
Molding the Symbiosis between Human
and Machine

Contributions to Anomaly Detection, Model Evaluation, and
Active Learning

Dissertation Committee

promotor: prof. dr. R. D. van der Mei
Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

prof. dr. S. Bhulai
Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

co-promotor: prof. dr. M. Hoogendoorn
Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

committee: prof. dr. G. M. Koole
Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

prof. dr. S. I. Birbil
Universiteit van Amsterdam, Amsterdam, the Netherlands

prof. dr. A. Nowé
Vrije Universiteit Brussel, Brussels, Belgium

dr. mr. C. S. Gerritsen
Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

dr. ir. R. Lindelauf
Nederlandse Defensie Academie, Breda, the Netherlands
Technische Universiteit Delft, Delft, the Netherlands

ISBN: xxxxx

Typeset by LATEX.
Printed by: TBD
Cover design by: TBD

© 2022, Jan Gerard Klein, Amsterdam, the Netherlands.

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system or transmitted in any form or by any means electronic,
mechanical, photocopying, recording or otherwise, without the prior written
permission of the author.

VRIJE UNIVERSITEIT

Molding the Symbiosis between Human
and Machine

Contributions to Anomaly Detection, Model Evaluation, and
Active Learning

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof. dr. J. G. Geurts,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Bètawetenschappen

op [defenseDay] [DATE] om [TIME xx.xx] uur
in [de aula / het auditorium] van de universiteit,

De Boelelaan 1105

door

Jan Gerard Klein
geboren te Den Helder

promotor: prof. dr. R. D. van der Mei
prof. dr. S. Bhulai

co-promotor: prof. dr. M. Hoogendoorn

Contents

Nomenclature v

1 Introduction 1
1.1 Anomaly Detection . 3
1.2 Model Evaluation . 7
1.3 Active Learning . 10
1.4 Overview of Dissertation . 13

I Anomaly Detection 17

2 Detecting Network Intrusion Beyond 1999: Applying Machine
Learning Techniques to a Partially Labelled Cyber Security
Dataset 19
2.1 Introduction . 21
2.2 Data: Locked Shields 2017 . 22
2.3 Methodology . 23
2.4 Results . 28
2.5 Discussion . 34

3 Detecting Fraudulent Bookings of Online Travel Agencies with
Unsupervised Machine Learning 37
3.1 Introduction . 39
3.2 Data . 40
3.3 Methodology . 41
3.4 Experimental Setup . 46
3.5 Results . 47

i

Contents

3.6 Discussion . 50

II Model Evaluation 51

4 Estimating the F1 Score for Learning from Positive and Unla-
belled Examples 53
4.1 Introduction . 55
4.2 Problem Formulation . 56
4.3 Related Work . 56
4.4 Methodology . 58
4.5 Experimental Setup . 60
4.6 Results . 63
4.7 Discussion . 65

5 The Dutch Draw: Constructing a Universal Baseline for Bin-
ary Prediction Models 67
5.1 Introduction . 69
5.2 Preliminaries . 71
5.3 Methodology . 73
5.4 Experimental Results . 86
5.5 Discussion . 91
5.6 Appendix . 93

III Active Learning 129

6 Jasmine: a New Active Learning Approach to Combat Cyber
Crime 131
6.1 Introduction . 133
6.2 Related Work . 134
6.3 Preliminaries . 138
6.4 Methodology . 138
6.5 Experimental Setup . 147
6.6 Results . 151
6.7 Discussion . 161
6.8 Appendix . 163

7 Plusmine: Dynamic Active Learning with Semi-Supervised
Learning for Automatic Classification 165
7.1 Introduction . 167
7.2 Related Work . 168
7.3 Preliminaries . 169
7.4 Methodology . 170
7.5 Experimental Setup . 172
7.6 Results . 176
7.7 Discussion . 183

ii ii

Molding the Symbiosis between Human and Machine

8 Conclusion 185
8.1 Anomaly Detection . 185
8.2 Model Evaluation . 187
8.3 Active Learning . 188
8.4 Concluding Remarks and Outlook 189

Publications 191

Bibliography 193

Online References 203

iii iii

Contents

iv iv

Nomenclature

Abbreviations

Fβ Fβ score

AD Anomaly Detection

AL Active Learning

ASeSL Active Semi-Supervised Learning

FN (Number of) False Negative(s)

FP (Number of) False Positive(s)

GBM Gradient Boosting Machine

IF Isolation Forest

ME Model Evaluation

ML Machine Learning

NID Network Intrusion Detection

NIDS Network Intrusion Detection System

PUL Positive-Unlabelled Learning

RQ Research Question

v

Contents NOMENCLATURE

SeSL Semi-Supervised Learning

SL Supervised Learning

TN (Number of) True Negative(s)

TP (Number of) True Positive(s)

UL Unsupervised Learning

Mathematical notation

δβa Anomaly information metric

δβz Uncertainty information metric

∆γ Dynamic update factor

ŷ predicted output target value / predicted response value / predicted
label

L Set of labelled observation indices

M Set of observation indices

Q Set of query observation indices

U Set of unlabelled observation indices

L Number of labelled observations

Q Number of query observations

U Number of unlabelled observations

vi vi

1

1
Introduction

Nowadays, more and more data is collected in an increasing number of compan-
ies and across many research domains. Especially since the internet became
publicly available in the 1990s, the collection of data has exploded [54]. It
grew even more with the advent of social media (starting from 2005) and the
Internet of Things (IoT) (starting from 2015), which are physical objects such
as security cameras and wearable medical devices that exchange data in a net-
work. Besides volume, data variety has grown too. Much more unstructured
or raw data, such as text and videos, is collected compared to structured data.
Lee [54] argues that this is enabled by technological advancements, making it
easier for people and organisations to produce information. For example, an
aeroplane is estimated to generate between 5 and 8 terabytes of raw data per
flight in 2026 [123]. Or, consider all the information that every person with a
smartphone generates each day.

Yet, such data usually lacks a coherent structure, which complicates the ex-
traction of information from it. Therefore, more extensive computational and
human efforts are required to construct useful and workable datasets. As more
information is collected, also the amount of unlabelled data increases. La-
bels identify raw data and provide context. Consider computer network data,
which consists of a huge number of connections that describe how computers, or
hosts, communicate with each other. The label of a connection could indicate
whether it is benign or malicious (a cyber attack). However, it is impossible
for a cyber expert to determine the label for each connection [136]. This leads
to large amounts of partially labelled or completely unlabelled data; not only
in network intrusion detection (NID), but in many more domains [35]. This
complicates the interpretation of data and can also lead to privacy concerns,
because sensitive information could be hidden in the data.

1

1

Chapter 1. Introduction Chapter 1. Introduction

Machine Learning (ML) is accurately described by Mitchell [74] as “the study
of computer algorithms that improve automatically through experience”. An
ML algorithm tries to discover patterns in data without explicitly being told
what to look for. Moreover, ML can automatically improve decision-making by
evaluating the consequences of the choices that the algorithm has made [44].
There are several types of ML techniques, but historically they are separated
into three groups based on the feedback that the algorithm receives during
learning or training [7]:

• Supervised Learning (SL)

• Unsupervised Learning (UL)

• Reinforcement Learning (RL).

Supervised Learning In SL, the data instances with feature values (inputs)
and their corresponding target values (e.g., labels) are available at training time.
The method attempts to learn the function that maps the input to the target
output. This allows the method to make predictions about the target values of
new data instances.

Unsupervised Learning In UL, the learner is expected to find patterns
in the feature values without using any target outputs. Although these target
values are not available, the method can still make predictions about a new data
instance. It can discover that the new observation has characteristics similar
to some group of training instances, or that it is completely different.

Reinforcement Learning RL makes decisions in a dynamic environment
in order to achieve a certain goal, such as playing a game of chess. The fu-
ture choices that the method makes are directly determined by the rewards it
obtained from previous decisions.

Although the three ML categories encompass most of the algorithms, a fourth
category called Semi-Supervised Learning (SeSL) is also identified [15].

Semi-Supervised Learning SeSL falls between SL and UL, because it as-
sumes that some target values are available, but not all data is required to be
labelled. SeSL uses the unlabelled part of the data to improve the performance
of the method trained on labelled data.

The categorisation of SL, UL, and SeSL is closely linked to the availability of
labels. This also means that even though labelled data contains more inform-
ation than data without target values, partially labelled or unlabelled data
is far from useless. UL methods made for Anomaly Detection (AD) can be
applied on unlabelled data, because anomalies are generally defined as obser-
vations with significantly different feature values. In Section 1.1, we provide
background information on anomalies and their detection, and explain what
challenges arise in the field of AD. One of the broader challenges, not only

2 2

1

Chapter 1. Introduction 1.1. Anomaly Detection

for AD, is Model Evaluation (ME), i.e., assessing the prediction performance
of learning methods. In Section 1.2, we construct valuable tools to address
this challenge. Issues mostly arise when it is difficult to obtain fully labelled
data. Therefore, we introduce Active Learning (AL) for efficient data labelling
in Section 1.3. The topics introduced in these three sections all contribute to
molding the symbiosis between human and machine.

1.1 Anomaly Detection
In this section, we define what an anomaly is, discuss what kind of anomalies
exist, and in what domains these kinds commonly occur. Furthermore, we
examine how the different learning methods (SL, UL, and SeSL) are used for AD
and how usable datasets are constructed for this purpose. Also, we discuss what
problems arise in outlier detection, particularly the issues with the unsupervised
evaluation of discovering anomalies. Then, we transform these challenges into
research questions (RQs). Their answers are our contributions to the field of
AD.

1.1.1 Anomalies and Techniques

Figure 1.1: Example of anomalies in two-dimensional data (inspired by [14])

AD concerns itself with finding observations or patterns in data that are dif-
ferent than anticipated [14]. Most often, these instances are called anomalies
or outliers. Figure 1.1 gives an illustration of anomalies in a dataset with only
two features. It shows two distinct clusters N1 and N2 with observations that
all have similar characteristics. There are two outliers o1 and o2, and one small
possibly anomalous cluster O3. It is important to identify such data points, as
they could provide critical information.

AD is applied in many research fields such as intrusion detection, fraud detec-
tion, medical outlier detection, industrial damage detection, video surveillance,
text anomaly detection, sensor networks, and IoT big data outlier detection

3 3

1

Chapter 1. Introduction Chapter 1. Introduction

(see the surveys in [13, 14]). It is crucial to find the anomalies in these areas,
as outliers could indicate a dangerous or faulty process, such as a cyber attack,
fraudulent activity, or system failure. Since there are so many application do-
mains, there are also various kinds of anomalies that can be searched for. Also,
each type of anomaly has different outlier detection techniques specialised for
it. Three categories have been described [2, 13, 14]:

• point anomalies

• contextual anomalies

• collective anomalies.

Point Anomalies They refer to single observations that are considerably
different from the rest. Take for example credit card data: when there is a very
large transaction, which is way higher than usual for the specific owner, it is
considered to be a point anomaly.

Contextual Anomalies This category refers to observations that are anom-
alous only in a specific context. Say rent is always deducted on the 27th of each
month, then a rent payment on the 8th is a contextual anomaly. The deduction
of rent is in itself not an outlier, but in this specific situation it is.

Collective Anomalies These observations are not necessarily anomalous by
themselves, but collectively they are when compared to the rest of the data. If
one’s credit card is stolen, often the thief makes transactions of small amounts
to not seem suspicious [81]. Each transaction on its own is not an outlier, but
the set of these transactions is collectively anomalous.

Besides anomaly types, the choice of outlier detection techniques depends on
the availability of data labels too [14]. In this binary setting, the label of an
observation denotes whether it is normal or anomalous. Due to the different
stages of label availability, supervised, unsupervised, and semi-supervised AD
methods have been developed.

Supervised Anomaly Detection SL methods are designed for fully la-
belled data with normal and anomalous observations. Therefore, learning be-
comes a binary prediction problem. Gogoi et al. [33] state that the anomalies
should have some signature for SL techniques. To this end, anomalous char-
acteristics can be learned and similar unseen outliers can be detected. This
immediately shows one of the limitations: new anomalies with different char-
acteristics are not easily detected. Furthermore, it is often not feasible to label
a sufficiently large dataset to capture the complex underlying structure. This
limits the applicability of SL methods in practice.

Unsupervised Anomaly Detection UL methods do not require any labels
at all, and as a result, have fewer practical limitations. The premise is to build

4 4

1

Chapter 1. Introduction 1.1. Anomaly Detection

a model of expected behaviour and then detect anomalies as observations that
deviate from this behaviour [33]. Although UL techniques are much better
in detecting novel anomalies than SL, they struggle to obtain an overall good
detection rate [37].

Semi-Supervised Anomaly Detection SeSL techniques are in between SL
and UL. The methodology is usually deduced from supervised algorithms, but
with the added benefit of using unlabelled data [37]. For example, if a data
point with characteristics that resemble an anomalous signature is located in
a region with many unlabelled observations, then it is less likely to be classi-
fied as an anomaly than if it is located in a low-density region. This means
SeSL methods combine the strengths of SL and UL, which could lead to better
detection performance.

1.1.2 Challenges in Anomaly Detection
The research on AD and its application is widely spread, but there are common
challenges. We discuss three important ones.

Lack of Decent Data It is often difficult to obtain labelled data that is
both correct and representative for all types of behaviour. This is especially
the case for anomalous observations. Ahmed et al. [2] and Sommer and Paxson
[103] discuss this specifically for the field of NID, but they state that it is not
limited to the cyber security domain. Moreover, much of the raw data is un-
structured, for example it has variables whose entries are comments written by
people. Or, there could be some missing values for certain features, completely
missing variables, or multiple features that are highly similar. Feature engin-
eering and feature extraction are necessary tools to convert data into a usable
dataset. Feature engineering is the act of constructing new variables from ex-
isting features using human insights of the domain [135]. In computer network
data, the relative difference between the number of bytes sent and received can
provide valuable information. Hence, this feature is constructed from the two
variables and added to the feature set. In feature extraction, variables that are
redundant or non-informative are transformed or removed. When the data has
two features that always add up to 1, then one of them is redundant and could
therefore be removed.

Computational Complexity Chalapathy and Chawla [13] and Chandola
et al. [14] discuss some other challenges in AD research, one of which is compu-
tational complexity. In an offline setting, extensive training can be done before-
hand, and testing is usually done quickly. However, complications arise in an
online setting when the model is retrained often. Outlier detection techniques
commonly have an extensive training procedure (in terms of long learning times
and large memory usage). Therefore, which technique to select is an important
factor in constructing an AD method. The survey by Ahmed et al. [2] can

5 5

1

Chapter 1. Introduction Chapter 1. Introduction

aid in this, as it specifically lists the computational complexity of many AD
methods.

Unsupervised Evaluation Finally, the evaluation of the general perform-
ance of a prediction model is a major issue in UL [48]. Because labels are
not available, it is difficult to judge whether the method has predicted well.
Faced by this, Goldstein and Uchida [34] propose a ‘comparative evaluation’
of many AD techniques. For each algorithm, they rank the resulting anomaly
scores, apply different thresholds for predicting something as normal or an-
omalous, and construct the receiver operator characteristic (ROC) curve. The
area under this curve quantifies the prediction performance. Note that it is
again necessary to know some of the actual anomalous observations, i.e., to
have some labels, which are difficult to come by. However, this information can
be provided by cleverly incorporating a human domain expert.

1.1.3 Research Questions in Anomaly Detection
We rephrase the challenges described in the previous subsection in the following
RQs:

1a How can we make the raw data of two real case studies usable for AD?

1b What are the strengths and weaknesses of the SL and UL techniques used
in these case studies?

1c What are the benefits of using a human domain expert to inspect the
anomalous instances that the ML technique discovered?

These three questions are dissected in Part I, which consists of Chapters 2
and 3. The answers are summarised and discussed in Chapter 8.

1.1.4 Our Contributions to Anomaly Detection
RQ 1a is explored in Chapters 2 and 3. In these chapters, we perform feature
engineering and feature extraction on the raw data of two novel case studies to
create usable datasets. The first case study is aimed at discovering malicious
network connections in data that was captured during a realistic international
cyber defence exercise. The second case study entails the identification of fraud-
ulent bookings in datasets of aeroplane bookings made by online travel agencies.
We use domain knowledge to engineer relevant new features, remove redundant
variables, and combine specific features to make them more informative. We
show that these variables are important in the discovery of outliers, and hence,
they provide valuable insights to AD in cyber security and in booking fraud
detection.

To address RQ 1b, we consider two levels of label availability, namely (i) only
partial labels, and (ii) no labels. In Chapter 2, only some malicious observations
have been labelled beforehand. It is undetermined whether other instances are

6 6

1

Chapter 1. Introduction 1.2. Model Evaluation

malicious or not. We apply both unsupervised and supervised techniques to
examine their strengths and weaknesses on network data. We do not need labels
for UL, but we do use the known malicious observations to see how accurately
they are found. In SL, we assume that the unlabelled observations are all
normal (benign), because malicious connections are relatively rare. Under these
unique assumptions, we demonstrate interesting differences between the UL
and SL paradigms in NID. In Chapter 3, the data consists of online aeroplane
bookings and is completely unlabelled. Hence, we are limited to using UL
methods. Since several techniques are considered, we compare their results on
booking data containing some fraudulent observations. Additionally, the two
case studies both operate in an offline setting, meaning that potentially long
training times are only encountered once. In Chapters 6 and 7, we have to
work in an online setting. Therefore, we specifically take the computational
complexity into account and also move towards SeSL techniques. We show
that online approaches obtain favourable results without putting a strain on
computational resources.

Finally, RQ 1c is answered by using human domain experts for an assessment
of the results. In Chapters 2 and 3, we present them a set of anomalies that the
detection models have found and ask the experts to indicate which observations
are indeed malicious. Moreover, to evaluate how well benign observations are
classified, we also show the experts non-anomalous data and ask them whether
these instances are normal. This expert evaluation helps us to answer RQ 1b
as well. Moreover, it sets our work apart from research that applies unsuper-
vised techniques and only provides an intrinsic assessment of the results, e.g.,
indicating how many clusters there are, how dense they are, and so on.

1.2 Model Evaluation
In Section 1.1, we proposed including a human domain expert for the evaluation
of unsupervised ML methods. In this section, we explain how an evaluation
metric quantifies performance. Then, we take two different routes. First, we
discuss what problems arise with Model Evaluation when we only have partially
labelled data, and how we contribute to solving this problem. Second, we
examine more fundamental issues that evaluation metrics have even for fully
labelled data and how our research provides a framework that alleviates these
underlying problems.

1.2.1 Supervised Binary Classification
In supervised binary classification, the target value, or label, is predicted using
a function f that maps the K ∈ N>0 feature variables to either one of two
classes: the negative class ‘0’ or the positive class ‘1’. Generally, the dataset is
split into a training set and a test or evaluation set. The latter is used to assess
the prediction performance of the trained model [7]. The trained supervised
model f : RK → {0, 1} outputs the predicted label of an observation given

7 7

1

Chapter 1. Introduction Chapter 1. Introduction

its feature values. All predictions in the evaluation set are compared with the
true classes to see how much they correspond, and consequently, how well the
model performs.

Base Measures An evaluation metric quantifies the prediction performance.
Most metrics are defined as a function of one or more of the four base meas-
ures:

• number of true positives (TP)

• number of false negatives (FN)

• number of true negatives (TN)

• number of false positives (FP).

TP is the number of truly positive instances that are correctly predicted, while
FN is the number of those that are incorrectly predicted. The same reasoning
holds for TN and FP, but with truly negative instances.

Many evaluation metrics combine base measures to provide one bounded value
that is used for overall evaluation. For example, consider the F1 score, which
combines three base measures:

F1 = 2TP
2TP + FN + FP . (1.1)

A higher F1 score means that the model performs better [17]. When the evalu-
ation data is fully labelled, there are no complications in calculating this metric.
However, in this dissertation we examine whether a good and robust equivalent
to the F1 score for partially labelled data can be constructed. Later on, we ana-
lyse evaluation metrics more fundamentally. For example, the F1 score takes
values in [0, 1], but which values are considered bad and which good?

1.2.2 Evaluation Metrics for Partially Labelled Data
For most evaluation metrics it is necessary to know the true labels to determine
the base measures. As Equation (1.1) shows, it is necessary for the F1 score to
know which observations are truly positive or negative in order to determine
TP, FN, and FP. Therefore, we explore the field in which we have partially
labelled data and where we cannot easily calculate the base measures. More
specifically, we consider Positive-Unlabelled Learning (PUL). This domain con-
sists mostly of SeSL methods that learn from data containing either unlabelled
or positively labelled observations [22, 110, 134]. Hence, if an observation is
labelled, then by definition it is positive. This means there are no negative
instances known, making it impossible to calculate TN and FP. Moreover, not
all positive observations are labelled, which complicates the computation of TP
and FN too. Evaluation metrics or PUL strategies that can deal with these
limitations have been proposed, with the measure by Lee and Liu [55] (the

8 8

1

Chapter 1. Introduction 1.2. Model Evaluation

LL score) as a prominent example. This measure has approximately the same
behaviour as the F1 score without the need for negative labels.

Research Question In absolute value the LL score can be rather different
from the F1 score. Moreover, the LL score is not always the highest for the
model that in reality achieves the best F1 score. Therefore, we focus on the
following RQ:

2a Is it possible to construct an accurate and robust equivalent to the common
F1 score for partially labelled data?

This question is at the centre of Chapter 4. An explicit answer is given and
discussed in Chapter 8.

Contributions We show both theoretically and experimentally in Chapter 4
that our PUL estimator of the F1 score works better than the commonly used
LL score under mild assumptions. First, it is closer to the true F1 score, which
is calculated after making all labels available. Second, our estimator is better at
selecting the optimal model out of a set of models than the LL score is.

1.2.3 Benchmarking Performance Scores
Up to now, we have mostly discussed problems with quantifying the perform-
ance of ML models when the data is not fully labelled. However, there are more
fundamental issues in evaluation. We do not mean problems specific to some
evaluation metric such as the F1 score, but an issue that occurs during the as-
sessment process in general. Say we have trained a supervised ML model and
we evaluate it on test data by means of an evaluation metric. This yields some
value that quantifies the prediction performance, but the question remains how
to interpret this score. For example, the F1 score is bounded in [0, 1], so a score
of 0.8 intuitively sounds good. But this can be deceptive: it is possible that it
is rather easy to attain such a score on this specific evaluation set. It can also
be the other way around, a score of 0.4 sounds bad, but can actually be very
good.

Therefore, we need to have a point of reference, a baseline, to compare the
evaluation score with. Usually, a state-of-the-art technique is used to compare
a newly developed method with. However, the results are highly dependent
on the model choice, the parameter settings, and so on. A good and intuitive
baseline would be a score that could be obtained without the need for tuning
parameters or, for that matter, learning anything from the feature values of the
input data. Koyejo et al. [49] and Lipton et al. [61] propose optimal threshold
classifiers and corresponding baselines for a list of evaluation metrics.

Research Question To determine the threshold classifiers, it is still ne-
cessary to learn from the input data. This is not in line with the desire to

9 9

1

Chapter 1. Introduction Chapter 1. Introduction

construct a general, simple, and informative baseline that does not depend on
feature values. Hence, we attempt to answer the following RQ:

2b Is there a general, simple, but informative way to benchmark any eval-
uation metric for binary classification? In other words, can a metric-
specific baseline be constructed that any newly developed ML method should
clearly outperform?

This question is the focus of Chapter 5. The answer is provided and explained
in Chapter 8.

Contributions We propose a universal framework for binary ME, called the
Dutch Draw, that generates a standardised baseline for many evaluation met-
rics. It can be seen as the best dummy classifier for any given situation. First,
the Dutch Draw baseline is general, because it can be used in any binary pre-
diction problem regardless of the domain. Second, it is simple, because it can
be calculated very fast, and it is clear that any learning method should out-
perform the baseline. Third, it is informative, because it is the value of the
optimal dummy classifier, and therefore the best score that could be obtained
without learning from the features values. Because of these three properties,
we advocate for the inclusion of the Dutch Draw baseline in ML research. It
gives a strong foundation for assessing the performance of newly developed
methods.

1.3 Active Learning
In Section 1.1, we proposed to use a human expert for ME when labelled data
is scarce. An example of this is presenting the most anomalous results of an
outlier detection technique to an expert and asking whether malicious instances
were indeed discovered. The field of ML that is built on this concept is called
Active Learning. In this section, we first provide an overview of the general
framework of AL. Then, we explain what issues are present within AL and
how our approach could aid in mitigating those. Finally, we extend our AL
method by incorporating automatic labelling of observations. Hence, we make
it possible for ML techniques to actually label the unlabelled data within the
AL framework.

1.3.1 Active Learning Framework
The main idea behind AL is that the method can decide which data it wants
to be labelled, and consequently, from which data it wants to learn [100]. If
selection is done effectively, less labelled data is needed to obtain good per-
formance [52]. Figure 1.2 provides an illustration of the AL framework. At
the start, a classifier is trained on the current labelled dataset such that it
can predict the classes of the observations in the unlabelled pool. Then, the
query function makes a selection of one or more instances that are presented

10 10

1

Chapter 1. Introduction 1.3. Active Learning

Figure 1.2: Illustration of AL framework (taken from [100])

to the human expert, the oracle. How this query function is defined is usu-
ally the fundamental component that determines the AL approach. There are
many query strategies, ranging from simple ones, such as selecting anomalous
instances [88], to much more complex ones, such as using Deep Learning [92].
It is generally assumed that the oracle provides the correct labels for the query
observations. These instances are then added to the labelled set and removed
from the unlabelled pool. Then, the next iteration starts and the procedure
repeats itself. Hence, each iteration, the labelled pool becomes larger. If the
query function selects the right observations at the right time, performance
of the classifier can quickly increase. The procedure terminates when, for ex-
ample, the labelling budget has been exhausted or when some performance score
has been reached.

The optimal query function depends on many factors, including the field in
which AL is used. In the next subsections, we describe the developments of AL
in NID and analyse which query functions have been proposed. We propose
an advanced dynamic query function that is able to adjust itself during the
labelling process. Later on, we investigate how ML can be used as an extra
labelling source and propose our simple, yet powerful approach to automatic
classification.

1.3.2 Dynamic Active Learning in Network Intrusion De-
tection

NID is one of the fields in which AL can effectively be applied, because of the
difficulty to obtain labelled data [124, 125]. Network connections are diverse,
dynamic, and numerous [103]. Hence, several AL approaches have been pro-
posed in cyber security to enhance labelling efficiency. Many of these methods
have a query function that focuses on the prediction uncertainty of unlabelled
data, i.e., the function asks for the labels of observations about which the model
is the least certain on how to classify them [36, 39, 60]. Obtaining the correct
labels for such data is expected to be informative to the classifier, and hence,
prediction performance should increase more than when random observations

11 11

1

Chapter 1. Introduction Chapter 1. Introduction

are queried. Uncertainty selection is one of the possible query strategies, but
many more can be constructed. For example, the query function could consist
of multiple strategies with each focusing on a different aspect of the data.

Although it seems that for each situation a fitting query function can be con-
structed, at the start it is not clear which strategy will work well. Considering
multiple strategies could improve performance. However, this raises a new
question: how to combine the strategies into a better query function? Say
we construct a query set of 100 observations, and we want to reserve different
parts of the set for specific types of instances. But, which part is assigned to
uncertain observations and which part to anomalous instances, for example?
Stokes et al. [104] query these types of observations in a 50/50 fashion, but
this split is not motivated. Or, maybe we want to combine different data char-
acteristics to obtain a new metric that determines whether an observation is
selected. Moreover, when the decision rules have been set at the start, it is not
certain that their benefits remain the same throughout the labelling process.
Remember that each iteration new query observations are shown to the oracle.
Maybe the allocation proportions work well at the beginning, but deteriorate
later on in the process.

Research Question We focus on the following RQ:

3a What are the effects on the prediction performance and the labelling pro-
cess when the query function can dynamically adjust itself to best fit the
current situation?

Chapter 6 supplies the knowledge that is necessary to answer this question.
The answer is given and analysed in Chapter 8.

Contributions We introduce Jasmine, a novel AL method that allows for
changing the allocation balance during the process. As a result, the right type
of query observations are queried to the oracle at the right time. We show
that Jasmine obtains good and more robust results than several static query
functions do. The ability to dynamically update the balance sets our research
apart from other AL procedures.

1.3.3 Active Learning with Semi-Supervised Learning
With dynamic updating we optimise the query procedure: the method is able to
select the most informative observations to present to the oracle. However, the
rate at which the set grows is still limited by the labelling speed of the oracle.
Adding another labelling source to the method could speed up the process
substantially. Thus, why not use ML for automatic labelling? Besides the small
labelled set, we have a rich set of unlabelled data available that can be exploited
to classify specific observations without taking resources from the oracle. As
before, each iteration a query set is constructed, but now also a subset of
unlabelled observations is selected for automatic labelling. A commonly used

12 12

1

Chapter 1. Introduction 1.4. Overview of Dissertation

strategy is based on certainty: if the confidence of the classifier in its prediction
exceeds some threshold, then the observation is automatically labelled [115].
Intuitively, by incorporating such a new source of labelling, the labelled pool
can expand very quickly, and hopefully, performance increases too.

The example provided above is highly reminiscent of SeSL: unlabelled data is
used to improve the predictions made by the model trained on labelled ob-
servations. Indeed, SeSL has been combined with AL to increase labelling
efficiency [40, 56, 115]. However, such Active SeSL (ASeSL) techniques have
not been used much in NID. For example, Mao et al. [69] and Zhang et al. [133]
introduce methods that assume a distinctive property of the data, but this does
not usually hold. Moreover, to ensure whether the data has this property, lots
of human effort is necessary [71]. This directly challenges the need to use as
little human resources as possible. Lastly, the AL techniques in these ASeSL
methods are all of static nature.

Research Question To address the limitations stated above, we pose the
following RQ:

3b What are the effects on the prediction performance when SeSL is used
besides AL to automatically label observations?

This question is tackled in Chapter 7. The answer is provided and discussed
in Chapter 8.

Contributions We propose Plusmine, a new ASeSL method that incorpor-
ates (i) our dynamic AL method Jasmine with some improvements, and (ii)
a novel SeSL approach that allows for automatic labelling. This approach
considers the expected effect of automatically classifying data observations on
the performance in the next iteration step. This information is then used to
determine which observations are actually automatically labelled, and hence,
added to the labelled pool of data. Because of its simplicity, it does not require
many computational resources, but we show that it does increase the prediction
performance more than benchmark methods do.

1.4 Overview of Dissertation
We mold the symbiosis between human and machine by exploring the research
topics Anomaly Detection, Model Evaluation, and Active Learning. The con-
tents of Part I of this dissertation correspond to AD, Part II corresponds to
ME, and Part III to AL. Table 1.1 gives an overview of the chapters and how
they relate to the research questions and the scientific papers and publica-
tions.

The specific personal contributions that I made to the scientific papers are
listed below.

13 13

1

Chapter 1. Introduction Chapter 1. Introduction

Table 1.1: Overview of the parts, chapters, papers, and RQs

Part Chapter Paper RQ

I 2 Klein et al. (2018) [47] 1a, 1b, 1c

3 Mensah, Klein et al. (2019) [72] 1a, 1b, 1c

II 4 Tabatabaei, Klein et al. (2020) [109] 2a

5 Van de Bijl, Klein, Pries et al. (2022) [118] 2b

III 6 Klein et al. (2022) [45] 3a

7 Klein et al. (2021) [46] 3b

Ch. 2: Klein et al. (2018) [47]
I took the lead in this project. After the dataset was provided to me, I
contributed to the analysis of the data and constructed new features that
were expected to aid in prediction. Moreover, I performed the literature
review, contributed to the construction of the methodology and experi-
mental setup, and I executed the experiments. I made visualisations of
the results and assisted in the interpretations of them. Last, I wrote two
versions of the research, the short version was published and the extended
version can be read in this dissertation.

Ch. 3: Mensah, Klein et al. (2019) [72]
This research was mainly performed together with Caleb Mensah, an
M.Sc. Business Analytics student (now graduated) who I supervised. To-
gether, we conceptualised the project, designed the methodology, con-
structed the experiments, and analysed the results. I contributed to the
literature review and wrote the published paper.

Ch. 4: Tabatabaei, Klein et al. (2020) [109]
This research can be crudely split into two. There is a theoretical and
an experimental side. I focused on the first and provided and wrote the
mathematical formulation, derivations, and proofs for the research. Fur-
thermore, I offered feedback and adapted other parts of the publication.

Ch. 5: Van de Bijl, Klein, Pries et al. (2022) [118]
Together with Etienne van de Bijl and Joris Pries, I was actively involved
in all research steps. I conceptualised the research topic, contributed
to the methodology, mathematical formulations, derivations, and proofs.
Moreover, I was involved in composing the experimental setup, and ana-
lysing and discussing the results. Lastly, I wrote substantial parts of the
scientific paper, provided feedback, and made adaptations to everything.

14 14

1

Chapter 1. Introduction 1.4. Overview of Dissertation

Ch. 6: Klein et al. (2022) [45]
I had the lead in this research and was involved in all of its components.
I reviewed the literature and contributed to the construction of the meth-
odology including the mathematical formulations and derivations. Also,
I composed the experimental setup and executed the experiments. After
this, I made visualisations of the results and assisted in the analysis of
them. The scientific paper was written by me.

Ch. 7: Klein et al. (2021) [46]
I made contributions to all components of this research. I reviewed the
literature and was involved in designing the methodology with all math-
ematical formulations and derivations. The experiments were composed
and executed by me. Moreover, I visualised the results and was involved
in the analysis. Finally, I wrote the published paper.

15 15

1

Chapter 1. Introduction Chapter 1. Introduction

16 16

Part I

Anomaly Detection

17

22

2
Detecting Network Intrusion Beyond 1999:
Applying Machine Learning Techniques to a

Partially Labelled Cyber Security Dataset

For decades, Network Intrusion Detection Systems (NIDSs) have been used to
defend computer networks against malicious cyber activities. For the construc-
tion of such detection systems, different approaches can be taken: aimed at the
identification of known attacks, or directed at the discovery of new, previously
unknown, intrusions. Both approaches have been widely studied in the field
of Machine Learning (ML). However, the second, anomaly-based approach has
been employed only recently in the operational setting. This is partly due to
the lack of good training data. In most research, a dataset from 1999 is used
as a benchmark for evaluation, but the problem is that data quickly becomes
outdated in the field of cyber security. This research uses a recent, partially
labelled dataset based on the Locked Shields 2017 exercise. The main contribu-
tions of this chapter are to show how to cope with missing labels, how different
ML techniques perform on partially labelled data, and how to determine which
features are important. The performance is assessed with the aid of the avail-
able labels. Moreover, a cyber security expert analyses the results and shows
that the models are able to classify the known intrusions as malicious, and that
they are able to discover new intrusions. In a set of 500 detected anomalies, 50
previously unknown malicious observations are found. Given that intrusions
are not frequent, this shows how well an unlabelled dataset can be used to
construct and to evaluate an NIDS.

19

22

Chapter 2. Intrusion Detection Chapter 2. Intrusion Detection

Based on [47]:
Jan Klein, Sandjai Bhulai, Mark Hoogendoorn, Rob van der Mei, and
Raymond Hinfelaar
Detecting Network Intrusion Beyond 1999: Applying Machine
Learning Techniques to a Partially Labeled Cybersecurity Dataset
2018 IEEE/WIC/ACM International Conference on Web Intelligence

20 20

22

Chapter 2. Intrusion Detection 2.1. Introduction

2.1 Introduction
With the continuing rise in the presence of cyber attacks, it becomes more and
more important to protect computer networks and data from unauthorised
access. On a large scale, the year 2017 has seen some major cyber security
disasters [121]. An example is WannaCry, a worldwide cyber attack aiming for
computers using the Microsoft Windows operating system. It is estimated that
more than 200,000 computers in 150 countries were affected with total costs
ranging from hundreds of millions to billions of dollars [1].

To discover malicious activities, Network Intrusion Detection Systems (NIDSs)
have been developed. There are different types of systems: for example, aimed
at misuse detection or anomaly detection (AD) [103]. The first relies on the
properties of known attacks to discover these activities in new network traffic
using signature matching algorithms. Misuse detection is effective in recog-
nising previously seen attacks. The second type focuses on activities different
from what is expected. A model of normal behaviour is constructed, and hence,
deviations from the expected activity are detected. Malicious activities are as-
sumed to exhibit abnormal behaviour, and hence, AD is effective in discovering
novel intrusions. Both approaches to network intrusion detection (NID) have
been widely researched with the aid of Machine Learning (ML) [131].

However, in the operational setting, AD systems are highly underrepresented.
Only recently the use of these systems has moderately increased. Sommer and
Paxson [103] argue that this low popularity is due to “(i) a very high cost of
errors; (ii) a lack of training data; and (iii) an enormous variability in input
data”. Misclassification of observations yields a higher cost in intrusion detec-
tion than in other fields in which ML is used. Benign observations incorrectly
classified as malicious (false positives) burden cyber security specialists with the
task to redundantly investigate whether these are dangerous. Yet, especially
intrusions labelled as harmless (false negatives) are undesirable, since they can
result in serious damage to the network. The lack of good training data is
because of the usual sensitivity of the data and the laboriousness of labelling
a dataset [68]. There are few publicly available datasets that can be used as a
contemporary benchmark to evaluate developed NIDSs. In literature [23, 41,
43, 93, 116], the NSL-KDD dataset is usually used for validation. This is a
refined version of a dataset generated in 1999. Since it is almost 20 years old,
it is impossible for this dataset to resemble current network traffic. The di-
versity of network traffic is also a reason for the low presence of anomaly-based
NIDSs. Even within a single network, basic features such as the duration of a
connection can greatly vary.

The aim of this chapter is firstly to study the performance of different ML
techniques on a partially labelled recent dataset. We compare the results
of algorithms for Supervised Learning (SL) and Unsupervised Learning (UL).
Secondly, this research examines the influence of each feature in detecting cyber
attacks. Thirdly, the cyber security expert, who is part of the research team,

21 21

22

Chapter 2. Intrusion Detection Chapter 2. Intrusion Detection

analyses two samples of observations which have been assigned a high or low
probability of being an intrusion by the models and determines whether there
are previously unknown malicious activities. Fourthly, the results are compared
with a benchmark technique from literature. We use the Locked Shields 2017
dataset as input data for the different techniques. This dataset contains only
positively labelled and unlabelled observations: some activities are known to
be malicious, but for the rest of the observations it is unknown whether they
are malicious or benign. Before we employ the ML techniques, we examine how
we can manipulate the raw Locked Shields data to engineer usable variables for
learning. Finally, we demonstrate with our research that it is not necessary to
have (completely) labelled data to construct and test an NIDS. Since network
intrusion data has to be manually labelled by experts, precious time is saved
this way.

The subsequent parts of this chapter are structured as follows. In Section 2.2,
we analyse the Locked Shields dataset in its raw form. In Section 2.3, we
discuss how relevant features can be engineered and extracted from the data,
and we explain how to apply the aforementioned ML techniques. In Section 2.4,
we present the results from these different methods and compare them. In
Section 2.5, we discuss the implications of the results, draw conclusions, and
give suggestions for further research.

2.2 Data: Locked Shields 2017
The unique and recent dataset used in this research is based on the Locked
Shields exercise of 2017, organised by the NATO Cooperative Cyber Defence
Centre Of Excellence (CCDCOE). Since 2010, the CCDCOE annually organises
Locked Shields. This is “the world’s largest and most advanced international
technical live-fire cyber defence exercise” [83]. The goal of this exercise is to
train the security experts who protect the national IT systems. In short, the
teams are given control over a fictional country and are expected to maintain its
networks and services. Information about the proceedings during the Locked
Shields 2017 exercise is provided by Maennel et al. [67] and experiences of par-
ticipants of previous years by Kulich [51] and Schuetz and Burschka [98].

The Locked Shields data consists of several log files collected by Bro, which is
a network security monitor developed by Paxson [86]. One of the largest files
is conn.log, which contains general information on TCP/IP, UDP, and ICMP
traffic. This log file consists of M = 15,369,736 observations with 21 variables.
On the one hand, not all features are of relevance for the analysis: some of
them have a single value across all observations or do not contain relevant
information, such as the unique ID of each connection. On the other hand, two
extra variables were added by the cyber analyst: subnet_orig and subnet_resp.
These variables could play a role in determining whether a connection is an
intrusion. This brings the total number of variables to K = 19. They are
shown in Table 2.1 with a short description of each feature. Lastly, some IP

22 22

22

Chapter 2. Intrusion Detection 2.3. Methodology

Table 2.1: Raw features in conn.log

Name Description Range and/or size
ts Unix time of ≈ [1.49316× 109,

first packet 1.49330× 109] ⊂ R+
id.orig_h source IP address 1,723 addresses
id.resp_h destination IP address 4,444 addresses
id.orig_p source port number |{0; . . . ; 65,535}| = 64,538
id.resp_p destination port number |{0; . . . ; 65,501}| = 5,336
proto transport protocol |{icmp, tcp, udp}| = 3
srv application protocol |{-, dhcp, . . . , ssl}| = 13

duration duration connection ≈ [0; 128,232] ⊂ R+
orig_bytes # bytes originator ≈ {0; 9.806× 109} ⊂ Z+
resp_bytes # bytes responder ≈ {0; 9.284× 109} ⊂ Z+
conn_state state of connection |{OTH,REJ, . . . }| = 13
missed_bytes # bytes lost in content gaps ≈ {0; 1.789× 108} ⊂ Z+

history history of connection 981 strings
orig_pkts # packets originator sent ≈ {0; 7.452× 106} ⊂ Z+
resp_pkts # packets responder sent ≈ {0; 1.400× 107} ⊂ Z+

orig_ip_bytes # IP level bytes ≈ {0; 1.002× 1010} ⊂ Z+
originator sent

resp_ip_bytes # IP level bytes ≈ {0; 9.700× 109} ⊂ Z+
responder sent

subnet_orig source subnet connection |{-,BT_SINET, . . . }| = 26
subnet_resp destination subnet connection |{-,BT01, . . . }| = 23

addresses appearing in this dataset were indicated as malicious, allowing us to
label the corresponding observations as intrusions.

2.3 Methodology
As mentioned before, the Locked Shields dataset is partially labelled: 8,442
(≈ 0.055%) observations are malicious, while the classes of the remaining
15,361,294 (≈ 99.945%) connections are not known. Consequently, both UL
and SL techniques were applied, and their results were compared. Semi-
supervised algorithms were not considered, because the subset of labelled ob-
servations all share the same label (being malicious). The Autoencoder was
used as the UL technique to discover the observations that deviate from the
rest. The confirmed malicious observations were used as a test for the quality
of the model. The Gradient Boosting Machine (GBM) was employed as the SL
method. Here, the unknown instances were all considered to be benign. The
number of intrusions correctly classified as such gave a measure of performance.
Moreover, the important features were determined and the cyber security ex-
pert analysed two samples allowing for a different way to assess the accuracy

23 23

22

Chapter 2. Intrusion Detection Chapter 2. Intrusion Detection

of the models. Finally, the results were compared with those of a benchmark
method.

2.3.1 Pre-processing
Before the experiments were carried out, an adequate target dataset had to be
assembled. This entailed extracting and engineering the appropriate features
using the raw Locked Shields data, and determining how the data could be
used for the training, validation, and test phases.

Feature Extraction

An Autoencoder can only handle numerical variables, but as shown in Table 2.1,
some variables are categorical. Hence, it was necessary to extract new numer-
ical features using the categorical variables. Since the discussed models were
ultimately compared, the constructed numerical dataset was used in both the
Autoencoder and the GBM algorithms. One-hot encoding can be effectively
used on categorical features: if there are C categories, then C − 1 binary vari-
ables are introduced with each variable corresponding to a category. The one
missing is the baseline category. The number of additional variables linearly
increases with the number of original categories, hence one-hot encoding was
only used on the variables proto and srv with a few categories. Even though
conn_state has the same number of categories as srv, it was not split into twelve
binary variables. This is because conn_state was used to construct other nu-
merical features that retain its relevant information. This is explained in more
detail later.

The variables subnet_orig and subnet_resp indicate from and to which subnet
(logical division of an IP network) a connection came and went, respectively.
Both features have seventeen categories, which are not necessarily the same.
One-hot encoding was also used on these variables.

Feature Engineering

The features id.orig_h and id.resp_h both have many possible categories. This
also holds for the port number variables id.orig_p and id.resp_p, since port
numbers should be seen as categories even though they are represented by
numbers. It would be very ineffective to introduce a binary feature for each
of the categories for these variables. Therefore, they were replaced by engin-
eering new features. The previously mentioned NSL-KDD dataset, described
in [23], was taken as an example for this process. In that dataset, IP ad-
dresses, port numbers, and the connection state are no explicit variables, but
numerical features have already been derived from them. For instance, from
id.resp_h the new variable resp_h_count_τ was composed. For observation
i ∈ {1, . . . ,M} =:M, this variable is the number of connections in the last τ
seconds to the same destination host (responding IP address) as that of con-

24 24

22

Chapter 2. Intrusion Detection 2.3. Methodology

nection i. Formally,

resp_h_count_τ i := |Resp_hi ∩ T_τ i| − 1,

where Resp_hi is the set defined as

Resp_hi =
{
j ∈ N : id.resp_hj = id.resp_hi

}
,

T_τ i is given by

T_τ i =
{
j ∈ N : tsj ∈ [tsi − τ, tsi]

}
,

and the minus 1 is because i itself is always in the connection sets Resp_hi and
T_τ i. Equivalently, such features were also composed from id.orig_h, id.orig_p,
id.resp_p, proto, and srv.

Next, several new features were engineered from conn_state. This categorical
variable has thirteen possible values, which can be partitioned into two groups:
(1) a group with normally established connections; and (2) a group with con-
nections that caused some error. According to Dhanabal and Shantharajah
[23], the categories S0, S1, S2, S3, and REJ indicate an abnormal state of the
connection. However, the official documentation of Bro [114] implies that the
categories S0, REJ, RSTR, RSTOS0, RSTRH, SH, and SHR indicate connec-
tion states that raised an error. Let Error_state be the set of all observations
with one of these error categories. Now, consider for example resp_h_count_τ ,
which was just introduced. From this, the variable resp_h_error_rate_τ was
constructed, which denotes the fraction of connections inside that count feature
which have an error state. More specifically,

resp_h_error_rate_τ i = |Error_state ∩ Resp_hi ∩ T_τ i|
|Resp_hi ∩ T_τ i|

.

These features were also constructed for variables id.orig_h, id.orig_p, id.resp_p,
proto, and srv. They all take values in [0, 1].

Moreover, we also paired the constructed count variables with each other. For
example, let resp_h_same_proto_ratei indicate the fraction of connections in
Resp_hi ∩ T_τ i that used the same protocol as i. Hence,

resp_h_same_proto_ratei = |Protoi ∩ Resp_hi ∩ T_τ i|
|Resp_hi ∩ T_τ i|

,

where
Protoi =

{
j ∈ N : protoj = protoi

}
.

In the NSL-KDD data, some of the aforementioned engineered features were
aggregated over a time window of τ = 2 seconds, which gave rise to a short-
term analysis of the data. In this research, this was extended to an additional
aggregation over τ = 120 seconds (two minutes).

25 25

22

Chapter 2. Intrusion Detection Chapter 2. Intrusion Detection

Next, the Producer-Consumer Ratios (PCRs) were added to the dataset on the
advice of the cyber specialist. These variables describe the interaction between
data sent by the originator and by the responder. Generally, the PCR is defined
as

PCRi = Origi − Respi
Origi + Respi

.

Note that PCRi ∈ [−1, 1], with a positive value meaning that the originator
sends more data, a zero value meaning that they send the same amount, and a
negative value meaning that the responder sends more. Here, three versions of
the PCR were formulated: PCR_bytes, PCR_pkts, and PCR_ip_bytes.

Finally, since relevant information had been derived from id.orig_h, id.resp_h,
id.orig_p, and id.resp_p, these variables were removed from the dataset. Also,
the features ts and history were discarded, because most of their added values
are captured by the variables mentioned before. After the process of feature en-
gineering and extraction, the transformed Locked Shields 2017 dataset consists
of Ktf = 142 features.

Data Preparation

There were some steps left to do before the experiments could be carried
out. Firstly, the first 120 seconds of data were removed. The aggregated
temporal variables are skewed at the start of the exercise. This resulted in
the removal of 614 instances (≈ 0.004%). Since there are no labelled mali-
cious observations in the first 120 seconds, it was justified to discard them.
Secondly, the dataset was randomly split into three independent sets with al-
location percentages 70%/15%/15%. The training set (Mtrain = 10,758,386)
was used to train the model, the validation set (Mval = 2,305,368) to determine
the optimal hyperparameters of the ML method considered, and the test set
(Mtest = 2,305,368) to assess the accuracy of the model. Of the total of 8,442
labelled malicious observations, Ptrain = 6,004 ended up in the training set,
Pval = 1,221 in the validation set, and Ptest = 1,217 in the test set. Moreover,
Ktrain = Kval = Ktest = 142.

2.3.2 Autoencoder
The first model considered in this research is a UL method called the Autoen-
coder. It is a neural network closely related to the multi-layer perceptron with
an input layer, at least one hidden layer and an output layer. By definition,
the input layer has as many nodes as the output, because the purpose of an
Autoencoder is to reconstruct its input. It has been shown that this technique
works well for AD and feature dimensionality reduction [32, 132], but not yet
in the specific case of NID.

