cwmin. Some authors approximate
the expected time consumed by the two backoff periods within a cycle by Cwmin

2
time slots. However, [108] specifies a more accurate analysis reasoning that for
non-delayed TCP ACKs, the average backoff contribution in the file transfer
transmission cycle will be the maximum of two independent observations from
the uniform minimum backoff distribution [0, ..., Cwmin].

For TCP with delayed acknowledgments this means that two of the three back-

off periods will contribute on average with Cwmin(4Cwmin+5)
6(Cwmin+1) time slots, where

it should be noted that Cwmin is defined, in accordance with the standard [3]
and in contrast to [106], as the maximum value of the minimum backoff interval
and equals 31 slots for an IEEE 802.11b PHY.

During the remaining period the AP is the only active station and will backoff,
on average, Cwmin

2 slots after each successful transmission. As a result it can be
expected that there is one backoff period per cycle in which both stations collide
with probability 1

Cwmin+1 . This allows formulating the total expected time of a
transmission cycle of two TCP data segments and one TCP ACK segment as:

Tcycle = 2Tda(XMSS) + Tda(0) +
Cwmin (7Cwmin + 8) τ

6(Cwmin + 1)
(2.8)

+
Tcol

Cwmin + 1
,

Tcol = Td(XMSS) + Tp + EIFS, (2.9)

where Tcycle is the expected time of an entire transmission cycle during the file
transfer, and Tcol is the time involved in a collision on the medium. The re-
maining parameters are Cwmin (minimum contention window), τ (slot time),
XMSS (TCP Maximum Segment Size (MSS)). Note hat the TCP ACK segment
does not transport any TCP data bits and thus requires an expected time of
Tda(0) for MAC-acknowledged reception.
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Parameter 802.11a 802.11b 802.11g 802.11n
Cwmin(slots) 15 31 15 15
MAC(bits) 246 224 246 246

τ 9µs 20µs 9µs 9µs
SIFS 16µs 10µs 10µs 16µs
DIFS 34µs 50µs 28µs 34µs
EIFS 90µs 364µs 342µs 90µs
PHY 20µs 192µs 26µs 20µs

ack(bits) 134 112 134 134
Tp 1µs 1µs 1µs 1µs

TS(bps) 54 · 106 11 · 106 54 · 106 54 · 106

TSc, TSm(bps) 24 · 106 106 24 · 106 24 · 106

STT 4µs NA 4µs 4µs

Table 2.1: Summary of important parameters in IEEE 802.11 protocols.

When considering the file download response time, a certain amount of time is
consumed by the file transfer. The remaining part of the traffic is exchanged
for initiating and closing a TCP connection and for issuing the FTP commands
and has much greater impact if file transfers become shorter and are hardly
considered in WLAN flow-level performance models. TCP connection initiation
involves a 3-way handshake of TCP (SYN) segments and for closing the sessions
a 4-way handshake (FIN, ACK) is used [110]. In the interest of simplicity, the
FTP application is modeled to use one TCP session for the FTP commands and
the file transfer.

During the TCP set-up cycle, a station starts by initiating a TCP SYN seg-
ment, which is followed by a SYN ACK segment by the AP and is concluded
by a TCP ACK from the station. The AP will acknowledge on the WLAN
medium the packet carrying the TCP SYN from the station. As the AP has
always packets to transmit, the SYN ACK is highly likely to be transmitted
after and before a pair of TCP data segments from other flows.

When a station is transmitting the first (TCP SYN) and third (TCP ACK)
segment a collision may occur with a small or large packet, assumed with equal
probability. The expected time of a collision during these two sequences are
(Tshortcol + Tcol)/2. The second (SYN ACK) segment may collide only with
a TCP ACK and thus contributes Tshortcol to the expected collision time dur-
ing TCP set-up, which explains the last term in (2.10). The total expected
time spent in backoff by the AP after transmitting its SYN ACK is assumed
equal to the minimum of the backoff windows drawn by the AP and a station,
corresponding to the expectation of the minimum of two uniformly i.i.d. obser-
vations from the backoff interval, thus contributing with an expected delay of
Cwmin(2Cwmin+1)

6(Cwmin+1) time slots. The total time spent on average in a TCP set-up
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then equals:

Ttcp setup = 3Tda(0) +
Cwmin(2Cwmin + 1)τ

6(Cwmin + 1)
(2.10)

+
(2Tshortcol + Tcol)

Cwmin + 1
,

Tshortcol = Td(0) + Tp + EIFS. (2.11)

As soon as the TCP connection is established, the station issues the FTP GET
command. It is assumed that the FTP GET command (assumed equally sized
as trivial ftp (tftp) requests) has a size of 512 bytes or 4096 bits(XFTP ). Since
the station’s backoff time does not inhibit the AP from using the medium it
is not explicitly modeled, the average time spent on using the medium for the
FTP GET request equals:

TFTPget = Tda(XFTPget) +
Tcol

Cwmin + 1
. (2.12)

Note that the TCP ACK on the FTP GET request is not modeled here because
the first TCP data segment of the file transfer will piggyback the TCP ACK and
is already accounted for in the file transfer transmission cycle. As both the AP
and the station compete for the medium, the collision probability is included in
the above expression. The file transfer is concluded by the transmission of the
last data segment, which is immediately followed by an FTP close command
with an assumed size of 8 bytes (XFTPclose). The expected size of the last data
segment of the file (for non-deterministic file-size distributions) approximately
equals XMSS

2 , and hence:

Tlastcycle = Tda(XFTPclose) + Tda

(XMSS

2

)

+ Tda(0) (2.13)

+
ThalfMSSCol

Cwmin + 1
+
Cwmin (7Cwmin + 8) τ

6(Cwmin + 1)

+
1

2

(

Tda(0) + TshortCol +
Cwmin(2Cwmin + 1)τ

6(Cwmin + 1)

)

,

ThalfMSSCol = Td

(XMSS

2

)

+ Tp + EIFS. (2.14)

After sending the last TCP data segment (FTP close command), the AP will
contend with the station that attempts to transmit its last TCP ACK and later
sending its TCP FIN. As an even number is considered equally likely as an
odd number of data segments per transfer, the additional overhead related to
sending an additional TCP ACK is accounted for this proportion accordingly.
As a result of the connection closure, two cycles need to follow in which the
station and the AP contend for the medium and concurrently decrement their
backoff timer. Possible collisions (Tshortcol) will be shorter as the most likely
involved segments contain no data bits. The expected time to close the TCP
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connection can then be expressed as:

TTCP close = 4Tda(0) +
2Cwmin(4Cwmin + 5)τ

6(Cwmin + 1)
(2.15)

+
2Tshortcol
Cwmin + 1

.

Note that the TCP closure was not accounted for in the analysis of [87] be-
cause the closure of the TCP connection does not affect the download response
time, however, it needs to be noted that the TCP set-up, closure and FTP com-
mands do contribute to the contention and overall load on the network and to a
lesser degree to an overestimation of individual download response times. The
expected time consumed by the FTP commands and the TCP session open-
ing/closing as defined by (2.10), (2.12) and (2.15), can be expressed as:

TtcpftpOH
= Ttcp setup + TFTP get + TTCP close. (2.16)

Now, we obtain the effective service time, βeff , of the file transfer as observed
at the application-layer by combining (2.8), (2.13), and (2.16):

βeff =

(

Xfile −
XMSS

2

)

Tcycle

2XMSS
+ Tlastcycle + TtcpftpOH

, (2.17)

with Xfile as the mean file size (in bits). Note that in our modeling approach,
we have assumed the use of TCP with delayed acknowledgments. Although this
meets many practical circumstances, some TCP implementations acknowledge
each individual data segment (instead of every two segments). To account for
this effect, our model may be adapted to the use of non-delayed acknowledg-
ments by replacing Tcycle, Tlastcycle and βeff from (2.8),(2.13) and (2.17) by

T̂cycle, T̂lastcycle and β̂eff , respectively, defined as follows:

T̂cycle = Tda(XMSS) + Tda(0) +
Cwmin (4Cwmin + 5) τ

6(Cwmin + 1)
(2.18)

+
Tcol

Cwmin + 1
,

T̂lastcycle = Tda(XFTPclose) + Tda

(XMSS

2

)

+ 2Tda(0) (2.19)

+ Cwminτ +
ThalfMSSCol + TshortCol

Cwmin + 1
,

β̂eff =

(

Xfile −
XMSS

2

)

T̂cycle

XMSS
+ T̂lastcycle + TtcpftpOH

. (2.20)

Now the transmission cycle in (2.18) comprises the transmission of one TCP
data segment followed by one TCP acknowledgment. Consequently, the av-
erage backoff contribution now corresponds to the two periods (identified in
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the paragraph preceding (2.8)) and does not affect the expression for the colli-
sions because the AP was not competing with the station for the second packet
transmission that is now eliminated from the transmission cycle. For the last
transmission cycle, the last data segment (with expected size XMSS

2 ) is now
always acknowledged separately from the FTP close command. The resulting
expected backoff contribution is obtained by combining the one from (2.18) and
the backoff associated with the TCP ACK transmission from (2.19) that was
used for an even number of data segments.

2.2.4 Analytic model enhancements for testbed experiments

In the previous section, the main aspects for modeling file transfers over a
WLAN network have been accounted for. In practice, however, the WLAN
network also carries management traffic and applies frame encapsulation that
is not commonly accounted for due to the limited impact this is considered to
have on the overall network performance [45]. Moreover, the FTP application
is in reality more sophisticated than described in the previous section.

Although the model described previously closely matches the behavior of real
networks for most purposes and for the simulation studies conducted in sub-
sequent chapters, further model enhancements are proposed in this section to
improve the analytic model specifically for testbed experiments that expose the
network to high traffic loads. Exactly in these circumstances certain aspects
that may seem of minor importance turn out to have a noticeable performance
impact. In the following subsections the model enhancements for use in practical
deployments are presented.

Frame encapsulation overhead

The Logical Link Control (LLC) layer as defined by the IEEE 802.2 standard
can be used by underlying protocol (sub)layers, therefore the use of LLC is
optional; some implementations of the IEEE 802.11 standard do not use the
LLC layer (such as the OPNET modeler implementation), whereas other imple-
mentations (i.e., from equipment manufacturers like Cisco and Linksys) do use
the LLC layer. In the latter case, two encapsulation methods may be applied,
one method described in RFC 1042 [101] and the other in the IEEE 802.1H
standard [7], both are derivatives of the IEEE 802.2 Subnetwork Access Proto-
col (SNAP) and introduce eight bytes of additional header information to the
WLAN MAC payload.

In the context of the presented performance model, there are no implications of
the LLC/SNAP encapsulation as a higher-layer protocol other than a reduced
medium efficiency. Since IEEE 802.11-based WLANs are capable of transmit-
ting MAC frames with payloads up to 2304 bytes per frame, IP packets may still
have a size of 1500 bytes, in accordance with RFC 1191 that defines the Path
Maximum Transmission Unit (MTU) discovery for IP networks. Therefore, the
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overhead due to the LLC/SNAP encapsulation adds to the other encapsulation
overhead and can be accounted for by using Xhloh = Xtcp/ip + 64 in (2.1) and
(2.4).

FTP modeling

The current File Transfer Protocol (FTP) is standardized since 1985 in RFC
959 [100]. The first file transfer mechanisms were already proposed in 1971 and
implemented on hosts at MIT, followed by many RFCs and other implemen-
tations. As opposed to the implementation in the OPNET network simulation
environment, practical deployments operate in accordance with the methods
outlined in RFC 959 as is done in the widely used ProFTPD [102]. To obtain
more accuracy in modeling experimental deployments, more detailed FTP in-
teractions are added to the analytic model that are outlined below.

As we assume that all users have logged in to the FTP server already, the
message sequences needed to setup a file download involve (cf. [110]) the trans-
mission of an FTP passive command (PASV) with size Xftp−pasv by the sta-
tion, followed by a 227 (entering passive mode) response from the server (with
a piggy-backed TCP ACK) of size Xftp−227 by the FTP server (and hence the
AP) to confirm the passive file download mode. This two-way handshake is
modeled similar to the first two sequences of the TCP setup in (2.10), but with
the appropriate TCP segment payload values for the PASV request and the 227
response.

Tftp setup = Tda(Xftp−pasv) + Tda(Xftp−227) (2.21)

+
Cwmin(2Cwmin + 1)τ

6(Cwmin + 1)
+

(Tshortcol + Tcol)

Cwmin + 1
.

Here, the idle time of the medium due to backoff is expected to be the minimum
of two backoff observations because the AP and the station have both a packet
to transmit. The PASV request may collide with a TCP data segment from
the AP with the probability of both stations drawing the same backoff interval,
whereas the 227 response by the AP may only collide with the smaller packets
from the stations. After receiving the 227 (entering passive mode) response
from the FTP server, the station initiates a new TCP connection for the data
transfer and issues an FTP retrieve command (RETR) with size Xftp−retr to
obtain a certain file.

As soon as the TCP connection is established, the station issues the FTP RETR
command and will receive a 150 (opening binary mode data connection) response
message of size Xftp−150 from the FTP server. Since the station’s backoff time
does not inhibit the AP from using the medium, the station’s backoff time is in
this case not explicitly modeled. The average time spent on using the medium
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for the FTP RETR Request and Response (RR) equals:

Tftp rr = Tda(Xftp−retr) + Tda(Xftp−150) (2.22)

+
Cwmin(2Cwmin + 1)τ

6(Cwmin + 1)
+
Tcol + 3Tshortcol
2(Cwmin + 1)

.

Directly after the 150 response (opening binary mode data connection) is trans-
mitted by the FTP server, the TCP transmission cycle is repeated up to the
point where the last cycle is transmitted. Unlike the model in Section 2.2.3
we assume in the present model that the user’s FTP session remains active
and does not require the transmission of an FTP closure command. Hence the
last transmission cycle may consist of one or two TCP data segments, with
equal probability, and the size of the last TCP data segment will on average
be XMSS/2 bits. We therefore conclude that the last TCP transmission cycle
transports on average XMSS bits in an expected time equal to:

T̃lastcycle =
Tda (XMSS)

2
+ Tda

(

XMSS

2

)

+ Tda(0) (2.23)

+
ThalfMSSCol

Cwmin + 1
+
Cwmin (11Cwmin + 13) τ

12(Cwmin + 1)
.

In (2.23) the last term of T̃lastcycle represents the idle time of the medium due
to backoff and accounts for the fact that the last cycle may consist of one or
two TCP segments. As a result, two or three backoff periods may occur during
the last cycle with equal probability.

After the station has acknowledged the last TCP data segment, it will close
the TCP data connection by transmitting a TCP FIN that is acknowledged by
the FTP server, followed by an FTP 226 (transfer complete) response of size
Xftp−226 to indicate that the transfer has completed. Finally, the station ac-
knowledges this response, which concludes the data transfer. Similar to the TCP
connection setup (2.10) and the FTP retrieve request (2.22) the AP contends
with at least one station for the medium, causing the medium idle time to be
equal to the minimum of two backoff windows and possible collisions occur with
small packets. Accordingly, the station’s backoff does not inhibit the medium
from being used and the transmissions may collide with the larger TCP data
segments from the AP. The expected time to close the FTP data transfer can
be approximated by:

T̃TCP close = 3Tda(0) + Tda(Xftp−226)

+
2Cwmin(2Cwmin + 1)τ

6(Cwmin + 1)
+

2Tshortcol + 2Tcol
Cwmin + 1

. (2.24)

The time consumed by transmitting the FTP overhead and TCP session open-
ing/closing as defined by (2.10), (2.21), (2.22) and (2.24) is calculated by:

T̃tcpftpOH
= Tftp setup + Ttcp setup + Tftp rr + T̃TCP close. (2.25)
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Now, we obtain the effective service time, β̃eff , of the file transfer as observed
at the application-layer for the enhanced analytic model by combining (2.8),
(2.23), and (2.25):

β̃eff =

(

Xfile −
XMSS

2

)

Tcycle

2XMSS
+ T̃lastcycle + T̃tcpftpOH

, (2.26)

with Xfile as the mean file size (in bits). Note that in our modeling approach,
we have assumed the use of TCP with delayed acknowledgments.

WLAN beacon frames

Many performance models have appeared in the literature that are validated by
simulations (cf. [76, 106, 87, 108]) and have concentrated on the main aspects
of the medium access control protocol. In [45] the authors observed that other
performance models ignored the impact of among others the Timing Synchro-
nization Function (TSF). In an infrastructure network, the APs are responsible
for performing the power management function by distributing the time in cer-
tain management frames, called beacons. When APs are about to transmit a
beacon frame, their local time is inserted into the beacon. The IEEE 802.11
standard mandates that the AP periodically transmits the beacons and that the
receiving stations always accept the timing information received.

Another purpose of the beacon frame is to announce the presence of an IEEE
802.11 network and its capabilities at regular intervals, called Beacon Intervals
(BI). These time intervals are expressed in Time Units (TU) of 1.024 microsec-
onds. Typically, beacon intervals are set to 100 TUs. The beacon frame is based
on an IEEE 802.11 management frame, which uses the same amount of MAC
overhead bits than for the regular data frames. Similar to the transmission of
data frames, the AP follows the procedure described in Section 2.2.2 for the
transmission of beacon frames. However, the receiving stations do not acknowl-
edge the reception of the beacons that are broadcasted by the AP. To this end,
the transmission cycle of a beacon frame, Tbc, is approximated by using (2.3) or
(2.6) as follows:

T̃bc = DIFS + Tm(Xbeacon) + Tp +
Cwminτ

2
,

where Xbeacon is the size of the entire management frame including the beacon
specific fields, as defined at page 45 of [1]. Although the transmission of beacons
may be delayed due to CSMA deferrals, subsequent beacons have to be scheduled
by the AP at the nominal interval, even on a busy network. Consequently, the
effective service time of the file transfer as observed at the application-layer is
stretched. The effective service time in the absence of beacon frames denoted
β′
eff that may be obtained from either (2.17), (2.20), (2.26) is treated as follows
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to obtain the effective service time, β′′
eff , that accounts for the presence of

beacon frames:

β′′
eff = β′

eff

(

1 +
Tbc
BI

)

. (2.27)

2.2.5 Effective load

To model the flow-level behavior of file transfers, we consider a classicalM/G/1-
PS model, with flow-arrival rate λ, and where the service time B is generally
distributed with mean β. In this model, incoming flows immediately enter
the system, thereby receiving a fair share of the available capacity. Then the
occupation rate is ρ := λβ, and the expected sojourn time is known to be
E[S] = β/(1− ρ). Note here that the sojourn time is insensitive to the service-
time distribution, i.e., depends on the service-time distribution only through its
mean β.

To translate the analytic model for WLAN file downloads (discussed above)
into an M/G/1-PS model, we define the following notion of effective load:

ρeff := λ · βeff , (2.28)

where βeff is the ’effective service time’ defined in (2.17) for the analytic model
suited for network simulations that uses TCP with delayed acknowledgments.
Similarly, the effective load is obtained for TCP implementations that use non-
delayed acknowledgments or are based on a model enhancement suited for ex-
perimental purposes by using the effective service time definitions from (2.20)
and (2.26) and (2.27). The quantity ρeff can be viewed as the effective medium
utilization resulting from the load introduced by processing λ file download re-
quests per second. Since the file download in the WLAN network encompasses
the file transfer and the introduced overhead of FTP and TCP, the expected
file transfer time (denoted E[R]) is modeled as the expected sojourn time in an
M/G/1-PS model with load ρeff :

E[R] =
βeff

1− ρeff
. (2.29)

Thus, to apply the analytic model, the average file download time E[R] is ob-
tained from (2.29), where ρeff is given by (2.28), and βeff follows from (2.17).

Note that βeff in (2.28) and (2.29) should be replaced by β̂eff from (2.20) when
using non-delayed TCP acknowledgments instead of delayed acknowledgments.
To account for the analytic model enhancements from Section 2.2.4, βeff in
(2.28) and (2.29) should be replaced by (2.26).

In [67] it is shown that the steady-state distribution of N , the number of jobs
in an M/G/1-PS system (defined earlier), is given by, for n = 0, 1, . . .,

P (N = n) = (1− ρ) ρn, (2.30)
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independent of the service-time distribution (for given β). In the context of
file transfers in WLAN, we view the number of customers in an M/G/1-PS
system as the number of file downloads in progress. For relating the number
of file downloads to the buffer content distribution, the TCP bandwidth-delay
product is applied as follows:

w ≥ C ·RTT, (2.31)

where C represents the available bandwidth of a TCP connection (in bps),
RTT the round-trip time (in seconds), w the TCP maximum window size (in
bits). For considering a TCP connection with a continuous flow of data without
waiting times, w should meet the above requirement [104]. This requirement
can be easily met under the conditions considered in this chapter: based on the
TCP configurations used and an overly optimistic C of 5 Mbps, the RTT may
exceed 10 ms, which supports the applicability of (2.31) in this context. Let
the random variable X denote the number of TCP data segments in the WLAN
AP transmission buffer. Then the number of TCP segments in the buffer can
be approximated by the following relation:

X ≈ N · ⌊w/XMSS⌋, (2.32)

where N is the number of file downloads in progress and XMSS the TCP MSS.
Then, in the spirit of (2.30), the probability distribution of X is approximated
by: for n = 0, 1, . . .,

P (X = n · ⌊w/XMSS⌋) ≈ (1− ρeff ) ρ
n
eff , (2.33)

using the assumption that the TCP connections carrying the file download traffic
have their maximum window size, w, of data segments in flight. Most of these
data segments reside in the AP transmission buffer; one may be in transfer
between the two stations and perhaps another segment may already have been
received and should be acknowledged for when receiving the next (when using
TCP delayed acknowledgments). Note that the dynamics of the TCP segments
in the AP transmission buffer and the number of downloads in the network
operate on different time scales.

2.3 Model validation by simulation

2.3.1 Experimental setup

As WLAN networks all rely on the same MAC protocol basis, the MAC param-
eters of our model are based on the IEEE 802.11b standard amendment for its
wide availability and lower computational requirements involved in high-load
simulation validation. In contrast to previous contributions [108, 106, 87] we
validate our model with OPNET Modeler (v14.5) [91], rather than using ns-2
simulator. OPNET contains a standard library of detailed WLAN models, in-
cluding an AP, that may also serve as application server, and wireless stations
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that are used for downloading files from the AP. Our simulated network consists
of 11 nodes; an AP is surrounded by 10 stations spaced at an equal distance of
15 meters. All nodes are configured to use the IEEE 802.11b 11 Mbps trans-
mission rate. FTP requests arriving from the stations at the AP are handled
by the application-layer of the AP. As these simulation models take many more
parameters into consideration than our proposed analytic model, the simulation
scenarios require careful configuration.

To this end, the impact of the central processing unit (CPU) on file transfers is
eliminated by assuming infinitely fast CPUs in all devices. Our model is vali-
dated for the widely used Reno TCP configuration [112] and an enhanced version
of Reno indicated in OPNET as Full-Featured. In general, the TCP stack imple-
ments the basic standard of TCP from RCF-793 [99] and RFC-1122 [27] on the
requirements on Internet hosts and uses slow start, congestion avoidance, fast
retransmit and fast recovery algorithms as defined in RFC-2001 [109]. The Full-
Featured TCP configuration uses Selective Acknowledgments (SACK), defined
in RFC-2018 [84], improved initial window settings, defined in RFC-2414 [10],
TCP extensions for high performance from RFC-1323 [64], and has a slightly
smaller MSS (due to the use of timestamps) to fit in the 1500 bytes that are
used as the wireless LAN service data unit. Another important aspect is the
buffer space on the network interface of the AP which contains all packets to be
transmitted; a vast amount of packets may queue-up and overflows have a major
impact on the results. In our simulations the AP buffer was set sufficiently large
to avoid packet drops.

We have conducted extensive experimentation to validate our model. Table 2.2
summarizes the simulation settings specific to our experiments. Simulation runs
were performed for two different TCP configurations, up to five file-size distri-
butions, for two mean file size settings and up to seven load values. Each run
was executed until a sufficiently small 95% Confidence Interval (CI) was ob-
tained, often requiring durations up to 1000 hours of real time simulation for
higher load values. Each of the outcomes is based on averages in the order of
2.6 × 106 samples (excluding an extensive warm-up period of up to 1.4 × 105

observations). In total, over 190 runs were performed for our validation, some
of which have consumed up to 299 hours of computing time on state-of-the-art
simulation servers. The results for several representative examples are outlined
below.
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Variable Setting
XFTPget 4096 bits
XFTPclose 64 bits
TCPstack Reno, Full-Featured
XMSS 11680 bits (Reno), 11584 bits (Full-Featured)
Xtcp/ip 320 bits (Reno), 416 bits (Full-Featured)
w 70080 bits (8760 bytes)
Xfile 16× 105 bits (2× 105 bytes), 8× 106 bits (106 bytes)

1
λ200kb

{0.48, 0.46, . . . , 0.38} seconds
1

λ1Mb
{2.4, 2.3, . . . , 2.0, 1.9, 1.85} seconds

Table 2.2: Specific simulation and model parameters.

2.3.2 Comparison

Figure 2.2 shows the expected file download time as a function of the load for
(1) theM/G/1-PS-model (2) our analytic model presented in Section 2.2.3, and
(3) simulations using exponential file size distributions.
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Figure 2.2: Expected download response time, E[R], as a function of the load,
ρ, for various analytic models together with the simulation outcomes for the
exponential distribution (using mean file size of 200 kBytes and Full-Featured
TCP configuration); the M/G/1 -PS model uses directly the load (λβ), our
model corresponds to the model using the effective load-based model proposed
in this chapter.

The results in Figure 2.2 illustrate the necessity for using the notion of effective
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load, or a similar instrument to capture the medium efficiency that can be
used in the M/G/1-PS model. The outcomes of our analytic model closely
approximate the simulation outcomes depicted in Figure 2.2 and can hardly be
distinguished. To illustrate the accuracy of our model we have, first, reproduced
the models from Roijers et al. [106] and from Sakurai and Hanley [108], to match
with the original outcomes specified in their contributions. Subsequently, we
have parameterized the WLAN MAC models in accordance with one of our
simulation settings (using long PHY preamble, TCP delayed acknowledgments
and a TCP MSS of 1448 bytes). Finally, the obtained MAC-layer throughput
is used in a M/G/1-PS model, but in contrast we use Poisson arrivals instead
of applying admission control on the number of flows in the network [106], or
admitting stations to have only one TCP flow [108]. In Figure 2.3 the expected
file download time as a function of the effective load, ρeff , is shown for various
models: (1) the analytic model from [106] (indicated as RBF ), (2) the analytic
model from [108] (SH ), (3) our analytic model presented in Section 2.2.3 (Our
Model), (4) a simplified version of our model (Basic Model) that ignores all
detailed overhead due to the additional FTP/TCP interactions and transmitting
the last cycle, and (5) simulations using exponential file-size distributions.
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Figure 2.3: Average file download response time, E[R], as a function of the
effective load, ρeff , for various analytic models together with the simulation
outcomes for the exponential distribution (using mean file size of 200 kBytes
and Full-Featured TCP configuration).

The results in Figure 2.3 lead to a number of interesting observations. First, our
analytic model matches very closely with the simulation results with an error
of 1 − 3%. Second, the results strongly outperform those from [106] (indicated
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as RBF) in which the obtained file download times are severely over-estimated.
The outcomes from [108] (indicated as SH) provide a closer match compared to
those from [106], with an error of approximately 8% for an effective load of 0.70.
For this load value the errors are far less sensitive to the obtained WLAN MAC
throughput from the model than for 0.88, where relatively small differences
in obtained WLAN throughput will cause large errors of approximately 20%.
It should, however, be noted that the modeling assumption in [108] of having
only one TCP flow per station is not respected in our validation and that our
resulting effective load of approximately 0.9 is much larger than the 0.26 and 0.31
considered by [108] that is using traffic sources based on idle periods rather than
Poisson arrivals. A third observation made from Figure 2.3 is that the model
outcomes are inaccurate when the overhead associated with TCP and FTP
session set-up and closure is ignored (see also Remark 2.5.3 below). Indeed, for
an effective load of 0.70 fair outcomes are obtained with an error of 8%. However,
when the effective load is increased to 0.88 the error becomes larger than 20%.
These observations confirm our expectation, formulated in Section 2.2, that our
model leads to more accurate outcomes for the circumstances we consider in
this chapter.

2.3.3 Simulation results

Our analytic model, defined in Section 2.2, inherits the insensitivity property
of the mean response times with respect to the file-size distributions from the
M/G/1-PS model. This raises the question to what extent the real download
times are indeed insensitive. Figures 2.4 and 2.5 show the average file download
response time, E[R], as a function of the effective load, ρeff , for a range of
parameter combinations, including light- and heavy-tailed file-size distributions
for different mean values and light- and heavy-load scenarios. We observe that
the analytic results closely match those from the simulation for a wide range
of model parameters. The results also suggest that there is sensitivity with
respect to the file-size distribution, but this sensitivity is quite weak (with errors
typically of 1 - 3% and no more than 8%). This observation is also in line with
the one in Roberts [105]. However, it should be noted that perfect fairness will
not be obtained. TCP’s slow-start mechanism causes bias against small file
sizes; during the slow-start phase TCP connections do not obtain a fair share of
the medium capacity. File-size distributions with a higher variability will also
receive greater influence because small files are more predominant (on which the
TCP slow-start delay has relatively more impact). Despite this biased behavior
of TCP, the influence on the simulation results is rather limited.
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(a) Using TCP Reno implementation.
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(b) Using Full-Featured TCP configuration.

Figure 2.4: Average file download response time, E[R], as a function of the
effective load, ρeff , using exponential, Erlang-2, Pareto (with shape parameter
= 1.33) and hyper-exponential file-size distributions with a mean value of 200
kBytes. The obtained 95% Confidence Intervals (CI) are at most 5.7% for the
Pareto distribution and less than one percent for the other distributions.
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(a) Using TCP Reno implementation.
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Figure 2.5: Average file download response time, E[R], as a function of the
effective load, ρeff , using exponential, Erlang-2 and hyper-exponential file-size
distributions with a mean value of 1 MByte. The 95% CI values are shown for
the hyper-exponential (H2, with c2 = 16) file-size distribution which provides
the largest ones observed.

To assess the impact of the file-size distribution on the AP buffer content dis-
tribution, Figure 2.6 shows the CCDF (on a log-scale), obtained both from sim-
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Figure 2.6: CCDF of the WLAN AP buffer content (x, in packets) from model
and simulations, using exponential, Pareto (with c2 = ∞) and hyper-exponential
file-size distributions for the same mean file size and TCP configuration as in
Figure 2.4b with ρeff = 0.8.

ulation, and from the analytic model using (2.33) under the assumption that
condition (2.31) is satisfied (as is the case for the simulation settings outlined
in Table 2.2).
The results suggest that there is no significant dependence between the AP
buffer content distribution and the file-size distribution. Moreover, the results
show that our analytic model accurately predicts the simulation outcomes. See
Remark 2.5.2 in Section 2.5 for some additional comments on the AP buffer
size.

2.4 Model validation by testbed experiments

2.4.1 Experimental setup

This section summarizes the results of extensive testbed experiments. Our aim
is to validate whether (1) our analytic model accurately predicts the outcomes
from our testbed, and (2) whether the mean download time in our testbed
is indeed not very sensitive to the file-size distribution, as suggested by the
M/G/1-PS model and shown by the simulation experiments. To this end, we
have connected two powerful Ubuntu 9.04 Linux-based PCs; one functioning as
FTP server, and the other as FTP clients. These PCs are interconnected by
two independent and similar access networks to measure the download response
times of file transfers in each network separately and compare the obtained
values with the expected file-download time from the analytic model. In the ex-
perimental setup, the PC with the FTP clients generates all download requests,
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according to independent Poisson processes. It is important to state that with
a larger number of WLAN client devices there is, in addition to the AP, typi-
cally only one station contending for the medium at the same time, as reported
in [106] and observed during the experiments in [50]. This justifies the choice
of using one client device for our downloads rather than a large population.

At the PC operating as FTP server, files are generated according to an ex-
ponential and a hyper-exponential distribution with high variability (with a
squared coefficient of variation equal to four, c2 = 4), each of which consisted of
40.000 different files with mean size 2×105 bytes that are retrieved in a random
order by the FTP clients.

In our testbed environment, each wireless access network consists of a Linksys
(WAP54G) AP and an Ethernet bridge (WET54G) of the same hardware and
firmware version that are tuned to different non-overlapping frequency chan-
nels to avoid mutual interference. Both devices are connected by a Mini-Ciruits
power splitter (ZB8PD-4-S) to obtain a reproducible radio frequency environ-
ment with low interference and small propagation delay, Tp. Nonetheless, in-
fluences of other equipment remain. Both APs use a modified firmware pro-
gram, called OpenWrt, that is specifically designed for embedded devices such
as residential gateways and routers. This firmware offers detailed WLAN-MAC
configuration options. Table 2.3 summarizes the parameters that are specific
for our testbed configuration, including the IEEE 802.11 MAC parameters that
differ from those specified in Table 2.1. These parameters have been selected as
similar as possible to those parameters used in the simulation validation.

Variable Setting
Xftp−pasv 48 bits
Xftp−227 392 bits
Xftp−retr 272 bits
Xftp−150 704 bits
Xftp−226 184 bits
Xbeacon 584 bits
XMSS 11680 bits
Xtcp/ip 320 bits
w 70080 bits (8760 bytes)
Xfile 16× 105 bits (2× 105 bytes)
1
λ {0.48, 0.46, . . . , 0.38, 0.36, 0.35} seconds
Rc 11 · 106 bps
BI 100 Time Units (TUs)
Tp 10−9 seconds

Table 2.3: Specific testbed environment and model parameters.

In Table 2.3 it is shown that the TCP stack in our testbed environment is
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Figure 2.7: Analytic and experimental results, from network one and two, on
the average download response time E[R] for exponential and hyper-exponential
(H2, with c

2 = 4) file-size distributions with an average of 2× 105 bytes.

configured to use an MSS, indicated as XMSS , of 1460 bytes and a window-
size, w, of 8760 bytes. The standard TCP implementation from the Ubuntu
9.04 release is used, that is an implementation of the TCP protocol defined in
RFC-793, RFC-1122 and RFC-2001 with the NewReno and SACK extensions.
The TCP stack is configured accordingly to support the 8760-byte window-size
and an MSS of 1460 bytes. Therefore we use in the analytic model 40 bytes of
TCP/IP overhead of the higher-layer protocols, represented by variable Xtcp/ip.
With regard to the IEEE 802.11 MAC parameters, slightly different settings
are used in our experiments; (1) the AP is configured to broadcast beacon
frames at a transmission rate, Rm, equal to 106 bps (specified in Table 2.1)
with an interval of 100 time units of 1.024 microseconds each, and (2) control
frames (WLAN acknowledgments) are transmitted at a rate, Rc, equal to the
transmission of data frames, 11 · 106 bps. In addition, the FTP commands and
responses introduced in Section 2.2.4 are also specified in Table 2.3.

2.4.2 Experimental results

We have conducted extensive experimentation to validate our model. Runs were
performed for two different file-size distributions, for two networks and eight
different load values. Runs have been executed until a small 95% Confidence
Interval (CI) was obtained, requiring durations of over 55 hours to gather up to
450.000 observations per run. The representative outcomes of our experiments
are outlined below of which the 95% CI is 2.7% or less.
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Analytic Number of Network 1 Network 2 Network 1 Network 2
ρeff model observations Exponential Exponential H2, c

2=4 H2, c
2=4

0.65 0.88 15× 104 0.88 0.88 0.92 0.91
0.68 0.96 25× 104 0.96 0.97 1.00 1.00
0.71 1.07 25× 104 1.07 1.05 1.11 1.10
0.74 1.21 45× 104 1.21 1.19 1.25 1.25
0.78 1.41 45× 104 1.41 1.41 1.44 1.46
0.82 1.75 45× 104 1.75 1.70 1.77 1.78
0.87 2.37 45× 104 2.37 2.38 2.32 2.30
0.89 2.82 45× 104 2.82 2.92 2.77 2.83

Table 2.4: Analytic and experimental E[R] for Xfile = 2× 105 bytes.

The results in Table 2.4 and Figure 2.7 demonstrate that the analytic results
closely match the outcomes from the experimental testbed for a broad range
of model parameters with an average error of 1.7% up to a maximum of 4.1%.
Indeed, there is no significant dependence of the mean download time in our
experiments on the file-size distribution, which extends the applicability of this
PS-modeling approach towards real network equipment. As expected, the ex-
perimental results of both networks are very similar, which will be a useful
property in Chapter 6.

2.5 Engineering guidelines for practical application

Any approximation method, by definition, has parameter combinations where
the results become less accurate. This raises the need for simple practical guide-
lines to determine for which combinations of parameters the model is valid.
To this end, we have investigated the combined impact of the effective load,
the TCP maximum window size, and the WLAN AP buffer size. The results
are outlined below. We re-emphasize that the dynamics of the protocol stack,
ranging from the application to the physical layer, and its interactions are ex-
tremely complex, while practice calls for simple guidelines, and therefore should
be judged from that perspective.

For sufficiently large buffers, the TCP retransmissions are solely due to timeouts
and not to buffer overflow. Extensive experiments reveal that good results are
obtained as long as:

ρeff ≤ 0.9. (2.34)

When ρeff exceeds 0.9, TCP retransmissions start to have a noticeable influ-
ence, as the segment delay often exceeds the TCP timeout value due to severe
queueing at the AP buffer (see also Figure 2.8 below). For smaller values of the
AP transmission buffer size Q (in segments of size XMSS), it is of interest to
know for which combinations of Q and ρeff the model is applicable. Assuming
that condition (2.31) is fulfilled, we approximate the packet loss probability, P ,
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as:

P ≈ Pr (X ≥ Q) = ρQeff , (2.35)

where X is related to the number of downloads in progress N by approximation
(2.32) and the equality follows directly from (2.33). This immediately leads to
the following rule of thumb for applicability of the model:

ρQeff ≤ α. (2.36)

Extensive simulations suggest that accurate outcomes are obtained for α in the
range of 1%-3%. For larger values of α TCP retransmissions have a profound
impact on the download response time due to buffer overflows.

To illustrate the behavior that is observed when the effective load is extremely
high (and (2.34) is not respected), additional simulations have been conducted.
Figure 2.8 shows the outcomes of our analytic model and the simulations for the
case of exponential file-size distributions. We observe that when the effective
load ρeff exceeds (say) 95% the results tend to become inaccurate. Nonetheless,
note that in practice sustained extreme load values (in excess of 90%) hardly
occur in well-dimensioned systems. This is in line with the observations of Ben
Fredj et al. [17], stating that networks with such extreme load values are severely
under-dimensioned and call for other approaches.
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values. The outcomes are obtained under the same conditions as for Figure 2.4b.

We end this section with a number of remarks.
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Remark 2.5.1 (Effective load versus offered load). The analytic model derived
in Section 2.2.3 yields a linear relationship between the load, ρ, and the effective
load, ρeff , on the network. Here, the load is defined by ρ := λβ with λ the flow
arrival rate and where β is the mean time to transmit files with mean size Xfile

on the WLAN medium at its transmission rate R. Note that R equals Rb for
IEEE 802.11b-based systems and Ra/g/n for IEEE 802.11a/g/n-based systems,
respectively.
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Figure 2.9: Relationship in analytic model between load, ρ, and effective load,
ρeff , for different values of the mean file size, Xfile (in bits), under the same
conditions as for Figure 2.4a.

Figure 2.9 shows the linear relation between the load of the effective load for
various values of Xfile that all meet in the origin. When Xfile grows large, the
slope converges to TcycleR/2XMSS, with R the transmission rate of the medium.
This result is a direct consequence of (2.17). An intuitive explanation is that
the influence of the TCP setup, closure and FTP commands on the response
times tends to become negligible as the file size becomes large.

Remark 2.5.2 (AP transmission buffer). For determining the AP buffer re-
quirement using (2.36), condition (2.31) should be met. Otherwise an upper
bound for the buffer size is obtained because the number of segments in flight
will be lower than the number that fit in the maximum TCP window. It is
important to note that the number of flows in the network is not limited, but
geometrically distributed. This means that even for very large AP transmis-
sion buffers, overflows may occur. Furthermore, if condition (2.36) cannot be
satisfied for the indicated range of α, the packet loss probability due to AP
buffer overflow becomes substantial, model refinements taking TCP retransmis-
sions explicitly into account are required, which opens up a challenging topic
for further research.

Remark 2.5.3 (Applicability of the model to small file sizes). Our PS-based
analytic model presented in Section 2.2 implicitly assumes that the files are
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transmitted in a sufficiently large number of TCP segments to justify the ca-
pacity sharing effect. In this context, Roberts [105] has indicated that the PS
model does not capture all details of flows in networks that are controlled by
TCP, where the slow-start algorithm causes a bias against small values of the file
size and the additive increase multiplicative decrease introduces a bias against
flows with high round-trip times. This limits the applicability of our model to
file sizes that are representative for FTP traffic and requires several tens of TCP
segments. For file sizes consisting of a few TCP segments only, the performance
is dominated by the effects of round-trip times and TCP slow-start, which limits
the applicability of the model for small file sizes.

Remark 2.5.4 (Relation to Bianchi-type of model). Initially Bianchi’s model [21],
that uses a fixed-point approach, served as a basis for flow-level performance
models on WLAN networks [76, 87]. As opposed to using (RTS/CTS) chan-
nel reservations, the aggregated WLAN throughput in basic access mode, when
used without TCP, strongly depends on the number of active stations [21, 76].
Extensive validation shows that this is not the case when the data flows use
TCP (as considered in this chapter) and are transferred over a WLAN that op-
erates in basic access mode; the absence of admission control (either per station
or for the whole network) has no significant impact on the performance of file
transfers for a range of different parameter settings (as long as the requirements
for the AP buffer and maximum effective load from (2.34) and (2.36) are re-
spected). In fact, the simulation outcomes confirm that few stations contend
for the medium at the WLAN MAC level. We observe that (1) the number of
collisions on the medium is in line with what has been incorporated in the model
(in (2.8) for instance), (2) the mean backoff interval drawn by all WLAN STAs
is close to half of the minimum backoff window size (Cwmin), and (3) these
two parameters do not depend significantly on the load (up to effective load
values of approximately 0.9) nor the number of stations in the network. This
implies that the medium contention is low, which reduces the need for including
the fixed-point approach from [21] (in which all stations are assumed to always
have a packet to transmit) for accurately modeling file transfers. Furthermore,
large improvements in model accuracy are obtained when increasing the level
of detail and applying correct parameterization to closely match outcomes of a
commercially available simulation environment [91].

Remark 2.5.5 (TCP-stack implementations). It should be noted that TCP-
stack implementations vary from one operating system to another and may
sometimes even allow user modifications for parameter tuning. In fact, recent
operating systems, such as Windows Vista [86], have appeared that apply au-
tomatic parameter tuning, e.g. for setting the maximum receive window size
to better utilize the available capacity on networks with a large bandwidth-
delay product. These changes to the TCP-stack and the general trend towards
creating larger receive window sizes (as proposed by [64]) may impact the per-
formance and sensitivity of file transfers [87]. However, limited support of the
window scaling techniques from [64] as well as the penetration rate of Vista
may still lower the influence of these recent advances. Further work is needed
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to assess the impact of automatic parameter adaptation techniques in TCP.

Remark 2.5.6 (Backward compatibility). Practical WLAN deployments rely
on the same IEEE 802.11 basic standard [1] for their fair method of medium
access control, a property that is adopted by our proposed analytic model. In
these circumstances stations may operate on different transmission rates or even
on a different standard to support higher data rates or prioritization techniques.
In this context we refer to [93] for a detailed description on the use of the
IEEE 802.11 a/b/e/g/n standards and a mixture thereof with the influence of
backward compatibility.

