
Performance Modeling of Object
Middleware

Marcel Harkema

September 25, 2011 Draft

CONTENTS

1 Introduction 1
1.1 The emergence of Internet e-business applications 1
1.2 Objectives and scope . 4
1.3 Outline of the thesis . 6

2 Performance Measurement 9
2.1 Performance measurement activities 9
2.2 Measurement terminology and concepts 12
2.3 Measurement APIs and tools . 16
2.4 Summary . 30

3 The Java Performance Monitoring Tool 31
3.1 Requirements . 32
3.2 Architecture . 34
3.3 Usage . 35
3.4 Implementation . 40
3.5 Intrusion . 50
3.6 Summary . 50

4 Performance Modeling of CORBA Object Middleware 53
4.1 CORBA object middleware . 53
4.2 Specification and implementation of CORBA threading 56
4.3 Performance models of threading strategies 61
4.4 Workload generation . 73
4.5 Throughput comparison of the threading strategies 75
4.6 Impact of marshaling . 81
4.7 Modeling the thread scheduling 84
4.8 Summary . 87

5 Performance Model Validation 89

i

ii Contents

5.1 Performance model implementation 89
5.2 The Distributed Applications Performance Simulator 90
5.3 Validation of the thread-pool strategy for an increasing num-

ber of dispatchers . 92
5.4 Validation of the threading strategies for an increasing number

of clients . 98
5.5 Summary . 116

6 Performance Modeling of an Interactive Web-Browsing Applica-
tion 121
6.1 Interactive web-browsing applications 121
6.2 The local weather service application 122
6.3 Performance model . 124
6.4 Experiments . 128
6.5 Validation . 132
6.6 Summary . 134

7 Conclusions 137
7.1 Review of the thesis objectives 137
7.2 Future work . 139

References 141

C
H

A
P

T
E

R

1
INTRODUCTION

This chapter presents the background, the problem description, the objectives
and scope, and the organization of this thesis.

1.1 The emergence of Internet e-business applications

The tremendous growth of the Internet [42] and the ongoing developments
in the hardware and software industry have boosted the development of
Information and Communication Technology (ICT) systems. These systems
consist of geographically distributed components communicating with each
other using networking technology. Such systems are commonly referred to
as distributed systems.

A key challenge of distributed systems is interoperability: the vast diversity in
hardware, operating systems, and programming languages, makes it difficult
to build distributed applications. Over the past decade there have been a lot
of advances in middleware technology aimed at solving this interoperability
problem. Middleware is software that hides architectural and implemen-
tation details of an underlying system and offers well-defined interfaces
instead. Some of the key advances in middleware include OMG CORBA
object middleware and the Sun Java infrastructure middleware.

The Common Object Request Broker Architecture (CORBA) [41] [61] is a
standard developed by the Object Management Group (OMG) [54], an inter-

1

2 Chapter 1. Introduction

national consortium of companies and institutions. OMG CORBA specifies
how computational objects in a distributed and heterogeneous environment
can interact with each other, regardless of which operating system and pro-
gramming languages these objects run on. For instance, using CORBA object
middleware, a piece of software written in the C programming language and
running on a UNIX system can interact with another piece of software writ-
ten in COBOL programming running on another computer system. CORBA
essentially encapsulates objects that may be implemented in a wide variety
of programming languages and enables them to interact with each other.

Over the past decade Java [2] has evolved into a mature programming plat-
form. Java, developed by Sun Microsystems, hides the heterogeneity of
operating systems and hardware by providing a virtual machine, i.e. it can
be viewed as host infrastructure middleware. The virtual machine [50] can
be programmed using the Java programming language. The Java language is
based on Objective-C and Smalltalk object-oriented programming languages.
In the early days of Java, it was mostly used to make platform-independent
applications and so-called applets, small applications that run inside a web-
page. Over the years, Java matured into a platform for building multi-tiered
enterprise applications.

Today the Java Platform, Enterprise Edition (Java EE or JEE), is the de-facto
standard for building such enterprise applications. Some of the key compo-
nents of the JEE platform include the JDBC API for accessing SQL databases
(allowing developers to program to a common API instead of vendor-specific
APIs), technology for building interactive web-applications (the Servlet API
and Java Server Pages), APIs for interpreting and manipulating XML, the RMI
API for performing remote method invocations, and Enterprise JavaBeans
(EJB), which is a component model for building enterprise applications. The
Java platform also includes a pluggable CORBA implementation. Vendors can
swap the default ORB implementation with their own. The EJB component
model is built on top some of the CORBA technologies: the Java Transac-
tion Service (JTS) is a Java binding of the CORBA Object Transaction Service
(OTS), the Java Naming Service is based on the Cos Naming Service, and
interoperability between EJB beans is based on CORBA’s IIOP (also, CORBA
clients can invoke enterprise Java beans).