26 26

22

Chapter 2. Intrusion Detection 2.3. Methodology

Hyperparameters

During training, the optimal weights are determined such that the loss function
is minimised. However, there are hyperparameters which had to be determ-
ined beforehand. These were the number of layers L ≥ 3 in the network, the
number of neurons Kl ∈ N in layer l ∈ {1, . . . , L}, and the Ridge regularisation
shrinkage parameter λ ∈ R+. The latter parameter was used to avoid over-
fitting to the data. The activation function used was the hyperbolic tangent
function. Note that each additional hidden layer l introduces a new parameter
Kl to choose. To reduce this complexity, the condition stating that the network
should be symmetric and the geometric pyramid rule were imposed. This rule
specifies the number of neurons Kl in layer l by

Kl = K(L+1)/2 ·
(

Ktrain

K(L+1)/2

) |2l−(L+1)|
L−1

, l ∈ {1, . . . , L}.

Consequently, Kl is a function of the number of neurons in the middle layer
K(L+1)/2. Hence, the three hyperparameters left were L, K(L+1)/2, and λ.
Their optimal values were determined with the aid of the validation set. This
set was fed to a trained Autoencoder and for every observation the mean
squared difference between its input and output was calculated. More spe-
cifically, let xi,p be the (standardised) value of feature p for instance i and let
x̂i,p be its (standardised) reconstructed value. Then the mean squared error
MSEi is defined as

MSEi = 1
Ktrain

Ktrain∑
p=1

(xi,p − x̂i,p)2. (2.1)

The assumption is that a malicious observation cannot be correctly reconstruc-
ted, and hence, results in a relatively high MSEi. The hyperparameter com-
bination (L,K(L+1)/2, λ) chosen was the one that maximised the Discounted
Cumulative Gain (DCG). It is defined as

DCG =
∑

j∈Rval

malj
log2(j + 1) . (2.2)

Here, Rval is the set of ranks of the mean squared errors of the observations in
the validation set, hence it is a permutation of {1, . . . ,Mval}. The instance i
with the largest MSEi obtained rank 1 and the observation with the smallest
value got rank Mval. For example, the first element of Rval is the rank of
the first element in the set of validation observations. The binary variable
malj indicates whether the observation corresponding to rank j is malicious
(1) or unknown (0). A large value of DCG indicates that the known malicious
observations obtained high ranks, and hence, had large MSEs. Note that DCG
is bounded: in a ‘perfect’ ranking all known malicious instances obtain ranks 1
through Pval and in the worst ranking all these observations obtain the lowest

27 27

22

Chapter 2. Intrusion Detection Chapter 2. Intrusion Detection

possible ranks. Formally,

Mval∑
i=Mval−Pval+1

1
log2(i+ 1) ≤ DCG ≤

Pval∑
i=1

1
log2(i+ 1) ,

which simplifies to approximately DCG ∈ [57.77, 144.94] in this case. For
convenience, the normalised DCG (nDCG) was considered. This is a linearly
scaled version of DCG such that it takes values in [0, 1]. Now, when the ranks
are randomly assigned, then E(nDCG) ≈ 0.0532 and Var(nDCG) ≈ 3.68×10−6.
Hence, a value larger than E(nDCG) means the model performed at least better
than random.

Lastly, when no labels are present, it is possible to use a technique such as the
elbow method to perform hyperparameter tuning.

2.3.3 Gradient Boosting Machine
The second ML method considered is called Gradient Boosting, or the Gradient
Boosting Machine, and can be used for AD [91]. It is a supervised forward-
learning technique that constructs a prediction model as an ensemble of decision
trees. An observation presented to a trained GBM follows the constructed path
through this ensemble and finishes in an end node (or leaf). This node assigns a
probability of being in a certain class to the observation. Since Gradient Boost-
ing is an SL technique, it requires labelled training data. Hence, a decision
had to be made how to categorise the unknown observations in the dataset.
The straightforward approach was to label all unknowns as benign. As a con-
sequence, the malicious class was highly underrepresented (≈ 0.056%).

Hyperparameters

Some parameters had to be determined before performing Gradient Boosting:
the number of trees T ∈ N to be constructed and the class sampling factors
α0, α1 ∈ R+. Class c ∈ {0, 1} is undersampled if αc < 1 and oversampled if
αc > 1. The optimal values for these hyperparameters were determined by the
validation set similar to what was done for an Autoencoder. Each observation
i in the validation set was fed to the trained GBM (given some parameter
combination) and the probability p(1)

i of being in class 1 was obtained. The
probabilities of all validation instances were ranked and the DCG as defined
in Equation (2.2) was calculated (with Rval the set of ranks of the probabilit-
ies).

2.4 Results
The procedures described in Section 2.3 were conducted in R with the aid
of the cluster computers at SURFsara in Amsterdam. Both ML techniques
are available in the H2O package, which was developed by H2O.ai. This is

28 28

22

Chapter 2. Intrusion Detection 2.4. Results

Figure 2.1: Mean MSE of test observations

an open source platform enabling the use of several ML algorithms. In the
benchmark evaluation the C5.0 algorithm was used, which is available in the
C50 package.

2.4.1 Results Autoencoder
The training set was used to construct an Autoencoder network. The purpose
of an Autoencoder is to design a representation of normal behaviour, thus
the 6,004 assumed to be abnormal known intrusions (0.056%) were removed
from the dataset. Consequently, the algorithm did not train on the labelled
observations. However, there are still possibly many unknown intrusions in the
training set.

Hyperparameter Tuning

Several Cartesian grid searches over the hyperparameters were used to max-
imise the discounted cumulative gain DCGauto (as defined in Equation (2.2)).
The initial values of the weights in an Autoencoder were N (0, 1)-distributed.
In other words, training an Autoencoder is a stochastic process, and so, the
performance measure is a random variable. Therefore, 60 Autoencoders were
trained for each hyperparameter combination, which gave an acceptable es-
timate for the expected training procedure. The search over the number of
layers L ranged over {3, 5, 7, 9, 11}; the search over the number of middle neur-
ons K(L+1)/2 over {2, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70}; and the search over the
shrinkage parameter λ over {{10−j}j∈{2,...,13}, 0}. Combinations with a small
L and/or K(L+1)/2 are preferable, because these convey simpler neural net-
works. The combination (L,K(L+1)/2, λ) = (9, 15, 10−4) yielded the relatively
best performance on the validation set with sample mean nDCGauto ≈ 0.230
and sample variance s2(DCGauto) ≈ 0.00139.

29 29

22

Chapter 2. Intrusion Detection Chapter 2. Intrusion Detection

Table 2.2: Five most important features by Autoencoder

feature share
subnet_orig 8.14%

srv 6.74%
resp_p_same_srv_rate_120s 4.88%
resp_p_same_srv_rate_2s 3.70%

subnet_resp 3.69%

Evaluation on Known Intrusions

The test set was used for the evaluation. An Autoencoder was trained (with
the determined hyperparameters by the validation set) on the training set,
and applied to the test set, resulting in a reconstruction MSE for each test
observation. This procedure was repeated 50 times to obtain 50 MSEs for
each test instance. The mean was taken over all these repetitions to estimate
the expected reconstruction MSE. The result is shown in Figure 2.1, where
the mean MSE1 of every test observation is plotted. The black points are the
unknown instances, while the red points are the labelled intrusions. Solid black
regions correspond to a high density of unknown instances. These are mostly
found in the lower parts of the plot, indicating that most of the observations
have a relatively small MSE. The lowest orange line indicates the intrusion
infimum: the level such that all known intrusions are above this line. Hence,
the lowest 74.90% of the data do not contain labelled intrusions. Likewise, the
highest orange line is the intrusion supremum: the level such that all labelled
malicious instances are below this line. This means that there are no known
intrusions in the highest 0.11% of the data. Moreover, the blue line indicates
the mean MSE of the unknown instances (with value 0.0230) and the red line
that of the labelled observations (with value 0.0607). Finally, the average
Autoencoder had nDCGauto ≈ 0.176.

Feature Analysis

The MSE for each test observation was calculated by averaging over the per
feature squared errors (see Equation (2.1)). To determine which variables are
important for the Autoencoder, the share of each feature in the total squared
error (TSE) was calculated, where TSE is the sum of all squared errors. The
larger the share of a feature, the higher the importance of that variable. The
five most important features for the average labelled intrusion are shown in
Table 2.2. Here, the features which were partitioned into binary variables
during one-hot encoding were unified again.

30 30

22

Chapter 2. Intrusion Detection 2.4. Results

Table 2.3: Analysis by the expert

benign malicious unknown
high 65.4% (327) 10.8% (54) 23.8% (119)
low 98.6% (986) 0.1% (1) 1.3% (13)

class total 87.53% (1,313) 3.67% (55) 8.80% (132)

Evaluation by Expert

The cyber security expert analysed two samples of test observations. The
‘high sample’ contains 500 randomly selected observations from the top 6%
of test records which yielded the largest MSEs, so from the 138,322 highest
black points in Figure 2.1. The (relatively) ‘low sample’ is a randomly selected
set of 1,000 observations from all test records excluding the top 6%. The
analysis by the specialist is summarised in Table 2.3. He was able to classify
most of the observations in the two samples: 132 of them were difficult to
identify and require deeper inspection. The accuracy of the Autoencoder could
be assessed in a new way using this expert classification. Precision, recall,
and their harmonic mean the F1 score were used for this purpose. Since the
Autoencoder algorithm is unsupervised, some threshold had to be imposed such
that all sample observations with an MSE larger than this value were predicted
to be malicious. The best results were obtained when α = 5.76% of the data
was assumed to be anomalous. All three of the measures were maximal for this
α with precision 0.142, recall 0.982, and F1 score 0.248.

2.4.2 Results Gradient Boosting Machine
For Gradient Boosting the complete training set with benign and malicious
observations was used. As mentioned before, the class of intrusions is under-
represented in the dataset, which is an obstacle for a GBM. It is an SL tech-
nique, and so, it uses the given labels to learn to predict the classes of newly
presented observations. Therefore, the classes had to be balanced to some
extent. The unknown observations could be undersampled or the malicious
instances could be oversampled to enable this. The first solution was selected
because of three reasons: (i) the zero-class actually consists of unknown traffic,
hence if there are some unidentified malicious observations mixed with benign
traffic, then by subsequently sampling a small portion, these are often skipped
and do not play a large role in the construction of every decision tree; (ii)
oversampling the intrusion class (one-class) implies that the algorithm severely
trains on the properties of the specific known intrusions, while the zero-class is
much more diverse; and (iii) oversampling the one-class to balance both classes
means blowing the 6,004 intrusions up to 10,752,382 observations, which has
an undesirable effect on the computation time.

1In the following, ‘mean’ in ‘mean MSE’ is omitted for readability. Hence, whenever
‘MSE’ is written, this actually implies ‘mean MSE’.

31 31

22

Chapter 2. Intrusion Detection Chapter 2. Intrusion Detection

Figure 2.2: log mean intrusion probability of test observations

Hyperparameter Tuning

To find the hyperparameter combination that maximised the discounted cu-
mulative gain DCGGBM (defined in Equation (2.2)), several Cartesian grid
searches were performed over the number of trees

T ∈ {10, 20, 40, 80, 150, 300, 450, 600, 750, 900} ,

and the zero-class sampling factor

α0 ∈ ctrain ·
{

1
3 ,

2
3 , 1,

4
3 ,

5
3 , 2,

5
2 , 3, {4 · 2

k}k∈{0,...,8}
}
,

with ctrain = Ptrain/(Mtrain − Ptrain) the ratio between the number of mali-
cious and unknown observations in the training set. Similar to the Autoen-
coder, Gradient Boosting is a stochastic process: even when the parameters
are fixed, the results differ per training round. To estimate the expected value
of nDCGGBM, 60 GBMs were trained per hyperparameter combination. The
combination (T ;α0) = (300; ctrain ·8) yielded the relatively best performance on
the validation set with sample mean nDCGGBM ≈ 0.992 and sample variance
s2(nDCGGBM) ≈ 9.38× 10−6.

Evaluation on Known Intrusions

As before, the test set was used for the evaluation. Gradient Boosting was ap-
plied to the training set with the determined hyperparameters. The acquired
model was used on the test set, resulting in an intrusion probability for each
observation. Since the training process is stochastic, it was repeated 50 times.
However, it is not correct to simply take the mean of the realised intrusion
probabilities for a test observation as an estimate for its expected probability.
In Gradient Boosting, the predicted label is not necessarily 1 when the corres-
ponding probability is at least 0.5 and 0 otherwise. There is some threshold
value θ ∈ (0, 1) (based on the F1 score) that determines which label is pre-
dicted. This value is different per training procedure. To allow for comparison

32 32

22

Chapter 2. Intrusion Detection 2.4. Results

Table 2.4: Five most important features by GBM

feature share
resp_p_same_srv_rate_120s 52.89%

resp_p_same_resp_h_rate_120s 16.19%
srv 8.00%

subnet_orig 7.69%
srv_same_resp_p_rate_120s 1.89%

of the different runs, each run the threshold θ was transformed to be 0.5 and
the probabilities were changed accordingly. This was done by applying the
function fθ : [0, 1]→ [0, 1] given by

fθ(p) = (1− θ)p
(1− 2θ)p+ θ

to all probabilities. This function has desirable properties: (i) it is continuously
differentiable, (ii) fθ(0) = 0, (iii) fθ(θ) = 0.5, (iv) fθ(1) = 1, and (v) f ′θ(p) ≥ 0.
The resulting mean intrusion probabilities2 are shown in Figure 2.2. Note that
the natural logarithm of the probabilities was taken to enhance the amount of
information the plot conveys. The black points are the unknown observations
and the red points are the labelled malicious instances. As before, the orange
lines correspond to the intrusion infimum and supremum. The infimum is
the 98.58th percentile of the test data and the supremum is the (almost) 100th
percentile. The mean of the unlabelled records is 2.44×10−4 (log value: −8.32)
and is represented by the blue line. The red line representing the mean of the
known intrusions, with value 0.98 (log: −0.017), is hidden behind the orange
supremum line. The green dashed line corresponds to probability 0.5 (close to
the 99.93th percentile) and indicates the border between the predicted classes.
Finally, the average GBM had nDCGGBM ≈ 0.993.

Feature Analysis

The importances of the variables for the GBM were determined by the func-
tion h2o.varimp. As mentioned before, the features to which one-hot encoding
was applied were unified. The five most important variables are shown in
Table 2.4.

Evaluation by Expert

Additionally, the accuracy of the GBM was determined by the analysis of the
two samples by the cyber security expert. Gradient Boosting is an SL tech-
nique, so the label of each test observation was explicitly predicted. The GBM
classified α = 0.0668% of the records as malicious. Comparing the predictions

2In the following, ‘mean’ in ‘mean probability’ is omitted for readability. Hence, whenever
‘probability’ is written, this actually implies ‘mean probability’.

33 33

22

Chapter 2. Intrusion Detection Chapter 2. Intrusion Detection

to the actual labels assigned by the cyber analyst resulted in a recall of 0.0727,
precision of 1.00, and F1 score of 0.136. Note that the composition of the
samples was determined by the results of the Autoencoder. Due to constraints
on the availability of the specialist, it was not possible to select two new samples
based on the GBM.

2.4.3 Results Benchmark
To assess how well the methods discussed in this research performed with this
feature set, the obtained results were compared with a benchmark method.
Some features engineered using the raw data were based on the work of Dhanabal
and Shantharajah [23]. One of the classification techniques that they used on
the NSL-KDD dataset was the C4.5 decision tree algorithm. Here, the im-
proved C5.0 algorithm [95] was applied to the Locked Shields dataset with a
selected subset of variables to match the set used by Dhanabal and Shanthara-
jah [23] as good as possible. Their feature set does not contain the vari-
ables suggested by the cyber security expert, the variables aggregated over
120 seconds, and the variables paired with the constructed count variables (see
Section 2.3.1 for details). This reduced the number of features from Ktf = 142
to Kbench = 39.

Evaluation on Known Intrusions

Since C5.0 is an SL technique, all unknown observations were considered to
be benign. Moreover, the hyperparameters were based on those selected for
the GBM. This essentially means that the number of benign instances to be
sampled was chosen to be eight times the number of malicious observations
Ptrain. Again, because of randomness, 50 models were trained and the mean
intrusion probability was calculated for each test observation. This resulted in
the average performance measure nDCGbench ≈ 0.956.

Evaluation by Expert

The performance of the C5.0 method was also evaluated by the cyber analyst.
This technique classified α = 0.403% of the test observations as malicious with
a precision of 0.571, recall of 0.0727, and F1 score of 0.129.

2.5 Discussion

2.5.1 Interpretation of Results
The results presented in Section 2.4 showed that the two discussed ML methods
performed quite differently. At first glance, the GBM seems better. Figure 2.2
shows that there is a clear distinction between the known malicious observations
and the unlabelled connections. Most of the test intrusions are above the green
dashed line, and hence, were classified as threats by the GBM. All known

34 34

22

Chapter 2. Intrusion Detection 2.5. Discussion

Table 2.5: Accuracy measures on test samples

nDCG α precision recall F1 score
Autoencoder 0.176 5.76% 0.142 0.982 0.248

GBM 0.993 0.0668% 1.00 0.0727 0.136
benchmark 0.956 0.403% 0.571 0.0727 0.129

attacks were in the top 1.42% of the data, as the orange infimum line shows.
Also, the means of the probabilities of the two classes were vastly different:
for the unknown class it was close to 0, while for the intrusion class it was
close to 1. In general, the Autoencoder was somewhat able to notice that the
labelled malicious activities do not conform to the normal behaviour of the
network traffic, because all test intrusions yielded MSEs in the top 25.10%,
as can be seen in Figure 2.1. Unfortunately, this result is not desirable when
dealing with millions of observations. This was also reflected in the rather
small discounted cumulative gain: nDCGauto ≈ 0.176. There was a distinction
between the means of both classes, however. The mean of the unknown class
was the 62.00th percentile, while the mean of the intrusion class was the 95.02th
percentile.

This is not the whole picture, though. As mentioned before, only some intru-
sions were explicitly labelled as such, but the rest of the data was unlabelled.
The previous paragraph focused on the performance of the two methods with
the assumption that all unlabelled observations were actually benign. To ob-
tain a better insight, two samples were taken from the results of the Autoen-
coder and analysed by the cyber security expert. As Table 2.3 shows, one
new malicious activity was discovered in the low sample and no fewer than 54
intrusions were found in the high sample (four of them were already known).
Table 2.5 gives a summary of the results obtained in this research. It shows
that almost all the real attacks in the two samples were found by the Autoen-
coder (recall = 0.9818). However, only a small fraction of the anomalies was
actually malicious (precision = 0.1417). For the GBM, it is the other way
around: almost none of the actual intrusions were found (recall = 0.07273),
only the four previously known attacks were correctly classified; and all pre-
dicted intrusions were in fact malicious (precision = 1). Consequently, the
GBM generated a lot fewer false positives (αGBM � αauto), but it was not able
to discover new threats in the data. Additionally, the GBM outperformed the
benchmark method C5.0 with respect to generating fewer false positives with
the same number of false negatives. Therefore, it had the same recall, but a
larger precision.

The addition of the features as discussed in Section 2.3.1 is justified by the
results of the benchmark algorithm. The C5.0 algorithm yielded nDCGbench ≈
0.956 on a subset of the features, but the GBM resulted in nDCGGBM ≈ 0.993
on the complete feature set. Although the values seem close, the difference
between the two supervised algorithms is statistically significant: performing

35 35

22

Chapter 2. Intrusion Detection Chapter 2. Intrusion Detection

a one-sided Mann-Whitney U test on the two samples of DCGs resulted in a
p-value smaller than 2.2 × 10−16, strongly indicating that DCGGBM is larger
than DCGbench. Moreover, the feature analyses of both the Autoencoder and
the GBM showed that the features introduced in this research are important in
detecting and discovering intrusions, as can be seen in Tables 2.2 and 2.4. The
variables aggregated over a time horizon of 120 seconds, the variables added
by the expert, and the extra variables which were not present in the research
by Dhanabal and Shantharajah [23] all had a relatively large influence on the
classification of the test observations.

2.5.2 Conclusion
The aim of this chapter was to study the performance of different ML methods
on a partially labelled recent dataset, and to determine the relevance of the
features. Firstly, we discussed how reasonable features could be extracted and
engineered using a cyber dataset, and we showed that these features are indeed
important in the detection of known and novel intrusions. Secondly, our re-
search suggested that NIDSs do not need completely labelled datasets, which
hopefully encourages the use of recent datasets to properly assess the quality
of detection systems. The GBM showed that it is able to correctly classify the
already known intrusions. The Autoencoder, on the other hand, showed that
it can be used in detecting new malicious observations. However, it needs to
be stressed that a lot of false positives were generated. A possible way to re-
duce their prevalence is to consider the dependency between the records, since
the network connections in the dataset are interconnected. This means that
when an observation is deemed to be an anomaly by the NIDS, but the rest
of the associated connections are not, then it probably is a false positive. This
does not explicitly reduce the number of false positives, but it does save cyber
analysts time.

One of our suggestions for future research is the use of Active Learning (AL) [36].
With such methods the experiments performed here can be streamlined, since
we ‘manually’ used the information of the labelled intrusions to improve the
performance of the models. AL incorporates this information into its models.
We focus on this in Part III of this dissertation.

36 36

333
Detecting Fraudulent Bookings of Online Travel
Agencies with Unsupervised Machine Learning

Online fraud poses a relatively new threat to the revenues of companies. A way
to detect and prevent fraudulent behaviour is with the use of specific Machine
Learning (ML) techniques. These anomaly detection (AD) techniques have
been thoroughly studied, but they are not employed as much. The airline
industry suffers from fraud by parties such as online travel agencies (OTAs).
These agencies are commissioned by an airline carrier to sell its travel tickets.
Through policy violations, they can illegitimately claim some of the airline’s
revenue by offering cheaper fares to customers.

This research applies several AD techniques to detect fraudulent behaviour
by OTAs, and assesses their strengths and weaknesses. Since the data is not
labelled, it is not known whether fraud has actually occurred. Therefore, un-
supervised ML is used. The contributions of this chapter are, firstly, to show
how to shape the online booking data, and how to engineer new and relevant
features. Secondly, this research includes a case study in which domain experts
evaluate the detection performance of the considered ML methods by classify-
ing a set of 75 bookings. According to the experts’ analysis, the techniques are
able to discover previously unknown fraudulent bookings, which will not have
been found otherwise. This demonstrates that AD is a valuable tool for the
airline industry to discover fraudulent behaviour.

37

33

Chapter 3. Fraud Detection Chapter 3. Fraud Detection

Based on [72]:
Caleb Mensah, Jan Klein, Sandjai Bhulai, Mark Hoogendoorn, and Rob van
der Mei
Detecting Fraudulent Bookings of Online Travel Agencies with
Unsupervised Machine Learning
2019 International Conference on Industrial, Engineering and Other
Applications of Applied Intelligent Systems

38 38

33

Chapter 3. Fraud Detection 3.1. Introduction

3.1 Introduction
Since industries have expanded their services to the internet to reach more cus-
tomers, new ways have evolved to claim part of a company’s revenue. Aviation
faces a considerable problem with these malpractices. In 2008, airline indus-
tries all over the world missed out on 1.4 billion US dollars due to fraud. This
was around 1.3% of their total revenue, although the rates were up to 4% in
parts such as the Middle East and Latin America. Nowadays, these figures are
expected to be even higher [12]. One of the conductors of fraud in the airline in-
dustry are online travel agencies (OTAs). Such an agency specialises in selling
travel products including flights, hotels, and rental cars to customers online.
There is a wide variety in OTAs, but they all share at least one similarity: they
have an agency agreement with the supplier to resell its products [94]. In this
case, the airline carrier allows the OTA access to its booking system to sell
aeroplane seats. This expands the reach of the carrier, and therefore, increases
its revenue. However, some OTAs violate the policies conducted by the airline
organisation in order to get access to cheaper ticket fares. This is possible,
because the price of an aeroplane seat depends on several well-known factors.
These include the seat’s class (economy or business), the flight destination, and
the remaining time until departure. More specifically, when a flight consists
of multiple flight segments, the price of a single segment can differ depending
on the other segments in the complete flight. Here, a flight segment can be
seen as the part between the departure and arrival of an aeroplane. If it lands
more than once, there are multiple flight segments. An OTA can add one or
more artificial segments to a flight to possibly get access to relatively lower
prices. Later on, it can cancel these segments, which leads to revenue loss for
the airline company.

In general, fraudulent behaviour is assumed to be unusual, and hence, (largely)
deviates from the expected, normal behaviour. A way to discover such anom-
alous behaviour is with the use of outlier detection techniques. Usually, the
data with potentially fraudulent behaviour is unlabelled, suggesting the use of
Unsupervised Learning (UL). This can be applied in a wide variety of domains,
such as insurance, health care, and cyber security (see Chapter 2), with the
same goal of finding malicious activities in data [14]. However, most of the
applications are to discover and prevent bank fraud. For example, Bolton and
Hand [8] propose the use of unsupervised profiling methods to detect credit
card fraud in financial transactions on a customer-based, while Ferdousi and
Maeda [27] examine the occurrence of fraud in stock market data as anomalous
behaviour in an evolving time series.

In the airline industry, the data consists of flight bookings, which can be seen
as customer-based data changing through time. However, there are some im-
portant differences between bookings and financial transactions. First of all,
customers are usually not aware of an OTA conducting fraud and are not dir-
ectly affected by it. Fraud can even be advantageous to the customer who can
purchase a cheaper flight ticket. Furthermore, a booking can be fraudulent be-

39 39

33

Chapter 3. Fraud Detection Chapter 3. Fraud Detection

cause of how it changes through time, in contrast with fraud in a single financial
transaction. Lastly, OTAs are part of the business model and are necessary
for the airline carrier to make a profit. Of course, the majority of them act
sincerely.

Since the airline industry has some characteristics that set it apart from other
fields in which fraud occurs, it is interesting to examine how anomaly detection
(AD) methods perform. More importantly, we were not able to find literature
on the detection of fraudulent behaviour of OTAs. This chapter addresses that
research gap. The contributions of our research are, firstly, to show how three
different algorithms are applied to the booking data of OTAs to discover viola-
tions of the policies conducted by the airline carrier. This allows us not only to
eventually block fraudulent bookings, but this can also enrich domain experts
with new knowledge on how to avoid malicious behaviour from happening. Be-
fore the techniques are applied, practically usable data is constructed from raw
booking datasets. To this end, existing features are modified and new variables
are added. Secondly, we show the importance of the engineered features in dis-
covering fraudulent bookings. An evaluation set of 90 bookings is constructed
for domain experts to classify as either normal or fraudulent. We assess how
well the AD methods are able to find these fraudulent observations.

This rest of this chapter has the following structure. In Section 3.2, we examine
the characteristics of the raw data and how it can possibly be used to detect
fraudulent bookings. In Section 3.3, we transform the data into one usable
dataset by means of feature engineering and either normalisation or standard-
isation, and we introduce the AD methods. The setup of the experiments is
given in Section 3.4 and their results in Section 3.5. In the latter, several eval-
uation metrics are provided for the set of samples that were labelled by the
domain experts. Also, features that turned out to be important in detecting
fraud are discussed. Finally, in Section 3.6, we draw conclusions about the
research and discuss directions for future work.

3.2 Data
The data used in this research was obtained from an airline company. It has
several kinds of features. The first type is based on the passengers’ travel
requirements information, summarised as a passenger booking. It consists of
features such as travel dates, travel routes, ticket information, and associated
OTAs for all flights planned for the coming 360 days. There were some obser-
vations with missing values for some features. We decided not to remove all of
them, since having missing values in certain fields could be related to fraudu-
lent behaviour of OTAs. Missing information could be due to an error in the
reservation system, which could have been exploited by an OTA. The second
type of features contains information about revenue for each created booking.
Actual revenue data is only available for ticketed (paid) reservations, while it is
estimated for non-ticketed reservations using historical revenue data. The third

40 40

33

Chapter 3. Fraud Detection 3.3. Methodology

type of variables is directed at the OTAs themselves. It provides characteristics
such as a unique identifier and their location (or market).

The goal is to find fraudulent bookings and the corresponding OTAs that viol-
ate the policies of the airline carrier. The observations in this raw dataset were
given on a flight segment level. However, the data needs to be booking-based,
i.e., each observation should indicate a booking. Therefore, the flight segments
corresponding to the same booking had to be merged.

3.3 Methodology
In this section, we discuss how the segment-based raw data was merged and
how new variables were constructed from the raw features. Furthermore, we
provide a preliminary analysis of the data and introduce which ML techniques
were used for the experiments. Lastly, we discuss some transformations that
were applied to the dataset with the goal to improve the results.

3.3.1 Feature Engineering
Before the experiments were carried out, new variables that better represent the
underlying characteristics of the data were engineered using the raw features
that were described in Section 3.2. They can be categorised into two classes:
(i) revenue-based features, and (ii) booking-based features.

Revenue-based Features

The first category of features was derived from the variables containing rev-
enue information. These new features were introduced to describe the relative
amount of revenue generated per booking and to compare the expected rev-
enue with the ticketed revenue received. The predictions in revenue were based
on a historical horizon of fifteen days that was advised by domain experts.
They expected the majority of the changes to occur during this time window.
Moreover, the predicted minimum and predicted maximum revenue were ad-
ded as features, and a feature describing the changes in revenue over the time
horizon. A relatively large difference between the predicted maximum and
actual revenue could indicate malicious booking behaviour. Since these new
features were obtained per flight segment, the records corresponding to the
same booking were aggregated (by taking both the sum and average) to obtain
one observation for each feature per booking. Furthermore, the ticketing time
and a feature describing the variation in ticketing times for the flight segment
were included. The ticketing time is the time it takes before a booking has been
paid for. When a flight is legitimately booked online, the payment is expected
to be done directly for the whole flight, and hence, there should be no or only a
small variation in the ticketing times of the flight segments. A relatively large
variation could indicate fraudulent behaviour.

41 41

33

Chapter 3. Fraud Detection Chapter 3. Fraud Detection

Booking-based Features

The second class of features was derived from the raw booking features. These
new features do not only describe the important characteristics of the booking,
but they also represent the OTA providing the flight ticket. As mentioned
before, flight segments corresponding to the same booking were aggregated to
obtain one observation per booking. A new feature of interest is point of com-
mencement (PoC) circumvention. This feature checks whether the effective
PoC is equal to the true PoC. Here, the effective PoC is the starting point the
passenger is expected to depart from, while the true PoC is the actual start-
ing point. PoC circumvention occurs when a fake flight segment is added to
a booking to get access to a cheaper fare. Before the aeroplane departs, this
flight segment is cancelled while the lower flight price is retained. A difference
between the effective and true PoC of a booking coincides with one or more
cancellations or additions of flight segments, so features were added which ex-
plicitly indicate this behaviour. This was done by comparing booking data
on successive days and by calculating the differences in the number of flight
segments in each booking. Furthermore, variables which indicate whether an
OTA chronologically books flight segments (from first departure until last ar-
rival) were included. These features are directly linked to policy violations.
Lastly, several other features were composed that capture other booking re-
lated data, such as the number of passengers in a booking, the length of stay,
number of days between cancellations, and so on.

Final Dataset

After the feature engineering process, the final dataset consists of K = 84
numerical features on M = 17,886 unique bookings. The total number of
unique OTAs is 158. Now, anomalies can be found on a booking level. Each
booking is connected to an OTA, making it possible to find the agencies that
were potentially conducting fraud.

3.3.2 Feature Analysis
Before the ML algorithms were applied, a preliminary feature analysis on fifteen
days of data was performed. The purpose of this study is to give an insight into
the booking data in the considered airline market and to examine what fraudu-
lent behaviour of an OTA could be. The features of interest in this exploratory
study were those that are concerned with PoC circumvention.

To this end, the cancellations made in the bookings were examined. Table 3.1
shows the adjustments made in several bookings. These modifications were not
just caused by cancellations, but also by the addition of new flight segments.
This occurs in, for example, the last row. It shows an increase in the number
of flight segments on day 12 and a decrease (cancellation) two days later on
day 10, which is odd. This process repeats itself on day 5. It is unlikely
that a passenger made such adjustments. A deeper analysis of a booking with

42 42

33

Chapter 3. Fraud Detection 3.3. Methodology

Table 3.1: Number of flight segments in six different bookings for the past fifteen
days

Days from now into the past
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
7 7 7 7 7 7 7 7 7 6 6 6 6 6 6
6 6 7 7 7 7 7 7 7 7 7 6 6 6 6
5 5 5 5 5 5 5 5 5 5 5 5 5 5 6
7 7 7 7 7 7 7 7 7 7 7 7 7 6 6
2 2 2 2 2 2 2 2 2 2 4 4 2 2 2
6 6 7 7 6 6 6 6 6 7 7 6 6 6 6

Table 3.2: Description of a particular booking on the first and second day. The
columns indicate the departure date, segment identifier, departure location, arrival
location, effective PoC, true PoC, and PoC circumvention, respectively

Booking properties on day 1
Day ID Dep. Arr. Eff. PoC True PoC PoC circumv.
0 1 L1 L2 NA PoC1 NA
0 2 L2 L3 NA PoC1 NA
5 3 L3 L4 NA PoC1 NA
5 4 L4 L1 PoC1 PoC1 0

Booking properties on day 2
Day ID Dep. Arr. Eff. PoC True PoC PoC circumv.
5 3 L3 L4 NA PoC2 NA
5 4 L4 L1 PoC1 PoC2 1

cancelled flight segments is shown in Table 3.2. Here, the two tables represent
the same booking, but on different days. Note that the first two rows on the
first day are not present on the second day any more: these flight segments
have been cancelled. It is interesting to note that the values of the second
column, the segment identifier, were not adjusted when flight segments were
deleted. After examining this for several bookings with cancellations, it was
concluded that the segment identifier was never modified. Hence, unexpected
behaviour in that variable could indicate this kind of fraud.

An overview of descriptive PoC characteristics is given in Table 3.3. Here, the

Table 3.3: Overview of the descriptive statistics in the PoC features

Description Value
Percentage of PoC circumvented flight segments 7.27%
Number of unique effective PoCs 115
Number of unique true PoCs 138

43 43

33

Chapter 3. Fraud Detection Chapter 3. Fraud Detection

percentage of flight segments with PoC circumvention is around 7%. Moreover,
the table shows that the number of unique true POCs is greater than the
number of effective PoCs. This difference indicates that there are at least 23
locations being used to circumvent the availability.

3.3.3 Anomaly Detection Techniques
Three AD techniques were considered in this research: Isolation Forest (IF),
one-class Support Vector Machine (ocSVM), and k-means clustering. These
methods were chosen such that we consider a wide variety of AD techniques.
Since no labelled data is available, UL methods were used. They assume that
the majority of the observations is normal, while only a small fraction is ab-
normal. This is the case for fraudulent bookings in the airline industry.

Isolation Forest

The first UL technique was designed by Liu et al. [65]. In contrast to tra-
ditional AD methods, an IF explicitly separates anomalies rather than de-
termining normal behaviour and identifying anomalies as deviations from that
behaviour. This algorithm is more effective and efficient in detecting anomalies
than commonly used distance- and density-based methods [65]. In short, an
IF determines how long it takes for each observation to be separated, which is
done by continuously splitting features between their minimum and maximum
values. Since the splits are performed on a feature level, the importance of each
feature can be easily derived. Each tree t ∈ {1, . . . , T} in an IF of T ∈ N trees
yields a path length ht(xi) for every observation xi ∈ RK , i ∈ {1, . . . ,M}, with
K the number of features and M the total number of observations. Anomalies
are the records with the smallest average path lengths, because they can be
isolated rapidly.

There are two hyperparameters in an IF: the sub-sampling size ψ ∈ N, and T .
The first parameter controls the training data size per tree, while the second
one determines how many isolation trees are constructed during training. The
anomaly score sN (xi) determines how anomalous observation xi is. It is defined
as

sM (xi) = 2−
h(xi)
c(M) ∈ (0, 1),

where h(xi) = (1/T)
∑T
t=1 ht(xi) is the average path length of xi in the IF, and

c(M) = 2HM−1 − 2(M − 1)/M is the expected path length with Hn the n-th
harmonic number. Liu et al. [65] offer some rules of thumb: if sM (xi) � 0.5,
then xi can be considered as an anomaly; if sM (i) � 0.5, then xi can be
regarded as normal; and if sM (xi) ≈ 0.5, then the status of xi is vague.

One-class Support Vector Machine

The second UL method applied in this research was designed by Schölkopf
et al. [97]. The goal of this Support Vector Machine (SVM) is to identify

44 44

33

Chapter 3. Fraud Detection 3.3. Methodology

one specific class amongst all observations. This results in trying to separate
the observations belonging to the normal class from the rest of the feature
space. Hence, the instances that do not lie within the non-linear normality
boundary are considered to be anomalous. Therefore, ocSVM is a boundary-
based algorithm. Tax and Duin [113] showed that such algorithms perform
better than density-based techniques, since they solve a fundamentally easier
problem. Consequently, ocSVM is widely used in the field of AD.

The goal of ocSVM is to separate the data from the origin with maximum
margin. A quadratic program is solved to determine the normality boundary,
yielding an optimal normal vector w and margin ρ. There is a hyperparameter
ν ∈ [0, 1] acting as a trade-off between the fraction of anomalies in the data and
the number of training examples used as support vectors [42]. The anomaly
score s(xi) of an observation xi is given by

s(xi) = sgn((w ·Φ(xi))− ρ),

where Φ is a map into a dot product space related to the chosen kernel function.
Now, if s(xi) < 0, then xi can be regarded as anomalous; if s(xi) > 0, then xi
can be considered normal; and if s(xi) = 0, then xi is exactly on the boundary
and its status is not determined.

k-Means Clustering

The third and final AD technique considered is a clustering technique. k-means
is an unsupervised, iterative algorithm proposed by Lloyd [66]. It is one of the
most popular clustering methods because of its simplicity. In k-means, M ob-
servations have to be clustered into k clusters. Each cluster is represented by
the mean (centroid) of the observations it contains. The clustering is performed
such that the inter-cluster similarity is minimised, while the intra-cluster sim-
ilarity is maximised. The similarity is determined by the Euclidean distance
of the feature value to the mean value of the observations in the cluster: the
smaller the distances, the higher the similarity.

The k-means algorithm converges quickly to a local optimum. Here, k ∈ N is a
hyperparameter that, for example, can be determined using the elbow method.
Here, the proportion of explained variance by the model is plotted as a function
of the cluster size k. For small values of k, an increasing k will explain relatively
much additional variance, but less additional variance is explained when k gets
large. The optimal k is the value such that there is a bend in the plot. Now,
to perform AD, a cluster boundary is introduced for each of the k clusters.
This is a hypersphere around the cluster mean such that 95% of all the cluster
observations are within the sphere, assuming that 5% of the observations are
considered anomalous. For a new observation xi, first the closest cluster is
chosen, and then it is determined whether xi is within the boundary. If it is
not, it can be considered anomalous.

45 45

33

Chapter 3. Fraud Detection Chapter 3. Fraud Detection

3.3.4 Data Transformations
Finally, we investigated whether some data transformations had a positive effect
on the AD performance of the algorithms discussed in Section 3.3.3. The
transformations that were considered are normalisation and standardisation.
To normalise the data, the feature values were linearly scaled such that all
values lie in the interval [0, 1]. An advantage of normalisation, or min-max
scaling, is that each feature contributes equally, since all values are bounded in
the same interval. Consequently, there is no feature overshadowing the other
variables because of its large (absolute) values. However, a disadvantage is
that the dispersion of the data is lost, possibly making it more difficult to
detect anomalies. Standardisation ensures that each feature has mean 0 and
variance 1. The advantage of standardisation over normalisation is that the
loss of dispersion is smaller.

Since tree-based models can handle varying feature ranges, normalisation and
standardisation are not required in an IF. However, the ocSVM and k-means
methods are sensitive to magnitudes, and could therefore benefit from these
transformations.

3.4 Experimental Setup
As mentioned in Section 3.3.3, there were several hyperparameters that had to
be determined beforehand. For the IF, these constants were the sub-sampling
size ψ ∈ N and the number of trees T ∈ N. Liu et al. [64] argue that ψ = 256
and T = 100 are large enough to enable convergence of the average path length
of each observation. Next, the parameter ν in the ocSVM was chosen to be
0.05, since we assumed that about 5% of the observations were anomalous. The
number of clusters k, which is a hyperparameter for k-means, was determined
by the elbow method and varied for the different experiments that were per-
formed: k = 2 for no modifications, k = 9 for normalisation, and k = 38 for
standardisation. Since there are no labels, there was no ground truth in the
data to which the hyperparameters could be optimised.

All described procedures were performed in Python 3.6 with the libraries numPy
and Pandas. The results were obtained from an evaluation set. This set was de-
termined by the anomaly scores calculated by the three discussed ML methods.
For each technique, the anomaly scores of the bookings were ranked in descend-
ing order. Then, a random subset of 10 bookings was taken from the top 30,
one from the 30 scores around the median, and one from the 30 lowest scores,
yielding a sample of 30 bookings for each AD method. The sample observations
from the top 30 were predicted to be fraudulent, while the other observations
were considered normal. In total, there were 3 samples of 30 bookings each.
There was an overlap between the samples, i.e., the algorithms ranked some
observations in the same regions. Hence, they were selected more than once
for the samples. There were 75 unique bookings in the total of 90. The sample
bookings were classified by the domain experts as fraudulent (1) or normal

46 46

33

Chapter 3. Fraud Detection 3.5. Results

Table 3.4: Results with no data transformation on method-specific evaluation
samples

Model Precision Recall F1 score F2 score
IF 0.75 0.8 0.774 0.789

ocSVM 0.769 0.588 0.667 0.617
k-means 1 0.444 0.615 0.5

(0), making it possible to assess the detection power of the algorithms. In the
samples 39 fraudulent bookings were found, while 36 bookings were deemed
normal.

3.5 Results

3.5.1 Performance of Anomaly Detection Techniques
To determine the quality of the models, the precision, recall, F1 score, and F2
score were calculated. The latter two are given by the formula

Fβ = (1 + β2) · precision · recall
β2 · precision + recall ,

where β = 1 for the F1 score and β = 2 for the F2 score. The F2 score weighs
recall more than the F1 score does, i.e., it puts more emphasis on false neg-
atives (FNs) than on false positives (FPs). This was done for the unmodified
final dataset, which is the data without normalisation or standardisation. The
performance metrics for the method-specific samples of size 30 are shown in
Table 3.4. The construction of these samples is explained in Section 3.4. The IF
performed slightly better in finding policy violations (recall = 0.8) than making
the distinction between normal and fraudulent observations (precision = 0.75).
This was the other way around for the ocSVM and k-means clustering, since
both techniques had a higher precision than recall. Both the F1 and F2 scores
suggest that the IF performed the best. In fraud detection, reducing FNs is
usually more important than reducing FPs, since missing a fraudulent obser-
vation is deemed more harmful than raising a false alarm. FPs only bother
domain experts with extra investigation time, while FNs result in a potentially
large loss of revenue. Hence, the F2 score better represents how desirably the
AD method performed. Note that this evaluation was done on the different
method-specific samples. Although there is some overlap between them, a dir-
ect comparison of the performance measures is risky.

The three ML methods were also applied to the complete evaluation sample.
This set is the combination of the three method-specific samples of 30 observa-
tions each. The complete sample consists of 75 unique bookings. The results
for the data with no modifications are presented in Table 3.5. The performance
of the methods is comparable to the results on the method-specific samples in

47 47

33

Chapter 3. Fraud Detection Chapter 3. Fraud Detection

Table 3.5: Results with no data transformation on complete evaluation sample

Model Precision Recall F1 score F2 score
IF 0.706 0.615 0.657 0.632

ocSVM 0.75 0.462 0.571 0.5
k-means 0.8 0.308 0.444 0.351

Table 3.6: Results on transformed method-specific evaluation data

Normalised
Model Precision Recall F1 F2
IF 0 0 0 0

ocSVM 0 0 0 0
k-means 0.909 0.556 0.690 0.602

Standardised
Model Precision Recall F1 F2
IF 1 0.067 0.125 0.082

ocSVM 0 0 0 0
k-means 0.8 0.444 0.571 0.488

terms of F1 and F2 score. The IF still ranks the best (F2 = 0.632), followed
by the ocSVM (F2 = 0.5) and k-means clustering (F2 = 0.351). This compar-
ison was based on the same sample for each technique, thus strengthening the
claims. Since there are 39 actual fraudulent bookings and 36 normal instances,
the F2 score is expected to be approximately 0.503 when the predicted labels
are assigned by unbiased coin flips. This means only the IF performed better
than this threshold value.

The normalisation and standardisation procedures had remarkable influences

Table 3.7: Results on transformed complete evaluation data

Normalised
Model Precision Recall F1 F2
IF 1 0.026 0.05 0.032

ocSVM 0.5 0.026 0.049 0.032
k-means 0.742 0.590 0.657 0.615

Standardised
Model Precision Recall F1 F2
IF 0.5 0.077 0.133 0.093

ocSVM 1 0.026 0.05 0.032
k-means 0.786 0.564 0.657 0.598

48 48

33

Chapter 3. Fraud Detection 3.5. Results

Table 3.8: List of features to identify suspicious activity

List of features that detect suspicious activity
Order ratio
PoC circumvention ratio
Number of cancellations
Number of booking class switches
Number of OTA owners which are unequal to the creator

on the results, as can be seen in Tables 3.6 and 3.7. For the method-specific
samples, the precision and recall are both 0 for the IF and ocSVM, performing
severely worse than without data transformations. This was expected to some
extent for the IF, since the segregation of the observations is done more rapidly
with large variations in the data. However, this was not expected for the
ocSVM. According to literature, transforming the data should benefit an SVM.
This could be due to the Gaussian radial basis function that we used in this
research. Nevertheless, the performance of k-means clustering increased from
F2 = 0.5 to F2 = 0.602 with normalisation. There was a slight decrease for
standardisation from F2 = 0.5 to F2 = 0.488.

For the combined sample, the performance of all three considered AD methods
moderately increased in terms of F2 score compared to the method-specific
samples. In short, the IF performed the best on its own sample of 30 observa-
tions without any data transformations (F2 = 0.789). This was also the case
for the ocSVM (F2 = 0.617). k-Means clustering performed the best on the
complete evaluation sample with normalised data (F2 = 0.615). Note that all
these values are larger than the threshold value of 0.503.

3.5.2 Feature Evaluation
The results of the AD methods and the advice of the domain experts allowed
us to construct a set of features which were deemed to be the most likely to
identify suspicious behaviour of an OTA. The list of the five most important
features is given in Table 3.8. The first feature indicates the sum of the segment
identifiers divided by the corresponding triangular number:

(
S+1

2
)
, where S is

the number of flight segments in the booking. We expect the sum to equal the
triangular number (and so the feature value to be 1), since the segments are
usually labelled in ascending order from 1 to S. The order ratio feature is not
equal to 1 for the booking shown in Table 3.2, because flight segments have been
cancelled. The second variable is related to PoC circumvention. As discussed
in Section 3.3.2, the fact that PoC circumvention has occurred could indicate
fraudulent behaviour. We also showed in Tables 3.1 and 3.2 how the number
of cancellations, which is the third most important feature, could be connected
to fraud. The fourth feature has not been discussed in the feature analysis, but
an unexpected value of this feature also suggests malicious behaviour. Finally,
the last feature in Table 3.8 indicates whether the OTA creating the booking

49 49

33

Chapter 3. Fraud Detection Chapter 3. Fraud Detection

is not equal to the OTA owning it.

3.6 Discussion
The goal of this research was to discover policy violations conducted by OTAs
with the use of three AD methods. To this end, the raw data was analysed and
new variables were constructed to better describe the behaviour of the OTAs.
We demonstrated that these new features were important in detecting fraudu-
lent bookings. This encourages domain experts to monitor these variables to
detect some of the fraudulent behaviour and avoid revenue loss. Moreover, this
advises an airline organisation to update its policy agreement with the OTAs
to prevent such malpractices from happening in the future.

Together with the domain experts, we concluded that most of the anomalies
were caused by cancellation activity in the bookings, suggesting that the val-
ues of the features corresponding to this behaviour give a strong indication of
fraud. However, there were instances in which normal bookings were detected
as fraudulent, which happened because of complex and highly unusual flights.
Also, there were instances in which the domain experts marked a booking as
fraudulent, but it was based on a gut feeling. Here, the benefit of using UL
becomes evident: these bookings never would have been found when the book-
ings were only analysed on a feature-based level. Moreover, since we were not
able to find literature about this research field, we took an important step in
understanding fraudulent behaviour conducted by OTAs.

One of our suggestions for future research is to broaden the scope to make the
results more generalisable. Firstly, we considered the bookings of one airline
market. It is possible that the behaviour of OTAs is significantly different
for another market. Secondly, because of time constraints, only 75 records
(≈ 0.42%) were analysed by the domain experts. This means the results could
be notably different when a new sample is considered. Another suggestion for
future research is to find out at which stage in the booking process the models
are able to detect fraud in an online setting.

50 50

Part II

Model Evaluation

51

4444
Estimating the F1 Score for Learning from

Positive and Unlabelled Examples

Semi-supervised learning can be applied to datasets that contain both labelled
and unlabelled instances. It can result in more accurate predictions compared
to fully supervised or unsupervised learning, in case limited labelled data is
available. Positive-Unlabelled Learning (PUL) focuses on cases in which the
labelled instances are only positive. Given the lack of negatively labelled data,
estimating the performance is generally difficult. In this chapter, we propose
a new approach to approximate the F1 score for PUL. It requires an estimate
of the fraction of all positive instances that are labelled as such. We derive
theoretical properties of the approach, and apply it to several datasets to study
its empirical behaviour and to compare it to the most well-known score in the
field: the LL score. Results show that even when the estimate is quite off
compared to the real fraction of positive labels the approximation of the F1
score is significantly better than the LL score.