2.6 Conclusions and further research

For engineering purposes, there is a need for very simple, explicit, yet accurate,
models that predict the performance of WLANs under anticipated load condi-
tions. In this context, several detailed packet-level models have been proposed,
based on fixed-point equations. Despite the fact that these models generally
lead to accurate performance predictions, they do not lead to simple explicit
expressions for the performance of WLANs.

The complex combined dynamics and protocol overhead of the 802.11 MAC,
IP, TCP and application-layer can be captured into an explicit expression for a
single parameter, called the effective service time. Based on the effective service
time, the effective load can be defined to describe the flow-level performance of
file transfers over WLANs with an M/G/1-PS model. The results show that
the model leads to highly accurate predictions over a wide range of parameter
combinations, including light- and heavy-tailed file-size distributions and light-
and heavy-load scenarios. The simplicity and accuracy of the model make the
results of high practical relevance and useful for performance engineering pur-
poses.

The mapping from packet-level to the flow-level performance model based on
combining theM/G/1-PSmodel with load ρeff enables us to use known analytic
results for PS models. It is an interesting topic for further research to general-
ize our approach to formulating an effective service time and resulting effective
load for a wider range of access networks. Furthermore, a wealth of literature
is available on PS models, we refer to [114, 115, 24, 25] and references therein
for results on sojourn times in PS models. For example, rather than focusing
on the unconditional expected response times, see (2.29) and the simulation
results, we may extend the results to the conditional expected response times,
the conditional and unconditional variance, and in some cases even for the tail
probabilities of the response times, based on known results for the M/G/1-PS
model [33]. To assess the usefulness of such results is a challenging topic for
further research.

In this chapter, the focus is on the performance of data transfers in the down-
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load direction. However many applications generate large amounts of traffic in
the upstream direction, which raises the question to what extent our analytic
model is also applicable to networks where a mixture of up and download traffic
is present. In the context of comparing the performance of FTP download and
upload traffic, the authors in [108] have observed that the received throughput
of upstream and downstream flows are “virtually identical” in circumstances
that are similar to those considered in this chapter. This suggests that our
model may also accurately predict the performance of traffic in the upstream
direction, which is a challenging topic for further research.



Chapter 3

Tail-Optimal Static Traffic Splitting

over Multiple Networks

Based on the model proposed in Chapter 2 a relationship can be established
between TCP-based file transfers in a communication network and jobs that
are processed in a PS-queue. Using this relationship, optimization problems
may be investigated in a queueing theoretical context to subsequently apply the
solutions found to communication networks.

The optimization problem considered in this chapter is one in which files are
split upon arrival and subsequently assigned to parallel communication net-
works. When all networks have transferred their part of the file, the original
file is re-assembled. The aim of splitting files and transferring the portions in
parallel networks is to lower the time to transfer a file from a certain stream.
Two types of streams are present in the considered system: one stream, called
the foreground stream, of which the files are split and another type of stream,
called background, of which the entire files are transferred by one network.

The splitting problem is studied in a queueing theoretical context, where jobs
may be fragmented and assigned to different parallel PS-queues or are processed
by one specific PS-queue without being split. We concentrate on the time to
process a job and its fragments. More specifically our interest is in the sojourn
time tail behavior of the foreground traffic. For the case of light foreground
traffic and regularly varying foreground job-size distributions, a reduced-load
approximation (RLA) is obtained for the sojourn times, similar to that of a
single PS-queue. It is proven that a simple splitting rule provides tail-optimal
performance with respect to the foreground sojourn time.

This result provides a theoretical foundation for the effectiveness of such a simple
splitting rule. Extensive simulations demonstrate that this simple rule indeed
performs well, not only with respect to the tail asymptotics, but also with re-
spect to the mean sojourn times. The simulations further support our conjecture
that the same splitting rule is also tail-optimal for non-light foreground traffic.

43
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Finally, it is observed that the mean sojourn times are nearly-insensitive with
respect to the file-size distribution.

This chapter is based on the results presented in [56].

3.1 Introduction

This chapter considers N parallel communication networks, each of which is
modeled as a PS-queue that handles two types of traffic: foreground and back-
ground streams. The foreground traffic stream consists of jobs, each of which is
split into N fragments according to a static splitting rule (α1, . . . , αN ), where
∑

αi = 1 and αi > 0 is the fraction of the job that is directed to PS-queue i.
Upon completion of transmission of all fragments, it is re-assembled at the re-
ceiving end. The background streams use dedicated queues without being split.

An important implication of the obtained RLA is that the tail-optimal split-
ting rule is obtained by simply choosing αi proportional to ci − ρi, where ci
is the capacity of PS-queue i and ρi is the load offered to PS-queue i by the
corresponding background stream.

In [42], the authors investigate the same queueing model in the context of web-
server farms. A slight difference is that they do not consider the presence
of background streams. The major difference is that they analyze the routing
policy Join the Shortest Queue (JSQ) while this chapter concentrates on a split-
ting policy. Note that as opposed to communication networks, splitting in the
context of web-server farms is not always possible. Two other related papers
are [74] and [75]. In these papers the author considers a similar network but
with FCFS queues and with probabilistic splitting. The reader is furthermore
referred to [11], where the authors consider routing policies of the model in a dis-
tributed vs. centralized optimization. In general the queueing model considered
in this chapter falls within the framework of a fork-join queueing network [12].
To the best of the author’s knowledge such a queueing network in which nodes
are PS-queues has not been investigated.

The rest of this chapter is organized as follows. In Section 3.2 the splitting
problem and a simple splitting rule are described. Section 3.3 provides a heuris-
tic derivation of the proposed splitting rule. In Section 3.4 it is proven that
for light foreground traffic our splitting rule achieves tail asymptotic optimal-
ity. In Section 3.5 the simulation results are presented. These results are in
agreement with the proposed conjecture. They further show ”near insensitiv-
ity” with respect to the job size distributions and that in the case of light-tailed
foreground job sizes the result does not hold. In Section 3.6 the relation between
minimization of expected sojourn times and minimization of tails is discussed.
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3.2 Problem formulation

The queueing model that is considered is the concurrent access job-split model,
see Figure 3.1. There areN PS-queues that serveN+1 streams of jobs. Stream 0
is called the foreground stream and streams 1, . . . , N are called the background
streams. Jobs of background stream i are served exclusively at PS-queue i.
Each job of the foreground stream is fragmented (split) upon arrival according

to a static, splitting rule α = (α1, . . . , αN ) where
∑N

i=1 αi = 1 and αi ≥ 0,
i = 1, . . . , N . After splitting, the fragments are routed to their corresponding
queues. Thus, when a job of size B arrives at stream 0, a fragment of size αiB
is directed to each queue i. Once all fragments complete their service, the frag-
ments are reunited, and this completes the processing of the job that models
the file transfer through the N communication networks.

Consider a tagged job of the foreground stream that arrives to a network in
steady-state. Denote the sojourn time of its i’th fragment operating under the
splitting rule α by V

α
i . This is the time it takes the fragment to complete service

at queue i. Denote V α = (V
α
1 , . . . , V

α
N ). The sojourn time of the job through

the network is Mα = maxV α. The objective is to analyze the distribution of
Mα and choose a splitting rule α such that Mα is kept minimal. The proba-
bilistic and load assumptions are as follows. Arrivals of jobs in all streams are
according to independent Poisson processes with rates λi, i = 0, 1, . . . , N . Job
sizes (representing the size of the file) of stream i constitute an i.i.d. sequence
of positive random variables with finite expectation. The N + 1 sequences of
job sizes are mutually independent. Denote the mean job size of stream i by
βi and ρi = λiβi i = 0, 1, . . . , N . It is assumed that PS-queue i operates at
rate ci. For the background streams and queues, denote the corresponding N
dimensional vectors ρ and c. It is furthermore assumed that ρ01+ ρ < c. Here
1 denotes a vector of 1’s. This condition ensures stability irrespective of the
choice of splitting proportions.

The splitting rule α∗

When background traffic occupies a certain fraction of each queue’s capacity, the
remaining capacity at each queue is available for serving the foreground traffic
stream. Therefore the following splitting rule is defined that divides foreground
jobs in parts that are proportional to the remaining capacity in each queue:

α∗
i :=

ci − ρi
∑N

j=1(cj − ρj)
(i = 1, . . . , N), (3.1)

to obtain a splitting rule for all queues denoted by:

α∗ := (α∗
1, . . . , α

∗
N ). (3.2)

Note that ci − ρi is the unutilized capacity of queue i due to background traffic
and

∑N
j=1(cj − ρj) is the total unutilized capacity due to background traffic.
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Figure 3.1: The concurrent access job-split model, where each of the N PS-
queues represents a communication network that handles foreground and back-
ground file download traffic. In the concurrent access model, file downloads
are modeled as jobs. Specifically for the job-split model, foreground jobs are
fragmented into N tasks, which are subsequently processed in parallel by the
N PS-queues and reunited into the original job when all fragments have been
successfully processed. Background jobs are processed by one PS-queue exclu-
sively.

Observe that α∗
i and α∗ do not depend on ρ0. To motivate this rule, consider

the following heuristic argument: Observe that each queue in isolation is a two
class M/G/1-PS queue, allowing us to compute means. It is well known (first
shown in [70]) that the mean sojourn time of a job of size B in a PS-queue with
rate c̃ and load ρ̃ is:

E[Ṽ |B] =
B

c̃− ρ̃
.

Assume now for simplicity that N = 2 and set α := α1 and (α2 := 1−α). Upon
arrival of a foreground job of size B the expected sojourn time for each of the
tasks can be written as:

E[V1|B] =
αB

c1 − ρ1 − αρ0
, E[V2|B] =

(1− α)B

c2 − ρ2 − (1 − α)ρ0
.

Equating the above quantities and solving for α leads to (3.2). For the the-
oretical results, it is further assumed that the distribution of stream 0 files is
regularly varying of index ν > 1. This means that the tail of the distribution
function has the form Pr(B > x) = L(x)x−ν , where L(·) is a slowly varying
function: L(ax)/L(x) → 1 as x → ∞ for any a > 0. The background job
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sizes do not have to be heavy-tailed, but there should exist an ǫi > 0 such that
E[B1+ǫi

i ] <∞, where Bi denotes a generic random variable representing the job
size of background stream i. Denote,

γαm := min
i=1,...,N

(

ci − ρi
αi

)

− ρ0. (3.3)

A key result is:

Pr(Mα > x) ∼ Pr(B > γαmx). (3.4)

Here f(x) ∼ g(x) implies that limx→∞ f(x)/g(x) = 1. This is a form of a
Reduced Load Approximation (RLA) (cf. [41], [24]) which appears in the con-
sidered network. It is further evident that in this case, the splitting rule which
maximizes γ

α
m is α∗ and thus tail asymptotic optimality is achieved:

lim sup
x→∞

Pr(Mα∗

> x)

Pr(Mα > x)
≤ 1, for all splitting rules α. (3.5)

This tail asymptotic optimality of the design parameter α∗ is similar to the tail-
optimality properties of scheduling disciplines discussed in [26]. In this chapter
a proof is presented of (3.4) for the case of light foreground traffic. In this case
λ0 = 0, which motivates the assumption that a single foreground job arrives to
a steady state system. It is further conjectured that (3.4) is true for the general
case. Extensive simulation experiments support this conjecture.

3.3 Heuristic derivation of the proposed splitting rule

Denote by B a random variable distributed as the job size of the foreground
traffic stream. Denote byQ

α
i (t) the number of files in queue i at time t, operating

under a splitting rule α. Define,

R
α
i (x) :=

∫ x

0

1

1 +Q
α
i (t)

dt,

as the amount of service that a permanent customer obtains in queue i during
the time [0, x] when operating under the splitting rule α. Further denote by
Rα(x) the N dimensional vector of R

α
i (x). The following is obtained:

Pr(Mα > x) = 1− Pr(Mα ≤ x) (3.6)

= 1− Pr(V α ≤ x1)

= 1− Pr(Bα ≤ Rα(x)).

The first and second equalities are trivial. The third equality is due to the
fact that in a PS-queue Pr(Ṽ > x̃) = Pr(B̃ > R̃(x̃)). Observe now that,

lim
x→∞

1

x
Rα(x) = c− ρ− ρ0α a.s..
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As a consequence, since for large x, Rα(x) ≈ (c − ρ − ρ0α)x, it is anticipated
that for a large x:

Pr(Bα > Rα(x)) ≈ Pr(Bα > (c− ρ− ρ0α)x). (3.7)

Here the N dimensional random process Rα(x) is replaced by its asymptotic
value. Heuristically, such an equivalence should hold when Rα(x)/x converges
fast compared to the decay of the tail of B. In the next section it is proven
that this relationship holds in the light foreground traffic case and conjectured
to also hold in the general case.

Assuming (3.7) to be true and continuing heuristically from (3.6) the follow-
ing is obtained:

Pr(Mα > x) ≈ 1− Pr(Bα ≤ (c− ρ− ρ0α)x)

= 1− Pr(B ≤ min
i=1,...,N

(

ci − ρi − ρ0αi

αi

)

x)

= Pr(B > γαm x).

Where γ
α
m is given by (3.3), which leads to the reduced load approximation

(3.4). Observe now that maximizing γ
α
m minimizes Pr(B > xγ

α
m) for any x.

Finding the tail-optimal α can be done by solving the following optimization
problem:

max
α

min
i=1,...,N

(

ci − ρi
αi

)

(3.8)

such that
N
∑

i=0

αi = 1

α > 0.

It is clear that an optimizer of (3.8) achieves the tail asymptotic optimality
(3.5). It is now shown that this solution is found to be α∗ as in (3.2).

Lemma 1. The unique solution of (3.8) is given by α∗ from (3.2).

Proof. For clarity denote fi = ci − ρi. Denote by α′ an optimal solution such
that without loss of generality:

f1
α′
1

≤ . . . ≤
fN
α′
N

.

Observe that under α∗, the objective function is
∑N

j=1 fj. Thus optimality of
α′ yields:

fi
α′
i

≥
f1
α′
1

≥

N
∑

j=1

fj,
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or,

fi ≥ α′
i

N
∑

j=1

fj (i = 1, . . . , N).

Summing over i leads to:

fi = α′
i

N
∑

j=1

fj (i = 1, . . . , N),

since the summands are non-negative. This shows that α′ = α∗ is the unique
optimal solution.

3.4 Reduced load equivalence

For ease of notation of this section, an arbitrary splitting rule is fixed and the
subscript/superscript α is removed from all variables defined previously. Denote,

γi :=
ci − ρi − αiρ0

αi
,

and observe that as in (3.3), γm = mini=1,...,N γi. The following lemma states
conditions under which the RLA (3.4) holds for our model. It is a direct appli-
cation of results from [127] and [41]. See [24] for a survey.

Lemma 2. Assume that γi :=
ci−ρi−αiρ0

αi
,

max

(

R1(x)

α1x
, . . . ,

RN (x)

αNx

)

→ max(γ1, . . . , γN ) a.s., (3.9)

and that there exists a positive finite constant Km such that

Pr

(

max

(

R1 (x)

α1
, . . . ,

RN (x)

αN

)

≤
x

Km

)

= o (Pr (B > max (γ1, . . . , γN )x)) ,

(3.10)

then the reduced load approximation (3.4) is obtained: Pr(M > x) ∼ Pr(B >
γmx).

Proof. Each of the PS-queues is a multi-class queue with two classes: foreground
and background. Since background job sizes have a 1 + ǫ finite moment and
foreground file sizes have a regularly varying distribution, Theorem 4.2 of [24]
(originally from [127]) is applied to obtain:

Pr

(

B >
Ri (x)

αi

)

∼ Pr (B > γix) , i = 1, . . . , N. (3.11)
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Now using the assumptions (3.9) and (3.10) Theorem 1 of [41] is applied to
obtain:

Pr

(

B > max

(

R1 (x)

α1
, . . . ,

RN (x)

αN

))

∼ Pr (B > max (γ1, . . . , γN )x) . (3.12)

The rest of the proof is for the case N = 2 (the general case is more tedious
but not more complicated, it requires using the inclusion exclusion law for the
union of N events). First observe:

Pr(M > x) = Pr(V1 > x or V2 > x)

= Pr(V1 > x) + Pr(V2 > x)− Pr(V1 > x, V2 > x)

= Pr(α1B > R1(x)) + Pr(α2B > R2(x))

− Pr(α1B > R1(x), α2B > R2(x))

= Pr

(

B >
R1(x)

α1

)

+ Pr

(

B >
R2(x)

α2

)

− Pr

(

B > max

(

R1(x)

α1
,
R2(x)

α2

))

.

Now assume that γ1 ≤ γ2 and thus γm = γ1 and max(γ1, γ2) = γ2:

Pr (M > x)

Pr (B > γmx)
=

Pr
(

B > R1(x)
α1

)

Pr(B > γ1x)

+
Pr
(

B > R2(x)
α2

)

− Pr
(

B > max
(

R1(x)
α1

, R2(x)
α2

))

Pr(B > γ1x)

=
Pr
(

B > R1(x)
α1

)

Pr(B > γ1x)

+
Pr(B > γ2x)

Pr(B > γ1x)





Pr
(

B > R2(x)
α2

)

Pr(B > γ2x)
−
Pr
(

B > max
(

R1(x)
α1

, R2(x)
α2

))

Pr(B > max(γ1, γ2)x)



 .

Now,

Pr(B > γ2x)

Pr(B > γ1x)
=
L(γ2x)

L(γ1x)

(

γ2
γ1

)−ν

→

(

γ2
γ1

)−ν

,

and from (3.11) and (3.12) the result is obtained. The case of γ2 > γ1 is
symmetric.

Now the RLA (3.4) can be supported and the asymptotic optimality of α∗. The
result applies to the light foreground traffic case.

Theorem 3.4.1. Consider the concurrent access job-split model in light fore-
ground traffic: there is a single foreground arrival to steady state with λ0 = 0.
Then the reduced load approximation (3.4): Pr(Mα > x) ∼ Pr(B > γ

α
mx)

holds.
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Proof. When applying Lemma 2: (3.9) follows from the law of large numbers.
To see (3.10) observe that:

Pr

(

max

(

R1 (x)

α1
, . . . ,

RN (x)

αN

)

≤
x

Km

)

= Pr

(

R1 (x)

α1
≤

x

Km
, . . . ,

RN (x)

αN
≤

x

Km

)

=

N
∏

i=1

Pr

(

Ri (x)

αi
≤

x

Km

)

Where under the light foreground traffic assumption all queues are in steady
state and there is a single arrival, thus Ri(·) are independent. Now as proved
in [41] (Theorem 2), each of the terms can be made o(Pr(B > x)) by choosing
Km appropriately. Thus (3.10) is obtained.

Using this proof method to repeat the above for the non-light foreground traffic
case requires more care in obtaining (3.9) and (3.10). It is conjectured that
these conditions indeed hold and thus:

Conjecture 3.4.1. Theorem 3.4.1 holds also in the non-light foreground traffic
case and thus the splitting rule α∗ is in general tail-optimal.

In the next section simulation results are presented that support the validity of
this conjecture.

3.5 Simulation results

This section summarizes the results of some extensive simulations for evaluating
Pr(Mα > x) on some examples with N = 2. For convenience we denote α := α1

(1−α = α2), similarly for α∗. With respect to the tail probabilities, the primary
purpose is to assert Conjecture 3.4.1 and the behavior of the tail-optimality
claim (3.5) by estimating,

α∗(x) = argminαPr(Mα > x), and P ∗(x) = Pr(Mα∗(x) > x).

In this respect, we attempt to observe graphically that α̂∗(x) → α∗ as x →
∞, where the estimators are denoted by hats. To illustrate the relative sub-
optimality for a finite x when using α∗ instead of α∗(x) the following is plotted:

P̂ (Mα∗ > x) − P̂ ∗(x)

P̂ ∗(x)
. (3.13)

In general, obtaining such results by simulation requires long runs since we are
trying to optimize probabilities of a rare event. In addition, the data of the sim-
ulation runs is used to analyze E[Mα], show that it is nearly insensitive to the
file size distributions and compare the splitting rule to the JSQ routing policy.
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Figure 3.2: An illustration of the data analysis approach: System 4 as an
example. Dashed curves are plots of estimates of − log Pr(Mα > x) for
x = 1, 2, 3, 5, 8, 11, 17, 25, 35, 48, 64, 85, 115, 160, 210, 270, 350, 500. These curves
are maximized by the thick trajectory of α∗(x) which converges to the vertical
line at α∗ = 0.6. Clouds of optimizers over the 50 repetitions are plotted in
order to present the dispersion in the argmax estimates. The convex dotted
curve is the estimate of E[Mα] drawn on the same scale.

In all runs we set β0 = β1 = β2 = 1 and c1 = c2 = 1. The types of file size
distributions considered are deterministic, exponential, Erlang-2 (a sum of two
i.i.d. exponentials) and Pareto-3 (which is regularly varying with index ν = 3).
Here the Pareto distribution is used with support [0,∞), i.e. Pr(B > x) =
(1 + x/2)−3. The simulation runs are further parameterized by the following:

ρ =
λ0 + λ1 + λ2

2
, κ =

1− λ1
1− λ2

, η =
λ0

λ1 + λ2
.

ρ is the total load on the system, κ is the ratio of free capacity and η is the ratio
of foreground to background traffic. These 3 values uniquely define λ0, λ1 and
λ2. The table below specifies the parameters of the simulated systems.
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System ρ κ η Distribution 0 Distribution 1 Distribution 2 (λ0, λ1, λ2) α∗

1 0.5 1.5 0.5 Pareto-3 Pareto-3 Pareto-3 (13 ,
1
5 ,

7
15 ) 0.6

2 0.5 1.5 0.5 Pareto-3 Deterministic Deterministic as System 1 -
3 0.5 1.5 0.5 Pareto-3 Exponential Exponential as System 1 -
4 0.5 1.5 0.5 Pareto-3 Exponential Deterministic as System 1 -
5 0.5 1.5 0.5 Deterministic Deterministic Deterministic as System 1 -
6 0.5 1.5 0.5 Erlang-2 Erlang-2 Erlang-2 as System 1 -
7 0.5 1.5 0.5 Exponential Pareto-3 Erlang-2 as System 1 -
8 0.5 2.0 0.5 Pareto-3 Pareto-3 Pareto-3 (13 ,

1
9 ,

5
9 )

2
3

9 0.5 1.0 0.5 Exponential Exponential Exponential (13 ,
1
3 ,

1
3 ) 0.5

Table 3.1: Simulated systems.

Systems 1 through 7 all have the same rate parameters but vary in the job size
distributions. System 8 is an additional example of an unbalanced system hav-
ing κ = 2.0 and thus α∗ = 2/3. System 9 is a balanced system that is simulated
for the sake of additional sanity checking: symmetric behavior of this system is
expected.

Simulation runs are composed of 5 × 107 foreground jobs, starting empty. For
each system the simulation is repeated for various values of α, using the same
seed for all values. A fine grid is used of steps of 0.005 for α within the
range of [α∗ − 0.10, α∗ + 0.10]. Outside of this range but within the range
[α∗ − 0.25, α∗ + 0.25] grid of steps of 0.02 are used. In the remaining region a
grid of 0.05 is used. In addition, we ran each system using the Join the Shortest
Queue (non-splitting) policy.

Per system the above specified range of α is repeated for 50 different seeds.
Note that keeping the same seed while changing α is useful for optimizing the
behavior of the queue given a single sample path of primitive job sizes over α.
The total number of performed runs is about 30, 000 and the total number of
foreground jobs that have passed through the simulated system is of the order
of 1.5 × 1012. The simulations use a short and efficient C program which we
have coded.

3.5.1 Tail behavior

Figure 3.2 is a representative view of the obtained results. It is a plot of some
of the data collected in the simulation runs of System 4. First, the tail proba-
bilities Pr(Mα > x) are estimated for increasing values of x. These are plotted
on a − log scale (dashed lines). These are subsequently optimized over α for
increasing values of x. This yields the trajectory of α̂∗(x) (thick curve). Clearly,
as x grows the accuracy of this optimization is decreased due to the rarity of
the tail event. We pictorially depict this in the figure by plotting the clouds of
the 50 (argmaxα,maxα) pairs which result for increasing x’s, one pair per seed.
The thin vertical line in the figure is at α∗ = 0.6 and indeed, in agreement with
the main conjecture and claim of this chapter, it appears as the limiting value
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of α∗(x). An estimate E[Mα] is plotted with a dot for every α in the grid. We
comment on the mean in the next subsection.

Note that while Figure 3.2 shows that the argmax appears to converge rather
slowly in x, it is more important to observe that the relative error (3.13) is
always kept low. This can be observed in Figure 3.3a where (3.13) is plotted for
the systems in which the foreground jobs have a heavy-tailed regularly varying
service distribution. The same quantity for systems with light-tailed foreground
jobs is plotted in Figure 3.3b. Here it appears the relative error explodes. Thus
suggesting that α∗ is not tail-optimal in the light-tailed foreground job size case.
Note that the fact that tail-optimality of policies/rules is sometimes dependent
on the tails of the primitive distributions also appears in other similar works.
See for example [26] and [74].
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(a) Heavy-tailed foreground job sizes.
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(b) Light-tailed foreground job sizes.

Figure 3.3: Graphs of (3.13), the relative distance from optimality for finite x:
(a) Heavy-tailed foreground job sizes. (b) Light-tailed foreground job sizes.

3.5.2 Mean behavior

In Figure 3.4 the estimated values of E[Mα] are plotted for systems 1 − 9 for
a range of α values. In addition, the values of α∗ are marked for the various
systems by vertical dashed lines and on these lines the mean sojourn times are
dotted that are obtained for the systems using the JSQ routing policy. At α∗,
the width of 99% confidence intervals for the mean (using 50 observations) are
in the order of 10−4. Some comments are due: First observe that in all these
examples the following applies:

E[Mα∗ ] < E[MJSQ].

Secondly, observe that minα E[Mα] ≈ E[Mα∗ ]. This is a key result: The simple
splitting rule proposed in this chapter (which is tail-optimal) is nearly optimal
with respect to the mean. We further comment on this in the next section.
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Figure 3.4: Mean sojourn time curves. Vertical lines are at α∗ = 0.5, 0.6, 2/3.
Dots on the vertical lines are mean sojourn times using JSQ for the correspond-
ing systems.

A third observation that appears from Systems 1− 7 is that the mean sojourn
times (and mean queue sizes) are quite insensitive to the job size distribution.
This property of JSQ was first observed and heavily investigated in [42] (for
a system without background streams). Using the proposed splitting rule and
taking α = 0 or 1 yields two multi-class PS-queues which are known to be ex-
actly insensitive (one of the two queues is single class). When α 6= 0, 1 this is no
longer the case, yet the figure shows that even when using α = α∗, the queues
are ”nearly insensitive”. It is important to note that in [42] the authors show
that not all routing policies have this ”near insensitivity” property (even though
a single PS-queue is insensitive). Note that the ”magnitude” of the sensitivity
of the splitting rule is similar to that of JSQ: The maximum difference in mean
sojourn times due to the job size distribution is of the order of 4%.

3.6 Tail behavior versus mean behavior

Following Theorem 3.4.1 and Conjecture 3.4.1, α∗ is a tail-optimal splitting
rule. In addition, as observed in Figure 3.4 it nearly optimizes the mean. We
now present two possible reasons for this relation between the optimization of
the sojourn time tail and optimization of the mean sojourn time. Explanation 1
below is specific to the concurrent access job-split model and uses the asymptotic
properties of the processes Ri(x). Explanation 2 that follows presents a simple
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general result regarding performance analysis of tails and means.

Explanation 1 Consider an arbitrary splitting rule α, and denote R(x) :=

mini=1,...,N
Ri(x)
αi

. It can be observed that R(x)
x → γm and R−1(x)

x → 1
γm

, where

the convergences are a.s. We have that Pr(M > x) = Pr(B > R(x)) and
thus defining M(b) as the sojourn time of a foreground job of size b, we have
that M(b) = R−1(b). Define µ(b) := E[M(b)]. Since the underlying queue is

regenerative, the almost sure convergence implies, µ(b)
b → 1

γm
as b → ∞. As a

result, for large b:

µ(b) ≈
b

γm
. (3.14)

Thus selecting α such that γm is maximal minimizes µ(b) when b is large. It thus
also approximately minimizes the unconditional sojourn time E[M ] = EB[µ(B)]
where B is distributed as a foreground job size. Further observe that the re-
lation (3.14) is similar to the distinctive feature of a standard PS-queue where
the approximate equality is exact. This property also sheds light on the near
insensitivity of our system since for large b it behaves similarly to a PS-queue.

Another observation is that the splitting rule α∗ ensures that E[Vi] are equal.
It is known that E[M ] ≥ E[Vi] and also for a job of size b, we have E[M(b)] ≥
E[Vi(b)]. The auxiliary results obtained for the reduced load equivalence suggest
that, especially for large jobs, E[M(b)] and E[Vi(b)] are not too far apart.

Explanation 2 Consider an arbitrary stochastic model parameterized by α.
Assume that the choice of α induces a non-negative distribution 1−Fα(x) with
mean µα. For simplicity assume that α is scalar and that 1−Fα(x) is absolutely
continuous. In the case of our model (for N = 2), α = α1 and the distribution
is that of the sojourn time.

Lemma 3. Assume that Fα(x) is unimodal in α and that Fα(x) and µα are
differentiable in α, then there exists an x > 0 such that

argminαµα = argminαFα(x).

The above result may be observed in Figure 3.2 where the trajectory of α∗(x),
appears to cross the dotted E[Mα] curve at its minimum. While typically finding
the x at which these two curves cross, is difficult and not of practical importance,
systems in which α∗(x) does not vary greatly in x will nearly optimize the mean
when optimizing the tail. This appears to be the case in our system. Since
α∗(x) trajectories do not vary greatly in x.

Proof. Denote by α̃ a minimizer of µα. Denote µ′(α) = d
dαµα. Then we have

µ′(α̃) = 0. We also know that µα =
∫∞

0
Fα(u)du. Denote F

′
(α, u) = d

dαFα(u)
Combining the above we obtain,

0 =

∫ ∞

0

F
′
(α̃, u)du.



3.7 Conclusions and further research 57

Thus F
′
(α̃, u) is either constantly 0 or has to be both negative and positive and

thus there must be a ũ for which it equals 0. Thus since Fα(x) is unimodal in
α then for x = ũ it is optimized by α̃.

3.7 Conclusions and further research

For the case of light foreground traffic and regularly varying foreground job
size distributions, a reduced-load approximation (RLA) for the sojourn times,
similar to that of a single PS-queue can be obtained. An important implication
of the RLA is that the tail-optimal splitting rule is simply to choose αi pro-
portional to ci − ρi, where ci is the service rate of queue i (that represents the
capacity of network i) and ρi is the load offered to queue i by the corresponding
background stream. This result provides a theoretical foundation for the effec-
tiveness of such a simple splitting rule. Extensive simulations demonstrate that
this simple rule indeed performs well, not only with respect to the tail asymp-
totics, but also with respect to the mean sojourn times. The simulations further
support our conjecture that the same splitting rule is also tail-optimal for non-
light foreground traffic. Finally, near-insensitivity of the mean sojourn times is
observed with respect to the job-size distribution. It is an interesting topic for
further research to investigate the tail-optimality for light-tailed foreground job
size distributions as the simulations have indicated that the optimality of the
proposed splitting rule in that case does not hold.
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Chapter 4

Mean-Optimal Static Traffic Splitting

over Multiple Networks

In the previous chapter tail-optimal traffic splitting is considered in a concurrent
access job-split model where certain traffic streams are split and their fractions
are assigned to different networks represented by PS-queues. It was observed
that tail-optimal traffic splitting nearly optimizes the mean sojourn time of
the foreground traffic stream. Analyzing the sojourn times of traffic streams
that are split over multiple networks is difficult due to the complex correlation
structure between the sojourn times at the PS-queues, which makes an exact
detailed mathematical analysis of the model difficult. Therefore, in this chapter
we propose a simple and accurate approximation for the splitting rule α∗ that
minimizes the expected transfer time of file downloads that are split over N
parallel communication networks. Our approximation is validated extensively
by simulations. The results show that the outcomes are extremely accurate for
a wide range of parameter combinations.

This chapter is based on the results presented in [53].

4.1 Introduction

In this chapter the same modeling abstraction is applied as in the previous
chapter, where communication networks are modeled as a network of PS-queues
that process jobs or fragments of jobs, corresponding to the transfer of files and
portions thereof respectively. Similar to Chapter 3 static job-splitting rules
α = (α1, . . . , αN ) are studied, where a job of size τ is split into N tasks of size
αiτ (i = 1, . . . , N), where the i-th task is processed by PS-queue i, and reassem-
bled upon completion of all the tasks. In addition, we assume the presence of
background traffic at each of the queues. Contrary to the previous chapter, the
goal in the present chapter is to find a splitting rule α∗ that minimizes E[S

α
0 ],

where S
α
0 is the total processing time of an entire foreground job, which gener-

ally depends on the job-size distributions and on the characteristics of the back-
ground traffic streams. Unfortunately, this model does not allow for an exact

59
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analysis. The complexity lies in the fact that the sojourn times of the fragments
in the different PS-queues are generally correlated. Therefore, we develop a new
approximation for E[S

α
0 ], combining light- and heavy-traffic asymptotics, which

then leads to an approximation for α∗. The approximation is validated by ex-
tensive simulations for a wide range of parameter combinations, including light-
and heavy-tailed job-size distributions, and mixtures of light- and heavy-load
scenarios on foreground and background traffic. These simulations demonstrate
that the differences between the approximated optimal splitting rule and the
estimated optimum with respect to the expected foreground sojourn time are
extremely small for a wide range of parameter settings.

The organization of this chapter is as follows. In Section 4.2 the model is
described and the notation is introduced. In Section 4.3 we analyze the per-
formance of the model and use these insights to develop a new approximation
method for determining the optimal split α∗. In Section 4.4 the accuracy of the
approximation method is discussed in detail.

4.2 Model description

The queueing model we consider is the concurrent access job-split model that
was presented in Section 3.1 and is depicted again in Figure 4.1. Similar to
the previous chapter, files are modeled as jobs that may be fragmented into
tasks. There are N +1 traffic streams: stream 0 is called the foreground stream
and streams 1, . . . , N are called the background streams. Jobs of background
stream i are not fragmented and are served exclusively at PSi (i = 1, . . . , N).
Jobs of the foreground stream are fragmented into tasks upon arrival accord-
ing to a fixed splitting rule α = (α1, . . . , αN ) where

∑N
i=1 αi = 1 and αi ≥ 0,

i = 1, . . . , N ; thus a foreground job of size B = τ is split into N tasks of size αiτ ,
and the i-th task is processed by PSi (i = 1, . . . , N). Once all tasks have been
completed, they are reassembled, which completes the processing of the job. In
accordance with the model in Chapter 3, the arrivals of jobs in all streams are
according to independent Poisson processes with rates λi, i = 0, 1, . . . , N . The
total arrival rate is denoted by Λ = λ0 + λ1 + · · · + λN . For all streams, each
job size B is an independent sample from a general distribution with finite k-th
moment β(k) = E[Bk], for k = 1, 2, . . ..

For the background streams and queues, the corresponding N -dimensional vec-
tors are denoted ρ and c. It is furthermore assumed for stability that ρ01+ρ < c,
with c = 1. Here 1 denotes a vector of 1’s.

Denote the background load of stream i by ρi = λiβ
(1) (i = 0, 1, . . . , N), and

denote the total load offered to the system by ρ = ρ0 + ρ1 + · · · + ρN . The
utilization of queue i is denoted by

ξi := ρi + αiρ0, and let ξ := max
i=1,...,N

ξi. (4.1)
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Figure 4.1: The concurrent access job-split model.

For stability, it is assumed that ξ < 1. Note that if ρ > 1 the stability con-
dition may pose restrictions on the choice of the splitting rule α. Denote by
A := {α : ξ < 1}, i.e., the set of combinations for which the stability conditions
are met. A splitting rule α is called feasible if α ∈ A.

For an arbitrary foreground job, denote by S
α
i the sojourn time of its i-th

task operating under the splitting rule α. This is the time it takes the i-th task
to complete service at PSi. Denote Sα = (S

α
1 , . . . , S

α
N). The sojourn time of a

foreground job through the job-split model is denoted by

S
α
0 := max

{

S
α
1 , . . . , S

α
N

}

. (4.2)

Our purpose is to find a splitting rule α∗ = (α∗
1, . . . , α

∗
N) ∈ A such that

E[S
α∗

0 ] = min
α∈A

E[S
α
0 ]. (4.3)

For a non-negative random variable X with finite (positive) first moment, the
squared coefficient of variation is denoted c2X . Finally, heavy-traffic limits for
ξ ↑ 1 are taken such that the total arrival rate Λ is increased while the service-
time distribution, the splitting rule α and the proportions between the arrival
rates λ0, λ1, . . . , λN remain fixed. Note that in this limiting regime, not all
queues tend to become unstable as ξ ↑ 1. More precisely, queue i becomes
unstable for ξ ↑ 1 only if ξi = ξ, and otherwise queue i remains stable as ξ ↑ 1.
Denote the set of potentially unstable queues by U := {i : ξi = ξ}, where ξi and
ξ are defined in (4.1).
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4.3 Analysis

In general, the “cost function” E[S
α
0 ] does not allow for an exact expression,

and the optimization problem defined in (4.2)-(4.3) cannot be solved explicitly.
The mathematical complexity is caused by the correlations between the sojourn
times S

α
1 , . . . , S

α
N of the jobs at the different queues. This dependence is caused

by the fact that the (fragmented) foreground tasks arrive at the queues simul-
taneously, and by the fact that their sizes α1B, . . . , αNB are correlated. For
this reason, in this section we will develop heuristic methods to approximate
E[S

α
0 ] and the optimal splitting rule α∗. The approximation of α∗ is based on

an interpolation between two components. The first component is based on the
concept of Reduced-Load Approximation (RLA), and works well in light-traffic
scenarios. The second component is based on heavy-load asymptotics, and com-
plements the RLA-based approximation for heavy-load scenarios.

In Section 4.3.1 we formulate some known results on multiclass PS models and
present a number of simulation results that lead to observations that are useful
for later reference. In Section 4.3.2 we outline the RLA-based approximation
and in Section 4.3.3 we present the heavy-load approximation. Subsequently, in
Section 4.3.4 both approximations for α∗ are combined into our composed-split
approximation, which interpolates α between these two components.

4.3.1 Preliminaries

Considering queue i in isolation, it is easy to see that this queue can be modeled
as a two-class M/G/1-PS model, where class-1 represents the tasks originating
from the foreground traffic and class-2 the background traffic. Class-1 tasks
arrive according to a Poisson process with rate λ0 and size αiB, where B is the
size of an arbitrary job. Similarly, class-2 jobs arrive according to a Poisson
process with rate λi and job size B. For this model, it is known that for given
B = τ , the conditional expected sojourn time of a foreground task of size αiτ
at queue i is given by:

E[S
α
i |B = τ ] =

αiτ

1− ξi
, and hence, E[S

α
i ] =

αiβ
(1)

1 − ξi
(i = 1, . . . , N), (4.4)

where ξi = β(1)(λi + αiλ0) is the utilization of queue i. However, despite the
fact that the conditional mean sojourn times E[S

α
i |B = τ ] of the individual

tasks at each of the N queues are known, an exact expression for the mean
sojourn time of entire foreground job, E[S

α
0 ] (defined in (4.2)-(4.3)), which is

defined as the maximum of the (correlated) per task sojourn times is not known.

Prior to developing the approximations for the optimal splitting rule α∗, we
perform numerical experiments based on simulations to gain insight in the op-
timization problem. This will lead to a number of important observations that
will turn out to be useful for later reference. As an illustrative example, for
the case N = 2 and β(1) = 1, Figure 4.2 shows the behavior of E[S

α
0 ] for the
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traffic splitting rule α = (α, 1 − α) ∈ A as a function of α (0 < α < 1), for
different background and foreground load scenarios. To highlight the impact of
the service-time distributions, results are shown for the extreme cases of deter-
ministic service times (with c2B = 0) and Pareto-2 distributed service times with
Pr (B > x) = 1

4x2 for x > 1/2, so that c2B = ∞.
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Figure 4.2: E[S
α
0 ] as a function of the traffic splitting ratio α, based on simula-

tions.

Figure 4.2 illustrates the behavioral differences between the various systems.
In the absence of background traffic, the curves exhibit wedge-shaped behav-
ior around their optimum, both for light (ρ0 = 0.1) and moderate (ρ0 = 0.9)
foreground load. For a small background load (ρ1 = 0.1, ρ2 = 0.3) and light
foreground load, the curve is nearly constant around its optimum. This is not
the case if the background load becomes highly asymmetric (ρ1 = 0, ρ2 = 0.9)
in the presence of light foreground load; the system is not stable for all values
of α and exhibits a sharp increase in the mean sojourn time for slightly under-
estimated values of α (below 0.95) and is rather forgiving to overestimations
where it coincides with the system without background load. Considering the
outcomes depicted in Figure 4.2, it is clear that heavy foreground traffic yields
a bended curve, showing that the cost function is highly sensitive to the choice α.

The most interesting observation from Figure 4.2 is that both the cost func-
tion E[S

α
0 ] and optimal splitting ratio α∗ are nearly insensitive to the job-size

distribution. This observation is quite remarkable: Although it is well-known
that the per-queue mean sojourn times are (fully) insensitive to the distribution
of the job sizes (see (4.4)), no general results are known for the expected value
of the maximum of the per-task sojourn times, which in general are mutually
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dependent.

The question arises as to what the impact of the job-size distribution is on
the correlations between the per-queue sojourn times of the foreground tasks
of sizes α1B, . . . , αNB. Recall that the correlations between the sojourn times
are caused by the foreground traffic, because (a) the foreground traffic stream
generates simultaneous arrivals of tasks at each of the queues, and (b) the job
sizes of the per-queue tasks α1B, . . . , αNB are stochastically dependent. Intu-
itively, one may expect that the higher the foreground load, the stronger the
correlations.

To validate this, we have performed simulation experiments for a two-queue
model, with β(1) = 1 and split rule α = (1/2, 1/2), where ρ0, ρ1 and ρ2 are
parameterized as follows ρ1 = 1 − 2ρ0/3, ρ2 = 1/2 − ρ0/3, and where ρ0 is
varied between 0 and 3/2. In this way, ρ0 is varied over the interval [1/10, 3/2]
such that the total load ρ = ρ0 + ρ1 + ρ2 is kept fixed at value ρ = 3/2, while
the ratios between ρ1 and ρ2 are fixed to ρ1 = 2ρ2. For each foreground job, we
have calculated the statistical correlation between the two per-queue tasks (both
of size τ/2), and the mean sojourn times of the foreground jobs. Simulations
have been run for 1011 jobs, which led to extremely narrow confidence intervals
(not shown here). Figure 4.3a below shows the empirical correlation between
the sojourn times of the foreground jobs considered as a function of ρ0, where
the service-time distributions are varied as deterministic (c2B = 0), exponential
(c2B = 1), Erlang-2 (c2B = 1/2), two-phase hyper-exponential with c2B = 4 and
c2B = 16 (and balanced means), Pareto-3 (with Pr (B > x) = (1 + x/2)−3 for
x > 0 and hence c2B = 3), and Pareto-2 (with Pr (B > x) = 1

4x2 for x > 1/2
and hence c2B = ∞). Note that in Figure 4.3a the results for Pareto-3 and the
two-phase hyper-exponential with c2B = 4 are so close that they can hardly be
distinguished. Moreover, the results in Figure 4.3b are so strikingly similar that
they almost entirely overlap.
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Figure 4.3: The correlations between the sojourn times of the foreground traffic
and E[S

α
0 ] as a function of ρ0 with fixed total load ρ = 1.5, based on simulations.
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The results depicted in Figures 4.3a and 4.3b lead to the following remarkable
observation.

Observation 1: The correlations between the per-task sojourn times of the
foreground traffic depend on the job-size distribution, whereas E[S

α
0 ] is nearly

insensitive to the job-size distribution.