The developments described above have led to the emergence of a wide
variety of e-business applications, such as online ticket reservation, online
banking, and online purchasing of consumer products. In the competitive
market of e-businesses, a critical success factor for e-business applications is

1.1. The emergence of Internet e-business applications 3

the Quality of Service (QoS) of these applications provided to the customers
[53]. The QoS includes metrics such as response time, throughput, availabil-
ity, and security (e.g., credit-card payment transactions, privacy of customer
data) characteristics. QoS problems may lead to customer dissatisfaction
and eventually to loss of revenue. So there is a need to understand and
control the end-to-end performance of these e-business applications. The
end-to-end performance is a highly complex interplay between the network
infrastructure, operating systems, middleware, application software, and the
number of customers using the application, amongst others.

To assess the performance of their e-business applications, companies usu-
ally perform a variety of activities: (1) performance lab testing, (2) perfor-
mance monitoring, and (3) performance tuning. Performance lab testing
involves the execution of load and stress tests on applications. Load tests test
an application under a load similar to the expected load in the production
system. Stress tests are used to test the stability and performance of the sys-
tem under a load much higher than the expected load. Although lab-testing
efforts are undoubtedly useful, there are two major disadvantages. First,
building a production-like lab environment may be very costly, and second,
performing load and stress tests and interpreting the results are usually very
time consuming, and hence highly expensive. Performance monitoring is
usually performed to keep track of high-level performance metrics such as
service availability and end-to-end response times, but also to keep track of
the consumption of low-level system resources, such as CPU utilization and
network bandwidth consumption. Results from lab testing and performance
monitoring provide input for tuning the performance of an application.

A common drawback of the aforementioned performance assessment activi-
ties is that their ability to predict the performance under projected growth
of the workload in order to timely anticipate on performance degradation
(e.g., by planning system upgrades or architectural modifications) is limited.
This raises the need to complement these activities with methods specifically
developed for performance prediction [59]. To this end, various modeling
and analysis techniques have been developed over the past few decades, see,
e.g., [3], [32], [36], [45], [56], [66], and references therein. These performance
models are abstractions of the real system describing the parts of the system
that are relevant to performance. Such a performance model typically con-
tains information on the architecture of the system, the physical resources
(CPU, memory, disk, and network) as well as logical resources (threads, locks,
etc.) in the system, and the workload of the system [65], which consists of a
statistical description of the arriving requests and resource usage by those

4 Chapter 1. Introduction

requests. In the design phase of an application, performance models can be
used to evaluate different design alternatives. In the production phase of an
application, performance models can be used to predict the performance
under projected growth of the workload, so that performance degradation
can be timely anticipated. The performance models can be evaluated, using
simulation, analytical methods, or numerical approximations to obtain per-
formance measures, such as utilization of resources (useful to find bottleneck
resources), throughputs, response times, and their statistical distributions.

In order to be useful for performance prediction, a performance model needs
to predict the performance of the modeled system accurately. The ultimate
validation of the performance model is to compare them with real-world, or
test-bed, results. The ‘art’ of performance modeling is to develop models that
only include as few components as possible, while still accurately (enough)
predicting the performance of the modeled system. Often there is a trade-off
between the complexity of the performance model and the required accuracy
of the predictions.

Software is increasingly becoming complex [17]. Today’s e-business applica-
tions are multi-tiered systems comprising of a mix of databases, middleware,
web servers, application servers, application frameworks, and business logic.
Often little is known about the inner workings and performance of these
servers, software components, and frameworks. With this increasing com-
plexity of software [52] and the observation that the capacity of networking
resources is growing faster than the capacity of processor resources [9], per-
formance modeling of this software is of an increasing importance.

1.2 Objectives and scope

The overall objective of this thesis is to develop and validate quantitative
performance models of distributed applications based on middleware tech-
nology. We limit the scope of our research to OMG CORBA object middleware
and the Java EE platform.

In order to be able to model the performance of software, insight in its
execution behavior is needed. This raises questions such as:

• What are the use-cases for the application that need modeling?

• Into which pieces can the response time for a specific use-case be
broken down? Which part of the response time can be attributed to the
business logic, 3rd party frameworks and components, the database

1.2. Objectives and scope 5

server, the middleware layer, the Java virtual machine, and the operat-
ing system?

• Which of these parts need to be present in the performance model?