53

444

Chapter 4. Estimating F1 Score Chapter 4. Estimating F1 Score

Based on [109]:
Seyed Amin Tabatabaei, Jan Klein, and Mark Hoogendoorn
Estimating the F1 Score for Learning from Positive and Unlabeled
Examples
2020 International Conference on Machine Learning, Optimization, and Data
Science

54 54

444

Chapter 4. Estimating F1 Score 4.1. Introduction

4.1 Introduction
There has been a keen interest in algorithms that can learn a good classifier
by using both labelled and unlabelled data. The field addressing such data is
called Semi-Supervised Learning (SeSL). SeSL algorithms exploit the labelled
data just like Supervised Learning (SL) algorithms do, but to improve learning
they take the structure seen in the unlabelled data into account. Based on
this combination, the algorithms are able to surpass the performance of fully
supervised and unsupervised algorithms on partially labelled data, as Liu [62]
for example show.

One category of problems in SeSL focuses on learning from datasets that only
have positively labelled and unlabelled data, referred to as Positive-Unlabelled
Learning (PUL). PUL is seen in multiple application domains (see [22, 110,
134]). The F1 score is generally a prominent metric in classification problems,
because considering both the precision and recall is desirable. However, in
PUL, it is impossible to directly compute the F1 score, since there are no
negatively labelled examples available. Attempts to mitigate this problem have
been proposed, though. For example, Lee and Liu [55] introduce the LL score.
This metric shows approximately the same behaviour as the F1 score without
the need to have negatively labelled examples. However, in absolute terms, it
can be quite off from the real F1 score.

In this chapter, we present a novel approach to estimate the F1 score for the
PUL case. This estimator assumes that the fraction of labelled cases compared
to the total number of positive samples is known. This assumption is not
unrealistic in many cases and we show that even when the estimated fraction is
somewhat off, the proposed estimator still performs better than the popular LL
score. We specify the approach and perform a mathematical analysis whereby
we determine the sensitivity of our approach to mistakes in the estimation of the
fraction of positive labels. On top of that, we conduct a number of experiments,
both using generated and real life data. We compare the estimates of both the
LL score and our newly introduced metric, and we show that the estimates
using our approach are: (1) significantly closer to the true F1 score, and (2)
better at selecting the ‘best’ model out of a set of models.

The rest of this chapter is organised as follows. The formal problem descrip-
tion is given in Section 4.2. Related work is presented in Section 4.3, while
our proposed approach is introduced in Section 4.4 together with the math-
ematical analysis. The experimental setup and accompanying results are de-
scribed in Sections 4.5 and 4.6, respectively. Finally, Section 4.7 concludes the
chapter.

55 55

444

Chapter 4. Estimating F1 Score Chapter 4. Estimating F1 Score

4.2 Problem Formulation
In PUL, there are instances i ∈ M that are specified by their feature vector
xi ∈ RK , corresponding label yi ∈ {−1, 1}, and the availability of the label
si ∈ {0, 1}. Here,M := {1, . . . ,M} is the set of observations and K ∈ N is the
number of features. If, for an instance i, the label is available (si = 1), then it
is always positive (yi = 1). If the label is not available (si = 0), it can be either
positive or negative. More specifically, let P ⊆ M be the set of observations
with a positive label. Let S ⊆ P be the subset of observations for which
the positive label is provided. Consequently, the labels of the observations in
U :=M\S are not known.

An important assumption in most PUL algorithms is that positive labelled
instances are Selected Completely At Random among positive examples (SCAR
assumption). This assumption lies at the heart of most PUL algorithms [6].
Hence, S is a random subset of P under SCAR.

Using S and U , we want to build a classifier f that can predict the label of the
cases in U , i.e., ideally f(xi) = yi for i ∈ U . It should be stressed that, during
the training and validation process, the response values of instances outside
S are not available. Therefore, learning should be done based on S combined
with properties from the unlabelled data U .

4.3 Related Work
In this section, we briefly introduce the commonly used two-step strategy to
provide an intuition of PUL algorithms. This is followed by metrics that es-
timate the performance of the resulting models.

4.3.1 PUL Algorithms: Two-step Strategy
A well-known class of PUL algorithms is the two-step strategy [62]. In step 1,
a set of reliable negative instances NR is chosen from the unlabelled instances
U . In step 2, the algorithm iteratively adds more instances to NR, which are
used as negative examples in the next iterations. This procedure is repeated
until a convergence criterion is met or when no more instances are added to
NR. There are several techniques for each of these steps. For example, the
spy technique [63] and the Ricchio technique [59] are used for the first step.
The Expectation-Maximization algorithm [21] can be a natural choice for the
second step. A deeper review about two-step techniques is provided by Liu
[62].

4.3.2 Performance Estimation
To select the classifier with the best generalisable performance, evaluation is
needed. In normal SL, the F1 score is a common performance measurement for

56 56

444

Chapter 4. Estimating F1 Score 4.3. Related Work

binary classifiers. It is expressed as follows:

F1 = 2 · recall · precisionrecall + precision , (4.1)

with
recall = TP

TP + FN =
∑
i∈M 1{f(xi)=1,yi=1}(i)∑

i∈M 1{yi=1}(i)
= P1

P
, (4.2)

precision = TP
TP + FP = P1∑

i∈M 1{f(xi)=1}(i)
= P1

M1
. (4.3)

Here, 1{·} represents the indicator function. Moreover, P := |P| is the number
of positive instances and P1 is the number of positive instances which are also
predicted to be 1, i.e., the number of true positives (TP). Note that P is equal
to TP plus the number of false negatives (FN). M1 is the total number of
observations which are predicted as positive. This is equal to TP plus the
number of false positives (FP).

In PUL, the target label yi is not available for unlabelled instances (with
si = 0). Therefore, calculating the recall (Equation (4.2)) and the precision
(Equation (4.3)) is not possible. However, under the SCAR assumption, we
expect the fraction of predicted positives in S to be the same as the fraction
of predicted positives in P:

E
(
S1

S

)
SCAR= P1

P
, (4.4)

with S1 the number of predicted positives in S and S := |S|. Because of SCAR,
the behaviour of the classifier on S represents its behaviour on P. Hence, the
recall can be estimated by

rec =
∑
i∈S 1{f(xi)=1}(i)

S
= S1

S
. (4.5)

However, it is difficult to approximate the value of the precision, because it is
less straightforward to obtain an estimate of P1/M1. This also means it is hard
to estimate the F1 score in PUL. To solve this, multiple approaches exist, of
which the LL score is commonly used. This score is given by

LL = rec2

M1/M
= S2

1 ·M
S2 ·M1

.

It can be directly calculated from a validation set that contains positive and
unlabelled examples. Moreover,

recall2

M1/M
= P 2

1 ·M
P 2 ·M1

= (P1/M1) · (P1/P)
P/M

= precision · recall
P/M

.

Therefore, the LL score also has an estimation of the precision in its definition.
Lee and Liu [55] claim that the LL score has roughly the same behaviour as
the F1 score: a high value of the LL score means both precision and recall are
high, while a low value means that either recall or precision is low.

57 57

444

Chapter 4. Estimating F1 Score Chapter 4. Estimating F1 Score

4.4 Methodology
In this section, we present our approach to estimate the F1 score in a PUL
problem. It is based on the assumption that we have an approximation of
the fraction of positive instances that are labelled. Moreover, we analyse our
approach mathematically.

4.4.1 Approach to Estimate F1 Score
First, we show that the fraction ρ, defined as ρ := S/P , supports in estimating
the precision. Note that ρ represents the probability that a positive observation
is labelled. Under SCAR, given in Equation (4.4), we have

E
(
S1

ρ

)
= P ·E

(
S1

S

)
SCAR= P1.

This allows us to estimate Equation (4.3) by

prec = S1/ρ

M1
= S1

ρ ·M1
. (4.6)

The F1 score, given in Equation (4.1), can now be estimated by

F1 := 2 · rec · precrec + prec = 2 · (S1/S) · (S1/(ρ ·M1))
(S1/S) + (S1/(ρ ·M1)) = 2 · S1

ρ ·M1 + S
, (4.7)

while the actual F1 score can be reformulated as

F1 = 2 · ρ · P1

ρ ·M1 + S
.

We are interested in how the approximated F1 differs from the actual F1 score.
Hence, we define the variable ∆F1 as:

∆F1 := F1 − F1 = 2 · S1 − ρ · P1

ρ ·M1 + S
.

The actual F1 score is fixed given the dataset and trained classifier f , but F 1
depends on which subset of P happens to be labelled. The number of predicted
positive observations S1 has a hypergeometric distribution (see [102]) with P
the population size, P1 the number of ‘success states’ in the population, and S
the number of draws. Here, an observation is ‘successful’ if it is a true positive.
Thus, S1 ∼ Hypergeometric(P, P1, S). Then,

E(S1) = S · P1

P
= ρ · P1,

Var(S1) = S · P1(P − P1)(P − S)
P 2(P − 1) = ρ(1− ρ)P1(S − ρ · P1)

S − ρ
.

58 58

444

Chapter 4. Estimating F1 Score 4.4. Methodology

We have for the approximated recall, precision, and F1 score:

E(rec) = ρ · P1

S
= recall, Var(rec) = Var(S1)

S2 ,

E(prec) = ρ · P1

ρ ·M1
= precision, Var(prec) = Var(S1)

ρ2 ·M2
1
,

E(F1) = 2 · ρ · P1

ρ ·M1 + S
= F1, Var(F1) = 4 ·Var(S1)

(ρ ·M1 + S)2 .

Since the expected values of the estimators are equal to the actual performance
metrics, the estimators are unbiased.

4.4.2 Estimating ρ

Since ρ = S/P , and the size S of S is given, estimating P means estimating ρ.
There are different ways to estimate this value. To this end, domain knowledge
or prior experiences with similar datasets could be exploited, or a classifier
could be used to make this estimate. In the remainder of this chapter we use
the classifier-based approach following Elkan and Noto [26] and we evaluate
how well it works for real life cases.

4.4.3 Behaviour under Stochastic ρ
To clarify the consequences of substituting ρ by an estimator, we analyse the
theoretical implications of a stochastic ρ on the estimators of the recall (Equa-
tion (4.5)), precision (Equation (4.6)), and F1 score (Equation (4.7)). Hence,
we do not know the real value of ρ ∈ (0, 1], and it is therefore indicated by the
random variable ρ. Since our estimator of the recall does not involve ρ, the
distribution of rec remains the same when ρ is replaced by ρ. However, the
estimator of the precision does change:

precρ = S1

ρ ·M1
.

Consequently,

E(precρ) = E(S1)
M1

·E
(

1
ρ

)
= ρ · P1

M1
·E
(

1
ρ

)
Var(precρ) = 1

M2
1

[
E(S2

1) ·E
(

1
ρ2

)
−E(S1)2 ·E

(
1
ρ

)2
]

=
Var(S1) ·E

(
1
ρ2

)
+ ρ2P 2

1 ·Var
(

1
ρ

)
M2

1
.

This means precρ is an unbiased estimator only when E(1/ρ) = 1/ρ, which
is not true in general. More specifically, consider the convex function ϕ :
(0, 1]→ [1,∞) given by ϕ(x) = 1/x. Hence, by Jensen’s inequality, ϕ(E(X)) ≤

59 59

444

Chapter 4. Estimating F1 Score Chapter 4. Estimating F1 Score

E(ϕ(X)) for random variable X and convex function ϕ. Thus, 1/ρ ≤ E(1/ρ),
and so

E(precρ) = ρP1

M1
·E
(

1
ρ

)
≥ P1

M1
= precision.

The approximated F1 score with stochastic ρ is given by

F1ρ := 2 · S1

ρ ·M1 + S
.

The expected value of this estimator is at least equal to the actual F1 score,
which means it is biased. We show this again using Jensen’s inequality and the
convex function ϕ : (0, 1]→ (1

M1+S ,
1
S] given by ϕ(x) = 1

M1·x+S . Now,

E(F1ρ) = 2E(S1) ·E
(

1
ρ ·M1 + S

)
≥ 2E(S1) · 1

E(ρ) ·M1 + S
= 2 · ρ · P1

1
ρ ·M1 + S

= F1.

Consequently, when the fraction of labelled observations among the positive
instances is deemed stochastic with an arbitrary distribution, then both the
estimators of the precision and F1 score are expected to overestimate.

4.5 Experimental Setup
In order to evaluate our approach we empirically compared it to the real F1
score and to the behaviour of the LL score on four different datasets. For these
datasets the ground truth for all instances is available.

4.5.1 Datasets and Setup
Generated Dataset

The first dataset, or actually collection of datasets, was generated randomly.
These datasets contain two features X1, X2 ∈ [0, 1] and points were generated
uniformly random. In order to assign the points to one of the two classes
(y = 0 or y = 1), their position was compared to a randomly generated line
(X2 = X1 + 0.2). When the observation is above the line, it was considered
positive, otherwise it was negative. We then selected a random sample (SCAR
assumption) of size S := ρ · P of the positive examples (y = 1) to act as S
(with value s = 1) and we took the rest as U (with s = 0). Figure 4.1a shows a
randomly generated dataset, and Figure 4.1b shows randomly generated linear
classifiers.

Iris Dataset

The Iris Dataset is popular in pattern recognition and Machine Learning liter-
ature [24]. It contains 3 flower classes (setosa, versicolor, and virginica) of 50

60 60

444

Chapter 4. Estimating F1 Score 4.5. Experimental Setup

(a) Example of generated dataset (b) Randomly generated linear classifiers

Figure 4.1: Example of a generated dataset with accompanying classifiers. Positive
labels are red and negatives are blue. Labelled samples are highlighted with a grey
circle

instances each. There are 4 features available for each instance. By taking the
last class (virginica) as positive and the two others as negative, it transfers to a
binary classification problem. These two classes are not linearly separable. We
again made a random fraction ρ of all positively labelled data points available
as S, the rest being U . 4-D linear hyper planes were generated randomly to
act as classifiers, similar to what was done for the Generated Dataset.

Heart Disease Dataset

The Heart Disease Dataset is well-known in pattern recognition literature [24].
The data contains both numerical and categorical features. The goal of models
applied to this dataset is to predict the presence of heart disease in a patient.
We trained random forest models with different numbers of estimators (ran-
domly chosen between 1 and 100) and maximum depth (randomly selected
between 1 and 10).

Health Dataset

Finally, the Health Dataset was obtained from the VU University Medical
Center and contains event logs of more than 300,000 patients [110]. The goal
is to identify certain types of patients based on their event log. Part of these
patients are labelled as suffering from kidney disease, others are labelled as
having diabetes, and the rest have another disease. For each disease, a fraction
ρ of positive examples were randomly selected as labelled examples S, while
the rest were taken as unlabelled examples U . Following [110], two features are
present in the dataset to predict the label, namely X1, X2 ∈ Z, that summarise
the care paths of patients in a way that patients with that disease are optimally
separable. A classifier was defined by a set of two thresholds, (θ1, θ2). An
instance was predicted as positive if X1 > θ1 and X2 > θ2.

61 61

444

Chapter 4. Estimating F1 Score Chapter 4. Estimating F1 Score

4.5.2 Experimental Conditions and Performance Metrics
We compared our approach to the LL score based on two metrics: (i) distance
to the real F1 score; and (ii) percentage of inversions. We computed the Root
Mean Square Error (RMSE) to measure the distance to the F1 score. Com-
puting the percentage of inversions, which is the key in showing that the right
model was selected and thus our most important outcome, was a bit more
difficult. The inversions were used to show how often the wrong model was
selected based on either F1 or the LL score compared to the actual F1 score.
To this end, we took the different classifiers for each dataset and compared
them pairwise. We have an inversion each time a classifier that has a higher
F1 score compared to the other classifier is ranked lower. Hence, we wanted to
minimise the number of inversions. We compared the results using a Wilcoxon
paired test to show possibly significant differences [120].

We conducted three types of experiments: (i) empirically studying the assump-
tions and theoretical results of our approach; (ii) evaluating the performance of
our approach with the true value of ρ being available; and (iii) evaluating the
performance with stochastic ρ. Each is explained in more detail below.

Empirical Evaluation of Assumptions

As has become clear, we made the assumption that ρ can be estimated. We have
presented various approaches to estimate ρ, one of which involves a classifier
g. This estimator is exactly correct if g(x) = Pr(s = 1|x) for all x, but usually
this condition does not hold in practice. To show the applicability of this
technique (and how easily we can obtain the crucial ρ) we used the Iris Dataset
and the Generated Dataset with different values of ρ, and estimated the value
of ρ using a trained classifier on the labelled data points. We conducted this
experiment 100 times per value of ρ. To get more accurate results, we used the
one-leave-out cross-validation technique.

Secondly, we evaluated another part of our approach, namely our result on the
bounds. In this experiment, we again used the Generated Dataset and Iris
Dataset, and took one randomly selected linear classifier with a real F1 score
of 0.44. We then took different values for ρ and for each value drew a random
sample 100 times, thereby estimating the F1 score using our approach. We used
these results to compute the mean estimated value and the confidence bounds.
We compared these to the bound following our mathematical result.

Performance Evaluation with Known ρ

To evaluate the approach compared to the LL score, we first assume ρ to be
known and correct. For these experiments, we selected the value of ρ ranging
from 0 to 1 with increments of 0.01. For each setting of ρ for the Generated
Dataset we generated 200 datasets and 100 random lines to act as classifiers.
For the Iris Dataset and the Health Dataset we generated 100 random classi-
fiers. We measured the performance for both the deviation from the F1 score

62 62

444

Chapter 4. Estimating F1 Score 4.6. Results

Table 4.1: Datasets used for the various experiments

Experiment Generated Iris Heart Health
Estimating ρ 3 3

Evaluating bounds 3 3

Perf. Eval. Known ρ: F1 3 3 3 3

Perf. Eval. Known ρ: Inversions 3 3 3 3

Perf. Eval. Stoch. ρ: Inversions 3 3

and number of inversions.

Performance Evaluation with Stochastic ρ

For stochastic ρ, we varied the noise level and use the same experimental setup
as presented under the known ρ case. The noise level was varied from a 50%
underestimation to a 100% overestimation. Due to the computational com-
plexity, we only studied this part on the Generated Dataset and Iris Dataset
and measured the percentage of inversions. Table 4.1 gives a brief overview of
the datasets used for the various experiments.

4.6 Results
First, we report the results of the empirical evaluation of the assumptions fol-
lowed by experiments in which the correct value of ρ was known. Then, we
explore the cases where the value of ρ was noisy (either under- or overestim-
ated).

4.6.1 Checking the Assumptions

(a) Generated Dataset (b) Iris Dataset

Figure 4.2: Estimating ρ using a classifier (see Elkan and Noto [26]). For each value
of ρ, this experiment is conducted 50 times. Mean, minimum, maximum, and 10th
and 90th percentiles are reported

Figure 4.2 shows the results on the estimation of ρ through our classifier in-
cluding confidence bounds. We see that as ρ increases the variability of the

63 63

444

Chapter 4. Estimating F1 Score Chapter 4. Estimating F1 Score

Table 4.2: RMSE of real F1 vs. F1, and F1 vs. LL score. For all cases, ρ = 0.30

Generated Iris Heart Disease Health
F1 0.064 0.060 0.089 0.060
LL-score 0.772 0.420 0.344 0.623

estimation decreases, which makes sense as a small sample will make the es-
timation very sensitive to the sample drawn. However, the plots show that the
estimations are very reasonable. We do not observe any obvious difference in
the estimation behaviour between the Generated Dataset (Figure 4.2a) and the
Iris Dataset (Figure 4.2b).

(a) Generated Dataset (b) Iris Dataset

Figure 4.3: Expected value and standard deviation of estimated F1 for different
values of ρ. Each grey point shows F1 for one set of labelled data points. Points
which overlap become darker. The empirical mean and bounds of F1 are shown by
the blue and red dashed line, respectively, while the mean and bounds computed
based on our mathematical result are shown by blue and red dashed curves

Our second study about the underlying assumptions concerns our estimation
of the bounds. Figure 4.3 shows the empirical results for various values of ρ,
the empirical mean and bounds, and the computed mean and bounds based
on our mathematical results for both the Generated Dataset and Iris Datasets.
Results show that the two align very well for both data configurations.

4.6.2 Known ρ

Let us move on to measuring the performance of our approach. We start by
considering the case in which ρ was equal to the true value. Table 4.2 reports
the RMSE for different datasets. The RMSE for our approach is much smaller
compared to the LL score. This was also to be expected as the proposed score
is an estimation of the F1 score, while the LL score aims to only approximate
its behaviour and not necessarily its actual value. Most important to observe
(as our aim is model selection and hyperparameter optimisation) is that our es-
timated values are monotonically increasing with the true F1 score. Therefore,
our central metric is the number of inversions when performing model selection.
Figure 4.4a shows the results for the Generated Dataset for varying values of ρ.

64 64

444

Chapter 4. Estimating F1 Score 4.7. Discussion

We see that as ρ increases the difference in performance between our approach
and the LL score increases in favour of the approach we put forward. Also, the
confidence intervals become smaller as ρ increases. Moreover, we see that our
approach never performs worse. Results of a paired Wilcoxon signed-rank test
show that for values of ρ > 0.05 the number of inversions caused by sorting
classifiers based on the F1 score is significantly lower than those by the LL
score. Moving on to the Iris Dataset, Figure 4.4b shows the average number of
inversions for different values of ρ. Our approach is significantly better when
ρ > 0.02. For the Heart Disease Dataset, the Wilcoxon paired test shows a
significant better performance for our approach if ρ > 0.02. Finally, for the
real-life Health Dataset our approach is significantly better when ρ > 0.08 for
kidney disorder and ρ > 0.02 for diabetes.

(a) Generated Dataset (b) Iris Dataset

Figure 4.4: Number of inversions for both the LL score (red) and the proposed F1
(blue) including confidence bounds for different values of ρ

4.6.3 Stochastic ρ
In many cases, we do not know the exact value of ρ and might only be able to
estimate it (see our first set of experiments). Figure 4.5 shows how under- and
overestimations influence the number of inversions of our proposed approach
for the Generated Dataset and the Iris Dataset. Here, the true value of ρ is
multiplied with a value c. When considering the Generated Dataset, we see that
only for a value of c = 0.5, i.e., an extreme underestimation of ρ, the proposed
approach scores worse compared to the LL score. For the Iris Dataset, we see
a similar pattern, except that for a value of c = 2, i.e., a severe overestimation,
our performance is worse. This shows that suffering from a bit of noise does
not hamper our approach.

4.7 Discussion
In this chapter we have introduced a novel way of estimating the F1 score to
enable model selection and hyperparameter tuning in PUL. This novel method
is based on the assumption that an estimation can be made on the fraction of
labelled positive cases. A mathematical analysis was performed to show the

65 65

444

Chapter 4. Estimating F1 Score Chapter 4. Estimating F1 Score

(a) Generated Dataset (b) Iris Dataset

Figure 4.5: Effect of error in estimated ρ on the percentage of inversions

expected value of the estimation with respect to the real F1 score. Also, we
analysed what the influence of stochasticity in ρ is on the estimations. We
showed that the estimators become biased when ρ is stochastic, while they are
unbiased when there is no noise.

Furthermore, we conducted experiments to evaluate our assumptions empir-
ically, showing that the approach is practically applicable. On top, we have
empirically compared our proposed approach to a well-known metric for model
selection, namely the LL score. Results show that our approach (1) is closer to
the true F1 score, and (2) has fewer wrong selections of models (i.e., inversions)
compared to the LL score for a variety of datasets. Both cases only hold for
sufficiently large samples of training data, though the approach never performs
worse. When considering wrongly estimating the fraction of positive labels we
see that only severe under- and overestimations hamper performance compared
to the LL score. Our approach also brings advantages that the whole family of
Fβ scores can now be estimated for any β > 0.

Suggestions for future work are, firstly, to develop a different estimator of the
precision. The estimator prec was given by S1/(ρM1). This measure takes
values in [0, 1/ρ] depending on S1 and M1 (which are determined by the classi-
fier). Consequently, it is possible for the estimated precision to be larger than
1 which always leads to an overestimation of the actual precision, since the
latter is by definition bounded in [0, 1]. This also results in an estimator of
the F1 score which can exceed 1. Hence, a different estimator of the precision
could be constructed such that it is bounded in [0, 1], but still expected to be
equal to the actual precision. This could also solve or diminish the problem
of the expected overestimation of the precision and F1 score when ρ is noisy.
Secondly, we want to explore whether the performance reports generalises over
other datasets and also other types of models that are compared.

66 66

555

5
The Dutch Draw: Constructing a Universal

Baseline for Binary Prediction Models

Novel prediction methods should always be compared to a baseline to know how
well they perform. Without this frame of reference, the performance score of a
model is basically meaningless. What does it mean when a model achieves an
accuracy of 0.8 on a test set? This depends on the dataset. Therefore, a proper
baseline is needed to evaluate the “goodness” of a performance score. Compar-
ing with the latest state-of-the-art model is usually insightful. However, this
can change rapidly when newer models are developed. Also, reproducibility is
problem when models become more complex. This chapter presents a stand-
ardised baseline for all binary classification models, named the Dutch Draw. It
provides mathematical properties for many commonly used evaluation metrics.
The Dutch Draw baseline is: (1) general, as it is applicable to all binary clas-
sification problems; (2) simple, as it is quickly determined without training or
parameter-tuning; and (3) informative, as insightful conclusions can be drawn
from the results. Moreover, the Dutch Draw baseline is more sophisticated
than any dummy classifier. The Dutch Draw baseline is therefore ideal for
two purposes. Firstly, as a sanity check during the development process of a
model. Secondly, as a way to not only use the current state-of-the-art model,
but to additionally use this robust and universal baseline to enable comparisons
across research domains. We showed that in a considerable number of studies
the performance of learning methods was worse than the Dutch Draw baseline.
This emphasises the necessity for the use of a universal baseline.

67

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

Based on [118]:
Etienne van de Bijl1, Jan Klein1, Joris Pries1, Sandjai Bhulai, Mark
Hoogendoorn, and Rob van der Mei
The Dutch Draw: Constructing a Universal Baseline for Binary
Prediction Models
(Submitted for publication)

1contributed equally

68 68

555

Chapter 5. Dutch Draw 5.1. Introduction

5.1 Introduction
A typical data science project can be crudely simplified to the following steps:
(i) understanding the problem context, (ii) comprehending the data, (iii) pre-
paring the data, (iv) modelling, (v) evaluating the model, and (vi) deploying
the model [122]. Before deploying a new model, it should be tested whether
it meets certain predefined success criteria. Such an assessment should indic-
ate whether the model performs as desired and if it outperforms other models
based on the relevant evaluation metrics. A baseline is a crucial and integral
part in this evaluation, as it gives an indication of the actual performance of a
model.

However, what baseline should be selected? Of course, a good baseline is desir-
able, but what explicitly makes a baseline ‘good’? Comparing with the latest
state-of-the-art model is usually insightful. However, this can change rapidly
when newer models are developed. Moreover, reproducibility of models is often
a problem, because their code is not published or large amounts of computa-
tional resources are required. These aspects make it hard or even impossible to
compare older results with newer research. Yet, we are not criticising the com-
parison of a new model with a state-of-the-art model per se. However, we are
pleading for an additional standardised baseline that makes it possible to com-
pare results across research domains and papers. Some fundamental baselines
are already used for this, such as dummy classifiers or optimal threshold clas-
sifiers. However, these baselines also their weaknesses. This leads to a quest
for a good standardised baseline: one baseline that rules them all. We out-
line three principal elements that any good standardised baseline should have:
generalness, simplicity, and informativeness.

Generalness Most commonly in research, a new model is compared to a lim-
ited number of existing models in a specific field. Although these are usually
carefully selected, they are still subjectively chosen. Take binary classification,
in which the objective is to label each observation either zero or one. Here,
one could already select a decision tree [73], a random forest [20], variants of
naive Bayes [119], k-nearest neighbours [4], a support vector machine [90], a
neural network [108], or a logistic regression model [99] to evaluate the per-
formance. These models are often trained specifically for a problem instance
with parameters tuned for optimal performance in that specific case. Hence,
these methods are not general. One could not take a decision tree that is used
for determining bankruptcy [73] and use it as a baseline for a pathological
voice detection problem [80]. At least structural adaptations and retraining
are necessary. A good standard baseline should be applicable to all binary
classification problems, irrespective of the specific domain.

Simplicity A baseline should not be complex. Although it is hard to determ-
ine whenever a baseline is too complex, two components are essential. Firstly,
it is necessary for applicability that a baseline can be determined relatively

69 69

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

fast. Training a neural network many times to generate an average baseline or
optimising the parameters of a certain model could take a long time. Secondly,
if a standardised baseline is very complex, it can be harder to draw meaningful
conclusions. Is it expected that a new model is outperformed by this ingeni-
ously complex baseline, or is it exactly what one would expect? This leads to
the last property of a good standard baseline.

Informativeness A baseline should be informative. If a method achieves a
score higher or lower than the baseline, a clear conclusion needs to be drawn.
Is it obvious that the baseline should be beaten? On the other side, if this is
too evident, does the baseline actually give additional information? A baseline
should give as much information as possible while still being able to derive
meaningful conclusions from it.

These principles express a list of requirements for baseline models. Additional
requirements can be made, but the three principles should be fundamental.
This chapter focuses on the construction of a universal baseline satisfying the
three principles for binary classification problems. The resulting framework
could then be used to develop baselines in other fields of Supervised Learning,
such as multi-class classification and regression. Nevertheless, let us first intro-
duce previously mentioned fundamental baselines and discuss to what extent
they satisfy the three principles.

Dummy Classifier A dummy classifier is a non-learning model that makes
predictions using a simple set of rules. For example, always predicting the
most frequent class label or predicting each class with some probability. A
dummy classifier is simple and general, however it is not always informative.
The information gained by performing better than a simple dummy classifier
can be small. With the plethora of dummy classifiers, selection is also still
arbitrary and questionable.

Optimal Threshold Classifier Koyejo et al. [49] determined for a large
family of binary performance measures that the optimal classifier consists of a
sign function with a threshold tailored to each specific measure. To determine
the optimal classifier, it is necessary to know or approximate P(y = 1|X = x),
which is the probability that the binary label y is 1 given the features X = x.
Lipton et al. [61] had a similar approach, but they only focused on the F1
score. These probabilities should be learned from training data. But in what
way should these probabilities be learned, and will they be accurate? Again,
this leads to an arbitrary selection of an approximation model. It is a clever ap-
proach, but unfortunately there is no clear-cut answer for how to approximate
these conditional probabilities. If they are not accurate, the optimal classi-
fier is based on wrong information, which makes it hard to draw meaningful
conclusions from this approach.

Both the dummy classifier and the optimal threshold classifier have their strengths

70 70

555

Chapter 5. Dutch Draw 5.2. Preliminaries

and weaknesses. In our approach, we combine their strengths into the Dutch
Draw. This can be seen as a dummy classifier on steroids. Instead of arbitrarily
choosing a dummy classifier, we mathematically derive which classifier, from
a family of classifiers, has the best expected performance. Also, this expec-
ted performance can be directly determined, making it very fast to obtain the
baseline. The Dutch Draw is: (i) applicable to any binary classification prob-
lem, (ii) reproducible, (iii) simple, (iv) parameter-free, (v) more informative
than any dummy classifier, and (vi) an explainable minimal requirement for any
new model. This makes the Dutch Draw an ideal candidate for a standardised
baseline in binary classification.

Our contributions are as follows: (i) we introduce the Dutch Draw and explain
why this method produces a universal baseline that is general, simple and in-
formative for all binary classification problems; (ii) we provide the mathemat-
ical properties of the Dutch Draw for many evaluation metrics and summarise
them in several tables; and (iii) we calculated the Dutch Draw baseline for
several Machine Learning (ML) methods from literature and showed that in
some cases our simple, non-trained baseline outperforms the methods, which
strongly supports its necessity.

To provide an overview of our paper: in Section 5.2, preliminaries of binary clas-
sification are discussed and the list of the considered evaluation metrics is given.
Section 5.3 discusses the Dutch Draw, its theoretical results, and specifically,
the baselines. In Section 5.4, we give a visual representation of the character-
istics of the Dutch Draw. In addition, the performances of many ML methods
applied to commonly used binary classification problems are benchmarked by
the corresponding Dutch Draw baselines. Lastly, Section 5.5 provides the con-
clusion of this research and further study directions.

5.2 Preliminaries
Before formulating the Dutch Draw, we need to introduce necessary notation,
and simultaneously, provide elementary information on binary classification.
This is required to explain how binary models are evaluated. As there are
several measures to determine performance, we discuss how these measures are
constructed and which are selected for this research.

5.2.1 Binary Classification
The dataset used to learn the relationship between the explanatory or input
variables and the binary response or output variable consists of M ∈ N>0
observations. Let M := {1, . . . ,M} be the set of observation indices. Each
instance, denoted by xi, has K ∈ N>0 explanatory feature values. These
features can be categorical or numerical. Without loss of generality, we assume
that xi ∈ RK for all i ∈ M. Moreover, each observation has a corresponding
output value yi ∈ {0, 1}. Now, let X := [x1 . . .xM]T ∈ RM×K denote the

71 71

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

matrix with all observations and their explanatory feature values, and let y =
(y1, . . . , yM) be the response vector. The complete dataset is then represented
by (X,y). We call the observations with response value 1 ‘positive’, while the
observations with response value 0 are ‘negative’. Let P denote the number of
positives and N the number of negatives. Note that P +N = M .

5.2.2 Evaluation Metrics
An evaluation metric quantifies the prediction performance of a trained model.
We categorise the evaluation metrics into two groups: base measures and per-
formance measures. Since there are two possible values for both the predicted
and the true classes in binary classification, there are four base measures: the
number of true positives (TP), false positives (FP), false negatives (FN), and
true negatives (TN). Any function of one or more of these base measures
can be a performance measure. To shorten notation, let P̂ := TP + FP and
N̂ := TN + FN denote the number of positively and negatively predicted in-
stances, respectively.

Table 5.1: Definitions and domains: Overview of the definition and the codomain
of each evaluation metric considered in this research

Metric Definition Codomain

True Positives (TP) TP N0

True Negatives (TN) TN N0

False Negatives (FN) FN N0

False Positives (FP) FP N0

True Positive Rate (TPR), Recall, Sensitivity TPR = TP
P [0, 1]

True Negative Rate (TNR), Specificity, Selectivity TNR = TN
N [0, 1]

False Negative Rate (FNR), Miss Rate FNR = FN
P [0, 1]

False Positive Rate (FPR), Fall-out FPR = FP
N [0, 1]

Positive Predictive Value (PPV), Precision PPV = TP
P̂

[0, 1]

Negative Predictive Value (NPV) NPV = TN
N̂

[0, 1]

False Discovery Rate (FDR) FDR = FP
P̂

[0, 1]

False Omission Rate (FOR) FOR = FN
N̂

[0, 1]

Fβ score (Fβ) Fβ = (1 + β2)/
(

1
PPV + β2

TPR

)
[0, 1]

Youden’s J Statistic (J), (Bookmaker) Informedness J = TPR + TNR− 1 [−1, 1]

Markedness (MK) MK = PPV + NPV− 1 [−1, 1]

Accuracy (Acc) Acc = TP+TN
M [0, 1]

Balanced Accuracy (BAcc) BAcc = 1
2 (TPR + TNR) [0, 1]

Matthews Correlation Coefficient (MCC) MCC = TP·TN−FP·FN√
P̂ ·N̂ ·P·N

[−1, 1]

Cohen’s kappa (κ) κ = Po−Pe
1−Pe , with Po = Acc,Pe = P̂ ·P+N̂ ·N

M2 [−1, 1]

Fowlkes-Mallows Index (FM), G-mean 1 FM =
√
TPR · PPV [0, 1]

G-mean 2 (G(2)) G(2) =
√
TPR · TNR [0, 1]

Prevalence Threshold (PT) PT =
√

TPR·FPR−FPR
TPR−FPR [0, 1]

Threat Score (TS), Critical Success Index TS = TP
P+FP [0, 1]

72 72

555

Chapter 5. Dutch Draw 5.3. Methodology

All performance measures and base measures that we consider in this research
are shown in Table 5.1. Here, also their abbreviations, possibly alternative
names, their definitions, and corresponding codomains are presented. These
codomains show in what set the measure can theoretically take values (without
considering the exact values of P , N , P̂ , and N̂). In Section 5.3, the case-
specific codomains are provided when we discuss the evaluation metrics in
more detail. Finally, note that the list is not exhaustive, but it contains most
of the commonly used evaluation metrics.

Not every evaluation metric is always well-defined. Most notably, there is a
problem with the Prevalence Threshold (PT). As Table 5.1 shows, PT is un-
defined whenever its numerator and denominator are both zero. Unfortunately,
this is not an exception that can easily be discarded. Therefore, we omit PT
throughout the rest of this research. For more details on this, see Section 5.6.22.
Furthermore, a problem for several performance measures is division by zero.
For example, the True Positive Rate (TPR) defined as TPR = TP/P cannot
be calculated whenever P = 0. Therefore, we have made assumptions for the
allowed values of P , N , P̂ , and N̂ . These are shown in Table 5.2.

Table 5.2: Assumptions on domains P , N , P̂ , and N̂ : Some measures are not
defined if P , N , P̂ or N̂ is equal to zero. The assumptions in this table are therefore
necessary (always M > 0)

Metric Domain P Domain N Domain P̂ Domain N̂

TP, TN, FN, FP, Acc, κ N0 N0 N0 N0

TPR, FNR, TS N>0 N0 N0 N0

TNR, FPR N0 N>0 N0 N0

PPV, FDR N0 N0 N>0 N0

NPV, FOR N0 N0 N0 N>0

Fβ , FM N>0 N0 N>0 N0

J, BAcc, G(2)
N>0 N>0 N0 N0

MK N0 N0 N>0 N>0

MCC N>0 N>0 N>0 N>0

5.3 Methodology
In this section, we introduce the Dutch Draw framework and we discuss how
this method is able to provide a universal baseline for any evaluation metric.
This baseline is general, simple, and informative, which are crucial for a good
standardised baseline, as we explained in Section 5.1. Firstly, we provide the
family of Dutch Draw classifiers, and secondly, we explain how the optimal

73 73

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

classifier generates the baseline.

5.3.1 Dutch Draw Classifier
The goal of our research is to provide a universal baseline for any evaluation
metric in binary classification. These standardised baselines are generated by
the optimal Dutch Draw classifier. Before we discuss how to select the best
Dutch Draw classifier, we first present the definition of the general Dutch Draw
classifier. This is the function σθ : RM×K → {0, 1}M with as input an eval-
uation dataset with M observations and K feature values per observation. It
generates the predictions for these observations by outputting a vector of M
binary predictions. It is defined as:

σθ(X) :={take a random sample without replacement of size bM · θe
of rows from X and assign 1 to these observations and 0
to the remaining rows}.

Here, b·e is the function that rounds its argument to the nearest integer. The
parameter θ ∈ [0, 1] controls what percentage of observations are predicted as
positive. The mathematical definition of σθ is given by:

σθ(X) := (1E(i))i∈M with E ⊆M uniformly drawn s.t. |E| = bM · θe,

with (1E(i))i∈M the vector with ones in the positions in E and zeroes elsewhere.
Note that σθ does not learn from the features in the data, just as a dummy
classifier. The set of all Dutch Draw classifiers {σθ : θ ∈ [0, 1]} is the complete
family of models that classify a random sample of any size as positive.

Given a Dutch Draw classifier, the number of predicted positives P̂ depends
on θ and is given by P̂θ := bM · θe. The number of predicted negatives is
N̂θ := M − bM · θe. To be specific, these two numbers are integers, and thus,
different values of θ can lead to the same value of P̂θ. Therefore, we introduce
the parameter θ∗ := bM ·θe

M as the discretised version of θ. Furthermore, we
define

Θ∗ :=
{
bM · θe
M

: θ ∈ [0, 1]
}

=
{

0, 1
M
, . . . ,

M − 1
M

, 1
}

as the set of all unique values that θ∗ can obtain for all θ ∈ [0, 1].

Given a performance measure and dataset, each classifier σθ has an expected
performance score. Optimising over all θ ∈ [0, 1] gives the classifier with the
best expected performance. This is the Dutch Draw baseline. It is general,
because it is obtained from an approach that is not trained on feature values
and there are no free parameters to be tuned. The baseline is simple, because
it can be calculated very fast and it is clear that any learning model should
outperform this baseline. The baseline is more informative than any dummy
classifier, because it is by definition the best classifier out of the family of
dummy classifiers.

74 74

555

Chapter 5. Dutch Draw 5.3. Methodology

Distributions Evaluation Metrics

The distributions of the base measures are directly determined by σθ. Consider
for example TP: the number of positive observations that are also predicted to
be positive. In a dataset of M observations with P labelled positive, bM · θe
random observations are predicted as positive under the Dutch Draw approach.
This implies that TPθ is hypergeometrically distributed with parameters M ,
P , and bM · θe, as the classifier randomly draws bM · θe samples without
replacement from a population of sizeM , where P samples are labelled positive.
Thus:

P(TPθ = s) =


(Ps)·(M−P

bM·θe−s)
(M
bM·θe)

if s ∈ D(TPθ),

0 else,

where D(TPθ) is the domain of TPθ. The definition of this domain is given in
Equation (5.1).

The other three base measures are also hypergeometrically distributed following
similar reasoning. This leads to

TPθ ∼ Hypergeometric(M,P, bM · θe),
FPθ ∼ Hypergeometric(M,N, bM · θe),
FNθ ∼ Hypergeometric(M,P,M − bM · θe),
TNθ ∼ Hypergeometric(M,N,M − bM · θe).

Note that these random variables are not independent. In fact, they can all
be written in terms of TPθ. This is a very nice property that follows from
Dutch Draw classifiers. Furthermore, most evaluation metrics can be written
as a linear combination of only TPθ. With only one random variable, the-
oretical derivations and optimal classifiers can be determined. As mentioned
before, TPθ + FNθ = P and TNθ + FPθ = N = M − P , and we also have
TPθ +FPθ = bM · θe, because this denotes the total number of positively pre-
dicted observations. These three identities are linear in TPθ, thus each base
measure can be written in the form Zθ (a, b) := a · TPθ + b with a, b ∈ R. Let
Hθ (a, b) be the probability distribution of Zθ (a, b). Then, by combining the
identities:

TPθ = TPθ = Zθ (1, 0) ∼ Hθ (1, 0) , (B1)

FPθ = P̂θ − TPθ = Zθ

(
−1, P̂θ

)
∼ Hθ

(
−1, P̂θ

)
, (B2)

FNθ = P − TPθ = Zθ (−1, P) ∼ Hθ (−1, P) , (B3)

TNθ = N − P̂θ + TPθ = Zθ

(
1, N − P̂θ

)
∼ Hθ

(
1, N − P̂θ

)
, (B4)

where N = M − P and P̂θ := bM · θe.

75 75

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

Distribution Fβ Score To give an illustration of Hθ (a, b) for a performance
measure, we consider the Fβ score (F(β)

θ), introduced by Chinchor [16]. It is
the weighted harmonic average between the True Positive Rate (TPRθ) and
the Positive Predictive Value (PPVθ). The latter two performance measures
are discussed extensively in Sections 5.6.5 and 5.6.9, respectively. The Fβ
score balances predicting the actual positive observations correctly (TPRθ)
and being cautious in predicting observations as positive (PPVθ). The factor
β > 0 indicates how much more TPRθ is weighted compared to PPVθ. The Fβ
score is commonly defined as

F(β)
θ = 1 + β2

1
PPVθ + β2

TPRθ

.

F(β)
θ can be formulated in terms of only TPθ by using the definitions of PPVθ

and TPRθ given in Table 5.1 and Equations (B1) and (B2):

F(β)
θ = (1 + β2)TPθ

β2 · P + bM · θe .

Since PPVθ is only defined when bM · θe > 0 and TPRθ only when P > 0, we
need for F(β)

θ that both these restrictions hold. The definition of F(β)
θ is linear

in TPθ and can therefore be formulated as

F(β)
θ = Zθ

(
1 + β2

β2 · P + bM · θe , 0
)
,

Ranges Evaluation Metrics

The values that Zθ (a, b) can attain depend on a and b, and of course, on the
domain of TPθ. Without restriction, the maximum number that TPθ can be is
P . Then, all positive observations are correctly predicted. However, when θ is
small enough such that bM ·θe < P , then only bM ·θe observations are predicted
as positive. Consequently, TPθ can only reach the value bM · θe. Hence, in
general, the upper bound on the domain of TPθ is min{P, bM · θe}. The same
reasoning holds for the lower bound: when θ is small enough, the minimum
number of TPθ is 0, since all positive observations can be incorrectly predicted.
However, when θ gets large enough, positive observations have to be predicted
positive even if all M − P negative observations are predicted positive. Thus,
in general, the lower bound on the domain is max{0, bM ·θe− (M −P)}. Now,
let D(TPθ) be the domain of TPθ, then:

D(TPθ) := {i ∈ N0 : max{0, bM · θe − (M − P)} ≤ i ≤ min{P, bM · θe}} .
(5.1)

Consequently, the range of Zθ (a, b) is given by

R (Zθ (a, b)) := {a · i+ b}i∈D(TPθ) . (R)

76 76

555

Chapter 5. Dutch Draw 5.3. Methodology

Expectations Evaluation Metrics

The introduction of Zθ (a, b) allows us to write its expected value in terms
of a and b. This statistic is important, as it is required to calculate the ac-
tual baseline. Since TPθ has a Hypergeometric(M,P, bM · θe) distribution, its
expected value is known and given by

E[TPθ] = bM · θe
M

· P.

Next, we obtain the following general definition for the expectation of Zθ (a, b):

E[Zθ (a, b)] = a ·E[TPθ] + b = a · bM · θe
M

· P + b, (E)

This rule is consistently used to determine the expectation for each meas-
ure.

Expectation F(β)
θ To illustrate, we look at F(β)

θ . The Fβ score is linear in
TPθ with slope a = (1 + β2)/(β2 ·P + bM · θe) and intercept b = 0, and so, its
expectation is given by:

E[F(β)
θ] = E

[
Zθ

(
1 + β2

β2 · P + bM · θe , 0
)]

(E)= 1 + β2

β2 · P + bM · θe ·E[TPθ] + 0

= bM · θe · P · (1 + β2)
M · (β2 · P + bM · θe)

= (1 + β2) · P · θ∗

β2 · P +M · θ∗
. (5.2)

A full overview of the distribution and mean of all considered base and per-
formance measures is given in Table 5.3. All the calculations performed to
derive the corresponding distributions and expectations are provided in Sec-
tion 5.6.

5.3.2 Optimal Dutch Draw Classifier and Baselines
Next, we use the general results that we obtained in Section 5.3.1 to determine
the universal Dutch Draw baseline for each evaluation metric. More specific-
ally, the expectation as a function of θ is used for this. Given an evaluation
metric, the standardised baseline is obtained by optimising (taking the min-
imum or maximum of) the associated expectation over θ ∈ [0, 1]. Hence, we are
interested in the optimal value θopt for θ, and the corresponding Dutch Draw
classifier σθopt . To select the best classifier, it is crucial to discuss what know-
ledge is available to the classifier. This can directly influence the optimality of
a classifier. We consider three cases:

1. knowledge of P and M (full knowledge)

77 77

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

Table 5.3: Properties metrics under Dutch Draw: The mean score is optimised
over all allowed θ∗ ∈ Θ∗ for each measure to obtain the Dutch Draw baseline. “7”
denotes that no closed-form expression was found

Distribution Hθ (a, b)
Metric Expectation

a b

TP θ∗ · P 1 0

TN (1− θ∗) (M − P) 1 M − P −M · θ∗

FN (1− θ∗)P −1 P

FP θ∗ (M − P) −1 M · θ∗

TPR θ∗ 1
P 0

TNR 1− θ∗ 1
M−P 1− M ·θ∗

M−P

FNR 1− θ∗ − 1
P 1

FPR θ∗ − 1
M−P

M ·θ∗
M−P

PPV P
M

1
M ·θ∗ 0

NPV 1− P
M

1
M(1−θ∗) 1− P

M(1−θ∗)

FDR 1− P
M − 1

M ·θ∗ 1

FOR P
M − 1

M(1−θ∗)
P

M(1−θ∗)

Fβ
(1+β2)θ∗·P
β2·P+M ·θ∗

1+β2

β2·P+M ·θ∗ 0

J 0 M
P (M−P) −M ·θ∗

M−P

MK 0 1
M ·θ∗(1−θ∗) − P

M(1−θ∗)

Acc (1−θ∗)(M−P)+θ∗·P
M

2
M 1− θ∗ − P

M

BAcc 1
2

M
2P (M−P)

1
2 −

M ·θ∗
2(M−P)

MCC 0 1√
P (M−P)θ∗(1−θ∗)

−
√
P ·θ∗√

(M−P)(1−θ∗)

κ 0 2
P (1−θ∗)+(M−P)θ∗ − 2θ∗·P

P (1−θ∗)+(M−P)θ∗

FM
√

θ∗·P
M

1√
P ·M ·θ∗

0

G(2) 7 Non-linear in TPθ Non-linear in TPθ
TS 7 Non-linear in TPθ Non-linear in TPθ

78 78

555

Chapter 5. Dutch Draw 5.3. Methodology

2. knowledge of only M

3. no knowledge.

A classifier is considered to be optimal if the expectation is optimal given the
available knowledge. In the first case, the total number of positives P and
negatives M − P is known. Note that information about individual samples is
not assumed. Although it is only a small bit of information, this is often not
available to other classification models. Thus, we also discuss the second and
third case. In an offline setting, the total number of samplesM is often known.
This only tells a classification model how often it should classify and does not
give any information about the labels of the samples. In an online setting, M
is unknown, as there is a stream of samples with undefined length that needs
to be classified by a model. The complete Dutch Draw framework with the
three cases is shown in Figure 5.1.