This observation is rather intriguing. First, we observe an obvious dependence
of the correlation between the per-task sojourn times with respect to the job-size
distribution, where higher variability seems to imply a stronger correlation. This
observation can be intuitively explained by the fact that the per-task sojourn
times are positively correlated, while this correlation becomes most predomi-
nant for large job sizes, thus for outliers in the job size B. Hence, the higher
the variability in the distribution of B, the more outliers in B and hence, the
stronger the correlation. Second, the results show that the differences in correla-
tions over the different service-time distributions do not manifest themselves in
significant differences in E[S

α
0 ]. The impact of the correlations between the per-

task sojourn times “vanishes” when looking at E[S
α
0 ]. This observation will turn

out to be useful for developing an approximation for E[S
α
0 ], see Sections 4.3.3

and 4.3.4.

4.3.2 Reduced Load Approximation (RLA)

The Reduced Load Approximation (RLA) splits jobs into tasks according to the
split rule presented in Section 3.2:

α∗
RLA,i :=

1− ρi
∑N

j=1(1− ρj)
(i = 1, . . . , N). (4.5)

This simple splitting rule α∗
RLA = (α∗

RLA,1, . . . , α
∗
RLA,N) cuts the foreground

jobs into i tasks, each with a size proportional to 1−ρi, i.e., the average amount
of capacity not used by the background traffic at queue i. Note that the RLA
is insensitive to the job-size distribution (except of course for its mean β(1)),
which is in line with Observation 1 in Section 4.3.1. In addition to its attractive
simplicity, the RLA (4.5) is asymptotically tail optimal for the case of regularly
varying service-time distributions (see Chapter 3 for details).

Extensive numerical experimentation in Chapter 3 (and Table 4.1 in Section 4.4
below) reveals that the RLA leads to highly accurate approximations of α∗ if
either ρ0 ≈ 0 or if the queues are fairly equally loaded, but that it may become
inaccurate when one or more queues are heavily loaded while others are not (see
for example the right upper corner in Table 4.1 below). This raises the need for a
refinement of the RLA to improve its accuracy for asymmetric background-load
scenarios, which is the main goal of the present chapter. To this end, in the next
section we use and combine known heavy-traffic asymptotics for multi-class PS
models and Observation 1 to derive approximations for E[S

α
0 ], and hence for

the optimal splitting of jobs α∗, under heavy-traffic assumptions.
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4.3.3 Heavy Traffic Approximation (HTA)

In this section we will use heavy-traffic (HT) asymptotics for multi-class PS
models to develop an approximation for E[S

α
0 ], and hence of α∗, that meets

these asymptotic HT-properties. To formulate these HT properties, recall that
queue i considered in isolation can be modeled as a two-classM/G/1-PS model,
where class-1 jobs (representing background jobs at queue i) arrive according
to a Poisson process with rate λ0 and service times αiB, and where class-2 jobs
(representing foreground jobs) arrive according to a Poisson process with rate
λi and service times B. Let Si(τ) denote the sojourn time of an arbitrary job
of size τ at queue i (regardless of its class). Zwart and Boxma [128] show that
for τ > 0, i ∈ U , α ∈ A,

(1 − ξ)Si(αiτ) →d Θ(αiτ) (ξ ↑ 1), (4.6)

where Θ(ζ) is an exponentially distributed random variable with mean ζ. More-
over, in [128] it is shown also that moment-wise convergence holds: For τ > 0,
i ∈ U , α ∈ A and k = 1, 2, . . .,

lim
ξ↑1

(1 − ξ)kE[Si(αiτ)
k] = k!αk

i τ
k. (4.7)

To this end, it is important to observe that the conditional results in (4.6)-(4.7)
were proven for the classical single-classM/G/1-PS queue, but are also directly
applicable to multi-class M/G/1-PS queues. Then, removing the conditioning
with respect to the distribution of the size of the foreground tasks at queue i in
(6) leads to the following result for Si, the unconditional sojourn time for a job
at queue i: For τ > 0, i ∈ U , α ∈ A,

(1 − ξ)Si →d Θ(αi)B (ξ ↑ 1), (4.8)

where Θ(αi) is exponentially distributed with mean αi, B is the job size, and
where the random variables Θ(αi) and B are independent. Moreover, the k-th
moment of the unconditioned sojourn time of an arbitrary foreground job at
queue i has the following limiting HT-behavior: For i ∈ U , α ∈ A, k = 1, 2, . . .,

lim
ξ↑1

(1 − ξ)kE[Sk
i ] = k!αk

i β
(k). (4.9)

We are now ready to use the HT-asymptotics (4.6)-(4.9) to develop a simple
approximation for E[S

α
0 ] that works well in HT-conditions, i.e. where ξ ↑ 1. In

the absence of an exact analysis, we will construct a simple approximation for
the joint probability distribution of

S
α
HTA(τ) = (S

α
HTA,1(α1τ), . . . , S

α
HTA,N (αNτ)), (4.10)

where S
α
HTA,i(αiτ) is the sojourn time of the i-th fragment of an arbitrary

foreground job of size τ (note that this fragment itself is of size αiτ). To this
end, note that (4.6) implies the following limiting behavior for the marginal
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distributions of the conditional sojourn times S
α
HTA,i(α1τ): For i ∈ U , α ∈ A,

t > 0,

lim
ξ↑1

Pr{(1− ξ)SHTA,i(αiτ) > t} = exp

{

−
t

αiτ

}

. (4.11)

Note that (4.11) is only valid for i ∈ U , because if i /∈ U then queue i will not
become unstable so that (1 − ξ)SHTA,i(αiτ) → 0 (a.s.), when ξ ↑ 1 (see also
Remark 4.3.2).

Next, we develop an approximation for E[S
α
0 ] which satisfies the known heavy-

traffic properties of the marginal per-task sojourn-time distributions formu-
lated in (4.10)-(4.11). Regarding the correlations, recall from Observation 1
(formulated in Section 4.3) that E[S

α
0 ] at best weakly depends on the cor-

relations between the per-task sojourn times. Therefore, although the per-
task conditional sojourn times S

α
HTA,1(α1τ), . . . , S

α
HTA,N (αNτ) are clearly not

independent, we assume that they are. Based on this assumption, we ap-
proximate the distribution of S

α
HTA(τ) (defined in (4.10)) by assuming that

S
α
HTA,1(α1τ), . . . , S

α
HTA,N (αNτ) (a) are exponentially distributed with mean

αiτ/(1− ξi), so that the marginal distributions satisfy the known HT behavior
in (4.11) for i ∈ U (see also Remark 4.3.2), and (b) are mutually independent:

Pr{S
α
HTA,1(α1τ) > t1, . . . , S

α
HTA,N (αN τ) > tN} ≈

N
∏

i=1

exp

{

−
1− ξi
αiτ

ti

}

.

(4.12)

We will now use the approximation in (4.12), which covers the known HT-
limiting behavior from (4.6)-(4.7), to derive a simple approximation for E[S

α
0 ]

that works well when ξ ↑ 1. To this end, for τ > 0, α ∈ A, define

S
α
HTA,0(τ) := max{S

α
HTA,1(α1τ), . . . , S

α
HTA,N (αN τ)}. (4.13)

Then using (4.12), the distribution of S
α
HTA,0(τ) can be approximated as the dis-

tribution of the maximum of N independent exponentially distributed random
variables with known parameters (given in (4.12)). See Property 1 in Appendix
A for an expression for the mean value of such random variable. Using this
result, the conditional cost function E[S

α
HTA,0(τ)] can be readily obtained from

Property 1 simply by making following substitutions in (A.1) from Appendix
A: For i = 1, . . . , N ,

Xi := S
α
HTA,i(αiτ), and 1/µi := E[S

α
HTA,i(αiτ)] =

αiτ

1− ξi
. (4.14)

Note that it is readily verified that the so-obtained approximation of E[S
α
HTA,0(τ)]

is linear in τ , so that the unconditioned cost function E[S
α
HTA,0] can be di-

rectly obtained by replacing τ by β(1) in (4.14). In this way, the cost function
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E[S
α
HTA,0] can be approximated by using (4.12)-(4.14) and (A.1), which leads

to the following approximation for E[S
α
HTA,0]:

E[S
α
HTA,0] ≈ β(1)

N
∑

k=1

(−1)k+1
∑

(i1,...,ik)∈Sk

1
1−ξi1
αi1

+ · · ·+
1−ξiN
αiN

, (4.15)

where

Sk := {(i1, . . . , ik) : i1, . . . , ik ∈ {1, . . . , N}, i1 < i2 < · · · < ik}. (4.16)

Note that the approximate expression for E[S
α
HTA,0] in (4.15) is explicit, and

hence, the computation time is negligible. Notice also that the right-hand side
of (4.15) is (fully) insensitive to the job-size distribution, which is in line with
Observation 1 discussed in Section 4.3.1.

Next, denote by α∗
HTA = (α∗

HTA,1, . . . , α
∗
HTA,N ) the splitting rule that mini-

mizes E[S
α
HTA,0] among all α ∈ A, i.e.,

E[S
α∗

HTA,0] = min
α∈A

E[S
α
HTA,0]. (4.17)

The optimal split α∗
HTA can then be approximated by evaluating (4.15) over

all α ∈ A, or by some non-linear optimization method. In practice, this causes
no problem as N is not too large. Note that in the context of concurrent
access for wireless networks, which was the main motivation for this study, N
is indeed small, say 2 or 3. We refer to Remark 4.4.2 for a brief discussion on
the complexity of the optimization.

4.3.4 Composed Split Approximation (CSA)

Now we combine both approaches in the following to obtain the composed-
split approximation (CSA), denoted α∗

CSA = (α∗
CSA,1, . . . , α

∗
CSA,N ), where for

i = 1, . . . , N ,

α∗
CSA,i = (1− κi)α

∗
RLA,i + κiα

∗
HTA,i, with κi := max{ρ1, . . . , ρN}, (4.18)

and where α∗
RLA,i is given in (4.5), and where α∗

HTA,i can be obtained from
(4.15)-(4.17). The interpolation factor κi is taken such that κi is independent
of α (and of i, see also Remark 4.3.3), while for light-traffic scenarios the RLA
is dominant and for heavy-load scenarios the HTA is dominant. We refer Re-
mark 4.3.3 below for a discussion on the choice of the interpolation factor.

Remark 4.3.1 (RLA optimizing the lower bound). A complicating factor of
the model is the complex correlation structure between the sojourn times of the
individual tasks after a job has been split. In this context, we observe that the
reduced load approximation (RLA) can be thought of as implying that there is
“perfect” correlation in the sojourn times of the different tasks, and thus gives a
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lower bound on the mean sojourn times. To this end, note that under “perfect
correlation”, for all i, j = 1, . . . , N , α ∈ A and τ > 0,

E[S
α
i |B = τ ] = E[S

α
j |B = τ ]. (4.19)

Using (4.4), this set of equations (4.19) is readily seen to lead to the RLA
defined in (4.5). In this way, the RLA can be seen as optimizing a lower bound
for E[S

α
0 ].

On the contrary, the HTA can be viewed as optimizing an upper bound for
E[S

α
0 ]. To this end, note that the simulation results shown in Figure 4.3 sug-

gest that for fixed α ∈ A the per-task sojourn times are positively correlated.
Loosely speaking, the maximum of positively correlated random variables is
stochastically dominated by the maximum of independent random variables
with identical marginal distributions. Hence, such a dominance also holds for
the expected values, so that the HTA defined in (4.15) gives an upper bound for
E[S

α
0 ], defined in (4.3). In that sense, the HTA is optimizing an upper bound.

Remark 4.3.2 (HT behavior). Recall that the HT behavior in (4.11) holds if
and only if i ∈ U , i.e. for those queues i for which ξi = ξ, defined in (4.1).
For i ∈ U , (4.11) shows that the conditional sojourn time for queue i converges
(both in distribution and moment-wise) to an exponential distribution with
known mean. In contrast, the queues i /∈ U do not become unstable for ξ ↑ 1.
However, note that in the HTA in (4.15) the marginal conditional sojourn-time
distributions are approximated by (independent) exponential distributions for
all i = 1, . . . , N . Nonetheless, note that in HT-conditions (i.e., ξ ≈ 1) the
impact of the per-task sojourn times of queues i for i /∈ U on E[S

α
0 ] tends to

vanish under HT-scalings.

Remark 4.3.3 (Interpolation factor κi). The choice of the interpolation factor
κi in (4.18) only depends on the background-load values. The benefit is its
simplicity and the fact that κi does not depend on α, the parameter which is to
be optimized. The drawback of this choice is that it does not accurately cover
the HT behavior when ξ ↑ 1 while ρ1, . . . , ρN are close to 0; this may happen
when the foreground load ρ0 is large. One way to overcome this problem is to
take as the interpolating factor κi := ξi, defined in (4.1). The problem is that in
this way, the interpolation factor itself depends on αi which leads to a fixed-point
equation to solve for αi. We have checked the accuracy of the approximations
based on κi = ξi; note that convergence of such fixed-point iteration can easily
be shown to hold. Our results show that no significant improvement of the
accuracy of the approximations is obtained.

4.4 Numerical results

To assess the accuracy of the approximations for the optimal splitting rule α, we
have performed extensive numerical experimentation, comparing the approxima-
tion results with simulations. To cover a wide range of parameter combinations
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in a systematic manner, we have varied the job-size distributions (deterministic,
exponential, hyper-exponential, Pareto), and the load values of the foreground
traffic (high, medium, low) and the background traffic (high, medium, low).

In our experiments various parameters scenarios were considered. For these
parameter combinations, we calculated the following:

1. the optimal split rule α∗ = (α∗
1, . . . , α

∗
N−1, 1− α∗

1 − · · · − α∗
N−1),

2. approximations for α∗, denoted
α∗
app = (α∗

app,1, . . . , α
∗
app,N−1, 1− α∗

app,1 − · · · − α∗
app,N−1), and

3. the relative difference in the mean foreground traffic processing times,
defined by

∆% := abs

(

E[S
α∗

app

0 ]− E[S
α∗

0 ]

E[S
α∗

0 ]

)

× 100%. (4.20)

First, we assume N = 2 and β(1) = 1. The job-size distributions were varied
as deterministic (to cover the case c2B = 0), exponential (c2B = 1), H2 with
c2B = 16 (with balanced means) and Pareto-2 (with c2B = ∞). The load of the
foreground traffic ρ0 was varied as 0.1, 0.5, 0.9 and 1.8, and the background loads
ρ1 and ρ2 were varied as 0.1, 0.3, . . . , 0.9. To search for the optimal splitting rule
α∗ = (α, 1 − α), we evaluated all feasible values of α with a step size 0.01, and
more finely if needed. Below we will present the results of the evaluations. Ta-
bles 4.1 to 4.5 show for each feasible combination of ρ1 and ρ2 the corresponding
values of the optimal split determined by simulation α∗ = (α∗, 1− α∗), the ap-
proximated optimal split α∗

app = (α∗
app, 1− α∗

app) for app ∈ {RLA,HTA,CSA},
and the relative error in the cost function ∆%, defined in (4.20). To obtain
highly accurate simulation results, experiments were run with extremely many
jobs, up to 1010 if needed, leading to very narrow confidence intervals (CIs),
such that all digits in the Table 4.1 to 4.5 below are significant. For compact-
ness of the presentation the CIs are not shown. Also, note that because of the
symmetry in the model for N = 2 only the results for ρ1 ≤ ρ2 are shown.

To start, we compare the performance of the RLA (discussed in Section 4.3.2),
the HTA (discussed in Section 4.3.3) and the CSA (discussed in Section 4.3.4).
As an illustrative example, Table 4.1 shows the results for the case with ρ0 = 0.1
and exponential job-size distributions, for a variety of background-load combi-
nations of (ρ1, ρ2).

We observe that the CSA indeed performs much better than both the RLA
and the HTA. In fact, the RLA performs very well if ρ1 ≈ ρ2, but tends to
degrade significantly if ρ1 and ρ2 are far apart. This degradation in the accu-
racy becomes most apparent if ρ1 ≈ 0 and ρ2 ≈ 1, showing double-digit error
percentages. This was to be expected, since the RLA (4.5) simply splits traffic
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Reduced Load Approximation (RLA)
α∗ α∗

RLA ∆% α∗ α∗
RLA ∆% α∗ α∗

RLA ∆% α∗ α∗
RLA ∆% α∗ α∗

RLA ∆%
ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 0.50 0.50 0.00 0.55 0.56 0.03 0.70 0.64 1.92 0.85 0.75 8.79 0.97 0.90 24.88
0.3 0.50 0.50 0.00 0.63 0.58 0.69 0.80 0.70 6.19 0.96 0.88 23.39
0.5 0.50 0.50 0.00 0.70 0.63 2.58 0.94 0.83 19.65
0.7 0.50 0.50 0.00 0.86 0.75 10.76
0.9 0.50 0.50 0.00

Heavy-traffic approximation (HTA)
α∗ α∗

HTA ∆% α∗ α∗
HTA ∆% α∗ α∗

HTA ∆% α∗ α∗
HTA ∆% α∗ α∗

HTA ∆%
ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 0.50 0.50 0.00 0.55 0.63 2.29 0.70 0.78 2.79 0.85 0.91 3.01 0.97 0.99 1.71
0.3 0.50 0.50 0.00 0.63 0.67 0.66 0.80 0.85 1.50 0.96 0.98 1.54
0.5 0.50 0.50 0.00 0.70 0.73 0.32 0.94 0.96 0.93
0.7 0.50 0.50 0.00 0.86 0.87 0.12
0.9 0.50 0.50 0.00

Composed-split approximation (CSA)
α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆%
ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 0.50 0.50 0.00 0.55 0.59 0.42 0.70 0.72 0.07 0.85 0.87 0.15 0.97 0.98 0.72
0.3 0.50 0.50 0.00 0.63 0.63 0.00 0.80 0.81 0.03 0.96 0.97 0.50
0.5 0.50 0.50 0.00 0.70 0.70 0.01 0.94 0.95 0.22
0.7 0.50 0.50 0.00 0.86 0.86 0.01
0.9 0.50 0.50 0.00

Table 4.1: Comparison of the RLA, the HTA and the CSA for the case of
exponential job-size distributions and ρ0 = 0.1, and N = 2.

proportional to the relative amounts of capacity not used by the background
traffic, while one may suspect that the absolute values of the background traffic
have a large impact on the sensitivity of the choice of the splitting rule with
respect to the background-load values. As expected, the HTA is doing much
better in those asymmetric heavy-load scenarios, but tends to degrade somewhat
when PS1 is lightly loaded (ρ1 = 0.1) and PS2 is moderately loaded (ρ2 = 0.7),
leading to errors up to 3%. We observe that the CSA overall performs signif-
icantly better than the RLA and the HTA, in most cases leading to an error
percentage less than 0.5%.

In short, the results in Table 4.1 indeed show that the usefulness of refining
the simple and explicit RLA (introduced in Chapter 3) into the CSA, leading
to extremely accurate results for most of the parameter combinations.

In the remainder of this section, we will further evaluate the accuracy of the CSA
for a broad range of service-time distributions and combinations of foreground
and background loads. Table 4.2 shows the results for light foreground load,
with ρ0 = 0.1. The results show that the approximations are highly accurate
over a wide range of background-load combinations and service-time distribu-
tions, with errors significantly less than 1%. The least favorable results from
our approximation were consistently found when the background load is highly
asymmetric (ρ1 = 0.1 and ρ2 = 0.9), but even in those cases the results are
highly accurate, with errors below 0.8%.
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deterministic
α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆%
ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 0.50 0.50 0.00 0.55 0.59 0.43 0.71 0.72 0.03 0.86 0.87 0.10 0.97 0.98 0.70
0.3 0.50 0.50 0.00 0.63 0.63 0.01 0.80 0.81 0.03 0.96 0.97 0.49
0.5 0.50 0.50 0.00 0.71 0.70 0.00 0.94 0.95 0.05
0.7 0.50 0.50 0.00 0.86 0.86 0.03
0.9 0.50 0.50 0.00

exponential
α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆%
ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 0.50 0.50 0.00 0.55 0.59 0.42 0.70 0.72 0.07 0.85 0.87 0.15 0.97 0.98 0.72
0.3 0.50 0.50 0.00 0.63 0.63 0.00 0.80 0.81 0.03 0.96 0.97 0.50
0.5 0.50 0.50 0.00 0.70 0.70 0.01 0.94 0.95 0.22
0.7 0.50 0.50 0.00 0.86 0.86 0.01
0.9 0.50 0.50 0.00

hyper-exponential

α∗ α∗
CSA ∆% α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆% α∗ α∗
CSA ∆%

ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 0.50 0.50 0.00 0.55 0.59 0.76 0.70 0.72 0.22 0.85 0.87 0.12 0.97 0.98 0.76
0.3 0.50 0.50 0.00 0.63 0.63 0.07 0.80 0.81 0.04 0.96 0.97 0.57
0.5 0.50 0.50 0.00 0.70 0.70 0.02 0.94 0.95 0.23
0.7 0.50 0.50 0.00 0.86 0.86 0.13
0.9 0.50 0.50 0.00

Pareto
α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆%
ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 0.50 0.50 0.00 0.55 0.59 0.52 0.70 0.72 0.15 0.85 0.87 0.23 0.97 0.98 0.73
0.3 0.50 0.50 0.00 0.62 0.63 0.03 0.79 0.81 0.01 0.96 0.97 0.57
0.5 0.50 0.50 0.00 0.70 0.70 0.01 0.94 0.95 0.25
0.7 0.50 0.50 0.00 0.86 0.86 0.03
0.9 0.50 0.50 0.00

Table 4.2: Simulation results for light foreground load (ρ0 = 0.1), N = 2.
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deterministic
α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆%
ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 0.50 0.50 0.00 0.57 0.58 0.11 0.68 0.68 0.03 0.81 0.81 0.02 0.95 0.96 0.25
0.3 0.50 0.50 0.00 0.61 0.61 0.03 0.75 0.75 0.04 0.92 0.92 0.05
0.5 0.50 0.50 0.00 0.65 0.65 0.02 0.85 0.85 0.20
0.7 0.50 0.50 0.00

exponential
α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆%
ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 0.50 0.50 0.00 0.57 0.58 0.13 0.68 0.68 0.04 0.81 0.81 0.01 0.95 0.96 0.28
0.3 0.50 0.50 0.00 0.61 0.61 0.03 0.75 0.75 0.06 0.92 0.92 0.06
0.5 0.50 0.50 0.00 0.65 0.65 0.04 0.85 0.85 0.22
0.7 0.50 0.50 0.00

hyper-exponential
α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆%
ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 0.50 0.50 0.00 0.57 0.58 0.35 0.68 0.68 0.16 0.81 0.81 0.05 0.95 0.96 0.48
0.3 0.50 0.50 0.00 0.61 0.61 0.00 0.75 0.75 0.07 0.92 0.92 0.15
0.5 0.50 0.50 0.00 0.65 0.65 0.09 0.85 0.85 0.36
0.7 0.50 0.50 0.00

Pareto
α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆%
ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 0.50 0.50 0.00 0.57 0.58 0.19 0.67 0.68 0.05 0.81 0.81 0.04 0.95 0.96 0.22
0.3 0.50 0.50 0.00 0.60 0.61 0.01 0.74 0.75 0.00 0.92 0.92 0.18
0.5 0.50 0.50 0.00 0.65 0.65 0.07 0.85 0.85 0.06
0.7 0.50 0.50 0.00

Table 4.3: Simulation results for moderate foreground load (ρ0 = 0.5), N = 2.

Tables 4.3 and 4.4 show the results for moderate foreground load values of
ρ0 = 0.5 and ρ0 = 0.9, respectively. The results again show that the CSA per-
forms extremely well in all cases considered, with errors significantly less than
1%, even for Pareto-2 distributed job sizes (thus with infinite variance) and
highly asymmetric background-load scenarios. Note that in Tables 4.3 and 4.4
several combinations of (ρ1, ρ2) are omitted because they violate the stability
conditions.

Finally, to assess the accuracy of the approximation for heavily loaded fore-
ground traffic, additional simulation runs were conducted for ρ0 = 1.8. Note
that in this case, the set of α-values for which the system is still stable is lim-
ited to α ∈ (4/9; 1/2). To obtain an accurate estimate for α∗, we simulated

E[S
(α,1−α)
0 ] for different α-values with step size 0.001.

The results shown in Table 4.5 demonstrate that the CSA is also extremely ac-
curate for heavy foreground load scenarios. Note that the mean sojourn times
and the optimal split are indeed remarkably insensitive with respect to the job-
size distributions, which supports the validity of Observation 1 in Section 4.3.

To assess the accuracy of the approximation for N > 2, we also consider a
model with N = 3 with Pareto-2 distributed service times with β(1) = 1. Ta-
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deterministic
α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆%
ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 0.50 0.50 0.00 0.57 0.57 0.02 0.66 0.66 0.02 0.77 0.77 0.06 0.91 0.91 0.63
0.3 0.50 0.50 0.00 0.59 0.59 0.02 0.71 0.71 0.38
0.5 0.50 0.50 0.00

exponential
α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆%
ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 0.50 0.50 0.00 0.57 0.57 0.07 0.66 0.66 0.04 0.77 0.77 0.17 0.91 0.91 0.11
0.3 0.50 0.50 0.00 0.59 0.59 0.05 0.71 0.71 0.06
0.5 0.50 0.50 0.00

hyper-exponential
α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆%
ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 0.50 0.50 0.00 0.57 0.57 0.11 0.66 0.66 0.09 0.77 0.77 0.12 0.91 0.91 0.07
0.3 0.50 0.50 0.00 0.59 0.59 0.01 0.71 0.71 0.36
0.5 0.50 0.50 0.00

Pareto
α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆%
ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 0.50 0.50 0.00 0.57 0.57 0.08 0.66 0.66 0.05 0.77 0.77 0.00 0.91 0.91 0.00
0.3 0.50 0.50 0.00 0.59 0.59 0.00 0.71 0.71 0.53
0.5 0.50 0.50 0.00

Table 4.4: Simulation results for moderate foreground load (ρ0 = 0.9), N = 2.

α∗ α∗
CSA ∆%

deterministic 0.473 0.47312 0.03
exponential 0.473 0.47312 0.06
hyper-exponential 0.474 0.47312 0.05
Pareto 0.474 0.47312 0.06

Table 4.5: Simulation results for heavy foreground load (ρ0 = 1.8), with N = 2,
ρ1 = 0.1 and ρ2 = 0.0.
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ble 4.6 shows the results for this system with ρ0 = 1.5 where ρ1, ρ2 and ρ3 are
varied as 0.3, 0.5, and 0.7. For each feasible parameter setting, the table shows
α∗ = (α∗

1, α
∗
2, α

∗
3)

⊤ obtained via simulation, α∗
CSA = (α1

∗
CSA, α2

∗
CSA, α3

∗
CSA)

⊤,
and the relative error defined in (4.20). The results in Table 4.6 show that the

ρ3 = 0.3
α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆%
ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9

0.366 0.362 0.399 0.394 0.437 0.435 0.484 0.482 0.536 0.535
0.1 0.366 0.362 0.39% 0.301 0.303 0.13% 0.230 0.233 0.42% 0.144 0.150 0.89% 0.051 0.053 0.47%

0.268 0.276 0.300 0.303 0.333 0.332 0.372 0.368 0.413 0.412
0.333 0.334 0.370 0.370 0.415 0.414

0.3 0.333 0.333 0.00% 0.260 0.261 0.27% 0.170 0.172 0.34% unstable
0.334 0.333 0.370 0.369 0.415 0.414

0.292 0.293
0.5 0.292 0.293 0.24% unstable unstable

0.416 0.414

ρ3 = 0.5
α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆%
ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9

0.400 0.396 0.437 0.435 0.485 0.480 0.538 0.535
0.1 0.400 0.395 1.03% 0.333 0.332 0.42% 0.257 0.260 0.40% 0.170 0.172 0.50% unstable

0.200 0.209 0.230 0.233 0.258 0.260 0.292 0.293
0.370 0.370 0.416 0.414

0.3 0.370 0.369 0.27% 0.292 0.293 0.24% unstable unstable
0.260 0.261 0.292 0.293

ρ3 = 0.7
α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆% α∗ α∗
CSA ∆% α∗ α∗

CSA ∆%
ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9

0.440 0.435 0.484 0.482 0.538 0.535
0.1 0.440 0.434 1.60% 0.372 0.368 0.89% 0.292 0.293 0.50% unstable unstable

0.120 0.131 0.144 0.150 0.170 0.172
0.415 0.414

0.3 0.415 0.414 0.34% unstable unstable unstable
0.170 0.172

Table 4.6: Simulation results for moderate foreground load (ρ0 = 1.5), N = 3.

accuracy of the CSA is again excellent for N = 3. To summarize, the results in
Tables 4.1 to 4.6 show that the CSA, which combines the benefits of the RLA
and the HTA, leads to extremely accurate approximations for α∗ over a wide
range parameter settings.

We end this section with a number of remarks.

Remark 4.4.1 (Insensitivity). In Section 4.3.1 we observed on the basis of pre-
liminary simulation experiments that the mean sojourn times, and the optimal
α-values, are remarkably insensitive with respect to the service-time distribu-
tions (Observation 1), even for extremely variable job-size distributions. In this
context, notice that the results shown in Tables 4.1 to 4.5 confirm this observa-
tion.

Remark 4.4.2 (Larger values forN). Despite the fact the RLA for α∗ in (4.5) is
explicit, the HTA is not, and can only be calculated numerically. This generally
requires numerical optimization of α over the set A. WhenN is not too large this
causes no problem, because the evaluation of E[S

α
HTA,0] for given α is explicit,

and the set of α-values is within the bounded set A for which standard non-linear
optimization techniques are available. Note that discretization of the set A and



76 Chapter 4 Mean-Optimal Static Traffic Splitting over Multiple Networks

then enumeration over all α can also be done for small N . However, when N is
large, the computation times may become significant. In those cases, a further
simplification of the HTA seems to be needed. In this context, recall that in
general not all queues become unstable as ξ ↑ 1 (namely only those for which
i ∈ U , see also Remark 4.3.2). Therefore, only the proper choice of αi for i ∈ U
may be crucial, whereas the cost function E[S

α
0 ] may be expected to be fairly

insensitive to the choice of αi for i /∈ U as ξ ↑ 1, i.e., becomes negligible in heavy
traffic. This observation may lead to a dramatic reduction of the dimension of
the optimization problem. Furthermore, for N → ∞ one may use asymptotic
results from the powerful extreme-value theory to develop approximations for
the HT behavior of E[S

α
0 ]. These observations open up possibilities for further

reducing the computational complexity of the calculation of α∗
HTA. Finally,

note that from an application point of view, in the context of wireless networks
with concurrent access (a) N is rather small, say N ≤ 3, and (b) the job-split
ratio does not have to be (re)calculated in real time, so that the computational
requirements are not very strict.

Remark 4.4.3 (Accuracy). Each approximation method, almost by definition,
has parameter combinations for which the results become inaccurate. As for the
CSA, the numerical results in Tables 4.1 to 4.5 suggest that the CSA performs
extremely well and is resilient to high and asymmetric background loads and
extremely variable service-time distributions. We suspect that the CSA can be
“blown up” and become less accurate in two extreme cases, where the cost func-
tion E[S

α
0 ] becomes extremely sensitive to the choice of the system parameters.

First, a potential source of inaccuracy is when ρ0 ≈ 2 (for the case N = 2). To
this end, note that the HTA presented in Section 4.3.2 explicitly uses the known
heavy-traffic result for the M/G/1-PS queue, stating that the marginal condi-
tional sojourn times (properly scaled) converge to an exponential distribution
with known mean [128], and then simply assumes that the individual per-task
sojourn times are mutually independent. However, it should be noted that this
independence assumption may be unrealistic, particularly when the foreground
load is high and the background traffic is negligible. Most remarkably, the re-
sults in Table 4.5 show that despite the fact that our HT-approximation for
E[S

α
0 ] (which assumes independence) completely neglects the dependence be-

tween the sojourn times, the corresponding minimum α∗
CSA is strikingly close

to the optimum. We suspect that the CSA can be “blown up” by putting the
correlation of the per-task sojourn times to an extreme, by taking ρ1 = ǫ, ρ2 = 0
and ρ0 = 2 − 2ǫ for some ǫ ≈ 0. In such cases, the cost function E[S

α
0 ] is ex-

tremely sensitive to the choice of α. On the contrary, we also notice that in that
case the set of possible values of α for which both queues are stable shrinks to

α ∈

(

1

2
−

ǫ

2− 2ǫ
;
1

2

)

, (4.21)

so that α → 1/2 as ǫ → 0. A second potential source of inaccuracy is when
the asymmetry in the background load is put to an extreme, say ρ1 = 1 − ǫ
and ρ2 = 0, for ǫ ≈ 0 (for the case N = 2). In those hypothetical cases, the
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cost function also becomes extremely sensitive to any additional load added to
queue 1, so that even the smallest deviation form the optimal split may lead to
significant degradation of the accuracy of the approximation.

4.5 Conclusions and further research

The results presented in this chapter raise a number of challenging topics for
further research. First, the simulation results in Figures 4.2 and 4.3 show that
E[S

α
0 ] is at least near-insensitive with respect to the distribution of the job size

B. The question arises whether E[S
α
0 ] is fully insensitive to the distribution of B,

similar to the marginal distributions of the per-task sojourn times (see (4.4)).
Even extremely long simulation runs do not give a definite answer whether
E[S

α
0 ] is fully insensitive to the distribution of B. Obtaining rigorous proofs of

insensitivity properties, possibly under additional requirements on the job-size
distribution, is a challenging topic for further research. Second, an intriguing
observation made in Figures 4.3a and 4.3b is that the differences in correlations
over different job-size distributions are evident but seem to have no impact on
E[S

α
0 ]. The impact of the correlations between the per-task sojourn times seems

to cancel out when evaluating E[S
α
0 ]. Currently, a full understanding of this

phenomenon is lacking, and is left as a topic for follow-up research. Third, the
Poisson assumption may be relaxed. In fact, we suspect that both the RLA and
the HTA can be quite easily extended for example to renewal arrival processes,
but it is unclear to what extent they can be further generalized to more realistic
arrival processes that include correlations between job arrivals. Derivation of
such approximations is a challenging subject for further research. Finally, in our
model the PS-queues are assumed to have unit capacity. In further research, the
job-split model may be extended to also incorporate the capacity of the queues.
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Chapter 5

Dynamic Traffic Assignment to Multiple

Networks

This chapter considers a networking environment in which specific users are able
to select between the available wireless networks with the aim to minimize the
expected time to download files in the presence of background traffic. The in-
formation available to the user is only the total number of jobs in each network,
rather than the per-network numbers of foreground and background jobs. This
leads to a complex partial information decision problem which is the focus of
this chapter.

We develop and evaluate a Bayesian learning algorithm that splits a stream
by optimally assigning entire jobs to different networks, such that the expected
sojourn time is minimized. The algorithm learns as the system operates and
provides information at each decision and departure epoch. We evaluate the
optimality of the partial information algorithm by comparing the performance
of the algorithm with the “ideal” performance obtained by solving a Markov
decision problem with full state information. To this end, we have conducted
extensive experiments both numerically and in a simulation tool that contains
an implementation of the full wireless protocol stack. The results show that
the Bayesian algorithm has close to optimal performance over a wide range of
parameter values.

This chapter is based on the results presented in [19] and [20].

5.1 Introduction

In general, the more detailed information about the state of the system is known
(e.g., the number of flows, measured round-trip times and the network load),
the higher potential capacity improvements. However, in practice there is often
no such detailed information available, or at best only some coarse-grained and
aggregated statistics. Therefore, the challenge is to achieve efficient network
utilization levels and good end-user application performance, based on informa-

79
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tion that is only partially available. To address this challenge, we propose a
dynamic Bayesian control algorithm that incorporates learning while optimally
assigning the traffic to the different networks.

In this chapter we study the problem of optimizing the performance of file
downloads over multiple networks in a queueing-theoretical context. Similar to
Chapters 3 and 4, where N parallel networks, that are modeled as PS-queues,
serve N + 1 streams of jobs. Stream 0 is called the foreground stream, and
streams 1, . . . , N are called the background streams. Jobs of background stream
i are served exclusively at PS-queue i. However, the distinguishing feature of the
concurrent access job-assignment model considered in this chapter is that each
job of the foreground stream has to be assigned entirely to one of the PS-queues
on the basis of information on the total number of (background and foreground)
jobs at each of the queues. Job sizes are assumed to be exponentially distributed.

The goal is to develop a dynamic policy that minimizes the expected sojourn
time of foreground jobs. Motivated by practice, we assume that the decision
maker is not able to distinguish the number of foreground and background jobs
in the network, but instead only has information on the total number of jobs.
The challenge is to deal with this partial information problem. In this chap-
ter, we address this problem through a learning mechanism, where the decision
maker makes a statistical inference on the distribution of the numbers of fore-
ground and background jobs after each decision. To this end, we model the
system as a Bayesian decision problem. In this context, the decision making
involves learning on the partially observed states while at the same time op-
timal actions are chosen. Experiments, conducted both numerically and in a
simulation tool, show that the algorithm has a performance that is close to the
case in which full information is available.

The main motivation for this chapter stems from applications of traffic optimiza-
tions in the context of multiple overlapping wireless networks. This application
domain leads to a number of model assumptions that are not covered in the
literature. First, an important aspect is the presence of background traffic (i.e.,
streams of jobs that are handled by one specific network only), which may have a
strong impact on the performance and optimality of the assignment of the (fore-
ground) stream of jobs; the inclusion of background traffic adds an interesting
complexity to the model. Second, in practice background and foreground traffic
flows can often not be separated, because the traffic from multi-homed systems
is difficult to distinguish from the traffic in networks of single-homed systems,
so that the only information available is the total number of jobs in the networks.

An optimal algorithm for assigning foreground jobs to the best PS-queue ideally
has knowledge on the numbers of foreground and background jobs in the system.
As a consequence, we have to deal with the availability of partial information
(at best we only know the sum of the number of foreground and background
jobs for each network), which adds another level of complexity to the model,
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and requires smart methods to do so.

The contribution in this chapter is two-fold. On the methodological side, it
is known that Bayesian learning algorithms are notoriously difficult to imple-
ment and to derive optimal policies from. While the vast majority of papers
(see, e.g., [28, 30, 44, 97]) propose simplified structures of the optimal policy,
we reduce the dimensionality of the state space by using structural properties
of the problem. In addition, we show that efficient discretization of the state
space leads to numerical tractability (see also Remark 5.2.1). On the practical
side, the proposed algorithm is new in the context of concurrent access traffic
optimizations for wireless networks. Such algorithms open up highly promising
means to boost application performance over wireless networks. The algorithm
is effective, yet easy to apply in practical systems, and as such extremely useful
for real wireless network deployments.

In a queueing-theoretical context, there is very little literature on partial in-
formation models. Bellman [16] was the first to study decision problems with
a transition law that is not completely known. He observed that the problem
could be transformed into an equivalent full observation problem by augmenting
the state space with the set of probability distributions defined on the domain
of the unknown quantity (i.e., the unobserved state, or the unknown parameter)
and updating it by Bayes’ rule.

The transformation of the partial information problem to the complete informa-
tion model, however, comes with added computational difficulties, since policies
are defined over a continuum of states. This is the fundamental problem in de-
veloping algorithms for computing optimal policies [96]. There is some work in
the theoretical domain to characterize the structure of the optimal policy (see,
e.g., [29, 9, 117, 79]). Even then, finding the optimal policy computationally
for a general Bayesian decision problem is intractable. Approaches dealing with
this are to be satisfied with suboptimal solutions or to develop algorithms that
can exploit problem characteristics (see, e.g., [77, 97, 125, 44, 28, 30]). We refer
to [80, 89, 119, 73] for some surveys on computational techniques.

The organization of the chapter is as follows. In Section 5.2 we describe the
model and introduce the notation. Moreover, we discuss the full information
model in Section 5.2.1 and the Bayesian analysis in Section 5.2.2. In Section 5.3
we discuss the numerical results, comparing the performance of our Bayesian
approach to the fully observable MDP, not only in a queueing-theoretical set-
ting where networks are modeled as PS-queues, but also in a simulation setting
where the full wireless protocol stack is implemented.
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Figure 5.1: The concurrent access job-assignment model, where each of the
N PS-queues represents a communication network that handles foreground and
background file download traffic. In the concurrent access model, file downloads
are modeled as jobs. Specifically for the job-assignment model, each foreground
job is assigned entirely to one of the N available PS-queues. Background jobs
of a certain stream are always processed by the same PS-queue.

5.2 Model description and analysis

In this section we describe the concurrent access job-assignment problem in
greater detail. We model N mobile networks as PS-queues so that multiple jobs
are served simultaneously. Accordingly, in our model we consider queue selection
policies instead of network selection policies. There are N + 1 streams of jobs
in the system. Stream i generates a stream of jobs for queue i for i = 1, . . . , N .
Stream 0 generates a stream of jobs for which the jobs can be sent to either
queue 1 up to queue N . Hence, streams 1 to N can be seen as background traffic,
and stream 0 as foreground traffic. We assume that all streams are modeled by
independent Poisson processes with parameters λ0, . . . , λN . After a job enters
the system, it demands service from the system. We assume that the service
times follow an exponential distribution with mean service time 1/µi = βi for
i = 0, . . . , N . Then, the occupation rates ρi are defined by ρi = λiβi. Note that
for stability we require that the total load ρ := ρ1+ · · ·+ρN < N . Based on the
above information, one has to decide on the distribution of the foreground jobs
over the N queues. The aim of the decision maker is to minimize the expected
average number of foreground jobs in the system. Note that this is directly
related to the sojourn times of the foreground traffic (see Figure 5.1). In the
sequel we will study two dynamic models: the optimal queue selection model
with full and partial observability. We first describe the full information model.
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5.2.1 Full observation model

In this subsection we allow the decision maker to dynamically send the jobs to
any queue. To find the optimal policy for making this decision, we model this
as a Markov decision problem. To this end, let the state space S = N

2N
0 =

{0, 1, 2, . . .}2N . A tuple s = (x1, . . . , xN , y1, . . . , yN ) ∈ S denotes that there are
xi foreground jobs and yi background jobs at queue i for i = 1, . . . , N . For each
job, the set of actions is given by A = {1, . . . , N}, where a ∈ A denotes sending
the job to queue a. When action a is chosen in state s, there are two possible
events in the system; first, an arrival of a job can occur with rate λi or a job
can finish his service with rate µi for i = 0, . . . , N . The transition rates are thus
given by p = p(s, a, s′), when the system is in state s, action a is taken and the
next state is s′, as follows:

p(s, a, s′) =































λ0, if s′ = s+ ea,

λi, if s′ = s+ ei+N for i = 1, . . . , N,

µ0, if s′ = s− ei and xi > 0 for i = 1, . . . , N,

µi, if s′ = s− ei+N and yi > 0 for i = 1, . . . , N,

0, otherwise,

for s, s′ ∈ S and a ∈ A, where ei is the zero-vector with a one at the i-th entry.
The term λ0 represents an arrival of a foreground job that is assigned to queue
a, λi represents an arrival of a background job at queue i, µ0 represents the
departure rates at all queue i in which foreground jobs are available, and µi

represents the departure rate of a background job at queue i, if available. Since
we are interested in the number of foreground jobs in the system, we take the
cost function c equal to c(s) = x1 + · · ·+ xN . The tuple (S,A, p, c) defines the
Markov decision problem.

Next, we uniformize the system (see Section 11.5 of [103]). To this end, we

assume that the uniformization constant λ0+ · · ·+λN +
∑N

i=1 max{µ0, µi} = 1;
we can always get this by scaling. Uniformizing is equivalent to adding dummy
transitions (from a state to itself) such that the rate out of each state is equal
to 1; then we can consider the rates to be transition probabilities. Define a
deterministic policy π as a function from S to A, i.e., π(s) ∈ A for all s ∈ S.
Note that the optimal policy can be found within this class (see [46]). Let
uπt (s) denote the total expected cost up to time t when the system starts in
state s under policy π. Note that for any stable and work-conserving policy,
the Markov chain satisfies the unichain condition, so that the average expected
cost g(π) = limt→∞ uπt (s)/t is independent of the initial state s (see Proposi-
tion 8.2.1 of [103]). The goal is to find a policy π∗ that minimizes the long-term
average cost, thus g = minπ g(π).