• What logical resources (i.e. threads and locks) does the application
have?

• What logical resources and physical resources (e.g., CPU cycles, net-
work bandwidth) are needed for each use-case?

These questions in turn raise another question: how do we obtain this in-
formation? Documentation, e.g., standard specifications, design documen-
tation of the application in the form of UML diagrams, and source code
annotations, is an important source of information. However, in many cases
documentation lacks detail or is not available. Also, documentation does
not provide a full picture of the application, answering every performance
question one might have. In these cases it is needed to monitor execution
behavior and measure performance in a running system. This is quite a
challenge considering the complexity of enterprise applications.

We have split the overall objective of this thesis into the following set of
sub-objectives:

1. Investigate and develop techniques to identify and quantify perfor-
mance aspects of Java applications and components. These techniques
will enable us to learn about performance aspects of software, and to
quantify these performance aspects.

2. Obtain insight in the performance aspects of the Java virtual machine.

3. Obtain insight in the performance aspects of CORBA object middle-
ware.

4. Obtain insight in the impact of multi-threading and the influence of the
operating system’s thread scheduler on the performance of threaded
applications.

5. Combine these insights to construct quantitative performance models
for CORBA object middleware.

6. Validate these performance models by comparing model-based results
with real-world measurements.

6 Chapter 1. Introduction

1.3 Outline of the thesis

The different chapters of this thesis are organized as follows:

Chapter 1, titled ‘Introduction’, presents the background, problem descrip-
tion, objectives and scope of this thesis.

Chapter 2, titled ‘Performance Measurement’, introduces performance con-
cepts, performance measurement activities, terminology and concepts, dis-
cusses measurement difficulties, and provides an overview of techniques,
APIs and tools for performance measurement in applications, their support-
ing software layers, and hardware.

Chapter 3, titled ‘Java Performance Monitoring Tool’, presents our perfor-
mance monitoring tool for Java applications and the Java host infrastructure
middleware layer.

Chapter 4, titled ‘Performance Modeling of CORBA Object Middleware’, dis-
cusses the inner workings of CORBA object middleware and presents our
performance models for CORBA object middleware.

Chapter 5, titled ‘Performance Model Validation’, describes simulations im-
plementing the performance models along with their experimental valida-
tion.

Chapter 6, titled ‘Performance Modeling of an Interactive Web-Browsing Ap-
plication’, describes a performance model of an interactive web-application.

Chapter 7, titled ‘Conclusions’, presents the conclusions of this thesis, evalu-
ates how the thesis objectives have been achieved and gives directions for
further research.

These chapters are based on the following publications: [25], [18], [27], [28],
[26], [23], [24], [19], [21], [22], [20] and [60]. The research was mainly done
during the period 2001-2006.

The following figure, Figure 1.1, illustrates our approach to reaching the over-
all objective of validated quantitative performance models of applications
based on middleware technology.

1.3. Outline of the thesis 7

Performance
measurement
and modeling

expertise
(Chapter 2)

Java
Performance
Monitoring

Tool (Chapter 3)

Experiments
and

measurements
(Chapter 4)

Building and
improving the
performance
model (Chapter

4)

Validating
the

performance
model

(Chapter 5)

Experiments
and

measurements
(Chapter 5)

Simulation
results (Chapter

5)

Feedback for
improving the
performance model
(iteration)

Validated
performance

model

Object
middleware
expertise
(Chapter 4)

Simulation
tools (Chapter 5)

Figure 1.1: Performance modeling cycle

C
H

A
P

T
E

R

2
PERFORMANCE MEASUREMENT

In this chapter we introduce software performance monitoring and measure-
ment concepts and discuss the various monitoring and measurement facilities
available at the different layers of Java based distributed applications, from the
application layer, the middleware layers, to the operating system and network
layers.

This chapter is structured as follows. Section 2.1 is an overview of performance
measurement activities. Section 2.2 introduces performance measurement
terminology and concepts. Section 2.3 presents an overview of performance
measurement APIs and tools. Section 2.4 summarizes this chapter.

2.1 Performance measurement activities

A wide variety of performance measurement activities are available, each
targeted to answer specific performance related questions. In this section we
give a brief overview of these activities.

2.1.1 Benchmarking

Benchmarking is a performance measurement activity that uses some stan-
dardized tests to compare the performance of alternative computer systems,
components, or applications. The benchmark results should be indicative of
the performance of the system or application in the real-world, therefore it is

9

10 Chapter 2. Performance Measurement

important that the workload executed by the benchmark is representative
of the real-world workload. Typical benchmark performance measures are
response times for single operations and maximum rates for operations.