All Dutch Draw classifiers (§5.3.1)

Knowledge: P,M

Optimal Dutch Draw classifier
Knowledge: P,M

Dutch Draw baseline
(1) (2)

No knowledge

Optimal Dutch Draw classifier
No knowledge

Dutch Draw baseline
(1) (2)

Knowledge: M

Optimal Dutch Draw classifier
Knowledge: M

Dutch Draw baseline
(1) (2)

: For a given metric determine the optimal classifier with/without knowledge of P , M .
(1)

: Determine the performance of the optimal Dutch Draw classifier with/without knowledge of P , M .
(2)

The Dutch Draw

Figure 5.1: Framework of the Dutch Draw: There are three cases of knowledge,
leading to three different pathways. For each case, the classifier that results in the
optimal expectation, and thus the baseline, is selected from the group of all Dutch
Draw classifiers

Dutch Draw Baselines with Knowledge of P and M

In this section, we provide the optimal expectations, and therefore the baselines,
and the corresponding optimisers θopt for the evaluation metrics when P and
M are known. Here, we explicitly show the calculations for F(β)

θ to give an
illustration of how the baseline is determined for an evaluation metric that is
linear in TPθ. All derived universal baselines and corresponding optimisers are
shown in Table 5.4.

79 79

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

Optimising E[Fβ] To determine the extreme values of the expectation of
F(β)
θ , and therefore the baselines, the derivative of the function f : [0, 1]→ [0, 1]

defined as
f(t) = (1 + β2) · P · t

β2 · P +M · t

is calculated. First note that f(bM · θe/M) = E[F(β)
θ] for the expectation as

defined in Equation (5.2). The derivative of f is given by

df(t)
dt = β2(1 + β2) · P 2

(β2 · P +M · t)2 .

This is strictly positive for all t in its domain, thus f is strictly increasing
in t. This means E[F(β)

θ] is non-decreasing in θ and also in θ∗, because the
term θ∗ = bM · θe/M is non-decreasing in θ. Hence, the extreme values of the
expectation of F(β)

θ are its border values:

min
θ∈[1/(2M),1]

(
E[F(β)

θ]
)

= min
θ∈[1/(2M),1]

(
(1 + β2) · P · bM · θe
M · (β2 · P + bM · θe)

)
= (1 + β2) · P
M(β2 · P + 1) ,

max
θ∈[1/(2M),1]

(
E[F(β)

θ]
)

= max
θ∈[1/(2M),1]

(
(1 + β2) · P · bM · θe
M · (β2 · P + bM · θe)

)
= (1 + β2) · P
β2 · P +M

.

Note that bM · θe > 0 is a restriction for F(β)
θ , and hence the optima are taken

over the interval [1/(2M), 1]. Furthermore, the optimisation values θmin and
θmax for the extreme values are given by

θmin ∈ arg min
θ∈[1/(2M),1]

(
E[F(β)

θ]
)

= arg min
θ∈[1/(2M),1]

(
bM · θe

β2 · P + bM · θe

)

=
{

[1
2 , 1] if M = 1[1
2M , 3

2M
)

if M > 1,

θmax ∈ arg max
θ∈[1/(2M),1]

(
E[F(β)

θ]
)

= arg max
θ∈[1/(2M),1]

(
bM · θe

β2 · P + bM · θe

)
=
[
1− 1

2M , 1
]
,

80 80

555

Chapter 5. Dutch Draw 5.3. Methodology

respectively. Following this reasoning, the discrete forms θ∗min and θ∗max are
given by

θ∗min ∈ arg min
θ∗∈Θ∗\{0}

{
E[F(β)

θ∗]
}

= arg min
θ∗∈Θ∗\{0}

{
θ∗

β2 · P +M · θ∗

}
=
{

1
M

}
,

θ∗max ∈ arg max
θ∗∈Θ∗\{0}

{
E[F(β)

θ∗]
}

= arg max
θ∗∈Θ∗\{0}

{
θ∗

β2 · P +M · θ∗

}
= {1}.

The smallest expected F(β)
θ is obtained when all evaluation observations but one

are predicted negative, while predicting everything positive yields the largest
expected F(β)

θ .

Dutch Draw Baselines with Knowledge Only of M

We now assume that only M is known, as P is often not available for other
prediction models. This is the second branch of Figure 5.1. An important
observation from Table 5.4 is that the Accuracy (Accθ) is the only metric for
which the optimal parameter is dependent on P . This means that knowing P
is not necessary for all other measures. Except possibly for G(2)

θ , as no optimal
threshold was derived. Thus, not knowing P does not change the optimal
threshold for most measures, but how does it change the optimal threshold for
Accθ?

Optimising Accuracy The derivation of the expectation of Accθ is given in
Section 5.6.16. It is defined as

E[Accθ|P] = (M − bM · θe) (M − P) + bM · θe · P
M2 .

If test and training set have similar distributions, P can be estimated by the
total number of positives in the training set. Note that it is only necessary
to determine whether P ≥ M

2 or vice versa. This means its explicit value is
not necessary. In a less perfect world, the training set could have distinctly
different distribution of labels compared to the test set.

Assume that P has distribution GM for a given M . It then holds that

EP∼GM [E[Accθ | P]] = EP∼GM

[
(M − bM · θe) (M − P) + bM · θe · P

M2

]
= (M − bM · θe)(M −EP [P]) + bM · θe ·EP [P]

M2 .

Equivalent to what we show in Section 5.6.16, the equation above is non-
decreasing in θ when EP∼GM [P] ≥ M

2 and otherwise non-increasing. This
means the optimisation values θmin and θmax (Equations (5.20) and (5.21),
respectively) are the same but P is replaced by its expectation EP∼GM [P].

81 81

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

Table 5.4: Mathematical Results Dutch Draw: For each evaluation metric, the
minimum and maximum of the expectation over all allowed θ∗ ∈ Θ∗ lead to the
relevant Dutch Draw baselines. The values of θ∗ leading to these optima are the
minimisers and maximisers, respectively. “7” denotes that no closed-form expression
was found

Metric max{E} Θ?
max := arg max{E} min{E} Θ?

min := arg min{E}

TP P {1} 0 {0}

TN M − P {0} 0 {1}

FN P {0} 0 {1}

FP M − P {1} 0 {0}

TPR 1 {1} 0 {0}

TNR 1 {0} 0 {1}

FNR 1 {0} 0 {1}

FPR 1 {1} 0 {0}

PPV P
M Θ∗ \ {0} P

M Θ∗ \ {0}

NPV 1− P
M Θ∗ \ {1} 1− P

M Θ∗ \ {1}

FDR 1− P
M Θ∗ \ {0} 1− P

M Θ∗ \ {0}

FOR P
M Θ∗ \ {1} P

M Θ∗ \ {1}

Fβ
(1+β2)·P
β2·P+M {1} (1+β2)·P

M(β2·P+1)
{ 1
M

}
J 0 Θ∗ 0 Θ∗

MK 0 Θ∗ \ {0, 1} 0 Θ∗ \ {0, 1}

Acc max
{
P
M , 1− P

M

}
Equation (5.23) min

{
P
M , 1− P

M

}
Equation (5.22)

BAcc 1
2 Θ∗ 1

2 Θ∗

MCC 0 Θ∗ \ {0, 1} 0 Θ∗ \ {0, 1}

κ 0 Θ∗ (Θ∗ \ {1} if P = M) 0 Θ∗ (Θ∗ \ {1} if P = M)

FM
√

P
M {1}

√
P
M { 1

M }

G(2) 7 7 0 {0, 1}

TS P
M {1} 0 {0}

82 82

555

Chapter 5. Dutch Draw 5.3. Methodology

Hence,

θmin ∈ arg min
θ∈[0,1]

(E[Accθ]) =


[
1− 1

2M , 1
]

if EP∼GM [P] < M
2

[0, 1] if EP∼GM [P] = M
2[

0, 1
2M
)

if EP∼GM [P] > M
2 ,

θmax ∈ arg max
θ∈[0,1]

(E[Accθ]) =


[
0, 1

2M
)

if EP∼GM [P] < M
2

[0, 1] if EP∼GM [P] = M
2[

1− 1
2M , 1

]
if EP∼GM [P] > M

2 .

Consequently, the discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimisers
are given by:

θ∗min ∈ arg min
θ∗∈Θ∗

{E[Accθ∗]} =


{1} if EP∼GM [P] < M

2
Θ∗ if EP∼GM [P] = M

2
{0} if EP∼GM [P] > M

2 ,
(5.3)

θ∗max ∈ arg max
θ∗∈Θ∗

{E[Accθ∗]} =


{0} if EP∼GM [P] < M

2
Θ∗ if EP∼GM [P] = M

2
{1} if EP∼GM [P] > M

2 ,
(5.4)

respectively. This means that we only have to know whether we expect a ma-
jority or a minority of positive observations in the evaluation set to determine
the optimal optimisers. We do not have to know the precise value of EP∼GM [P]
or the distribution GM of P . This is a loose assumption, as in most situations
it is known whether positive observations are the majority or minority due to
the nature of the data. However, what if even this is unknown?

Assume no information about GM is known. Therefore, we want to find the
classifier that leads to the maximal and minimal performance in their respect-
ive worst-case scenarios. GM can be any distribution, thus for the maximal
performance we must evaluate the worst possible distribution with respect to
the chosen θ. In other words, the worst-case scenario minimises the expected
Accθ over P and N = M − P for a given θ. For the minimal performance,
the worst-case scenario maximises the expected Accθ over P and N for given
θ.

Maximal Performance in Worst-case Scenario The expected Accθ writ-
ten in terms of P and N is obtained from Table 5.3:

(1− θ∗) ·N + θ∗ · P
P +N

. (5.5)

If θ∗ ≤ 1
2 , most observations are labelled negative. Thus, N = 0 is the worst-

case scenario for these values of θ∗. Vice versa, if θ∗ ≥ 1
2 , most instances are

labelled positive. Thus, P = 0 is the worst-case scenario for these values of θ∗.

83 83

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

The following then holds for the worst-case scenario

min
P,N∈N:P+N>0

{
(1− θ∗) ·N + θ∗ · P

P +N

}

=

 minP∈N>0

{
(1−θ∗)·0+θ∗·P

P+0

}
if θ∗ ≤ 1

2 ,

minN∈N>0

{
(1−θ∗)·N+θ∗·0

0+N

}
if θ∗ ≥ 1

2 .

= min {θ∗, 1− θ∗} . (5.6)

Next, we want to find the thresholds θ∗ that maximise the expected Accθ in
the worst-case scenario. Using Equation (5.6) it follows that

arg max
θ∗∈Θ∗

{
min

P,N∈N:P+N>0

{
(1− θ∗) ·N + θ∗ · P

P +N

}}
= arg max

θ∗∈Θ∗
{min {θ∗, 1− θ∗}}

=
{ { 1

2
}

if M is even,{
M−1
2M , M+1

2M
}

if M is odd. (5.7)

Thus, if no information about GM is known, the expected Accθ is maximised
in the worst-case scenario when θ∗ = 1

2 if M is even, or θ∗ ∈
{
M−1
2M , M+1

2M
}

when M is odd.

Minimal Performance in Worst-case Scenario The expected Accθ in
terms of P and N is given in Equation (5.5). If θ∗ ≤ 1

2 , most observations are
labelled negative. Thus, P = 0 is the worst-case scenario, because we want
to obtain a small Accuracy. If θ∗ ≥ 1

2 , then most observations are predicted
positive, and thus, N = 0 is the worst-case scenario for these θ∗. The reasoning
is similar to what we derived in Equation (5.6). Hence,

max
P,N∈N:P+N>0

{
(1− θ∗) ·N + θ∗ · P

P +N

}

=

 maxN∈N>0

{
(1−θ∗)·N+θ∗·0

0+N

}
if θ∗ ≤ 1

2 ,

maxP∈N>0

{
(1−θ∗)·0+θ∗·P

P+0

}
if θ∗ ≥ 1

2 .

= max {θ∗, 1− θ∗} . (5.8)

Now, we want to find the values θ∗ such that Accθ is minimised in the worst-
case scenario. By using Equation (5.8), it follows that

arg min
θ∗∈Θ∗

{
max

P,N∈N:P+N>0

{
(1− θ∗) ·N + θ∗ · P

P +N

}}
= arg min

θ∗∈Θ∗
{max {θ∗, 1− θ∗}}

= {0, 1}.

84 84

555

Chapter 5. Dutch Draw 5.3. Methodology

Dutch Draw Baselines with No Knowledge

Finally, we consider the possibility that the total number of evaluation obser-
vationsM is not known, which is the third branch of Figure 5.1. This situation
can occur in for example an online setting, in which a stream of samples with
undefined length should be classified. Note that any Dutch Draw classifier in-
herently uses M , as it labels a random subset of some size as positive. To take
a random subset, M must be known. Yet, for many performance measures the
optimal parameter values are either zero or one, which removes the dependency
on the knowledge of M . In most other cases, the expected baseline is constant,
making it also unnecessary to knowM . However, a problem does arise for FMθ

and F(β)
θ . Table 5.4 shows that Θ?

min = { 1
M } for these performance measures.

AsM is unknown, it is impossible to select the corresponding optimal classifier.
If it is assumed that the order of the samples is random, an alternative optimal
classifier can be defined. θ∗min = 1

M means that only one sample is classified as
1. Now, let the first observed sample be classified as 1 and classify all other
samples as 0. Note that this strategy is optimal and independent ofM , as long
as the samples are classified in random order.

As Equation (5.7) shows, the worst-case scenario for the Accuracy is maximised
for θ∗ = 1

2 if M is even or θ∗ ∈
{
M−1
2M , M+1

2M
}
if M is odd. The corresponding

Dutch Draw classifier can be transformed to a classifier that alternately predicts
0 and 1. Equivalently, θ∗ ∈ {0, 1} minimises the worst-case scenario. Thus,
always predicting positive or negative will give the minimal worst-case expected
accuracy, namely zero.

Summary

In the previous three sections, the three branches of the Dutch Draw frame-
work were examined (see Figure 5.1). In most cases, the optimal Dutch Draw
classifier is shown to be independent of either P or M . Table 5.4 thus always
holds for most measures. Only for Accθ, FMθ, and F(β)

θ the results change de-
pending on the knowledge of P and M . The summarised results are presented
in Figure 5.2.

85 85

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

Performance
measure

Knowledge

Knowledge

Table 5.4
FMθ

,F
(β)
θ

Acc
θ

All other measures

Max classifier: Predict all ‘1’
Min classifier: Predict first ‘1’, rest ‘0’

Max classifier (worst-case): Alternately predict ‘0’ and ‘1’
Min classifier (worst-case): Predict all ‘0’ or all ‘1’

E[P]
?
≥ M

2 Max classifier: Equation (5.4)
Min classifier: Equation (5.3)

Max classifier (worst-case): θ∗max = 1
2

Min classifier (worst-case): θ∗min ∈ {0, 1}

Knowledge: P,M

Knowledge: P,M

Knowledge: M

Knowledge: M

No knowle
dge

No knowledge

Known

Unknown

Figure 5.2: Summary of Section 5.3.2: The optimal Dutch Draw classifier is
given for each metric and provided assumed knowledge

5.4 Experimental Results
In this section, we provide graphical support for the use of the Dutch Draw
methodology and we show the importance of using the baseline in practice.
Firstly, diagrams with the optimal values for θ for all considered evaluation
metrics are presented. Secondly, for a set of commonly used datasets, the
Dutch Draw baselines are calculated to show what the lower bounds are for
the considered performances in practice. Lastly, we applied the Dutch Draw to
many binary classifiers from literature to demonstrate that in several settings
the ML methods did not outperform our baseline.

5.4.1 Visual Comparison of Evaluation Metrics
As the baseline depends on the values of P and N , different values result in dif-
ferent baselines. Figure 5.3 presents a visualisation of Table 5.3 for four settings
of the test data class distribution and size. We consider scenario (a) to explain
what the four diagrams convey. This scenario consists of a few observations
(M = 20) in perfect balance (P = N). The horizontal axis shows the possible
values of θ ∈ [0, 1]. The vertical axis shows all the evaluation metrics and is
therefore purely categorical: there is no nominal ordering between the meas-
ures. For every evaluation metric, the status for each value of θ is shown: the
value is not allowed (black), the value leads to the minimal expectation (red),
the value generates both the minimal and maximal expectation (orange) (i.e.,
the expectation is constant in θ), the value leads to neither the minimum nor
the maximum (grey), or the value generates the maximal expectation (green).
The diagrams show that the horizontal axis is partitioned in several rectangles.
For scenario (a), there are 21 rectangles per measure. These correspond to the

86 86

555

Chapter 5. Dutch Draw 5.4. Experimental Results

possible values of θ∗, the discretised version of θ. Remember that θ∗ takes val-
ues in the set Θ∗ = {0, 1

M , . . . , M−1
M , 1}. Thus, there are |Θ∗| = M + 1 unique

values, and hence, 21 rectangles in this scenario.

Now, in Figure 5.3, we can clearly see for each evaluation metric which values
of θ lead to a minimum or maximum. In most cases, the optimal values are
attained for either the extreme values of θ or all allowed values (meaning that
the expectation is constant in θ). One exception to this is G(2)

θ (G2), as this
measure is maximised for θ∗ = 1

2 . Note that we are not able to explicitly
calculate the maximiser for G(2)

θ , as the ‘7’ in Table 5.4 shows. Scenario (b),
in which M is chosen larger, shows the same patterns as (a) with more fine-
grained rectangles. For scenarios (c) and (d), the dataset is made unbalanced
by choosing P < N . This changes the results for the Accuracy (ACC), since
it is not optimised any more for every θ, but everything should be predicted
according to the majority class, which is the negative class in these scenarios.
Also, the maximiser for G(2)

θ is around 0.5 for all four settings, suggesting that
θ∗max ≈ 0.5 in general.

87 87

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

(a) Balanced classes, small M = 20 (b) Balanced classes, large M = 100

(c) Unbalanced classes, small M = 20 (d) Unbalanced classes, large M = 100

N.D. Min Min = Max Not-optimal Max

Figure 5.3: Visualisation of optimiser values: Different scenarios are considered.
In the balanced setting, the ratio P :N is 1:1. In the unbalanced case, it is 1:3

88 88

555

Chapter 5. Dutch Draw 5.4. Experimental Results

5.4.2 Baselines for Existing Binary Classification Data-
sets

Table 5.5: Dutch Draw baseline for UCI datasets: Each dataset has different
P and M , resulting in different Dutch Draw baselines

Measure Adult Bank
Marketing

Banknote
Authentication

Cleveland Heart
Disease

Haberman’s
Survival

LSVT Voice
Rehabilitation

Occupancy
Detection

Wisconsin Cancer
(Diagnostic)

TP 11687 5289 610 139 81 42 4750 212

TN 37155 39922 762 164 225 84 15810 357

FN 37155 39922 672 164 225 84 15810 357

FP 11687 5289 610 139 81 42 4750 212

TPR 1 1 1 1 1 1 1 1

TNR 1 1 1 1 1 1 1 1

FNR 1 1 1 1 1 1 1 1

FPR 1 1 1 1 1 1 1 1

PPV 0.239 0.117 0.445 0.459 0.265 0.333 0.231 0.373

NPV 0.761 0.883 0.555 0.541 0.735 0.667 0.769 0.627

FDR 0.761 0.883 0.555 0.541 0.735 0.667 0.769 0.627

FOR 0.239 0.117 0.445 0.459 0.265 0.333 0.231 0.373

F1 0.386 0.209 0.616 0.629 0.419 0.5 0.375 0.543

J 0 0 0 0 0 0 0 0

MK 0 0 0 0 0 0 0 0

Acc 0.761 0.883 0.555 0.541 0.735 0.667 0.769 0.627

BAcc 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

MCC 0 0 0 0 0 0 0 0

κ 0 0 0 0 0 0 0 0

FM 0.489 0.342 0.667 0.677 0.514 0.577 0.481 0.61

G(2) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

TS 0.239 0.117 0.445 0.459 0.265 0.333 0.231 0.373

To show what the Dutch Draw baseline is in practice, it was calculated for all
evaluation metrics on eight datasets used for binary classification. The selected
datasets were extracted from the UCI Machine Learning archive [24]. The data-
sets are Adult [24], Bank Marketing [76], Banknote Authentication [24], Cleve-
land Heart Disease constructed by R. Detrano [24], Haberman’s Survival [24],
LSVT Voice Rehabilitation [117], Occupancy Detection [10], and Wisconsin
Cancer [24]. For each dataset, the Dutch Draw baseline was determined using
only P and M . The baseline can then be used to evaluate the performance of
a new model. We observe in Table 5.5 that some combinations of performance
measure and dataset already achieve high scores. Of course, the baseline for
metrics such as TPR, TNR, FNR, and FPR always obtain a perfect score. This
is because they are not complete binary performance measures. A complete
measure is a performance measure that values both correctly predicting posit-
ives and correctly predicting negatives. For example, TPR only concerns itself
with correctly predicting positive observations. Hence, predicting everything
as positive irrespective of the number of negative observations always results
in a perfect score of 1. Therefore, consider for example the complete measure
F1 (Fβ with β = 1) on the dataset Bank Marketing. It already achieves a per-
formance of 0.629, which means that any new prediction model scoring lower

89 89

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

than this score should be reconsidered.

5.4.3 Dutch Draw Baseline Versus Existing Binary Clas-
sifiers

In the previous subsection, we presented the explicit Dutch Draw baselines
on eight different datasets. These datasets had different values of P and M
leading to different values for the baselines. We observed that some complete
performance measures already achieved intuitively decent scores. Therefore, in
this subsection, we compare these Dutch Draw baselines to the performance of
many binary prediction models. Zhou and Lai [137] provide a good overview
of the performance of multiple classifiers on fourteen binary datasets. The
measure that the authors consider are the True Positive Rate, True Negative
Rate, and Accuracy. We used these three measures to determine the four base
measures, and P and N , such that we were able to calculate all evaluation
metrics and the corresponding baselines. As a side note, the scores that the
authors present were obtained by 10-fold cross-validation, so the base measures
that we obtained are not necessarily integer. Figure 5.4 gives a visual overview
of the comparisons of the obtained performance scores and the corresponding
baselines for the Balanced Accuracy and F1 score. These performance measures
were chosen because they are complete and to limit the number of figures. Both
axes are categorical; there is no nominal relation between the values. The
horizontal axis shows the fourteen datasets and the vertical axis the prediction
models that Zhou and Lai considered. A green combination of dataset and
classifier means that the performance was better than the Dutch Draw baseline.
A yellow combination means that the classifier performed on par with the
baseline. A red combination means that the model performed worse than the
baseline. Lastly, a black combination means the prediction model was not
applied to the corresponding dataset. The percentages above and beside the
two plots indicate the fraction of green combinations compared to the total
number of green, yellow and red combinations in the corresponding column or
row. Since all considered binary prediction models are supposed to learn from
the data, we presumed that there would be no yellow and red combinations.
After all, the Dutch Draw does not learn anything from the features, and should
therefore perform worse. It is fascinating to see that there are many yellow
and red combinations, especially for F1. This raises the question of what these
binary classifiers actually learned from the data. Moreover, the figure clearly
shows the importance of the Dutch Draw baseline for the evaluation of binary
classification problems.

90 90

555

Chapter 5. Dutch Draw 5.5. Discussion

(a) Balanced Accuracy (b) F1

N.A. Worse Equal Better

Figure 5.4: Comparison of performances of prediction models on fourteen
datasets with Dutch Draw: There are four situations that can occur: the clas-
sification model is better than (green), equal to (yellow), or worse than (red) the
corresponding baseline; or the combination of classifier and dataset is not available
(black)

5.5 Discussion

5.5.1 Conclusion
In this research, we proposed the Dutch Draw methodology. We explained
why this approach leads to a universal baseline for a given evaluation metric
in any binary classification setting. A baseline is used to provide a threshold
for the performance of a newly developed prediction model. However, before
our research, it was often not clear what baseline should be selected. Usually,
a state-of-the-art model was chosen, but what method this was could quickly
change due to progress made in the field. Choosing another model could yield
a very different baseline. However, choosing an elementary model such as a
dummy classifier is so simple that its performance does not yield insightful
information. Therefore, we proposed a method that provides a baseline that is
general, simple, and informative. Hence, this Dutch Draw baseline can be seen
as a strong addition that allows for comparing results across different research
domains and papers.

The Dutch Draw procedure is in essence quite simple. In a set of M observa-
tion with P positives, a random sample of size P̂ is drawn. The observations
within this sample are predicted as positive and the remaining observations
are predicted as negative. Since predicting is performed on the evaluation set
at once, there is a strong dependence between the four base measures. This

91 91

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

means that each base measure can be written as a linear function of TP. This
is a crucial property of the Dutch Draw. Consequently, almost all the per-
formance measures that we consider can also be written in linear terms of TP.
This makes it possible to derive the baseline as the optimal expected value of
the measure under the Dutch Draw approach. Our baseline is (i) usable in
any binary classification problem, (ii) non-trainable and parameter-free, (iii)
more informative than any dummy classifier, and (iv) an explainable minimal
evaluation requirement for any new model.

In this research, we explicitly calculated the universal Dutch Draw baseline for
an extensive list of evaluation metrics. We were not able to do this for the
G-mean 2 and the Threat Score, but they can still be determined with simula-
tion. This greatly extends the applicability of our research. Furthermore, we
expanded the analysis of the Dutch Draw by considering additional mathemat-
ical properties. Firstly, we provided the distribution and optimisation values of
each evaluation metric. Secondly, we considered the consequences of the case
in which the number of positives P was unknown and even the case in which
the number of observationsM was unknown. Also, we applied our Dutch Draw
method to several well-known binary datasets to obtain the universal baselines,
and we compared these baselines to the scores that several ML models in vari-
ous studies obtained. We observed that for multiple performance measures,
the ML methods did not outperform the baseline on several datasets. Hence,
such models should be reconsidered or not applied to these datasets. This
makes the Dutch Draw baseline a relevant tool in the development of new ML
methods.

In summary, we have provided the reader a standardised baseline that has many
desirable properties for many evaluation metrics in binary classification. For
quick access, see Table 5.3 for properties of the Dutch Draw, and see Table 5.4
for the baselines and corresponding optimisation values.

5.5.2 Further Research
Our baseline is a stepping stone for further research, where multiple avenues
should be explored. We discuss four possible research directions.

Firstly, we are now able to determine whether a binary classification model
performs better than a standardised baseline. However, we do not yet know
how much it performs better (or worse). For example, let the baseline have
a score of 0.5 and a new model a score of 0.9. How much better is the latter
score? It could be that a tiny bit of extra information already pushes the score
from 0.5 to 0.9. Or, it is possible that a model needs a lot of information to
understand the intricacies of the problem, making it very hard to reach a score
of 0.9. Thus, it is necessary to quantify how hard it is to reach any score. Also,
when another model is added that achieves a score of 0.91, can the difference
in performance of these models be quantified? Is it only a slightly better model
or is it a leap forward?

92 92

555

Chapter 5. Dutch Draw 5.6. Appendix

Secondly, our Dutch Draw baseline could be used to construct new standardised
evaluation metrics from their original versions. The advantage of these new
measures would be that the interpretation of their scores is independent of the
number of positive and negative observations in the dataset. In other words,
the Dutch Draw baseline would already be incorporated in the new measure,
such that comparing a score to the baseline is not necessary any more.

Thirdly, another natural extension would be to drop the binary assumption
and consider multi-class classification. This is more complicated than it seems,
because not every multi-class evaluation metric follows automatically from its
binary counterpart. However, we expect that for most multi-class measures it
is again optimal to always predict a single specific class.

Fourthly, the spirit of the Dutch Draw could be used to create universal
baselines for other prediction problems, such as regression. This means a stand-
ardised approach that also uses (almost) no information from the data and is
able to generate a measure-specific baseline to which newly developed models
could be compared.

5.6 Appendix
This section contains the complete theoretical analysis that is used to gather the
information presented in Sections 5.2 and 5.3, and more specifically, Tables 5.2, 5.3
and 5.4. Each subsection is dedicated to one of the evaluation metrics. The
following definitions are frequently used throughout this section:

Zθ (a, b) := a · TPθ + b with a, b ∈ R
Hθ (a, b) := probability distribution of Zθ (a, b).

5.6.1 Number of True Positives
The Number of True Positives TPθ is one of the four base measures that are
introduced in Section 5.2.2. This measure indicates how many of the predicted
positive observations are actually positive. Under the Dutch Draw methodo-
logy, each evaluation metric can be written in terms of TPθ.

Definition and Distribution

Since we want to formulate each measure in terms of TPθ, we have for TPθ:

TPθ
(B1)= Zθ (1, 0) ∼ Hθ (1, 0) .

The range of this base measure depends on θ. Therefore, Equation (R) yields
the range of this measure:

TPθ ∈ R (Zθ (1, 0)) .

93 93

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

Expectation

The expectation of TPθ using the Dutch Draw is given by

E[TPθ] = E[Zθ (1, 0)] (E)= bM · θe
M

· P = θ∗ · P. (5.9)

Optimal Baselines

The Dutch Draw baseline is given by the optimal expectation. Equation (5.9)
shows that the expected value depends on the parameter θ. Therefore, either
the minimum or maximum of the expectation yields the baseline. They are
given by

min
θ∈[0,1]

(E[TPθ]) = P · min
θ∈[0,1]

(
bM · θe
M

)
= 0,

max
θ∈[0,1]

(E[TPθ]) = P · max
θ∈[0,1]

(
bM · θe
M

)
= P.

The values of θ ∈ [0, 1] that minimise or maximise the expected value are θmin
and θmax, respectively, and are defined as

θmin ∈ arg min
θ∈[0,1]

(E[TPθ]) = arg min
θ∈[0,1]

(
bM · θe
M

)
=
[
0, 1

2M

)
,

θmax ∈ arg max
θ∈[0,1]

(E[TPθ]) = arg max
θ∈[0,1]

(
bM · θe
M

)
=
[
1− 1

2M , 1
]
.

Equivalently, the discrete optimisers θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ are determined
by

θ∗min ∈ arg min
θ∗∈Θ∗

{E[TPθ∗]} = arg min
θ∗∈Θ∗

{θ∗} = {0},

θ∗max ∈ arg max
θ∗∈Θ∗

{E[TPθ∗]} = arg max
θ∗∈Θ∗

{θ∗} = {1}.

5.6.2 Number of True Negatives
The Number of True Negatives TNθ is also one of the four base measures and is
introduced in Section 5.2.2. This base measure counts the number of negative
predicted instances that are actually negative.

Definition and Distribution

Since we want to formulate each measure in terms of TPθ, we have for TNθ:

TNθ = M − P − bM · θe+ TPθ,

which corresponds to Equation (B4). Furthermore,

TNθ
(B4)= Zθ (1,M − P − bM · θe) ∼ Hθ (1,M − P − bM · θe) ,

94 94

555

Chapter 5. Dutch Draw 5.6. Appendix

and for its range

TNθ
(R)
∈ R (Zθ (1,M − P − bM · θe)) .

Expectation

TNθ is linear in TPθ with slope a = 1 and intercept b = M − P − bM · θe, so
its expectation is given by

E[TNθ] = E[Zθ (1,M − P − bM · θe)] (E)= 1 ·E[TPθ] +M − P − bM · θe,

=
(

1− bM · θe
M

)
(M − P)

= (1− θ∗) (M − P) .

Optimal Baselines

To determine the range of the expectation of TNθ, and hence, obtain baselines,
its extreme values are calculated:

min
θ∈[0,1]

(E[TNθ]) = (M − P) min
θ∈[0,1]

(
1− bM · θe

M

)
= 0,

max
θ∈[0,1]

(E[TNθ]) = (M − P) max
θ∈[0,1]

(
1− bM · θe

M

)
= M − P.

The associated optimisation values θmin ∈ [0, 1] and θmax ∈ [0, 1] are

θmin ∈ arg min
θ∈[0,1]

(E[TNθ]) = arg min
θ∈[0,1]

(
1− bM · θe

M

)
=
[
1− 1

2M , 1
]
,

θmax ∈ arg max
θ∈[0,1]

(E[TNθ]) = arg max
θ∈[0,1]

(
1− bM · θe

M

)
=
[
0, 1

2M

)
.

The discrete equivalents θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ are then determined
by

θ∗min ∈ arg min
θ∗∈Θ∗

{E[TNθ∗]} = arg min
θ∗∈Θ∗

{1− θ∗} = {1},

θ∗max ∈ arg max
θ∗∈Θ∗

{E[TNθ∗]} = arg max
θ∗∈Θ∗

{1− θ∗} = {0}.

5.6.3 Number of False Negatives
The Number of False Negative FNθ is one of the four base measures that are
introduced in Section 5.2.2. This base measure counts the number of mis-
takes made by predicting instances negative while the actual labels are posit-
ive.

95 95

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

Definition and Distribution

Equation (B3) shows that FNθ can be expressed in terms of TPθ:

FNθ
(B3)= P − TPθ = Zθ (−1, P) ∼ Hθ (−1, P) ,

and for its range:

FNθ
(R)
∈ R (Zθ (−1, P)) .

Expectation

As Equation (B3) shows, FNθ is linear in TPθ with slope a = −1 and intercept
b = P . Hence, the expectation of FNθ is given by

E[FNθ] = E[Zθ (−1, P)] (E)= −1 ·E[TPθ] + P

=
(

1− bM · θe
M

)
· P

= (1− θ∗) · P.

Optimal Baselines

The range of the expectation of FNθ determines the baselines. The extreme
values are given by

min
θ∈[0,1]

(E[FNθ]) = P · min
θ∈[0,1]

(
1− bM · θe

M

)
= 0,

max
θ∈[0,1]

(E[FNθ]) = P · max
θ∈[0,1]

(
1− bM · θe

M

)
= P.

The associated optimisation values θmin ∈ [0, 1] and θmax ∈ [0, 1] are then

θmin ∈ arg min
θ∈[0,1]

(E[FNθ]) = arg min
θ∈[0,1]

(
1− bM · θe

M

)
=
[
1− 1

2M , 1
]
,

θmax ∈ arg max
θ∈[0,1]

(E[FNθ]) = arg max
θ∈[0,1]

(
1− bM · θe

M

)
=
[
0, 1

2M

)
,

respectively. The discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimisers
are as follows:

θ∗min ∈ arg min
θ∗∈Θ∗

{E[FNθ∗]} = arg min
θ∗∈Θ∗

{1− θ∗} = {1},

θ∗max ∈ arg max
θ∗∈Θ∗

{E[FNθ∗]} = arg max
θ∗∈Θ∗

{1− θ∗} = {0}.

5.6.4 Number of False Positives
The Number of False Positives FPθ is one of the four base measures that we dis-
cussed in Section 5.2.2. This base measure counts the number of mistakes made
by predicting instances positive while the actual labels are negative.

96 96

555

Chapter 5. Dutch Draw 5.6. Appendix

Definition and Distribution

Each base measure can be expressed in terms of TPθ, thus we have for FPθ:

FPθ
(B2)= bM · θe − TPθ = Zθ (−1, bM · θe) ∼ Hθ (−1, bM · θe) ,

and for its range:

FPθ
(R)
∈ R (Zθ (−1, bM · θe)) .

Expectation

As Equation (B2) shows, FPθ is linear in TPθ with slope a = −1 and intercept
b = bM · θe, thus the expectation of FPθ is defined as

E[FPθ] = E[Zθ (−1, bM · θe)] (E)= −1 ·E[TPθ] + bM · θe

= bM · θe
M

· (M − P)

= θ∗ · (M − P) .

Optimal Baselines

The baselines of FPθ are given by the extreme values of its expectation. Hence:

min
θ∈[0,1]

(E[FPθ]) = (M − P) min
θ∈[0,1]

(
bM · θe
M

)
= 0,

max
θ∈[0,1]

(E[FPθ]) = (M − P) max
θ∈[0,1]

(
bM · θe
M

)
= M − P.

The corresponding optimisation values θmin ∈ [0, 1] and θmax ∈ [0, 1] are

θmin ∈ arg min
θ∈[0,1]

(E[FPθ]) = arg min
θ∈[0,1]

(
bM · θe
M

)
=
[
0, 1

2M

)
,

θmax ∈ arg max
θ∈[0,1]

(E[FPθ]) = arg max
θ∈[0,1]

(
bM · θe
M

)
=
[
1− 1

2M , 1
]
.

The discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimisation values are
determined by

θ∗min ∈ arg min
θ∗∈Θ∗

{E[FPθ∗]} = arg min
θ∗∈Θ∗

{θ∗} = {0},

θ∗max ∈ arg max
θ∗∈Θ∗

{E[FPθ∗]} = arg max
θ∗∈Θ∗

{θ∗} = {1}.

5.6.5 True Positive Rate
The True Positive Rate TPRθ, Recall, or Sensitivity is the performance meas-
ure that presents the fraction of positive observations that are correctly pre-
dicted. This makes it a fundamental performance measure in binary classific-
ation.

97 97

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

Definition and Distribution

The True Positive Rate is commonly defined as

TPRθ = TPθ
P

. (5.10)

Hence, P > 0 should hold, otherwise the denominator is zero. Now, TPRθ is
linear in TPθ and can therefore be written as

TPRθ = Zθ

(
1
P
, 0
)
∼ Hθ

(
1
P
, 0
)
, (5.11)

and for its range:

TPRθ
(R)
∈ R

(
Zθ

(
1
P
, 0
))

.

Expectation

Since TPRθ is linear in TPθ with slope a = 1/P and intercept b = 0, its
expectation is

E[TPRθ] = E
[
Zθ

(
1
P
, 0
)]

(E)= 1
P
·E[TPθ] + 0

= bM · θe
M

= θ∗.

Optimal Baselines

The range of the expectation of TPRθ directly determines the baselines. The
extreme values are given by

min
θ∈[0,1]

(E[TPRθ]) = min
θ∈[0,1]

(
bM · θe
M

)
= 0,

max
θ∈[0,1]

(E[TPRθ]) = max
θ∈[0,1]

(
bM · θe
M

)
= 1.

Furthermore, the corresponding optimisation values θmin ∈ [0, 1] and θmax ∈
[0, 1] are given by

θmin ∈ arg min
θ∈[0,1]

(E[TPRθ]) = arg min
θ∈[0,1]

(
bM · θe
M

)
=
[
0, 1

2M

)
,

θmax ∈ arg max
θ∈[0,1]

(E[TPRθ]) = arg max
θ∈[0,1]

(
bM · θe
M

)
=
[
1− 1

2M , 1
]
.

98 98

555

Chapter 5. Dutch Draw 5.6. Appendix

The discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimisers are then

θ∗min ∈ arg min
θ∗∈Θ∗

{E[TPRθ∗]} = arg min
θ∗∈Θ∗

{θ∗} = {0},

θ∗max ∈ arg max
θ∗∈Θ∗

{E[TPRθ∗]} = arg max
θ∗∈Θ∗

{θ∗} = {1},

respectively.

5.6.6 True Negative Rate
The True Negative Rate TNRθ, Specificity, or Selectivity is the measure that
shows how relatively well the negative observations are correctly predicted.
Hence, this performance measure is a fundamental measure in binary classific-
ation.

Definition and Distribution

The True Negative Rate is commonly defined as

TNRθ = TNθ
N

.

Hence, N := M − P > 0 should hold, otherwise the denominator is zero. By
using Equation (B4), TNRθ can be rewritten as

TNRθ = M − P − bM · θe+ TPθ
M − P

= 1− bM · θe − TPθ
M − P

.

Hence, it is linear in TPθ and can therefore be written as

TNRθ = Zθ

(
1

M − P
, 1− bM · θe

M − P

)
∼ Hθ

(
1

M − P
, 1− bM · θe

M − P

)
, (5.12)

and for its range:

TNRθ
(R)
∈ R

(
Zθ

(
1

M − P
, 1− bM · θe

M − P

))
.

Expectation

Since TNRθ is linear in TPθ in terms of Zθ (a, b) with slope a = 1/ (M − P)
and intercept b = 1− bM · θe/ (M − P), its expectation is

E[TNRθ] = E
[
Zθ

(
1

M − P
, 1− bM · θe

M − P

)]
(E)= 1

M − P
·E[TPθ] + 1− bM · θe

M − P

= 1− bM · θe
M

= 1− θ∗.

99 99

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

Optimal Baselines

The extreme values of the expectation of TNRθ determine the baselines. The
range is given by

min
θ∈[0,1]

(E[TNRθ]) = min
θ∈[0,1]

(
1− bM · θe

M

)
= 0,

max
θ∈[0,1]

(E[TNRθ]) = max
θ∈[0,1]

(
1− bM · θe

M

)
= 1.

Moreover, the optimisation values θmin ∈ [0, 1] and θmax ∈ [0, 1] corresponding
to the extreme values are defined as

θmin ∈ arg min
θ∈[0,1]

(E[TNRθ]) = arg min
θ∈[0,1]

(
1− bM · θe

M

)
=
[
1− 1

2M , 1
]
,

θmax ∈ arg max
θ∈[0,1]

(E[TNRθ]) = arg max
θ∈[0,1]

(
1− bM · θe

M

)
=
[
0, 1

2M

)
,

respectively. The discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimisers
are given by

θ∗min ∈ arg min
θ∗∈Θ∗

{E[TNRθ∗]} = arg min
θ∗∈Θ∗

{1− θ∗} = {1},

θ∗max ∈ arg max
θ∗∈Θ∗

{E[TNRθ∗]} = arg max
θ∗∈Θ∗

{1− θ∗} = {0}.

5.6.7 False Negative Rate
The False Negative Rate FNRθ or Miss Rate is the performance measure that
indicates the relative number of incorrectly predicted positive observations.
Therefore, it can be seen as the counterpart to the True Positive Rate that is
discussed in Section 5.6.5.

Definition and Distribution

The False Negative Rate is commonly defined as

FNRθ = FNθ
P

.

Hence, P > 0 should hold, otherwise the denominator is zero. With the aid of
Equation (B3), FNRθ can be reformulated to

FNRθ = P − TPθ
P

= 1− TPθ
P

.

Thus, it is linear in TPθ and can therefore be written as

FNRθ = Zθ

(
− 1
P
, 1
)
∼ Hθ

(
− 1
P
, 1
)
,

100 100

555

Chapter 5. Dutch Draw 5.6. Appendix

and for its range:

FNRθ
(R)
∈ R

(
Zθ

(
− 1
P
, 1
))

.

Expectation

Because FNRθ is linear in TPθ with slope a = −1/P and intercept b = 1, its
expectation is

E[FNRθ] = E
[
Zθ

(
− 1
P
, 1
)]

(E)= − 1
P
·E[TPθ] + 1

= 1− bM · θe
M

= 1− θ∗.

Optimal Baselines

The range of the expectation of FNRθ determines the baselines. The extreme
values are given by:

min
θ∈[0,1]

(E[FNRθ]) = min
θ∈[0,1]

(
1− bM · θe

M

)
= 0,

max
θ∈[0,1]

(E[FNRθ]) = max
θ∈[0,1]

(
1− bM · θe

M

)
= 1.

Furthermore, the optimisers θmin ∈ [0, 1] and θmax ∈ [0, 1] for the extreme
values are as follows:

θmin ∈ arg min
θ∈[0,1]

(E[FNRθ]) = arg min
θ∈[0,1]

(
1− bM · θe

M

)
=
[
1− 1

2M , 1
]
,

θmax ∈ arg max
θ∈[0,1]

(E[FNRθ]) = arg max
θ∈[0,1]

(
1− bM · θe

M

)
=
[
0, 1

2M

)
,

respectively. The discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimisation
values are then:

θ∗min ∈ arg min
θ∗∈Θ∗

{E[FNRθ∗]} = arg min
θ∗∈Θ∗

{1− θ∗} = {1},

θ∗max ∈ arg max
θ∗∈Θ∗

{E[FNRθ∗]} = arg max
θ∗∈Θ∗

{1− θ∗} = {0}.

5.6.8 False Positive Rate
The False Positive Rate FPRθ or Fall-out is the performance measure that
shows the fraction of incorrectly predicted negative observations. Hence, it can
be seen as the counterpart to the True Negative Rate that is introduced in
Section 5.6.6.

101 101

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

Definition and Distribution

The False Positive Rate is commonly defined as

FPRθ = FPθ
N

.

Hence, N := M − P should hold, otherwise the denominator is zero. By using
Equation (B2), FPRθ can be restated as

FPRθ = bM · θe − TPθ
M − P

. (5.13)

Note that it is linear in TPθ and can therefore be written as

FPRθ = Zθ

(
− 1
M − P

,
bM · θe
M − P

)
∼ Hθ

(
− 1
M − P

,
bM · θe
M − P

)
,

with range:

FPRθ
(R)
∈ R

(
Zθ

(
− 1
M − P

,
bM · θe
M − P

))
.

Expectation

Since FPRθ is linear in TPθ with slope a = −1/ (M − P) and intercept b =
bM · θe/ (M − P), its expectation is given by

E[FPRθ] = E
[
Zθ

(
− 1
M − P

,
bM · θe
M − P

)]
(E)= − 1

M − P
·E[TPθ] + bM · θe

M − P

= bM · θe
M

= θ∗.

Optimal Baselines

The extreme values of the expectation of FPRθ determine the baselines. The
range is given by

min
θ∈[0,1]

(E[FPRθ]) = min
θ∈[0,1]

(
bM · θe
M

)
= 0,

max
θ∈[0,1]

(E[FPRθ]) = max
θ∈[0,1]

(
bM · θe
M

)
= 1.

Moreover, the optimisers θmin ∈ [0, 1] and θmax ∈ [0, 1] for the extreme values
are determined by

θmin ∈ arg min
θ∈[0,1]

(E[FPRθ]) = arg min
θ∈[0,1]

(
bM · θe
M

)
=
[
0, 1

2M

)
,

θmax ∈ arg max
θ∈[0,1]

(E[FPRθ]) = arg max
θ∈[0,1]

(
bM · θe
M

)
=
[
1− 1

2M , 1
]
,

102 102

555

Chapter 5. Dutch Draw 5.6. Appendix

respectively. The discrete forms θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of these are
then

θ∗min ∈ arg min
θ∗∈Θ∗

{E[FPRθ∗]} = arg min
θ∗∈Θ∗

{θ∗} = {0},

θ∗max ∈ arg max
θ∗∈Θ∗

{E[FPRθ∗]} = arg max
θ∗∈Θ∗

{θ∗} = {1}.

5.6.9 Positive Predictive Value
The Positive Predictive Value PPVθ or Precision is the performance measure
that considers the fraction of all positively predicted observations that are in
fact positive. Therefore, it provides an indication of how cautious the model
is in assigning positive predictions. A large value means the model is cautious
in predicting observations as positive, while a small value means the oppos-
ite.

Definition and Distribution

The Positive Predictive Value is commonly defined as

PPVθ = TPθ
TPθ + FPθ

. (5.14)

By using Equations (B1) and (B2), this definition can be reformulated to

PPVθ = TPθ
bM · θe

.

Note that this performance measure is only defined whenever bM ·θe > 0, other-
wise the denominator is zero. Therefore, we assume specifically for PPVθ that
θ ≥ 1

2M . The definition of PPVθ is linear in TPθ and can thus be formulated
as

PPVθ = Zθ

(
1

bM · θe
, 0
)
∼ Hθ

(
1

bM · θe
, 0
)
, (5.15)

with range:

PPVθ
(R)
∈ R

(
Zθ

(
1

bM · θe
, 0
))

.

Expectation

Because PPVθ is linear in TPθ with slope a = 1/bM · θe and intercept b = 0,
its expectation is

E[PPVθ] = E
[
Zθ

(
1

bM · θe
, 0
)]

(E)= 1
bM · θe

·E[TPθ] + 0

= P

M
.

103 103

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

Optimal Baselines

The baselines are determined by the extreme values of the expectation of
PPVθ:

min
θ∈[1/(2M),1]

(E[PPVθ]) = P

M
,

max
θ∈[1/(2M),1]

(E[PPVθ]) = P

M
,

because the expectation does not depend on θ. Hence, the optimisation values
θmin and θmax are simply all allowed values for θ:

θmin = θmax ∈
[

1
2M , 1

]
.

Consequently, the discrete versions θ∗min and θ∗max of these optimisers are in the
set of all allowed discrete values:

θ∗min = θ∗max ∈ Θ∗ \ {0}.

5.6.10 Negative Predictive Value
The Negative Predictive Value NPVθ is the performance measure that indicates
the fraction of all negatively predicted observations that are in fact negative.
Hence, it shows how cautious the model is in assigning negative predictions. A
large value means the model is cautious in predicting observations negatively,
while a small value means the opposite.

Definition and Distribution

The Negative Predictive Value is commonly defined as

NPVθ = TNθ
TNθ + FNθ

.

With the help of Equations (B3) and (B4), this definition can be rewritten
as

NPVθ = 1− P − TPθ
M − bM · θe

.

Note that this performance measure is only defined whenever bM · θe < M ,
otherwise the denominator is zero. Therefore, we assume specifically for NPVθ
that θ < 1 − 1

2M . The definition of NPVθ is linear in TPθ and can thus be
formulated as

NPVθ = Zθ

(
1

M − bM · θe
, 1− P

M − bM · θe

)
∼ Hθ

(
1

M − bM · θe
, 1− P

M − bM · θe

)
, (5.16)

104 104

555

Chapter 5. Dutch Draw 5.6. Appendix

with range:

NPVθ
(R)
∈ R

(
Zθ

(
1

M − bM · θe
, 1− P

M − bM · θe

))
.

Expectation

Since NPVθ is linear in TPθ with slope a = 1/(M − bM · θe) and intercept
b = 1− P/(M − bM · θe), its expectation is given by

E[NPVθ] = E
[
Zθ

(
1

M − bM · θe
, 1− P

M − bM · θe

)]
(E)= 1

M − bM · θe
·E[TPθ] + 1− P

M − bM · θe

= 1− P

M
.

Optimal Baselines

The extreme values of the expectation of NPVθ determine the baselines. They
are given by

min
θ∈[0,1−1/(2M))

(E[NPVθ]) = 1− P

M
,

max
θ∈[0,1−1/(2M))

(E[NPVθ]) = 1− P

M
,

because the expectation does not depend on θ. Consequently, the optimisation
values θmin and θmax are all allowed values for θ:

θmin = θmax ∈
[
0, 1− 1

2M

)
.