Let V (s) be a real-valued function defined on the state space. This function
will play the role of the relative value function, i.e., the asymptotic difference
in total cost that results from starting the process in state s instead of some
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reference state. The long-term average optimal actions are a solution of the
optimality equation (in vector notation) g + V = TV , where T is the dynamic
programming operator acting on V defined as follows

TV (s) =

N
∑

i=1

xi + λ0 min
a∈{1,...,N}

{V (s+ ea)} +

N
∑

i=1

λiV (s+ ei+N )

+

N
∑

i=1

xi

xi+yi
µ0V (s− ei) +

N
∑

i=1

yi

xi+yi
µiV (s− ei+N )

+
(

1− λ0 −
N
∑

i=1

[

λi +
xi

xi+yi
µ0 +

yi

xi+yi
µi

]

)

V (s).

(5.1)

The first term in the expression TV (s) models the direct cost, the second term
deals with the arrivals of foreground jobs, whereas the third term deals with the
background jobs. The fourth and fifth terms concern service completions for
foreground and background jobs, respectively. The last line is the uniformiza-
tion constant.

The optimality equation g + V = TV is hard to solve analytically in practice.
Alternatively, the optimal actions can also be obtained by recursively defining
Vl+1 = TVl for arbitrary V0. For l → ∞, the maximizing actions converge to the
optimal ones (for existence and convergence of solutions and optimal policies we
refer to [103]). Note that for numeric computation the state space needs to be
truncated to obtain a finite state space. In practice, one determines the trun-
cation by systematically increasing the truncation bound until no significant
changes in the average cost occur.

5.2.2 Bayesian partial information model

The dynamic queue selection model with full information uses a state description
(x1, . . . , xN , y1, . . . , yN ) with 2N entries. However, in practice, distinguishing
the foreground traffic from the background traffic might not be feasible. In
these cases, one can only observe the state (z1, . . . , zN) with zi = xi + yi for
i = 1, . . . , N . Now, the dynamic control policy that we derived in the previous
section cannot be applied straightforwardly. To apply the control policy one
needs to create a mapping from (z1, . . . , zN) to (x1, . . . , xN , y1, . . . , yN), so that
(an estimate of the) full information is recovered. Note that it is not sufficient
to create a mapping solely based on (z1, . . . , zN ) at each decision epoch, since
it does not use the information contained in the sample path, i.e., many sample
paths can lead to the same state (z1, . . . , zN ). Therefore, we will use Bayesian
learning that takes into account the complete history of states in the estima-
tion procedure. We shall call z = (z1, . . . , zN ) ∈ N

N
0 the observation state. In

order to learn about the division between the number of foreground and back-
ground jobs, we will denote by ui(n) the probability that at queue i there are
n foreground jobs for i = 1, . . . , N . The probability distribution ui will serve
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the purpose of information about the states that cannot be observed; hence,
u = (u1, . . . , uN ) is called the belief state. Note that the belief state space is of

high dimension, namely
∏N

i=1{ui ∈ [0, 1]N0 |
∑

x∈N0
ui(x) = 1}.

Based on the observation and belief states, we construct a state space for the
Bayesian dynamic program consisting of the vectors s = (z, u). Note that ev-
ery arrival and departure gives the system information on how to update the
belief state. Suppose that state s is given and that an arrival of a foreground
job that is admitted to queue i occurs. The new state safi is then given by
safi = (z + ei, u

′) where u′i(x) = ui(x − 1) for x > 0 and u′i(0) = 0, and where
u′j(x) = uj(x) for j 6= i. In case of arrival of a background job to queue i, we
have a new state sabi = (z + ei, u).

In case of departures, we have a similar state transformation. When a fore-
ground job leaves queue i, then we have corresponding states sdfi = (z− ei, u

′).
When a job leaves the system the type of departure is unknown, therefore
the update equation will be a combination two prior belief states: u′i(x) =
ui(x)

z−x
z + ui(x + 1)x+1

z . If we believe there were z − x background jobs be-
fore departure, then the probability a background job left equals z−x

z . The
corresponding originating belief state probability is ui(x). Similarly, if we be-
lieve there were x+ 1 foreground jobs before departure, then the probability a
foreground left is x+1

z . The originating belief state probability is in this case
ui(x+1). As not all transitions cannot be observed, we take the expectation with
respect to the probability distribution u to average over all sample paths. This
gives a new dynamic programming operator in which learning is incorporated.
This is given by

TV (s) =
∑

x1∈N0

· · ·
∑

xN∈N0

u1(x1) · · ·uN (xN )
[

N
∑

i=1

xi +
N
∑

i=1

λiV (sabi) +

λ0 min{V (saf1), . . . , V (safN )}+

N
∑

i=1

xi

zi
µ0V (sdfi) +

N
∑

i=1

zi−xi

zi
µiV (sdbi) +

(

1− λ0 −

N
∑

i=1

[

λi +
xi

zi
µ0 +

zi−xi

zi
µi

]

)

V (s)
]

.

(5.2)

Note that the basic idea to transform (5.1) into (5.2) is to take the conditional
expectation with respect to the belief state distribution u. Under this condition,
the foreground and background jobs can be distinguished so that the structure of
the equation resembles the one of the fully observed problem. However, only the
transitions to the new belief state need to be adjusted so that the information
that has been learned is taken into account. These transitions are provided
above.
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We end this section with two remarks.

Remark 5.2.1 (Complexity). Note that the dynamic programming operator for
the Bayesian model (5.2) resembles the dynamic programming operator of the
full observation model (5.1). However, the state space of the Bayesian model
is of significantly higher dimension as the state variables for the background
traffic are continuous. Hence, solving the optimality equation g + V = TV is
notoriously hard, both analytically and numerically. In general, the Bayesian
updates result in posterior distributions that cannot be captured by a nice
structural form. In our problem, however, the decision maker can distinguish
foreground and background jobs upon arrival leading to an arrival process with
deterministic state transitions. It is only the departures that carry uncertainty
with them. This leads to a state transition function, as described above, which
keeps the dimensionality of the state space at reasonably low levels. In this way,
the structure of the problem makes the Bayesian model a tractable approach
(after discretization of the state space). Also note that for arbitrary queues i
and j, the decision as to whether an incoming foreground job should join queue
i or j, does not depend on the other queues. Hence, in the decision making one
can compare queues 1 and 2, take the best queue and compare it to queue 3,
take the best of that comparison and compare it to queue 4, and so forth. This
leads to a sequence of N − 1 comparisons. Therefore, the Bayesian approach
scales linearly in running time with the number of queues N .

Remark 5.2.2 (Accuracy). In a general Bayesian setting, the belief state rep-
resents a probability distribution that represents the likelihood that the process
is in a particular state. The accuracy of this estimate, generally, tends to de-
teriorate as the process progresses due to accumulated errors. In our problem
setting, the accuracy of the estimates tends to improve as jobs leave the sys-
tem. As more jobs leave the system, the support of the posterior distribution
reduces to a smaller set of states, limiting the possibilities for errors. In fact,
upon departure of the last job in a particular queue, the posterior distribution
of that queue is independent of the past, since the state is exactly known. Thus,
all probability mass is concentrated on having 0 jobs in that queue. Hence, an
empty queue leads to a belief state that corresponds to the true state for that
queue. This observation increases the accuracy of our algorithm due to stability
of the system.

5.3 Numerical experiments

To assess the performance of our Bayesian algorithm for efficiently assigning
downloads with concurrent access, we have performed extensive numerical ex-
perimentation, comparing the results of the Bayesian algorithm to the results of
the fully observable MDP in which the foreground and background jobs can be
distinguished. The comparison is done in two settings. Section 5.3.1 compares
the performance of the full observation MDP with the Bayesian MDP under the
model described in Section 5.2. Section 5.3.2 evaluates the performance of the
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algorithms in a state-of-the-art wireless network simulation package in which the
full wireless protocol stack is implemented. We have performed a large number
of experiments with a wide range of parameter settings. The results are outlined
below.

The number of model parameters is significantly large for already moderate
numbers of queues, prohibiting extensive numerical experiments over the full
spectrum of parameter combinations. To highlight the main effects of parame-
ter changes, we considered two-queue scenarios, motivated by the fact that in
the context of wireless networks, at most a few parallel networks will be used
simultaneously per user. Moreover, the file-size distributions were taken to be
exponential (see also the remarks in Section 5.4) with means β0 = β1 = β2 = 1.
To allow for asymmetric network settings, we scale the job-size distribution in
queue i by Ci, i.e., the effective job size is therefore βi/Ci for queue i = 1, 2. To
include scenarios for light and heavy foreground traffic, the foreground traffic
ρ0 = λ0β0/min{C1, C2} was varied as 0.1 and 0.9, and the background loads
ρ1 = λ1β1/C1 and ρ2 = λ2β2/C2 were varied between 0.1 and 0.9.

5.3.1 Comparison of the fully observed MDP against the Bayesian
algorithm

To compare the quality of the Bayesian approach discussed above to the fully
observed MDP approach, we have calculated the mean of the sojourn time S of
an arbitrary job for both policies, under a variety of parameter settings. To this
end, for each scenario we have calculated the mean number of jobs, following
the lines of Sections 5.2.1 and 5.2.2 and then used Little’s formula to obtain ES.
Denoting by E [S|Bayes] and E [S|full MDP] the expected sojourn times under
the Bayesian approach and the full MDP approach, respectively, the relative
difference is defined as follows

∆% =
E [S|Bayes]− E [S|full MDP]

E [S|full MDP]
× 100%. (5.3)

Note that the simulations have been run with 107 foreground jobs resulting in
a 99% confidence interval of approximately 0.1% with respect to the point esti-
mates.

Equal network capacities
Table 5.1 shows the results for light foreground load (with ρ0 = 0.1) and for a
variety of background-load values (ρ1, ρ2) for the case of symmetric networks,
and where the network capacities are equal (normalized to C1 = C2 = 1). More
specifically, for each scenario, Table 5.1 shows the triple
(E [S|Bayes] ,E [S|full MDP] ,∆%), where ∆% is defined in (5.3). Note that,
due to symmetry, only the results for ρ2 ≥ ρ1 are shown. Table 5.2 and Fig-
ure 5.2 show the results for medium to heavy foreground load (with ρ0 = 0.9).
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ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 (1.073, 1.072, 0.2%) (1.116, 1.115, 0.1%) (1.165, 1.164, 0.1%) (1.210, 1.210, 0.0%) (1.245, 1.241, 0.4%)
0.2 (1.196, 1.195, 0.1%) (1.273, 1.271, 0.2%) (1.352, 1.350, 0.1%) (1.416, 1.409, 0.5%)
0.3 (1.282, 1.277, 0.4%) (1.393, 1.390, 0.2%) (1.516, 1.514, 0.1%) (1.628, 1.625, 0.2%)
0.4 (1.522, 1.519, 0.2%) (1.715, 1.711, 0.2%) (1.918, 1.911, 0.3%)
0.5 (1.674, 1.665, 0.5%) (1.958, 1.952, 0.3%) (2.318, 2.308, 0.4%)
0.6 (2.260, 2.255, 0.3%) (2.910, 2.897, 0.5%)
0.7 (2.654, 2.641, 0.5%) (3.878, 3.858, 0.5%)
0.8 (5.735, 5.705, 0.5%)
0.9 (11.064, 11.020, 0.4%)

Table 5.1: Comparison of (E [S|Bayes] ,E [S|full MDP] ,∆%) for foreground load
ρ0 = 0.1.

ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 (1.59, 1.55, 2.3%) (1.93, 1.88, 2.6%) (2.53, 2.46, 2.9%) (3.76, 3.70, 1.7%) (8.90, 8.89, 0.2%)
0.2 (2.21, 2.15, 2.9%) (3.08, 2.99, 2.8%) (5.31, 5.23, 1.5%) unstable
0.3 (2.60, 2.51, 3.5%) (3.99, 3.86, 3.4%) (9.74, 9.63, 1.1%) unstable
0.4 (5.67, 5.60, 1.3%) unstable unstable
0.5 (10.87, 10.62, 2.4%) unstable unstable

Table 5.2: Comparison of (E [S|Bayes] ,E [S|full MDP] ,∆%) for foreground load
ρ0 = 0.9.
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Figure 5.2: Comparison of (E [S|Bayes] ,E [S|full MDP] ,E [S|JSQ]) for fore-
ground load ρ0 = 0.9.
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ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 (0.286, 0.286, 0.0%) (0.370, 0.370, 0.0%) (0.514, 0.513, 0.2%) (0.742, 0.741, 0.2%) (1.067, 1.062, 0.5%)
0.2 (0.286, 0.286, 0.0%) (0.370, 0.370, 0.0%) (0.516, 0.516, 0.1%) (0.767, 0.766, 0.1%) (1.167, 1.162, 0.4%)
0.3 (0.286, 0.286, 0.0%) (0.370, 0.370, 0.0%) (0.519, 0.519, 0.0%) (0.792, 0.792, 0.1%) (1.286, 1.281, 0.4%)
0.4 (0.286, 0.286, 0.0%) (0.370, 0.370, 0.0%) (0.521, 0.521, 0.1%) (0.816, 0.815, 0.1%) (1.424, 1.419, 0.3%)
0.5 (0.286, 0.286, 0.0%) (0.370, 0.370, 0.0%) (0.523, 0.523, 0.0%) (0.838, 0.837, 0.1%) (1.593, 1.587, 0.4%)
0.6 (0.286, 0.286, 0.0%) (0.370, 0.370, 0.0%) (0.525, 0.525, 0.0%) (0.858, 0.858, 0.1%) (1.800, 1.794, 0.3%)
0.7 (0.286, 0.286, 0.0%) (0.370, 0.370, 0.0%) (0.525, 0.525, 0.0%) (0.875, 0.874, 0.1%) (2.050, 2.044, 0.3%)
0.8 (0.286, 0.286, 0.0%) (0.371, 0.371, 0.0%) (0.526, 0.526, 0.0%) (0.891, 0.891, 0.0%) (2.366, 2.360, 0.2%)
0.9 (0.285, 0.285, 0.0%) (0.371, 0.371, 0.0%) (0.526, 0.526, 0.0%) (0.901, 0.901, 0.0%) (2.773, 2.769, 0.1%)

Table 5.3: Comparison of (E [S|Bayes] ,E [S|full MDP] ,∆%) for foreground load
ρ0 = 0.1 with C1 = 1 and C2 = 4.

Tables 5.1 and 5.2 reveal that the Bayesian algorithm has very good performance
that is close to a system with full information for a wide range of parameter com-
binations of background loads (ρ1, ρ2). This is remarkable since the Bayesian
algorithm has less information available than the full observation MDP, but
learns sufficiently to make good decisions. Note that Table 5.1, with ρ0 = 0.1,
has a performance that is extremely close to the full observation model, with
errors typically less than 0.5%. Table 5.2, with ρ0 = 0.9, has a slightly de-
graded performance, with errors typically less than 3.5%, over a broad range of
parameters settings. Nonetheless, the Bayesian algorithm clearly outperforms
the widely used Join the Shortest Queue (JSQ) algorithm, see Figure 5.2. The
slightly degraded performance of the Bayesian algorithm is due to the fact that
the Bayesian algorithm has estimates of the probability distribution on the fore-
ground and background traffic with high accuracy as more and more jobs leave
the system. When the load moves from 0.1 to 0.9 the time it takes to return to
more accurate estimates is longer, which explains the slightly degraded perfor-
mance (see also Remark 5.2.2).

Unequal network capacities
To assess the usefulness of the Bayesian approach to the case of unequal net-
work capacities, we have also performed experiments for the case C1 6= C2.
Table 5.3 below shows the results of the model considered in Table 5.1, but
with the (normalized) network capacities for C1 = 1 and C2 = 4. Similarly,
Table 5.4 shows the results for the models considered in Table 5.2, with network
capacities C1 = 1 and C2 = 4.
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Figure 5.3: Comparison of (E [S|Bayes] ,E [S|full MDP] ,E [S|JSQ]) for fore-
ground load ρ0 = 0.1 with C1 = 1 and C2 = 4.

ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.9
0.1 (0.369, 0.366, 0.8%) (0.498, 0.493, 1.0%) (0.704, 0.701, 0.39%) (1.127, 1.115, 1.00%) (2.867, 2.745, 4.4%)
0.2 (0.369, 0.367, 0.6%) (0.501, 0.498, 0.6%) (0.734, 0.722, 1.61%) (1.208, 1.197, 0.90%)
0.3 (0.369, 0.368, 0.3%) (0.511, 0.504, 1.3%) (0.754, 0.745, 1.20%) (1.300, 1.290, 0.80%)
0.4 (0.370, 0.369, 0.3%) (0.514, 0.509, 0.9%) (0.775, 0.769, 0.81%)
0.5 (0.370, 0.369, 0.2%) (0.516, 0.514, 0.5%) (0.797, 0.792, 0.60%)
0.6 (0.370, 0.370, 0.1%) (0.521, 0.518, 0.6%)
0.7 (0.370, 0.370, 0.1%) (0.522, 0.521, 0.3%)
0.8 (0.370, 0.370, 0.0%)
0.9 (0.370, 0.370, 0.0%)

Table 5.4: Comparison of (E [S|Bayes] ,E [S|full MDP] ,∆%) for foreground load
ρ0 = 0.9 with C1 = 1 and C2 = 4.
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Tables 5.3 and 5.4 show again that the Bayesian algorithm has excellent perfor-
mance, doing much better than JSQ (see Figure 5.3). Under light foreground
traffic load (ρ0 = 0.1), the error is extremely small (0.5% or far less). When
the foreground traffic load is increased to ρ0 = 0.9 the error remains small with
typical values of 1% up to a maximum of 4.4% for an unbalanced system.

Comparing the results with the results of the symmetric network capacity set-
tings in Tables 5.1 and 5.2, we observe that the relative performance in the
asymmetric case of the Bayesian algorithm is even better, especially when the
foreground load is significant. This may be explained by the fact that in the
asymmetric system with C2 = 4, the Bayesian algorithm has more observations
to learn from due to the increased number of departures in the queue 2, and be-
cause an erroneous decision has little impact due to short busy periods in queue
2. Only when queue 2 is heavily loaded, the system performance is extremely
sensitive to the proper scheduling actions, which explains the maximum error
in Table 5.4.

In conclusion, the results in this section show that the Bayesian algorithm has a
performance extremely close to the performance of a fully observed MDP both
under symmetric and asymmetric systems.

5.3.2 Comparison of the fully observed MDP against the Bayesian
algorithm in wireless networks

To evaluate the accuracy of the Bayesian approach in a realistic wireless net-
working environment, we have performed extensive experimentation in OPNET
Modeler [91] that implements the full protocol stack of wireless equipment. We
emphasize that this is not a trivial experiment, because the Bayesian learning
and decision functionality must be embedded in the network terminals and the
complex mapping of the physical and medium access control layer parameters
to the PS-queue parameters must be performed. In this context, it was shown
in Chapter 2 based on extensive network simulations how the download perfor-
mance of TCP-based wireless networks can be modeled by PS-queues, by using
the proper parameter mapping. In our experiments, the simulated response-
time performance of TCP-based networks under the Bayesian approach was
benchmarked against the simulated response-time performance under the fully
observable MDP traffic assignment. The results are outlined below.

Experimental configuration

Figure 5.4 shows the network topology in which the traffic assignment solution
operates. In practice, all wireless terminals may download files from an applica-
tion server, which may also be a dispatcher in front of several application servers
(not shown). The application server is considered to have information about the
number of ongoing downloads over each of the WLAN access networks, AP1 and
AP2, but is unable to distinguish between the multi-homed and the single-homed
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Figure 5.4: The concurrent access network topology.

terminals, because there is no binding between both network addresses of the
multi-homed terminals. Both WLAN access points operate on non-overlapping
frequency channels to establish two non-interfering parallel paths to the appli-
cation server from the multi-homed systems. The transmission links from the
access points towards the application server are considered to incur no delay
nor any loss to packets from and to the access points. This assumption is mo-
tivated by the much higher capacities and reliability offered in contemporary
fixed-line carrier-grade Internet connections in comparison to the IEEE 802.11b
access networks. For sake of simplicity, the decision logic was placed in each
foreground terminal and has instant knowledge on the number of flows in each
network.

The analytic model from Chapter 2 captures the combined dynamics and proto-
col overhead of the 802.11 MAC, IP, TCP and application-layer into an explicit
expression for the effective service time of a file download. Based on the effec-
tive service time, the effective load can be determined of the file transfers in our
simulated WLAN networks with a flow-level M/G/1-PS model.

In the simulated network there are ten multi-homed terminals (named FG 01−
FG 10) that generate download requests (that are considered foreground jobs
in the queueing model) with arrival rate λ0. These foreground terminals are
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positioned between both access points in a circle with a radius of 15 meter. In
addition there are ten single-homed terminals (named with prefix BG AP1 )
that generate background traffic in network 1 with file downloads arriving with
rate λ1 to the first network. The remaining ten single-homed terminals (named
with prefix BG AP2 ) generate background traffic at rate λ2 in network 2 in a
similar fashion. All background terminals are positioned at an equal distance of
15 meter from their respective access point. The file download requests arrive
according to an independent Poisson process and terminals may have multiple
file transfers in progress.

The MAC/PHY parameters of the WLAN stations are set in accordance with
the widely deployed IEEE 802.11b standard amendment as it relies on the
same MAC protocol basis as the contemporary higher rate (IEEE 802.11 a/g/n)
amendments and has lower computational requirements for high-load network
simulations. Table 5.5 summarizes the IEEE 802.11 MAC parameters used in
our analytic model to calculate the effective load values for the simulation runs.

parameter value parameter value
mac 224 bits ack 112 bits
difs 50 µs Rb {1, 11} · 106 bps
sifs 10 µs Cwmin 31 slots
eifs 364 µs phy 192 µs
δ 1 µs τ 20 µs
Rc 106 bps

Table 5.5: IEEE 802.11b MAC parameters.

In this table, mac is the number of bits of overhead bits associated with a MAC
data frame. The difs, sifs, eifs are the DCF, short and extended interframe
spacing times, respectively. The δ is the propagation delay that is assumed in
our analytic model. Rc is the transmission rate for WLAN acknowledgments of
size ack bits, and Rb is the WLAN transmission rate for MAC data frames that
is set to 1 or 11 Mbps. Cwmin corresponds to the minimum contention window
in slots. Phy is the physical layer overhead, and τ is the slot time. In addition
to the WLAN MAC, specific settings apply to the higher protocol layers and
are outlined in Table 5.6.
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variable setting
XFTPget 4096 bits
XFTPclose 64 bits
TCPstack Full-Featured
XMSS 11584 bits
Xtcp/ip 416 bits
w 70080 bits (8760 bytes)
Xfile 1.6 · 106 bits

Table 5.6: Network and application settings.

In Table 5.6, XFTPget is the size of the FTP GET-command that is issued for
initiating a file download, XFTPclose is the size of the FTP CLOSE-command
that concludes the file transfer at the application. The TCP stack used in our
experiments is characterized in OPNET as ‘Full-Featured’ that has an MSS
equal to XMSS (in bits). The number of TCP/IP overhead bits per segment
is Xtcp/ip bits. The maximum TCP receiver window size is indicated as w (in
bits), and the file size as Xfile (in bits).

Note that the parameter settings from Tables 5.5 and 5.6 correspond to one
of the parameter sets (for one of the WLAN transmission rates for MAC data
frames, Rb) of the model validation experiments in Chapter 2, of which the re-
sults are shown in Figure 2.4b. When respecting the engineering guidelines from
Section 2.5 we can assume that the mean download response times in our simu-
lation model can be accurately predicted from the effective load of the network
using the M/G/1-PS model.

Experimental results

To assess the performance of the Bayesian algorithm in practice, we have per-
formed simulations with the OPNETModeler [91] with the full wireless protocol
stack implemented for both the fully observable MDP and the Bayesian model.
The OPNET simulations for the experimental results have been run with ap-
proximately 322, 000 foreground jobs and the background jobs ranging from
roughly 644, 000 jobs to 5.1 million jobs depending on the load. In our simula-
tion study we have considered two scenarios. One simulation scenario considers
equal capacity networks in which all terminals are configured to use a WLAN
transmission rate of 11 Mbps. For simulating a scenario in which the network
capacity of both access network is unequal, the WLAN transmission rate used
in AP2 is lowered to 1 Mbps, which reduces the medium capacity for processing
file transfers by a factor of 5.79. In this scenario, the background load applied
to AP2 is based on the lower capacity, whereas the foreground traffic intensity
remains the same as for the equal capacity network.

We have executed 48 runs for the equal capacity scenario (24 runs for the fully
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observed MDP and 24 runs for the Bayesian MDP) and 80 runs for the unequal
capacity scenario. All runs have completed a total simulation time of 300 hours
per run of which 1 hour is the warm-up time leading to a wall clock time of
approximately 75 hours per run. This experimental setup is sufficient to de-
rive a 99% confidence interval of approximately 0.7% with respect to the point
estimates. The results of the experiments for both scenarios are outlined in
Tables 5.7 and 5.8 for ρ0 = 0.1 and a number of combinations ρ1 and ρ2. Note
that the load values in this setting are obtained following the parameterization
as defined and validated in Chapter 2. The results in Tables 5.7 and 5.8 show

ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.8
0.1 (0.355, 0.354, 0.31%) (0.370, 0.369, 0.30%) (0.385, 0.385, 0.05%) (0.402, 0.400, 0.49%) (0.408, 0.406, 0.46%)
0.2 (0.396, 0.395, 0.21%) (0.420, 0.420, 0.10%) (0.446, 0.446, 0.05%) (0.456, 0.455, 0.11%)
0.3 (0.421, 0.421, 0.18%) (0.460, 0.458, 0.33%) (0.502, 0.498, 0.65%) (0.521, 0.519, 0.48%)
0.4 (0.503, 0.501, 0.35%) (0.565, 0.564, 0.18%) (0.601, 0.599, 0.37%)
0.5 (0.551, 0.547, 0.61%) (0.643, 0.639, 0.68%) (0.700, 0.696, 0.53%)
0.6 (0.742, 0.737, 0.68%) (0.831, 0.828, 0.29%)
0.7 (0.867, 0.865, 0.20%) (1.028, 1.018, 1.01%)
0.8 (1.322, 1.319, 0.23%)

Table 5.7: Comparison of (E [S|Bayes] ,E [S|full MDP] ,∆%) in OPNET for
ρ0 = 0.1.

ρ2
H

H
H
ρ1 0.1 0.3 0.5 0.7 0.8
0.1 (0.417, 0.415, 0.4%) (0.415, 0.415, 0.0%) (0.416, 0.416, 0.0%) (0.416, 0.416, 0.0%) (0.415, 0.415, 0.0%)
0.2 (0.476, 0.474, 0.4%) (0.477, 0.475, 0.3%) (0.479, 0.476, 0.6%) (0.475, 0.475, 0.0%) (0.475, 0.475, 0.0%)
0.3 (0.556, 0.555, 0.2%) (0.556, 0.555, 0.3%) (0.553, 0.551, 0.4%) (0.557, 0.556, 0.2%) (0.555, 0.555, 0.0%)
0.4 (0.663, 0.660, 0.4%) (0.665, 0.664, 0.3%) (0.667, 0.666, 0.2%) (0.667, 0.666, 0.1%) (0.667, 0.664, 0.4%)
0.5 (0.807, 0.806, 0.1%) (0.819, 0.818, 0.1%) (0.827, 0.826, 0.1%) (0.830, 0.829, 0.1%) (0.835, 0.833, 0.2%)
0.6 (1.016, 1.013, 0.3%) (1.052, 1.047, 0.5%) (1.068, 1.065, 0.3%) (1.083, 1.081, 0.2%) (1.100, 1.099, 0.0%)
0.7 (1.322, 1.305, 1.3%) (1.410, 1.390, 1.4%) (1.482, 1.476, 0.4%) (1.546, 1.543, 0.2%) (1.597, 1.595, 0.1%)
0.8 (1.817, 1.777, 2.3%) (2.057, 2.013, 2.2%) (2.299, 2.273, 1.2%) (2.675, 2.610, 2.5%) (2.876, 2.862, 0.5%)

Table 5.8: Comparison of (E [S|Bayes] ,E [S|full MDP] ,∆%) in OPNET for
ρ0 = 0.1 with C1 = 1 and C2 = 0.17.

that the Bayesian approach again closely matches the performance of the full
observation MDP model in a real networking environment for equal and non-
equal capacity networks. This is most remarkable, since the OPNET Modeler
is a packet-level simulator implementing the full protocol stack including TCP,
IP, MAC, and PHY layers, whereas both the fully observable and the Bayesian
MDP are based on a processor-sharing model for the networking environment.
The results also illustrate that the Bayesian approach is a very powerful means
that is practically applicable.

5.4 Conclusions and further research

In this chapter we study a model in which the sojourn time of foreground traffic
is minimized in the presence of background traffic with the restriction that the
different traffic types cannot be distinguished. We propose to adopt a Bayesian
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methodology to control the system. Our results shows that even though the
system has fewer information than a fully observed system, the partial observ-
ability does not significantly compromise foreground sojourn times. Practically,
the Bayesian setting is better applicable to a multi-network environment as full
system observability cannot be assumed. The Bayesian method is very robust
under different parameter settings.

The results raise a number of interesting questions for further research. First,
in the current model we assume that the job sizes are exponentially distributed.
An interesting question is how the Bayesian algorithm performs under more
general job size distributions. For this purpose, our MDP approach could be
extended by modeling the job size distributions by phase-type distributions,
adding more challenges to the computational burden. Note that this comes
with additional questions regarding the observability of the number of jobs in
the different phases. Second, despite the fact that in practical deployments N
is likely to be small, it is of theoretical interest to evaluate the performance
and complexity of the Bayesian algorithm for larger N . Third, in this chapter
we primarily focused on the optimization of the foreground traffic, whereas in
reality the performance of the background traffic may also be subject to QoS
requirements. Inclusion of such QoS constraints addresses an interesting and
practically important topic.



Chapter 6

Dynamic Traffic Splitting over Multiple

Networks

In the previous chapters the static splitting and dynamic assignment of traf-
fic flows is considered for improving the mean sojourn time of these flows in
the presence of background traffic in an environment where multiple PS-queues
are available to process these flows. The Concurrent Access job-split and job-
assignment models consist of multiple PS-queues that each represent a wireless
network.

In this chapter dynamic traffic splitting of flows over multiple PS-queues is
considered. To analyze the performance of dynamic traffic splitting, the concur-
rent access dynamic job-split model is developed for ”optimal” traffic splitting,
where dynamic splitting based on full state information is performed at infinitely
fine-grained granularity. Next, we present a practical realization that applies
a splitting algorithm for TCP networks that uses a simple score function to
make on-the-fly decisions on the routing of individual TCP segments, based on
the measured per-connection RTT, transmission-buffer content and throughput.
Then, we use a combination of the effective service time model from Chapter 2
and our concurrent access model as a benchmark to evaluate the efficiency and
practical usefulness of the practical realization of dynamic splitting TCP flows
over real wireless networks in a test-lab environment.

Extensive experimentation demonstrates that our solution is extremely efficient
and easily deployable, and as such provides a powerful means to effectively split
TCP traffic in the presence of concurrently available access networks.

This chapter is based on the results presented in [54] and [55].

6.1 Introduction

In this chapter a concurrent access network is considered that is similar to the
ones studied in the previous three chapters. In Chapters 3 and 4 streams of

97
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traffic are split into fragments according to a static splitting rule that is based
on the average load of the available processing queues. Subsequently, Chapter 5
has studied a dynamic traffic assignment approach that is based on the actual
state of the available processing queues.

Both approaches have their pros and cons. On the one hand, splitting traffic
may significantly reduce the processing time of a flow when compared to assign-
ing flows. The individual sojourn times may be as much as i times smaller those
resulting from assignment over i available queues. On the other hand, splitting
may also adversely affect the performance because it creates a dependency be-
tween all fragments that are processed in parallel. This dependency adversely
affects the performance of an entire flow when one of its fragments meets the
unfavorable circumstance of being processed by a queue in which the actual
traffic load is much higher than expected. Dynamic decision algorithms may
mitigate such unfavorable circumstances by incorporating full or partial state
information from the processing queues. By basing decisions on actual state
information, short-term under and over utilizations of queues may be observed
and accounted for in the decisions taken and benefited from.

It is important to distinguish dynamic assignment from dynamic splitting. The
first type of algorithms may select the best queue at a specific point in time.
If suddenly the circumstances in the chosen queue become unfavorable (e.g.,
due to background traffic), the performance of the ongoing flows may be lower
than if another available queue was selected. When considering an individual
flow, there is no dynamic adaptation to changing circumstances in the available
queues during the processing of the flow. The latter type of algorithms are, in
contrast, fully dynamic by changing the splitting ratio during the processing of
the flow’s fragments at the queues. As a result, ideal dynamic traffic splitting
algorithms are expected to outperform their dynamic assignment counterparts.

Despite the applicability of PS-based models to real communication networks,
there is little known on PS-based models suitable for modeling the use of multi-
ple networks concurrently. As an exception, Key et al. investigate the efficiency
of combining multipath routing and congestion control in TCP-based networks.
In [68] they show that under certain conditions the allocation of flows to paths is
optimal and independent of the flow control algorithm used. In [69] it is shown
that with RTT bias uncoordinated control can lead to inefficient equilibria,
while without RTT bias, both coordinated and uncoordinated Nash equilibria
correspond to desirable welfare maximizing states. The distribution and re-
assembly of tasks are typically modeled by fork-join constructions [71], in many
cases embedded in so-called stochastic activity networks. In cases where the
processing times of the subtasks are independent, exact or numerical analysis
is relatively simple (e.g., [32]), whereas the inclusion of dependent processing
times (e.g., due to queueing or job splitting) typically leads to very complex
analysis (e.g., [37, 81]) and no closed-form solution exists. For PS-based nodes
that process the tasks of a job in parallel, the complex correlation structure
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between the sojourn times at the PS nodes makes an exact detailed mathemat-
ical analysis of the model impossible. In [74] and [75], the author analyzes a
similar model but with FCFS queues and with probabilistic splitting. We fur-
ther refer to Altman et al. [11], who consider routing policies in a distributed
versus centralized environment. In general our queueing model falls within the
framework of fork-join queueing networks, see [12] for an extensive overview. In
Chapter 3, the theoretical foundation for a tail-optimal splitting rule is provided
for light foreground load that is shown to work well with respect to both the
tail asymptotics and the mean sojourn times.

Despite the fact that the analytic models in the literature provide important
and valuable insight in the performance implications and efficiency of traffic-
splitting algorithms, they do not explicitly reveal how to exploit contemporary
protocol implementations on CA in practical deployments. Motivated by this,
the aim of this chapter is to propose and evaluate a simple, yet efficient and
easily deployable traffic-splitting algorithm for TCP-based networks. To this
end, we first propose a model that ”optimally” splits traffic in a dynamic way
based on full state information at infinitely fine granularity. This model is called
the concurrent access network (CAN) model and will be used as a benchmark.
We show that the expected response time under this ”optimal” splitting perfor-
mance can be numerically calculated by solving a continuous-time Markov chain.
In practical deployments, however, there is only limited and coarse-grained in-
formation (e.g., measured RTTs, queue lengths and throughputs) is available to
base routing decisions on, so that this optimal performance - which will be used
as a benchmark - can not be achieved. Next, motivated by the work in [43], we
propose a simple and easily deployable method for TCP-level traffic splitting,
where TCP segments are routed based on a score-function that dynamically
adapts the routing decisions to observed per-node RTTs, transmission-buffer
contents and measured throughput values. Then, we present the results of ex-
tensive test-lab experiments to assess the effectiveness of our approach. The
results show that the score-function method matches the performance of the
benchmark model extremely well for a wide range of parameter settings, and as
such provides a powerful means to effectively split TCP traffic in the presence
of concurrently available access networks.

The remainder of this chapter is organized as follows. In Section 6.2 we de-
scribe the CAN model and introduce the notation. In Section 6.3 we assess the
”optimal” performance of the CAN-model by simulations, and show that the
expected response time under the CAN-model is nearly insensitive to the job-
size distribution. This allows us to numerically calculate the optimal response-
time performance by solving the steady-state distribution of a continuous-time
Markov chain. In Section 6.4 we propose a simple score-function based ap-
proach to dynamically split traffic at the TCP-layer over different networks.
In Section 6.5 we discuss the results of extensive experimentation in a test-lab
environment. Finally, in Section 6.7 we address a number of topics for further
research.
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6.2 Concurrent access network model

The CAN model consists of N parallel PS nodes. There are N + 1 traffic
streams: a single stream of foreground jobs (called class-0 jobs) and N streams
of background jobs (called class-i jobs, for i = 1, . . . , N). Class-i jobs arrive
according to independent Poisson processes with rates λi, the service times
are generally distributed with mean βi, and the corresponding load offered to
the system is ρi = λiβi, i = 0, 1, . . . , N . Foreground jobs use the capacity of
all N nodes simultaneously in a fluid-like manner, using the (instantaneously)
available capacity at all the N PS nodes; at any moment in time the capacity
available at node i is equally shared amongst all foreground jobs in the system
and with the background jobs at node i. The splitting operates without delay
with infinitely small granularity and has perfect information about the number
of foreground and per-class background jobs in the system. If upon arrival of a
tagged foreground job F there are k0 other foreground jobs in the system and
ki background jobs at node i, then F obtains a fraction

fi :=
1

k0 + 1 + ki
(6.1)

of the capacity of node i, for i = 1, . . . , N . Note that in this way, the instan-
taneous total transmission speed that F receives equals

∑N
i=1 fi, and that this

speed changes during the course of the sojourn time of F in the system, as other
jobs may come and go. Also, it should be noted that using this fluid-like split-
ting of foreground jobs is ”optimal” in the sense that the synchronization delay
(which is usually encountered when splitting is done at coarse-grained granu-
larity or with non-perfect or delayed information) is zero, while the foreground
jobs receive no more than their fair share of capacity at each of the nodes; it
is evident that even better performance for foreground jobs can be obtained by
allowing unfair capacity sharing at the PS nodes in favor of foreground traffic
(see also Section 6.7).

If we assume that the service-times are exponentially distributed with rates
µi := 1/βi (i = 0, 1, . . . , N), then the evolution of the system can be described
as a continuous-time Markov chain (CTMC) with state space S = N0

N+1, where
each state is of the form s = (k0, k1, . . . , kN ) ∈ S, with k0 the number of fore-
ground jobs in all N PS nodes and ki (i = 1, . . . , N) the number of background
jobs in PS node i. For each arriving foreground job, a task is assigned to each PS
node of which the processing demand will be adjusted to complete the service
of all tasks corresponding to the same job simultaneously. It is readily verified
that the state-transition rates of the CTMC are as follows:

q(s, s+ ei) = λi (i = 0, 1, . . . , N), (6.2)

q(s, s− e0) =

N
∑

i=1

k0
k0 + ki

µ0, (6.3)
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q(s, s− ei) =
ki

k0 + ki
µi (i = 1, . . . , N), (6.4)

for all possible state combinations in S; here, ei stands for the unit vector that
has zeros in all components except the component that corresponds to the total
number of foreground jobs (by taking i = 0) or to the number of background
jobs (for i = 1, . . . , N). Here (6.2) represents the external arrivals of class-i
jobs, for i = 0, 1, . . . , N . The departure of a foreground job, and a class-i job
are represented by (6.3) and (6.4) respectively. Given the stationary distribution
of the CTMC, π(·), the expression for the expected number of foreground jobs
in the system is:

E [N0] =
∞
∑

i0=0

∞
∑

i1=0

. . .
∞
∑

iN=0

i0π(i0, i1, . . . , iN), (6.5)

where π(.) denoted the stationary distribution of our Markov process. Using
Little’s formula, we obtain the expected sojourn time of the foreground jobs:

E [S0] =
E [N0]

λ0
. (6.6)

6.3 Analysis of the CAN-model

In Section 6.2 it was assumed that the job-size distributions are exponentially
distributed. However, in practice, the job-size distribution in TCP-based net-
works is usually far from exponential. Motivated by this, in this section we
analyze the impact of the job-size distributions on the performance of the sys-
tem, using simulations. To this end, we have coded a simulation program that
optimally splits the traffic among two PS nodes based on full state information,
and at infinitely fine-grained granularity, leading to ”optimal” performance, and
in particular minimizes ES0, for any choice of the job-size distribution.

We have performed extensive simulations to obtain ES0 for a wide variety of
scenarios. The job-size distributions were varied as deterministic (with squared
coefficient of variation c2B = 0), exponential (c2B = 1), hyperexponential (with
balanced means and squared coefficient of variation c2B = 16), Pareto-3 (i.e.
with Pr{B > x} = (1 + x/2)−3, x ≥ 0, and hence c2B = 3) and Pareto-2 (i.e.,
with Pr{B > x} = 1

4x2 , x ≥ 1
2 , and hence c2B = ∞), all with mean 1. To

limit durations of the simulation runs, we considered scenarios with N = 2 net-
works, which is the most common CA-scenario in practical deployments. Also,
to limit the number of scenarios, in all cases considered the squared coefficients
of variation of the job-size distributions were taken to be the same for all classes
(i.e., c2Bi

= c2B for i = 0, 1, . . . , N). The foreground load ρ0 was varied as 0.1,
0.9 and 1.8 to cover load values ranging from light to heavy foreground load.
The background-load combinations (ρ1, ρ2) were varied such that ρ1 and ρ2 take
values 0.1, 0.3, 0.5, 0.7 and 0.9 (of course, only for the parameter combinations
for which the system is stable), hence covering scenarios with both light- and
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heavy-traffic and varying degrees of asymmetry. The results of our experiments
are outlined below. All simulation runs are based on at least 108 (109 for very
high load values) foreground observations, leading to accurate predictions of
ES0, such that all digits shown below are significant; confidence intervals have
been omitted for compactness of the presentation. In addition to the simula-
tions, we have also calculated the values of ES0 numerically for the special case
of exponential job-size distributions by using (6.1)-(6.6); truncation of the state
space was done at a sufficiently large size in order not to influence the results.
Table 6.1 shows the results for lightly loaded foreground traffic, with ρ0 = 0.1.
To avoid duplication due to symmetry, the results are shown for ρ1 ≤ ρ2. The
results in Table 6.1 reveal two interesting observations. First, we see that in
all cases the expected foreground sojourn time E[S0] is nearly insensitive to the
job-size distribution, and only slightly increases for larger values of c2B. We
reiterate that the results in Table 6.1 cover a wide variety of scenarios, ranging
from light to heavy background loads, from symmetric to strongly asymmetric
load values, and from deterministic to highly variable job-size distributions. In
addition, we observe that the ”exact” values based on (6.1)-(6.6) match the
simulation results very closely, as they should. Tables 6.2 and 6.3 below show
the results for moderately-loaded (with ρ0 = 0.9) and heavily-loaded foreground
traffic (with ρ0 = 1.8), respectively.

Table 6.3: E[S0] under heavy-loaded foreground traffic (ρ0 = 1.8).

job-size distribution c2B
ρ1
H

H
H
ρ2 0.00 0.05

deterministic 0 0.05 6.52 9.55
exponential 1 0.05 6.52 9.57
Pareto-3 3 0.05 6.54 9.60
hyper-exponential 16 0.05 6.54 9.60
Pareto-2 ∞ 0.05 6.55 9.65
exact from (6.1)-(6.6) 1 0.05 6.52 9.58

deterministic 0 0.10 9.51 18.62
exponential 1 0.10 9.53 18.64
Pareto-3 3 0.10 9.57 18.75
hyper-exponential 16 0.10 9.57 18.78
Pareto-2 ∞ 0.10 9.62 18,85
exact from (6.1)-(6.6) 1 0.10 9.54 18.59

They confirm that the results for the light foreground traffic in Table 6.1 are
also valid for moderate- and heavily-loaded foreground traffic. Again, we ob-
serve the E[S0] is nearly insensitive to the job-size distribution, and that the
CAN-model predictions from (6.1)-(6.6) are highly accurate.