Benchmarks are used for various reasons. One of the most common reasons
is to compare performance of various hardware or software procurement
alternatives. Benchmarks are also useful as a diagnostic tool, comparing
performance of some system against a well-known system, so that perfor-
mance problems can be pinpointed. While benchmark results can give some
insight in a system, the results do not provide a complete explanation of the
inner working of a system. Therefore benchmarking does not yield enough
information to develop performance models of systems.

Various standardization bodies exist for benchmarking. Among the most well-
known are BAPco (Business Applications Performance Corporation) who
develop a set of benchmarks to evaluate the performance of personal com-
puters running popular software applications and operating systems. BAPco’s
SYSmark benchmark evaluates the performance of a system from a business
client point of view, running a workload on the system that represents office
productivity activities, for instance word-processing or spreadsheet usage.
SPEC (System Performance Evaluation Corporation) defines a wide variety
of benchmarks for CPUs (SPEC CPU2006), JEE application servers (SPEC-
jEnterprise2010), Java business applications (SPECjbb2005), client-side Java
virtual machines (SPECjvm2008), and web servers (SPECweb2005), among
others. TPC (Transaction Processing Council) defines industry benchmarks
for transaction processing, databases, and e-commerce servers. Among
others, the TPC benchmark suite includes the TPC-W benchmark, which
measures the performance of business oriented transactional web servers in
transactions per second and the TPC-C and TPC-H benchmarks that mea-
sure performance of database management systems (DBMS) transactions.
SPC (Storage Performance Council) defines benchmarks for characterizing
the performance of storage systems, e.g. enterprise storage area networks
(SANs).

2.1.2 Performance testing

The objective of performance testing is to understand how systems behave
under specific workload scenarios. Contrary to benchmarking, which is
used to evaluate common-off-the-shelf software and hardware, performance
testing can be tailored to a specific system, application, and workload.

Various kinds of workload can be used with performance testing, investing

2.1. Performance measurement activities 11

specific performance questions. For instance, a steady-state statistical work-
load can be used, representing the usual workload on the system. This is
often referred to as load testing. This workload can be gradually increased
to find the maximum workload under which the system is still stable. This
is referred to as maximum sustainable load testing, e.g. [55]. Stress testing
is used to investigate system behavior under deliberately constant heavy
workload. Stress testing can uncover bugs in the system and performance
bottlenecks. Finally, spike or burst testing refers to testing system behavior
under a temporary high load, for instance a sudden increase in users [1].
Again, this is used to find bugs, performance bottlenecks, and to test system
stability during a temporary heavy load.

Performance testing can provide a wealth of performance information, an-
swering specific questions a performance modeler may have regarding the
impact of specific workloads on the performance behavior of a system. How-
ever, the externally observable measures (what happened), such as system
response time, throughput and resource utilization, usually provided by per-
formance tests need to be accompanied by more in-depth performance infor-
mation on the internal performance behavior of the system, explaining the
externally observed performance behavior (why it happened). Performance
monitoring tools, such as profilers or tracers, can be used to investigate the
internal performance behavior.

2.1.3 Performance monitoring

Performance monitoring [51] refers to a wide range of techniques and tools
to observe, and sometimes record, the performance behavior of a system, or
part of a system.

Performance monitoring comes in many different flavors, ranging from ob-
serving end-to-end performance behavior to observing cache misses [64].
Performance monitors have many uses [48], including analyzing perfor-
mance problems uncovered by performance testing, collecting performance
information for performance modelers, gathering performance data for load
balancing decisions, and monitoring whether service level agreements (SLAs)
are met [10].

The remainder of this chapter discusses performance measurement and
monitoring techniques and tools, and their terminology.

12 Chapter 2. Performance Measurement

2.2 Measurement terminology and concepts

In this section we present measurement terminology and concepts.

2.2.1 System-level and program-level measurement

Two categories of performance measurement data can be distinguished:
system-level measurements and program-level measurements [32]. System-
level measurements represent global system performance information, such
as CPU utilization, number of page faults, free memory, etc. Program-level
measurements are specific to some application running in the system, such
as the portion of CPU time used by the particular application, used memory,
page faults caused by the application, etc.

2.2.2 Black-box and white-box observations

The performance of a computer system or application can be evaluated from
an external and internal perspective. So-called black-box performance mea-
surements measure externally observable performance metrics, like response
times, throughput, and global resource utilization (e.g. CPU utilization of the
whole system).

White-box performance measurements are done ‘inside’ the system or appli-
cation under study, often using specialized tools such as monitors described
below.