This also means the discrete forms θ∗min and θ∗max of the optimisers are in the
set of all allowed discrete values:

θ∗min = θ∗max ∈ Θ∗ \ {1}.

5.6.11 False Discovery Rate
The False Discovery Rate FDRθ is the performance measure that looks at
the fraction of positively predicted observations that are actually negative.
Therefore, it can be seen as the counterpart to the Positive Predictive Value
that we discuss in Section 5.6.9. Consequently, a small value means the model
is cautious in predicting observations as positive, while a large value means the
opposite.

105 105

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

Definition and Distribution

The False Discovery Rate is commonly defined as

FDRθ = FPθ
TPθ + FPθ

= 1− PPVθ.

With the help of Equation (5.15), this definition can be rewritten as

FDRθ = 1− TPθ
bM · θe

.

Note that this performance measure is only defined whenever bM ·θe > 0, other-
wise the denominator is zero. Therefore, we assume specifically for FDRθ that
θ > 1

2M . The definition of FDRθ is linear in TPθ and can thus be formulated
as

FDRθ = Zθ

(
− 1
bM · θe

, 1
)
∼ Hθ

(
− 1
bM · θe

, 1
)
,

with range:

FDRθ
(R)
∈ R

(
Zθ

(
− 1
bM · θe

, 1
))

.

Expectation

Since FDRθ is linear in TPθ with slope a = −1/bM · θe and intercept b = 1,
its expectation is given by

E[FDRθ] = E
[
Zθ

(
− 1
bM · θe

, 1
)]

(E)= − 1
bM · θe

·E[TPθ] + 1

= 1− P

M
.

Optimal Baselines

The extreme values of the expectation of FDRθ determine the baselines. Its
range is given by

min
θ∈(1/(2M),1]

(E[FDRθ]) = 1− P

M
,

max
θ∈(1/(2M),1]

(E[FDRθ]) = 1− P

M
,

because the expectation does not depend on θ. Consequently, the optimisation
values θmin and θmax are all allowed values for θ:

θmin = θmax ∈
(

1
2M , 1

]
.

106 106

555

Chapter 5. Dutch Draw 5.6. Appendix

This also means the discrete forms θ∗min and θ∗max of the optimisers are in the
set of all allowed discrete values:

θ∗min = θ∗max ∈ Θ∗ \ {0}.

5.6.12 False Omission Rate
The False Omission Rate FORθ is the performance measure that considers the
fraction of observations that are predicted negative, but are in fact positive.
Hence, it can be seen as the counterpart to the Negative Predictive Value that is
introduced in Section 5.6.10. As a consequence, a small value means the model
is cautious is predicting observations negatively, while a large value means the
opposite.

Definition and Distribution

The False Omission Rate is commonly defined as

FORθ = FNθ
TNθ + FNθ

.

With the aid of Equation (B3), this can be reformulated to

FORθ = P − TPθ
M − bM · θe

.

Note that this performance measure is only defined whenever bM · θe < M ,
otherwise the denominator is zero. Therefore, we assume specifically for FORθ
that θ < 1 − 1

2M . Now, FORθ is linear in TPθ and can therefore be written
as

FORθ = Zθ

(
− 1
M − bM · θe

,
P

M − bM · θe

)
∼ Hθ

(
− 1
M − bM · θe

,
P

M − bM · θe

)
,

with range:

FORθ
(R)
∈ R

(
Zθ

(
− 1
M − bM · θe

,
P

M − bM · θe

))
.

Expectation

Because FORθ is linear in TPθ with slope a = −1/(M −bM · θe) and intercept
b = P/(M − bM · θe), its expectation is

E[FORθ] = E
[
Zθ

(
− 1
M − bM · θe

,
P

M − bM · θe

)]
(E)= − 1

M − bM · θe
·E[TPθ] + P

M − bM · θe

= P

M
.

107 107

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

Optimal Baselines

The range of the expectation of FORθ determines the baselines. The extreme
values are defined as

min
θ∈[0,1−1/(2M))

(E[FORθ]) = P

M
,

max
θ∈[0,1−1/(2M))

(E[FORθ]) = P

M
,

because the expectation does not depend on θ. Consequently, the optimisation
values θmin and θmax are all allowed values for θ:

θmin = θmax ∈
[
0, 1− 1

2M

)
.

This also means the discrete forms θ∗min and θ∗max of the optimisers are in the
set of all allowed discrete values:

θ∗min = θ∗max ∈ Θ∗ \ {1}.

5.6.13 Fβ Score

The Fβ score F(β)
θ was introduced by Chinchor [16] in 1992. It is the weighted

harmonic average between the True Positive Rate (TPRθ) and the Positive
Predictive Value (PPVθ). These two performance measures are discussed ex-
tensively in Sections 5.6.5 and 5.6.9, respectively, and their summarised results
are shown in Tables 5.3 and 5.4. The Fβ score balances predicting the actual
positive observations correctly (TPRθ) and being cautious in predicting obser-
vations as positive (PPVθ). The factor β > 0 indicates how much more TPRθ
is weighted compared to PPVθ.

Definition and Distribution

The Fβ score is commonly defined as

F(β)
θ = 1 + β2

1
PPVθ + β2

TPRθ

.

By using the definitions of TPRθ and PPVθ in Equations (5.10) and (5.14),
F(β)
θ can be formulated in terms of the base measures:

F(β)
θ = (1 + β2) · TPθ

β2 · P + TPθ + FPθ
Equations (B1) and (B2) allow us to write the formulation above in terms of
only TPθ:

F(β)
θ = (1 + β2) · TPθ

β2 · P + bM · θe .

108 108

555

Chapter 5. Dutch Draw 5.6. Appendix

Note that P > 0 and bM · θe > 0, otherwise TPRθ or PPVθ is not defined, and
hence, F(β)

θ is not defined. Now, F(β)
θ is linear in TPθ and can be formulated

as

F(β)
θ = Zθ

(
1 + β2

β2 · P + bM · θe , 0
)
,

with range:

F(β)
θ

(R)
∈ R

(
Zθ

(
1 + β2

β2 · P + bM · θe , 0
))

.

Expectation

Because F(β)
θ is linear in TPθ with slope a = (1 + β2)/(β2P + bM · θe) and

intercept b = 0, its expectation is given by

E[F(β)
θ] = E

[
Zθ

(
1 + β2

β2 · P + bM · θe , 0
)]

(E)= 1 + β2

β2 · P + bM · θe ·E[TPθ] + 0

= bM · θe · P · (1 + β2)
M · (β2 · P + bM · θe)

= (1 + β2) · P · θ∗

β2 · P +M · θ∗
. (5.17)

Optimal Baselines

To determine the extreme values of the expectation of F(β)
θ , and therefore the

baselines, the derivative of the function f : [0, 1]→ [0, 1] defined as

f(t) = (1 + β2) · P · t
β2 · P +M · t

is calculated. First note that E[F(β)
θ] = f(bM · θe/M). The derivative is given

by
df(t)

dt = β2(1 + β2) · P 2

(β2 · P +M · t)2 .

It is strictly positive for all t in its domain, thus f is strictly increasing in t.
This means E[F(β)

θ] given in Equation (5.17) is non-decreasing in both θ and
θ∗. This is because the term bM · θe/M is non-decreasing in θ. Hence, the
extreme values of the expectation of F(β)

θ are its border values:

min
θ∈[1/(2M),1]

(
E[F(β)

θ]
)

= min
θ∈[1/(2M),1]

(
(1 + β2) · P · bM · θe
M(β2 · P + bM · θe)

)
= (1 + β2) · P
M(β2 · P + 1) ,

max
θ∈[1/(2M),1]

(
E[F(β)

θ]
)

= max
θ∈[1/(2M),1]

(
(1 + β2) · P · bM · θe
M(β2 · P + bM · θe)

)
= (1 + β2) · P
β2 · P +M

.

109 109

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

Consequently, the optimisation values θmin and θmax for the extreme values are
given by

θmin ∈ arg min
θ∈[1/(2M),1]

(
E[F(β)

θ]
)

= arg min
θ∈[1/(2M),1]

(
bM · θe

β2 · P + bM · θe

)

=
{

[1
2 , 1] if M = 1[1
2M , 3

2M
)

if M > 1,

θmax ∈ arg max
θ∈[1/(2M),1]

(
E[F(β)

θ]
)

= arg max
θ∈[1/(2M),1]

(
bM · θe

β2 · P + bM · θe

)

=
{

[1
2 , 1] if M = 1[
1− 1

2M , 1
]

if M > 1,

respectively. Following this reasoning, the discrete forms θ∗min and θ∗max are
given by

θ∗min ∈ arg min
θ∗∈Θ∗\{0}

{
E[F(β)

θ∗]
}

= arg min
θ∗∈Θ∗\{0}

{
θ∗

β2 · P +M · θ∗

}
=
{

1
M

}
,

θ∗max ∈ arg max
θ∗∈Θ∗\{0}

{
E[F(β)

θ∗]
}

= arg max
θ∗∈Θ∗\{0}

{
θ∗

β2 · P +M · θ∗

}
= {1}.

5.6.14 Youden’s J Statistic
The Youden’s J Statistic Jθ, Youden’s Index, or (Bookmaker) Informedness was
introduced by Youden [129] in 1950 to capture the performance of a diagnostic
test as a single statistic. It incorporates both the True Positive Rate and the
True Negative Rate, which are discussed in Sections 5.6.5 and 5.6.6, respect-
ively. Youden’s J Statistic shows how well the model is able to correctly predict
both the positive as the negative observations.

Definition and Distribution

The Youden’s J Statistic is commonly defined as

Jθ = TPRθ + TNRθ − 1.

By using Equations (5.11) and (5.12), which provide the definitions of TPRθ
and TNRθ in terms of TPθ, the definition of Jθ can be reformulated as

Jθ = M · TPθ − P · bM · θe
P (M − P) .

Because TPRθ needs P > 0, and TNRθ needs N > 0, we have both these
assumptions for Jθ. Consequently, M > 1. Now, Jθ is linear in TPθ and can
therefore be written as

Jθ = Zθ

(
M

P (M − P) ,−
bM · θe
M − P

)
∼ Hθ

(
M

P (M − P) ,−
bM · θe
M − P

)
,

110 110

555

Chapter 5. Dutch Draw 5.6. Appendix

with range:

Jθ
(R)
∈ R

(
Zθ

(
M

P (M − P) ,−
bM · θe
M − P

))
.

Expectation

Since Jθ is linear in TPθ with slope a = M/(P (M − P)) and intercept b =
−bM · θe/ (M − P), its expectation is given by

E[Jθ] = E
[
Zθ

(
M

P (M − P) ,−
bM · θe
M − P

)]
(E)= M

P (M − P) ·E[TPθ]−
bM · θe
M − P

= 0.

Optimal Baselines

The extreme values of the expectation of Jθ determine the baselines. They are
given by

min
θ∈[0,1]

(E[Jθ]) = 0,

max
θ∈[0,1]

(E[Jθ]) = 0,

because the expected value does not depend on θ. Consequently, the optimisa-
tion values θmin and θmax can be any value in the domain of θ:

θmin = θmax ∈ [0, 1].

This also holds for the discrete forms θ∗min and θ∗max of the optimisers:

θ∗min = θ∗max ∈ Θ∗.

5.6.15 Markedness
The Markedness MKθ or deltaP is a performance measure that is mostly used
in linguistics and social sciences. It combines both the Positive Predictive
Value and the Negative Predictive Value. These two measures are discussed in
Sections 5.6.9 and 5.6.10, respectively. The Markedness indicates how cautious
the model is in predicting observations as positive and also how cautious it is
in predicting them as negative.

Definition and Distribution

The Markedness is commonly defined as

MKθ = PPVθ + NPVθ − 1.

111 111

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

This definition of MKθ can be reformulated in terms of TPθ by using Equa-
tions (5.15) and (5.16):

MKθ = M · TPθ − P · bM · θe
bM · θe(M − bM · θe) .

Note that MKθ is only defined for M > 1 and θ ∈ [1/(2M), 1− 1/(2M)), oth-
erwise the denominator becomes zero. The assumption M > 1 automatically
follows from the assumptions P̂ > 0 and N̂ > 0, which hold for PPVθ and
NPVθ, respectively. In other words, there is at least one observation predicted
positive and at least one predicted negative, thus M > 1. Now, MKθ is linear
in TPθ and can therefore be written as

MKθ = Zθ

(
M

bM · θe(M − bM · θe) ,−
P

M − bM · θe

)
∼ Hθ

(
M

bM · θe(M − bM · θe) ,−
P

M − bM · θe

)
,

with range:

MKθ
(R)
∈ R

(
Zθ

(
M

bM · θe(M − bM · θe) ,−
P

M − bM · θe

))
.

Expectation

By using slope a = M/(bM · θe(M − bM · θe)) and intercept b = −P/(M −
bM · θe), the expectation of MKθ can be calculated:

E[MKθ] = E
[
Zθ

(
M

bM · θe(M − bM · θe) ,−
P

M − bM · θe

)]
(E)= M

bM · θe(M − bM · θe) ·E[TPθ]−
P

M − bM · θe
= 0.

Optimal Baselines

The extreme values of the expectation of MKθ determine the baselines. Its
range is given by:

min
θ∈[1/(2M),1−1/(2M))

(E[MKθ]) = 0,

max
θ∈[1/(2M),1−1/(2M))

(E[MKθ]) = 0,

since the expected value does not depend on θ. Therefore, the optimisation
values θmin and θmax are in the set of allowed values for θ:

θmin = θmax ∈
[

1
2M , 1− 1

2M

)
.

112 112

555

Chapter 5. Dutch Draw 5.6. Appendix

This also means the discrete forms θ∗min and θ∗max of the optimisers are in the
set of the allowed discrete values:

θ∗min = θ∗max ∈ Θ∗ \ {0, 1}.

5.6.16 Accuracy
The Accuracy Accθ is the performance measure that assesses how good the
model is in correctly predicting the observations without making a distinction
between positive or negative observations.

Definition and Distribution

The Accuracy is commonly defined as

Accθ = TPθ + TNθ
M

.

By using Equation (B4), this can be restated as

Accθ = 2 · TPθ +M − P − bM · θe
M

.

Note that it is linear in TPθ and can therefore be written as

Accθ = Zθ

(
2
M
,
M − P − bM · θe

M

)
∼ Hθ

(
2
M
,
M − P − bM · θe

M

)
, (5.18)

with range:

Accθ
(R)
∈ R

(
Zθ

(
2
M
,
M − P − bM · θe

M

))
.

Expectation

Since Accθ is linear in TPθ with slope a = 2/M and intercept b = (M − P −
bM · θe)/M , its expectation can be derived:

E[Accθ] = E
[
Zθ

(
2
M
,
M − P − bM · θe

M

)]
(E)= 2

M
·E[TPθ] + M − P − bM · θe

M

= (M − bM · θe) (M − P) + bM · θe · P
M2

= (1− θ∗) (M − P) + θ∗ · P
M

. (5.19)

113 113

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

Optimal Baselines

The range of the expectation of Accθ directly determines the baselines. To
determine the extreme values of Accθ, the derivative of the function f : [0, 1]→
[0, 1] defined as

f(t) = (1− t) (M − P) + P · t
M

is calculated. First, note that E[Accθ] = f(bM ·θe/M). The derivative is given
by

df(t)
dt = 2P −M

M
.

It does not depend on t, but whether the derivative is positive or negative
depends on P and M . Whenever P > M

2 , then f is strictly increasing for all
t in its domain. If P < M

2 , then f is strictly decreasing. When P = M
2 , f is

constant. Consequently, the same holds for E[Accθ] given in Equation (5.19).
This is because the term bM · θe/M is non-decreasing in θ. Thus, the extreme
values of the expectation of Accθ are given by

min
θ∈[0,1]

(E[Accθ]) =
{
P
M if P < M

2
1− P

M if P ≥ M
2

= min
{
P

M
, 1− P

M

}
,

max
θ∈[0,1]

(E[Accθ]) =
{

1− P
M if P < M

2
P
M if P ≥ M

2
= max

{
P

M
, 1− P

M

}
.

This means that the optimisation values θmin ∈ [0, 1] and θmax ∈ [0, 1] for these
extreme values respectively are given by

θmin ∈ arg min
θ∈[0,1]

(E[Accθ]) =


[
1− 1

2M , 1
]

if P < M
2

[0, 1] if P = M
2[

0, 1
2M
)

if P > M
2 ,

(5.20)

θmax ∈ arg max
θ∈[0,1]

(E[Accθ]) =


[
0, 1

2M
)

if P < M
2

[0, 1] if P = M
2[

1− 1
2M , 1

]
if P > M

2 .

(5.21)

Consequently, the discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimisers
are given by

θ∗min ∈ arg min
θ∗∈Θ∗

{E[Accθ∗]} =


{1} if P < M

2
Θ∗ if P = M

2
{0} if P > M

2 ,
(5.22)

θ∗max ∈ arg max
θ∗∈Θ∗

{E[Accθ∗]} =


{0} if P < M

2
Θ∗ if P = M

2
{1} if P > M

2 ,
(5.23)

respectively.

114 114

555

Chapter 5. Dutch Draw 5.6. Appendix

5.6.17 Balanced Accuracy
The Balanced Accuracy BAccθ is the mean of the True Positive Rate and True
Negative Rate, which are discussed in Sections 5.6.5 and 5.6.6. It determines
how good the model is in correctly predicting the positive observations and in
correctly predicting the negative observations on average.

Definition and Distribution

The Balanced Accuracy is commonly defined as

BAccθ = 1
2 · (TPRθ + TNRθ).

By using Equations (5.11) and (5.12), this can be reformulated as

BAccθ = 1
2

(
TPθ
P

+ 1− bM · θe − TPθ
M − P

)
= M · TPθ

2P (M − P) + M − P − bM · θe
2 (M − P) .

Note that P > 0 and N > 0 should hold, otherwise TPRθ or TNRθ is not
defined. Consequently, M > 1. Note that BAccθ is linear in TPθ and can
therefore be written as

BAccθ = Zθ

(
M

2P (M − P) ,
M − P − bM · θe

2 (M − P)

)
∼ Hθ

(
M

2P (M − P) ,
M − P − bM · θe

2 (M − P)

)
,

with range:

BAccθ
(R)
∈ R

(
Zθ

(
M

2P (M − P) ,
M − P − bM · θe

2 (M − P)

))
.

Expectation

BAccθ is linear in TPθ with slope a = M/(2P (M − P)) and intercept b =
(M − P − bM · θe)/(2 (M − P)), so its expectation can be derived:

E[BAccθ] = E
[
Zθ

(
M

2P (M − P) ,
M − P − bM · θe

2 (M − P)

)]
(E)= M

2P (M − P) ·E[TPθ] + M − P − bM · θe
2 (M − P)

= 1
2 .

115 115

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

Optimal Baselines

The baselines are directly determined by the ranges of the expectation of BAccθ.
Since the expectation is constant, its extreme values are the same:

min
θ∈[0,1]

(E[BAccθ]) = 1
2 ,

max
θ∈[0,1]

(E[BAccθ]) = 1
2 .

This means that the optimisation values θmin ∈ [0, 1] and θmax ∈ [0, 1] for these
extreme values respectively are simply

θmin ∈ arg min
θ∈[0,1]

(E[BAccθ]) = [0, 1],

θmax ∈ arg max
θ∈[0,1]

(E[BAccθ]) = [0, 1].

Consequently, the discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimisers
are given by

θ∗min ∈ arg min
θ∗∈Θ∗

{E[Accθ∗]} = Θ∗,

θ∗max ∈ arg max
θ∗∈Θ∗

{E[Accθ∗]} = Θ∗,

respectively.

5.6.18 Matthews Correlation Coefficient
TheMatthews Correlation Coefficient MCCθ was established by Matthews [70].
However, its definition is identical to that of the Yule phi coefficient, which
was introduced by Yule [130]. The performance measure can be seen as the
correlation coefficient between the actual and predicted classes. Hence, it is
one of the few measures that lies in [−1, 1] instead of [0, 1].

Definition and Distribution

The Matthews Correlation Coefficient is commonly defined as

MCCθ = TPθ · TNθ − FNθ · FPθ√
(TPθ + FPθ)(TPθ + FNθ)(TNθ + FPθ)(TNθ + FNθ)

.

By using Equations (B2) and (B4), this definition can be reformulated as

MCCθ = M · TPθ − P · bM · θe√
bM · θe · P (M − P) (M − bM · θe)

. (5.24)

As Table 5.2 shows, the assumptions P > 0, N > 0, P̂ := bM ·θe > 0, and N̂ :=
M − bM · θe > 0 must hold. If one of these assumptions is violated, then the

116 116

555

Chapter 5. Dutch Draw 5.6. Appendix

denominator in Equation (5.24) is zero, and MCCθ is not defined. Therefore,
we have for MCCθ that 1

2M ≤ θ < 1 − 1
2M and M > 1. Next, to improve

readability we introduce the variable C(M,P, θ) to replace the denominator in
Equation (5.24):

C(M,P, θ) :=
√
bM · θe · P (M − P) (M − bM · θe).

The definition of MCCθ is linear in TPθ and can thus be formulated as

MCCθ = Zθ

(
M

C(M,P, θ) ,
−P · bM · θe
C(M,P, θ)

)
∼ Hθ

(
M

C(M,P, θ) ,
−P · bM · θe
C(M,P, θ)

)
,

with range:

MCCθ
(R)
∈ R

(
Zθ

(
M

C(M,P, θ) ,
−P · bM · θe
C(M,P, θ)

))
.

Expectation

MCCθ is linear in TPθ with slope a = M/C(M,P, θ) and intercept b = −P ·
bM ·θe/C(M,P, θ), so its expectation can be derived from Equation (E):

E[MCCθ] = E
[
Zθ

(
M

C(M,P, θ) ,
−P · bM · θe
C(M,P, θ)

)]
(E)= M

C(M,P, θ) ·E[TPθ]−
P · bM · θe
C(M,P, θ)

= 0.

Optimal Baselines

The baselines are directly determined by the ranges of the expectation of
MCCθ. Since the expectation is constant, its extreme values are the same:

min
θ∈[1/(2M),1−1/(2M))

(E[MCCθ]) = 0,

max
θ∈[1/(2M),1−1/(2M))

(E[MCCθ]) = 0.

This means that the optimisation values θmin and θmax for these extreme values
respectively are simply:

θmin = θmax ∈
[

1
2M , 1− 1

2M

)
.

Consequently, the discrete versions θ∗min and θ∗max of the optimisers are given
by:

θ∗min = θ∗max ∈ Θ∗ \ {0, 1}.

117 117

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

5.6.19 Cohen’s Kappa
Cohen’s kappa κθ is a less straightforward performance measure than the other
measures that we discuss in this research. It is used to quantify the inter-
rater reliability for two raters of categorical observations [53]. In our case, we
compare the first rater, which is the Dutch Draw classifier, with the perfect
rater, which assigns the true label to each observation.

Definition and Distribution

Although there are several definitions for Cohen’s kappa, here we choose the
following:

κθ = P θo − P θe
1− P θe

,

with P θo the Accuracy Accθ as defined in Section 5.6.16 and P θe the probability
that the shuffle approach assigns the true label by chance. These two values
can be expressed in terms of the base measures as follows:

P θo = Accθ = TPθ + TNθ
M

,

P θe = (TPθ + FPθ) · P + (TNθ + FNθ) (M − P)
M2 .

By using Equations (5.18), (B1), (B2), (B3) and (B4) the above can be rewrit-
ten as

P θo = 2 · TPθ +M − P − bM · θe
M

,

P θe = bM · θe · P + (M − bM · θe) (M − P)
M2 .

Note that for κθ to be well-defined, we need 1−P θe 6= 0. In other words,

bM · θe · P + (M − bM · θe) (M − P) 6= M2.

This simplifies to

bM · θe
M

6= P

2P −M . (5.25)

The left-hand side is by definition in the interval [0, 1]. For the right-hand side
to be in that interval, we firstly need P/(2P−M) ≥ 0. Since P ≥ 0, that means
2P −M > 0, and hence, P > M

2 . Secondly, P/(2P −M) ≤ 1. Since we know
P > M

2 , we obtain P ≥ M . This inequality reduces to P = M , because P is
always at most M . Whenever P = M , then Equation (5.25) becomes

bM · θe
M

6= 1.

118 118

555

Chapter 5. Dutch Draw 5.6. Appendix

To summarise, when P < M , then all θ ∈ [0, 1] are allowed in κθ, but when
P = M , then θ < 1− 1/(2M).

Now, by using P θo and P θe in the definition of Cohen’s kappa, we obtain:

κθ = 2 ·M · TPθ − 2 · bM · θe · P
P (M − bM · θe) + (M − P) bM · θe .

To improve readability, we introduce the variables aκθ and bκθ defined as

aκθ = 2M
P (M − bM · θe) + (M − P) bM · θe

bκθ = − 2 · bM · θe · P
P (M − bM · θe) + (M − P) bM · θe .

Hence, κθ is linear in TPθ and can be written as

κθ = Zθ (aκθ , bκθ) ∼ Hθ (aκθ , bκθ) ,

with range:

κθ
(R)
∈ R (Zθ (aκθ , bκθ)) .

Expectation

As Cohen’s kappa is linear in TPθ, its expectation can be derived:

E[κθ] = E [Zθ (aκθ , bκθ)]
(E)= aκθ ·E[TPθ] + bκθ

= 2 · bM · θe · P
P (M − bM · θe) + (M − P) bM · θe

− 2 · bM · θe · P
P (M − bM · θe) + (M − P) bM · θe

= 0.

Optimal Baselines

The baselines are directly determined by the ranges of the expectation of κθ.
Since the expectation is constant, its extreme values are the same:{

minθ∈[0,1] (E[κθ]) = 0 if P < M

minθ∈[0,1−1/(2M)) (E[κθ]) = 0 if P = M ,{
maxθ∈[0,1] (E[κθ]) = 0 if P < M

maxθ∈[0,1−1/(2M)) (E[κθ]) = 0 if P = M .

119 119

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

This means that the optimisation values θmin and θmax for these extreme values
respectively are simply all allowed values:{

θmin = θmax ∈ [0, 1] if P < M

θmin = θmax ∈
[
0, 1− 1

2M
]

if P = M .

Consequently, the discrete versions θ∗min and θ∗max of the optimisers are given
by {

θ∗min = θ∗max ∈ Θ∗ if P < M

θ∗min = θ∗max ∈ Θ∗ \ {1} if P = M .

5.6.20 Fowlkes-Mallows Index
The Fowlkes-Mallows Index FMθ or G-mean 1 was introduced by Fowlkes
and Mallows in 1983 as a way to calculate the similarity between two cluster-
ings [29]. It is the geometric average between the True Positive Rate (TPRθ)
and Positive Predictive Value (PPVθ), which are discussed in Sections 5.6.5
and 5.6.9, respectively. It offers a balance between correctly predicting the ac-
tual positive observations (TPRθ) and being cautious in predicting observations
as positive (PPVθ).

Definition and Distribution

The Fowlkes-Mallows Index is commonly defined as

FMθ =
√
TPRθ · PPVθ.

By using the definitions of TPRθ and PPVθ in terms of TPθ in, respectively,
Equations (5.11) and (5.15), we obtain:

FMθ = TPθ√
P · bM · θe

.

Since TPRθ is only defined when P > 0 and PPVθ only when P̂ := bM ·θe > 0,
also FMθ has these assumptions. Therefore, θ ≥ 1

2M . The definition of FMθ is
linear in TPθ and can thus be formulated as

FMθ = Zθ

(
1√

P · bM · θe
, 0
)
∼ Hθ

(
1√

P · bM · θe
, 0
)
,

with range:

FMθ

(R)
∈ R

(
Zθ

(
1√

P · bM · θe
, 0
))

.

120 120

555

Chapter 5. Dutch Draw 5.6. Appendix

Expectation

Because FMθ is linear in TPθ with slope a = 1/
√
P · bM · θe and intercept

b = 0, its expectation is

E[FMθ] = E
[
Zθ

(
1√

P · bM · θe
, 0
)]

(E)= 1√
P · bM · θe

·E[TPθ] + 0

=
√
P · bM · θe

M

=
√
θ∗ · P
M

.

Optimal Baselines

The extreme values of the expectation of FMθ determine the baselines. They
are given by:

min
θ∈[1/(2M),1]

(E[FMθ]) = min
θ∈[1/(2M),1]

(√
P · bM · θe

M

)
=
√
P

M
,

max
θ∈[1/(2M),1]

(E[FMθ]) = max
θ∈[1/(2M),1]

(√
P · bM · θe

M

)
=
√
P

M
,

because the expectation is a non-decreasing function in θ. Note that the min-
imum and maximum are equal to each other when M = 1. Consequently, the
optimisers θmin and θmax for the extreme values are determined by:

θmin ∈ arg min
θ∈[1/(2M),1]

(E[FMθ]) = arg min
θ∈[1/(2M),1]

(√
P · bM · θe

M

)

=
{[1

2M , 1
]

if M = 1[1
2M , 3

2M
)

if M > 1,

θmax ∈ arg max
θ∈[1/(2M),1]

(E[FMθ]) = arg max
θ∈[1/(2M),1]

(√
P · bM · θe

M

)

=
{[1

2M , 1
]

if M = 1[
1− 1

2M , 1
]

if M > 1,

respectively. The discrete forms θ∗min and θ∗max of these are given by:

θ∗min ∈ arg min
θ∗∈Θ∗\{0}

{E[FMθ∗]} = arg min
θ∗∈Θ∗\{0}

{√
θ∗ · P
M

}
=
{

1
M

}
,

θ∗max ∈ arg max
θ∗∈Θ∗\{0}

{E[FMθ∗]} = arg max
θ∗∈Θ∗\{0}

{√
θ∗ · P
M

}
= {1}.

121 121

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

5.6.21 G-mean 2

The G-mean 2 G(2)
θ was established by [50]. This performance measure is the

geometric average between the True Positive Rate (TPRθ) and True Negat-
ive Rate (TNRθ), which we discuss in Sections 5.6.5 and 5.6.6, respectively.
Hence, it balances correctly predicting the positive observations and correctly
predicting the negative observations.

Definition and Distribution

The G-mean 2 is defined as

G(2)
θ =

√
TPRθ · TNRθ.

Since TPRθ needs the assumption P > 0 and TNRθ needs N := M − P > 0,
we have these restrictions also for G(2)

θ . Consequently, M > 1. Now, by
using the definitions of TPRθ and TNRθ in terms of TPθ in, respectively,
Equations (5.11) and (5.12), we obtain:

G(2)
θ =

√
TPθ · (M − P − bM · θe) + TP2

θ

P (M − P) .

This function is not a linear function of TPθ, and hence, we cannot write it in
the form Zθ (a, b) = a · TPθ + b for some variables a, b ∈ R.

Expectation

Since G(2)
θ is not linear in TPθ, we cannot easily use the expectation of TPθ to

determine that for G(2)
θ . However, we are able to determine the second moment

of G(2)
θ :

E
[(

G(2)
θ

)2
]

= M − P − bM · θe
P (M − P) ·E[TPθ] + 1

P (M − P) ·E[TP2
θ]

= M − P − bM · θe
P (M − P) · bM · θe

M
· P

+ 1
P (M − P) ·

(
Var[TPθ] + E[TPθ]2

)
)

= (M − P − bM · θe) · bM · θe
M (M − P)

+
bM ·θe(M−bM ·θe)P (M−P)

M2(M−1) +
(
bM ·θe
M · P

)2

P (M − P)

= bM · θe · (M − bM · θe)
M(M − 1)

= θ∗ · (1− θ∗) · M

M − 1

122 122

555

Chapter 5. Dutch Draw 5.6. Appendix

Of course, since the distribution of TPθ is known, the expectation of G(2)
θ can

always be numerically calculated.

Optimal Baselines

Since the function ϕ : R → R≥0 given by ϕ(x) = x2 is a convex function, we
have by Jensen’s inequality that

E[G(2)
θ]2 ≤ E

[(
G(2)
θ

)2
]

= θ∗ (1− θ∗) M

M − 1 .

This means that

E[G(2)
θ] ≤

√
θ∗ (1− θ∗) M

M − 1 .

Therefore, whenever θ∗ ∈ {0, 1}, then E[G(2)
θ] ≤ 0. Since G(2)

θ ≥ 0, it must
hold that E[G(2)

θ] = 0. Hence, the set {0, 1} contains minimisers for E[G(2)
θ].

The continuous version of this set is the interval [0, 1/(2M))∪ [1− 1/(2M), 1].
To show that this interval contains the only possible values for the minimisers,
consider the definition for the expectation of G(2)

θ :

E
[
G(2)
θ

]
=

∑
k∈D(TPθ)

√
k · ((M − P)− (bM · θe − k))

P (M − P) · P(TPθ = k),

where D(TPθ) is the domain of TPθ, i.e., the set of values k such that P(TPθ =
k) > 0. Now, let θ be such that 1/(2M) ≤ θ < 1− 1/(2M). Furthermore, con-
sider the summand S(θ)

k corresponding to k = min{P, bM ·θe} ∈ D(TPθ):

S
(θ)
k=min{P,bM ·θe} =


√

M−bM ·θe
M−P · P(TPθ = P) if P ≤ bM · θe√
bM ·θe
P · P(TPθ = bM · θe) if P > bM · θe,

which is strictly positive in both cases. Hence, there is at least one term in
the summation in the definition of E

[
G(2)
θ

]
that is larger than 0, thus the

expectation is strictly positive for 1/(2M) ≤ θ < 1 − 1/(2M). Consequently,
the minimisation values θmin ∈ [0, 1] are

θmin ∈ arg min
θ∈[0,1]

(
E[G(2)

θ]
)

=
[
0, 1

2M

)
∪
[
1− 1

2M , 1
]
.

Following this reasoning, the discrete form θ∗min ∈ Θ∗ is given by

θ∗min ∈ arg min
θ∗∈Θ∗

{
E[G(2)

θ]
}

= {0, 1}.

123 123

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

5.6.22 Prevalence Threshold (PT)
A relatively new performance measure named Prevalence Threshold (PTθ) was
introduced by Balayla [5]. We could not find many articles that use this meas-
ure, but it is included for completeness. However, this performance measure
has an inherent problem that eliminates the possibility to determine all stat-
istics.

Definition and Distribution

The Prevalence Threshold PTθ is commonly defined as

PTθ =
√
TPRθ · FPRθ − FPRθ

TPRθ − FPRθ
.

By using the definitions of TPRθ and FPRθ in terms of TPθ (see Equa-
tions (5.11) and (5.13)), we obtain:

PTθ =
√
P · (M − P) · TPθ · (bM · θe − TPθ)− P (bM · θe − TPθ)

M · TPθ − P · bM · θe
. (5.26)

It is clear that this performance measure is not a linear function of TPθ, there-
fore we cannot easily calculate its expectation. However, there are more fun-
damental problems with PTθ.

Division by Zero

Equation (5.26) shows that PTθ is a problematic measure. When is the de-
nominator zero? This happens when TPθ = (bM · θe/M) · P . In this case,
the fraction is undefined, as the denominator is zero. Furthermore, also the
numerator is zero in that case. The number of true positives TPθ can attain
the value (bM · θe/M) · P = θ∗ · P whenever the latter is also an integer. For
example, this always happens for θ∗ ∈ {0, 1}. But even when θ∗ ∈ Θ∗ \ {0, 1},
PTθ is still only safe to use when M and P are coprime, i.e., when the only
positive integer that is a divisor of both of them is 1. Otherwise, there are
always values of θ∗ ∈ Θ∗ \{0, 1} that cause θ∗ ·P to be an integer and therefore
PTθ to be undefined when TPθ attains that value.

One solution would be to say PTθ := c, c ∈ [0, 1], whenever both the numerator
and denominator are zero. However, this c is arbitrary and directly influences
the optimisation of the expectation. This makes the optimal parameter values
dependent on c, which is beyond the scope of this chapter. Thus, no statistics
are derived for the Prevalence Threshold PTθ.

5.6.23 Threat Score (TS) / Critical Success Index (CSI)
The Threat Score [85] TSθ or Critical Success Index [96] is a performance
measure that is used for evaluation of forecasting binary weather events: it

124 124

555

Chapter 5. Dutch Draw 5.6. Appendix

either happens in a specific location or it does not. It was already used in
1884 to evaluate the prediction of tornadoes [96]. The Threat Score is the ratio
of successful event forecasts (TPθ) to the total number of positive predictions
(TPθ + FPθ) and the number of events that were missed (FNθ).

Definition and Distribution

The Threat Score is thus defined as

TSθ = TPθ
TPθ + FPθ + FNθ

.

By using Equations (B2) and (B3), this definition can be reformulated as

TSθ = TPθ
P + bM · θe − TPθ

.

Note that TSθ is well-defined whenever P > 0. The definition of TSθ is not
linear in TPθ, and so there are no a, b ∈ R such that we can write the definition
as Zθ (a, b).

Expectation

Because TSθ is not linear in TPθ, determining the expectation is less straight-
forward than for other performance measures. The definition of the expectation
is

E[TSθ] =
∑

k∈D(TPθ)

k

P + bM · θe − k · P(TPθ = k).

Unfortunately, we cannot explicitly solve this sum, but it can be calculated
numerically.

Optimal Baselines

Although no explicit formula can be given for the expectation, we are able to
calculate the extreme values of the expectation and the corresponding optim-
isers.

Minimal Baseline Firstly, we show that θmin ∈ [0, 1
2M) constitutes a min-

imum and that there are no θ outside this interval also yielding this minimum.
To this end,

E[TSθmin] =
∑

k∈D(TSθmin)

k

P + 0− k · P(TSθmin = k)

= 0,

because D(TSθmin) = {0}. This is the lowest possible value, since TSθ is a
non-negative performance measure, and hence, E[TSθ] ≥ 0 for any θ ∈ [0, 1].

125 125

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

Now, let θ′ ≥ 1
2M , then there exists a k′ > 0 such that P(TPθ′ = k′) > 0.

Consequently, E[TSθ′] > 0 and this means the interval [0, 1
2M) contains the

only values that constitute the minimum. In summary,

min
θ∈[0,1]

(E[TSθ]) = 0,

θmin ∈ arg min
θ∈[0,1]

(E[TSθ]) =
[
0, 1

2M

)
.

Since θ∗min is the discretisation of θmin it corresponds to 0. More precisely:

θ∗min ∈ arg min
θ∗∈Θ∗

{E[TSθ∗]} = {0}.

Maximal Baseline Secondly, to determine the maximum of E[TSθ] and the
corresponding parameter θmax, we determine an upper bound for the expect-
ation, show that this value is attained for a specific interval and that there
is no θ outside this interval also yielding this value. To do this, assume that
bM · θe > 0. This makes sense, because bM · θe = 0 implies θ < 1/(2M) and
such a θ would yield the minimum 0. Now,

E[TSθ] =
∑

k∈D(TPθ)

k

P + bM · θe − k · P(TPθ = k)

≤
∑

k∈D(TPθ)

k

P + bM · θe − P · P(TPθ = k)

= 1
bM · θe

∑
k∈D(TPθ)

k · P(TPθ = k)

= E[TPθ]
bM · θe

(E)= P

M
.

Next, let θmax ∈ [1− 1/(2M), 1], then

E[TSθmax] =
P∑

k=M−(M−P)

k

P +M − k
· P(TPθmax = k)

= P

P +M − P
· P(TPθmax = P)

= P

M
,

because P(TPθmax = P) = 1. Hence, the upper bound is attained for θmax ∈
[1− 1/(2M), 1], and thus, θmax is a maximiser.

Now, specifically for P = 1, we show that the interval of maximisers is actually
[1/(2M), 1]. Thus, let θ ∈ [1/(2M), 1 − 1/(2M)), then 0 < bM · θe < M

126 126

555

Chapter 5. Dutch Draw 5.6. Appendix

and

E[TSθ] =
min{1,bM ·θe}∑

k=max{0,bM ·θe−(M−1)}

k

1 + bM · θe − k · P(TPθ = k)

= 0
1 + bM · θe − 0 · P(TPθ = 0) + 1

1 + bM · θe − 1 · P(TPθ = 1)

= 1
bM · θe

· P(TPθ = 1)

= 1
bM · θe

·

((1
1
)(

M−1
bM ·θe−1

)(
M
bM ·θe

))

= 1
M
,

which is exactly the upper bound E[TSθmax] = P/M for P = 1.

Next, to show that the maximisers are only in [1 − 1/(2M), 1] for P > 1,
assume there is a θ′ < 1 − 1

2M that also yields the maximum. Hence, there is
a k′ ∈ D(TPθ′) with 0 < k′ < P such that P(TPθ′ = k′). This means

E[TSθ′] =
∑

k∈D(TPθ′)

k

P + bM · θ′e − k · P(TPθ′ = k)

= k′

P + bM · θ′e − k′ · P(TPθ′ = k′)

+
∑

k∈D(TPθ′)\{k′}

k

P + bM · θ′e − k · P(TPθ′ = k)

≤ k′

P + bM · θ′e − (P − 1) · P(TPθ′ = k′)

+
∑

k∈D(TPθ′)\{k′}

k

P + bM · θ′e − P · P(TPθ′ = k)

= k′

bM · θ′e+ 1P(TPθ′ = k′) +
∑

k∈D(TPθ′)\{k′}

k

bM · θ′e
P(TPθ′ = k)

<
k′

bM · θ′e
· P(TPθ′ = k′) +

∑
k∈D(TPθ′)\{k′}

k

bM · θ′e
· P(TPθ′ = k)

= 1
bM · θ′e

∑
k∈D(TPθ′)

k · P(TPθ′ = k)

= P

M
.

Hence, there is a strict inequality E[TSθ′] < P
M and this means θ′ is not a

maximiser of the expectation. Consequently, the maximisers are only in the

127 127

555

Chapter 5. Dutch Draw Chapter 5. Dutch Draw

interval [1− 1/(2M), 1] for P > 1. In summary,

max
θ∈[0,1]

(E[TSθ]) = P

M
,

θmax ∈ arg max
θ∈[0,1]

(E[TSθ]) =
{[1

2M , 1
]

if P = 1[
1− 1

2M , 1
]

if P > 1.

Since θ∗max is the discretisation of θmax, we obtain:

θ∗max ∈ arg max
θ∗∈Θ∗

{E[TSθ∗]} =
{

Θ∗ \ {0} if P = 1
{1} if P > 1.

128 128

Part III

Active Learning

129

6666

6
Jasmine: a New Active Learning Approach to

Combat Cyber Crime

One of the reasons that the deployment of network intrusion detection methods
falls short is the lack of realistic labelled datasets, which makes it challenging
to develop and compare techniques. It is caused by the large amounts of effort
that it takes for a cyber expert to classify network connections. This has raised
the need for methods that learn from both labelled and unlabelled data which
observations are best to present to the human expert. Hence, Active Learning
(AL) methods are of interest.

In this chapter, we propose a new hybrid AL method called Jasmine. Firstly,
it uses the uncertainty score and anomaly score to determine how suitable
each observation is for querying, i.e., how likely it is to enhance classifica-
tion. Secondly, Jasmine introduces dynamic updating. This allows the model
to adjust the balance between querying uncertain, anomalous, and randomly
selected observations. To this end, Jasmine is able to learn the best query
strategy during the labelling process. This is in contrast to other AL methods
in cyber security that all have static, predetermined query functions. We show
that dynamic updating, and therefore Jasmine, is able to consistently obtain
good and more robust results than querying only uncertainties, only anomalies,
or a fixed combination of the two.

131

6666

Chapter 6. Jasmine Chapter 6. Jasmine

Based on [45]:
Jan Klein, Sandjai Bhulai, Mark Hoogendoorn, and Rob van der Mei
Jasmine: a New Active Learning Approach to Combat Cybercrime
2022 Machine Learning with Applications (accepted under minor revision)

132 132

6666

Chapter 6. Jasmine 6.1. Introduction

6.1 Introduction
The fight against cyber crime has become a priority for many countries. This is
with good reason, because the average cost of a single cyber attack in Europe
is around 50 thousand euros, as estimated by Forrester Consulting and His-
cox [19]. Most common attacks were mostly targeted on companies and even
governmental institutes. For example, 68% of Dutch firms reported at least
one cyber incident in 2019. Therefore, the amount of money that the surveyed
European companies invested in cyber security has increased by 39% from 1.3
million to 1.8 million euros. In academia, the awareness for research in the field
of cyber security has also grown. For instance, Mouloua et al. [77] analysed the
articles published in the Proceedings of the Human Factors and Ergonomics
Society (HFES) from 1980 to 2018. They showed that 73% of articles related
to cyber security published in that almost 40-year span were written in the last
nine years.

Since most cyber attacks are aimed at companies and countries, it is important
to know how networks of computers can be protected. A Network Intrusion De-
tection System (NIDS) is software designed to detect unusual, malicious events
in a computer network. There are several types of systems with each having
their own set of challenges for which several solutions have been proposed [103,
107, 131]. However, there are some broader challenges in cyber security re-
search. Most importantly, Xin et al. [124] and Yang et al. [125] argue that not
much consideration is given to deployment efficiency. This means that little
is practically done with published research, because of time complexity of the
techniques and the efficiency of detection in actual networks. The latter is
due to the lack of realistic datasets, since it takes a lot of time and effort for
a human to classify network connections correctly. Moreover, cyber analysts
have to label many redundant connections just to construct a representative
dataset. This loads the experts with tedious work and leads to an insufficient
use of their capabilities. Therefore, it would be beneficial to only present ‘in-
formative’ network connections to the cyber analyst. This can be realised in
Active Learning (AL), in which the model chooses from which unlabelled data
instances it wants to learn and then queries their labels [52, 100].

Several AL methods have been proposed in network intrusion detection (NID)
research. Many of them focus on querying uncertain data, i.e., requesting the
label of observations about which the model is not sure how to classify them
[36, 39, 60]. Adding these observations with their correct label is expected
to enhance classification performance more quickly than randomly selecting
observations. Other studies consider different query strategies or combine sev-
eral query approaches to make the AL procedure more robust [128]. Stokes
et al. [104] query both uncertain and anomalous instances. The latter are
observations that behave vastly differently than expected and that could indic-
ate malicious activities. Although combining query types increases prediction
performance, the optimal balance of the types depends on, for example, the
dataset. Moreover, the balance has to be determined beforehand and is still

133 133

6666

Chapter 6. Jasmine Chapter 6. Jasmine

up for debate.

In our research, we propose a novel AL method called Jasmine that introduces
α-dynamic updating. This allows our method to adjust the balance between
querying different types of observations such that the right types are proposed
to the human expert at the right time. This makes sense, because the struc-
ture of the labelled set (on which the classifier is trained) changes during the
labelling procedure. Hence, Jasmine is able to learn the best query strategy
during the process. The types of instances that Jasmine considers potentially
informative are uncertain, anomalous and randomly selected observations. Jas-
mine is able to dynamically change the balance between the three types to en-
sure that the most informative observations to the NID model are queried. This
sets our method apart from existing AL methods, because (to our knowledge)
Jasmine is the only method that allows for this. Our contributions are:

• We propose a new AL method called Jasmine that introduces dynamic
updating of the balance between querying uncertain, anomalous, and
randomly selected unlabelled data.

• We present the mathematical formulation of Jasmine and explain why it
can find a good balance given the current labelling state.

• We apply Jasmine to two commonly used NID datasets and use them
in different experimental settings. We show that Jasmine obtains good
results and is more robust than static query approaches. Moreover, it
performs even better in the case of highly imbalanced data. Therefore,
Jasmine is more reliable to use, because it can adapt itself to different
situations.

The rest of this chapter is organised as follows. In Section 6.2, we explain the
AL paradigm and what methods have been proposed in NID. This has some
overlap with Section 1.3 and parts could therefore be skipped. Section 6.3 in-
troduces the mathematical notation used in the AL framework. In Section 6.4,
we propose our method Jasmine and explain how it works. The experiments
that we execute to validate our method are discussed in Section 6.5. Section 6.6
subsequently shows the results of these experiments and their interpretations.
Finally, in Section 6.7, we draw conclusions about this study and make sugges-
tions for further research.

6.2 Related Work
Active Learning is a subfield of Machine Learning (ML) in which the premise
is that only a small part of the data is labelled, while the labels for the rest
of the data are not specified. The AL procedure is illustrated in Figure 6.1.
Firstly, an ML model is trained on the labelled set and applied to the unlabelled
observations to obtain output predictions. Then, interesting instances from
the unlabelled part are selected and an oracle is asked to provide the actual

134 134

6666

Chapter 6. Jasmine 6.2. Related Work

Figure 6.1: Illustration of Active Learning framework [100]

labels. Subsequently, these query observations are added to the labelled set
and the procedure continues. An important advantage of AL is that the model
needs less training data to learn better [52, 100]. For instance, it has been
used to improve performance in the diagnosis and treatment of diseases [9],
in the personalisation and hybridisation of recommender systems [25], and in
community detection [31]. Moreover, AL is especially beneficial in domains
in which it is laborious to label data. Examples of such fields are speech
recognition, information extraction (person names from texts, annotation of
genes, etc.), classification of files (relevant or irrelevant documents, images,
etc.) [100], and NID. The diversity among these examples shows the broad
application capability of AL.

6.2.1 Query Strategies
There are multiple ways to query the oracle, but we focus on pool-based sampling.
Here, the decision to query certain observations is based on some informative-
ness measure that is calculated for all instances in the unlabelled pool (or a
subset thereof). This approach to querying has been applied to many real-
world problems, including many of the application domains mentioned before.
It works well with a human oracle and when it is relatively easy to compute
the informativeness of all observations at once. A commonly used measure for
this is the uncertainty score. This score is used to query observations about
which the model is the least certain on how to predict their label [58]. This is
a simple informativeness measure, because no new models have to be trained
and only the output of the classifier is required to determine the uncertainty
of each observation.