To summarize, the results in Tables 6.1, 6.2 and 6.3 demonstrate that (a) ES0



6.3 Analysis of the CAN-model 103

Table 6.1: E[S0] under lightly loaded foreground traffic (ρ0 = 0.1).

job-size distribution c2B
ρ1
H

H
H
ρ2 0.1 0.3 0.5 0.7 0.9

deterministic 0 0.1 0.57
exponential 1 0.1 0.57
Pareto-3 3 0.1 0.57
hyper-exponential 16 0.1 0.57
Pareto-2 ∞ 0.1 0.57
exact from (6.1)-(6.6) 1 0.1 0.57

deterministic 0 0.3 0.63 0.70
exponential 0 0.3 0.63 0.70
Pareto-3 3 0.3 0.63 0.70
hyper-exponential 0 0.3 0.63 0.70
Pareto-2 ∞ 0.3 0.63 0.70
exact from (6.1)-(6.6) 0 0.3 0.63 0.70

deterministic 0 0.5 0.70 0.80 0.94
exponential 1 0.5 0.70 0.81 0.95
Pareto-3 3 0.5 0.71 0.81 0.95
hyper-exponential 16 0.5 0.71 0.82 0.96
Pareto-2 ∞ 0.5 0.71 0.81 0.96
exact from (6.1)-(6.6) 1 0.5 0.70 0.81 0.95

deterministic 0 0.7 0.80 0.95 1.16 1.53
exponential 1 0.7 0.81 0.95 1.17 1.55
Pareto-3 3 0.7 0.81 0.96 1.18 1.57
hyper-exponential 16 0.7 0.82 0.97 1.20 1.59
Pareto-2 ∞ 0.7 0.82 0.97 1.19 1.58
exact from (6.1)-(6.6) 1 0.7 0.81 0.95 1.17 1.55

deterministic 0 0.9 0.99 1.23 1.64 2.51 6.51
exponential 1 0.9 1.00 1.24 1.65 2.53 6.55
Pareto-3 3 0.9 1.00 1.24 1.66 2.55 6.60
hyper-exponential 16 0.9 1.00 1.25 1.67 2.57 6.63
Pareto-2 ∞ 0.9 1.00 1.25 1.67 2.57 6.67
exact from (6.1)-(6.6) 1 0.9 1.00 1.24 1.65 2.53 6.55
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Table 6.2: E[S0] under moderately-loaded foreground traffic (ρ0 = 0.9).

job-size distribution c2B
ρ1
H

H
H
ρ2 0.1 0.3 0.5

deterministic 0 0.1 1.06
exponential 1 0.1 1.07
Pareto-3 3 0.1 1.07
hyper-exponential 16 0.1 1.07
Pareto-2 ∞ 0.1 1.07
exact from (6.1)-(6.6) 1 0.1 1.07

deterministic 0 0.3 1.29 1.69
exponential 1 0.3 1.30 1.72
Pareto-3 3 0.3 1.31 1.74
hyper-exponential 16 0.3 1.32 1.76
Pareto-2 ∞ 0.3 1.32 1.76
exact from (6.1)-(6.6) 1 0.3 1.30 1.72

deterministic 0 0.5 1.67 2.59 6.98
exponential 1 0.5 1.69 2.63 7.06
Pareto-3 3 0.5 1.72 2.68 7.18
hyper-exponential 16 0.5 1.74 2.71 7.15
Pareto-2 ∞ 0.5 1.74 2.73 7.45
exact from (6.1)-(6.6) 1 0.5 1.69 2.63 7.07

deterministic 0 0.7 2.52 6.46
exponential 1 0.7 2.56 6.55
Pareto-3 3 0.7 2.60 6.71
hyper-exponential 16 0.7 2.63 6.70
Pareto-2 ∞ 0.7 2.66 7.05
exact from (6.1)-(6.6) 1 0.7 2.56 6.55

deterministic 0 0.9 6.71
exponential 1 0.9 6.76
Pareto-3 3 0.9 6.84
hyper-exponential 16 0.9 6.83
Pareto-2 ∞ 0.9 7.04
exact from (6.1)-(6.6) 1 0.9 6.71
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is nearly insensitive to the job-size distribution for a wide variety of parameter
settings, and (b) the optimal performance can be calculated very accurately
based on (6.1)-(6.6).

6.4 Score-function based splitting method

Our splitting-and-merging method is implemented between the transport layer
and the application layer, and is based on the following score function (which
was introduced in [43], see also Remark 6.4.1 below) that is repeatedly measured
for each of the N parallel TCP-connections: for i = 1, . . . , N ,

scorei =
Qi

Gi
+
sRTTi

2
. (6.7)

Here, Q represents the length in bytes of the data that has to be transmitted,
and sRTT is the smoothed RTT that each TCP implementation estimates. G is
the smoothed throughput (which is calculated for each individual connection),
that is repeatedly estimated from the following update scheme: G0 := 0, and
for t = 1, 2, . . .,

Gt = α×Gt−1 + (1− α)× Tt, (6.8)

where the smoothing parameter α (0 < α < 1) is a constant, and Tt is the
measured throughput (for each individual connection) which is continuously
measured every τ milliseconds. The parameter τ balances the trade-off between
computational resources for calculating the score-function periodically and the
responsiveness to changes in the RTT and the throughput. The score function
(6.7) estimates the time of arrival of TCP segments at the receiver re-sequencing
point by accounting for its major delay factors at node i: (a) the queueing delay
at the sender, estimated by the ratio Qi/Gi, and (b) the transmission delay in
the network, estimated by sRTTi/2; in this way, the variations of the RTTs on
the networks are accounted for implicitly.

Using the iterative scheme in (6.7) and (6.8), the method simply works as
follows: After calculating the score function scorei for each connection i =
1, . . . , N , the method assigns the packet to the connection having the lowest
score, effectively choosing the connection that has the lowest estimated delay
up to the point where all traffic is merged back.

Remark 6.4.1 (Score-function method). The score-function method (6.7)-(6.8)
was introduced earlier by Hasegawa et al. [43], called the Arrival-Time matching
Load-Balancing (ATLB) method. However, our implementation of the method
leads to a number of important benefits. First, the authors in [43] propose
to modify the TCP protocol and to deploy the implementation in a separate
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gateway to avoid the difficulties of replacing parts of the operating system. In-
stead, our implementation overcomes these difficulties by executing the schedul-
ing functionality in application-space of a Linux operating system with the same
API towards the existing applications and using the standard TCP sockets in-
terface for the multi-path sessions. Second, as pointed out in [43] TCP through-
put degradation may occur in real network environments because the receiving
buffer for sorting the data segments is of limited size. As described in [58]
high data rate differences between multiple networks may cause the advertized
window of the faster TCP session to reach zero because the packets from the
faster connection will fill the buffer and force TCP to slow-down. Although
our implementation uses a limited receiving buffer, the aforementioned TCP
throughput degradations do not occur. Third, the ATLB implementation [43]
requires a network proxy, which raises the need for having a separate proxy for
each access network. This is undesirable because the very goal of traffic splitting
is to optimize performance over those access networks. Our method, instead,
overcomes this problem because it does not require a network proxy, and hence
can be installed both in an end-node device and in a network proxy. These
observations make our method much more easy-to-deploy in real networking
environments. See also Remark 6.5.1 below for comments on a comparison of
our validation experiments and the ones in [43].

6.5 Experimental validation of score-function based ap-
proach

This section summarizes the results of extensive lab experiments in which two
independent access networks form a CA network, which represents the most
common scenario. Our aim is to demonstrate that (a) optimal traffic splitting
can be closely approached using real networks with a contemporary traffic split-
ting solution, and (b) our model can be applied for predicting the flow-level
performance of contemporary traffic splitting solutions. To this end, we have
implemented the score-function method in a realistic test-lab environment. Us-
ing this implementation, the experimental results were validated against the
benchmark results obtained from (6.1)-(6.6). In Section 6.5.1 we discuss the
experimental setup, and in Section 6.5.2 we give an outline of the results.

6.5.1 Experimental setup

To perform lab experiments, we have re-used the setup used for the experiments
in Section 2.4, consisting of two PCs that are connected by two access networks
that operate similar and independent of each other. See Chapter 2 for more
details on the equipment used.

For the experiments in this chapter, both multi-homed PCs run an implemen-
tation of the traffic splitting solution in addition and measure the download
response times of foreground file transfers in the presence of (file transfer) back-
ground traffic. The experimental setup is depicted in Figure 6.1, where the PC
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Figure 6.1: Experimental setup.

with the FTP clients generates all FTP-download requests according to inde-
pendent Poisson processes, for the foreground and both background streams. It
is important to state that even with a larger number of WLAN client devices
there is, in addition to the access point (AP), only one station contending for
the medium at the same time, as reported in [106] and observed during the
experiments in [50]. Therefore, the use of only one client device yields outcomes
that are representative for larger client populations.

At the PC serving as FTP server, 40,000 files have been generated according to
an exponential distribution (with mean size 1× 106 bytes) that is superimposed
on a deterministic one 1× 106 bytes to obtain a total mean file size of 2 × 106

bytes. The motivation to have at least a file size of 1 × 106 bytes is that it
takes some time (and bytes) to have the splitting method operating properly
and thus a bias against short files can be expected that is stronger than the one
from a single TCP connection. Finally, during the experiments the files to be
downloaded are randomly selected by the client PC during the experiments.

In Chapter 2 a PS-model was validated that accurately models the main as-
pects in file transfer response times over WLANs. Further model enhancements
are presented in Section 2.2.4 to match the particularities of real network de-
ployments, such as the presence of management traffic, different frame encap-
sulation and more sophisticated application behavior. Table 2.3 in Chapter 2
summarizes the parameters that are specific for our testlab networks in addi-
tion to and, where overlapping, superseding those on the IEEE 802.11b MAC
in Table 2.1. In this PS-model the highly complex dynamics of the FTP/TCP/
IP/MAC-stack, and their interactions, are translated into a single parameter,
the effective service time. Using the effective service time, denoted βeff , the
effective load, denoted ρeff , is subsequently used to describe the flow-level be-
havior of FTP-based file transfers over WLANs without admission control as an
M/G/1-PS model. Hence, we use the model to parameterize both our test-lab
environment and the model to assess the efficiency of a TCP-based traffic split-
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ting solution in the test-lab using real (WLAN) networks. In accordance with
the engineering guidelines in Chapter 2 we have configured our test-lab environ-
ment similarly with the same TCP window size, a sufficiently large AP buffer
to avoid overflows, and restricted the maximum load per network (to values
below ρeff = 0.9). In these circumstances, it was shown that the model leads
to highly accurate predictions over a wide range of parameters combinations,
including light- and non-light-tailed file-size distributions and light- and heavy-
load scenarios. In addition, the observed mean download response times are in
these circumstances fairly insensitive to the file-size distribution, as suggested
by the PS-model.

Another important aspect is how similar both access networks will perform.
In the experimental validation in Chapter 2 the same networks are used as in
the experiments described in this chapter. The validation results of both net-
works are shown in Section 2.4.2 and indicate that both networks perform very
similar. The only noticeable difference between both networks is that a different
channel frequency is configured.

Based on the parameters in Tables 2.1 and 2.3 from Chapter 2, we obtain from
the model an effective service time, βeffbg , of 3.041 seconds of the background
file transfers in network one and two. A slightly higher value of 3.058 seconds
applies to the foreground file transfers, called βefffg

. This difference is explained
by the eight bytes of overhead that is introduced by our implementation of the
splitting solution to transfer the foreground traffic.
To make the adjustment to changing network conditions very responsive, in
our experiments the smoothing parameter α of the score-function, presented in
(6.8) was set to 0.4. Hasegawa et al. [43] argue that the measurement interval
τ should be fixed and set to a value of 100 ms for network with an RTT of 20
ms. However, test-lab experimentation (results are not presented here) shows
that it is better to adapt τ to changing RTT values in the network. More pre-
cisely, a best practice rule-of-thumb is to set τ equal to 4 × RTT because a
shorter period does not give a good performance estimation (due to the impact
of fast retransmissions and task scheduling effects of the PC’s operating system).

While in operation, the splitting solution records the number of bytes over each
network for each of the file downloads processed. For an experiment in which K
foreground file transfers are processed by the splitting solution and where the
number of bytes for file transfer k over network i is denoted Bki, the average
file splitting ratio over network i denoted α̂exp

i , is defined by:

α̂exp
i :=

1

K

K
∑

k=1

Bki
∑N

n=1Bkn

, (6.9)

where N = 2 for our test-lab environment.
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6.5.2 Experimental results

In this section we report on the experiments conducted in our test-lab environ-
ment to determine the efficiency of the TCP-based splitting solution in a real
networking environment. The efficiency is determined by comparing the mean
file download times in our test-lab environment against the predictions from the
dynamic split model.

This model for predicting the file download times consists of two components.
The first component is the WLAN PS-model from Chapter 2 that is able take
the WLAN specific parameters into account to determine the effective service
time of the file transfers and the effective load of the network to obtain the
expected download time in one PS node. The second component of the model
considers ideal dynamic job-splitting of foreground traffic streams over N = 2
PS-queues. In Section 6.3 it is shown that the results obtained from numerically
solving the continuous-time Markov chain from Section 6.2 match very closely
with the ones from the simulation program. Therefore either the simulation
program of the Markov chain may be used to determine the performance of
ideal dynamic traffic splitting. For comparing the model-based results of dy-
namic traffic splitting in real networks, the simulation program introduced in
Section 6.3 is used rather than the Markov model from Section 6.2. The reason
for using the simulation program is that exactly the same service time distri-
bution is simulated as the file size distribution in our experiments. Moreover,
the simulation program calculates, in addition to the download response times
of the foreground and background traffic streams, the average job-splitting ra-
tio, denoted α̂∗. The average job-splitting ratio in our simulation program is
calculated by (6.9) and replacing the number of bytes Bki that traversed for
download k network i by the amount of service βki that job k received in PS
node i.

The simulations have been conducted for the same job-size distribution as the
file-size distribution used in our experiments, which is an exponential distri-
bution with mean β/2 superimposed on a deterministic value of β/2. In the
simulations, the mean service time of foreground and background jobs, β, was
set to unity. To determine representative values from the simulations, the mean
sojourn time values of the foreground stream, denoted E [S0|β = 1] , and back-
ground streams in network one and two, E [Si|β = 1] for i = 1, 2, are used as
follows:

E [S0|model] = E [S0|β = 1]βefffg
, (6.10)

E [Si|model] = E [Si|β = 1]βeffbg (i = 1, 2),

(6.11)

to obtain the values that are predicted for optimal dynamic splitting in the
test-lab networks for the given effective load values of the foreground and back-
ground file downloads. Exactly the same effective-load values are used for both
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the simulations and the experiments.

For our experiments we have set the effective load for the foreground traffic
and the background traffic in network one and two, ρ0, ρ1, ρ2 respectively, and
determined the download request arrival rates for the FTP clients using the
effective service time model from Section 2.2.4 In Table 6.4 the runs that we
have performed are shown with their approximate effective load values. To ob-
tain sufficiently small 95% Confidence Intervals (CI) for the measured average
download response times, the experiments required an execution time from 2-10
days per run. As a result, the 95% CI is typically in the range of 1 − 2% with
a maximum of 4% for the foreground mean download response times E [S0|exp]
and typically in the range of 2− 4% with a maximum of 5% for the background
mean download response times in network one, E [S1|exp], and two, E [S2|exp].

Three columns in Table 6.4 are labeled E[Si] for i = 0, 1, . . . , N that repre-
sent the mean file download times of stream i. In each of these columns, a
triple (E [Si|exp] ,E [Si|model] ,∆%) is shown for stream i, where the first ele-
ment is the measured average file download response time, the second element
the model prediction of ideal download performance and ∆% as the relative
difference between both elements that is calculated as follows:

∆% =
E [Si|exp]− E [Si|model]

E [Si|model]
× 100%. (6.12)

The column labeled α shows the couple (α̂exp, α̂model
i ), representing the average

splitting ratio obtained from the experiments and from the model respectively.

ρ0 ρ1 ρ2 E[S0] α E[S1] E[S2]
0.1 0.1 0.5 (2.268, 2.145, 5.7%) (0.610, 0.602) (3.614, 3.575, 1.1%) (6.622, 6.422, 3.1%)
0.1 0.2 0.3 (2.051, 2.029, 1.1%) (0.524, 0.524) (4.049, 4.006, 1.1%) (4.561, 4.578, -0.4%)
0.1 0.3 0.7 (3.008, 2.914, 3.2%) (0.647, 0.643) (4.763, 4.714, 1.0%) (11.061, 11.036, 0.2%)
0.1 0.4 0.5 (2.693, 2.646, 1.8%) (0.532, 0.532) (5.437, 5.438, 0.0%) (6.435, 6.524, -1.4%)
0.1 0.4 0.6 (3.053, 2.913, 4.8%) (0.577, 0.570) (5.535, 5.481, 1.0%) (8.484, 8.216, 3.3%)
0.1 0.5 0.5 (3.043, 2.881, 5.6%) (0.500, 0.500) (6.619, 6.569, 0.8%) (6.676, 6.568, 1.6%)
0.5 0 0.8 (3.965, 3.787, 4.7%) (0.787, 0.775) (0.000, 0.000, 0.0%) (23.007, 23.721, -3.0%)
0.5 0.1 0.2 (2.559, 2.419, 5.8%) (0.525, 0.522) (4.496, 4.439, 1.3%) (5.101, 4.979, 2.5%)
0.5 0.2 0.3 (2.932, 2.788, 5.2%) (0.526, 0.525) (5.330, 5.219, 2.1%) (5.985, 5.946, 0.7%)
0.5 0.3 0.7 (5.259, 4.922, 6.9%) (0.662, 0.658) (7.809, 7.539, 3.6%) (17.103, 17.297, -1.1%)
0.5 0.5 0.5 (4.994, 4.900, 2.0%) (0.500, 0.500) (10.529, 10.399, 1.3%) (10.620, 10.400, 2.1%)
0.5 0.5 0.6 (6.069, 5.975, 1.6%) (0.544, 0.544) (11.734, 11.537, 1.7%) (14.254, 14.369, -0.8%)
0.9 0.2 0.3 (4.782, 4.526, 5.7%) (0.530, 0.527) (8.194, 8.154, 0.5%) (9.637, 9.241, 4.3%)
0.9 0.3 0.4 (6.589, 6.426, 2.5%) (0.532, 0.532) (11.866, 11.759. 0.9%) (13.565, 13.598, -0.3%)
1.2 0 0 (3.952, 3.870, 2.1%) (0.499, 0.500) - -

Table 6.4: Measurement results testbed.

Based on the outcomes in Table 6.4, it can be concluded that nearly optimal
performance can be achieved by our score-function based algorithm for routing
TCP segments. The differences between the benchmark and the measured per-
formance are very small, and typically no more than a few percent. Considering
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the foreground traffic splitting ratios, the solution has the tendency to slightly
overload the network with the smallest average background load. Overall, the
foreground download response times show that non-ideal traffic splitting on a
packet-basis may deliver near optimal foreground traffic performance.

One remarkable run that exemplifies the good performance of dynamic traf-
fic splitting is the one in the third row, where ρ0 = 0.1, ρ1 = 0.3 and ρ2 = 0.7.
Here the measured average download response time is even lower than its effec-
tive service time of 3.057 seconds, even in the presence of an effective load of
1.1 on a total system capacity of 2.

Given the limited sensitivity of the sojourn time to the job-size distribution,
it can be expected that the test-lab results are also representative for other file-
size distributions, as long as a minimum size is respected that is comparable
to the one we used in our experiments. For experiments in which one of the
networks was heavily loaded ρ1, ρ2 ≥ 0.8, the differences are getting large. This
may be explained by the higher number of capacity fluctuations that may be
perceived by the TCP sessions to which the traffic distribution may need to
respond.

Remark 6.5.1 (Efficiency). Hasegawa et al. [43] also report valuable but quite
limited experimental results on the score-function method. However, there are
some important differences. First, in our experiments the background traffic
is assumed to be highly dynamic. In our experiments background jobs arrive
according to Poisson processes, and the the job-size distributions may be highly
variable, whereas the background streams in [43] are persistent and hence do not
require a highly adaptable traffic-splitting algorithm. Second, the experiments
in [43] are focused on capacity aggregation and on optimizing throughput over
parallel networks. In contrast, our analysis and experiments are oriented to-
wards minimizing expected response times. Moreover, our measurements allow
us to quantify the efficiency of our splitting algorithm by comparing the results
with the benchmark results from our analytical model.

6.6 Comparison between Concurrent Access strategies

In this section we compare the outcomes of five CA strategies in a network
with N = 2 Processor Sharing queues. The first strategy statically assigns fore-
ground jobs to the one most suitable queue based on a long-term characteristic.
Although this is a trivial policy, it is commonly used in practice and ignores
the available resources in the other queue. The static assignment policy in our
comparison assigns all foreground traffic to the queue that has the lowest aver-
age background traffic load. Note that the expected sojourn time obtained for
static assignment can be calculated in a straightforward manner. The second
strategy is the static split strategy outlined in Chapters 3 and 4, where each
of the foreground jobs is split into N fragments according to the optimal static
splitting rule, α∗, obtained from the simulations in Chapter 4 that minimizes
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the expected transfer time of foreground jobs that are split over N parallel PS-
queues. The third strategy in the comparison is the Bayesian learning algorithm
presented in Chapter 5 that splits a stream of jobs by optimally assigning en-
tire jobs to different queues, such that the expected sojourn time is minimized.
Because this algorithm uses the occupation level in each queue, we consider
this Bayesian algorithm a dynamic job-assignment approach. These strategies
are compared against the dynamic job-split approach presented in this chapter.
To benchmark these strategies against one that is well-known in the literature,
simulation results on the Join-the-Shortest-Queue (JSQ) approach are included.

In the following subsections the results of calculations (only in the case of static
assignment) and simulations (for all other strategies) are shown in figures. In
Appendices B-D, the same results can be found in tables. Motivated by the full
or near-sensitivity of the mean foreground sojourn time to the job-size distri-
bution for the static assignment, static splitting and dynamic splitting policies,
Poisson arrivals with an exponential job-size distribution are used, where appli-
cable, in our comparison. We assume a network, where N = 2 and β(1) = 1.
The load of the foreground traffic ρ0 was varied from light (ρ0 = 0.1) to mild
(ρ0 = 0.5), moderate (ρ0 = 0.9) and heavy (ρ0 = 1.8), and the background
loads ρ1 and ρ2 were varied as 0.1, 0.2, . . . , 0.9. Each simulation run is based on
averages from 108 foreground observations.

Our main interest is in the traffic splitting or assignment ratio of the fore-
ground traffic and in the mean sojourn times of the foreground and background
traffic, both as a function of the traffic load and the distribution strategy. The
background traffic performance in both queues is consolidated into the following
notion of the background traffic performance:

γ =
E [S1] ρ1 + E [S2] ρ2

ρ1 + ρ2
(6.13)

6.6.1 Light foreground traffic load

Figure 6.2 shows that under light foreground traffic load, the traffic split-
ting/assignment ratios demonstrate very typical behavior for each strategy. The
static assignment strategy simply selects the queue with the smallest background
traffic load and is a trivial example. When performing static job-splitting, the
ratio remains close to half when the background traffic loads become unequal
and cause a very steep increase in the splitting ratio towards a highly unbal-
anced system. The ratio in which the jobs are assigned by the Join-the-Shortest
Queue (JSQ) algorithm differ much from the other in that there seems to be a
linear increase as the systems become more and more unequally loaded. Differ-
ent from the other strategies, both the dynamic Bayesian assignment and the
dynamic splitting policies show a bended curve as the queues become more and
more unequally loaded. However, the dynamic splitting ratio shows a much
steeper increase and remains far below the other strategies.
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Figure 6.2: Splitting/assignment ratios of light foreground traffic (ρ0 = 0.1) for
various CA strategies as a function of the background load.

The sojourn times that match the splitting/assignment ratios from Figure 6.2
are shown in Figure 6.3. From the perspective of the foreground sojourn time,
the dynamic traffic splitting outperforms all other strategies. As long as the
overall background traffic load is not very high, static assignment performs
fairly well considering its simplicity. If the background load in both queues in-
creases, static assignment may yield very high sojourn times or may cause one
of the queues to become unstable where other strategies continue to perform
well.

Static splitting of light foreground traffic leads to fairly good performance as
long as both queues are lightly loaded. As the background load on one of the
queues is gradually increased, the performance of static splitting is very sim-
ilar to static assignment for low to moderate overall background traffic loads.
The results for Bayesian assignment and JSQ are so close that they can hardly
be distinguished. In particular under higher overall background traffic loads is
the performance of dynamic assignment and JSQ leading to fairly good results.
Clearly, there is no strategy that outperforms dynamic splitting. The relative
difference to static splitting is not very large under very low overall background
traffic loads. If, however, the background traffic loads increase the difference
between dynamic splitting and static splitting becomes very large, up to the
point where dynamic splitting is more than twice as fast.
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Figure 6.3: Mean sojourn times of light foreground traffic (ρ0 = 0.1) for various
CA strategies as a function of the background load.

The impact of the traffic distribution strategies on the background traffic per-
formance is shown in Figure 6.4. Here it is shown that the relative differences
between the background traffic load is limited as long as the queues are not
very unequally loaded with background traffic and the overall background traf-
fic load is not too high. The overall background traffic sojourn times is most
favorable in the remaining cases for either static assignment low to medium
background traffic load) or in the case of dynamic assignment or JSQ. Under
very high background traffic load, dynamic splitting improves the foreground
traffic performance slightly at the expensive of the background traffic compared
to JSQ and Bayesian assignment. When considering the splitting ratios in Fig-
ure 6.2, dynamic splitting is directing much more service demand to the queue
with the highest load. This consistent behavior can be observed throughout Fig-
ure 6.2. Static splitting performs worst at very high load, both with respect to
the foreground-and the background performance. This may be explained by the
high fluctuations in occupation level in both queues: splitting the foreground
traffic based on a long-term characteristic does not match the occupation levels
at small time scales.
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Figure 6.4: Background traffic performance (γ) for various CA strategies with
light foreground traffic (ρ0 = 0.1) as a function of the background load.

6.6.2 Mild foreground traffic load

Figure 6.5 shows the results on the splitting/assignment ratios for a foreground
traffic load that is equal to ρ0 = 0.5. As expected, the static assignment strategy
has fewer combinations for which the system is stable. Considering the curves
of the other CA strategies it may seem to increase steeper than for the light
background traffic load. This is not generally the case. For static splitting, the
ratios are increasing much slower with an increasing background load skewness
when compared to light foreground load. This effect is even more pronounced
for Bayesian assignment.

The JSQ strategy increases its assignment ratios very modestly. An exception to
this rule is the behavior of dynamic splitting, which is splitting the traffic such
that, in comparison to light foreground load, a higher portion of the foreground
traffic arrives at the queue that has a higher load. Due to the higher foreground
traffic load, the splitting ratios show smaller variations, in particular for higher
background load values. Again are the dynamic policies characterized by bended
curves whereas the JSQ strategy demonstrates an almost linear increase. The
impact on the foreground sojourn times is illustrated in Figure 6.6, where the
static assignment strategy is clearly performing much worse than others. Also
the distance between these other strategies has increased in comparison to the
case of light foreground traffic load (in Figure 6.3). Figure 6.6 also shows that
for mild foreground traffic load the difference between the JSQ strategy and
dynamic Bayesian assignment becomes visible for higher background load val-
ues. For the highest background load depicted, the results are very similar to
the ones illustrated in Figure 6.3. The results on the background performance
are shown in Figure 6.7 and demonstrate higher differences between the various
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strategies. It can be observed that static assignment of foreground traffic does
not lead to poor background performance.

In fact, for low overall background traffic loads, static assignment leads to the
lowest background sojourn times. Dynamic assignment using JSQ or Bayesian
strategies leads to slightly higher sojourn times than those for static assignment.
For higher overall background loads the difference between Bayesian assignment
and JSQ becomes visible and clearly Bayesian assignment delivers lower fore-
ground response times at the expense of the background traffic performance.
Dynamic splitting leads to relatively high background sojourn times when both
queues are exposed to very different background traffic loads. In those cases
dynamic splitting delivers higher background sojourn times than static split-
ting. The latter strategy adversely affects the background performance most
prominently when the overall background traffic load is high, an effect that is
similar to the foreground sojourn times in Figure 6.6.
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Figure 6.5: Splitting/assignment ratios of mild foreground traffic (ρ0 = 0.5) for
various CA strategies as a function of the background load.
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Figure 6.6: Mean sojourn times of mild foreground traffic (ρ0 = 0.5) for various
CA strategies as a function of the background load.
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Figure 6.7: Background traffic performance (γ) for various CA strategies with
mild foreground traffic (ρ0 = 0.5) as a function of the background load.

6.6.3 Moderate foreground traffic load

For a moderate foreground traffic load, ρ0 = 0.9 the splitting/assignment ratios
are as expected: the differences between the curves are again smaller in compari-
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son to lower foreground traffic loads and the splitting ratios of dynamic splitting
are lagging behind the other strategies. In the case of moderate foreground traf-
fic load static assignment does not lead to a stable system in the case of having
a background load equal to 0.1. The differences between static splitting and
dynamic assignment using JSQ or Bayes are very small. Similar to what was
observed for an increasing foreground traffic load from light to mild intensities,
dynamic splitting is the only strategy that is directing again more traffic to-
wards the queue that has the highest background load. In contrast, Bayesian
assignment and static splitting send a smaller portion of the foreground traffic
to the queue with the highest background load.

The JSQ strategy has the smallest sensitivity to the foreground traffic intensity;
slightly smaller amounts of jobs are assigned to the queue with the highest back-
ground load. The resulting impact on the foreground sojourn times are shown in
Figure 6.9 where it is clearly shown that Bayesian assignment outperforms the
JSQ strategy most notably for unbalanced systems. Again, the sojourn times of
the foreground traffic are significantly smaller than for all other strategies. The
resulting background traffic sojourn times demonstrate that dynamic splitting
optimizes the foreground traffic at the expense of the background performance,
in particular background jobs in highly loaded queues in unbalanced systems
experience very high mean sojourn times.
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Figure 6.8: Splitting/assignment ratios of moderate foreground traffic (ρ0 = 0.9)
for various CA strategies as a function of the background load.
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Figure 6.9: Mean sojourn times of moderate foreground traffic (ρ0 = 0.9) for
various CA strategies as a function of the background load.
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Figure 6.10: Background traffic performance (γ) for various CA strategies with
moderate foreground traffic (ρ0 = 0.9) as a function of the background load.

6.6.4 Heavy foreground traffic load

When exposing the N = 2 queueing network to a high foreground traffic load
of ρ0 = 1.8 the four strategies shown in Table 6.5 may lead to a stable system.
Dynamic splitting sends the most traffic over the queue that also carries back-
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ground traffic. Bayesian assignment performs slightly better with respect to
foreground traffic performance than JSQ. In this context the relative difference
between static splitting and the other approaches is fairly limited when consid-
ering its simplicity. The foreground traffic performance of dynamic splitting is
8.3% better than the second-best strategy of Bayesian assignment. When tak-
ing an overall performance metric ψ = ρ0 · E[S0] + ρ2 · γ dynamic splitting also
performs best, improving the performance with 4.9% in comparison to JSQ.

α∗
E[S

α∗

0 ] γ
Static split 0.527 11.723 20.555
Dynamic (Bayes) assignment 0.533 10.370 15.391
Dynamic split 0.525 9.510 19.207
JSQ 0.527 10.532 10.682

Table 6.5: Simulation results for heavy foreground load (ρ0 = 1.8), with ρ1 = 0
and ρ2 = 0.1.

6.7 Conclusions and further research

In this chapter the dynamic splitting of foreground traffic jobs over multiple
PS-queues is considered. An analytical model is described that allows to de-
termine the ”optimal” traffic splitting performance by solving a CMTC. This
analytical model is validated by simulations for various types of service time dis-
tributions and traffic intensities. It is shown that this ”optimal” performance
can be closely approached in a real network deployment where the networks
can be considered to behave similar to PS-queues, according to the effective-
service time model described in Chapter 2. Experiments reveal close to optimal
performance can be achieved by using a remarkably simple and easy-to-deploy
score-function based algorithm that dynamically splits TCP segments based on
on-the-fly measurements on the per-node RTT, the sending-buffer contents and
the estimated throughput. We believe that this forms a significant step towards
filling the gap between the theoretical modeling and analysis of traffic splitting
among multiple network paths and practice.

In comparison to other traffic splitting and assignment strategies that are pre-
sented in the previous Chapters the foreground traffic performance delivered by
dynamic splitting is better than that of the other strategies. It is demonstrated
that dynamic splitting is sending relatively larger portions of the foreground
traffic to the queue with the highest average load. In fact, when the foreground
traffic intensity increases, these portions become even larger as opposed to the
other strategies. By doing so, dynamic splitting consumes all available resources
on every queue at the expense of the background traffic. This can be explained
by the fact that dynamic splitting operates at an infinitely small time scale, as
opposed to the other strategies that operate on the time scale of processing an
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entire job or its halves. Unlike the other strategies, perfect dynamic splitting
benefits from short-term under-utilizations, no matter how small in length or
magnitude.

The results presented in this paper lead to a variety of challenges for follow-
up research. First, as pointed out in Chapter 3, the accuracy of PS models
becomes questionable under high traffic loads or system under-dimensioning so
that (bursty) packet loss has a significant impact on the results. It needs further
exploration how the parameterizations in (6.7) and (6.8) need to be adjusted,
e.g. by adapting the smoothing parameter α and the measurement interval τ ,
in response to bursty packet loss patterns.

Second, the CAN-model is based on the assumption that the traffic is elastic,
in the sense that the available bandwidth changes over time caused by fluc-
tuations in the number of simultaneous flows in the network. However many
applications (such as streaming applications) are not elastic, and instead require
fixed amounts of network bandwidth. To incorporate smart traffic splitting for
mixtures of elastic and streaming applications, the model should be extended to
mixtures of fixed and elastic traffic streams. Optimal splitting in such multiclass
models opens up a challenging area for follow-up research.

Third, the fluid-based dynamic splitting of foreground jobs (as discussed in
Section 6.2) has the attractive property that the synchronization delay is zero,
while at the same time the policy is fair in the sense that foreground jobs receive
no more than their fair share of the capacity at each of the individual nodes.
It seems obvious that even better performance for the foreground traffic can
be obtained by dropping the restriction of PS-based fair sharing of capacity for
each node, and allowing for the possibility of some kind of weighted sharing of
the capacity of the nodes in favor of the foreground traffic, which clearly comes
at the expense of the background traffic streams. Further optimization of the
performance of foreground streams, and balancing the trade-off with the degra-
dation of the performance of the background streams opens up an interesting
direction for further research.

Fourth, the experimental validation is conducted in a lab-environment with two
similar access networks. However, in practical circumstances heterogeneous ac-
cess networks may be connected by a Wide Area Network (WAN). This network
heterogeneity may result in very different path delay and packet loss character-
istics for each connection, whereas the WAN network may merge all connections
and impose a shared bottleneck. To this end, further experiments should reveal
the behavior of the splitting solution for a broader set of conditions that may
occur in practice.

Fifth, when comparing the CA strategies it was observed in the simulation
results that the assignment ratio of the foreground traffic for the Bayesian dy-
namic strategy is not always 0.5 for two equally loaded PS-queues, despite the



122 Chapter 6 Dynamic Traffic Splitting over Multiple Networks

fact that the mean sojourn times are according to expectations. It needs to be
investigated why the observed assignment ratios for the Bayesian assignment
strategy do not always meet the expected values.

Finally, another topic of further research is to study the impact of the arrival
process on the download response times, if for instance an MMPP arrival process
is considered instead of Poisson.



Chapter 7

Traffic Control in Wireless Networks

In Chapter 2 we proposed a concept for modeling complex combined dynamics
and overhead of multiple protocol layers from a wireless network into an explicit
expression for the effective service time of jobs in a PS-queue. In this way, files
that are transferred through a network can be modeled by jobs that are pro-
cessed in a PS-queue, which allows accurate predictions of the mean download
times of file transfers using a very simple model.

Another application of the PS model with the notion of effective service time is
found in Chapters 5 and 6 to predict the performance of file transfers that are
respectively assigned to or split over multiple wireless networks.

In this chapter a traffic control solution is proposed that relies on the basics
of the performance model from Chapter 2 for realizing Quality of Service (QoS)
guarantees of wireless users in a network where the available capacity may fluctu-
ate. It is shown that the throughput parameter bits/s does not provide sufficient
insight in load conditions and/or traffic demands in wireless networks.

Therefore, we define a multi-service traffic profile that does provide this in-
sight, which can be used to define the notion of a QoS budget. The QoS budget
is assigned to a terminal in accordance with the method described in [47]. Us-
ing this method, the terminal can determine locally if the network consumption
does not exceed the assigned budget and whether a new application session may
fit within the QoS budget given. Finally, it is shown how the QoS budget with
its multi-service traffic profiles can be used as a dynamic solution to guarantee
the QoS of various applications in a wireless network, where channel conditions
may vary over time and stations may move around.

This chapter is based on the results presented in [93] and [94].

123
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7.1 Introduction

A wide range of wireless networks exists that provide mobile users access to the
Internet. In order to satisfy the user’s QoS expectations, resource allocation
mechanisms and QoS guarantees should exist that can also be found in cellular
networks. Some wireless technologies, however, do not use adequate resource
allocation mechanisms and therefore guarantees cannot be given.

A QoS enabled network distinguishes various priority classes, reflected in the
packet header, such that the network can differentiate in packet serving times.
Each priority class may differ in the QoS targets/guarantees and the various
packet scheduling mechanisms (i.e., WFQ, DRR) that aim at realizing these
targets. Standardization in 3GPP, 3GPP2, IEEE 802.1Q, IEEE 802.16 and the
wireless multimedia extensions of WLAN (subset of the IEEE 802.11e stan-
dard) tends to distinguish up to four different traffic classes: the conversational,
streaming, interactive and the background class (using UMTS terminology). If,
however, the traffic ingress volume of a network exceeds the egress limit, these
mechanisms are not sufficient and degradation of quality is inevitable. This is
why - besides priority - QoS solutions must include indications about volumes,
specified in a traffic contract. The traffic contract dictates how much traffic
users can offer to a network, which may depend on the network load, time of
day, day of month, etc. In addition to time-varying user demands there may
be a second source of dynamics involved in contemporary wireless networks:
time-varying connection speeds due to transmission rate adaptation algorithms.

A prominent example of a network that employs transmission rate adaptation is
WLAN: if the signal quality between a WLAN station and its AP declines, the
transmission rate of a station may decrease as a result of rate adaptation and
consequently the WLAN overhead increases. Hence, the length of a bit on the
WLAN medium differs per station which makes the traditional parameter bit/s
an inaccurate measure for specifying application demands. As a result, an effec-
tive alternative for the traffic contract is required. The variation of the length
of bits traversing this medium also affects the time scale where the mechanism
operates that maintains the desired QoS level for end-users. This mechanism
should not only assign capacity on a long time scale (as happens with admission
control) but also needs to re-distribute this capacity over associated stations on
a relatively short time scale, if channel conditions demand so.



7.1 Introduction 125

The solution proposed in this chapter is aimed at solving user continuation con-
trol, rather than only admission control. This is realized by taking into account
the dynamically changing channel conditions in the (re)assignment of airtime
capacity. The result is a single formula that can be applied to maintain the
desired QoS level on two time scales:

1) the minutes time scale, where the decision has to be made whether a newly
associated station can be added to the system, and
2) the seconds time scale, because airtime capacity needs to be re-distributed
among a group of stations if their connection speeds changed as the result of
e.g., movements.

Different prioritization policies can be applied. By giving priority to stations
with high connection speeds the overall capacity is maximized. End-user priority
is achieved by calculating the needed resources based on the desired throughput
at the application-layer for those users that are considered most important. Fi-
nally, a fair sharing policy can be applied by distributing the available airtime
capacity equally over all associated stations. Although the solution is made
suitable for WLAN networks, the approach of using multi-service traffic profiles
to realize and maintain QoS guarantees is also applicable to other rate-adapting
networks.

Among the various QoS challenges, admission control is an important com-
ponent for the provisioning of guaranteed QoS parameters. The purpose of
admission control is to limit traffic or users so that the QoS of existing users or
flows will not be affected while the medium resources can be maximally utilized
and attracted the attention of many researchers [126], [40], [8], [39],[98],[90],[88],
of which [39] provides a good overall overview. Two main categories of ad-
mission control approaches are distinguished, namely measurement-based and
calculation-based. In general, the measurement-based approaches form a good
basis to realize user continuation as they provide access to frequently changing
medium conditions.

In the area of measurement-based approaches Distribution Admission Control
(DAC) was proposed in [121, 122] by the IEEE 802.11e working group. It mea-
sures the channel occupancy for each of the priority classes used and hence
could in principle be extended with dynamic user continuation. However, the
DAC approach does not provide a direct relation between the MAC parameters
for allocating transmission time and QoS requirements from applications. The
virtual MAC, as introduced in [14, 118], is an elegant solution to be executed on
the mobile hosts for scheduling virtual packets on a virtual medium to decide
on whether new flows can be admitted. The major drawback of this approach
is that a lot of processing power is consumed on the involved wireless devices,
further reducing their limited battery life.

Another measurement-based approach is threshold-based admission control in
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which flows are admitted to the medium, depending on the average load or colli-
sion rate. Additional criteria that take into account user continuation could have
been added. Although the implementation remains rather simple, the threshold
values need to be determined and form no guarantee to the instantaneous QoS
metrics. In the Harmonica approach the decision to admit new flows is based on
their throughput requirement and is made at the expense of best-effort traffic
and dynamically adjusted IEEE 802.11e channel access parameters [123], which
still is a challenging problem.

In the context of calculation-based admission control schemes, Markov chain
models (e.g. from Bianchi [21]) are often proposed, e.g. by [98, 13], to calculate
the expected throughput for a certain amount of stations and traffic demand.
There are two problems with applying these Markov models: first, they assume
a saturated medium, and second, they operate on a long time scale and hence
are not effective to deal with the properties of the WLAN channel that can vary
on a millisecond time scale.

It should be pointed out that in the above-mentioned approaches and those
explained in [40, 85] the transmission rate of the involved stations is not ac-
counted for, in spite of its major influence on throughput performance. The
throughput performance for all users is affected in part because bits become
longer, and raises the medium occupation level, but possibly also due to the
use of lower transmission rates for control traffic and growing MAC overhead
as a result of backward compatibility with older standards. The only known
approach that does take this effect into account is presented by Gao in [39] as
physical-rate-based admission control, but this approach relies on the polling-
based HCCA model, that is, similar to the legacy PCF polling function, hardly
used in practical deployments.

This chapter is structured as follows. Section 7.2 shows why throughput param-
eter bits/s does not provide accurate insight in load conditions and/or traffic
demands in WLANs. It proposes a multi-service traffic profile to overcome this
aspect and then shows how this profile can be used to compute the WLAN air-
time consumption, a parameter that is subsequently used in Section 7.3 for both
the user continuation control as well as for the proper distribution of WLAN ca-
pacity over all stations. The multi-service traffic profile is natural for real-time
applications; simulation results are used to compute the multi-service profile
parameters for elastic applications. Section 7.3 discusses the relation of the
proposed solution to the admission control approaches reported in literature.
Section 7.4 shows the lessons learned from implementing the proposed solution.