Figure 2.1 illustrates black-box and white-box observations.

external (black-box)
measurementsinternal (white-box)

measurements

external (black-box)
measurements

system under
study

Figure 2.1: Black-box and white-box observation

2.2. Measurement terminology and concepts 13

2.2.3 Monitoring

A monitor is a piece of software, hardware, or a hybrid (mix) [32], that extracts
dynamic information concerning a computational process, as that process
executes [49]. Monitoring can be targeted to various classes of functionality
[48], including correctness checking, security, debugging and testing, and on-
line steering. This thesis focuses on monitoring for performance evaluation
and program understanding purposes.

Monitoring consists of the following activities [49] [32]:

• Preparation. During preparation, the first step is to decide what kind of
information monitoring should collect from the program. For instance,
performance data regarding disk operations can be collected or the
number and kind of CPU instructions the program needs. The second
preparation step is to determine where to collect this information.
Monitoring tools often specialize in some part of the system where
they collect performance information and the kind of performance
information they collect.

• Data collection. After preparing the monitoring we can execute the
process. During execution of the process, the monitor observes this
process and collects the performance information.

• Data processing. This activity involves interpretation, transformation,
checking, analyses, and testing of the collected performance data.

• Presentation of the performance data. Presentation involves reporting
the performance data to the user of the monitor.

2.2.4 State sampling and event-driven monitoring

In general, two types of monitors can be distinguished: time-driven monitors
and event-driven monitors [32].

Time-driven monitoring observes the state of the monitored process at cer-
tain time intervals. This approach, also known as sampling, state-based
monitoring, and clock-driven monitoring, is often used to determine per-
formance bottlenecks in software. For instance, by observing a machine’s
call-stack every X milliseconds, a list of the most frequently used software
routines (called hot spots) and routines using large amounts of processing
times can be obtained. Time-driven monitoring does not provide complete
behavioral information, only snapshots.

14 Chapter 2. Performance Measurement

Event-driven monitoring is a monitoring technique where events in the sys-
tem are observed. An event represents a unit of behavior, e.g., the creation
of a new thread in the system and the invocation of a method on an object.
When besides the occurrence of the event itself (what occurred), a portion
of the system state is recorded that uniquely identifies an event [39], such
as timing information (when did the event occur) and location information
(where exactly did it occur, for instance a particular software routine or com-
putational object), we refer to this as tracing. Events have temporal and
causal relationships. Temporal relationships between events reflect the or-
dering of those events according to some clock, which could be the system’s
physical clock (if all events occur in the same system), or some logical clock
(when monitoring distributed systems) [34]. Causal relationships between
events reflect cause and effect between events, for instance accessing some
data structure may result in a page fault event if the data is not present in
the physical memory, but swapped out to disk. As we will see later on, causal
relations between events are not always evident. In some cases the monitor
needs to record extra information with the events to allow event correlation
during event trace data processing.

2.2.5 Online and offline monitoring

Online and offline monitors differ in the moment when data processing
and presentation of the data takes place. In traditional offline monitoring
tools the preparation activity takes place before execution of the monitored
system, the data collection activity takes place during execution, the data
processing and presentation activities take place after execution.

In online monitoring systems [48] the data processing occurs during execu-
tion time. Example application areas of online monitoring systems are secu-
rity, so security violations can be detected as they occur, and performance
control, where monitoring data is used to constantly adapt the configuration
of a system to meet performance goals. Online monitoring systems may
also present monitoring data to the user, for instance actual security and
performance monitoring results may be reported in a monitoring console.

2.2.6 Instrumentation

Monitoring requires functionality in the system to collect the monitoring
data. The process of inserting the required functionality for monitoring in
the system is called instrumentation.

2.2. Measurement terminology and concepts 15

There are various options of instrumenting the system to collect monitoring
data for an application running on the system. We can instrument the ap-
plication itself, this is called direct instrumentation, or we can instrument
the environment in which the application runs, this is referred to as indirect
instrumentation. The environment includes the operating system, libraries
the application uses, virtual machines, and such. Below we list often used
direct and indirect instrumentation techniques:

Modification of the application’s source code. This can be done in various
ways. First, instrumentation can manually be inserted in the source code
before compilation time. Depending on the amount of monitoring infor-
mation needed, this can be a quite labor intensive job. Instead of manual
instrumentation more automated ways of instrumentation can be used to
add instrumentation to the source code. A source code pre-processor can
be used to automatically insert instrumentation in the source code before
actually compiling the source code. The instrumentation process could be
based on some configuration file containing information on where to insert
instrumentation in the source code. Using a pre-processor to insert instru-
mentation code has the advantage that it is easier to change the instrumen-
tation (e.g., because other monitoring data is needed); all that needs to be
done is change the configuration file, run the pre-processor and re-compile
the application. Similar to using a pre-processor to insert instrumentation,
the compiler itself can be altered to insert instrumentation as it compiles the
source code into binary code.