6.2.2 Active Learning in Network Intrusion Detection
Which specific query strategy and ML technique are used depends on the AL
application. In NID, several AL methods have been proposed. These ap-
proaches mostly rely on uncertainty sampling. To illustrate this, Li and Guo
[60] use Transductive Confidence Machines for K-Nearest Neighbors for super-

135 135

6666

Chapter 6. Jasmine Chapter 6. Jasmine

vised NID with uncertainty sampling and query by committee; Görnitz et al.
[36] use a Support Vector Domain Description for Anomaly Detection (AD)
with uncertainty sampling as the AL component; and Guerra Torres et al. [39]
make use of Random Forests for prediction and query uncertain observations.
These studies show that a method with AL obtains better results than one
without it, or that the proposed query strategy performs better than randomly
presenting observations to the oracle. Though, the diversity in considered query
approaches is low since uncertainty sampling is often chosen. Both Gu and
Zydek [38] and Yang et al. [125] present overviews of multiple other query
strategies for NID, but the authors ultimately choose for uncertainty sampling
too. Yet, literature does show that this common query approach performs
well.

However, there is room for significant improvement. For example, what hap-
pens when more than one informativeness measure is considered for query selec-
tion? There are studies that incorporate two measures to improve classification
performance. Stokes et al. [104] propose to combine uncertainty sampling with
querying anomalous data, thus presenting instances that behave vastly differ-
ently than expected to the oracle. Yin et al. [128] combine the uncertainty in-
formativeness measure with density information as the query approach. More
specifically, the distance of an observation to its nearest neighbour is calcu-
lated and instances residing in high density areas are more likely to be queried.
These two studies show that using multiple informativeness measures further
improves performance, because more characteristics of the data are used to
determine which unlabelled observations would improve predictions the most
if they were labelled.

The common factor in the aforementioned research is that all proposed query
functions are static in nature. From the start, it is exactly known how the
set of query observations is constructed and this approach cannot be changed.
This means the contribution of each informativeness measure in the selection
of the query observations has to be fixed beforehand. However, the optimal
balance of these contributions depends on the overall structure of the data and
also on the current state of the labelling process. Therefore, we consider a
dynamic query approach to address these problems. To this end, the balance
can be adapted during the procedure to best fit the data. More specifically,
the method learns the distribution of query types that is expected to increase
prediction performance the most given the current state.

6.2.3 ALADIN
The AL methodology for NID that we use as a starting point was developed
by Stokes et al. [104] and is called ALADIN. It was chosen because it combines
two important informativeness measures: the (i) uncertainty score and (ii)
anomaly score. On the one hand, by querying selected anomalies, new classes
of network traffic can be found within the data. On the other hand, by querying
uncertainties, the accuracy of the classifier should increase in the next time step

136 136

6666

Chapter 6. Jasmine 6.2. Related Work

when the correct classes have been provided by the human expert. ALADIN

Figure 6.2: Schematic representation of an ALADIN iteration [104]

combines both Pelleg’s algorithm for AD [88] and Almgren’s algorithm for NID
[3]. In the first algorithm, an AD model is constructed for each data class, so
one for the benign class and one for the malicious class in the binary case. How
unlikely an unlabelled observation is according to the model of its (predicted)
class, determines how anomalous it is. The less likely an instance is, the more
interesting it is for querying. In the second algorithm, observations that lie
close to the decision boundary of the trained classifier are deemed uncertain,
and hence, interesting for querying. The description of ALADIN is illustrated
in Figure 6.2. On the 1999 KDD-Cup dataset [106], Stokes et al. [104] show that
ALADIN achieved high accuracy in predicting known traffic classes. Moreover,
it was able to detect previously unknown categories quickly. This shows that
incorporating anomalous and uncertain observations in the query set led to
favourable results.

ALADIN uses simple ML techniques such as logistic regression and naive Bayes
to be able to scale well. However, the authors mention that the benign class in
the KDD-Cup dataset is very diverse, meaning that this class may not be easily
predicted with the logistic regression classifier. In our research, we consider
more advanced ML techniques that are better able to capture the diversity of
network traffic. More importantly, in ALADIN, half of the queried observations
are anomalous, while the other half is uncertain. This fixed 50/50 split is not
motivated by the authors. Hence, model performance can improve when the
proportion between querying anomalies and uncertainties is changed depending
on the considered dataset and within the process. This leads to our α-dynamic
updating.

137 137

6666

Chapter 6. Jasmine Chapter 6. Jasmine

6.3 Preliminaries
Before we provide the mathematical formulation of Jasmine, we introduce some
notation to describe the AL framework in general. Firstly, we assume to have
a dataset X ∈ RM×K , with M ∈ N the number of observations and K ∈ N the
number of features, or attributes. Let xi ∈ RK be the feature vector of observa-
tion i ∈ {1, . . . ,M}, and let yi ∈ {0, 1, ∗} be its corresponding response value.
Here, ‘0’ represents the benign class and ‘1’ the malicious class. The symbol ‘*’
means that the class, or label, is missing. In AL, it is assumed that only a (pos-
sibly small) part of the data is labelled, while the rest is unlabelled. The set of
labelled observations L(t) and the set of unlabelled observations U(t) depend
on the iteration or time step t = 1, . . . , T , where T ∈ N is a predetermined
maximum number of iterations. Since more labels become available when the
iteration procedure progresses, the vector of response values of all the instances
y(t) = (y1(t), . . . , yM (t)) is dependent on time. Now, for all iterations it holds
that L(t) and U(t) are disjoint and their union is the complete dataset (X,y(t))
with labels up to time t. Let L(t) := |L(t)| be the number of labelled observa-
tions and U(t) := |U(t)| the number of unlabelled instances at time t. Note that
L(t+1) > L(t), while U(t+1) < U(t), because every iteration the human expert
adds labels to previously unlabelled observations. L(0) contains the instances
that are labelled from the start, while U(0) consists of all initially unlabelled
observations. In iteration t, a supervised ML technique ft : RK → [0, 1] is
trained on L(t − 1). This classifier ft is then applied to U(t − 1) to obtain
predictions for the actual classes of the unlabelled observations. Then, a query
function ψ determines which instances from U(t− 1) are selected to be queried
to the human expert. Let Q(t) ⊆ U(t − 1) be the constructed set of query
observations. Usually, this set has fixed size Q := |Q(t)|. Then, the expert
provides the labels yq(t) ∈ {0, 1} for the observations q ∈ Q(t). Note that in
the previous iteration their labels were still unknown: yq(t− 1) = ‘*’.

6.4 Methodology
In this section, we introduce our AL method Jasmine. Its key component is
α-dynamic updating, which allows the model to dynamically adjust the balance
between querying anomalous, uncertain, and random observations during the
procedure. The adjustment of the balance comes in two flavours. Firstly, the
initial proportions of the three types of query observations are determined.
Based on the available initially labelled data L(0), it can be beneficial to start
with querying 60% anomalous, 15% uncertain, and 25% random observations,
for example. Secondly, the balance between the types can be changed during
the labelling process, because it may be better to query increasingly more
anomalous instances when more and more labels are provided by the oracle.
This leads to dynamically updating the query fractions. Moreover, we also
consider querying random observations. This may seem counter-intuitive in the
AL setting, because its premise is not to bother the human expert with labelling

138 138

6666

Chapter 6. Jasmine 6.4. Methodology

redundant observations. However, when L(0) is not a good representation of the
entire dataset, querying some random observations could be beneficial.

Figure 6.3: Schematic representation of complete Jasmine procedure. The numbers
of the form ‘6.4.x’ denote in which subsection the corresponding component is ex-
plained

The complete Jasmine procedure is illustrated in Figure 6.3. It consists of two
consecutive phases. In Phase 2, the actual AL component of Jasmine is ex-
ecuted given the results of Phase 1. More specifically, the classifier is trained on
L(t) and applied to U(t) to obtain malicious probabilities (Section 6.4.3). Then,
the informativeness measures of the unlabelled observations are calculated (Sec-
tion 6.4.4) and the query sample is constructed based on these measures (Sec-
tion 6.4.5). Next, the actual labels are provided by the human oracle. Then,
the crucial part of Jasmine is performed by updating the query fractions based
on the results obtained during the iteration (Section 6.4.6). Consequently, the
query set of the next iteration should have a better balance of anomalous, un-
certain, and random observations. Finally, the labelled query observations are
added to L(t+1) (Section 6.4.7) and the procedure continues. In Phase 1, good
values of the hyperparameters of the classifier are determined (Section 6.4.2).
Also, good values of the Jasmine-specific parameters are chosen in this phase
(Section 6.4.8). Since tuning of the Jasmine parameters is a reduced version of
the second phase, we explain the latter first in this section.

139 139

6666

Chapter 6. Jasmine Chapter 6. Jasmine

6.4.1 Classification and Anomaly Detection Techniques
The supervised ML technique used as the classifier in Jasmine is the Gradient
Boosting Machine (GBM), which was designed by Friedman [30]. One of the
main merits of the GBM is its flexibility and robustness with respect to the
number of hyperparameters [11, 82, 84]. It can easily be customised for differ-
ent practical purposes. Another advantage of the GBM is its interpretability.
Since the technique is an ensemble of multiple simple models, it can be easily
understood.

The AD method used in Jasmine is the Isolation Forest (IF), which was de-
veloped by Liu et al. [65]. Just as the GBM, it is a tree-based ensemble ML
technique. Most AD models try to construct a representation of normal be-
haviour, but the IF aims to isolate the anomalous observations. The authors
use two important properties of anomalies: (i) there are few of them, and (ii)
they have distinctly different characteristics than the majority of observations.
Because these properties hold, it should be relatively simple to isolate them
from the rest. The main advantage of the IF technique is that it is fast and
easy to interpret [64].

6.4.2 Tuning GBM Hyperparameters
The GBM has hyperparameters that are determined beforehand. In Jasmine,
good values are found via hyperparameter tuning [18]. This is done on the set
L(0), because by definition the observations in this set are the only ones with
labels from the start. We use k-fold cross validation such that each observation
is both utilised for training and evaluating the model. This is desirable, be-
cause L(0) is usually rather small, so we want to effectively use each provided
label. During tuning, also the computation time is taken into account, because
the GBM is retrained each AL iteration and training times quickly stack. We
want to find hyperparameters that yield good performance in both predictive
ability and computation time. To this end, assume there are H hyperpara-
meter combinations yielding a sequence of performance metrics h1, . . . , hH and
a sequence of computation times t1, . . . , tH . Let h∗ := max{h1, . . . , hH} be
the best performance, and let j∗ := arg max{h1, . . . , hH} be the combination
yielding this performance. If there are several combinations resulting in the
best performance metric, then j∗ is the one with the smallest computation
time tj∗ . Also, if there is a combination yielding a performance of almost h∗,
but with a much smaller computation time than tj∗ , then we prefer to go for
that combination. In that case, combination j is chosen as the optimal one
whenever

dj := hj∗ − hj
tj∗ − tj

< ε,

where ε > 0 is some predefined threshold. If several j satisfy this requirement,
then the one with the smallest dj is chosen.

140 140

6666

Chapter 6. Jasmine 6.4. Methodology

6.4.3 Training, Evaluating, and Predicting
The classification is done by means of a GBM, which we described in Sec-
tion 6.4.1. The hyperparameter values for this technique are determined by
tuning, as described in Section 6.4.2. In iteration t, the GBM is trained with
k-fold cross validation on L(t−1), yielding the classifier ft and some threshold
probability θ ∈ (0, 1). This θ represents the border between predicting an
instance as 0 (benign) or as 1 (malicious), and is the value that maximises
some performance metric on L(t − 1). In Jasmine, we are interested in how
confident ft is in its predictions. The closer the predicted probability is to θ,
the less certain the model is. Intuitively, a value of 0.5 can be seen as the
least certain probability for a binary classifier, because it is precisely between 0
and 1. Therefore, θ is transformed to be 0.5 and the probabilities are changed
accordingly. We provide more reasoning why this is done in Section 6.4.4. The
function ϕθ : [0, 1]→ [0, 1], defined as

ϕθ(y) = (1− θ)y
(1− 2θ)y + θ

,

is applied to all predicted probabilities to transform them. We chose this
function, because it has the following necessary and desirable properties: (i) ϕ
is continuously differentiable (smooth), (ii) ϕθ(0) = 0, (iii) ϕθ(θ) = 0.5, (iv)
ϕθ(1) = 1, and (v) ϕ′θ(y) ≥ 0. Note that the probabilities do not change when
θ is already 0.5: ϕθ=0.5(y) = y for all y ∈ [0, 1].

After this, ft is applied to the unlabelled set U(t − 1) to obtain predicted
probabilities ŷu(t) ∈ [0, 1] (which have been transformed by ϕθ) for each u ∈
U(t − 1). Consequently, the predicted class ĉu(t) is 0 if ŷu(t) < 0.5 and 1 if
ŷu(t) ≥ 0.5.

6.4.4 Calculating Certainty Score and Anomaly Score
In the next step, the measures needed to determine which unlabelled observa-
tions to present to the expert are calculated. These measures are the certainty
score and anomaly score.

The certainty score zu(t) ∈ [0, 1] is defined as

zu(t) := 2
∣∣∣∣ŷu(t)− 1

2

∣∣∣∣ , (6.1)

for each u ∈ U(t − 1). The lower this score, the more uncertain the trained
model ft is about the predicted label of u. Equation (6.1) is the commonly
used definition for the certainty score in AL methods, such as in ALADIN. It
also shows why we transformed the raw predicted probabilities by ϕθ. Now, the
distance from 1

2 can be at most 0.5 in both the benign direction (corresponding
to ŷu(t) ↓ 0) and the malicious direction (ŷu(t) ↑ 1), making zu(t) a symmetric
score.

141 141

6666

Chapter 6. Jasmine Chapter 6. Jasmine

The IF technique that we described in Section 6.4.1 is used to determine the
anomaly score au(t) for each u ∈ U(t−1). Firstly, the class-specific observation
sets are defined for each c ∈ {0, 1} by

L(c)(t− 1) := {l ∈ L(t− 1) : yl = c},
U (c)(t) := {u ∈ U(t− 1) : ĉu(t) = c}. (6.2)

Now, one IF is trained on the set L(0)(t − 1) ∪ U (0)(t) and one on the set
L(1)(t − 1) ∪ U (1)(t), yielding a benign IF I

(0)
t : RK → [0, 1] and a malicious

IF I
(1)
t : RK → [0, 1], respectively. Then, the anomaly score of u ∈ U(t− 1) is

defined as
au(t) := I

(ĉu(t))
t (xu). (6.3)

This is the output value that the appropriate IF produces when the feature
vector xu is fed into it.

6.4.5 Constructing Query Sample Q(t)
An important component of Jasmine is the way in which the query function
ψJas determines how the query sample Q(t) is constructed. There are three
types of query observations: anomalies, uncertainties, and random instances.
Which part of Q(t) should be allocated to which type is given by the anomaly
fraction αa(t), uncertainty fraction αz(t), and randomness fraction αr(t). For
each class c ∈ {0, 1}, the unlabelled observations in U (c)(t) (see (6.2)) are sorted
from most anomalous to least anomalous. Then, the top 1

2αa(t) ·Q (rounded to
the nearest integer) observations are taken as the anomalous query instances
for predicted class c. The uncertainties are selected similarly: the observations
in U (c)(t) are sorted from least certain to most certain for each class c. Then,
the top 1

2αz(t) · Q instances are selected for the uncertain query observations
for predicted class c. The random query observations are selected in a simple
way: a sample of size αr(t) ·Q is taken from U(t) (without the already selected
anomalous and uncertain observations).

There are some important technicalities in constructing Q(t). First of all, it
is possible that there are not enough observations for a specific class. Then,
observations from the other class are added to reach the number of required
anomalies or uncertainties. Secondly, there can be an overlap between the most
anomalous and least certain instances: some observations can be both anom-
alous and uncertain, and hence, we select them for both query types.

Ultimately, when the query observations have been determined, the query set
Q(t) is shown to the human expert and they provide the correct label yq for
each q ∈ Q(t).

142 142

6666

Chapter 6. Jasmine 6.4. Methodology

6.4.6 α-dynamic Update
Constructing Update Parameters

The query set Q(t) obtained in Section 6.4.5 can be decomposed in Qa(t),
Qz(t), and Qr(t), which are the sets of anomalous, uncertain, and random
queries, respectively. Also, let Qa(t), Qz(t), and Qr(t) be their respective
sizes. Furthermore, let yq ∈ {0, 1} be the real label of query observation q,
ŷq(t) ∈ [0, 1] its predicted malicious probability, and ĉq(t) ∈ {0, 1} its predicted
label. In practice, the real label is available since the cyber expert provides
it. We want to construct a metric for the anomalous queries and one for the
uncertain queries that describe how much information the observations of those
types can potentially add to the model. We do this by looking at the false
negatives (FNs) and false positives (FPs) in Q(t). The reasoning is that when
there are many FNs and FPs, then the model was bad at predicting the real
classes of those unlabelled observations. Hence, adding these observations to
the labelled set L(t) could yield a lot of information for the classifier trained in
the next iteration. In short, we consider the fraction of FPs and FNs in Q(t),
but also take a look at how convincing they are. If the model is fairly certain
that an observation is malicious while it is in fact benign, then this FP obtains
a larger weight than if the model is not that sure. Consequently, we define the
anomaly information metric δβa (t) as follows:

δβa (t) :=
∑
q∈Qa(t) |ŷq(t)− yq| ·

(
β · 1{ĉq=0,yq=1} + 1{ĉq=1,yq=0}

)
Qa(t) + (β − 1) · |{q ∈ Qa(t) : yq = 1}| . (6.4)

Note that the first indicator function in (6.4) corresponds to an FN: the real
label is 1, but the predicted label is 0. Equivalently, the second indicator
function corresponds to an FP. If the query observation q is an FN, it gets
weighted by some parameter β > 0. This enables us to put more (β > 1) or
less (β < 1) emphasis on the FNs compared to the FPs. Thus, if q is an FN,
then it obtains value β|ŷq(t) − yq|; if it is an FP, it obtains |ŷq(t) − yq|. The
farther the predicted probability ŷq(t) is from 0 or 1 (thus the less certain the
model is about the prediction), the larger the assigned value for q becomes.
The denominator ensures that the value of δβa (t) is at most 1. When there are
no FPs and FNs, then the value of the metric is 0. Consequently, δβa (t) ∈ [0, 1].
The larger δβa (t) is, the more information the anomalies convey, because we
expect that incorrectly predicted observations add relevant information to the
model if they are added to the train set with the correct labels.

Similarly, we define the uncertainty information metric

δβz (t) :=
∑
q∈Qz(t) |ŷq(t)− yq| ·

(
β · 1{ĉq=0,yq=1} + 1{ĉq=1,yq=0}

)
Qz(t) + (β − 1) · |{q ∈ Qz(t) : yq = 1}| , (6.5)

as a measure on how much information the uncertain observations in the query
set add on average. Also, δβz (t) ∈ [0, 1].

143 143

6666

Chapter 6. Jasmine Chapter 6. Jasmine

Next, the difference between the information metrics that we defined in (6.4)
and (6.5) describes whether anomalies or uncertainties could add more inform-
ation to the model. We define this difference ∆(t) as

∆(t) := δβa (t)− δβz (t) ∈ [−1, 1].

It is used to determine how the query fractions of anomalies and uncertainties
are updated. If ∆(t) > 0, then the queried anomalies could add more inform-
ation on average, and hence, preferably, more anomalies are selected the next
iteration. If ∆(t) < 0, then the uncertainties could add more information, and
so, more uncertainties are selected.

Now, we want the possibility to put more or less emphasis on bigger or smaller
values of ∆(t). Hence, we introduce a non-linearity governed by γ > 0 to obtain
∆γ(t). To this end, we define the update factor as

∆γ(t) := sgn(∆(t)) · |∆(t)|1/γ . (6.6)

When γ = 1, then (6.6) reduces to the linear case ∆γ(t) = ∆(t). If 0 < γ < 1,
then |∆γ(t)| ≤ |∆(t)|, so the update factor is relatively smaller. On the other
hand, if γ > 1, then |∆γ(t)| ≥ |∆(t)| and the factor is relatively larger.

Defining Query Fractions

The update factor ∆γ(t) is used to determine whether more anomalies or un-
certainties should be queried in the next iteration. The updates αa(t+ 1) and
αz(t+ 1) have the forms

αa(t+ 1) = λt+1

(
αa(t) + w(1)

a (t) ·max{0,∆γ(t)}+ w(2)
a (t) ·min{0,∆γ(t)}

)
,

(6.7)
and

αz(t+1) = λt+1

(
αz(t) + w(1)

z (t) ·max{0,−∆γ(t)}+ w(2)
z (t) ·min{0,−∆γ(t)}

)
,

(6.8)
respectively. Here, the w variables are non-negative constants that we need
to ensure that the fractions stay within the correct bounds for time step t.
Moreover, λt+1 denotes a linear function which guarantees that the updated
fractions are also within the bounds for time step t + 1. Let us examine (6.7)
in more detail: the new fraction αa(t+ 1) is based on the old value αa(t) plus
some value when ∆γ(t) > 0 or minus some value when ∆γ(t) < 0. In other
words, when the anomalies add more information on average than the uncer-
tainties, then αa(t+ 1) becomes larger. Otherwise, αa(t+ 1) becomes smaller.
The update dynamics are the other way around for (6.8). We provide the ex-
plicit mathematical definitions of the w variables and λt+1 in Section 6.8. It is
important to mention that they depend on the hyperparameters α(0)

a and α(0)
z ,

which are the initial query fractions of anomalies and uncertainties, respect-
ively.

144 144

6666

Chapter 6. Jasmine 6.4. Methodology

The fraction of random observations that we want to query relates to the
number of available labelled observations L(t). If L(0) is small, then L(0) is less
likely to be a good representation of the complete labelled dataset (X,y). In
that case, we want to query relatively more random instances at the start to be
able to obtain a representative train set for the GBM classifier to learn from. As
L(t) increases, we want to query fewer and fewer random observations and let
AL take over in the sense of querying anomalies and uncertainties. Therefore,
let αr(t) be an exponentially decreasing function in t. More specifically,

αr(t) = αmax
r · 2−τ ·L(t), (6.9)

with τ > 0 the decrease speed and L(t) = L(0) +Q · t. Note that this function
is determined beforehand. Hence, how the fraction of randomly queried obser-
vations changes, is fixed during the Jasmine procedure. The value of αmax is
directly determined by the hyperparameters α(0)

a and α(0)
z .

It is important to see that executing the α-dynamic update step does not take
much computation time. No additional ML models have to be trained and only
relatively simple operations are performed to determine the values of the query
fractions for the next time step.

6.4.7 Final Iteration Updates
The last steps that Jasmine has to perform are rather simple, the labelled query
set Q(t) is added to the current labelled set L(t − 1) and removed from the
current unlabelled set U(t− 1). More specifically, L(t) := L(t− 1) ∪ Q(t) and
U(t) := U(t − 1) \ Q(t). The complete Jasmine procedure is summarised in
Algorithm 1.

6.4.8 Tuning Jasmine Hyperparameters
Chronologically speaking, tuning of the Jasmine-specific hyperparameters takes
place in Phase 1 before the actual AL procedure in Phase 2, as we illustrated
in Figure 6.3. To be more specific, Jasmine tuning occurs after tuning the hy-
perparameters for the GBM, and thus, directly after Section 6.4.2. Recall that
the hyperparameters are (i) α(0)

a and α
(0)
z , the starting fractions of querying

anomalous and uncertain observations, respectively; (ii) β, the parameter as-
signing a certain weight to an FN compared to an FP, given in (6.4) and (6.5);
(iii) γ, the update magnitude, given in (6.6); and (iv) τ , the decrease speed in
querying random observations, given in (6.9). Using normalisation, α(0)

a and τ
completely determine α(0)

z , so the latter does not have to be tuned.

To determine appropriate values for these hyperparameters, the initially la-
belled set L(0) is randomly partitioned into the sets LJ(0), UJ(0), and EJ .
During Jasmine tuning, LJ(0) is taken as the initially labelled set, UJ(0) as
the initially unlabelled set, and EJ as the evaluation set. Let J be the set
with hyperparameter values that we want to consider for tuning. Thus, an

145 145

6666

Chapter 6. Jasmine Chapter 6. Jasmine

Algorithm 1 Jasmine procedure
Require: Labelled set L(0), unlabelled set U(0), number of iterations T , query

function ψJas

1: Tune parameters of GBM on L(0) (Section 6.4.2)
2: Tune Jasmine-specific hyperparameters (α(0)

a , β, γ, τ) on L(0) (Sec-
tion 6.4.8) and determine α(0)

z by normalisation
3: for t = 1 to T do
4: Train GBM ft with tuned parameters on L(t− 1)
5: Apply ft to U(t− 1) to obtain predictions ŷu(t)
6: Assign each u ∈ U(t− 1) to its most likely class
7: Calculate each zu(t) as defined in (6.1)
8: Construct one IF for each class (Section 6.4.4).
9: Compute each au(t) as defined in (6.3)
10: Compose Q(t) using query function ψJas as described in Section 6.4.5
11: Obtain actual classes yq of q ∈ Q(t) by human expert
12: Use yq and predictions ŷq(t) to determine δβa (t), δβz (t), and ∆γ(t)

with (6.4), (6.5) and (6.6), respectively.
13: Update query fractions to obtain αa(t+ 1) and αz(t+ 1) (Section 6.4.6)
14: L(t)⇐ L(t− 1) ∪Q(t) and U(t)⇐ U(t− 1) \ Q(t)
15: end for
16: return

element j ∈ J is a four-dimensional vector of the form (α(0)
a , β, γ, τ). Let QJ

be the number of unlabelled observations that should be queried in each iter-
ation. Ideally, the value of QJ is close to Q, but we do want to perform some
iterations before LJ(t) reaches the size of L(0). The number of iterations in
Jasmine tuning is given by TJ := dUJ (0)

QJ
e − 1, where UJ(0) := |UJ(0)|. The

minus one is because the last unlabelled observations are the least informative,
and hence, not of interest to query.

Let j ∈ J be some hyperparameter combination. Then a GBMmodel is trained
on LJ(0), similar to what we described in Section 6.4.3. This model is then
applied to the evaluation set EJ resulting in some performance metric pj(0).
Then the rest of the AL procedure, as we described in Sections 6.4.4 to 6.4.7,
is executed. After all iterations are performed, the sequence of performance
measures {pj(t − 1)}{t=1,...,TJ} is obtained. We use this sequence to determ-
ine which hyperparameter combination works best, since such a sequence is
obtained for each j ∈ J .

Because stochasticity is involved, we repeat Jasmine tuning SJ times. Each
simulation, the set L(0) is randomly divided in the sets LJ(0), UJ(0), and
EJ . Also, each simulation yields a sequence of performance metrics for each
hyperparameter combination. Then the combination that yields the best per-
formance over the simulations is taken as (relatively) optimal for α(0)

a , β, γ,
and τ .

146 146

6666

Chapter 6. Jasmine 6.5. Experimental Setup

6.5 Experimental Setup
We conducted several experiments to determine whether our AL method Jas-
mine performed better than ALADIN and to decide if α-dynamic updating
yielded significant improvements over baseline query functions. In this sec-
tion, we discuss the datasets on which the experiments were performed. These
sets are fully labelled, so the labels for the observations in the ‘unlabelled’
set were hidden until they were queried by Jasmine. After that, we explain
the steps taken to execute the procedures. These include which hyperpara-
meters were tuned over which ranges and how the different AL methods were
evaluated.

6.5.1 Data
Yavanoglu and Aydos [127] and Ferrag et al. [28] provided overviews of publicly
available security-related datasets commonly used in NID research. The sets
that were discussed span from 1999 to 2018, showing that even old network
datasets are still used to benchmark NID techniques. However, this is mostly
due to the lack of public data, as discussed in Section 6.1. Here, firstly, we
used the NSL-KDD dataset for assessing the considered AL methods, since
it is the most used for evaluation in the field of cyber security. Secondly, we
considered the UNSW-NB15 dataset. This set is cited often too, and is much
more recent than the popular NSL-KDD data. Moreover, it has several more
realistic aspects, which are discussed later. Henceforth, these datasets were
used to assess the performance of the discussed AL methods and to compare
the obtained results for different data.

NSL-KDD

The NSL-KDD dataset was developed by Tavallaee et al. [112] and is an im-
provement on the KDD-Cup-99 dataset. The latter was prepared by Stolfo
et al. [105] and consists of a training set and a test set. These two sets were
constructed such that they do not have the same underlying distribution. Each
observation in KDD-Cup-99 is made up of a 41-dimensional feature vector and
an output label with the attack type. There are four global types of actual
attacks and a ‘normal’ type, indicating a benign connection. Within the at-
tack types, there can be several distinct attack scenarios. The test set contains
scenarios from the training set as well as new scenarios. As mentioned before,
the NSL-KDD dataset is a revision of the KDD-Cup-99 data and addresses
many of the problems. What these problems are and how the data was revised
is described by Tavallaee et al. [112]. Finally, the total number of training ob-
servations in NSL-KDD is 125,972 and the number of test instances is 22,544.
We removed the categorical features Protocol_type, Service, Flag, and Diffi-
culty_level, because Jasmine is based on numerical techniques. Moreover, since
Jasmine expects binary output labels, all attack types obtained value 1 (the
malicious class), while the normal type obtained value 0 (the benign class).

147 147

6666

Chapter 6. Jasmine Chapter 6. Jasmine

46.5% of the training instances are malicious, while 56.9% are malicious in the
test set.

NSL-KDD-rand

Besides considering the NSL-KDD data as provided by Tavallaee et al. [112],
we also considered the dataset we call NSL-KDD-rand. We constructed this
set by combining the training and test set of the NSL-KDD dataset. Now,
48.1% of all observations are malicious. During the experiments, each time a
new training and test set were chosen. These new sets are expected to have
the same underlying distribution, in contrast to the provided training and test
set of the NSL-KDD data.

UNSW-NB15

The UNSW-NB15 dataset was constructed by Moustafa and Slay [79], partially
to address some problems of the NSL-KDD data. The UNSW-NB15 dataset
contains 2,540,047 observations with each network connection consisting of a
47-dimensional feature vector and two output attributes. The first output is
the specific attack type and the second is a binary value indicating whether
the observation is benign (0) or malicious (1). Nine attack types are present
in the dataset, but we only used the second output attribute, since Jasmine
expects a binary output label. We reduced the number of predictive features
from 47 to 36 by removing srcip, sport, dstip, dsport, proto, state, service, stcpb,
dtcpb, Stime, and Ltime, because they directly determine the output label, are
categorical, or have no predictive use. Furthermore, there are several missing
values in UNSW-NB15 which we chose from context to be 0. Finally, 12.6% of
the observations correspond to attacks. This lower fraction of malicious traffic
is one of the reasons why this dataset is closer to reality than the NSL-KDD
data. More information about UNSW-NB15 is given by Moustafa and Slay
[79].

Although the attack balance is more realistic, there are still relatively many
malicious observations. Therefore, we also constructed a dataset in which the
attacks were downsampled to 1.0% to see how Jasmine performs on highly
unbalanced data.

6.5.2 Experiments
Query Functions

We considered several query functions in the experiments. First of all, we
regarded Jasmine with its characteristic α-dynamic query function ψJas (as de-
scribed in Section 6.4.5) as the main focus of this research (jas.main). Further-
more, we examined some simpler query functions for the Jasmine procedure:
only querying anomalies (jas.anom), only querying uncertainties (jas.uncert), and
only querying random observations (jas.rand). For these three query functions,

148 148

6666

Chapter 6. Jasmine 6.5. Experimental Setup

α-dynamic updating is not involved. Note that the uncertainty query approach
in jas.uncert corresponds to many of the studies discussed in Section 6.2. Also,
the query strategies in jas.anom and jas.rand have ties to related work. Naturally,
we also considered the full ALADIN procedure of Stokes et al. [104] (ala.main),
just as the incomplete Jasmine procedure with ALADIN’s query function of
querying anomalies and uncertainties in a fixed 50/50 split (jas.basic). Con-
sequently, we compared Jasmine to five different AL methods.

Global Parameters

The global parameters are the variables defined before any computation took
place. These include the initial size of the labelled set L(0), the initial size of the
unlabelled set U(0), the size of the evaluation set E, and the query set size Q.
Moreover, N is the maximum number of observations that were to be queried
to the human expert during the process. Together with Q, the parameter N
determines the total number of iterations: T := bN/Qc. Finally, since Jasmine
is an inherently stochastic procedure, we repeated the experiments S times.
This was done to analyse how our method behaved on average and in what
range its performances resided. Note that, for each repetition, the sets L(0)
and U(0) were newly constructed. For the NSL-KDD-rand and UNSW-NB15
datasets, the evaluation set E was also freshly sampled. This was not necessary
for the NSL-KDD data, since E is a provided fixed set.

The values chosen for the global parameters for the experiments are presented
in Table 6.1. As the table shows, two different values L(0) were considered,
because we were interested in how the initially labelled set size influenced the
performance of the AL methods. Furthermore, we chose Q to be 40, as we
deemed this a good balance between allowing for the query fractions to up-
date not too erratically (needing Q to be large) and allowing for relatively
small updates to the classifier (needing Q to be small). Also, we chose N to
be 15,000 because we saw from exploratory studies that the models do not
drastically change any more when more labels were provided. Finally, for the
NSL-KDD-rand and UNSW-NB15 datasets, we chose E to be 5,000, to obtain a
representative test set without using too many observations only for evaluation.

Table 6.1: Values for global parameters

Data L(0) U(0) E Q N S
NSL-KDD 125 125,848 22,544 40 15,000 30
NSL-KDD 250 125,723 22,544 40 15,000 30

NSL-KDD-rand 125 146,392 5,000 40 15,000 30
NSL-KDD-rand 250 146,267 5,000 40 15,000 30
UNSW-NB15 125 2,534,922 5,000 40 15,000 30
UNSW-NB15 250 2,534,797 5,000 40 15,000 30

149 149

6666

Chapter 6. Jasmine Chapter 6. Jasmine

Hyperparameter Tuning GBM

As mentioned in Section 6.4.2, good values for the GBM were found by tun-
ing on the initially labelled set L(0) with k-fold cross validation. We used the
study by Tama and Rhee [111] and exploratory research to determine which
hyperparameters to tune and over what range to tune them. The parameters
that were not selected for tuning obtained their default settings as given by
the h2o.gbm function of the H2O.ai package, which we used in the R program-
ming language. The values or tuning ranges of the parameters are shown in
Table 6.2. Since the number of possible hyperparameter combinations is large
(more than 177 thousand), a random search was performed over all combin-
ations for a maximum of 4 hours. The combination with the best trade-off
between performance metric and computation time was chosen. We considered
the F1 score as the performance metric and we chose the threshold ε to be
10−4.

Table 6.2: Tuning ranges for hyperparameters in h2o.gbm (csr = ‘col_sample_rate’)

distribution histogram_type learn_rate_annealing
Bernoulli RoundRobin {0.95, 0.99, 0.999}

max_depth sample_rate ntrees
{6, 12, 24} {0.60, 0.78, 1.0} {250, 500, 1,000}

nbins csr learn_rate
{10, 16, 25} {0.84, 0.92, 1.0} {0.02, 0.05, 0.125}
min_rows csr_per_tree csr_change_per_level
{6, 8, 10} {0.40, 0.64, 1.0} {0.94, 1.0, 1.06}

Jasmine Tuning

The relevant hyperparameters for the Jasmine tuning phase, as we described
in Section 6.4.8, are the initial anomaly query fraction α

(0)
a , the FN weight

factor β, the update magnitude γ, and the decrease speed in querying random
instances τ . The ranges that the parameters were tuned over are shown in
Table 6.3, yielding 108 possible combinations. We chose the ranges for α(0)

a ,
β, and γ to be symmetric around the ‘unity value’. For α(0)

a , this is 1
2 , since

then the initial number of anomalous observations was equal to the number
of uncertain instances. For β, this is 1, because then the FNs and FPs were
weighed equally. For γ, this is also 1, since then ∆(γ)(t) reduced to the linear
difference ∆(t).

Table 6.3: Tuning ranges for Jasmine parameters

α
(0)
a β γ τ SJ{ 1

4 ,
1
2 ,

3
4
} { 1

2 , 1, 2
} { 1

2 , 1, 2
} { 1

800 ,
1

400 ,
1

200 ,
1

100
}

4

During Jasmine tuning, we wanted to choose QJ as close to Q as possible,

150 150

6666

Chapter 6. Jasmine 6.6. Results

but also perform at least three iterations. Hence, we defined the tuning query
size as QJ := min{UJ(0)/4, Q}. The initially unlabelled set size was divided
by 4 (= 3 + 1), since the last iteration was not performed. This is because
we deem the last unlabelled observations the least informative. Each Jas-
mine parameter combination j yielded a performance metric for every time
step. This produced the sequence {pj(t)}{t=0,...,TJ−1}. Again, this metric was
the F1 score. After the iterations were performed, the area underneath the
(t, pj(t)){t=0,...,TJ−1}-‘curve’ was calculated. This is an example of a learning
curve, which is commonly used in the AL paradigm to assess the quality of a
method [52, 100]. The larger this area, the better parameter combination j is.
As there is stochasticity in the techniques used in Jasmine, the tuning phase
was repeated SJ times. The combination with the largest average area was
chosen as the hyperparameter setting for Jasmine in the actual AL procedure.
Note that the Jasmine-specific parameters were tuned on L(0), and so, Jasmine
did not get an unfair advantage by seeing more data in advance than the other
AL methods, which did not need to execute Jasmine tuning.

Evaluation of AL Methods

To evaluate the six different AL methods, we utilised the evaluation set E that
was set aside each simulation. The quality of the predictions of an AL method
on E was determined by the performance metric p(t) (in this case the F1 score)
for every iteration t. After some reference value tref of iterations were per-
formed (0 ≤ tref ≤ T), a sequence of performance metrics {p(t)}{t=0,...,tref} was
obtained. Similar to Jasmine tuning, we took the area A(tref) underneath the
(t, p(t)){t=0,...,tref}-learning curve as a measure of performance. Briefly said, the
higher A(tref), the better the method is up to the iteration step tref. However,
since there is stochasticity involved, we repeated each complete AL proced-
ure S times. During simulation s, L(0) and U(0) were randomly chosen (for
NSL-KDD-rand and UNSW-NB15 also E was randomly sampled) and all six
procedures were provided the same initial sets. Consequently, this led to the
vector (A(1)

s (tref), . . . , A(6)
s (tref)) of paired area metrics. Next, we statistically

compared the area metrics of the Jasmine α-dynamic method with the metrics
of the other methods. This was done by the Wilcoxon signed-rank test (with
significance threshold of 0.05) to determine whether

H
(m)
0 (tref) : median

s=1,...,S

{
A(1)
s (tref)

}
< median

s=1,...,S

{
A(m)
s (tref)

}
(6.10)

could be rejected for method m = 2, . . . , 6. When this was the case, then
α-dynamic querying performed significantly better than the other considered
query functions and AL techniques.

6.6 Results
In this section, the results of our research are presented. They were obtained
by performing the steps explained in Section 6.5 on the NSL-KDD, NSL-KDD-

151 151

6666

Chapter 6. Jasmine Chapter 6. Jasmine

rand and UNSW-NB15 data. First of all, the learning curve of F1 scores is
shown for each of the six AL methods that we considered. This curve gives
an insight in how well the classifier of a specific method performed on the
evaluation set throughout the AL process. Secondly, the p-values of the Wil-
coxon signed-rank test are presented for predetermined specific iteration steps.
Thirdly, the dynamics of the query fractions αa(·), αz(·), and αr(·) are shown
to illustrate how Jasmine adjusted the balance between querying anomalous,
uncertain, and random observations. Finally, we discuss the implications of
these results per dataset.

6.6.1 Results on NSL-KDD
Learning Curves

(a) L(0) = 125

(b) L(0) = 250

Figure 6.4: Learning curves on NSL-KDD-E for different initial sizes L(0)

Figure 6.4 shows the average learning curves for each of the six AL methods on
the fixed evaluation set NSL-KDD-E for initially labelled set sizes L(0) = 125
and L(0) = 250. Each simulation yielded a learning curve, hence we took the
average of the curves over all simulations. The blue dashed line (jas.fin) is the
average final performance on E of the GBM trained on the complete training

152 152

6666

Chapter 6. Jasmine 6.6. Results

set with all labels available. This performance metric was F1 ≈ 0.760 for Fig-
ure 6.4a and F1 ≈ 0.759 for Figure 6.4b. The value of the line is approximately
the same for both plots, because the evaluation set E is fixed and independent
of L(0). However, each GBM was tuned differently, leading to small differences.
Since all labels of the NSL-KDD dataset are technically available, we included
the final performance to show how quickly the Jasmine-based AL methods
reached this value. The purple dashed line (ala.fin) is the final performance on
E of the logistic regression classifier of the ALADIN procedure (F1 ≈ 0.720).
This final performance was constant during the simulations and for both set-
tings of L(0), since the classifier of ALADIN is deterministic. Finally, the
grey dashed line (coin_1) is the Dutch Draw baseline on E (F1 ≈ 0.725). This
baseline was obtained by classifying each evaluation observation as malicious
(see Chapter 5).

Statistical Tests

Table 6.4: p-values Wilcoxon test jas.main vs. . . . with L(0) = 125

tref L(tref) jas.basic jas.rand jas.anom jas.uncert ala.main
9 485 0.992 0.000172 1.00 0.0155 0.894
16 765 0.991 1.52 · 10−5 1.00 0.0249 0.381
22 1005 0.975 5.96 · 10−7 1.00 0.00983 0.0571
34 1485 0.855 5.00 · 10−7 0.971 0.000729 0.000128
47 2005 0.786 5.00 · 10−7 0.388 0.000932 4.99 · 10−7

122 5005 0.0131 2.99 · 10−6 1.28 · 10−7 0.131 1.30 · 10−8

247 10005 3.46 · 10−6 3.96 · 10−5 1.86 · 10−9 0.908 1.57 · 10−7

372 15005 7.10 · 10−7 0.000190 1.86 · 10−9 0.975 2.86 · 10−7

Table 6.5: p-values Wilcoxon test jas.main vs. . . . with L(0) = 250

tref L(tref) jas.basic jas.rand jas.anom jas.uncert ala.main
9 610 0.924 0.000128 0.994 0.0790 0.516
16 890 0.958 2.57 · 10−6 1.00 0.118 0.0502
22 1130 0.963 4.99 · 10−7 1.00 0.122 0.00530
34 1610 0.915 1.28 · 10−7 0.999 0.388 3.14 · 10−5

47 2130 0.897 1.02 · 10−7 0.967 0.556 1.38 · 10−6

122 5130 0.122 4.00 · 10−8 0.00233 0.997 9.31 · 10−9

247 10130 9.43 · 10−5 4.16 · 10−7 8.20 · 10−8 1.00 8.20 · 10−8

372 15130 1.89 · 10−6 1.90 · 10−6 2.79 · 10−9 1.00 1.62 · 10−6

To determine whether Jasmine performed significantly better than the other
five AL methods, we determined the p-value of the test in (6.10) for each
method m = 2, . . . , 6 and for different values of tref. Tables 6.4 and 6.5 show
the results for the experiments with L(0) = 125 and L(0) = 250, respectively.
A green value indicates that Jasmine (jas.main) performed significantly better
than the method in the corresponding column for the labelled set size L(tref).

153 153

6666

Chapter 6. Jasmine Chapter 6. Jasmine

A red value, however, means that Jasmine performed significantly worse (by
interchanging the sides of Equation (6.10)). A black value means that the
test was indecisive and could not conclude whether Jasmine was better or
worse.

α-dynamic Updating

(a) L(0) = 125 (b) L(0) = 250

Figure 6.5: Progress of query fractions for different initial sizes

Finally, Figure 6.5 presents the α-dynamic updating procedure of Jasmine for
L(0) = 125 and L(0) = 250. Similar to the figure with the learning curves, every
simulation resulted in an α-dynamic curve for each of the query fractions αa(·)
(a.anom), αz(·) (a.uncert), and αr(·) (a.rand). We took the average of the query
fractions to obtain the average α-dynamic curves. A shaded region indicates the
interval in which 80% of the observed fractions with matching colour resided,
and therefore, shows the spread of the values. Since S = 30 simulations were
performed, each region contains the 24 ‘middle’ fraction values.

Implication of Results on NSL-KDD

Our first observation in Figure 6.4 is that the average F1 score rapidly increased
in the first iterations for the Jasmine (jas.main), jas.anom, jas.uncert, and jas.basic
procedures. This means that by using the corresponding query approaches,
valuable unlabelled observations were queried to the oracle, because the GBMs
were able to make better predictions on the evaluation set NSL-KDD-E . This
increase is most notable for jas.anom and then especially for L(0) = 250. This
makes sense, because NSL-KDD-E contains new anomalous attack scenarios
that are not found in the training set. Remarkably, the performance of jas.anom
went higher than the final (average) F1 score. For several iteration steps, also
the other three methods obtained scores higher than the final performance for
both settings of L(0). This means that a carefully constructed smaller dataset
led to better predictions on the evaluation set than the complete training set
did.

Even though jas.anom performed better than the other methods at the start of
the iterations, its effectiveness decreased when more anomalous observations

154 154

6666

Chapter 6. Jasmine 6.6. Results

were added to the labelled set. The decrease of effectiveness is also visible in
Tables 6.4 and 6.5: for small values of tref querying only anomalies performed
better than Jasmine, but later Jasmine obtained significantly better results.
It could be that the labelled set became more and more abnormal when more
anomalous observations were added, resulting in impaired training of the GBM
classifier in later iterations after it had improved before.

Furthermore, it is clear that Jasmine performed better than only querying un-
certainties, as the p-values show. It appears that also querying anomalies is
important. However, when time progresses, its performance is not signific-
antly better any more and eventually becomes significantly worse. It should be
stressed, though, that the learning curves show that both jas.main and jas.uncert
have converged to the final score and only differ a little.

Only querying random observations, as done by jas.rand, performed significantly
worse than Jasmine for all reference iterations. This shows that specifically
choosing anomalous or uncertain observations works better than only querying
random observations.

Also interesting to note is that Jasmine was on par with or worse than jas.basic
at the start of the iteration procedure. However, when the size of L(·) grew,
Jasmine became significantly better, as the p-values in both Tables 6.4 and 6.5
show. This means that dynamically adjusting the query balance in a later
stadium has an advantage over querying anomalies and uncertainties in a fixed
50/50 fashion. Combining this with the progress of the query fractions in
Figure 6.5 and with the fact that jas.anom’s performance worsens over time,
shows that Jasmine found the right balance between querying uncertainties and
anomalies. Nonetheless, since anomalies appeared to be better at the start, it
is curious why Jasmine did not query more anomalies in that stage. Hence,
the information metrics as defined in (6.4) and (6.5) could have a preference
for uncertain over anomalous observations.

Lastly, Jasmine performed fairly quickly significantly better than ALADIN as
the p-values show. This is partly due to the simpler ML techniques in the
latter, as it took Jasmine less effort to obtain better results than ALADIN
than it took to perform better than jas.basic.

In general, there do not seem to be large differences between the experiments
with L(0) = 125 and with L(0) = 250. However, the α-dynamic curves in Fig-
ure 6.5 show that the average initial random query fraction αr(0) was noticeably
bigger for L(0) = 125 than for L(0) = 250, since the brown curve (a.rand) starts
higher in the former. This makes sense, because L(0) was randomly construc-
ted, and hence, it became less essential to query random instances when we
chose L(0) larger.

Considering the computation times, the procedures incorporating AD (jas.main,
jas.basic, and jas.anom) took significantly longer (on average 2.8 hours for L(0) =
125 and 3.3 hours for L(0) = 250) than those without the IF (jas.rand, jas.uncert,
and ala.main) did (respectively 1.5, 1.8, and 2.0 hours on average for L(0) = 125;

155 155

6666

Chapter 6. Jasmine Chapter 6. Jasmine

and 2.0, 2.3, and 2.1 hours for L(0) = 250). The longer computation times for
L(0) = 250 compared to L(0) = 125 is presumably because of the hyper-
parameters chosen for the GBM, e.g., more trees are constructed, thus train-
ing takes longer. This is supported by the negligible difference in times for
ALADIN, which does not incorporate a GBM. It is important to note that
jas.main also performs Jasmine tuning, and therefore, requires additional com-
putation time.

6.6.2 Results on NSL-KDD-rand
Learning Curves

(a) L(0) = 125

(b) L(0) = 250

Figure 6.6: Learning curves on NSL-KDD with random evaluation set for different
L(0)

Similar to the results presented in Section 6.6.1, Figure 6.6 presents the average
learning curves for each of the six AL methods and two constant reference
lines. In contrast to the results on the NSL-KDD dataset, the evaluation set
E was chosen anew for each simulation. More specifically, at the start of each
repetition the complete NSL-KDD-rand dataset was randomly partitioned in
L(0), U(0), and E . The blue dashed line (jas.fin) is the average final performance

156 156

6666

Chapter 6. Jasmine 6.6. Results

of the simulation-specific GBMs on their corresponding evaluation sets. This
metric was F1 ≈ 0.994 for Figure 6.6a and F1 ≈ 0.995 for Figure 6.6b. This
time, the average final performance of ALADIN represented by the purple
dashed line (ala.fin) was no longer necessarily constant, but F1 ≈ 0.918 for
initial set size L(0) = 125 and F1 ≈ 0.917 for L(0) = 250. Lastly, the expected
performance of the best dummy classifier is not visible in the figures, since it
was F1 ≈ 0.650 for L(0) = 125 and F1 ≈ 0.651 for L(0) = 250.