7.2 Multi-service traffic profiles

The Service Level Agreement (SLA) of traffic contracts traditionally consists
of committed/peak data rates and maximum burst sizes. If a SLA concerns
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the amount of traffic at the IP layer, the capacity demand on lower protocol
layers should be known to make any form of guarantee. This section shows
that SLAs for WLANs are not sufficiently defined with the parameter bits/s. A
traffic profile is proposed that consists of two parameters to define SLAs more
accurately.

7.2.1 The QoS MAC layer

Two medium access coordination functions are defined in the original IEEE
802.11 MAC: a mandatory Distributed Coordination Function (DCF) and an
optional Point Coordination Function (PCF) which neither support packet pri-
ority nor admission control; limitations that motivated researchers to enhance
the performance of the WLAN MAC layer and resulted in the release of the
IEEE 802.11e standard in 2005 [4]. The IEEE 802.11e standard prescribes how
the DCF and PCF functions should be combined for QoS data transmissions.
The WiFi alliance certifies a subset of the IEEE 802.11e standard, namely the
Enhanced Distributed Channel Access (EDCA) which improves the legacy DCF,
and named this Wireless Multi Media (WMM). The QoS guarantees reported in
WLAN products today mainly stem from implementing WMM and augmented
with a connection admission control scheme; a necessary part not described in
the IEEE 802.11e standard.

EDCA introduces four different First-In First-Out (FIFO) queues, called Ac-
cess Categories (ACs). Different kinds of applications (e.g., background traffic,
best-effort traffic, video traffic, and voice traffic) can be directed into different
ACs. Each AC behaves as a single DCF contending entity. The stations for
which admission control is required transmit a QoS request to the AP contain-
ing a traffic specification (TSPEC) of its network resources (e.g., mean/peak
data rate, burst size). If the AP accepts the request, it calculates the amount
of time for admitted traffic to access the medium, called medium time.

The algorithms used by the AP to make an admission decision and to cal-
culate the medium time are not standardized and designing efficient solutions
allow vendors to differentiate their products. The AP sends back to the sta-
tion a response frame containing a transmission opportunity (TXOP) that indi-
cates how long the station can use the medium for the associated AC and from
which the medium time is derived. If a station needs more channel access time
for an AC, it has to send a new request to the AP. In contrast to DCF, the
contention parameters in EDCA (Cwmin[AC], Cwmax[AC], AIFSN [AC] and
TXOPLimit[AC]) are configurable and computed from periodic beacon frames
sent by the AP.

EDCA introduces for each AC the Arbitration InterFrame Space (AIFS), re-
placing the DIFS in legacy IEEE 802.11 DCF systems. Each AIFS is an in-
terval that dictates the time that the medium should be idle before the sta-
tion can send from the AC and can be computed as follows: AIFS[AC] =
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Figure 7.1: Transmission cycle of an IEEE 802.11e-compliant station.

SIFS+AIFSN [AC] ·τ , where AIFSN [AC] ≥ 1 and τ represents the slot time
(see Table 2.1). Since AIFSN [AC] = 2 corresponds to the parameterization
of legacy IEEE 802.11b systems, because AIFS[AC] = DIFS, it is clear that
high priority traffic in EDCA has precedence over traffic sent by legacy stations.
Upon arrival of a new frame the AC draws its random backoff slots from a uni-
form distribution [0, · · · , Cw[AC]]). At the first transmission attempt, Cw[AC]
is set equal to a minimum value Cwmin[AC] that can be computed from values
sent in the beacon frames. In the case of a failure event, the value of Cw[AC]
shall be set to the following value: 2(Cw[AC] + 1)− 1.

The purpose of using different contention parameters for different queues is
to give a low-priority class a longer waiting time than a high-priority class, so
the high-priority class is likely to access the medium earlier than the low-priority
class. The backoff times of all ACs are decremented each slot time the medium
is sensed idle after the AIFS[AC] has expired; if the backoff timer for an AC
reaches zero the station may transmit the first frame from that AC. Optionally,
the station may first send a small packet (named Request-To-Send, or RTS). If
acknowledged by a Clear-To-Send (CTS), the frame can be send. In Figure 7.1
the transmission cycle is shown in which two IEEE 802.11e-compliant stations
exchange one MAC data frame.

Since the backoff times of different ACs in one station are randomly gener-
ated and may reach zero simultaneously, an internal collision may arise. If this
occurs, a virtual scheduler inside every station allows only the highest-priority
AC to transmit its frame. Note that QoS requests are made for specific applica-
tions, whereas the packets from different applications may arrive at the same AC
for transmission. The packets from the AC are transmitted, however, without
considering the individual TSPEC values for each application. Consequently,
applications using the same AC may harm each other. The transmission oppor-
tunities, however, only apply to a single AC.

7.2.2 WLAN overhead expressions to justify new traffic profiles

Overhead is common to make a communication protocol operate properly. The
MAC protocol increases the WLAN reliability by including overhead required
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for the physical medium and by forcing packet acknowledgments. In practice,
the signal strength between each WLAN station and its AP varies frequently as
a result of signal propagation effects and decreases when the distance increases.
If the signal quality between station and AP declines, the transmission rate of a
station may decrease as a result of rate adaptation and consequently the WLAN
overhead increases. This increase in overhead soon exceeds a level where the
WLAN airtime spent on overhead exceeds the airtime required to transmit or
receive the desired data. The IEEE working group addresses the inefficiency by
introducing e.g., block acknowledgments and extending the number of frames
that can be sent concurrently. These efforts may certainly reduce, but not
eliminate the situation.

Bytes Packets Application IP Ethernet WLAN @ 54 Mbit/s WLAN @ 6 Mbit/s
per packet per second rate (bits/s) overhead (%) overhead (%) overhead (%) overhead (%)

1250 10 100000 3 5 61 916
625 20 100000 6 11 122 1034
250 50 100000 16 26 305 1385
125 100 100000 32 53 602 1963
25 500 100000 160 264 2978 6650

Table 7.1: Rates and overhead at the application and resulting additional over-
head introduced at the IP, the Ethernet and WLAN (IEEE 802.11g) layers
(percentages of overhead, experienced by a WLAN station capable of sending
at 54 Mbit/s or 6 Mbit/s).

Table 7.1 shows how fixed rates of 12.5 KByte/s at the application layer corre-
spond to the overhead introduced at various protocol layers. The values shown
for the IP-layer include the higher-layer protocol overhead for using the Real
Time Protocol (RTP), UDP and IP to transport application information. When
these packets are transported over Ethernet or WLAN (minimum values, as
blocking and retransmissions are neglected), the overhead increases to the val-
ues indicated. The values in Table 7.1 are calculated as follows. For IP and
Ethernet, the relative overhead is determined by dividing the total protocol
overhead (40 bytes for IP and 40 + 26 = 66 bytes for Ethernet) by the sum of
the number of bytes per packet and the protocol overhead.

For the relative WLAN overhead, consider an IEEE 802.11g AP where an asso-
ciated IEEE 802.11g station uses a Voice over IP (VoIP) application application
that creates IP packets containing 10ms voice, using the ITU-T G.711 codec.
Packets of 80 bytes are transmitted at a frequency of 100 packets/s in the up-
stream direction. The packet size offered to the WLAN layer then equals 128
bytes, resulting in a bit rate of 102.4 Kbit/s (8 · (80 bytes voice samples +40
bytes for IP/RTP/UDP +8 bytes for LLC/SNAP)= 8 · 128 · 100 packets per
second = 102.4 Kbit/s).

The overhead that is introduced up to the WLAN-MAC layer can be calculated
by using the parameters from Table 7.2 in (2.1) and (2.2) to subsequently obtain
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Parameter 802.11a 802.11b 802.11g 802.11n 802.11g
mixed-mode

Cwmin(slots) 15 31 15 15 15
MAC(bits) 246 224 246 246 246

τ 9µs 20µs 9µs 9µs 20µs
SIFS 16µs 10µs 10µs 16µs 10µs
DIFS 34µs 50µs 28µs 34µs 50µs
EIFS 90µs 364µs 342µs 90µs 364µs
PHY 20µs 192µs 26µs 20µs 26µs

ack(bits) 134 112 134 134 134
Tp 1µs 1µs 1µs 1µs 1µs

TS(bps) 54 · 106 11 · 106 54 · 106 54 · 106 54 · 106

TSc, TSm(bps) 24 · 106 106 24 · 106 24 · 106 106

STT 4µs NA 4µs 4µs 4µs
RTS(bits) 182 160 182 182 182
CTS(bits) 134 112 134 134 134

Table 7.2: Summary of important parameters in IEEE 802.11 protocols, includ-
ing RTS/CTS and mixed 802.11b/g mode operation.

in (2.7) from Section 2.2.3 the time needed to transmit higher-layer protocols in
a MAC-acknowledged IEEE 802.11g MAC Protocol Data Unit (MPDU). By co-
incidence the overhead of the higher-layer protocols Xhloh is the same for TCP
data segments as for voice packets transmitted over RTP and UDP. In the case
of using the optional LLC/SNAP encapsulation as outlined in Section 2.2.4 to
transmit voice packets over RTP and UDP Xhloh equals 384 bits. The WLAN
MAC subsequently adds more overhead to the voice packet, requires additional
interframe times to wait for and the transmission of acknowledgment frames, as
explained in Section 2.2.2. When assuming that the channel reservation mech-
anism RTS/CTS is switched off and that the transmission rates of the data
and control frames are set to 54 Mbit/s and 24 Mbit/s, respectively. Based on
these parameters we obtain for the considered VoIP application an equivalent
data rate of almost 0.7 Mbit/s. Note that the 54 Mbit/s is the highest support
transmission rate supported by the IEEE 802.11g standard and that 24 Mbit/s
is the highest mandatory rate that stations must support [5] and is therefore
often the highest rate configured in the BSS basic rate set.

If, however, due to rate adaptation the transmission rate for data and control
frames of one particular station degrades to 6 Mbit/s, the resulting equivalent
data rate as observed by another station that is able to transmit at 54 Mbit/s
would approximately be 1, 7 Mbit/s, an increase of more than 160%. Note that
all values are calculated as observed by an associated station that could send at
54 Mbit/s. This also explains why - in contrast to the others - the overhead in
the case stations transmit at 6 Mbit/s does not show linear behavior over the



7.2 Multi-service traffic profiles 131

rows.

As can be observed from Table 7.1, the overhead introduced by WLAN is a
decisive factor for achieving the guaranteed application data rate at IP layer,
and hence an important parameter to consider when the aim is to guarantee the
users QoS experience. The remainder of this chapter proposes multi-service traf-
fic profiles and explains how they can be used to compute the WLAN airtime,
applying the above calculations more formally.

7.2.3 Service level agreements in WLAN

A SLA defines the basis for an understanding between two parties for the de-
livery of a service. In the context of this chapter, the service consists of the
traffic volumes exchanged between two parties: WLAN station and AP. The
SLA defines the conditions of the tolerated traffic volumes within a time in-
terval. Often, the SLA specifies committed and peak rates, and an additional
tolerance factor such as e.g., the maximum burst size.

If a station moves away from the AP, the WLAN rate adapts automatically
and if that occurs, the station will consume more airtime capacity to maintain
the same rate at the IP layer and the layers on top of the IP layer. This may
degrade the performance of other users. If a SLA is defined at the WLAN level,
the WLAN resource consumption can be kept constant and degradation of other
WLAN stations can be prevented. This requires that shaping and policing func-
tions operate at the WLAN level.

Quality of service requires solutions in both horizontal (between network APs)
and vertical (between protocol layers) directions are needed to reach the final
goal: to give the applications the required network capacity such that users
experience the desired and constant quality. It is the users experience (from
mouth-to-ear and eye-to-eye) that in the end determines if the desired quality
of service level is obtained. Since terminals are commonly equipped with various
cards to connect to the network and the IP layer is the first common layer for
all applications, the IP layer is the desired layer to negotiate QoS parameters
for horizontal and vertical interworking. Moreover, the parameters needed by
e.g., various QoS standards to compute the quality of experience for various ap-
plications (e.g., for voice ITU-T recommendation G.107, and for video ITU-T
recommendation P.59) are measured at the IP layer. Note that the situation
that the performance of a station degrades as a result of other stations moving
away from the AP is only relevant if the other stations also require the transmit
capacity at that time. If not, there is no harm in letting a station consume a
relatively large part of the WLAN airtime capacity.

Clearly, if a SLA concerns the traffic rate at the IP layer, the capacity demand
on lower protocol layers should be known to make any form of guarantee. The
solution found is to define the SLA at the IP layer and subsequently detect that
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other stations cannot meet the committed rate assigned to them, taking action
to prevent or resolve performance degradation. Regular shaping and policing
mechanisms can be used to make sure that the user conforms to the SLA. Map-
pings to WLAN characteristics given in the previous paragraph are taken into
account to compute the WLAN overhead. The underlying assumption in this
mapping is that each station can be treated as if it is the only station in the
coverage area of an AP. Section 7.4 provides a foundation for this assumption
and also shows how the QoS can be maintained while channel variations may
occur.

7.2.4 Multi-service traffic profiles and using them to compute air-
time

Section 7.2.2 argues that for WLANs the traffic rates in a traffic SLA require
more granulation to guarantee and maintain a desired QoS level for all stations.
The solution found is to replace each rate (committed, peak, mean) within
a traffic SLA by a multi-service traffic profile that consists of two traffic val-
ues, namely the mean packet size (BPP, or mean Bytes Per Packet) and mean
packet frequency (PPS, mean Packets Per Second), measured at the IP layer.
Note that the SLA needs to define a (BPP, PPS) parameter pair for the up-and
downstream directions separately. Taking the product of a (BPP, PPS) pair
results again in a bit rate.

A first example of a traffic profile includes the sending of WLAN management
beacon frames, where the PPS is associated with the beacon interval (often
approximately 100 ms, resulting in PPS = 10) and BPP equals the size of
the beacon (i.e, 16 bytes < BPP < 2304 bytes). An applications network re-
quirement can be expressed by a traffic profile. For real-time voice and video
applications, the traffic profile is natural and straight forward since in general
codecs define the constant rate of packet segmentation. A set of n multi-service
traffic profiles (BPPi, PPSi, for i = 1, . . . , n) can be concatenated to a single
traffic profile (BPP ∗, PPS∗) to define the users overall QoS profile, as follows:

PPS∗ =
n
∑

i=1

PPSi, (7.1)

BPP ∗ =

∑n
i=1BPPi · PPSi

PPS∗
.

The WLAN transmission cycle can be used to compute the airtime percentage
associated with each multi-service traffic profile. This is the same reasoning
as used to compute the overhead in Section 7.2.2 and is proposed in e.g., [40]
for computing the maximum number of simultaneous voice calls that can be
supported by a single WLAN AP under static WLAN conditions. Let Tk(x)
denote the time needed to successfully transmit a packet of x bits application
data, given k retransmissions were needed (k = 0, . . . , N). The parameter N
reflects the maximum number of retransmissions; if more than N attempts are
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needed to transmit a packet, it is discarded.

Applying the WLAN transmission cycle for a WLAN client i that sends and
receives with transmission rate TSi and to whom the multi-service traffic pro-
file (BPPi, PPSi) was assigned in, say, the downstream direction, the following
expression for Tk(x) yields (assuming that the maximum contention window size
is reached for k = N):

Tk(x) = Td(x) + Tc + 2k−1Cwminτ + δ(RTS) +RTSA, (7.2)

where Td(x) and Tc are defined in Chapter 2 by (2.1) and (2.2) respectively.
The applicable MAC parameters are specified in Table 7.2. For sake of simplic-
ity, the propagation delays of the packet transmissions can be omitted due to
their very small influence. The function δ(RTS) denotes the Dirac function and
is zero if RTS/CTS channel reservation is disabled and equals one otherwise.
In the case the RTS/CTS channel reservations are enabled (or IEEE 802.11g
stations insert CTS-to-self frames in the presence of IEEE 802.11b stations in
the BSS), additional overhead associated with the RTS (160 bits) and CTS (112
bits) messages (expressed by the parameter RTSA) should be added to deter-
mine Tk(x).

The use of RTS/CTS and CTS-to-self are protection mechanisms against in-
terference, of which CTS-to-self shall be used by IEEE 802.11g/n-compliant
stations in the presence of legacy IEEE 802.11b stations that are associated
with the same AP. Both protection mechanisms may have a large influence on
the medium efficiency because the frames are sent at low transmission rates and
additional interframe spacing is involved. When there are no legacy stations as-
sociated with an AP and RTS/CTS channel reservations are used, RTSA may
be defined for IEEE 802.11a/g/n-compliant stations as follows:

RTSA = 2 (PHY + SIFS) +

⌈

RTS

TSc · STT

⌉

· STT (7.3)

+

⌈

CTS

TSc · STT

⌉

· STT,

with TSc defined by:

TSc = min (TSi,max (BSSBasicRateSet)) , (7.4)

where TSi corresponds to the current transmission rate of the station and the
BSSBasicRateSet represents the set of rates configured at the AP.
When one or more legacy IEEE 802.11b stations have associated with an AP,
IEEE 802.11g/n stations must operate in backwards compatibility mode and
apply the CTS-to-self protection mechanism, which leads to the following RTSA
for the associated non-legacy stations:

RTSA = PHY + SIFS +

⌈

CTS

TSc · STT

⌉

· STT, (7.5)
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where TSc is defined in (7.4).
In the case of using RTS/CTS channel reservations in a network where both
legacy and non-legacy stations are associated, the following RTSA applies:

RTSA = 2 (PHY + SIFS) +
RTS + CTS

TSc
, (7.6)

where TSc is used from the BSSBasicRateSet corresponding to IEEE 802.11b
legacy systems:

TSc = min (TSi,max (11bBSSBasicRateSet)) , (7.7)

The exponentially increasing contention window at each retransmission forms
the basis for our assumption that collisions at the wireless medium occur inde-
pendently. If pi denotes the probability that a packet from the profile (BPPi,PPSi)
collides, the probability that k (k = 0, 1, . . . , N) retransmissions are needed be-
comes a truncated geometric distribution. Since Tk(x) is defined under the
condition that k retransmissions were needed, the percentage of airtime κi as-
sociated with this traffic profile is obtained as follows:

κi =
PPSi

∑N
k=0 Tk(x)p

k
i

∑N
k=0 p

k
i

. (7.8)

Note that the parameter Tk(x) includes the contention period a WLAN station
is forced to wait before it can transmit a frame. The empty slots are necessary to
decrease counters at the WLAN stations, but from the perspective of the wireless
medium they do not consume any resources. To quantify this aspect, the part
that relates to the contention window needs to be adjusted, where the load on
the medium is a perfect candidate for this adjustment. To keep the formula
general and to e.g., allow to re-use it to compute net airtime consumption,
an adjustment factor α (0 < α < 1) is introduced, resulting in the following
adjusted formula for Tk(x):

Tk(x) = Td(x) + Tc + αCwminτ2
k−1 + δ(RTS) +RTSA. (7.9)

Substituting the expression for Tk(x) from (7.2) into (7.8) and making use of
the fact that for any a 6= 1 and finite n,

∑n
i=0 a

i = (1 − an+1)/(1 − a), the
following expression for κi arises (pi in [0, 1 >; pi 6= 1/2):

κi = PPSi (Td(x) + Tc + δ(RTS) +RTSA) (7.10)

+
PPSiατCwmin (1− pi)

(

1− (2pi)
N+1

)

2
(

1− pN+1
i

)

(1− 2pi)
.

For the exceptional situation pi = 1/2, the following expression for κi holds:

κi = PPSi (Td(x) + Tc + δ(RTS) +RTSA) (7.11)

+
PPSiατCwmin (1− pi) (N + 1)

2
(

1− pN+1
i

) .
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Page body images per page AV. Img size Total Img
(bytes) (images) (bytes) (bytes)

http://www.swisscom.com/ 61998 18 6854 123370
http://www.francetelecom.com/ 55429 51 1761 89799
http://www.npt.no/ 57882 18 2891 52030
http://www.ismb.it/ 40492 29 2061 59762
http://www.tu-berlin.de/ 21765 23 6341 145837
http://www.motorola.com/ 23576 20 1827 36532
http://www.bell-labs.com/ 24538 29 4481 129938
http://www.tid.es/ 13375 22 4335 95375
http://www.eurasip.org/Proceedings/Ext/IST05/ 16457 25 5331 133278
Average 35057 26 3987 96213
Minimum 13375 18 1761 36532
Maximum 61998 51 6854 145837

Table 7.3: Webpage measurements.

The remaining parameters needed to compute κi are α and pi, i.e., the ad-
justment factor and the probability that packets of the multi-service profile
(BPPi,PPSi) collide. Section 7.3 provides insight in how this parameter can
be determined.

7.2.5 Traffic profile examples and elastic traffic

For real-time applications the traffic profile definition is natural as these ap-
plications often result in a constant flow of data packets propagating through
the network. Elastic data applications can adapt to time-varying available net-
work capacity via a feedback control mechanism, e.g., part of the transmission
control protocol. Typical elastic data applications are file transfers, e-mail web
browsing applications. This section shows how the traffic profiles can be used to
define elastic traffic. A characterization of a browsing application was made by
using the statistics of realistic set of Internet pages shown in Table 7.3. Having
determined a representative page size, the effect needs to be determined on the
generated network traffic as a result of a WLAN user browsing these pages. The
key parameter in browsing applications is the page response time. Figure 7.2
shows the simulated network configuration where one user (Usr) is connected
through a (IEEE 802.11b) WLAN AP. The web server (Server) is located behind
a set of routers and an IP network which together add a uniformly distributed
delay between 100 and 200ms to all packets.

For a constant page inter-arrival time of 100 seconds between successive page
requests the simulation outcomes stated in Table 7.4 are obtained. The simu-
lation outcomes are the traffic statistics obtained just above the WLAN layer
(and include the IP payload and header) and showed an average page response
time of 8.69 seconds. Figure 7.3 illustrates the web browsing cycle between two
consecutive page requests; during period T1 the page is loaded and traffic is
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Figure 7.2: Simulated network infrastructure.

Parameter Upstream Downstream
Average packet rate (PPS) 0.77 1.14
Average packet size (BPP) 174.84 1396.81

Table 7.4: Traffic profile of browsing session, measured at the IP-layer and
obtained through simulation (packet rate and data rate statistics are obtained
with 99% confidence intervals < 0.2%).

sent in the upstream and downstream directions to realize the page download.
During period T2, the medium is idle. The influence of this silent period needs
to be taken into account to compute the packet frequency during the peak pe-
riod. By scaling the average packet rate measured in the simulation network
with the inverse duty cycle of the browsing session ((T 2 + T 1)/T 1), the traffic
characteristics can be obtained for the period T1.

Any other period length L with (T1 ≤ L ≤ T1 + T2) can be selected to change
the expected users page response time and associated burst size, resulting in a
scaling factor of (T1 + T2)/L. With the given page request inter-arrival time
of 100 seconds and the average page response time of 8.69 seconds, the average
packet rate during period L = T1 is obtained by scaling the average packet rate
with approximately 11.5 times to yield in downstream 13 PPS and in upstream
direction 9 PPS.

Based on these results, a set of example profiles for the various performance
levels of the browsing applications is obtained, shown in Table 7.5.
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T1 T2

Page RequestPage Request

Page Response Finished

Figure 7.3: Web browsing cycle.

Application Upstream Downstream
BPP PPS BPP PPS

High-quality voice 1024 100 1024 100
Medium-quality voice 464 100 464 100
High-quality browsing 175 9 1397 13
Medium-quality browsing 175 4 1397 7

Table 7.5: Example multi-service traffic profiles for voice and browsing applica-
tions. High-quality voice is defined by G.711 (64 Kbit/s) voice samples with a
length of 10ms. Medium-quality voice is defined by voice 10ms packets encoded
with G.729 codec (8 Kbit/s). For high-quality browsing L = T1; for medium
browsing L ≈ 2 · T1 was selected.

The simulated scenario does not provide an in-depth study of all possible situ-
ations that can occur and their associated parameters. Increasing the network
load by allowing more users that compete for accessing the medium increases
the page response time and hence the PPS. The BPP in the upstream and
downstream directions will not change. For UDP applications such as real-time
voice conversations, the profile information only changes in the case codecs are
used that change real-time. In most cases, the codec rate is static (e.g., DVD;
MPEG2) and hence known at the start of the real-time application, which can
be reflected in the PPS of the profile.

7.3 Guaranteeing QoS for WLAN networks

Providing guarantees for the WLAN channel environment in a commercial set-
ting is challenging since it operates in unlicensed spectrum where interference
from other devices is common, and the channel propagation properties can vary
widely with movement of the wireless devices or objects in their vicinity. This
variability makes it exceptionally difficult to maintain the quality of experience
but has to be accounted for to offer and guarantee QoS. The AP needs to adjust
the scheduling and airtime allocations to compensate, possibly impacting the
QoS delivered to one station when the conditions of the connection to another
station with a higher-priority stream become degraded.
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The IEEE 802.11e standard describes that the AP should grant QoS with spe-
cific QoS parameters appropriate to current channel conditions, and meets the
request of a particular traffic stream or class to the best extent possible but does
not describe how this should be achieved. This chapter explains how this can
be realized by granting each station a QoS budget that corresponds to a user
profile, specified as a pair (BPP, PSS). Two user profiles are distinguished:
peak and committed. The peak profile indicates the level that should not be
exceeded, whereas the committed profile indicates what clients may expect from
the network.

7.3.1 Computing and assigning traffic budgets to realize QoS
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Figure 7.4: Adding a newly arriving WLAN client and taking into consideration
user continuation.

We explain how the user profiles are determined and assigned by considering
the case of a newly arriving WLAN client. The solution runs on a WLAN
AP and the process is depicted in Figure 7.4. The numbers used in this figure
correspond to the explanation below.
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1. The QoS solution receives the notification of a new arrival from a security
proxy. It determines whether there is sufficient capacity to add the newly
arriving client, using a default profile which can be stored locally. If there
is not sufficient capacity, the proxy can stop the authentication process
and can report to the client that authentication failed. The decision is the
same as explained in steps 4 and on-wards.

2. A users subscription consists of a set of traffic profiles, stored in e.g., the
Home Location Register (HLR) or an AAA server and can be obtained
as part of e.g., the authentication process making use of protocols such as
Radius or Diameter (see also Section 7.4.1).

3. A network node aware of the WLAN APs (e.g., the residential gateway
in a users home or the AP controller of a WLAN campus network or a
primary node in a WLAN wireless mesh) ranks the subscriptions in de-
scending order according to the airtime needed and computes the station’s
QoS budget by taking into account the subscription of the newly authen-
ticated client as well as the traffic budgets of the clients already assigned
to the same AP and which are maintained while the users are associated.
Various rules may influence the decision to label a profile out of the users
subscription as committed or peak, possibly depending on the users prior-
ity level, the medium type of the AP and local policies. After ranking, the
first +j and the second +j profiles of the subscription can be assigned as
peak and committed profiles, respectively. The parameter j is increased
every time step 5 is passed.

4. To compute the airtime capacity κi for all clients, the set of multi-service
profile parameters (BPP, PPS) are determined in the previous step. The
WLAN transmission rate can be obtained from the AP, by e.g., SNMP.
The remaining parameters to compute κi are the blocking probability pi
and the factor α. For determining pi, we observe that one device (namely
the AP) sends all downstream traffic and hence experiences in most situ-
ations the highest blocking probability. The airtime requirements of both
all upstream and all downstream profiles need to be fulfilled to deliver the
desired quality of experience to each user. It is therefore recommended to
set pi for all clients equal to the blocking probability seen by the AP. By
using committed profiles to compute (PPS∗, BPP ∗) in accordance with
(7.1) and consequently feeding the result in (7.10) with α = 0, dividing
the resulting κ by 2 provides an accurate estimate for the blocking prob-
ability. The factor 2 can be explained by the fact that we consider only
the traffic from the AP. Note that the sending of beacon frames should
be included in the computation of (PPS∗, BPP ∗). For the parameter α,
the net load of the medium can be taken, i.e., α = κ, computed by (7.10)
with α = 0 (after all, the net load of the medium does not need to include
the back off period).

5. If the sum of the airtime capacity consumed by each individual client
exceeds unity, there is not sufficient airtime to add the newly arrived client.
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However, the QoS policy may dictate that clients with less priority should
make room for the newly arrived client with higher priority. To realize
this, the set of clients with lower priorities should be determined and their
peak and committed profiles can be re-determined. This can be realized
by selecting the jth element of the subscription, where the parameter j is
increased for clients with lower priority. This can be repeated until either
the sum of all κi > 1. If this stage cannot be reached, the parameter j
for the newly added user can be increased, granting the user access with
a lower service profile than desired.

6. The newly added client need to be informed about the granted QoS budget
(i.e., assigned multi-service profile (BPP, PPS). In addition, the allocated
profiles of other clients with lower priority may have changed as a result
of passing step 5 and hence require updates. The fields of the IEEE
802.11e protocol can be used to inform the clients. For clients that are not
compliant with the IEEE 802.11e protocol, only the policing parameters
may need to be updated. These users may see the effect by degradation
of the quality of service without having received a proper notification.

7.3.2 Maintaining QoS

The capacity offered by WLAN channels may fluctuate as a result of transmis-
sion rate adaptations. Consequently, the airtime assigned to users may turn out
to be insufficient to provide the desired level of QoS to the user. To prevent this,
the AP (or a module communicating with the AP via e.g., SNMP) can moni-
tor the transmission rate and the bytes sent to and received from each station
and use this as multi-service profile (BPP, PPS) to compute the total airtime
consumption. The same formula (7.10) can be used to compute these values,
meaning that the proposed solution operates on both a relatively short time
scale (varying channel conditions occur on ms) as well as a relatively long time
scale (user admission control functions operate on a minutes time scale). The
same process as depicted in Figure 7.4 applies, but this time the module that
monitors the WLAN channel alarms that the airtime needs to be redistributed.

Since transmission rates may alter, multi-service traffic profiles need to be re-
computed and re-assigned to maintain the desired QoS for high priority clients.
The channel conditions causing these rate adaptations may vary quickly and
consequent actions of the QoS solution that are based on measurements from
the past may deliver the desired effect in time. Figure 7.5 illustrates the be-
havior of a IEEE 802.11g device moving at walking distance away from the AP
in an indoor office environment; the transmission rate adaptations may occur
unexpectedly and quickly succeed each other. As the wireless LAN standard has
not defined the conditions for performing rate adaptation it is device-specific
and may vary widely between various vendors and types. To increase the re-
sponsiveness of the proposed QoS solution, a low-complexity transmission rate
prediction algorithm was developed [48] to anticipate future transmission rate
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adaptations of all associated stations. The basis of the prediction algorithm is
determining the expected average Signal-to Noise Ratio (SNR) for the next time
interval and mapping that value to the expected transmission rate. A transmis-
sion rate matrix M is used for this goal. Element (r, k) in matrix M contains
the average SNR value for which adaptations have occurred from transmission
rate r to transmission rate k. These values are periodically retrieved on the AP
for all associated stations as part of the SNMP measurements. The expected
transmission rate for the next measurement interval of a concerned station is
obtained with a two-step approach: first, an expected average SNR value of the
next interval is determined by linear extrapolation the last two average SNR
measurements, and secondly, the expected transmission rate is determined by
mapping the expected average SNR with the recorded transmission rate adapta-
tions. The resulting per-station airtime consumption is subsequently determined
by using the predicted transmission speed in (7.2).
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Figure 7.5: Measured (one sample per second) and averaged samples of SNR
values (as observed by the AP) and the corresponding transmission rate of an
IEEE 802.11g device moving at walking distance away from the AP in an indoor
office environment; the transmission rate adaptations may occur unexpectedly
and quickly succeed one another.

Predictions are made by the prediction algorithm while the transmission rate
matrix is recorded. As the number of transmission rate adaptations increases,
the prediction for the tagged station becomes more accurate. Rather than start-
ing from an empty matrix, initial predictions may be based on a generalized
matrix. If the QoS solution detects that the total airtime consumption exceeds
a predefined threshold, the AP concludes that it is not able anymore to commit
to the assigned profiles. The preferred actions to restore the QoS level of the
station(s) in danger is to reduce the peak profiles of either all clients, or of only
those that exceed their committed profiles (e.g., set to the committed profiles),
as dictated by the QoS policy. Note that reducing the profiles also requires up-
dating the policing mechanisms. To prevent oscillation, the values should not
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be updated too frequently, say only once in three seconds.

7.3.3 Numerical validation

If the WLAN channel conditions are static, our proposed solution is compa-
rable with an admission control schema. In those circumstances, Medepali et
al. show in [85] that the resources consumed by a voice call over WLAN can
be computed accurately by assuming the WLAN consists only of the station of
interest. They compute the resource consumption associated with voice over
WLAN call legs by taking the weighted product of the number of packets gen-
erated in each state of a 4-state Markov chain including idle and busy times
(the ITU-T P.59 conversational speech model). For the generic notion of the
concatenation of profiles, the conversational speech model cannot be used as a
traffic profile neither contains idle nor busy times. The resource consumption
for voice applications can be obtained by expressing the codec details of these
applications in multi-service traffic profiles (BPP,PPS). Table 7.6 compares the
results obtained by using (7.9) with the simulation results reported in [85] for
voice assuming highest transmission rates, revealing an accurate match.

Codec interval(ms) PPS BPP 802.11a or 802.11g 802.11b
Simulation Analysis Simulation Analysis

10 100 80 55 57 11 12
20 50 160 105 105 21 22
30 33.3 240 149 148 30 31
40 25 320 185 187 38 39
50 20 400 220 221 44 46

Table 7.6: Comparing analysis resource consumption with simulation results for
number of voice call lags on WLAN found in [85].

7.4 Lessons learned from implementing multi-service traf-
fic profiles

7.4.1 Use case

The transmit capacity of the access link that connects homes to the Internet is
often not fully used, either because users select a low subscription or because the
user is not constantly on-line, leaving a surplus capacity. Reference [94] explains
that the WLAN equipped home network facilities may become an interesting
asset for fixed-wireless convergence and have the potential to realize a large in-
ternational WLAN network, solving the scattered subscriptions with minimum
investments. The multi-user profiles and the solution to compute, assign and
maintain a QoS budget were applied for this use case. Reference [95] explains
how mobility and security (see also [62]) can be realized effectively.

Figure 7.6 depicts the networks and players required for public users to gain
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Figure 7.6: Use-case: offering access to casually passing users via residential
areas.

access via their WLAN terminal. The residential area consists of one or multiple
WLAN APs, a router and a modem, together referred to as the residential gate-
way. For implementing the use case a Cisco AP 1131AG was used, supporting
multiple SSIDs and hence allowing a natural way to separate the public traffic
from residential traffic on the WLAN.

The multi-service traffic profiles were used to specify home and public user sub-
scriptions and also to compute the network load of the WLAN medium, based
on packets sent/received information obtained from the AP. The local AAA
proxy in the residential gateway stores subscription profiles for the residential
users whereas the AAA server of the ISP stores the subscription profiles of the
public users. The algorithms computing the QoS budget were implemented by
a module referred to as the QoS keeper, located in the residential gateway and
fed by the subscription profiles received from the AAA proxy in the RGW. In
the case of public users, these profiles were received as part of the Radius vendor
specific attributes of the public users final and successful authentication mes-
sage.

The QoS budget available for public users was determined by reducing the total
WLAN capacity with the capacity committed to residential users, taking into
account the possible limitations of the capacity offered by the broadband access
connection. A 100 Mbit/s Ethernet back-end connection was used, eliminating
bottlenecks at the side of the fixed infrastructure. The multi-service profiles
were composed of a mix of voice and browsing applications in various quality
levels as well as profiles with a multitude of voice applications, representing users
with high resource requirements. WLAN specific input parameters such as the
type of network used, the amount of traffic sent/received, and the transmission
rate of individual stations were obtained by communicating with the AP via
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SNMP.

7.4.2 Effectiveness of the solution

The medium was monitored, resolving transmission rates as well as bytes per
packet and packets per second of each individual user by regularly polling the
AP. Based on this information, part of the profile selection process can be ap-
plied to obtain the airtime consumption (or load) induced by each station and,
hence, of the ensemble of associated stations. If the load exceeds a prede-
fined maximum, consequent actions are triggered to re-distribute the wireless
medium resources appropriately over the stations to avoid violating QoS guar-
antees. One of the issues in applying this method is that the transmission rate
is not always a representative value of those used during the polling period,
which could lead to deviations in determining the load for the measured QoS
profile (which represents all traffic exchanged). The effect of this was most pro-
found when high traffic volumes were sent/received in combination with sudden
drops in the transmission rate. This issue was circumvented, firstly, by taking
the smallest polling interval (500 ms) that the SNMP interface would reason-
ably allow and, secondly, by applying a sliding average over several of the most
recently obtained load values. As the averaging could slow down the system
response, the third measure taken was to apply a method for transmission rate
prediction to anticipate on future transmission rate declines/increases and to
incorporate the effect in the sliding window load average. These measures also
counteracted the effects when stations would quickly drop their rate in motion
and restore their rate when becoming stationary again or when oscillating be-
tween rates in stationary condition. However, the preferred solution to achieve
a quick and accurate system response is to have the channel monitoring func-
tionality integrated with the AP, or to use an interface that allows faster data
transfer.

7.4.3 Learning and prediction

In a simple experiment, an IEEE 802.11a device moves two times straight from-
and towards the AP at walking speed in an indoor office environment. In Fig-
ure 7.7 it can be observed from the measured SNR and the measured transmis-
sion rate that the device moves away from the AP at approximately 0 seconds
and returns at 370 seconds, it again moves away at 570 seconds and is in close
range at 700 seconds. During the experiment the prediction algorithm learns
the transmission rate adaptations and makes a prediction of the transmission
rate for the next measurement interval from the eight available values. The
predicted transmission rate was correct for 86.9% of the measurements made.
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Figure 7.7: Measured SNR values (as observed by the AP) and the correspond-
ing transmission rate values and the predictions thereof for an IEEE 802.11a
device moving at walking distance away from and to an AP in an indoor office
environment.

Practical issues arose due to the power-down behavior of some network inter-
faces; some perform a sudden power-up and transmission rate adaptation to a
lower rate (e.g. 11 Mbit/s while normally operating at 54 Mbit/s). These tran-
sitions ruin the transmission rate adaptation matrix and hence the predictions
correctness, for which simple practical solutions exist.

7.4.4 QoS policies

As soon as the consumed WLAN load would exceed a predefined maximum
system load and the wireless network would need to be re-distributed among the
wireless users various considerations could be taken into account, for example,
the currently assigned QoS profile or the number of subsequent (re)distribution
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Figure 7.8: Distance between the actual and predicted transmission rate in the
case of an erroneous prediction for the walking experiment.

attempts to lower the system load below threshold. When including several
degradation levels within the user profiles, graceful restoration of the system
load can be combined with a gradual reduction of those QoS guarantees that
would require correction anyway. As different preferences or business models to
operate such wireless LAN may be desired, two categories for QoS policies are
implemented:

1. User class prioritization: for residential and public user airtime allocation.
One can pre-allocate a fixed amount of airtime specifically for residential
users or to assign precedence residential users over others.

2. Intra-user-class prioritization: to define the method for allocating re-
sources within a user class. In this way, users can have precedence over
others in the same class. By basing the priority class on the number of
traffic profiles included in each user subscription a natural set of prior-
ity users can be defined without the need to predefine priority classes
(gold/silver/bronze). Alternatively, as the transmission rate is one of the
parameters to compute traffic budgets, priority can be based on vicinity
to the AP or on equal sharing.

7.5 Conclusions and further research

This chapter shows that the overhead introduced by the WLAN protocol and
physical layer causes that the parameter bits/s does not provide accurate in-
sight in load conditions and/or traffic demands in WLANs. A multi-service
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traffic profile is introduced to provide this insight. Although the solution is
made suitable for WLAN networks, the approach of using multi-service traffic
profiles to realize and maintain QoS guarantees is also applicable to other rate-
adapting networks. The traffic profiles are used to introduce the notion of a
QoS budget, allowing terminals to determine locally whether current network
consumption and/or a newly started network greedy application fit within the
traffic contract. The QoS budget consists of two levels, namely committed and
peak, which can in turn be associated with the IEEE 802.11e traffic classes.
Based on the time sensitivity of each application, clients can store packets in
separate queues which are served with different priorities, ensuring prioritiza-
tion of time sensitive connections. The QoS budget forms a traffic contract for
the IP layer and dictates the size and the frequency of packets offered to the
WLAN layer.

The incentive that terminals shape outgoing traffic according to the assigned
QoS budget can be obtained naturally by applying policing mechanisms, drop-
ping packets that exceed the assigned QoS budget. By specifying the QoS
budget on IP level, the standard shaping and policing mechanisms can be used
to prevent violating the budget and to drop and/or mark packets in the case
stations do not respect the QoS budget. Charging the various priority levels
differently can be used to de-motivate stations to mark all packets to the wrong
priority level. Fading effects as well as the ability of a WLAN station to move
to and away from an AP raise the situation that WLAN stations experience
varying network resources. In addition, allowing too many users at the same
AP may cause insufficient WLAN airtime to satisfy the users quality of expe-
rience. The algorithm proposed to maintain and guarantee the QoS levels at
the IP level such that the users quality of experience can be fulfilled. It re-
alizes this by taking into account the varying WLAN channel conditions and
shows accuracy within the 5% range, when compared to computing the maxi-
mum voice channels that can be sustained concurrently. The same algorithm
is used to compute the per-client WLAN airtime consumption, from which the
overall WLAN load is computed. The complexity of the algorithm is linear in
the stations associated within the BSS. The QoS level of stations can be kept
within desired bounds by monitoring the WLAN medium and redistributing
the per station airtime budget when high consumption dictates, realizing pre-
dictable QoS levels for high priority WLAN users. The WLAN stations can be
informed by the assigned QoS budget as part of the authentication process. If
QoS budgets can be re-assigned, each station is informed about their network
budget and hence serves as an alternative for the per-flow connection admis-
sion control which is challenging to meet for each flow individually. The IEEE
802.11e standard is identified as a candidate to inform stations about changed
QoS budgets, providing a total QoS budget per WLAN station and not a per-
flow guarantee. This allows user-differentiation on their resource consumption;
QoS policies can dictate how the available airtime should be distributed over all
associated terminals.
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An interesting topic for further research is to apply the proposed solution for
traffic control to other network technologies that utilize transmission rate adap-
tation. The proposed transmission rate prediction algorithm demonstrates that
future transmission rates may be predicted reasonably well during the limited
experiments conducted. However, the algorithm should be evaluated thoroughly
to determine whether it performs sufficiently for a much wider set of represen-
tative circumstances.
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Chapter 8

On Regulating Traffic in Shared

Wireless Access Media

In the previous chapter, a traffic control solution is proposed that relies on the
basics of the performance model from Chapter 2. Based on a multi-service traf-
fic profile, a QoS budget may be determined and assigned to each terminal in a
wireless network to guarantee the QoS for the given set of application sessions.
Using this method, the terminal can determine locally if the network consump-
tion does not exceed the assigned budget and whether a new application session
may fit within the QoS budget given.

However, when a terminal exceeds the assigned QoS budget, the QoS guar-
antees of other users may not be met. To this end, traffic shaping and policing
mechanisms can be used to make sure that the total amount of traffic stays
within the budget. In Chapter 7 the traffic in the upstream direction is distin-
guished from the downstream traffic for several types of applications and quality
levels.

In shared wireless access media the uplink and downlink use the same frequency
bands and therefore compete for the medium when transmitting packets. This
occurs in various types of practical wireless communication systems and leads
to an inefficient medium utilization when a traffic contract maintains a strict
separation between the two directions.

In this chapter a method [116] for traffic policing is introduced and evaluated
that uses shared communication media more efficiently by exchanging the con-
tract parameters between the uplink and the downlink directions dynamically,
when desired. The solution is based upon a commonly used policing mechanism.
An extensive performance study shows how the mechanism should be configured
to use it effectively.

This chapter is based on the results presented in [49] and [92].