Modification of the application’s binary code. Instead of inserting the in-
strumentation at compile time, described above, we can also insert instru-
mentation just before run time. Binary instrumentation is quite difficult,
since binary code is much harder to interpret than source code. The ad-
vantages are that it does not require the source code to be available, and
that re-compilation of the application is not needed to insert or alter the
instrumentation.

Using vendor supplied APIs. Server applications such as database servers,
web servers, and application servers often include programming interfaces
or other access points to monitoring information.

Monitoring the software environment. The above techniques are direct in-
strumentation techniques. Sometimes we cannot directly instrument the
application. We can then monitor the environment of the application, such
as libraries, runtime systems (virtual machines), and the operating system.
A disadvantage of indirect instrumentation is that we will not be able to ob-

16 Chapter 2. Performance Measurement

serve events inside the application, only interactions with the environment
can be observed. The advantage is that instrumentation is not application
specific, instead it is more generic.

Monitoring the hardware environment. Another indirect instrumentation
technique is using hardware monitoring information. Even more so than
monitoring the software environment, it is hard to correlate this monitoring
information to activity in the application we want to collect monitoring data
for.

Note that a monitoring solution may combine several of the above tech-
niques to observe an application. For instance, application events obtained
by instrumenting the source code may be combined with monitoring infor-
mation provided by hardware and events occurring in the operating system
kernel, such as thread context switches.

2.2.7 Overhead, intrusion and perturbation

Adding monitoring instrumentation to a system causes perturbations in the
system. This interference in the normal processing of a system is referred to
as intrusion.

Software instrumentation requires the use of system resources, such as the
CPU, threads, and memory, which may also be used by the monitored ap-
plication. This may cause the application to performance worse than the
un-instrumented version of the application. The difference in performance
between the instrumented and un-instrumented application is called perfor-
mance overhead. Besides perturbing the performance of a system, instrumen-
tation can also change the execution behavior of a system. For instance, CPU
cycle consumption of the instrumentation and processing threads belonging
to the monitoring tool may change the thread scheduling behavior of the
application.

There is also non-execution related intrusion, such as replacing an applica-
tion with an instrumented application, changing the system’s configuration
and deployment to facilitate monitoring, and requiring an application to be
restarted after instrumentation is added.

2.3 Measurement APIs and tools

In this section we discuss APIs and tools suitable for performance mea-
surement on the UNIX and Windows operating systems, and in the Java

2.3. Measurement APIs and tools 17

environment.

2.3.1 High-resolution timing and hardware counters

Performance measurement of software applications requires high resolution
timestamps. Many operating systems, including Windows and Linux, use the
system’s clock interrupt to drive the operating system clock. The frequency
of the clock interrupt then determines the resolution of the clock. On x86
based systems clock interrupts are historically configured to occur every 10
milliseconds, though with the advent of more powerful processors 1 millisec-
ond intervals are becoming common too (recent versions of the Linux kernel
offer configurable timer interrupt intervals). A higher frequency will result
in more interrupt overhead. For measurement of activity within software
applications 10 milliseconds resolution is too coarse grained.

Modern processors, such as the Intel x86 family since the Pentium series,
have performance counters embedded in the processor. One of these coun-
ters is a timestamp counter (TSC) which is increased every processor cycle.
Timestamps can be calculated by dividing the timestamp counter by the
processor frequency. On processors targeted at the mobile market, such as
the Intel Pentium M family, the timestamp counters are not incremented at
a constant rate, since the processor frequency can be varied depending on
the system’s workload and power saving requirements. On these systems an
average processor frequency can be used to calculate timestamps, with loss
of accuracy. Other events that can be counted are retired instructions, cache
misses, and interactions with the bus.

Table 2.1 lists some options for high-resolution timing.

For performance modeling purposes we are interested in the consumption
of CPU resources. By using hardware counters we can measure the number
of processor cycles and the number of retired instructions. However, these
counters are global, i.e. for all running processes, while we are interested
in event counts related to the processes that are part of the software we are
monitoring. Per-process (or per-thread) monitoring of hardware event coun-
ters requires instrumentation of the context switch routine in the operating
system’s kernel. The ‘perfctr’ kernel patch for Linux on the x86 platform
implements such per-thread monitoring of hardware event counters (called
virtual counters in perfctr). Similar hardware counter monitoring packages
are available for other platforms and operating systems, such as ‘perfmon’
for Linux on the Intel Itanium and PPC-64 platforms (integraded in the Linux
2.6 kernel) and the ‘pctx’ library on Sun Solaris on the Sun Sparc platform.