Statistical Tests

Table 6.6: p-values Wilcoxon test jas.main vs. . . . with L(0) = 125

tref L(tref) jas.basic jas.rand jas.anom jas.uncert ala.main
9 485 0.798 0.000365 0.0192 0.657 5.96 · 10−7

16 765 0.886 5.96 · 10−7 0.000333 0.657 1.86 · 10−9

22 1005 0.904 1.30 · 10−8 1.52 · 10−5 0.642 1.86 · 10−9

34 1485 0.894 9.31 · 10−10 8.20 · 10−8 0.672 9.31 · 10−10

47 2005 0.831 9.31 · 10−10 9.31 · 10−10 0.708 9.31 · 10−10

122 5005 0.492 9.31 · 10−10 9.31 · 10−10 0.836 9.31 · 10−10

247 10005 0.428 9.31 · 10−10 9.31 · 10−10 0.846 9.31 · 10−10

372 15005 0.365 9.31 · 10−10 9.31 · 10−10 0.841 9.31 · 10−10

Table 6.7: p-values Wilcoxon test jas.main vs. . . . with L(0) = 250

tref L(tref) jas.basic jas.rand jas.anom jas.uncert ala.main
9 610 0.970 4.16 · 10−7 0.313 0.930 2.79 · 10−9

16 890 0.985 1.28 · 10−7 0.0261 0.701 1.86 · 10−9

22 1130 0.975 1.77 · 10−8 8.59 · 10−4 0.548 9.31 · 10−10

34 1610 0.963 9.31 · 10−10 5.96 · 10−7 0.516 9.31 · 10−10

47 2130 0.945 9.31 · 10−10 9.31 · 10−10 0.564 9.31 · 10−10

122 5130 0.635 9.31 · 10−10 9.31 · 10−10 0.650 9.31 · 10−10

247 10130 0.444 9.31 · 10−10 9.31 · 10−10 0.687 9.31 · 10−10

372 15130 0.444 9.31 · 10−10 9.31 · 10−10 0.650 9.31 · 10−10

Tables 6.6 and 6.7 show the p-values of the Wilcoxon signed-rank test with null
hypothesis as given in (6.10) for different values of tref.

α-dynamic Updating

The dynamics of the α-updating procedure of Jasmine are shown in Figure 6.7
for L(0) = 125 and L(0) = 250. As described before, the curves represent
the average query fractions αa(·) (a.anom), αz(·) (a.uncert), and αr(·) (a.rand)
throughout the iteration process.

157 157

6666

Chapter 6. Jasmine Chapter 6. Jasmine

(a) L(0) = 125 (b) L(0) = 250

Figure 6.7: Progress of query fractions for different initial sizes

Implication of Results on NSL-KDD-rand

At first glance, the results on the randomly selected evaluation sets of NSL-
KDD-rand are much better for every considered AL method. This seems reas-
onable, because the fixed evaluation set for the NSL-KDD data contains unseen
cyber attacks on which the classifier could not train. In the case of NSL-KDD-
rand, the evaluation set was randomly chosen from the complete dataset, so
we expected it to have the same structure as the training set, making it easier
for the classifier to learn. This was specifically the case for the GBM, because
it rapidly obtained an almost perfect F1 score on the evaluation set.

The figures also show that the three learning curves for Jasmine, jas.basic and
jas.uncert increased similarly at the start of the procedure. This was not the
case for jas.anom, indicating that it was mostly important to query uncertain
observations. This was also reflected in the p-values, as shown by Tables 6.6
and 6.7. Jasmine quickly performed significantly better than jas.anom, but it
had more difficulty in obtaining significantly better results than jas.basic and
jas.uncert. The latter was even significantly better than Jasmine. However, it
should be noted that the F1 scores were already near perfect for these three
query approaches. Moreover, the dynamics of the query fractions in Figure 6.7
show that there was a clear preference for querying more uncertainties than
anomalous observations.

Furthermore, the learning curves show that Jasmine obtained better results
than jas.rand and ALADIN. Both Tables 6.6 and 6.7 indicate that Jasmine was
significantly better for all considered reference values.

6.6.3 Results on UNSW-NB15
Learning Curves

Figure 6.8 shows the average learning curves for every one of the six AL methods
and two constant reference lines. The evaluation set E was chosen anew for each
simulation, equivalent to what we discussed in Section 6.6.2. The blue dashed
line (jas.fin) is the average final performance of the simulation-specific GBMs

158 158

6666

Chapter 6. Jasmine 6.6. Results

(a) L(0) = 125

(b) L(0) = 250

Figure 6.8: Learning curves on UNSW-NB15 with random evaluation set for differ-
ent L(0)

on their corresponding evaluation sets. For Figure 6.8a, this metric was F1 ≈
0.974, while it was F1 ≈ 0.973 for Figure 6.8b. The average final performance of
ALADIN indicated by the purple dashed line (ala.fin) was F1 ≈ 0.939 for both
initial set sizes. Lastly, the figures do no show the expected performance of the
best dummy classifier, since it was F1 ≈ 0.225 for L(0) = 125 and F1 ≈ 0.222
for L(0) = 250. These remarkably lower baseline values are because relatively
far fewer positive observations are present in UNSW-NB15 compared to NSL-
KDD.

Statistical Tests

Tables 6.8 and 6.9 present the p-values of the Wilcoxon signed-rank test with
null hypothesis as given in (6.10) for different values of tref.

159 159

6666

Chapter 6. Jasmine Chapter 6. Jasmine

Table 6.8: p-values Wilcoxon test jas.main vs. . . . with L(0) = 125

tref L(tref) jas.basic jas.rand jas.anom jas.uncert ala.main
9 485 0.994 4.95 · 10−5 0.0213 0.994 0.0701
16 765 0.990 1.90 · 10−6 3.96 · 10−5 0.997 6.87 · 10−5

22 1005 0.985 9.96 · 10−7 4.00 · 10−6 0.992 3.46 · 10−6

34 1485 0.965 1.93 · 10−7 1.28 · 10−7 0.971 1.30 · 10−8

47 2005 0.918 4.00 · 10−8 6.52 · 10−9 0.897 9.31 · 10−9

122 5005 0.815 9.31 · 10−9 1.86 · 10−9 0.612 2.79 · 10−9

247 10005 0.271 5.12 · 10−8 1.86 · 10−9 0.191 1.86 · 10−9

372 15005 0.122 1.28 · 10−7 1.86 · 10−9 0.131 1.86 · 10−9

Table 6.9: p-values Wilcoxon test jas.main vs. . . . with L(0) = 250

tref L(tref) jas.basic jas.rand jas.anom jas.uncert ala.main
9 610 0.715 3.46 · 10−7 7.99 · 10−6 0.989 0.149
16 890 0.735 5.96 · 10−7 1.90 · 10−6 0.998 0.00128
22 1130 0.761 4.16 · 10−7 2.36 · 10−7 0.997 0.000230
34 1610 0.650 9.31 · 10−9 1.77 · 10−8 0.998 1.52 · 10−5

47 2130 0.350 2.79 · 10−9 9.31 · 10−10 0.990 2.57 · 10−6

122 5130 0.185 9.31 · 10−10 9.31 · 10−10 0.786 9.31 · 10−10

247 10130 0.0481 9.31 · 10−10 9.31 · 10−10 0.306 9.31 · 10−10

372 15130 0.0275 9.31 · 10−10 9.31 · 10−10 0.180 9.31 · 10−10

(a) L(0) = 125 (b) L(0) = 250

Figure 6.9: Progress of query fractions for different initial size L(0)

α-dynamic Updating

Figure 6.9 shows the α-dynamic updating procedure of Jasmine for L(0) = 125
and L(0) = 250. Equivalent to the results in Sections 6.6.1 and 6.6.2, the curves
indicate the average query fractions αa(·) (a.anom), αz(·) (a.uncert), and αr(·)
(a.rand) throughout the iteration process.

160 160

6666

Chapter 6. Jasmine 6.7. Discussion

Implication of Results on UNSW-NB15

There are no striking differences between the two plots in Figure 6.8. However,
it seems that the average learning curves for initial set size L(0) = 125 are
a bit more shaky. Since L(0) is the only different global parameter between
the two plots, the change in behaviour is presumably due to how the GBM
parameters and Jasmine-specific parameters were tuned. It probably also had
to do with the imbalance of this dataset. Approximately 12.6% of the data is
related to cyber attacks, so on average about 16 observations were malicious
in L(0). For tuning purposes, this initial set was split in training, validation,
and test sets, making it possible that only one malicious observation ended up
in any of those sets. Consequently, the tuned parameters possibly led to less
stable behaviour of the GBM and the α-dynamic update procedure. Hence,
balancing techniques of the training data such as under- or oversampling could
be considered to improve stability.

Furthermore, the learning curves in Figure 6.8 are similar to those for NSL-
KDD-rand. This is also true for the p-values presented in Tables 6.8 and 6.9,
and the dynamics of the average α-update curves shown in Figure 6.9.

(a) L(0) = 125 (b) L(0) = 250

Figure 6.10: Learning curves on unbalanced version of UNSW-NB15 for different
L(0)

Additionally, the precise effect of the attack imbalance was studied by randomly
downsampling the malicious observations in UNSW-NB15 from 12.6% to 1.0%.
Figure 6.10 shows the results of the experiments on this highly unbalanced
dataset. The learning curves (averaged over 20 runs) show that all procedures
struggled at the start of the labelling process: performance was much lower
than in Figure 6.8. However, jas.main, jas.basic, and jas.uncert improve very
quickly. Moreover, Jasmine is usually the best performing procedure, and for
the uncommon cases it is not, it appears to be second best.

6.7 Discussion
In this final section of the chapter, we firstly draw conclusions based on the
implications of the results discussed in Section 6.6. Secondly, we consider

161 161

6666

Chapter 6. Jasmine Chapter 6. Jasmine

further directions for AL in the field of NID.

6.7.1 Conclusion
The goal of this research was to propose our hybrid AL method Jasmine for
NID. It consists of α-dynamic querying, which means Jasmine is able to dynam-
ically adjust the balance between querying anomalous, uncertain, and random
observations. Consequently, only the potentially most interesting observations
are presented to the human expert. This sets our method apart from other AL
approaches that have a static query function.

On the datasets that we considered, Jasmine performed significantly better
than ALADIN, the benchmark AL method used in this research. This means
for practitioners that it is beneficial to choose Jasmine over ALADIN for their
AL problems. However, we should note that Jasmine needs preprocessing time,
which ALADIN and other static AL methods do not need. This is because of
GBM tuning and Jasmine tuning. Furthermore, we observed that Jasmine
performed more robustly with respect to the datasets. We compared the char-
acteristic α-dynamic query function of Jasmine with other query functions:
querying only anomalies, only uncertainties, only random observations, and
querying anomalous and uncertain observations in a fixed 50/50 fashion. We
noticed that Jasmine did not always outperform the other approaches, but
its performance was more stable over the different data settings, and hence,
more robust. On the NSL-KDD dataset, only querying anomalies performed
better when the labelling process had just started, but Jasmine took over in
the long run. On the NSL-KDD-rand and UNSW-NB15 data, only querying
uncertainties or querying in a 50/50 fashion reigned supreme, but Jasmine fol-
lowed closely. Only querying anomalies was clearly a bad strategy for these
two datasets. These findings suggest that Jasmine is better able to adapt to
the provided labelled dataset L(·). This is particularly interesting in the face
of concept drift: NIDSs operate in high non-stationary contexts, which makes
it wise to consider an AL method that is able to adjust its query approach
dynamically. Lastly, we saw that the performance of Jasmine is not hindered
by unbalanced data. Initially it does perform worse, but it quickly improves
when the labelling procedure starts and it becomes the best or one of the best
performing methods.

However, there is room for improvement in the way α-dynamic querying is
performed here. The results on NSL-KDD show that at first querying more
anomalous than uncertain observations was beneficial, but this was not reflected
in the way that the query fractions were updated. The updating procedure
seems to have a bias towards querying uncertainties.

6.7.2 Future Work
Our first suggestion for further research is to reconsider the α-dynamic query
process such that the bias towards selecting uncertain observations is elimin-

162 162

6666

Chapter 6. Jasmine 6.8. Appendix

ated.

Another suggestion is to add unlabelled observations about which the classifier
has a high prediction certainty to the labelled set without asking the oracle
for its label. Consequently, the labelled set increases much more during an
iteration, while the human expert does not have to label more observations.
This reduces labelling time drastically and possibly leads to better predictions
in an earlier stage of the AL process. We elaborate on this concept in Chapter 7.
Moreover, when more labels become available, the preprocessing steps can be
repeated (in a less extensive version) to allow for the GBM to better adjust to
the changing training set by retuning its hyperparameters. Also, some Jasmine-
specific parameters could be retuned during the process.

Our last suggestion is to consider human uncertainty in the AL method, since
it is not always clear whether a connection is benign or malicious. This can be
done by asking the oracle for their confidence in each label that they provide
or by incorporating a general probability.

These suggestions would increase the deployment efficiency of Jasmine even
more. Therefore, we would like to apply our method in a practical setting to
see how it performs.

6.8 Appendix
In this section, we provide the mathematical specifications about α-dynamic
querying. Before we can give the explicit definitions of the query fractions for
the next iteration, we have to derive some general restrictions on the values
of the fractions αr(t), αa(t), and αz(t) for all t ∈ {0, . . . , T}, where T denotes
the maximum number of iterations. First, a fundamental requirement of the
fractions is that

αr(t) + αa(t) + αz(t) = 1, (6.11)
and αr(t), αa(t), αz(t) ∈ [0, 1]. Furthermore, each iteration, we want to query
at least one anomaly and one uncertainty, otherwise (6.4) or (6.5) is undefined,
and consequently, ∆γ(t) is undefined. Thus, we need αa(t) and αz(t) to be at
least αmin

a,z := 1/Q. Then, the number of anomalies and uncertainties in Q(t)
is at least Q · αmin

a,z = 1. This means the upper bounds for αa(t) and αz(t)
are restricted to be at most 1 − αmin

a,z . The upper bound for αr(t) is at most
αmax
r := 1 − 2αmin

a,z , since we do allow to query no random observations, and
hence, allow αr(t) to go to 0. The definition of αr(t) is given in (6.9). Note
that αr(t) ∈ [αmin

r , αmax
r) ⊂ [0, 1] with αmin

r := αr(T). Now, we can define the
upper bound for αa(t) and αz(t) as

αmax
a,z (t) := 1− αr(t)− αmin

a,z .

Note that this upper bound depends on the iteration number t.

By using (i) αr(t), αa(t), αz(t) ∈ [0, 1], (ii) (6.11), and (iii) the definitions of
αmin
a,z , αmin

r , αmax
a,z (t), and αmax

r , we characterise the w variables introduced in

163 163

6666

Chapter 6. Jasmine Chapter 6. Jasmine

update rules (6.7) and (6.8) as follows:

w(1)
a (t) = αmax

a,z (t)− αa(t)
w(2)
a (t) = αa(t)− αmin

a,z

w(1)
z (t) = αmax

a,z (t)− αz(t)
w(2)
z (t) = αz(t)− αmin

a,z .

Let us explain the specifics of the update of the anomaly fraction αa(·). We
take the old value of αa(t) as a starting point for αa(t + 1). This fraction
can be increased by at most w(1)

a (t) = αmax
a,z (t) − αa(t) to obtain αmax

a,z (t) as
the new value. This increase w(1)

a (t) is scaled down by max{0,∆γ(t)} such
that the increment is proportional to the value of ∆γ(t). Similarly, αa(t) can
be decreased by at most w(2)

a (t) = αa(t) − αmin
a,z to obtain αmin

a,z . The decrease
w

(2)
a (t) is then scaled down by min{0,∆γ(t)}. Hence, the constants ensure that

αa(t+ 1) lies in the interval Ia,z(t) := [αmin
a,z , α

max
a,z (t)]. However, it should lie in

the interval Ia,z(t+ 1) := [αmin
a,z , α

max
a,z (t+ 1)]. This is why we apply the linear

transformation λt+1 : Ia,z(t)→ Ia,z(t+ 1). This function is given by

λt+1(α) =
αmax
a,z (t+ 1)− αmin

a,z

αmax
a,z (t)− αmin

a,z

(α− αmin
a,z) + αmin

a,z . (6.12)

Note that this function is not well-defined whenever αmax
a,z (t)− αmin

a,z = 0. This
happens when αr(t) = 1 − αmin

a,z = αmax
r . However, the definition of αr(t) in

Equation (6.9) shows that αr(t) is strictly smaller than αmax
r , and hence the

denominator in Equation (6.12) cannot be zero and λt+1 is well-defined.

Finally, for t ∈ {0, . . . , T − 1}, the systems of equations for the three query
fractions are given by{

αr(0) = αmax
r · 2−τ ·L(0)

αr(t+ 1) = αmax
r · 2−τ ·(L(0)+Q·(t+1)),

αa(0) = α
(0)
a

αa(t+ 1) = λt+1

(
αa(t) +(αmax

a,z (t)− αa(t)) max{0,∆γ(t)}

+(αa(t)− αmin
a,z) min{0,∆γ(t)}

)
,

and 
αz(0) = α

(0)
z

αz(t+ 1) = λt+1

(
αz(t) +(αmax

a,z (t)− αz(t)) max{0,−∆γ(t)}

+(αz(t)− αmin
a,z) min{0,−∆γ(t)}

)
.

164 164

7777

7
Plusmine: Dynamic Active Learning with
Semi-Supervised Learning for Automatic

Classification

A major problem in cyber security research is the correct labelling of up-to-date
datasets. It relies on the availability of human experts, and is as such very cum-
bersome. Motivated by this, two techniques have been proposed for efficient
labelling: Active Learning (AL) and Semi-Supervised Learning (SeSL). In this
chapter, we introduce Plusmine: a network intrusion detection method that
combines the benefits of AL and SeSL to efficiently automate classification.
We develop new techniques for both components. Firstly, the query approach
in the AL component is based on Jasmine, but we make an important improve-
ment to its dynamic updating. Secondly, the SeSL component considers the
consequences of virtually labelling candidate observations to determine which
of them will actually be automatically classified. Moreover, we empirically
show that Plusmine obtains good and more robust results than benchmark
methods.

165

7777

Chapter 7. Plusmine Chapter 7. Plusmine

Based on [46]:
Jan Klein, Sandjai Bhulai, Mark Hoogendoorn, and Rob van der Mei
Plusmine: Dynamic Active Learning with Semi-Supervised
Learning for Automatic Classification
2021 IEEE/WIC/ACM International Conference on Web Intelligence

166 166

7777

Chapter 7. Plusmine 7.1. Introduction

7.1 Introduction
Cyber crime has become one of the most influential forms of criminality. Cy-
bersecurity Ventures predicted the global damage to be $6 trillion USD in 2021
and estimated this to increase to $10.5 trillion in the year 2025 [75]. The
already rapid growth of cyber crime has been accelerated by the outbreak of
the COVID-19 pandemic in early 2020, since the dependency on online com-
munication became even larger. Fortunately, in academia, the interest in cyber
security research has also grown [77]. Most studies are focused on protect-
ing networks of computers by means of a Network Intrusion Detection System
(NIDS) [101]. Although there are several well-known problems of NIDSs, such
as either a high false positive rate or high false negative rate [107], Xin et al.
state that there are more significant issues [124]. Most notably, there is a lack of
realistic, up-to-date cyber data, which makes it challenging to replicate results
of newly developed techniques in actual computer network settings. This lack is
caused by two problems: (i) issues in security and privacy, and (ii) difficulties
in labelling network observations for training purposes, because connections
are diverse, dynamic, and with many [103].

To mitigate the second problem, the labelling procedure of a cyber expert could
be optimised such that they only need to classify the connections that are
expected to increase overall detection performance the most. After labelling
and adding these observations, the model can retrain itself on the increased
dataset and select the next batch of interesting connections. This description
characterises Active Learning (AL). Although AL is an efficient approach to
accelerate learning, it is still restricted by the labelling speed of the cyber
analyst, since the time it takes to correctly classify a network connection can
fluctuate drastically [39]. It is, therefore, beneficial if the method itself could
exploit the rich set of unlabelled data and could automatically classify specific
observations. This is where Semi-Supervised Learning (SeSL) comes into play.
Each iteration, a subset of observations is specifically selected for Automatic
Classification (AC) and is then added to the labelled set. For example, a
connection is automatically labelled when the confidence of the model in its
prediction exceeds some threshold [115]. SeSL techniques allow the network
intrusion detection (NID) method to quickly expand the labelled pool and
increase performance without directly questioning the cyber analyst.

In this chapter, we propose a novel NIDS called Plusmine that combines AL
and SeSL. Our Active Semi-Supervised Learning (ASeSL) method consists of
an improved state-of-the-art AL component and a new transductive SeSL ap-
proach that considers the expected consequences of labelling observations in
the next time step and uses this to determine which connections are the best
candidates for AC. This is in contrast to other ASeSL methods for NID [69,
71, 89, 115, 133]. Our AC strategy is both powerful and simple. The AL
component of Plusmine is an improved version of the Jasmine method that
was introduced in Chapter 6. Jasmine incorporates a dynamic query function
that allows the model to learn the best query approach during the labelling

167 167

7777

Chapter 7. Plusmine Chapter 7. Plusmine

process. This makes it an adaptable and robust method. However, we make
an important improvement to Jasmine to fix the bias it has towards querying
a certain type of observations. We apply Plusmine to two popular NID data-
sets that we use in four dataset configurations. We demonstrate that Plusmine
obtains good, more robust, and more reliable results compared to benchmark
methods.

The following parts of this chapter are structured as follows. Literature on AL
and ASeSL is reviewed in Section 7.2. In Section 7.3, we provide a summary
of the workings of Jasmine and introduce mathematical notation. Section 7.4
proposes the Plusmine methodology: improvements to Jasmine are discussed
and AC is introduced. The experiments that were performed to show the
benefits of Plusmine are explained in Section 7.5. The results are given and
discussed in Section 7.6. Finally, we draw conclusions in Section 7.7 and provide
directions for future research.

7.2 Related Work

7.2.1 Active Learning
Active Learning is a type of Machine Learning (ML) in which the learner can
interactively query an oracle to classify certain unlabelled observations. An
extensive explanation on all intricacies of the AL paradigm is provided in Sec-
tion 6.2.

Network Intrusion Detection

Section 6.2.2 gives an extensive literature review on the AL techniques that have
been proposed in cyber security research. However, as with all AL methods,
the only source of labels is the oracle, and hence, the model is limited by the
labelling effort. Therefore, our method Plusmine incorporates SeSL to perform
Automatic Classification without human intervention.

7.2.2 Active Semi-Supervised Learning
SeSL is in between supervised and unsupervised learning. It extends one of the
two types by using information from the other [138]. For example, Levatić et al.
[57] use tree-based learning that exploits both labelled and unlabelled data to
improve performance. In our research, we combine SeSL with AL.

Combining Paradigms

There are several ways to combine the AL and SeSL paradigms. On the one
hand, they can operate relatively independently. Tomanek and Hahn propose
an approach in which highly uncertain observations are queried to the oracle
while highly confident ones are labelled automatically [115]. The authors show
that their approach reduces the labelling efforts by 60% compared to only AL

168 168

7777

Chapter 7. Plusmine 7.3. Preliminaries

when the right confidence threshold is chosen. Leng et al. introduce an AL
method with a Support Vector Machine that queries uncertain instances to the
oracle, while it uses different SeSL techniques to automatically classify obser-
vations about which the model is confident [56]. They show that some ASeSL
methods perform better than using only AL, while others perform worse. This
demonstrates that the inclusion of SeSL can also have a negative effect. Hady
and Schwenker consider the same perspective for AL and SeSL. They remark
that both learning paradigms “tackle the same problem, but from different
directions” [40].

On the other hand, SeSL and AL can be intertwined more, e.g., SeSL can be
made part of the query strategy: its results directly determine which observa-
tions are presented to the oracle. Zhu et al. estimate the expected classification
error after an observation is queried. This leads to a better query strategy than
selecting the most uncertain instances [139]. Here, both learning paradigms are
again used to tackle the same problem, but now together from the same direc-
tion.

Network Intrusion Detection

Although promising results have been obtained for ASeSL techniques, they
have not been explored much in cyber security research. Both Mao et al. and
Zhang et al. introduce methods that combine AL with co-training [69, 133].
Co-training is used for binary classification when the features can be separated
in two uncorrelated sets or views that are both sufficient for learning, meaning
each view separately is enough for classification. Although both methods obtain
good results, Zhang et al. mention it is necessary that the sufficiency and
uncorrelatedness assumptions hold, which is not easy to achieve in practice.
Meng and Kwok confirm this: they state lots of human efforts are necessary to
obtain two uncorrelated, sufficient feature sets [71].

Because of the aforementioned limitations, our method Plusmine does not con-
sider a multi-view approach. In fact, it uses a novel SeSL strategy in which
the observations are automatically classified when they are expected to con-
tribute the most to the intrusion detector in the next time step. Although it
has similarities with the non-cyber research of Zhu et al. [139], they use the
consequences of potentially labelling observations for their query strategy and
not for AC, as we do. Besides this, the AL and SeSL paradigms are not inter-
twined in Plusmine. This makes it easier to analyse the contribution of each
component separately.

7.3 Preliminaries
Before we can delve into the details of our method Plusmine, it is necessary
to know the workings of Jasmine and the relevant mathematical notations.
Jasmine is used as the basis for the AL component of Plumsine. Therefore, we

169 169

7777

Chapter 7. Plusmine Chapter 7. Plusmine

refer the reader to Sections 6.3 and 6.4 for a detailed explanation. Here, we
provide a summarised version.

Following the general AL framework, Jasmine trains a classifier on the labelled
set L(t− 1) during iteration t ∈ {1, . . . , T}. If the classifier has hyperparamet-
ers, they are tuned beforehand on L(0). Also, Jasmine-specific parameters are
tuned on this. The trained classifier is applied to the unlabelled set U(t− 1) to
obtain the malicious probability of each observation u and its predicted class.
This also yields uncertainty scores zu(t), one of the two informativeness meas-
ures in Jasmine, for all u ∈ U(t−1). An informativeness measure is used to de-
termine which observations are queried. Simultaneously, an anomaly detector
is constructed for each class. These detectors yield the anomaly scores au(t),
the second informativeness measure, for all unlabelled observations. Now, the
Jasmine-specific query function constructs the query set Q(t) ⊂ U(t − 1) by
using the uncertainty and anomaly scores. This set is of fixed size Q ∈ N and
a mix of uncertain, anomalous, and randomly selected observations according
to the query type fractions αz(t), αa(t), and αr(t), respectively. Then, the
oracle provides the actual response values yq(t) ∈ {0, 1} of the query items
q ∈ Q(t). Note that the labels of these observations were unknown (thus had
value ‘∗’) in the previous time steps. The queried instances are added to the
labelled pool to obtain L(t) and removed from the unlabelled set to obtain
U(t). Next, the query type fractions are updated. To this end, the anom-
aly information metric δβa (t) (see Equation (6.4)) and uncertainty information
metric δβz (t) (see Equation (6.5)) are calculated. In short, they measure how
much information each query type adds on average. When δβa (t) > δβz (t), more
anomalies are queried next iteration, while more uncertainties are queried when
δβa (t) < δβz (t). This update procedure is called α-dynamic updating and is the
key component of Jasmine. Finally, the time step is increased and the proced-
ure is repeated.

7.4 Methodology
In this section, we propose Plusmine. Its AL component is based on Jasmine.
However, we make some crucial changes to its query approach to eliminate the
bias towards querying uncertain observations. After that, the SeSL component
of Plusmine that constitutes Automatic Classification is introduced.

7.4.1 Improvements over Jasmine
Construction of Query Set

First of all, the construction of the query setQ(t) (as explained in Section 6.4.5)
is adjusted. In Jasmine, it is enforced that the number of predicted benign and
malicious observations is equal within both the anomalous and uncertain query
types (if possible). In Plusmine, this restriction is relaxed such that only at
least one observation of each class is necessary (if possible). This is because we

170 170

7777

Chapter 7. Plusmine 7.4. Methodology

do not want to force a 50/50 split in Q(t) for imbalanced datasets.

α-dynamic Updating

Secondly, the unique update procedure of Jasmine called α-dynamic updat-
ing (see Section 6.4.6) is improved. In Plusmine, the information metrics are
changed to address the bias towards querying uncertain observations. They
become

δβa (t) :=
∑
q∈Qa(t) (z̃q(t) + ãq(t)) ·

(
1 + (β − 1)1{yq(t)=1}

)
2 (Qa(t) + (β − 1) · |{q ∈ Qa(t) : yq(t) = 1}|) , (7.1)

δβz (t) :=
∑
q∈Qz(t) (z̃q(t) + ãq(t)) ·

(
1 + (β − 1)1{yq(t)=1}

)
2 (Qz(t) + (β − 1) · |{q ∈ Qz(t) : yq(t) = 1}|) ,

with Qa(t) and Qz(t) the subsets of anomalous and uncertain observations
in Q(t) with sizes Qa(t) and Qz(t), respectively. Note that 1{·} represents the
indicator function. To explain the information metrics, consider Equation (7.1).
The term z̃q(t) + ãq(t) is the sum of the normalised uncertainty score z̃q(t) and
normalised anomaly score ãq(t), and indicates how informative observation
q ∈ Qa(t) is. The larger the scores, the more information the sum conveys. In
Jasmine, the anomaly score was not taken into account, only the uncertainty
score (see Equations (6.4) and (6.5)). Therefore, the bias towards querying
uncertainties is expected to be fixed in Plusmine. Also, the parameter β puts
more (β > 1) or less (0 < β < 1) emphasis on a malicious observation compared
to a benign one, i.e., a false negative weighs respectively more or less than a
false positive. Finally, the denominator ensures that δβa (t), δβz (t) ∈ [0, 1].

7.4.2 Semi-Supervised Learning
Besides labelling by a human oracle, Plusmine uses transductive SeSL to assign
labels to observations. To this end, our method constructs the set of candidate
observations A(t) := U(t − 1) \ Q(t) for Automatic Classification. The in-
stances in the query set Q(t) are clearly not appropriate, because they obtain
the real label by the oracle. Now, S ∈ N disjoint subsets of size B ∈ N are
drawn without replacement from A(t) to obtain B1(t), . . . ,BS(t). The obser-
vations in these subsets have their predicted classes (as is often done [126]).
Then, for all s ∈ {1, . . . , S}, a decision tree is trained on a random subset of
L(t− 1)∪Q(t)∪Bs(t). Note that L(t− 1) and Q(t) have their real labels, while
Bs(t) has predicted labels. Next, the classifier is validated on the remaining
set of observations, which yields the performance metric Vs(t). The set Bs̄(t)
with s̄ := arg maxs∈{1,...,S}{Vs(t)} is selected as the (relatively) optimal subset
to be automatically classified (assuming that a larger Vs(t) means better per-
formance). Lastly, both Q(t) and Bs̄(t) are added to L(t − 1) to obtain L(t)
and removed from U(t− 1) to obtain U(t). The complete Plusmine method is
illustrated in Figure 7.1.

171 171

7777

Chapter 7. Plusmine Chapter 7. Plusmine

Figure 7.1: Illustration of Plusmine methodology

AC-specific Parameters

In general, the larger the number of subsets S is, the higher the likelihood
is that a good candidate set for AC is found. However, a larger S means a
higher computation time too. The size of each subset B is also a parameter
that should be selected beforehand. We consider this a Plusmine-specific hy-
perparameter and is therefore tuned on L(0) in the same way the hyperpara-
meters for the AL component of Plusmine are tuned. This tuning is explained
in Section 7.5.2.

7.5 Experimental Setup
We conducted several experiments to demonstrate whether Plusmine performs
better than benchmark methods.

7.5.1 Data
Ferrag et al. present an overview of datasets that are commonly used in NID
research ranging from 1999 to 2018 [28]. From this overview, we selected the
popular NSL-KDD data and more recent UNSW-NB15 dataset for our invest-
igations.

172 172

7777

Chapter 7. Plusmine 7.5. Experimental Setup

NSL-KDD

The NSL-KDD dataset was published in 2009 and is partitioned into a fixed
training and evaluation set [112]. Both sets contain the same main attack
types, but differ in attack scenarios within the types. We refer to this data as
NSLKDDfix.

We were also interested in the workings of the considered methods when the
training and evaluation set have (approximately) the same underlying distri-
bution. Therefore, we combined the training and evaluation set of NSLKDDfix
into one set. For each experiment, this set was randomly split in a training
and evaluation set. We refer to this data as NSLKDDrand.

UNSW-NB15

The UNSW-NB15 data was designed in 2015 by Moustafa and Slay. This
dataset is much more recent than NSL-KDD and has more realistic aspects. In
fact, it was constructed to address some of the inherent problems of NSL-KDD
(for more information, see [78, 79]). We refer to this data as UNSWrand.

Moustafa and Slay also provide a fixed training and evaluation set that are
statistically similar (in contrast to the provided training and evaluation set of
NSL-KDD). We refer to this data as UNSWfix.

Preprocessing

Firstly, since the methods require numerical input, the categorical features in all
four data settings were removed. In NSL-KDD these are Protocol_type, Service,
Flag, and Difficulty_level. In UNSW-NB15 these variables are proto, state,
service, stcpb, and dtcpb. Additionally, the features srcip, sport, dstip, dsport,
Stime, and Ltime were removed, because they directly determine the output
label or have no predictive use. Secondly, the response value was made binary:
the benign class was made ‘0’ and the malicious class ‘1’. Thirdly, all four data
settings were standardised and Principal Component Analysis was performed
to obtain (linearly) uncorrelated features and to reduce dimensionality [87].
To explain 99% of the variance, 31 Principal Components are necessary for
NSLKDDfix and NSLKDDrand, 27 for UNSWrand, and 28 for UNSWfix.

7.5.2 Experiments
AL and ASeSL Methods

We considered four main AL and ASeSL techniques: (i) Plusmine (plu), (ii) a
technique (tom) based on the work of Tomanek and Hahn [115], (iii) Plusmine-
incomplete (pin), and (iv) the method from Chapter 6 Jasmine (jas). The
technique tom incorporates the query approach of uncertainty sampling and
automatically labels highly confident samples. These simple strategies make it

173 173

7777

Chapter 7. Plusmine Chapter 7. Plusmine

a good benchmark. Plusmine-incomplete is Plusmine without the SeSL com-
ponent (only AL). The difference in performance between plu and pin exactly
shows the influence of Automatic Classification. Lastly, the differences in res-
ults between pin and jas demonstrate whether the changes made over Jasmine
were indeed beneficial.

The intrusion detector is a supervised classifier and was one of two options
in each method: Decision Tree (DeT) or Gradient Boosting Machine (GBM).
Both learners are tree-based algorithms. DeT is the most basic one, since
it consists of only one tree, while GBM integrates multiple boosted decision
trees [30]. Hence, we incorporated a fast, but simple and weak predictor; or
a slower, but more complex and highly flexible one. Methods that are paired
with DeT obtain the suffix ‘.det’ and the ones paired with GBM the suffix
‘.gbm’, e.g., Plusmine with GBM is ‘plu.gbm’.

Moreover, the anomaly detector was chosen to be Naive Bayes Classifier (NBC).
This is a fast algorithm with no hyperparameters, making the results more
robust. The technique is considered in all method settings, except for jas.gbm,
since this is the original Jasmine procedure, which uses Isolation Forest (see
Section 6.4.1).

Global Parameters

The global parameters were chosen before the experiments took place. These
are the initial size of the labelled set L(0), the initial size of the unlabelled pool
U(0), the size of the evaluation set E, the query set size Q, the maximum num-
ber of query observations N that are presented to the oracle (labelling budget),
and specifically for Plusmine the number of subsets S that are available for AC
(see Section 7.4.2). How many query iterations T were performed is given by:
T := bmin{U(0), N}/Qc. Because of stochasticity, each experiment is repeated
R times with L(0) and U(0) randomly drawn each repetition. The evaluation
set E is also newly constructed for NSLKDDrand and UNSWrand. Hence, the
average behaviour of the methods can be examined and the range in which the
performance resides.

Firstly, we chose L(0) = 200, since a small starting size is usually the case in
AL. Secondly, E = 5,000 was selected for NSLKDDrand and UNSWrand, as we
deemed it large enough to be representative. The size was already provided
for NSLKDDfix and UNSWfix by their corresponding authors with E = 22,544
and E = 82,332, respectively. Thirdly, U(0) follows directly from L(0) and
E. Therefore, we had U(0) = 143,317 for NSLKDDrand, U(0) = 125,773 for
NSLKDDfix, U(0) = 2,534,847 for UNSWrand, and U(0) = 175,141 for UNSWfix.
Fourthly, we selected Q = 50, as we see adding 50 new observations sufficient
for retraining the classifier. Finally, for Plusmine, S = 50 was chosen as a
trade-off between computation time and a larger potential performance (see
Section 7.4.2 for details).

174 174

7777

Chapter 7. Plusmine 7.5. Experimental Setup

Hyperparameter Tuning Gradient Boosting Machine

Table 7.1: Hyperparameter GBM ranges (sr = ‘sample_rate’)

distribution histogram_type learn_rate_annealing
Bernoulli RoundRobin {0.95, 0.99, 0.999}

max_depth sr ntrees
{6, 12, 24} {0.60, 0.78, 1.0} {250, 500, 1,000}

nbins nbins_cats learn_rate
{10, 16, 25} {16, 32, 64} {0.02, 0.05, 0.125}
min_rows col_sr col_sr_change_per_level
{6, 8, 10} {0.84, 0.92, 1.0} {0.94, 1.0, 1.06}

col_sr_per_tree
{0.40, 0.64, 1.0}

GBM can be customised to a high degree, i.e., there are many hyperpara-
meters. In each experiment, good values for these parameters were found by
performing k-fold cross validation on L(0). The research of Tama and Rhee,
the insights of Chapter 6, and exploratory studies were used to decide which
hyperparameters were tuned and over which range [111]. Table 7.1 shows the
selected hyperparameters and corresponding ranges for the h2o.gbm function
of the H2O.ai package in the R programming language. The parameters that
are not shown in the table got their default settings. Because the total number
of combinations is enormous, random search was performed for 2 hours with
the F1 score as performance measure.

Hyperparameter Tuning AL and ASeSL

Table 7.2: Hyperparameter A(SeS)L ranges

α
(0)
a β, γ τ B{ 1

4 ,
1
2 ,

3
4
} { 1

2 , 1, 2
} { 1

450 ,
1

150 ,
1
50
}
{25, 50, 100, 200}

The methods Plusmine, Plusmine-incomplete and Jasmine have AL-specific
hyperparameters that had to be tuned. This tuning is part of the procedure.
One of the hyperparameters was already introduced in Section 7.4.1: β, the
weight factor in the information metrics. Additionally, we have α(0)

a , the initial
anomaly query fraction; γ > 0, the update magnitude in α-dynamic updating;
and τ > 0, which is related to the query fraction of random observations. More
information about these hyperparameters is provided in Section 6.4.8. The
SeSL component of Plusmine introduces the hyperparameter B, the size of a
candidate set for AC. Table 7.2 shows the ranges over which the hyperpara-
meters were tuned. Now, let H be the set of all hyperparameter combinations.
Thus, |H| = 81 for Plusmine-incomplete and Jasmine, and |H| = 324 for Plus-
mine.

175 175

7777

Chapter 7. Plusmine Chapter 7. Plusmine

During tuning, L(0) is randomly partitioned into the sets LH(0), UH(0), and
EH in a 30/50/20-split. As the notation suggests, LH(0) is the initially labelled
set for tuning with size LH(0), UH(0) is the initially unlabelled set with size
UH(0), and EH is the evaluation set. In Plusmine and Plusmine-incomplete,
the size of the query set QH during tuning is defined as QH :=

⌈
LH(0)
L(0) ·Q

⌉
.

Thus, the ratio of QH to Q is the same as that of LH(0) to L(0). The number
of query iterations in tuning is equal to tH :=

⌈
UH(0)
QH

⌉
− 1. The minus one is

because the last iteration is not performed, since it always contains the leftover
observations that are the least informative.

Next, let h ∈ H be some hyperparameter combination. Then, the chosen
classifier (DeT or GBM) is trained on LH(0) and applied to EH to obtain
the F1 score F (h)

1 (0). Then, the rest of the AL or ASeSL procedure is ex-
ecuted, as described in Sections 7.3 and 7.4. After this, the sequence of per-
formance scores (F (h)

1 (0), . . . , F (h)
1 (tH)) is obtained. Then, the area under the

(t, F (h)
1 (t)){t=0,...,tH}-‘curve’ is determined to obtain a single quality score. Such

a learning curve is commonly used in AL research to evaluate the overall per-
formance of a prediction model [100]. The larger the area under the learning
curve, the better combination h ∈ H is.

Because of stochasticity, the tuning rounds were repeated at least RH = 4
times. Each repetition, L(0) was split into the three sets LH(0), UH(0), and
EH , and the area under the learning curve was obtained. The combination that
yielded the largest area averaged over the repetitions provided the (relatively)
optimal values for α(0)

a , β, γ, τ , and (if applicable) B. In total, the DeT-based
methods got 16 hours for this, while the GBM-based procedures got 14 hours,
since they already used 2 hours for tuning the GBM classifier. If there was
time left (usually for the lighter DeT-based methods), then another repetition
was performed.

Assessment of AL and ASeSL Methods

For the final assessment of the eight methods, the performance on the separate
evaluation set E was used. In iteration t, the classifier was trained on L(t) and
the performance score F1(t) was obtained for each method. After some refer-
ence iteration tref (0 ≤ tref ≤ T), the area under the (t, F1(t)){t=0,...,tref}-curve
A(tref) was calculated. Since the experiments were conducted R times, this yiel-
ded R reference areas per method. We used these areas to determine with a
Mann-Whitney U test whether Plusmine performed significantly better.

7.6 Results
We discuss two categories of results: (i) average learning curves, and (ii) tables
of p-values. The first category provides a graphical insight in how the perform-
ance of the four main methods (plu, pin, tom, and jas) evolved on the evaluation

176 176

7777

Chapter 7. Plusmine 7.6. Results

set E . The second category describes the statistical significance of each method
for several reference iterations by performing a Mann-Whitney U (MWU) test
with significance level 0.05.

7.6.1 Results on NSL-KDD
NSLKDDrand

(a) DeT classifier

(b) GBM classifier

Figure 7.2: Learning curves on NSLKDDrand with random E

Figure 7.2 shows the average learning curves of F1 scores for the four main
methods with DeT (Figure 7.2a) or GBM (Figure 7.2b) classifier. Each simu-
lation yielded a learning curve and the figure shows the mean over all runs per
method. The horizontal axis is the size of the truly labelled set O(t), i.e., the
number of observations classified by the oracle. For both classifiers, there is
a large discrepancy between tom and the other three methods. Moreover, the
learning curves of plu, pin, and jas are very close to each other, especially for
GBM. For the latter, the three methods quickly reached their final score, which
is represented by the black dashed line (.fin). This is the average performance
of the classifier trained on the complete training set with all labels available. As
the initial performance was already good, there was not much to learn. It seems
that Plusmine performed best for both DeT and GBM at the start, which is the
most important part. It is also striking that Plusmine-incomplete performed
less well than Jasmine. Furthermore, the difference between DeT or GBM is

177 177

7777

Chapter 7. Plusmine Chapter 7. Plusmine

as expected: the F1 scores for DeT were generally lower than those for GBM.
The latter is a more complex technique and was therefore better able to learn
structures in the data. Lastly, the grey dashed line is the Dutch Draw baseline
whose framework was introduced in Chapter 5. This baseline is the maximum
expected score that a classifier that makes random predictions or that predicts
only one class can attain. The exact baseline for the F1 score is presented in
Table 5.4. Hence, the best non-learning strategy is to predict everything as
malicious. An ML method should at least outperform this baseline.

Table 7.3: p-values MWU test for NSLKDDrand

tref O(tref)
plu.d v.
pin.d

plu.d v.
tom.d

plu.d v.
jas.d

pin.d v.
jas.d

4 400 0.50 0.0054 0.75 0.78
10 700 0.52 3.0 · 10−12 0.32 0.66
25 1450 0.20 7.9 · 10−15 0.12 0.41
63 3350 0.00011 7.9 · 10−15 0.15 1.0
156 8000 1.2 · 10−10 7.9 · 10−15 0.20 1.0
399 20150 0.011 7.9 · 10−15 0.92 1.0

tref O(tref)
plu.g v.
pin.g

plu.g v.
tom.g

plu.g v.
jas.g

pin.g v.
jas.g

4 400 0.30 7.4 · 10−8 1.3 · 10−6 4.3 · 10−6

10 700 0.035 2.0 · 10−9 3.0 · 10−7 0.00013
25 1450 0.00052 3.6 · 10−11 1.5 · 10−7 0.046
63 3350 2.1 · 10−5 5.3 · 10−13 1.3 · 10−7 0.48
156 8000 1.5 · 10−5 7.2 · 10−12 3.7 · 10−5 0.92
399 20150 0.00010 4.6 · 10−11 0.039 1.0

Table 7.3 supports what we observed in Figure 7.2. Note that ‘.d’ represents
‘.det’ and ‘.g’ represents ‘.gbm’. A green value means that the first method in
the corresponding column name performed significantly better than the second
method, a red value means it was significantly worse, and a black value means
no decisive conclusion could be drawn. Clearly, Plusmine performed signific-
antly better than tom for all reference iterations. The bad performance of the
latter was possibly due to the immediate automatic labelling of on average 80%
of all unlabelled observations in the first few iterations. Especially for DeT,
there were many mistakes in these predictions, making it very difficult for the
method to recover from this. Also, plu.gbm was almost always significantly
better than pin.gbm and jas.gbm. However, we see in Figure 7.2b that the
differences in performance were small.

NSLKDDfix

Although NSLKDDfix is based on the same dataset as NSLKDDrand, the results
are vastly different, as Figure 7.3 shows. Firstly, most surprisingly is the differ-
ence between DeT (Figure 7.3a) and GBM (Figure 7.3b). The final performance

178 178

7777

Chapter 7. Plusmine 7.6. Results

(a) DeT classifier

(b) GBM classifier

Figure 7.3: Learning curves on NSLKDDfix− E

of DeT was higher than that of GBM, even though GBM is a more complex
technique. Also, plu.det performed better than plu.gbm after the first ten it-
erations. It even performed notably better than its final score. Secondly, this
time tom was a worthy competitor. Interestingly, still approximately 80% of
the observations were automatically labelled and the number of mistakes made
was of the same order. Apparently, it has to do with the difference in distribu-
tion of training and evaluation set: tom was now better able to generalise, even
though there were mistakes in the labelled set. Thirdly, pin was mostly better
than or on par with jas, except for a large dip in pin.gbm around O(t) = 9,000.
Lastly, pin.det, jas.det, pin.gbm, tom.gbm, and jas.gbm performed worse or much
worse than the Dutch Draw baseline at certain iterations. This is undesirable
behaviour, because it means a better performance could be attained without
learning and by predicting everything malicious, which the Dutch Draw classi-
fier does in this specific setting. This means the benefits of AL or ASeSL are
not clear here.

The p-values of the statistical tests in Table 7.4 suggest that Plusmine in general
performed on par or significantly better than the other methods. There is one
exception for tref = 4 and DeT.

179 179

7777

Chapter 7. Plusmine Chapter 7. Plusmine

Table 7.4: p-values MWU test for NSLKDDfix

tref O(tref)
plu.d v.
pin.d

plu.d v.
tom.d

plu.d v.
jas.d

pin.d v.
jas.d

4 400 0.12 0.98 0.11 0.37
10 700 0.16 0.89 0.0076 0.052
25 1450 0.0048 0.36 0.00048 0.16
63 3350 0.00052 0.050 2.5 · 10−5 0.12
156 8000 1.1 · 10−12 0.0042 4.0 · 10−12 0.48
399 20150 7.9 · 10−15 0.0068 7.9 · 10−15 0.74

tref O(tref)
plu.g v.
pin.g

plu.g v.
tom.g

plu.g v.
jas.g

pin.g v.
jas.g

4 400 0.071 0.031 4.4 · 10−7 5.7 · 10−7

10 700 0.14 0.0068 4.4 · 10−7 8.3 · 10−7

25 1450 0.24 0.0019 5.3 · 10−6 7.1 · 10−5

63 3350 0.088 0.0023 5.9 · 10−5 0.0051
156 8000 0.039 0.016 0.0011 0.088
399 20150 0.28 0.27 0.076 0.27

7.6.2 Results on UNSW-NB15
UNSWrand

Figure 7.4 shows the average learning curves for the UNSWrand setting. Re-
markably, the results for GBM (Figure 7.4b) are very similar to the results
on NSLKDDrand. Both datasets have in common that training and evaluation
set have approximately the same distribution. However, the results with DeT
(Figure 7.4a) are notably different for pin.det and jas.det. Both methods star-
ted comparably well to Plusmine, but after around 2,000 queried observations
jas.det began to worsen, and the same happened for pin.det after approximately
7,500 queries.

Table 7.5 confirms these observations as Plusmine was significantly better than
the other methods for almost all reference values. In contrast to the results on
NSL-KDD, it seems that pin is often better than jas, as indicated by the signi-
ficant p-values in the final column of the tables and the learning curves.