151
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8.1 Introduction

To realize quality of service in communication networks, end-users establish a
traffic contract with the network based on the quality of experience desired at
the application level. Common parameters to characterize a traffic flow include
the peak data rate, average sustained data rate, and the burst size. Check-
ing traffic rates and comparing them with the traffic contracts is referred to
as traffic policing. If the rate exceeds the contract, packets could be marked
or dropped, depending on the local policy. Using the traffic control method
described in Chapter 7, a QoS budget is determined that can subsequently be
used for traffic policing. Traditionally, only traffic that flows into the network
was subjected to a predefined service level. The rationale for this is that if a
network is properly dimensioned and the sum of all service level agreements
does not exceed the network capacity, traffic will smoothly propagate through
the network and hence checking inflow traffic for compliancy with the agree-
ments is sufficient. Traffic contracts for Internet access and for interconnecting
enterprises often dictate rates in both the up-and the downstream directions.

The token bucket was first mentioned in [113] and has ever since been a common
approach to police traffic contracts. It operates with two parameters: the token
rate (TR) and the bucket limit C. Every 1/TR seconds a token is added to a
bucket with limit C. Tokens are discarded if the bucket is full. When a packet of
s bytes arrives, s tokens are removed from the bucket and the packet can pass. If
the bucket contains fewer than s tokens, no tokens are removed from the bucket
and the packet is considered as non-compliant. The algorithm allows bursts of
up to C bytes, but over the long run the output of conforming packets is limited
to the constant rate TR. Non-compliant packets can be dropped, queued or
marked, depending on the policy. A commonly used policy is instructing net-
work elements to drop marked packets (randomly) in case of overload situations.

Traffic contract parameters are negotiated on a relatively long time scale (in
terms of weeks or months) and today’s traffic policing techniques cannot adap-
tively change contract limits of the uplink and/or the downlink. In wired sys-
tems, the up- and the downstream connections often have a separate physi-
cal connection, making separate traffic contracts a necessity. In shared media
as e.g., WLAN, where the sending of information in the upstream direction
competes with the sending in the downstream direction, policing in the two
directions independently in general degrades the efficiency of a shared commu-
nication medium. As an example, consider the situation that the network has
more information to send to a tagged client over the downlink than the down-
link service contract allows. At the same time, assume that the client transmits
less than the agreed uplink traffic contract sustains. Applying the conventional
traffic policing techniques to the uplink and downlink directions independently
may queue or drop surplus downlink traffic, even though there may be room
in the uplink contract that uses the very same medium for transportation. By
considering the total service contract in the two directions simultaneously, vari-
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ations in the demand for the downlink can be compensated with temporarily
sending less information in the upstream direction, and vice versa. This cannot
be realized by applying the traditional token bucket policing mechanisms, where
each direction has its own bucket, which operates autonomously.

The policing of a traffic contract goes hand in hand with the dimensioning of
the network resources reserved for all traffic contracts. Ross discusses in [107]
various models for computing the reservation level of a trunk that is shared by
various classes of traffic which may differ in their demand and/or mean holding
times. These models operate on relatively long time scales and provide insight
in blocking probabilities of (state-dependent) trunk reservation schemes. Borst
and Mitra describe in [23] the virtual partitioning scheme, introducing dynam-
ics to these reservation schemes by giving lower priority to misbehaving classes
which violate their predetermined capacity allocation. Their outcome also oper-
ates on a long time scale and provides fairness and robustness in the admission of
new session initiations, giving lower priority to misbehaving classes. The polic-
ing mechanism proposed in this chapter can serve as the basis for the virtual
partitioning scheme and for alternative resource reservation approaches. Both
need one another to make traffic contracts effective.

This chapter introduces and evaluates a method [116] that polices traffic in
shared communication media. This is realized by treating the traffic contract as
a whole and distributing it dynamically over the up- and downstream directions,
when needed. By considering the total service contract in the two directions
simultaneously, variations in the demand for the downlink can be compensated
with temporarily sending less information in the upstream direction, and vice
versa. An extensive performance analysis demonstrates the gains achieved by
applying this new mechanism and provides insight in the side conditions when
the solution can be applied best. Moreover, this performance analysis shows
how the parameters of the mechanism should be chosen such that good per-
formance is achieved, oscillation effects are prevented and traffic in either the
upstream or the directions cannot dominate the total contract.

8.2 Mechanism for policing traffic in shared media

Policing in the up- and the downstream directions simultaneously can be re-
alized by two independent policing entities that read from a common token
reservoir. The rate at which the reservoir is filled represents the total traffic
contract, namely the sum of the rates of both directions. However, special pre-
cautions are needed to prevent that one of the directions dominates the traffic
contract and hence one direction suffocates in favor of the other. Starvation of
one direction eventually results in disconnection (or total uselessness) of a bi-
lateral connection. Prioritizing one direction to solve this for data applications
is tempting. After all, packets for the downstream direction may have traveled
from far and have nearly reached the final destination and hence giving them
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priority over upstream packets may seem a good idea at first glance. However, in
the case of data applications, the upstream direction consists of mainly acknowl-
edgements of received packets which are small in size by nature and dropping
them will disturb the self-clocking mechanism of TCP, as described by Jacob-
son [63], and causes it to lower its throughput and resend information that will
eventually need to pass the downstream access link. For UDP-based real-time
applications, the connections in both directions often contribute equally to the
quality experienced by the person using the real-time application. The aim is a
policing mechanism that improves the overall throughput of the shared wireless
medium by taking the sum of the traffic contract of the up- and downstream
directions, and at the same time prevents starvation of one or both of the direc-
tions. An important prerequisite is that the solution should minimize changes
required on existing equipment that implements the token bucket mechanism.

8.2.1 Mechanism to police in upstream and downstream directions
concurrently

Consider two regular token bucket policing mechanisms: one in the upstream
and one in the downstream direction, named U and D, respectively. Without
loss of generality, the remainder assumes that U and D may also be used for
spacing and hence contain a queue to temporarily store non-compliant pack-
ets. The mechanisms U and D regulate traffic of a terminal named T . The
mechanism can also be used to regulate a group of terminals (or an interface)
but for understanding to the reader the description concentrates at the situa-
tion where only one terminal feeds the mechanisms U and D. Several of these
policing mechanisms may work in parallel to police various groups of terminals
simultaneously but since each of them can work autonomously, describing one
pair (U +D) for policing a single terminal is sufficient.

Updates of the policing mechanisms parameters are only needed when con-
formance is checked, i.e., upon the arrival of a packet in either the upstream
or the downstream direction. Figure 8.1 illustrates the state diagram. The
index i(i = 0, 1 mod 2) indicates the direction (e.g. i = 0 for the upstream
direction and i = 1 for the downstream direction). Let Li denote the bucket
level of direction i. Policing mechanisms U and D must support two bucket
limits, namely a ceiling bucket limit Ci and a floor bucket limit Fi. The ceil-
ing limits C1 and C2 limit the burst of packets for each direction, whereas the
floor limits F1 and F2 prevent that one direction suffocates in favor of the other.

When a packet of size s arrives for transmission in direction i, first the token
level Li of the policing mechanism for the corresponding direction is checked.
If the token level stores sufficient tokens to let the packet pass, the level is re-
duced according to the size of the packet, just as regular leaky bucket systems
commonly used today. If, however, the token level is less than s, the size of
the arriving packet, the conclusion that the packet is non-conformant could be
prevented by using tokens from the bucket of the other direction (i.e., i+1 mod
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2). This realizes the shared token consumption.

To prevent that one direction dominates the overall traffic contract and hence
suffocates the other direction, a floor limit is introduced that limits the usage of
tokens from the other direction: direction i can use tokens from the reservoir of
direction i+1 unless the token level Li+1 drops below the floor threshold Fi+1.
A packet is marked as non-conforming if both the bucket limit Li is lower than
zero and the bucket limit of the other direction Li+1 is below the threshold value
Fi+1, when reduced with s the size of the arriving packet. The ceiling bucket
limit denotes the maximum level of the reservoir, similar as in traditional token
bucket systems.

To realize the sharing of the reservoir in good times and bad times, the waste
of tokens as a result of overflowing during low traffic activities in direction i
can be added to Li+1. The parameters C and F can be chosen such that an
optimum balance exists between performance, the maximum burst size of con-
secutive packets and the tolerance level that one direction dominates the total
traffic contract. Note that by selecting Fi = Ci for both directions i = 0, 1,
the token bucket mechanism as used today is obtained. A natural location for
placing a policing mechanism in a commercial WLAN architecture environment
is at the WLAN controller. This location is preferred over the AP, mainly since
it prevents loosing the state space of policers when a station roams from one
AP to another. In the case residential WLAN access points are used to offer
access to the public, the mobility broker is a good location for the policing
mechanism. The mobility broker plays an important role in realizing handovers
between residences that are connected to different network providers and checks
traffic contracts, see [94].

By placing mechanisms U and D in the same functional architectural unit,
exchanging information can be realized effectively through e.g., socket commu-
nication. Note that the implementation of the mechanism does not require the
exchange of state space between U and D. Information exchange between the
up- and downstream policing mechanisms can be limited to: 1) the number
of surplus tokens transferred to reservoir i + 1 when the ceiling limit C(i) is
exceeded, and 2) the request whether s − L(i) tokens can be subtracted from
reservoir i+ 1. A response to the first type is not necessary. If the response to
the second type of information exchange is positive, the token level of reservoir
i + 1 is reduced by s − L(i) and the token level of reservoir i is set to zero. If
the response is either negative or not received, the packet should be considered
as non-compliant, which only affects the state space of the initiating policing
mechanism. Hence, synchronization of mechanisms U and D is no necessary
prerequisite.
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Li+1 := min[Ci+1, Li+1 + Li − Ci]

Li+1 := Li+1 + Li − s

Li := Ci − s

Li := 0

Li+1 + Li − s ≥ Fi+1

Li+1 + Li − s < Fi+1

Li > Ci

Update policers of both directions

Li − s < 0

Figure 8.1: State diagram for policing in two directions concurrently and pre-
venting that one of the directions dominate the traffic contract. Here the pa-
rameters Li, Ci, Fi, TRi denote respectively the bucket limit, the ceiling bucket
limit, the floor bucket limit, and the token rate in direction i (i = 0, 1 mod 2).
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8.2.2 Example

Let i = 0 denote the upstream direction and i = 1 the downstream direction.
Figure 8.2 depicts the token level of the U and D token bucket mechanisms over
time, the upstream bucket U located at the top and the downstream bucket D
at the bottom. At time T = t1, a packet with size s1 arrives for transmission
in the upstream direction. Since the value s1 can be subtracted from the token
level of the upstream reservoir U , there is no need for any interaction with the
downstream bucket D. At time t2, a packet arrives at the downstream bucket.
As the packet arrives after the ceiling limit of the downstream bucket has been
reached, an amount of a2 tokens remains unused by the downstream bucket and
is transferred to the upstream level. In this case, the upstream bucket limit
benefits from the low activity in the downstream direction.

At times T = t4, T = t5, and T = t6, downstream packets arrive. After
subtraction of the packet sizes s4, s5 and s6 a negative bucket limit value of re-
spectively a4, a5 and a6 would occur at the downstream policer D. To prevent
marking these packets as non-compliant, the token level of the upstream bucket
is reduced with these values. This is allowed as these decreases do not realize a
token level that lies below the threshold value F0, the floor limit of policer U .
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Figure 8.2: Example of how the mechanism that polices traffic in the up- and
downstream directions concurrently. Index i = 0 denotes the upstream direc-
tion, with corresponding C0 and F0 as the ceiling and floor limits. Index i = 1
denotes the downstream direction.
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The packet that arrives in the downstream direction at time T = t7 is considered
non-compliant, since subtracting the value a7 (the deficit after subtracting the
value s7 from the downstream token level at T = t7) from the upstream tokens
will result in lowering the upstream token level below the floor threshold level
F0. The packet arriving at T = t8 in the upstream direction is compliant again,
as at T = t8 the downstream token level L1 is more than the value a8 above the
floor value F1.

8.3 Performance evaluation

By flexibly taking and assigning tokens among both directions, intuitively the
shared medium is used better than when separating the contract over the two
distinct directions. The analysis of this section shows the effects of using the
introduced policing mechanism quantitatively. The performance evaluation is
performed analytically and by simulation. Results obtained from simulations
provide insight in the performance at the application layer and quantify the
improvement that can be expected in practical situations.

8.3.1 Analytical evaluation

In the analytical evaluation the exchange of tokens between the up-and down-
stream bucket is modeled and evaluated. The outcomes indicate how efficiently
the tokens are used as a measure on how efficiently network resources (if avail-
able) may be utilized.

Mathematical model

Consider a leaky bucket operating in a slotted system that contains two kinds
of tokens: tokens for the upstream direction can be distinguished from tokens
for the downstream direction (e.g., by means of colors). The input rates for
both the up- and the downstream directions are modeled by incrementing the
number of tokens by one for each direction, at each time slot. To model the
bucket’s leak rate, each time slot a packet for the up- and/or the downstream
directions may arrive mutually independent from one another with probability
Pu and Pd, respectively.

Upon arrival of a new packet, the token level of the corresponding direction
decreases with the size of the packet, if there are sufficient tokens. Note that
this system models a leaky bucket and not a wireless transmission system and
hence at each time slot a packet may arrive in either or both the upstream and
the downstream direction. Assume that Ki, the size of packets for direction i,
is geometrically distributed with mean 1/(1− ai) units (0 < ai < 1), i.e.,

Pr(Ki = k) = (1− ai) · ai
k−1 (k = 1, 2, . . .). (8.1)

Let Xu and Xd denote the number of tokens in de bucket of respectively the
upstream and the downstream direction. The tuple (Xu, Xd) then forms a
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discrete-time Markov chain, where upon packet arrival we choose to first add
the input rates to the bucket and before lowering the token level with the packet
size. If the token level is sufficiently high, taking from the other direction is al-
lowed, which requires keeping track of the number of up- and downstream tokens
in the bucket.

If no packets arrive (or the size of the packets exceeds the size of the indi-
vidual token levels), the transition (xu, xd) → (xu + 1, xd + 1) occurs. Two
packets, one in each direction, arrive with size su(> 0) and sd(> 0) with proba-
bility pu · Pr(Ku = su) · pd · Pr(Kd = sd). In that case, the bucket is decreased
with su + 1 (and/or or sd + 1) tokens of the corresponding direction. Conse-
quently, the transition (xu, xd) → (xu + 1− su, xd + 1− sd) occurs, if and only
if su 6 xu + 1 and sd 6 xd + 1. If one of these conditions do not hold, the
upstream direction may grab tokens from the downstream direction (and vice
versa), if xd > sd + su − xu − 2 + Fd, where Fd denotes the floor limit of the
downstream direction. Note that the adding of 1 to the levels xu and xd stems
from the input rate at every time slot and only takes place if xu 6= Cu and
xd 6= Cd, where Ci denotes the ceiling limit of the bucket for direction i.

After taking from the other direction, the token level of the direction that uses
is reduced to zero. Upon arrival of a packet, the token level of the corresponding
direction is lowered first before the other direction can take tokens. This means
that if the size of an arriving packet g exceeds the token level of its direction as
well as the token level of the other direction minus its floor value (after this level
was possibly reduced with the size of the packet that may have arrived in that
direction), the packet g will be discarded and the token level corresponding with
the direction of g will be increased with one unit, if it has not reached its ceiling
yet. The state space Ω of the number of up and down tokens in the bucket
is expressed by Ω = {(xu, xd) = (i, j)|i = 0 · · ·Cu, j = 0 · · ·Cd}. By putting
all |Ω| = (Cu + 1) · (Cd + 1) transitions in a matrix M , this matrix M forms
the transition matrix of a discrete-time Markov chain and hence the stationary
distribution π of (Xu, Xd) can be determined by computing the left eigenvector
of M for the eigenvalue of 1.

The probability that the down direction grabs tokens from the upstream direc-
tion and the other way around can be used as a measure to determine whether
one direction suffocates by favoring the other. These grabbing probabilities are
denoted as P (DU) and P (UD), respectively. After computing the stationary
distribution of the number of tokens in each direction π(xu, xd), the probability
P (DU) can be computed by considering each transition that the Markov chain
enters the area where the down direction borrows from the up direction, given
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the number of up and down tokens in the bucket at that moment.

P (DU) =

Cu
∑

xu=0

Cd
∑

xd=0

P (DU |(Xu = xu, Xd = xd)) · π(xu, xd) (8.2)

=
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∑
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jend
u )+
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{
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)
jend)
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}

,

where parameters jend = xu+1−Fu−σ(xu = Cu), istart = xd+2−σ(xd = Cd),
iend(j) = xd + 1 − j − σ(xd = Cd) + β, and β = (xu + 1 − σ(xu = Cu)− Fu) ·
σ(min(xu + 1, Cu) > Fu). The function δ(e) = 1 if e = true and equals zero in
the case e = false.
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Similarly for the case that the upstream direction grabs tokens from the
downstream direction P (UD):

P (UD) =

Cu
∑

xu=0

Cd
∑

xd=0

P (UD|(Xu = xu, Xd = xd)) · π(xu, xd) (8.3)
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,

where jend = xd + 1 − Fd − σ(xd = Cd), istart = xu + 2 − σ(xu = Cu),
iend(j) = xu + 1 − j − σ(xu = Cu) + β, and β = (xd + 1 − σ(xd = Cd) −
Fd) · σ(min(xd + 1, Cd) > Fd).

Evaluation through the mathematical model

To compute the performance measures of the mathematical model, the mean
packet size of the upstream packet was set to three units whereas the mean size
of the downstream packets was 30 units (au = 2/3, ad = 29/30). The state space
Ω of the Markov chain explodes rapidly if the ceiling limits become large. The
ceiling limit of the bucket equals 100 units for each direction (Cu = Cd = 100).
The floor limits FU and FD are always equal to one another (F = Fu = Fd) and
are increased in steps of 10% of the corresponding ceiling limit.

The parameter p was introduced to model the load of the medium and the
values for pu and pd were deducted from this parameter by multiplying with
values 0.2− 0.8, 0.5− 0.5, 0.8− 0.2, resembling the case that traffic rate in the
downstream direction is dominant, traffic load in the downstream and upstream
directions contribute equally to the load and finally the case that the intensity
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of packets for the upstream direction dominates the traffic load.
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Figure 8.3: Mean bucket size, E[Xu +Xd], as a function of the floor value, F ,
for different load conditions p. In In Figure 8.3a the intensity of downstream
packets dominates the traffic load, in Figure 8.3b the downstream and upstream
packet equally contribute to the load and in Figure 8.3c the intensity of upstream
packets dominates the traffic load.

Figures 8.3a to 8.3c depict the mean number of tokens in the bucket (up +
down), denoted E[Xu +Xd], as a function of the floor limits F = Fu = Fd for
different load conditions. The figures show that E[Xu + Xd] increases if the
floor values increase. This confirms the initial thought that the mechanism that
polices in two directions concurrently uses the shared medium more effectively:
the less tokens in de bucket, the more packets can be sent over the medium.
The question whether the wireless and/or fixed media can support the high load
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values of p is subject of study for admission control and hence irrelevant in this
context. Recall that the floor limit F = 100 corresponds with the traditional
leaky bucket policing mechanism. The gain corresponding to a floor limit F can
be calculated by subtracting the mean token level for that floor limit from the
mean token level for floor limit F = 100 (no mutual sharing of resources).

Figures 8.3a to 8.3c show that for very low loads the sharing of resources be-
tween directions will hardly take place and hence the gain of applying the new
policing mechanism is hardly noticeable. If larger downstream packets dominate
the total traffic volume (Figure 8.3a), the slope of the curves are steepest for
the highest load conditions, revealing more gain when applying the mechanism
that polices in two directions concurrently. In the case the load on the medium
is equally distributed over packets in the up- and downstream directions (Fig-
ure 8.3b), the slope of the curves become flat for very low and very high loads.
This effect becomes stronger if the smaller upstream packets dominate the net-
work traffic (Figure 8.3c), revealing a maximum in the performance gain for
medium load conditions.
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Figure 8.4: The probability, P (DU), that the downstream direction borrows
from the upstream direction as a function of the floor value, F , for different
load conditions p. In Figure 8.4a the intensity of downstream packets dominates
the traffic load, in Figure 8.4b the downstream and upstream packet equally
contribute to the load and in Figure 8.4c the intensity of upstream packets
dominates the traffic load.

Figures 8.4a to 8.4c depict for different load conditions the probability that
the downstream direction borrows from the upstream direction, P (DU), as a
function of the floor limit F . Note that for F = 100, the floor limit coincides
with the ceiling, resulting in zero probability to grab tokens from the up direc-
tion, regardless the traffic load. In the case the traffic rate in the downstream
dominates (Figure 8.4a), the probability P (DU) declines slowly as a function of
the floor limit. Similar observations can be made when the intensity of packet
arrivals for the uplink becomes equal or even higher than the intensity packets
for the downlink arrive, see Figures 8.4b and 8.4c. For the slowly declining
conditions, the grabbing probability hardly changes if the floor limit F is in the
range of 20%− 70% of the ceiling limit.
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Figure 8.5: The probability, P (UD), that the upstream direction borrows from
the downstream direction as a function of the floor value, F , for different load
conditions p. In Figure 8.4a the intensity of downstream packets dominates
the traffic load, in Figure 8.4b the downstream and upstream packet equally
contribute to the load and in Figure 8.4c the intensity of upstream packets
dominates the traffic load.

Figures 8.5a to 8.5c depict for different load conditions the probability that the
upstream direction grabs tokens from the downstream direction, P (DU), as a
function of the floor limit, F . Since the size of upstream packets is only 10% of
the size of downstream packets, the grabbing probability P (UD) is low in the
case the downstream direction dominates the traffic rate. The borrowing prob-
ability declines more slowly as a function of the floor limit if the contribution of
the upstream packets to the total traffic rate increases over the relative contri-
bution of the downstream direction (approx. 10−3, not shown). If the upstream
packets dominate the traffic rate, the borrowing probability is roughly reduced
with half its size if the floor limit equals 20%, when compared to the borrowing
probability for full sharing (i.e., F = 0).
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8.3.2 Simulation study

This section studies by means of simulation whether or not higher medium ef-
ficiencies can be achieved in circumstances that may occur in practice. To this
end, a simulation study is conducted to gain insight in the absolute performance
gains of the proposed policing mechanism over the traditional policing mecha-
nism that specify separate traffic volumes for up-and downstream traffic.

In general, two telecommunication traffic types can be distinguished, namely
elastic (TCP-type, e.g., FTP, HTTP data) and real-time (e.g., voice / video
kind of applications that use the unreliable UDP layer). For real-time traffic,
the performance changes as a result of using the new policing mechanism can
best be expressed by the perceived user experience (measured by opinion scores)
and is beyond the scope of this work. Elastic traffic, however, has built-in con-
gestion avoidance functionality that effectively shares the transmission capacity
equally over all active flows. Blocking TCP packets as a result of non-compliancy
of the traffic contract inevitably results in retransmissions and hence increases
the duration of the associated service as experienced by the end-user. Hence,
the length of the download time serves as a good basis to quantify the affect of
the decision to either block or let a packet pass.

Browsing application characteristics

In our simulation study a number of wireless users browse the Internet of which
the page statistics are based upon a set of telecommunication companies and
research institutes, shown in Table 7.3. The browsing application uses these val-
ues to generate a web page with a randomly generated body size and a random
number of inline objects with a random size. These three random variables are
each drawn from a uniform distribution that matches the respective measured
parameter range. As a result, the average page size retrieved in our simulation
is 131270 bytes.

With regard to modelling respresentative browsing behavior of the wireless
users, the time between the consecutive clicks to retrieve a web page in a user’s
browsing session was drawn from a lognormal distribution function with a mean
and standard deviation of 36.8 and 56.4 seconds respectively, see [78].

Network infrastructure

The considered network infrastructure in which the wireless users expose their
browsing behavior is depicted in Figure 7.2. In this chapter we assume that the
users retrieve their web pages through an IEEE 802.11g-based WLAN access
point via an Internet backbone from an FTP server that is located on the Inter-
net. The WLAN AP and the FTP server are each connected by FastEthernet
links to an IP backbone router. Optical OC-48 links interconnect our backbone
routers with packet-level characteristics that match a U.S. transcontinental con-
nection.
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A number of previous efforts have measured Internet backbones to study the
packet-level characteristics. In [83], the authors are particularly interested in
real-time applications and have performed active measurements (by injecting
traffic) over paths that belong to seven different U.S. Internet providers. Oth-
ers have passively observed and recorded traffic to characterize the packet-level
characteristics of long-distance connections [38, 65, 66] using the IP Monitor-
ing (IPMON) system on the OC-48 links in the Sprint IP backbone network.
These studies generally conclude that the mean path delay and jitter on long-
distance links is relatively small, whereas the packet loss is very small in general.

In fact, the results presented in [38] reveal that the mean delay on various U.S.
transcontinental TCP connections is in general nearly constant and the amount
of jitter is insufficient to impact the performance of even delay constrained-
applications. Furthermore, the measurements indicate that most TCP flows
experience no end-to-end loss. More specifically, from the 2 × 108 recorded
packets that have crossed five POPs (Points of Presence) and eight core routers
between San Jose and New York the obtained delay distributions indicate that
in both directions the delay is nearly constant at 28 ms.

In our simulation study we assume the presence of a U.S. transcontinental link
with similar bidirectional delay values as the one observed in [38] between San
Jose and New York. To this end we have configured the link between our back-
bone routers to impose a constant delay of 28 ms to packets without introducing
any loss. The network nodes (user stations and web server) are configured with
a TCP stack that matches the implementation of the Windows XP operating
system, which applies the Selective ACK (SACK) mechanism that is used to
reduce the impact of TCP retransmissions. The proposed policing mechanism
is embedded in the WLAN AP to police the up-and downstream traffic in accor-
dance with a pre-defined traffic contract using two configurable buckets, each
parameterized by a bucket limit and floor limit, as outlined in Section 8.2.

Traffic contract

The next step in evaluating the effectiveness of the proposed policing solution
is to define a traffic contract, based on the quality of experience desired at the
application level. In this study we quantify the benefit of the presented traf-
fic policing mechanism in terms of page response time, being the time needed
to transfer and process the entire webpage from the sending to the receiving side.

The maximum quality of experience delivered in our considered network for
the given user behavior and web page characteristics is reached when no traffic
policing is applied. The associated traffic volume per time-unit defines the net-
work resource requirements in up-and downstream direction to deliver the best
application performance (i.e., lowest mean page response times). In practice,
connection acceptance mechanisms may account for pre-defined, application-
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specific quality of service levels and associated traffic volumes [93]. Alterna-
tively, it may be up to the users themselves to accommodate their applications
within the total traffic contract. In the former case, application-specific traffic
requirements, and thus their characteristics, may be known when admitted to
the network. Whereas in the latter case, there is no ’advance knowledge’ on the
exact network resource requirements of the applications.

In our simulation study we assume the possibility of these two cases. In the ad-
vance knowledge case, the traffic contract corresponds to the network resource
requirements in up-and downstream in the same ratio as for the unpoliced traffic
volumes. To this end, the browsing application is first simulated without any
traffic regulation restrictions. This yields a benchmark, used to compare the
performance of the new policing mechanism.

To determine the resource requirements without traffic regulation restrictions,
the browsing application characteristics and network infrastructure are modeled
in the OPNET Modeler network simulation tool, version 15.0. Simulation runs
of twenty days (simulation time) were performed to yield accurate outcomes
from approximately 47 × 103 page downloads with an average page response
time of 0.94 seconds, requiring (at the IP layer) on average 335 and 4000 bytes-
per-second in the up-and downstream direction respectively. These values are
subsequently used as the token rates for the up- and downstream leaky bucket
traffic policing parameters.

In the case of symmetric traffic contracts: 50% of the total token rate for the
upstream and 50% for the downstream direction. The browsing application was
extensively simulated for various bucket parameters and both the symmetric
and ’advanced knowledge’ traffic contracts.

To understand the effect of sharing the traffic contract among various traffic
streams while eliminating delay effects as a result of the WLAN protocol (e.g.,
due to the back off period), simulations were performed for different user pop-
ulations that share a single contract, namely one, five and ten users. Each user
downloads a web page according to the pre-defined statistics while the token
rate was chosen proportionally with the user population. The mean page re-
sponse times were obtained from consecutive simulations while the token rate
was reduced in equal steps of 10% of the original contract, starting at 100% and
stopping at 10%. To study the effect on the tolerance of the policing mecha-
nism, the simulations were repeated for various conditions of the token bucket
limit, varying this limit in steps of 10s, from 10s to 60s and additionally for 90s,
120s, and for 60000s. In our simulations, the bucket limits were expressed in
bytes, obtained by multiplying the bucket limit in seconds with the used token
rate in bytes per second. The floor limits of the up- and downstream buckets
(Fu and Fd, respectively) that indicate to which extent the mutual borrowing
of tokens is tolerated may be set in different ways: (1) static, as a percentage of
the (fixed) bucket limit Ci or (2) dynamic, as a percentage of the actual number
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of tokens Li in each bucket. In the first case, which we refer to as static floor
limit setting, token exchange is blocked when there are less tokens than Fi in
the bucket. In the latter case, direction i can always borrow from the other
direction i+ 1 mod 2 as long as Fi + 1 < 100%× Li + 1, named dynamic floor
limit setting. Both systems behave identically when Fi ∈ {0%×Li, 100%×Li}.
In the remainder Fi = x% × Li is denoted Fi = x%.

Note that Fi = 0% corresponds to a complete sharing situation, meaning that
the up- and downstream buffers can always grab tokens from one another, if
available. The Fi = 100% floor limit corresponds to the situation that the two
buffers cannot exchange tokens and hence coincides with the traditional way of
policing traffic.

In order to evaluate the effectiveness of the proposed policing solution quan-
titatively for a broad set of parameters, over 10.000 simulation runs of 20
days each were conducted. The quantitative comparison of the new mecha-
nism is made by comparing the benchmark results (the simulated mean page
response times of the traditional policer) (RF100%

) against the mean page re-
sponse times from new policing mechanism, for various floor limits. The im-
provement, or gain, in the mean page response time is determined as follows:
gain = (RF100%

−RFi
) · 100%/RF100%

, where Fi = 0%, 20%, . . . , 100%.

8.3.3 Advanced knowledge results

In Figure 8.6a the improvement in mean page response time is shown for the
policing solution with Fi 6= 100% over the systems for a static floor limit setting
of Fi = 100% and bucket limits C = C0 = C1 = 10 seconds. The graph indicates
that the new policing mechanism performs better when the traffic contract is
significantly reduced, realized by a low token rate. If the token rate is chosen
too small, TCP connections time-out and pages cannot be retrieved for higher
floor limit values. This underlines the superior performance of concurrent polic-
ing (Fi = 0% in particular) over traditional policing (Fi = 100%) and explains
why Figure 8.6a displays no data for very small service contracts (40% of the
original token rate and less) and high floor limits.

The newly developed policing mechanism clearly suffers less from TCP time-outs
and pages could even be retrieved for token rates set to 10% of the original traf-
fic contract (naturally with high mean page response times). When increasing
the bucket limit from ten to thirty seconds (see Figure 8.6b), the improvement
is smaller, but still significant for small traffic contracts and modest, consistent
gains for larger ones. This can be explained by recalling that during the time
between consecutive clicks to retrieve a web page, the token buffer is filled to
the top. If the bucket limit increases, more tokens are available during periods
of scarcity. Another reason for the smaller gains is that there are fewer tokens
exchanged because the floor limit is set statically to a percentage of the bucket
limit and thus raises the threshold for exchanging tokens when increasing the
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bucket limit.
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Figure 8.6: Improvements in mean page response times for a bucket limit of
10 and 30 seconds. Comparing the policing solution for Fi 6= 100% of Ci with
a system where Fi = Ci. Advance knowledge traffic contracts are used and a
static floor limit setting was applied.

In Figure 8.7 the results are shown for the dynamic floor limit method in
which the token exchange depends on the actual bucket contents rather than
its bucket limit. In this case the same mean page response times are obtained
for Fi ∈ {0%, 100%} as for the static floor limit setting. As can be observed
from the results, the gain becomes far less sensitive to the floor limit. For small
traffic contracts and higher values of Fi, TCP connections time-out. This does
not occur in the full sharing case.

The difference between the static and dynamic method for setting the floor
limit can be explained by the limited token exchange for static systems that
have a low token rate in comparison to the bucket limit. This effect is most
pronounced for the large bucket limits of 120 and 60000 seconds of token rate
that we have simulated. In these cases, even a floor limit of 10% may form a
large barrier for token exchange.
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Figure 8.7: Improvements in mean page response times for a bucket limit of
10 and 30 seconds. Comparing the policing solution for Fi 6= 100% of Ci with
a system where Fi = Ci. Advance knowledge traffic contracts are used and a
dynamic floor limit setting was applied.

8.3.4 Results for symmetric contracts

When distributing the tokens equally among the up-and downstream directions
(referred to as the symmetric contract), less TCP time-outs occur. As a result,
response times are shorter and web pages can be retrieved for even small token
rates. Comparing Figures 8.6a-8.7b with Figures 8.8a-8.9b, leads to more ob-
servations. First, for a small token rate and a small bucket size the advanced
knowledge contract yields higher improvements than the symmetric contract.
This is caused by the high page response times for the traditional policing for
advanced knowledge contracts and small token rates.

Second, when contracts for both directions are equal, high token rates yield
the highest relative gains (whereas for advanced knowledge contract, the lower
rates yield more gain). This can be observed by comparing the order of the
curves for the symmetric contract with the order of the curves for the advanced
knowledge contract. Finally, comparing Figures 8.8b and 8.9a show that com-
puting floor limits dynamically results in gains that are less sensitive of the floor
limit.

As the bucket limit is further increased, the policing solution shows a stable
gain for the symmetric contract when the floor limits are determined dynam-
ically, as a function of the actual token level. For the advanced knowledge
traffic contract and the case that the floor limits are computed as function of
the bucket limit, the policing mechanism is capable of supporting longer traffic
bursts, and thus loose fewer tokens, which results in the traditional approach
of policing traffic (and hence lower gains). Sharing the same contract among 5
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or 10 wireless users (not shown) has the same effect; the gain vanishes because
active flows can grab the tokens from silent ones and hence the exchange of
tokens from the other direction does not occur.
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Figure 8.8: Improvements in mean page response times for a bucket limit of 10
and 30 seconds. Comparing the policing solution for Fi 6= 100% of Ci with a
system where Fi = Ci. Symmetric traffic contracts are used and a static floor
limit setting was applied.
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Figure 8.9: Improvements in mean page response times for a bucket limit of
10 and 30 seconds. Comparing the policing solution for Fi 6= 100% of Ci with
a system where Fi = Ci. Symmetric traffic contracts are used and a dynamic
floor limit setting was applied.
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8.4 Conclusions and further research

This chapter shows that regulating a traffic contract in two directions con-
currently improves the effective usage of the traffic contract. Furthermore, it
reduces TCP connection starvation.

The solution described maintains the commonly used policing mechanism in
both directions and allows the flexible exchange of transmission tokens between
them. In an attempt to prevent that one direction suffocates as a result of favor-
ing the passing of packets of the other direction, a floor limit F was introduced
that marks a boundary to the token level, preventing the other direction from
grabbing tokens. No transmission tokens can be taken by the other direction if
the token level is below the threshold level F . The numerical evaluation of an
analytical model that studies performance behavior at packet level shows that
by setting the floor limit F at 20% of the capacity of the bucket limit, a good
trade-off is achieved between on one hand optimizing performance and on the
other preventing that one direction uses the total traffic contract disproportion-
ally.

A simulation analysis was performed to study performance effects on flow-level
and reveals that the mechanism improves in particularly the performance for
individual traffic contracts and for small traffic contract tolerances. In general,
the positive effect in performance vanishes as the number of traffic flows in-
creases that belong to the same contract. It then converges to the traditional
approach for policing traffic. In QoS enabled WLAN environments, the per-
flow contract between end-user and WLAN operator is common, limiting the
number of simultaneous traffic flows per contract considerably. Exactly this
circumstance provides a performance improvement when compared to using the
traditional policing mechanism. Furthermore, policing traffic in two directions
concurrently makes it possible to distinguish services within a traffic contract.
A floor limit can be associated with each traffic class, allowing only high priority
packets to pass when the leaky buckets is almost empty. One may even consider
going one step further and favor high-priority packets over low-priority packets
that travel in the opposite direction.

The applicability of the mechanism that polices in two directions concurrently is
not restricted to shared wireless access media. It can also be applied in situations
where a network operator wants to offer its different wireless transmission tech-
nologies to a single user. Network operators with various technologies installed,
gain by offering access trough these technologies simultaneously. This requires
a single (up/down) traffic contract and hence a mechanism to police such a
contract. The mechanism should then be executed in a network device where
the streams to and from the different wireless technologies can be distinguished
from one and another. If, however, more than two transmission technologies are
offered simultaneously, the mechanism as described and evaluated needs to be
extended to multiple dimensions.
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Appendix A

Maximum of Exponential Random

Variables

For self-containedness of the thesis, in this appendix we formulate a known
result giving the expected value of the maximum of an arbitrary number of ex-
ponentially distributed random variables. This result is used in Section 4.3.3.

Property 1: If X1, . . . , XN are i.i.d. exponentially distributed random vari-
ables with means 1/µ1, . . . , 1/µN respectively, then

E [max{X1, . . . , XN}] =

N
∑

k=1

(−1)k+1
∑

(i1,...,ik)∈Sk

1

µi1 + · · ·+ µik

, (A.1)

where Sk (k = 1, . . . , N) is defined in (4.16).

Proof: The derivation of Property 1 requires only standard algebraic manipu-
lations and is therefore omitted.

To illustrate Property 1, let us work out (A.1) for the cases N = 2, 3 and
4. For N = 2, we have S = {1, 2}, S1 = {1, 2}, and S2 = {(1, 2)}, so that

E [max{X1, X2}] =
1

µ1
+

1

µ2
−

1

µ1 + µ2
. (A.2)

For N = 3, we have S = {1, 2, 3}, S1 = {1, 2, 3}, S2 = {(1, 2), (1, 3), (2, 3)} and
S3 = {(1, 2, 3)}, so that

E [max{X1, X2, X3}] =

(

1

µ1
+

1

µ2
+

1

µ3

)

(A.3)

−

(

1

µ1 + µ2
+

1

µ1 + µ3
+

1

µ2 + µ3

)

+
1

µ1 + µ2 + µ3
.
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Finally, it is readily verified that for N = 4 we have S = {1, 2, 3, 4}, S1 =
{1, 2, 3, 4}, S2 = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)},
S3 = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}, S4 = {(1, 2, 3, 4))}, so that

E [max{X1, X2, X3, X4}] =

(

1

µ1
+

1

µ2
+

1

µ3
+

1

µ4

)

(A.4)

−

(

1

µ1 + µ2
+

1

µ1 + µ3
+

1

µ1 + µ4
+

1

µ2 + µ3
+

1

µ2 + µ4
+

1

µ3 + µ4

)

+

(

1

µ1 + µ2 + µ3
+

1

µ1 + µ2 + µ4
+

1

µ1 + µ3 + µ4
+

1

µ2 + µ3 + µ4

)

−
1

µ1 + µ2 + µ3 + µ4
.



Appendix B

Assignment and splitting ratios of

concurrent access policies

This appendix shows the mean traffic assignment or splitting ratios of foreground
traffic that is distributed in the presence of background traffic in a simulated
CA queueing network with N = 2 PS-queues, each with unit capacity. Sev-
eral CA strategies have been simulated: the static job-split strategy outlined
in Chapters 3 and 4, the dynamic job-assignment strategy presented in Chap-
ter 5, the dynamic job-split strategy presented in Chapter 6. As a benchmark
that is well-known in the literature, simulation results on the Join-the-Shortest-
Queue (JSQ) approach are included. The mean values are obtained from simu-
lation runs of 108 foreground observations using Poisson arrivals and exponen-
tial jobs-size distributions with unit mean for all traffic streams. The load of
the foreground traffic ρ0 was varied from light (ρ0 = 0.1) to mild (ρ0 = 0.5)
and moderate (ρ0 = 0.9) and the background loads ρ1 and ρ2 were varied as
0.1, 0.2, . . . , 0.9. Due to the symmetry of the concurrent access network, the
values are omitted for ρ1 > ρ2.
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B.1 Light foreground traffic load (ρ0 = 0.1)

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.50 0.50 0.55 0.64 0.70 0.78 0.85 0.92 0.97
0.2 0.50 0.51 0.59 0.67 0.75 0.83 0.91 0.97
0.3 0.50 0.54 0.63 0.71 0.80 0.89 0.96
0.4 0.50 0.56 0.66 0.76 0.87 0.95
0.5 0.50 0.59 0.70 0.83 0.94
0.6 0.50 0.62 0.77 0.91
0.7 0.50 0.66 0.86
0.8 0.50 0.74
0.9 0.50

Table B.1: Split ratio of jobs to PS-queue 1 for the static split policy with light
foreground traffic (ρ0 = 0.1).

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.495 0.842 0.854 0.867 0.883 0.903 0.939 0.959 0.996
0.2 0.506 0.785 0.806 0.829 0.856 0.890 0.936 0.990
0.3 0.488 0.738 0.768 0.803 0.850 0.909 0.958
0.4 0.489 0.700 0.741 0.791 0.859 0.941
0.5 0.479 0.671 0.727 0.802 0.906
0.6 0.453 0.651 0.734 0.859
0.7 0.497 0.648 0.797
0.8 0.515 0.696
0.9 0.500

Table B.2: Assignment ratio of jobs to PS-queue 1 for the dynamic assignment
policy with light foreground traffic (ρ0 = 0.1).
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ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.500 0.521 0.544 0.571 0.601 0.638 0.682 0.740 0.823
0.2 0.500 0.523 0.550 0.581 0.618 0.664 0.724 0.811
0.3 0.500 0.527 0.558 0.596 0.643 0.705 0.796
0.4 0.500 0.532 0.570 0.618 0.682 0.778
0.5 0.500 0.538 0.587 0.654 0.756
0.6 0.500 0.550 0.618 0.727
0.7 0.500 0.570 0.686
0.8 0.500 0.623
0.9 0.500

Table B.3: Split ratio of jobs to PS-queue 1 for the dynamic split policy with
light foreground traffic (ρ0 = 0.1).

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.500 0.548 0.597 0.648 0.700 0.755 0.813 0.872 0.935
0.2 0.500 0.550 0.603 0.659 0.718 0.781 0.849 0.922
0.3 0.500 0.554 0.612 0.676 0.745 0.821 0.906
0.4 0.500 0.560 0.626 0.701 0.787 0.885
0.5 0.500 0.569 0.649 0.743 0.858
0.6 0.500 0.583 0.687 0.820
0.7 0.500 0.610 0.765
0.8 0.500 0.674
0.9 0.500

Table B.4: Assignment ratio of jobs to PS-queue 1 for JSQ policy with light
foreground traffic (ρ0 = 0.1).
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Mild foreground traffic load (ρ0 = 0.5)

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.50 0.51 0.57 0.65 0.68 0.74 0.81 0.88 0.95
0.2 0.50 0.53 0.59 0.65 0.71 0.78 0.86 0.94
0.3 0.50 0.54 0.60 0.67 0.74 0.83 0.92
0.4 0.50 0.56 0.62 0.70 0.79 0.89
0.5 0.50 0.57 0.65 0.74 0.85
0.6 0.50 0.58 0.68
0.7 0.50

Table B.5: Split ratio of jobs to PS-queue 1 for the static split policy with mild
foreground traffic (ρ0 = 0.5).

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.626 0.652 0.671 0.693 0.720 0.754 0.802 0.874 0.949
0.2 0.488 0.621 0.648 0.678 0.716 0.765 0.844 0.928
0.3 0.474 0.597 0.632 0.673 0.724 0.801 0.907
0.4 0.479 0.579 0.625 0.680 0.763 0.879
0.5 0.434 0.567 0.629 0.729 0.843
0.6 0.476 0.569 0.676
0.7 0.500

Table B.6: Assignment ratio of jobs to PS-queue 1 for the dynamic assignment
policy with mild foreground traffic (ρ0 = 0.5).