18 Chapter 2. Performance Measurement

Method System Measurement type
gettimeofday(2) UNIX Wall-clock time in micro-seconds. Ac-

curacy varies, on older systems it can be
in the order of tenths of microseconds,
on modern systems it is 1 microsecond.
Modern UNIX variants based the time
on hardware cycle counters. E.g., in
Linux the TSC is used on Intel x86 based
machines.

gethrtime(3c) Sun Solaris and some real-
time UNIX variants

Wall-clock time in nanoseconds. Accu-
racy is in the tenths of nanoseconds, de-
pending on the processor. The time is
based on a hardware cycle counter.

gethrvtime(3c) Sun Solaris and some real-
time UNIX variants

Variant of gethrtime(3c). Per light-
weight-process (LWP) CPU time in
nanoseconds.

QueryPerformanceCounter
and QueryPerformanceFre-
quency

Microsoft Windows High resolution timestamps based
on hardware cycle counters. The
QueryPerformanceCounter function
returns the number of cycles. The
QueryPerformanceFrequency returns
the frequency of the counter. Accuracy
is around a couple of microseconds on
modern hardware.

Table 2.1: Various high-resolution timestamp functions

Which hardware counters are available and how they can be accessed differs
per processor type and operating system. This makes it difficult to create
portable performance measurement routines. Libraries, such as PAPI [7] and
PCL [5], offer standardized APIs to access hardware counters.

2.3.2 Information provided by the operating system

Many operating systems keep performance information that can be accessed
by users.

Global and process-level performance information

The process information pseudo file-system ‘proc-fs’, available in some UNIX
variants (e.g. Linux) is a special-purpose virtual file-system, where kernel
state information„ including performance related information, is mapped
into memory. The file-system is mounted at /proc. Proc-fs stores global
performance measures, such as CPU consumption information, disk access
information, memory usage information, and network information. It also
stores non performance related information, such as drivers loaded, hard-
ware connected to the USB bus, and disk geometry information. Some files
in the proc file-system can be modified by the (root) user, changing parame-
ters in the operating system kernel, for instance various TCP/IP networking
options can be configured. The proc file-system also stores per-process

2.3. Measurement APIs and tools 19

information, such as CPU consumption for each process and memory con-
sumption for each process. The files in the proc-fs filesytem usually are text
files which have to be parsed by the user. Another UNIX variant, Solaris, also
maintains kernel state information, but offers a different access mechanism:
the kernel statistics facility ‘kstat’. User applications can access the kstat
facility by linking with the libkstat C library.

Microsoft Windows also offers access to performance information of the
operating system, through the Windows registry API. The Windows reg-
istry is a hierarchical database used to store settings of applications and
the operating system. The performance data can be accessed using the
HKEY_PERFORMANCE_DATA registry key. The performance data is not actu-
ally stored in the registry (i.e. stored on disk), instead accessing performance
data using the registry API will cause the API to call operating system and
application provided handlers to obtain the information. Windows also of-
fers the Performance Data Helper (PDH) library, which hides many of the
complexities of the registry API.

The offered performance data by the registry is similar to the data offered by
the proc-fs and kstat performance interfaces described above.

Performance measurement and monitoring applications can use data from
these operating system supplied performance data repositories. Usually op-
erating systems offer ready to use performance monitoring applications also
based on these performance data repositories. Examples of such applications
are ‘top’, a program that lists processes and their performance information
such as CPU and memory consumption, and the Windows Task Manager
and Windows Performance Monitor applications.

Kernel event tracing

The above APIs provide the user with global and per-process performance
counters, such as the global CPU utilization, amount of CPU time consumed
by a process, and the number of disk access by a process. For a more detailed
view on a system’s performance kernel event tracing can be used. Kernel
event tracing allows the user to subscribe to events of interest in the kernel,
such as thread context switches, opening files, and sending data on the net-
work. So, instead of just counting disk accesses, kernel event tracing informs
the user of a disk access as it occurs together with context information such
as the process ID under which the disk access event occurs and the time of
the event. This provides the user with more detailed information. However,
event tracing is more intrusive than event counting. Kernel event tracing facil-

20 Chapter 2. Performance Measurement

ities are less common than facilities offering global and per-process counters.
Recently, Microsoft introduced the Event Tracing for Windows (ETW) sub-
system [40] in Windows 2000 and Windows XP. On Linux, the Linux Trace
Toolkit (LTT) [67] is available, but not integrated yet in the production kernel.
In Sun Solaris version 10 the DTrace [8] facility was added.