UNSWfix

The learning curves on the UNSWfix data are shown in Figure 7.5. Again, the
GBM classifier (Figure 7.5b) produced straightforward results: the learning
curves of plu.gbm, pin.gbm, and jas.gbm were close to each other, and their
initial performance was already close to the final score. This time, tom.gbm
was very stable, but a bit lower than the other three. The results with DeT
(Figure 7.5a) show more contrasting behaviours. plu.det and pin.det almost
did not change and performed better than their final score, but tom.det and
jas.det were much different. The first had a performance drop at the start,

180 180

7777

Chapter 7. Plusmine 7.6. Results

(a) DeT classifier

(b) GBM classifier

Figure 7.4: Learning curves on UNSWrand with random E

Table 7.5: p-values MWU test for UNSWrand

tref O(tref)
plu.d v.
pin.d

plu.d v.
tom.d

plu.d v.
jas.d

pin.d v.
jas.d

4 400 0.0040 0.022 0.0012 0.14
10 700 0.0033 6.4 · 10−8 1.4 · 10−5 0.030
25 1450 0.15 3.5 · 10−10 0.0057 0.040
63 3350 0.12 3.0 · 10−12 0.00032 0.0033
156 8000 0.011 3.6 · 10−13 9.6 · 10−12 7.4 · 10−8

399 20150 1.2 · 10−5 3.2 · 10−14 7.9 · 10−15 9.4 · 10−7

tref O(tref)
plu.g v.
pin.g

plu.g v.
tom.g

plu.g v.
jas.g

pin.g v.
jas.g

4 400 0.0020 1.2 · 10−5 4.9 · 10−9 0.00013
10 700 0.0024 1.1 · 10−8 2.6 · 10−8 0.00032
25 1450 0.0031 1.5 · 10−7 8.3 · 10−7 0.0064
63 3350 0.0038 2.0 · 10−7 0.00056 0.24
156 8000 0.0027 8.3 · 10−7 0.032 0.90
399 20150 0.0019 1.1 · 10−6 0.19 0.97

and then tried to recover. As before, most of the unlabelled observations were
immediately automatically labelled. jas.det had a fast performance decrease

181 181

7777

Chapter 7. Plusmine Chapter 7. Plusmine

(a) DeT classifier

(b) GBM classifier

Figure 7.5: Learning curves on UNSWfix− E

and later on tried to rebound. These results clearly show the benefit of pin
over jas.

Table 7.6: p-values MWU test for UNSWfix

tref O(tref)
plu.d v.
pin.d

plu.d v.
tom.d

plu.d v.
jas.d

pin.d v.
jas.d

4 400 0.0057 3.0 · 10−7 4.4 · 10−7 0.00087
10 700 0.035 2.4 · 10−13 1.2 · 10−10 4.1 · 10−8

25 1450 0.019 1.6 · 10−14 7.9 · 10−15 5.5 · 10−14

63 3350 7.7 · 10−5 3.2 · 10−14 7.9 · 10−15 7.9 · 10−15

156 8000 1.1 · 10−5 5.5 · 10−14 7.9 · 10−15 7.9 · 10−15

399 20150 0.00060 5.5 · 10−14 7.9 · 10−15 7.9 · 10−15

tref O(tref)
plu.g v.
pin.g

plu.g v.
tom.g

plu.g v.
jas.g

pin.g v.
jas.g

4 400 0.25 0.0012 0.066 0.17
10 700 0.82 0.00022 0.55 0.34
25 1450 0.99 2.1 · 10−5 0.98 0.81
63 3350 1.0 7.4 · 10−6 1.0 0.98
156 8000 1.0 3.8 · 10−6 1.0 1.0
399 20150 1.0 5.3 · 10−6 1.0 0.99

182 182

7777

Chapter 7. Plusmine 7.7. Discussion

Finally, the p-values in Table 7.6 support what the corresponding learning
curves with DeT suggest: Plusmine was significantly better than the other
methods for all reference values, and Plusmine-incomplete always performed
better than jas.det. This is in contrast to the p-values for GBM: they seem to
not be in favour of Plusmine at all. pin.gbm and jas.gbm firstly performed on
par with plu.gbm, but were later on significantly better. Also, the final column
demonstrates that Jasmine outperforms pin.gbm. However, Figure 7.5b shows
how close the performance scores actually were to each other.

7.7 Discussion
In this chapter, we introduced Plusmine, an NIDS that combines new tech-
niques for both AL and SeSL. Its AL component is an improved version of our
Jasmine method introduced in Chapter 6. The results on the UNSW-NB15
data support the improvement in most cases; and when this was not the case,
the difference between the learning curves was small. However, this was not
the case for the NSL-KDD data. Yet, in general, our query approach in Plus-
mine performed more reliably than Jasmine, i.e., drops in performance were
less severe.

Secondly, the SeSL component of Plusmine had a convincingly positive effect on
performance for all dataset configurations. It performed at least on par with
the other methods, but often it was significantly better. The rare occasion
when this was not the case, the difference between the learning curves was
small. Hence, the addition of AC is beneficial. Moreover, our proposed form of
AC performed mostly significantly better than the benchmark ASeSL method
tom that automatically labels confident observations, as is common practice for
SeSL [115].

Although Plusmine obtains good, more robust and reliable results, there is
room for improvement. Firstly, its query function does not consistently out-
perform the benchmark approaches. Hence, we suggest for future research to
analyse what can be improved further in the dynamic query approach, also
from a mathematical standpoint. Secondly, since the initial performance of the
classifiers was close to the final score, there was not much room for learning.
This makes comparing the methods sometimes challenging. Lastly, and this
holds for most cyber security research, it is not clear how Plusmine behaves on
actual computer network data. Therefore, we would like to apply it in such a
setting.

183 183

7777

Chapter 7. Plusmine Chapter 7. Plusmine

184 184

88888

8
Conclusion

In this chapter, we look back on the research in this dissertation and look
ahead to the future. We recap the topics that we discussed and give answers
to the research questions (RQs) that were posed in Chapter 1. Based on the
answers, we give an overall conclusion, reflect, and provide directions for further
research.

We explored three research topics that all contribute to molding the symbiosis
between human and machine:

• Anomaly Detection (AD)

• Model Evaluation (ME)

• Active Learning (AL).

8.1 Anomaly Detection
In Part I, we considered two case studies of AD with raw datasets that were
labelled to different degrees.

RQ 1a: How can we make the raw data of two real case studies
usable for Anomaly Detection?

In Chapter 2, we obtained a partially labelled data of a realistic international
cyber defence case study. First, we cleaned up the data by discarding non-
informative features and a small fraction of observations that had missing val-
ues. Then, we engineered and extracted new variables using the raw data and

185

88888

Chapter 8. Conclusion Chapter 8. Conclusion

domain knowledge. These procedures showed to be essential in creating a us-
able dataset for AD: four out of the five most influential features for detection
were engineered by us.

The case study in Chapter 3 consisted of aeroplane booking data from online
travel agencies. The multiple datasets were combined into one usable set by us-
ing domain knowledge and feature engineering. The new features demonstrated
to be crucial for detection: novel fraudulent bookings were discovered because
of them. Moreover, we demonstrated the effects on fraud detection when the
data was either normalised or standardised. It seemed that these transforma-
tions were not generally beneficial as some AD techniques performed less well.
This means one should carefully consider whether or not to normalise or stand-
ardise data given the chosen detection method.

RQ 1b: What are the strengths and weaknesses of the Supervised
Learning and Unsupervised Learning techniques used in these case
studies?

In Chapter 2, we used the Autoencoder method for Unsupervised Learning
(UL) and the Gradient Boosting Machine (GBM) for Supervised Learning (SL).
The Autoencoder does not work with labels, but we used the known malicious
observations to tune the hyperparameters and to evaluate the results. For
the GBM, we assumed the unlabelled observations to be benign during train-
ing and tuning. In Chapter 3, we exclusively used UL methods. We found
substantial differences between UL and SL in the two case studies. The unsu-
pervised Machine Learning (ML) techniques were good at detecting unknown
malicious instances, as the Autoencoder found many new cyber attacks and the
UL methods applied to online booking data discovered novel fraudulent book-
ings. Additionally, the human experts ensured that they would not have found
these malicious instances by themselves, which really shows the importance of
using ML in these domains. However, the unsupervised techniques performed
less well in retrieving known malicious data: the Autoencoder did not assign
the highest anomaly scores to the known intrusions. This is in contrast to SL,
as the GBM achieved a high detection rate of known cyber attacks. These
outcomes clearly demonstrate the strengths and weaknesses of SL and UL un-
der these assumptions, and suggest that combining the two paradigms could
improve performance, such as in Semi-Supervised Learning (SeSL).

RQ 1c: What are the benefits of using a human domain expert to
inspect the anomalous instances that the Machine Learning technique
discovered?

Human domain experts were involved in both case studies. In Chapter 2, the
cyber analyst investigated two sets of observations: one with highly anomal-
ous connections, and one with normal observations. Taking samples from sets
with different characteristics allowed us to fairly assess the detection perform-
ances of the AD techniques. We found that much more new cyber attacks were

186 186

88888

Chapter 8. Conclusion 8.2. Model Evaluation

discovered in the anomalous set compared to the normal set. In Chapter 3,
a similar procedure was performed. Per AD technique, three sets were con-
structed: one with highly anomalous bookings, one with normal instances, and
one set with anomaly scores in between. Again, new fraudulent instances were
mostly found in the set with highly anomalous bookings. Hence, by letting do-
main experts label specifically selected samples, malicious data could be found
more effectively and labelling was done more efficiently. The inclusion of a hu-
man expert in these studies can therefore be seen as a stepping stone towards
AL.

8.2 Model Evaluation
In Part II, we took a fundamental approach to ME: we constructed a new
evaluation metric and created universal baselines.

RQ 2a: Is it possible to construct an accurate and robust equivalent
to the common F1 score for partially labelled data?

We showed in Chapter 4 that it is possible to create an accurate and robust
equivalent to the F1 score for partially labelled data. We explored the field of
Positive-Unlabelled Learning in which the labelled instances are only positive.
We made the realistic assumption that the labelled observations were selected
completely at random, i.e., each actual positive instance had the same probab-
ility ρ of being labelled. This allowed us to construct F1, our approximation
of the real F1 score. First, we mathematically analysed how sensitive F1 is
towards mistakes in the estimation of ρ. Second, we experimentally demon-
strated that F1 is better than the well-known LL score (see [55]) in two ways:
(i) F1 is significantly closer to the true F1 score, and (ii) F1 more often selects
the real optimal model out of a set of models (with the optimal model achieving
the highest real F1 score).

RQ 2b: Is there a general, simple, but informative way to benchmark
any evaluation metric for binary classification? In other words, can
a metric-specific baseline be constructed that any newly developed
Machine Learning method should clearly outperform?

In Chapter 5, we examined whether we could construct a framework that is
able to generate a general, simple, and informative baseline for binary model
performance. We developed the Dutch Draw methodology, which assumes that
the four base measures (TP, FN, TN, and FP) have specific hypergeometric
distributions. These distributions do not use information from the feature
values in the dataset. By making use of probability theory, we derived baselines
for many evaluation metrics. Such a Dutch Draw baseline is general, because
it can be applied to any binary prediction problem. The baseline is simple,
because it is derived from elementary (stochastic) rules, and is therefore easy
to calculate, and it should be outperformed by any ML model. Also, our

187 187

88888

Chapter 8. Conclusion Chapter 8. Conclusion

baseline is informative, because it is by definition derived from the optimal
distribution. These three properties ensure that the Dutch Draw baseline is a
valuable addition to the evaluation of any ML model.

8.3 Active Learning
In Part III, we dove into the field of AL and developed methodologies that
make human labelling of data more efficient.

RQ 3a: What are the effects on the prediction performance and
the labelling process when the query function can dynamically adjust
itself to best fit the current situation?

The focus of Chapter 6 was on the development of a dynamic AL methodo-
logy for network intrusion detection. Most query functions are static: their
selection rule is determined at the start of the labelling process and does not
change when more labels become available. We moved away from this concept
and proposed our Jasmine method with dynamic updating. Each labelling
iteration, the query set is composed of anomalous, uncertain, and randomly
selected observations. The crucial part is that the current state of Jasmine
directly determines the number of instances of each type that will be chosen.
If the method notices that, for example, uncertain observations increase pre-
diction performance more than anomalous instances, then it updates the query
fractions such that more uncertain observations are queried next iteration. We
saw that Jasmine was indeed better able to adapt to the labelled dataset than
methods without dynamic updating, since it achieved good and robust res-
ults over multiple datasets while the benchmark methods had fluctuating out-
comes.

RQ 3b: What are the effects on the prediction performance when
Semi-Supervised Learning is used besides Active Learning to auto-
matically label observations?

AL can greatly increase labelling efficiency. However, it is limited by the la-
belling speed of the oracle. Therefore, in Chapter 7, we examined the inclusion
of SeSL as an additional labelling source. We proposed Plusmine, our Active
SeSL (ASeSL) method that consists of new techniques for both its AL and
SeSL components. The latter component constitutes Automatic Classification
(AC). Each labelling iteration, Plusmine takes multiple random subsets from
the unlabelled data and virtually adds each subset with their predicted labels
to the current labelled pool. A classifier is trained on each expanded labelled
set and its prediction performance is assessed. The subset that constitutes the
best result is then officially automatically labelled and removed from the un-
labelled pool. We showed that this new source of labelling had a favourable
effect on prediction performance compared to the benchmark ASeSL method
and to AL approaches without AC.

188 188

88888

Chapter 8. Conclusion 8.4. Concluding Remarks and Outlook

8.4 Concluding Remarks and Outlook
In this dissertation, we showed how to mold the symbiosis between human and
machine in multiple ways. First, we demonstrated the benefits of including
a human expert in AD as new malicious instances were found by combining
ML and domain knowledge. Second, we improved human understanding of
model prediction performance by constructing a new evaluation metric and by
designing a framework to benchmark performance scores. Third, we have taken
important steps in AL, the field in which human and machine collaborate to
increase labelling efficiency. Now, we address a number of challenging topics
for further research.

Anomaly Detection

First of all, we considered only two specific case studies for AD. The transform-
ation of raw data into usable datasets was based on specific domain knowledge.
We do see this as a strength of our research, because the newly constructed
features deemed to be important in detection. However, it is difficult to gen-
eralise the procedure of feature engineering. Second, we could have extended
the evaluation procedure. As an example, the samples that were selected for
the human expert in Chapter 2 were based on the results of the Autoencoder.
A next step is to apply the same procedure for the GBM. Lastly, since we had
partially labelled data in the first case study, an interesting question is what
the detection performance of SeSL methods is.

Model Evaluation

Our estimator F1 is unbiased when the probability ρ of a positive instance being
labelled is fixed, but it is expected to overestimate the real F1 score when ρ
is noisy. The estimation can exceed 1, even though F1 ≤ 1. The likelihood of
this overestimation occurring should be analysed. More generally speaking, our
research opens the door to constructing more equivalents to evaluation metrics
for partially labelled data.

For the Dutch Draw, it is clear that an ML model should outperform our
baseline, but we cannot quantify how much better the model is if it outper-
forms the baseline. Explicitly deriving how much information was learned
compared to the baseline is highly valuable. Also, the Dutch Draw framework
should be extended such that it can benchmark ML methods for multi-class
and continuous prediction problems too.

Active Learning

The α-dynamic updating approach in Jasmine and Plusmine has shown that the
relevance of querying certain types of observations can change during the AL
process. More research should be executed on this concept, since we proposed
one dynamic framework, but there are many more possibilities. Reinforcement

189 189

88888

Chapter 8. Conclusion Chapter 8. Conclusion

Learning (RL) could be incorporated in AL as by definition RL makes de-
cisions in a dynamic environment in order to achieve a certain goal. Another
opportunity is to consider human uncertainty in labelling. It is assumed that
the oracle is omniscient, and thus, makes no mistakes, which is possibly not
realistic. Incorporating uncertainty in querying greatly expands the field of AL
and its applicability in practice.

190 190

P

Publications

[45] J. G. Klein, S. Bhulai, M. Hoogendoorn and R. D. van der Mei. ‘Jasmine:
a New Active Learning Approach to Combat Cybercrime’. In: Machine
Learning with Applications (accepted under minor revision) (2022).

[46] J. G. Klein, S. Bhulai, M. Hoogendoorn and R. D. van der Mei. ‘Plus-
mine: Dynamic Active Learning with Semi-Supervised Learning for Auto-
matic Classification’. In: Proceedings of IEEE/WIC/ACM International
Conference on Web Intelligence. IEEE. 2021.

[47] J. G. Klein, S. Bhulai, M. Hoogendoorn, R. D. van der Mei and R. Hin-
felaar. ‘Detecting Network Intrusion Beyond 1999: Applying Machine
Learning Techniques to a Partially Labeled Cybersecurity Dataset’. In:
Proceedings of IEEE/WIC/ACM International Conference on Web In-
telligence. IEEE. 2018, pages 784–787.

[72] C. Mensah, J. G. Klein, S. Bhulai, M. Hoogendoorn and R. D. van der
Mei. ‘Detecting Fraudulent Bookings of Online Travel Agencies with
Unsupervised Machine Learning’. In: Proceedings of International Con-
ference on Industrial, Engineering and Other Applications of Applied
Intelligent Systems. Springer. 2019, pages 334–346.

[109] S. A. Tabatabaei, J. G. Klein and M. Hoogendoorn. ‘Estimating the F1
Score for Learning from Positive and Unlabeled Examples’. In: Proceed-
ings of International Conference on Machine Learning, Optimization,
and Data Science. Springer. 2020, pages 150–161.

[118] E. P. van de Bijl, J. G. Klein, J. Pries, S. Bhulai, M. Hoogendoorn and
R. D. van der Mei. ‘The Dutch Draw: Constructing a Universal Baseline
for Binary Prediction Models’. In: (Submitted for publication in 2022).

191

P

Publications PUBLICATIONS

192 192

B

Bibliography

[2] M. Ahmed, A. N. Mahmood and J. Hu. ‘A Survey of Network Anomaly
Detection Techniques’. In: Journal of Network and Computer Applica-
tions 60 (2016), pages 19–31.

[3] M. Almgren and E. Jonsson. ‘Using Active Learning in Intrusion De-
tection’. In: Proceedings of 17th IEEE Computer Security Foundations
Workshop. IEEE. 2004, pages 88–98.

[4] R. d. A. Araújo, A. L. Oliveira and S. Meira. ‘A Morphological Neural
Network for Binary Classification Problems’. In: Engineering Applica-
tions of Artificial Intelligence 65 (2017), pages 12–28.

[5] J. Balayla. ‘Prevalence Threshold (φ e) and the Geometry of Screening
Curves’. In: PLoS One 15.10 (2020), e0240215.

[6] J. Bekker and J. Davis. ‘Learning from Positive and Unlabeled Data: A
Survey’. In: Machine Learning 109.4 (2020), pages 719–760.

[7] C. M. Bishop. ‘Pattern Recognition and Machine Learning’. In:Machine
Learning 128.9 (2006).

[8] R. J. Bolton and D. J. Hand. ‘Unsupervised Profiling Methods for Fraud
Detection’. In: Credit Scoring and Credit Control VII (2001), pages 235–
255.

[9] S. Budd, E. C. Robinson and B. Kainz. ‘A Survey on Active Learning
and Human-in-the-Loop Deep Learning for Medical Image Analysis’. In:
Medical Image Analysis (2021), page 102062.

[10] L. M. Candanedo and V. Feldheim. ‘Accurate Occupancy Detection of
an Office Room from Light, Temperature, Humidity and CO2 Measure-
ments using Statistical Learning Models’. In: Energy and Buildings 112
(2016), pages 28–39.

193

B

Bibliography BIBLIOGRAPHY

[11] R. Caruana, N. Karampatziakis and A. Yessenalina. ‘An Empirical Eval-
uation of Supervised Learning in High Dimensions’. In: Proceedings of
the 25th International Conference on Machine Learning. 2008, pages 96–
103.

[13] R. Chalapathy and S. Chawla. ‘Deep Learning for Anomaly Detection:
A Survey’. In: arXiv:1901.03407 (2019).

[14] V. Chandola, A. Banerjee and V. Kumar. ‘Anomaly Detection: A Sur-
vey’. In: ACM Computing Surveys (CSUR) 41.3 (2009), pages 1–58.

[15] O. Chapelle, B. Schölkopf and A. Zien. ‘Semi-Supervised Learning’. In:
IEEE Transactions on Neural Networks 20.3 (2009), pages 542–542.

[16] N. Chinchor. ‘MUC-4 Evaluation Metrics’. In: Proceedings of the 4th
Conference on Message Understanding. Association for Computational
Linguistics, 1992, pages 22–29.

[17] N. Chinchor and B. M. Sundheim. ‘MUC-5 Evaluation Metrics’. In:
Proceedings of the 5th Conference on Message Understanding. 1993,
pages 69–78.

[18] M. Claesen and B. De Moor. ‘Hyperparameter Search in Machine Learn-
ing’. In: arXiv:1502.02127 (2015).

[20] R. Couronné, P. Probst and A.-L. Boulesteix. ‘Random Forest Versus
Logistic Regression: a Large-scale Benchmark Experiment’. In: BMC
Bioinformatics 19.1 (2018), pages 1–14.

[21] A. P. Dempster, N. M. Laird and D. B. Rubin. ‘Maximum Likelihood
from Incomplete Data via the EM Algorithm’. In: Journal of the Royal
Statistical Society: Series B (Methodological) 39.1 (1977), pages 1–22.

[22] F. Denis, R. Gilleron and M. Tommasi. ‘Text Classification from Pos-
itive and Unlabeled Examples’. In: Proceedings of the 9th International
Conference on Information Processing and Management of Uncertainty
in Knowledge-Based Systems. 2002, pages 1927–1934.

[23] L Dhanabal and S. Shantharajah. ‘A Study on NSL-KDD Dataset for
Intrusion Detection System Based on Classification Algorithms’. In: In-
ternational Journal of Advanced Research in Computer and Communic-
ation Engineering 4.6 (2015), pages 446–452.

[25] M. Elahi, F. Ricci and N. Rubens. ‘A Survey of Active Learning in
Collaborative Filtering Recommender Systems’. In: Computer Science
Review 20 (2016), pages 29–50.

[26] C. Elkan and K. Noto. ‘Learning Classifiers from Only Positive and
Unlabeled Data’. In: Proceedings of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM.
2008, pages 213–220.

[27] Z. Ferdousi and A. Maeda. ‘Unsupervised Outlier Detection in Time
Series Data’. In: Proceedings of the 22nd International Conference on
Data Engineering Workshops. IEEE. 2006, pages 51–56.

194 194

B

BIBLIOGRAPHY Molding Symbiosis Human Machine

[28] M. A. Ferrag, L. Maglaras, S. Moschoyiannis and H. Janicke. ‘Deep
Learning for Cyber Security Intrusion Detection: Approaches, Datasets,
and Comparative Study’. In: Journal of Information Security and Ap-
plications 50 (2020), page 102419.

[29] E. B. Fowlkes and C. L. Mallows. ‘A Method for Comparing Two Hier-
archical Clusterings’. In: Journal of the American Statistical Association
78.383 (1983), pages 553–569.

[30] J. H. Friedman. ‘Greedy Function Approximation: a Gradient Boosting
Machine’. In: Annals of Statistics 9.5 (2001), pages 1189–1232.

[31] A. Gadde, E. E. Gad, S. Avestimehr and A. Ortega. ‘Active Learning
for Community Detection in Stochastic Block Models’. In: Proceedings
of the IEEE International Symposium on Information Theory. IEEE.
2016, pages 1889–1893.

[33] P. Gogoi, B. Borah and D. K. Bhattacharyya. ‘Anomaly Detection Ana-
lysis of Intrusion Data Using Supervised & Unsupervised Approach’. In:
Journal of Convergence Information Technology 5.1 (2010), pages 95–
110.

[34] M. Goldstein and S. Uchida. ‘A Comparative Evaluation of Unsuper-
vised Anomaly Detection Algorithms for Multivariate Data’. In: PloS
One 11.4 (2016), e0152173.

[35] P. Gonçalves, M. Araújo, F. Benevenuto and M. Cha. ‘Comparing and
Combining Sentiment Analysis Methods’. In: Proceedings of the 1st ACM
Conference on Online Social Networks. 2013, pages 27–38.

[36] N. Görnitz, M. Kloft, K. Rieck and U. Brefeld. ‘Active Learning for
Network Intrusion Detection’. In: Proceedings of the 2nd ACM Workshop
on Security and Artificial Intelligence. 2009, pages 47–54.

[37] N. Görnitz, M. Kloft, K. Rieck and U. Brefeld. ‘Toward Supervised
Anomaly Detection’. In: Journal of Artificial Intelligence Research 46
(2013), pages 235–262.

[38] Y. Gu and D. Zydek. ‘Active Learning for Intrusion Detection’. In: Pro-
ceedings of the National Wireless Research Collaboration Symposium.
IEEE. 2014, pages 117–122.

[39] J. L. Guerra Torres, C. A. Catania and E. Veas. ‘Active Learning Ap-
proach to Label Network Traffic Datasets’. In: Journal of Information
Security and Applications 49 (2019), page 102388.

[40] M. F. A. Hady and F. Schwenker. ‘Combining Committee-based Semi-
supervised Learning and Active Learning’. In: Journal of Computer Sci-
ence and Technology 25.4 (2010), pages 681–698.

[41] F. E. Heba, A. Darwish, A. E. Hassanien and A. Abraham. ‘Principle
Components Analysis and Support Vector Machine Based Intrusion De-
tection System’. In: Proceedings of the 10th International Conference on
Intelligent Systems Design and Applications. IEEE. 2010, pages 363–
367.

195 195

B

Bibliography BIBLIOGRAPHY

[42] K. Heller, K. Svore, A. D. Keromytis and S. Stolfo. ‘One Class Support
Vector Machines for Detecting Anomalous Windows Registry Accesses’.
In: Proceedings of the Workshop on Data Mining for Computer Security.
IEEE. 2003.

[43] L. M. Ibrahim, D. T. Basheer and M. S. Mahmod. ‘A Comparison Study
for Intrusion Database (KDD99, NSL-KDD) Based on Self Organization
Map (SOM) Artificial Neural Network’. In: Journal of Engineering Sci-
ence and Technology 8.1 (2013), pages 107–119.

[44] M. I. Jordan and T. M. Mitchell. ‘Machine Learning: Trends, Perspect-
ives, and Prospects’. In: Science 349.6245 (2015), pages 255–260.

[48] J. Kleinberg. ‘An Impossibility Theorem for Clustering’. In: Advances
in Neural Information Processing Systems (2003), pages 463–470.

[49] O. O. Koyejo, N. Natarajan, P. K. Ravikumar and I. S. Dhillon. ‘Con-
sistent Binary Classification with Generalized Performance Metrics’. In:
Advances in Neural Information Processing Systems 27 (2014).

[50] M. Kubat, R. C. Holte and S. Matwin. ‘Machine Learning for the De-
tection of Oil Spills in Satellite Radar Images’. In: Machine Learning
30.2 (1998), pages 195–215.

[51] B. Kulich. ‘Lessons Learned from Military Cyber Defence Exercises’. In:
Science & Military Journal 9.1 (2014), page 47.

[52] P. Kumar and A. Gupta. ‘Active Learning Query Strategies for Classi-
fication, Regression, and Clustering: a Survey’. In: Journal of Computer
Science and Technology 35.4 (2020), pages 913–945.

[53] T. O. Kvålseth. ‘Note on Cohen’s Kappa’. In: Psychological Reports 65.1
(1989), pages 223–226.

[54] I. Lee. ‘Big Data: Dimensions, Evolution, Impacts, and Challenges’. In:
Business Horizons 60.3 (2017), pages 293–303.

[55] W. S. Lee and B. Liu. ‘Learning with Positive and Unlabeled Examples
UsingWeighted Logistic Regression’. In: Proceedings of the International
Conference on Machine Learning. Volume 3. 2003, pages 448–455.

[56] Y. Leng, X. Xu and G. Qi. ‘Combining Active Learning and Semi-
supervised Learning to Construct SVM Classifier’. In: Knowledge-Based
Systems 44 (2013), pages 121–131.

[57] J. Levatić, M. Ceci, D. Kocev and S. Džeroski. ‘Semi-Supervised Clas-
sification Trees’. In: Journal of Intelligent Information Systems 49.3
(2017), pages 461–486.

[58] D. D. Lewis and W. A. Gale. ‘A Sequential Algorithm for Training Text
Classifiers’. In: Proceedings of the Special Interest Group on Information
Retrieval. Springer. 1994, pages 3–12.

[59] X. Li and B. Liu. ‘Learning to Classify Texts Using Positive and Un-
labeled Data’. In: Proceedings of the 18th International Joint Conference
on Artificial Intelligence. 2003, pages 587–592.

196 196

B

BIBLIOGRAPHY Molding Symbiosis Human Machine

[60] Y. Li and L. Guo. ‘An Active Learning Based TCM-KNN Algorithm
for Supervised Network Intrusion Detection’. In: Computers & Security
26.7-8 (2007), pages 459–467.

[61] Z. C. Lipton, C. Elkan and B. Naryanaswamy. ‘Optimal Thresholding
of Classifiers to Maximize F1 Measure’. In: Proceedings of the Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer. 2014, pages 225–239.

[62] B. Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage
Data. Springer Science & Business Media, 2007.

[63] B. Liu, W. S. Lee, P. S. Yu and X. Li. ‘Partially Supervised Classi-
fication of Text Documents’. In: Proceedings of the 19th International
Conference on Machine Learning. 2002, pages 387–394.

[64] F. T. Liu, K. M. Ting and Z.-H. Zhou. ‘Isolation-based Anomaly Detec-
tion’. In:ACM Transactions on Knowledge Discovery from Data (TKDD)
6.1 (2012), pages 1–39.

[65] F. T. Liu, K. M. Ting and Z.-H. Zhou. ‘Isolation Forest’. In: Proceedings
of the 8th IEEE International Conference on Data Mining. IEEE. 2008,
pages 413–422.

[66] S. Lloyd. ‘Least Squares Quantization in PCM’. In: IEEE Transactions
on Information Theory 28.2 (1982), pages 129–137.

[67] K. Maennel, R. Ottis and O. Maennel. ‘Improving and Measuring Learn-
ing Effectiveness at Cyber Defense Exercises’. In: Proceedings of the
Nordic Conference on Secure IT Systems. Springer. 2017, pages 123–
138.

[68] M. Małowidzki, P Berezinski and M. Mazur. ‘Network Intrusion Detec-
tion: Half a Kingdom for a Good Dataset’. In: Proceedings of NATO
STO SAS-139 Workshop, Portugal. 2015.

[69] C.-H. Mao, H.-M. Lee, D. Parikh, T. Chen and S.-Y. Huang. ‘Semi-
supervised Co-training and Active Learning Based Approach for Multi-
view Intrusion Detection’. In: Proceedings of the ACM Symposium on
Applied Computing. 2009, pages 2042–2048.

[70] B. W. Matthews. ‘Comparison of the Predicted and Observed Secondary
Structure of T4 Phage Lysozyme’. In: Biochimica et Biophysica Acta
(BBA)-Protein Structure 405.2 (1975), pages 442–451.

[71] Y. Meng and L.-f. Kwok. ‘Intrusion Detection Using Disagreement-
Based Semi-Supervised Learning: Detection Enhancement and False
Alarm Reduction’. In: International Symposium on Cyberspace Safety
and Security. Springer. 2012, pages 483–497.

[73] J. H. Min and C. Jeong. ‘A Binary Classification Method For Bank-
ruptcy Prediction’. In: Expert Systems with Applications 36.3 (2009),
pages 5256–5263.

[74] T. Mitchell. Machine Learning. New York: McGraw-Hill, Inc, 1997.

197 197

B

Bibliography BIBLIOGRAPHY

[76] S. Moro, P. Cortez and P. Rita. ‘A Data-driven Approach to Predict
the Success of Bank Telemarketing’. In: Decision Support Systems 62
(2014), pages 22–31.

[77] S. A. Mouloua, J. Ferraro, M. Mouloua, G. Matthews and R. R. Cope-
land. ‘Trend Analysis of Cyber Security Research Published in HFES
Proceedings from 1980 to 2018’. In: Proceedings of the Human Factors
and Ergonomics Society Annual Meeting. Volume 63. 1. SAGE Public-
ations Sage CA: Los Angeles, CA. 2019, pages 1600–1604.

[78] N. Moustafa and J. Slay. ‘The Evaluation of Network Anomaly Detec-
tion Systems: Statistical Analysis of the UNSW-NB15 Data Set and
the Comparison with the KDD99 Data Set’. In: Information Security
Journal: A Global Perspective 25.1-3 (2016), pages 18–31.

[79] N. Moustafa and J. Slay. ‘UNSW-NB15: a Comprehensive Data Set
for Network Intrusion Detection Systems’. In: Proceedings of the Milit-
ary Communications and Information Systems Conference. IEEE. 2015,
pages 1–6.

[80] G. Muhammad and M. Melhem. ‘Pathological Voice Detection and Bin-
ary Classification Using MPEG-7 Audio Features’. In: Biomedical Signal
Processing and Control 11 (2014), pages 1–9.

[82] A. Natekin and A. Knoll. ‘Gradient Boosting Machines, a Tutorial’. In:
Frontiers in Neurorobotics 7 (2013), page 21.

[84] J. O. Ogutu, H.-P. Piepho and T. Schulz-Streeck. ‘A Comparison of Ran-
dom Forests, Boosting and Support Vector Machines for Genomic Selec-
tion’. In: BMC Proceedings. Volume 5. BioMed Central. 2011, pages 1–
5.

[85] W. Palmer and R. Allen. ‘Note on the Accuracy of Forecasts Concerning
the Rain Problem’. In: US Weather Bureau 4 (1949).

[87] K. Pearson. ‘LIII. On Lines and Planes of Closest Fit to Systems of
Points in Space’. In: The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science 2.11 (1901), pages 559–572.

[88] D. Pelleg and A. Moore. ‘Active Learning for Anomaly and Rare-category
Detection’. In: Advances in Neural Information Processing Systems 17
(2004), pages 1073–1080.

[89] Z. Qiu, D. J. Miller and G. Kesidis. ‘Flow Based Botnet Detection
Through Semi-supervised Active Learning’. In: Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing.
IEEE. 2017, pages 2387–2391.

[90] H. Raeisi Shahraki, S. Pourahmad and N. Zare. ‘Important Neighbors:
A Novel Approach to Binary Classification in High Dimensional Data’.
In: BioMed Research International (2017).

198 198

B

BIBLIOGRAPHY Molding Symbiosis Human Machine

[91] M. Reif, M. Goldstein, A. Stahl and T. M. Breuel. ‘Anomaly Detection
by Combining Decision Trees and Parametric Densities’. In: Proceed-
ings of the 19th International Conference on Pattern Recognition. IEEE.
2008, pages 1–4.

[92] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta, X. Chen
and X. Wang. ‘A Survey of Deep Active Learning’. In: ACM Computing
Surveys 54.9 (2021), pages 1–40.

[93] S Revathi and A Malathi. ‘A Detailed Analysis on NSL-KDD Dataset
Using Various Machine Learning Techniques for Intrusion Detection’.
In: International Journal of Engineering Research & Technology 2.12
(2013), pages 1848–1853.

[96] J. T. Schaefer. ‘The Critical Success Index as an Indicator of Warning
Skill’. In: Weather and Forecasting 5.4 (1990), pages 570–575.

[97] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor and J. C.
Platt. ‘Support Vector Method for Novely Detection’. In: Advances in
Neural Information Processing Systems. Volume 12. 1999, pages 582–
588.

[98] F. Schuetz and S. Burschka. Locked Shields: NATO Cyber Defense Exer-
cise 2012. Exercise Report. Technical report. RUAG Holding AG Bern,
Switzerland, 2012.

[99] G. Sergioli, R. Giuntini and H. Freytes. ‘A New Quantum Approach to
Binary Classification’. In: PloS One 14.5 (2019), e0216224.

[100] B. Settles. Active Learning Literature Survey. Technical report. Univer-
sity of Wisconsin-Madison Department of Computer Sciences, 2009.

[101] P. W. Singer and A. Friedman. Cybersecurity: What Everyone Needs to
Know. OUP USA, 2014.

[102] M. Skala. ‘Hypergeometric Tail Inequalities: Ending The Insanity’. In:
arXiv:1311.5939 (2013).

[103] R. Sommer and V. Paxson. ‘Outside The Closed World: On Using Ma-
chine Learning for Network Intrusion Detection’. In: Proceedings of the
IEEE Symposium on Security and Privacy. IEEE. 2010, pages 305–316.

[104] J. W. Stokes, J. Platt, J. Kravis and M. Shilman. ALADIN: Active
Learning of Anomalies to Detect Intrusions. Technical report. Microsoft
Research, 2008.

[105] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis and P. K. Chan. ‘Cost-
based modeling for fraud and intrusion detection: Results from the JAM
project’. In: Proceedings of the DARPA Information Survivability Con-
ference and Exposition. Volume 2. IEEE. 2000, pages 130–144.

[107] N. Sultana, N. Chilamkurti, W. Peng and R. Alhadad. ‘Survey on SDN
based network intrusion detection system using machine learning ap-
proaches’. In: Peer-to-Peer Networking and Applications 12.2 (2019),
pages 493–501.

199 199

B

Bibliography BIBLIOGRAPHY

[108] G. G. Sundarkumar and V. Ravi. ‘Malware Detection by Text and Data
Mining’. In: Proceedings of the IEEE International Conference on Com-
putational Intelligence and Computing Research. IEEE. 2013, pages 1–
6.

[110] S. A. Tabatabaei, X. Lu, M. Hoogendoorn and H. A. Reijers. ‘Identi-
fying Patient Groups based on Frequent Patterns of Patient Samples’.
In: Proceedings of the IEEE International Conference on E-health Net-
working, Application & Services. IEEE. 2019, pages 1–6.

[111] B. A. Tama and K.-H. Rhee. ‘An In-depth Experimental Study of Anom-
aly Detection Using Gradient Boosted Machine’. In: Neural Computing
and Applications 31.4 (2019), pages 955–965.

[112] M. Tavallaee, E. Bagheri, W. Lu and A. A. Ghorbani. ‘A Detailed Ana-
lysis of the KDD CUP 99 Data Set’. In: Proceedings of the IEEE Sym-
posium on Computational Intelligence for Security and Defense Applic-
ations. IEEE. 2009, pages 1–6.

[113] D. M. Tax and R. P. Duin. ‘Uniform Object Generation for Optimiz-
ing One-class Classifiers’. In: Journal of Machine Learning Research 2
(2001), pages 155–173.

[115] K. Tomanek and U. Hahn. ‘Semi-Supervised Active Learning for Se-
quence Labeling’. In: Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP. 2009, pages 1039–1047.

[116] T. P. Tran, P. Tsai, T. Jan and X. Kong. ‘Network Intrusion Detection
Using Machine Learning and Voting Techniques’. In: Machine Learning
(2010), pages 267–290.

[117] A. Tsanas, M. A. Little, C. Fox and L. O. Ramig. ‘Objective Automatic
Assessment of Rehabilitative Speech Treatment in Parkinson’s Disease’.
In: IEEE Transactions on Neural Systems and Rehabilitation Engineer-
ing 22.1 (2013), pages 181–190.

[119] S. I. Wang and C. D. Manning. ‘Baselines and Bigrams: Simple, Good
Sentiment and Topic Classification’. In: Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers). 2012, pages 90–94.

[120] F. Wilcoxon. ‘Some Rapid Approximate Statistical Procedures’. In: An-
nals of the New York Academy of Sciences 52.6 (1950), pages 808–814.

[122] R. Wirth and J. Hipp. ‘CRISP-DM: Towards a Standard Process Model
for Data Mining’. In: Proceedings of the 4th International Conference
on the Practical Applications of Knowledge Discovery and Data Mining.
Volume 1. Springer-Verlag London, UK. 2000.

[124] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou and
C. Wang. ‘Machine Learning and Deep Learning Methods for Cyberse-
curity’. In: IEEE Access 6 (2018), pages 35365–35381.

200 200

B

BIBLIOGRAPHY Molding Symbiosis Human Machine

[125] K. Yang, J. Ren, Y. Zhu and W. Zhang. ‘Active Learning for Wire-
less IoT Intrusion Detection’. In: IEEE Wireless Communications 25.6
(2018), pages 19–25.

[126] D. Yarowsky. ‘Unsupervised Word Sense Disambiguation Rivaling Su-
pervised Methods’. In: Proceedings of the 33rd Annual Meeting of the
Association for Computational Linguistics. 1995, pages 189–196.

[127] O. Yavanoglu and M. Aydos. ‘A Review on Cyber Security Datasets
for Machine Learning Algorithms’. In: Proceedings of the IEEE Inter-
national Conference on Big Data (Big Data). IEEE. 2017, pages 2186–
2193.

[128] L. Yin, H. Wang and W. Fan. ‘Active Learning Based Support Vector
Data Description Method for Robust Novelty Detection’. In: Knowledge-
Based Systems 153 (2018), pages 40–52.

[129] W. J. Youden. ‘Index for Rating Diagnostic Tests’. In: Cancer 3.1 (1950),
pages 32–35.

[130] G. U. Yule. ‘On the Methods of Measuring Association Between Two
Attributes’. In: Journal of the Royal Statistical Society 75.6 (1912),
pages 579–652.

[131] M. Zamani and M. Movahedi. ‘Machine Learning Techniques for Intru-
sion Detection’. In: arXiv:1312.2177 (2013).

[132] S. Zhai, Y. Cheng, W. Lu and Z. Zhang. ‘Deep Structured Energy Based
models for Anomaly Detection’. In: Proceedings of the 33rd International
Conference on Machine Learning. PMLR. 2016, pages 1100–1109.

[133] Y. Zhang, J. Wen, X. Wang and Z. Jiang. ‘Semi-supervised Learning
Combining Co-training with Active Learning’. In: Expert Systems with
Applications 41.5 (2014), pages 2372–2378.

[134] Y. Zhao, X. Kong and S. Y. Philip. ‘Positive and unlabeled learning
for graph classification’. In: Proceedings of the IEEE 11th International
Conference on Data Mining. IEEE. 2011, pages 962–971.

[135] A. Zheng and A. Casari. Feature Engineering for Machine Learning:
Principles and Techniques for Data Scientists. O’Reilly Media, Inc.,
2018.

[136] D. Zhou, Z. Yan, Y. Fu and Z. Yao. ‘A Survey on Network Data Col-
lection’. In: Journal of Network and Computer Applications 116 (2018),
pages 9–23.

[137] L. Zhou and K. K. Lai. ‘Benchmarking Binary Classification Models on
Data Sets with Different Degrees of Imbalance’. In: Frontiers of Com-
puter Science in China 3.2 (2009), pages 205–216.

[138] X. Zhu and A. B. Goldberg. ‘Introduction to Semi-supervised Learning’.
In: Synthesis Lectures on Artificial Intelligence and Machine Learning
3.1 (2009), pages 1–130.

201 201

B

Bibliography BIBLIOGRAPHY

[139] X. Zhu, J. Lafferty and Z. Ghahramani. ‘Combining Active Learning
and Semi-supervised Learning Using Gaussian Fields and Harmonic
Functions’. In: Proceedings of the ICML Workshop on the Continuum
from Labeled to Unlabeled Data in Machine Learning and Data Mining.
Volume 3. 2003.

202 202

B

Online References

[1] ABC/wires. Ransomware Cyberattack Hits Australia as EU Warns Vic-
tims Worldwide May Grow. Retrieved on 15-05-2017. 2017. url: http:
//www.abc.net.au/news/2017-05-14/ransomware-cyberattack-
threat-lingers-as-people-return-to-work/8525554/.

[12] Centre for Aviation. Fraud costs airlines USD1.4 billion a year. Regional
airlines the fraudsters’ “carriers of choice”. Retrieved on 02-04-2019.
2011. url: https://centreforaviation.com/analysis/reports/
fraud-costs-airlines-usd14-billion-a-year-regional-airlines-
the-fraudsters-carriers-of-choice-48150.

[19] Consultancy.eu. Cost of cybercrime per incident jumps six-fold to e50,000.
ACS. 2020. url: https://www.consultancy.eu/news/4409/cost-
of-cybercrime-per-incident-jumps-six-fold-to-50000.

[24] D. Dua and C. Graff. UCI Machine Learning Repository. 2021. url:
http://archive.ics.uci.edu/ml.

[32] S. Glander. Autoencoders and Anomaly Detection with Machine Learn-
ing in Fraud Analytics. Retrieved on 01-05-2017. 2017. url: https :
//shiring.github.io/machine_learning/2017/05/01/fraud.

[75] S. Morgan. Cybercrime To Cost The World 10.5 Trillion Annually By
2025. Cybercrime Magazine. 2020. url: https://cybersecurityventures.
com/hackerpocalypse-cybercrime-report-2016/.

[81] B. Myers. The Sneaky Way Credit Card Scammers Go Unnoticed. Re-
trieved on 06-02-2022. 2021. url: https : / / www . fool . com / the -
ascent/credit-cards/articles/the-sneaky-way-credit-card-
scammers-go-unnoticed/.

203

http://www.abc.net.au/news/2017-05-14/ransomware-cyberattack-threat-lingers-as-people-return-to-work/8525554/
http://www.abc.net.au/news/2017-05-14/ransomware-cyberattack-threat-lingers-as-people-return-to-work/8525554/
http://www.abc.net.au/news/2017-05-14/ransomware-cyberattack-threat-lingers-as-people-return-to-work/8525554/
https://centreforaviation.com/analysis/reports/fraud-costs-airlines-usd14-billion-a-year-regional-airlines-the-fraudsters-carriers-of-choice-48150
https://centreforaviation.com/analysis/reports/fraud-costs-airlines-usd14-billion-a-year-regional-airlines-the-fraudsters-carriers-of-choice-48150
https://centreforaviation.com/analysis/reports/fraud-costs-airlines-usd14-billion-a-year-regional-airlines-the-fraudsters-carriers-of-choice-48150
https://www.consultancy.eu/news/4409/cost-of-cybercrime-per-incident-jumps-six-fold-to-50000
https://www.consultancy.eu/news/4409/cost-of-cybercrime-per-incident-jumps-six-fold-to-50000
http://archive.ics.uci.edu/ml
https://shiring.github.io/machine_learning/2017/05/01/fraud
https://shiring.github.io/machine_learning/2017/05/01/fraud
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://www.fool.com/the-ascent/credit-cards/articles/the-sneaky-way-credit-card-scammers-go-unnoticed/
https://www.fool.com/the-ascent/credit-cards/articles/the-sneaky-way-credit-card-scammers-go-unnoticed/
https://www.fool.com/the-ascent/credit-cards/articles/the-sneaky-way-credit-card-scammers-go-unnoticed/

B

Online References ONLINE REFERENCES

[83] NATO Cooperative Cyber Defence Centre of Excellence. Locked Shields
2017. 2017. url: https://ccdcoe.org/locked-shields-2017.html.

[86] V. Paxson. The Bro Network Security Monitor. 2017. url: https://
www.bro.org/.

[94] Rezgo Booking Software. What is an OTA? Retrieved on 02-04-2019.
2019. url: https://www.rezgo.com/glossary/ota.

[95] RuleQuest. Is See5/C5.0 Better Than C4.5? Retrieved on 01-02-2017.
2017. url: http://www.rulequest.com/see5-comparison.html.

[106] S. Stolfo et al. KDD Cup 1999 Dataset. UCI KDD repository. 1999.
url: http://kdd.ics.uci.edu.

[114] The Bro Platform. base/protocols/conn/main.bro. 2017. url: https:
//www.bro.org/sphinx/scripts/base/protocols/conn/main.bro.
html.

[121] Wired. The Biggest Cybersecurity Disasters of 2017 So Far. Retrieved
on 01-07-2017. 2017. url: https://www.wired.com/story/2017-
biggest-hacks-so-far/.

[123] O. Wyman. The Data Science Revolution That’s Transforming Avi-
ation. Retrieved on 04-02-2022. 2016. url: https://www.forbes.com/
sites/oliverwyman/2017/06/16/the-data-science-revolution-
transforming-aviation.

204 204

https://ccdcoe.org/locked-shields-2017.html
https://www.bro.org/
https://www.bro.org/
https://www.rezgo.com/glossary/ota
http://www.rulequest.com/see5-comparison.html
http://kdd.ics.uci.edu
https://www.bro.org/sphinx/scripts/base/protocols/conn/main.bro.html
https://www.bro.org/sphinx/scripts/base/protocols/conn/main.bro.html
https://www.bro.org/sphinx/scripts/base/protocols/conn/main.bro.html
https://www.wired.com/story/2017-biggest-hacks-so-far/
https://www.wired.com/story/2017-biggest-hacks-so-far/
https://www.forbes.com/sites/oliverwyman/2017/06/16/the-data-science-revolution-transforming-aviation
https://www.forbes.com/sites/oliverwyman/2017/06/16/the-data-science-revolution-transforming-aviation
https://www.forbes.com/sites/oliverwyman/2017/06/16/the-data-science-revolution-transforming-aviation

	Nomenclature
	Introduction
	Anomaly Detection
	Model Evaluation
	Active Learning
	Overview of Dissertation

	I Anomaly Detection
	Detecting Network Intrusion Beyond 1999: Applying Machine Learning Techniques to a Partially Labelled Cyber Security Dataset
	Introduction
	Data: Locked Shields 2017
	Methodology
	Results
	Discussion

	Detecting Fraudulent Bookings of Online Travel Agencies with Unsupervised Machine Learning
	Introduction
	Data
	Methodology
	Experimental Setup
	Results
	Discussion

	II Model Evaluation
	Estimating the F1 Score for Learning from Positive and Unlabelled Examples
	Introduction
	Problem Formulation
	Related Work
	Methodology
	Experimental Setup
	Results
	Discussion

	The Dutch Draw: Constructing a Universal Baseline for Binary Prediction Models
	Introduction
	Preliminaries
	Methodology
	Experimental Results
	Discussion
	Appendix

	III Active Learning
	Jasmine: a New Active Learning Approach to Combat Cyber Crime
	Introduction
	Related Work
	Preliminaries
	Methodology
	Experimental Setup
	Results
	Discussion
	Appendix

	Plusmine: Dynamic Active Learning with Semi-Supervised Learning for Automatic Classification
	Introduction
	Related Work
	Preliminaries
	Methodology
	Experimental Setup
	Results
	Discussion

	Conclusion
	Anomaly Detection
	Model Evaluation
	Active Learning
	Concluding Remarks and Outlook

	Publications
	Bibliography
	Online References