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.500 0.522 0.546 0.575 0.608 0.647 0.696 0.760 0.851
0.2 0.500 0.525 0.553 0.587 0.628 0.678 0.746 0.842
0.3 0.500 0.529 0.563 0.605 0.658 0.729 0.833
0.4 0.500 0.534 0.577 0.632 0.708 0.822
0.5 0.500 0.543 0.601 0.683 0.810
0.6 0.500 0.559 0.649
0.7 0.500

Table B.7: Split ratio of jobs to PS-queue 1 for the dynamic split policy with
mild foreground traffic (ρ0 = 0.5).
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ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.500 0.539 0.580 0.624 0.671 0.723 0.781 0.845 0.917
0.2 0.500 0.542 0.587 0.636 0.690 0.752 0.822 0.903
0.3 0.500 0.546 0.596 0.653 0.718 0.794 0.886
0.4 0.500 0.551 0.610 0.679 0.761 0.864
0.5 0.500 0.560 0.632 0.721 0.836
0.6 0.500 0.574 0.669
0.7 0.500

Table B.8: Assignment ratio of jobs to PS-queue 1 for the JSQ policy with mild
foreground traffic (ρ0 = 0.5).

Moderate foreground traffic load (ρ0 = 0.9)

For a moderate foreground traffic load of ρ0 = 0.9 the background traffic load
should be less than 0.1 when using the static traffic assignment policy. We have
therefore not included any results for this policy here.

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.5 0.53 0.57 0.61 0.66 0.71 0.77 0.84 0.91
0.2 0.5 0.54 0.58 0.63 0.68 0.74 0.81
0.3 0.5 0.54 0.59 0.65 0.71
0.4 0.5 0.55 0.6
0.5 0.5

Table B.9: Split ratio of jobs to PS-queue 1 for the static split policy with
moderate foreground traffic (ρ0 = 0.9).

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.538 0.561 0.586 0.614 0.649 0.697 0.760 0.839 0.907
0.2 0.477 0.548 0.578 0.619 0.668 0.741 0.810
0.3 0.454 0.539 0.581 0.638 0.711
0.4 0.493 0.558 0.609
0.5 0.501

Table B.10: Assignment ratio of jobs to PS-queue 1 for the dynamic assignment
policy with moderate foreground traffic (ρ0 = 0.9).
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ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.500 0.523 0.550 0.581 0.617 0.662 0.719 0.792 0.889
0.2 0.500 0.527 0.558 0.596 0.643 0.704 0.784
0.3 0.500 0.532 0.571 0.621 0.686
0.4 0.500 0.540 0.592
0.5 0.500

Table B.11: Split ratio of jobs to PS-queue 1 for the dynamic split policy with
moderate foreground traffic (ρ0 = 0.9).

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.500 0.534 0.570 0.610 0.654 0.703 0.759 0.824 0.902
0.2 0.500 0.537 0.577 0.622 0.673 0.732 0.803
0.3 0.500 0.541 0.587 0.640 0.702
0.4 0.500 0.547 0.601
0.5 0.500

Table B.12: Assignment ratio of jobs to PS-queue 1 for the JSQ policy with
moderate foreground traffic (ρ0 = 0.9).



Appendix C

Foreground traffic performance of

concurrent access policies

This appendix shows the mean sojourn times (in seconds) of foreground traffic
that is distributed in the presence of background traffic in a simulated CA queue-
ing network with N = 2 PS-queues, each with unit capacity. Several CA strate-
gies have been simulated: the static job-split strategy outlined in Chapters 3
and 4, the dynamic job-assignment strategy presented in Chapter 5, the dynamic
job-split strategy presented in Chapter 6. As a benchmark that is well-known
in the literature, simulation results on the Join-the-Shortest-Queue (JSQ) ap-
proach are included. The mean values are obtained from simulation runs of 108

foreground observations using Poisson arrivals and exponential jobs-size distri-
butions with unit mean for all traffic streams. The load of the foreground traffic
ρ0 was varied from light (ρ0 = 0.1) to mild (ρ0 = 0.5) and moderate (ρ0 = 0.9)
and the background loads ρ1 and ρ2 were varied as 0.1, 0.2, . . . , 0.9. Due to the
symmetry of the concurrent access network, the values are omitted for ρ1 > ρ2.
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C.1 Light foreground traffic load (ρ0 = 0.1)

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.643 0.714 0.801 0.879 0.955 1.031 1.102 1.164 1.216
0.2 0.778 0.865 0.961 1.051 1.146 1.237 1.319 1.386
0.3 0.944 1.054 1.169 1.288 1.406 1.517 1.609
0.4 1.163 1.308 1.462 1.625 1.783 1.916
0.5 1.473 1.682 1.912 2.152 2.366
0.6 1.953 2.296 2.688 3.081
0.7 2.812 3.503 4.350
0.8 4.808 7.006
0.9 14.764

Table C.1: Mean sojourn times of light foreground traffic (ρ0 = 0.1) using the
static split policy.

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.073 1.093 1.117 1.141 1.166 1.190 1.210 1.228 1.245
0.2 1.161 1.196 1.234 1.273 1.313 1.351 1.383 1.415
0.3 1.282 1.333 1.392 1.454 1.516 1.575 1.628
0.4 1.442 1.523 1.616 1.715 1.816 1.915
0.5 1.674 1.803 1.958 2.128 2.315
0.6 2.031 2.259 2.548 2.904
0.7 2.652 3.145 3.868
0.8 4.072 5.723
0.9 11.028

Table C.2: Mean sojourn times of light foreground traffic (ρ0 = 0.1) using the
dynamic assignment policy.
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ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.573 0.600 0.630 0.664 0.704 0.751 0.809 0.885 0.997
0.2 0.630 0.665 0.705 0.751 0.806 0.875 0.967 1.104
0.3 0.705 0.751 0.805 0.871 0.954 1.066 1.239
0.4 0.805 0.870 0.949 1.051 1.191 1.413
0.5 0.947 1.045 1.172 1.352 1.648
0.6 1.167 1.331 1.572 1.988
0.7 1.553 1.895 2.530
0.8 2.430 3.560
0.9 6.547

Table C.3: Mean sojourn times of light foreground traffic (ρ0 = 0.1) using the
dynamic split policy.

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.074 1.113 1.151 1.187 1.220 1.248 1.269 1.280 1.276
0.2 1.164 1.216 1.267 1.316 1.362 1.402 1.431 1.444
0.3 1.283 1.353 1.423 1.493 1.560 1.617 1.658
0.4 1.445 1.543 1.645 1.750 1.853 1.943
0.5 1.675 1.821 1.983 2.159 2.339
0.6 2.029 2.276 2.572 2.923
0.7 2.653 3.161 3.880
0.8 4.075 5.734
0.9 11.028

Table C.4: Mean sojourn times of light foreground traffic (ρ0 = 0.1) using the
JSQ policy.
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C.2 Mild foreground traffic load (ρ0 = 0.5)

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.855 0.977 1.112 1.253 1.411 1.596 1.806 2.042 2.294
0.2 1.085 1.240 1.415 1.616 1.860 2.155 2.513 2.943
0.3 1.399 1.617 1.882 2.214 2.650 3.235 4.049
0.4 1.878 2.235 2.713 3.397 4.447 6.303
0.5 2.726 3.461 4.641 6.896 13.192
0.6 4.691 7.119 14.211
0.7 14.487

Table C.5: Mean sojourn times of mild foreground traffic (ρ0 = 0.5) using the
static split policy.

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.235 1.287 1.363 1.453 1.560 1.687 1.830 1.998 2.243
0.2 1.386 1.482 1.598 1.738 1.910 2.124 2.387 2.790
0.3 1.632 1.771 1.958 2.200 2.521 2.955 3.676
0.4 1.994 2.245 2.593 3.094 3.864 5.343
0.5 2.654 3.172 4.022 5.592 9.754
0.6 4.111 5.841 10.393
0.7 11.082

Table C.6: Mean sojourn times of mild foreground traffic (ρ0 = 0.5) using the
dynamic assignment policy.

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.744 0.792 0.847 0.911 0.990 1.088 1.217 1.403 1.713
0.2 0.848 0.914 0.993 1.090 1.215 1.384 1.636 2.080
0.3 0.994 1.092 1.217 1.381 1.611 1.973 2.663
0.4 1.218 1.381 1.607 1.942 2.510 3.755
0.5 1.607 1.937 2.475 3.530 6.669
0.6 2.473 3.511 6.412
0.7 6.506

Table C.7: Mean sojourn times of mild foreground traffic (ρ0 = 0.5) using the
dynamic split policy.
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ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.224 1.299 1.382 1.476 1.584 1.708 1.855 2.029 2.238
0.2 1.390 1.495 1.616 1.759 1.932 2.146 2.422 2.796
0.3 1.627 1.784 1.975 2.220 2.541 2.997 3.705
0.4 1.990 2.254 2.609 3.119 3.926 5.497
0.5 2.630 3.170 4.047 5.737 10.695
0.6 4.079 5.833 10.967
0.7 11.039

Table C.8: Mean sojourn times of mild foreground traffic (ρ0 = 0.5) using the
JSQ policy.

C.3 Moderate foreground traffic load (ρ0 = 0.9)

For a moderate foreground traffic load of ρ0 = 0.9 the background traffic load
should be less than 0.1 when using the static traffic assignment policy. We have
therefore not included any results for this policy here.

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.264 1.503 1.783 2.137 2.613 3.311 4.421 6.533 12.429
0.2 1.755 2.120 2.610 3.329 4.502 6.781 13.426
0.3 2.597 3.328 4.524 6.911 13.882
0.4 4.526 6.913 14.231
0.5 14.089

Table C.9: Mean sojourn times of moderate foreground traffic (ρ0 = 0.9) using
the static split policy.

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.592 1.744 1.932 2.185 2.528 2.997 3.744 5.197 8.877
0.2 1.954 2.214 2.572 3.080 3.876 5.330 9.190
0.3 2.603 3.141 3.995 5.564 9.653
0.4 4.085 5.651 10.328
0.5 10.820

Table C.10: Mean processing time of foreground jobs for the dynamic Bayesian
traffic assignment policy to PS-queue 1 in an N = 2 concurrent access network
with a light foreground load of ρ0 = 0.9. The outcomes are obtained from
simulation in which jobs are exponentially distributed.
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ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.065 1.170 1.300 1.467 1.694 2.023 2.556 3.606 6.758
0.2 1.304 1.477 1.712 2.051 2.588 3.600 6.331
0.3 1.719 2.071 2.631 3.687 6.546
0.4 2.650 3.764 6.901
0.5 7.060

Table C.11: Mean sojourn times of moderate foreground traffic (ρ0 = 0.9) using
the dynamic split policy.

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.568 1.723 1.919 2.175 2.522 3.039 3.880 5.544 10.490
0.2 1.925 2.186 2.545 3.071 3.936 5.633 10.686
0.3 2.551 3.088 3.961 5.681 10.747
0.4 3.970 5.709 10.815
0.5 10.771

Table C.12: Mean sojourn times of moderate foreground traffic (ρ0 = 0.9) using
the JSQ policy.
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Background traffic performance of

concurrent access policies

This appendix shows the background traffic performance, denoted γ, that is

defined by γ = E[S1]ρ1+E[S2]ρ2

ρ1+ρ2
in the presence of foreground traffic that is dis-

tributed in a simulated CA queueing network with N = 2 PS-queues, each with
unit capacity. Several CA strategies have been simulated: the static job-split
strategy outlined in Chapters 3 and 4, the dynamic job-assignment strategy
presented in Chapter 5, the dynamic job-split strategy presented in Chapter 6.
As a benchmark that is well-known in the literature, simulation results on the
Join-the-Shortest-Queue (JSQ) approach are included. The mean values are
obtained from simulation runs of 108 foreground observations using Poisson
arrivals and exponential jobs-size distributions with unit mean for all traffic
streams. The load of the foreground traffic ρ0 was varied from light (ρ0 = 0.1)
to mild (ρ0 = 0.5) and moderate (ρ0 = 0.9) and the background loads ρ1 and ρ2
were varied as 0.1, 0.2, . . . , 0.9. Due to the symmetry of the concurrent access
network, the values are omitted for ρ1 > ρ2.
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D.1 Light foreground traffic load (ρ0 = 0.1)

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.176 1.281 1.441 1.658 1.974 2.441 3.224 4.767 9.403
0.2 1.333 1.456 1.642 1.919 2.345 3.058 4.471 8.693
0.3 1.538 1.695 1.939 2.327 2.984 4.294 8.226
0.4 1.818 2.035 2.388 3.000 4.215 7.897
0.5 2.222 2.550 3.129 4.285 7.719
0.6 2.857 3.421 4.555 7.888
0.7 4.000 5.207 8.585
0.8 6.667 10.889
0.9 20.000

Table D.1: Background traffic performance with light foreground traffic (ρ0 =
0.1) using the static split policy.

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.147 1.236 1.381 1.588 1.886 2.337 3.086 4.599 9.140
0.2 1.297 1.404 1.577 1.838 2.244 2.930 4.303 8.452
0.3 1.490 1.631 1.859 2.224 2.850 4.114 7.950
0.4 1.752 1.948 2.277 2.856 4.033 7.577
0.5 2.125 2.421 2.959 4.069 7.386
0.6 2.698 3.203 4.265 7.431
0.7 3.698 4.750 7.877
0.8 5.891 9.346
0.9 15.151

Table D.2: Background traffic performance with light foreground traffic (ρ0 =
0.1) using the dynamic assignment policy.
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ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.160 1.260 1.416 1.637 1.956 2.441 3.259 4.912 9.913
0.2 1.312 1.429 1.614 1.894 2.332 3.080 4.605 9.245
0.3 1.509 1.660 1.904 2.298 2.985 4.400 8.738
0.4 1.777 1.986 2.340 2.973 4.296 8.393
0.5 2.160 2.476 3.062 4.308 8.231
0.6 2.754 3.296 4.485 8.285
0.7 3.798 4.953 8.763
0.8 6.129 10.231
0.9 16.347

Table D.3: Background traffic performance with light foreground traffic (ρ0 =
0.1) using the dynamic split policy.

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.146 1.242 1.392 1.602 1.903 2.358 3.118 4.638 9.191
0.2 1.295 1.408 1.586 1.851 2.261 2.953 4.346 8.519
0.3 1.489 1.635 1.867 2.237 2.872 4.156 8.014
0.4 1.750 1.952 2.286 2.872 4.065 7.655
0.5 2.123 2.425 2.969 4.089 7.460
0.6 2.697 3.208 4.280 7.501
0.7 3.695 4.757 7.936
0.8 5.885 9.373
0.9 15.148

Table D.4: Background traffic performance with light foreground traffic (ρ0 =
0.1) using the JSQ policy.

D.2 Mild foreground traffic load (ρ0 = 0.5)

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.538 1.718 1.953 2.290 2.749 3.446 4.520 6.591 12.273
0.2 1.819 2.038 2.348 2.799 3.503 4.641 6.691 12.248
0.3 2.222 2.541 3.021 3.750 5.026 7.280 13.555
0.4 2.858 3.373 4.237 5.700 8.639 17.369
0.5 4.002 5.063 7.046 11.757 30.607
0.6 6.667 10.182 21.369
0.7 19.984

Table D.5: Background traffic performance with mild foreground traffic (ρ0 =
0.5) using the static split policy.
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ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.374 1.482 1.669 1.934 2.311 2.875 3.729 5.338 9.634
0.2 1.578 1.740 1.983 2.345 2.894 3.781 5.373 9.400
0.3 1.878 2.116 2.471 3.037 3.989 5.737 9.679
0.4 2.334 2.715 3.326 4.409 6.526 11.269
0.5 3.104 3.846 5.227 7.930 17.691
0.6 4.759 6.957 12.968
0.7 11.878

Table D.6: Background traffic performance with mild foreground traffic (ρ0 =
0.5) using the dynamic assignment policy.

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.434 1.580 1.804 2.125 2.596 3.336 4.626 7.358 16.240
0.2 1.675 1.860 2.150 2.594 3.306 4.575 7.322 16.455
0.3 2.014 2.278 2.705 3.412 4.707 7.591 17.585
0.4 2.528 2.954 3.691 5.086 8.334 20.587
0.5 3.410 4.239 5.908 10.162 29.946
0.6 5.322 7.781 15.970
0.7 13.756

Table D.7: Background traffic performance with mild foreground traffic (ρ0 =
0.5) using the dynamic split policy.

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.342 1.467 1.649 1.900 2.251 2.771 3.614 5.255 9.950
0.2 1.558 1.718 1.951 2.289 2.798 3.625 5.206 9.672
0.3 1.860 2.086 2.421 2.939 3.787 5.413 9.847
0.4 2.311 2.667 3.229 4.178 6.011 10.996
0.5 3.075 3.747 4.961 7.519 15.537
0.6 4.697 6.656 12.426
0.7 11.851

Table D.8: Background traffic performance with mild foreground traffic (ρ0 =
0.5) using the JSQ policy.

D.3 Moderate foreground traffic load (ρ0 = 0.9)

For a moderate foreground traffic load of ρ0 = 0.9 the background traffic load
should be less than 0.1 when using the static traffic assignment policy. We have
therefore not included any results for this policy here.
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ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 2.222 2.556 3.042 3.781 4.840 6.714 10.033 16.649 48.409
0.2 2.857 3.372 4.204 5.504 8.030 13.437 30.393
0.3 4.002 5.078 6.998 10.756 22.800
0.4 6.672 10.076 21.764
0.5 19.985

Table D.9: Background traffic performance with moderate foreground traffic
(ρ0 = 0.9) using the static split policy.

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.745 2.032 2.391 2.917 3.697 4.841 6.995 9.342 24.560
0.2 2.171 2.556 3.150 4.060 5.654 7.991 16.110
0.3 2.867 3.597 4.864 7.311 13.331
0.4 4.399 6.188 12.008
0.5 11.058

Table D.10: Background traffic performance with moderate foreground traffic
(ρ0 = 0.9) using the dynamic assignment policy.

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.970 2.239 2.651 3.269 4.238 5.909 9.248 18.063 61.726
0.2 2.472 2.884 3.548 4.657 6.707 11.309 26.905
0.3 3.339 4.133 5.581 8.662 18.090
0.4 5.257 7.662 14.995
0.5 14.176

Table D.11: Background traffic performance with moderate foreground traffic
(ρ0 = 0.9) using the dynamic split policy.

ρ2
H

H
H
ρ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.709 1.911 2.201 2.605 3.183 4.075 5.593 8.694 18.095
0.2 2.111 2.421 2.883 3.592 4.771 7.051 13.370
0.3 2.789 3.385 4.383 6.347 11.877
0.4 4.268 6.064 11.306
0.5 11.081

Table D.12: Background traffic performance with moderate foreground traffic
(ρ0 = 0.9) using the JSQ policy.
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Samenvatting

De efficiëntie waarmee draadloze communicatie systemen gebruik maken van het
frequentie spectrum is over de afgelopen jaren aanzienlijk verbeterd. Heden-
daagse coderingstechnieken hebben de theoretische (Shannon) wet zeer dicht
kunnen benaderen. Door de toepassing van geavanceerde signaalbewerking in
hoogwaardige technologieën heeft dit geresulteerd in de zeer hoge snelheden die
door moderne communicatie systemen gerealiseerd kunnen worden. Op deze on-
derdelen van draadloze communicatiesystemen is naar verwachting voor vergeli-
jkbare omstandigheden slechts door zeer complexe technieken een beperkte ver-
hoging te behalen zonder te afstand te moeten reduceren waarover gecommu-
niceerd wordt. Dit is een fundamentele limiet op een verdere verhoging van de
snelheid van draadloze systemen. Er bestaan veel soorten draadloze netwerken
die veelal tegelijk te beschikbaar zijn omdat deze actief zijn in een ander gedeelte
van het frequentiespectrum. Dit spectrum is opgedeeld in veelal gelicenseerde
frequentiebanden. Uit metingen is gebleken dat dit spectrum niet overal druk
bezet is. In sommige banden is nauwelijks activiteit waar te nemen. Het tegelijk
gebruiken van meerdere netwerken ligt voor de hand als methode of toch een
hogere snelheid te behalen voor draadloze systemen. De potentiële prestatiewin-
sten van deze methode zijn zeer groot, mits het netwerkverkeer van de gebruikers
op een juiste manier over deze netwerken verdeeld wordt.

In dit proefschrift worden methoden bestudeerd voor het optimaliseren van
verkeersstromen in draadloze communicatienetwerken. Een aantal van deze
methoden is gericht op het verbeteren van de dienstverlening aan gebruikers
door de door hen gegenereerde digitale verkeersstromen over meerdere simul-
taan beschikbare netwerken te verdelen en tegelijkertijd op het realiseren van
een betere benutting van de beschikbare netwerkcapaciteit. Het gelijktijdig ge-
bruiken van meerdere, parallelle communicatienetwerken wordt in dit proefschift
Concurrent Access (CA) genoemd.

Voor toepassing in afzonderlijke netwerken zijn methoden bestudeerd die aan
de hand van de eisen van aanwezige gebruikers enerzijds en een dynamisch
variërende beschikbare netwerk capaciteit anderzijds een contract tussen het
netwerk en de afzonderlijke gebruikers vaststellen en afdwingen. Het gemeen-
schappelijke doel van de ontwikkelde methoden is om de dienstverlening zoals
deze door de gebruikers ervaren wordt te verbeteren en tegelijkertijd de benut-
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ting van de beschikbare netwerken te verhogen.

Het optimaliseren van verkeersstromen over meerdere netwerken wordt gedaan
in drie stappen. De eerste stap is het opstellen en valideren van een prestatiemodel
van een communicatienetwerk. Het model vormt een abstractie van één af-
zonderlijk communicatienetwerk die het gedrag ten aanzien het verwerken van
verkeersstromen nauwkeurig beschrijft door toepassing van de juiste parame-
terisering. In de tweede stap wordt een prestatiemodel bestudeerd waarin het
bedrag van meerdere, parallelle communicatienetwerken in verwerkt is. Dit
model wordt vervolgens geanalyseerd en geoptimaliseerd. In de derde en laatste
stap worden de ontwikkelde methoden geëvalueerd aan de hand van simulaties
en experimenten met communicatiesystemen.

Hoofdstuk 1 van dit proefschrift bevat een beschrijving van de achtergrond en de
motivatie van het verrichte onderzoek, en geeft een overzicht van de beschikbare
literatuur op het gebied van communicatienetwerken en prestatiemodellen.

In hoofdstuk 2 wordt een nieuw concept gëıntroduceerd voor het modelleren
van verkeersstromen in een communicatienetwerk met elastisch data-verkeer dat
wordt afgehandeld door middel van het zogenaamde Transport Control Proto-
col (TCP). De invloed van de complexe, gecombineerde interactie van meerdere
protocollagen in communicatie systemen op de verwerking van bestandsstromen
kan als expliciete uitdrukking met één enkele parameter, genaamd de effectieve
bedieningsduur, worden beschreven. Gebaseerd op deze effectieve bedienings-
duur van een aankomstenpatroon van bestandsstromen kan de effectieve be-
lasting in een netwerk gedefinieërd worden. Op basis daarvan kan de door de
gebruiker ervaren prestatie van het netwerk beschreven worden door middel
van een M/G/1 Processor Sharing (PS) model. De resultaten van een uitge-
breide validatie van dit model door middel van simulaties en experimenten geven
aan dat nauwkeurige voorspellingen van de netwerkprestaties verkregen kunnen
worden voor een uiteenlopende set van parameters. Dit stelt ons in staat de
prestatie van complexe draadloze netwerken te beschrijven door middel van een
eenvoudig model dat vervolgens kan worden gebruikt voor het evalueren en op-
timaliseren van methoden voor het efficient splitsen van verkeersstromen.

In hoofdstuk 3 modelleren we het gebruik van meerdere parallelle communi-
catienetwerken door middel van een CA-model waarbij elk netwerk door een
PS-model wordt gerepresenteerd. In het model worden twee typen verkeer be-
diend: voorgrondverkeer en achtergrondverkeer. De taken van het voorgrond-
verkeer worden opgesplitst in fragmenten volgens een vaste splitsregel. Ver-
volgens worden de fragmenten verwerkt door de parallelle PS-nodes. Zodra
alle fragmenten van een taak zijn verwerkt wordt de oorspronkelijke taak gere-
construeerd waarmee de behandeling is beëindigd. Elke PS-node ontvangt een
stroom achtergrondverkeer die niet gesplitst wordt. Vanwege het toepassen van
een vaste splitsregel op de taken van het voorgrondverkeer wordt deze meth-
ode static job splitting genoemd. De doelstelling van het statisch splitsen van
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taken is om de behandelingsduur van voorgrondtaken te bekorten. Door gebruik
te maken van het PS-model met de effectieve bedieningsduur uit hoofdstuk 2
is het model, genaamd het CA job-split model, toe te passen op het splitsen
van bestandsstromen over meerdere parallelle communicatienetwerken. Hoofd-
stuk 3 richt zich in het bijzonder op het gedrag van zeer grote taken die volgens
een ’zwaartstaartige’ verdeling aan het systeem worden aangeboden zodat van
asymptotische eigenschappen gebruik gemaakt kan worden. Op basis van een
zogenaamde Reduced Load Approximation (RLA) wordt bewezen dat een zeer
eenvoudige en intüıtieve splitsregel tot optimale prestaties leidt ten aanzien van
de bedieningsduur van zeer grote taken uit het voorgrondverkeer. Resultaten
verkregen via uitvoerige simulaties demonsteren dat deze eenvoudige splitsregel
ook goed presteert ten aanzien van de gemiddelde behandelingsduur van het
voorgrondverkeer.

In hoofdstuk 4 wordt het CA job-split model van hoofdstuk 3 verder geanaly-
seerd. Het doel is een splitsregel te ontwikkelen en te evalueren voor de static
job splitting methode zodanig dat de gemiddelde behandelingsduur van het ges-
plitste voorgrondverkeer geminimaliseerd wordt. Vanwege het splitsen van een
aankomststroom van voorgrondtaken raken de parallelle PS-nodes van het CA
job-split model doorgaans gecorreleerd, hetgeen een exacte analyse van de resul-
terende gemiddelde bedieningsduren moeilijk maakt. Daarom wordt in hoofd-
stuk 4 een benadering voor de optimale splitsregel ontwikkeld die gebaseerd is op
een combinatie van twee methoden; de eerste methode berust op de asymptotis-
che eigenschappen van zwaarstaartige bedieningsduurverdelingen en de tweede
methode op de eigenschappen van lichtstaartige verdelingen. Uit simulatiere-
sultaten blijkt dat door toepassing van de ontwikkelde splitsregel de gemiddelde
bedieningsduur van het voorgrondverkeer de geschatte prestaties van een opti-
male splitsregel zeer dicht benaderen.

In hoofdstuk 5 wordt een CA job-assignment model geanalyseerd, waarbij taken
van het voorgrond verkeer, in de aanwezigheid van achtergrond verkeer, dy-
namisch kunnen worden toegewezen aan een van de PS-nodes van het systeem.
Deze methode om voorgrondverkeer aan één van de PS-nodes van het CA job-
assignment model toe te wijzen wordt in de context van dit proefschrift aange-
duid als dynamic job assignment. Het doel van dit hoofdstuk is om toewijz-
ingsregels te ontwikkelen en evalueren voor de dynamic job assignment methode
zodanig dat de gemiddelde behandelingsduur van het voorgrondverkeer gemi-
nimaliseerd wordt. Voor dit toewijzingsprobleem is een zogenaamd Markov-
beslismodel opgesteld en opgelost dat op basis van de volledige toestandsruimte
van het systeem in staat is om de taken dusdanig toe te wijzen aan de juiste
PS-node dat dit tot optimale prestaties leidt. Echter, onder realistische om-
standigheden is vaak slechts een deel van de toestandsruimte bekend. Daarom
is in dit hoofdstuk een zogenaamd Bayesiaans algoritme ontwikkeld dat op ba-
sis van partiële informatie over de toestand van het systeem de ontbrekende
toestandsvariabelen kan schatten. Zodoende kan gebruik gemaakt worden van
het Markov-beslismodel die berust op de volledige toestandsruimte van het sys-
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teem. Op basis van simulaties wordt aangetoond dat dynamische toewijzing op
basis van het Bayesiaanse algoritme in zowel een CA job-assignment model als
in een vergelijkbare draadloze netwerkopgeving de ”ideale” prestaties van een
Markov-model met volledige toestandsruimte zeer dicht benaderen.

In hoofdstuk 6 wordt een CA job-split model geanalyseerd, waarbij de taken
van het voorgrondverkeer worden gesplitst in fragmenten die tijdens de bedien-
ing in grootte kunnen variëren. Deze fragmenten zullen zich dusdanig aanpassen
dat de individuele behandelingsduur van alle fragmenten gelijk is. Vanwege het
toepassen van een dynamische splitsregel op iedere taak van het voorgrond-
verkeer wordt deze methode dynamic job splitting genoemd. Bij toepassing
van deze methode in het CA job-split model wordt aangenomen dat de split-
sregel gebaseerd is op de volledige toestandsruimte van het model en dat taken
met oneindig fijne granulariteit kunnen worden gesplitst, als poging om ”op-
timale” prestaties van het voorgrondverkeer bereiken. Naast een model wordt
een praktische realisatie van de dynamic job splitting methode gepresenteerd.
Door gebruik te maken een combinatie van zowel het model uit hoofdstuk 2,
voor de effectieve bedieningsduur van een bestandsstroom in één communica-
tienetwerk, en het prestatie model voor dynamic job splitting kunnen de ”op-
timale” prestaties in een realistisch communicatienetwerk bepaald worden. De
uitkomsten van dit model worden vervolgens vergeleken met de uitkomsten van
de experimenten om de efficiëntie van de praktische oplossing te bepalen die
TCP-verkeersstromen over meerdere draadloze netwerken optimaliseert. Uit
de uitkomsten van deze experimenten blijkt dat de ontwikkelde dynamic job
splitting methode voor draadloze netwerken de analytisch bepaalde ”optimale”
prestaties zeer dicht benadert en daarmee zeer efficiënt verkeersstromen over
meerdere netwerken kan verdelen in de aanwezigheid van achtergrondverkeer.

In hoofdstuk 7 worden elementen van het model uit hoofdstuk 2 gebruikt als ba-
sis om een oplossing te ontwikkelen die de verwachtingen van gebruikers in een
draadloos netwerk kan relateren aan de benodigde netwerkcapaciteit van deze
gebruikers. In dit hoofdstuk wordt duidelijk gemaakt dat een capaciteit uitge-
drukt in bits per seconde onvoldoende inzicht geeft in de gebruikersbehoefte
ten aanzien van bepaalde toepassingen of de voortvloeiende netwerkbelasting
van deze toepassingen. De oorzaak hiervan is de verschillende manier waarop
netwerken pakketten versturen. In sommige netwerken kan de capaciteit zelfs
sterk fluctueren door adaptatie mechanismen. De beslaglegging op de capaciteit
kan door deze oorzaken uiteenlopen. De voorgestelde oplossing hiervoor in dit
hoofdstuk is het definiëren van een zogenaamd multi-service traffic profile dat
wél inzicht geeft in de behoefte van toepassingen en de resulterende belast-
ing ervan in een netwerk. Het multi-service traffic profile wordt gebruikt om
een verkeerscontract, zogenaamde QoS budget, te bepalen waar het draadloze
communicatiesysteem van een gebruiker zich aan dient te houden volgens de
methode die beschreven is in [47]. Op deze manier kan dichtbij de gebruiker
beslist worden hoe binnen het QoS budget gecommuniceerd kan worden en of
een nieuwe toepassing het netwerk mag gebruiken. Het gebruik van de multi-
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service traffic profile en het bepalen en toewijzen van een QoS budget kan op een
dynamische manier plaatsvinden die past bij een variërende netwerkcapaciteit
als gevolg van bijvoorbeeld veranderende kanaalcondities of bewegende gebruik-
ers.

In hoofdstuk 8 wordt een oplossing voorgesteld en geëvalueerd die ontworpen
is om een verkeerscontract dat aan een gebruiker is toegewezen af te dwingen
in een zogenaamd shared medium netwerk. Het verkeerscontract kan hierbij tot
stand komen via de methode die voorgesteld is in hoofdstuk 7. Traditioneel
worden in een verkeerscontract de stromen van en naar de gebruiker (respec-
tievelijk upstream en downstream verkeersstromen) onderscheiden en wordt bij
het afdwingen van het contract, ofwel policen, iedere richting afzonderlijk aan de
grenzen uit het contract onderworpen. Voor (veelal traditionele) netwerken die
afzonderlijke kanalen gebruiken voor upstream en downstream verkeer, of een
andere scheiding aanbrengen, functioneert deze policing methode naar behoren.
Bij een shared medium kan dit tot lagere prestaties voor de gebruiker en een
inefficiënt gebruik van het netwerk leiden. De voorgestelde policing oplossing
maakt gebruik van eigenschappen van shared media om binnen de grenzen van
het totale verkeerscontract een andere verhouding tussen upstream en down-
stream verkeer toe te staan, indien nodig. Op basis van een analytisch model
en uitgebreide simulaties kan worden geconcludeerd dat de voorgestelde polic-
ing oplossing, ten opzichte van traditionele policing methoden, in een shared
medium netwerk de capaciteit efficiënter benut en de dienstverlening aan de
gebruiker verbeterd. Tevens wordt aangegeven hoe de oplossing te parameteris-
eren is.
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[72] G.P. Koudouris, R. Agüero, E. Alexandri, J. Choque, K. Dimou, H.R.
Karimi, H. Lederer, J. Sachs, and R. Sigle. Generic link layer functional-
ity for multi-radio access networks. In Proceedings 14th IST Mobile and
Wireless Communications Summit, 2005.

[73] P.R. Kumar. A survey of some results in stochastic adaptive control.
SIAM Journal of Control and Optimization, 23:329–380, 1985.

[74] M. Lelarge. Tail asymptotics for discrete event systems. In Proceedings
Valuetools ’06: 1st international conference on Performance evaluation
methodolgies and tools, pages 563–584, 2006.

[75] M. Lelarge. Packet reordering in networks with heavy-tailed delays. Math-
ematical Methods of Operations Research, 67(2):341–371, 2008.

[76] R. Litjens, F. Roijers, J.L. van den Berg, R.J. Boucherie, and M.J.
Fleuren. Performance analysis of wireless LANs: an integrated
packet/flow level approach. In Proceedings of the 18th International Tele-
traffic Congress - ITC18, pages 931–940, Berlin, Germany, 2003.

[77] M. Littman, A. Cassandra, and L. Kaelbling. Learning policies for par-
tially observable environments: Schaling up. In Proceedings of the Twelfth
International Conference on Machine Learning, pages 362–370, 1995.



Bibliography 211

[78] Z. Liu, N. Niclausse, and C. Jalpa-Villanueva. Traffic model and perfor-
mance evaluation of web servers. Performance Evaluation, 46(2-3):77–100,
2001.

[79] J.A. Loeve. Markov Decision Chains with Partial Information. PhD the-
sis, Leiden University, 1995.

[80] W.S. Lovejoy. A survey of algorithmic methods for partially observed
Markov decision processes. Annals of Operations Research, 28:47–66, 1991.

[81] J.C.S. Lui, R.R. Muntz, and D.F. Towsley. Computing performance
bounds for fork-join queueing models. Technical report, The Chinese Uni-
versity of Hong Kong, 1994.

[82] P. Mahasukhon, M. Hempel, S. Ci, and H. Sharif. Comparison of through-
put performance for the IEEE 802.11a and 802.11g networks. In Pro-
ceedings of the 21st International Conference on Advanced Information
Networking and Applications (AINA 2007), Niagara Falls, Canada, pages
792–799, 2007.

[83] A. Markopoulou, F. Tobagi, and M. Karam. Loss and delay measure-
ments of internet backbones. Computer Communications, 29(10):1590–
1604, 2006.

[84] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Ac-
knowledgment Options. RFC 2018, Internet Engineering Task Force, 1996.

[85] K. Medepalli, P. Gopalakrishnan, D. Famolari, and T. Kodama. Voice
capacity of IEEE 802.11b, 802.11a and 802.11g wireless LANs. In Pro-
ceedings IEEE GLOBECOM 2004, volume 3, pages 1549–1553, 2004.

[86] Microsoft Corporation. Next Generation TCP/IP Protocols and Net-
working Components, January 2008. http://technet.microsoft.com/

en-us/library/cc754287.aspx.

[87] D. Miorandi, A.A. Kherani, and E. Altman. A queueing model for HTTP
traffic over IEEE 802.11 WLANs. Computer Networks, 50(1):63–79, 2006.

[88] T. Miyano, S. Otsuki, M. Umeuchi, and M. Ogasawara. Admission and
traffic control techniques for WLANs. NTT Technical Review, 5(11), 2007.

[89] G.E. Monahan. A survey of partially observable Markov decision pro-
cesses: Theory, models, and algorithms. Management Science, 28:1–16,
1982.

[90] M. Ogasawara, M. Umeuchi, K. Kawamura, T. Miyano, S. Otsuki, K. Na-
gata, and T. Hiraguri. Overview of QoS control techniques for wireless
local area networks. IEEE Communications Magazine, 5(11):1–5, 2007.

[91] OPNET Technologies Inc. OPNET modeler. http://www.opnet.com/

solutions/network_rd/modeler.html, November 2011.



212 Bibliography

[92] F.J.M. Panken and G.J. Hoekstra. On regulating traffic in shared wireless
access media. Submitted for publication.

[93] F.J.M. Panken and G.J. Hoekstra. Multi-service traffic profiles to realise
and maintain QoS guarantees in wireless LANs. Computer Communica-
tions, 32(6):1022–1033, 2009.

[94] F.J.M. Panken, G.J. Hoekstra, D. Barankanira, J.C. Francis, R. Schwen-
dener, O. Grondalen, and M.G. Jaatun. Extending 3G/WiMAX networks
and services through residential access capacity. IEEE Communications
Magazine, 45(12):62–69, 2007.

[95] F.J.M. Panken, G.J. Hoekstra, and T. Van der Gaast. Resource alloca-
tion and guarantees for real-time applications in WLANs. Telektronikk,
(3):125–134, 2006.

[96] C.H. Papadimitriou and J.N. Tsitsiklis. The complexity of Markov deci-
sion processes. Mathematics of Operations Research, 12(3):441–450, 1987.

[97] R. Parr and S. Russell. Approximating optimal policies for partially ob-
servable stochastic domains. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 1088–1094, 1995.

[98] D. Pong and T. Moors. Call admission control for IEEE 802.11 contention
access mechanism. In Proceedings IEEE GLOBECOM 2003, volume 1,
pages 174–178, San Francisco, U.S.A., 2003.

[99] J. Postel. Transmission control protocol - darpa internet program protocol
specification. RFC 793, Internet Engineering Task Force, September 1981.

[100] J. Postel and J. Reynolds. File transfer protocol (FTP). RFC 959, Internet
Engineering Task Force, October 1985.

[101] J. Postel and J. Reynolds. Standard for the transmission of IP datagrams
over IEEE 802 networks. RFC 1042, Internet Engineering Task Force,
February 1988.

[102] ProFTPD Project. Professional FTP Daemon, November 2011. http:

//www.proftpd.org/.

[103] M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, 1994.

[104] A. Riedl, T. Bauschert, M. Perske, and A. Probst. Investigation of the
M/G/R Processor Sharing Model for Dimensioning of IP Access Networks
with Elastic Traffic. In Proceedings of the First Polish-German Teletraffic
Symposium PGTS 2000, Dresden, 2000.

[105] J.W. Roberts. A survey on statistical bandwidth sharing. Computer
Networks, 45(3):319–332, 2004.



Bibliography 213

[106] F. Roijers, J.L. van den Berg, and X. Fang. Analytical modelling of TCP
file transfer times over 802.11 wireless LANs. In Proceedings of the 19th

International Teletraffic Congress - ITC19, Beijing, China, 2005.

[107] K.W. Ross. Multirate Loss Models for Broadband Telecommunication Net-
works. Springer-Berlin, 1995.

[108] T. Sakurai and S. Hanley. Modelling TCP flows over an 802.11 wireless
LAN. In Proceedings of European Wireless Conference, 2005.

[109] W. Stevens. TCP slow start, congestion avoidance, fast retransmit, and
fast recovery algorithms. RFC 2001, Internet Engineering Task Force,
1997.

[110] W.R. Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison-
Wesley Professional, New York, NY, U.S.A., fourth edition, 1993.

[111] R. Stewart. Stream control transmission protocol. RFC 2960, Internet
Engineering Task Force, October 2000.

[112] Y. Tian, K. Xu, and N. Ansari. TCP in wireless environments: problems
and solutions. IEEE Communications Magazine, 43(3):27–32, 2005.

[113] J.S. Turner. New directions in communications (or which way to the
information age?). IEEE Communications Magazine, 40(5):50–57, 1986.

[114] J.L. van den Berg. Sojourn Times in Feedback and Processor Sharing
Queues. PhD thesis, University of Utrecht, 1990.

[115] J.L. van den Berg and O.J. Boxma. The M/G/1 queue with processor
sharing and its relation to a feedback queue. Queueing Systems, 9(4):365–
402, 1991.

[116] T. van der Gaast, G.J. Hoekstra, F.J.M. Panken, and J. van Bemmel.
Method for assigning uplink and/or downlink capacities based on available
capacity. Patent, August 2005. Application No. US 2005/204194 A.

[117] K.M. van Hee. Bayesian Control of Markov Chains. PhD thesis, Technical
University of Eindhoven, 1978.

[118] A. Veres, A.T. Campbell, M. Barry, and L.H. Sun. Supporting service
differentiation in wireless packet networks using distributed control. IEEE
Journal on Selected Areas in Communications, 19:2094–2104, 2002.

[119] C.C. White III. A survey of solution techniques for the partially ob-
served Markov decision process. Annals of Operations Research, 32:215–
230, 1991.

[120] Y. Wu, C. Williamson, and J. Luo. On processor sharing and its appli-
cations to cellular data network provisioning. Performance Evaluation,
64(9-12):892–908, 2007.



214 Bibliography

[121] Y. Xiao and H. Li. Evaluation of distributed admission control for the
IEEE 802.11e EDCA. IEEE Communications Magazine, 42(9):S20–S24,
2004.

[122] Y. Xiao and H. Li. Voice and video transmissions with global data pa-
rameter control for the IEEE 802.11e enhance distributed channel access.
IEEE Transactions on Parallel Distributed Systems, 15:1041–1053, 2004.

[123] L. Zhang and S. Zeadally. HARMONICA: Enhanced QoS Support with
Admission Control for IEEE 802.11 Contention-based Access. In Proceed-
ings of the 10th IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, pages 64–73, Washington, DC, U.S.A., 2004.

[124] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R. Wang. A trans-
port layer approach for improving end-to-end performance and robustness
using redundant paths. In ATEC ’04: Proceedings of the annual confer-
ence on USENIX Annual Technical Conference, pages 99–112, Berkeley,
CA, U.S.A., 2004.

[125] N.L. Zhang and W. Liu. Region-based approximations for planning in
stochastic domains. In Proceedings of the Thirteenth Annual Conference
on Uncertainty in Artificial Intelligence, pages 472–480, 1997.

[126] H. Zhu, M. Li, I. Chlamtac, and B. Prabhakaran. A survey of quality
of service in IEEE 802.11 networks. IEEE Wireless Communications,
11(4):6–14, 2004.

[127] A.P. Zwart. Sojourn times in a multiclass processor sharing queue. In
Proceedings of the 16th International Teletraffic Congress - ITC16, eds. P.
Key, D. Smith (North-Holland, Amsterdam), pages 335–344, Edinburgh,
UK, 1999.

[128] A.P. Zwart and O.J. Boxma. Sojourn time asymptotics in the M/G/1
processor sharing queue. Queueing Systems, 35(1/4):141–166, 2000.