2.3.3 The application layer

Applications may provide performance monitoring facilities in the form of
APIs or log-files. For instance, server applications, such as database servers,
web servers, and application servers, often include programming interfaces
or other access points to monitoring information. For instance, the Apache
web server provides a module which can be loaded into the web server that
provides various kinds of information, such as the CPU load, number of idle
and busy servers, and server throughput. Most web servers are also able to
log requests in log-files, which can be processed by the user to gather all
kinds of statistics, such frequently requested pages. Another example is the
MySQL database server that can provide a list of running server threads, what
queries they are processing, contended database table locks, and such.

2.3.4 The Java infrastructure middleware layer

Over the past years Java has evolved into a mature programming platform.
Java’s portability and ease of programming makes it a popular choice for
implementing enterprise applications and off-the-shelf components such as
middleware.

Java is an object-oriented programming language based on Smalltalk, and
Objective-C. Unlike Smalltalk and Objective-C it uses static type checking.
Java source-code is compiled to byte-code which can be interpreted by the
Java virtual machine, although there are compilers that directly compile
Java source-code to native machine code (e.g. GNU GCJ). The Java virtual
machine is a runtime system providing a platform independent way of ex-
ecuting byte-code on many different architectures and operating systems.
This makes Java a host infrastructure middleware, sitting between the operat-
ing system (and system libraries) and the applications running on top of the
Java virtual machine. Java applications are shielded from operating system
and computer hardware architectures underneath the virtual machine.

Java is multi-threaded, in most virtual machines the threads are mapped to
light-weight operating system processes/threads. Monitors [30] are used as
the underlying synchronization mechanism to implement mutual exclusion

2.3. Measurement APIs and tools 21

and cooperation between threads. In Java objects that are allocated and
no longer used (dead) are garbage collected. There are simple facilities to
make object release explicit, but it’s not common to use them. While garbage
collection is useful to programmers (no need to worry about releasing al-
located memory manually, and no memory leaks), it can lead to careless
programming practices, stressing the garbage collector a lot (wasting a lot of
CPU cycles).

Java’s inner workings are described in detail by the Java Virtual Machine
Specification [37] and the Java Language Specification [16].

The completion time of Java method invocations depends on many factors:

• CPU cycles used by the application code.

• Sharing of the CPU(s) by multiple threads.

• Time spent waiting for resources to become available (e.g., contention
Java monitors). The more threads share the same resources, the higher
the contention for these resources. Obviously, the duration of critical
sections is also a factor that determines contention.

• Disk I/O and network I/O.

• Latencies incurred using software outside the virtual machine. This
includes accessing remote databases, remote method invocation on
Java objects in other virtual machines, etc.

• CPU cycles used by the Java virtual machine and other supporting
software, such as system libraries and the operating system.

• Garbage collection. By default a stop-the-world garbage collection
using copying (for younger objects) and mark-and-sweep (for older
objects) is used in Sun’s Java virtual machine [63]. New garbage col-
lection algorithms have been introduced in the 1.4 series, but are not
enabled by default. Stop-the-world garbage collection can have sig-
nificant impact on application performance, since program execution
is suspended during garbage collection. Also, the large number of
memory management / garbage collection parameters of the virtual
machine make it difficult to find optimal settings for applications.

• Run-time compilation techniques may improve performance of so-
called ‘hot spots’ (often invoked methods and/or methods with loops).

22 Chapter 2. Performance Measurement

Performance analysts need ways to quantify the method completion times
and the dependencies on these method completion times. The Java virtual
machine provides a number of interfaces allowing us to observe the internal
behavior of the virtual machine: the JVMDI and JVMPI. The Java Virtual
Machine Debug Interface (JVMDI) is a programming interface that supports
application debuggers. The JVMDI is not suited for performance measure-
ment, but it can be used to observe control flows and state within the Java
virtual machine. The Java Virtual Machine Profiler Interface (JVMPI) is a pro-
gramming interface that supports application profilers. Like the JVMDI, the
JVMPI also observes control flows and state within the Java virtual machine.
However, the JVMDI observes qualitative behavior of the application (sup-
porting functional debugging of an application) while the JVMPI observes
quantitative behavior (supporting performance debugging of an applica-
tion).

Java Virtual Machine Debug Interface (JVMDI)

The JVMDI provides core functionality needed to build debuggers and other
programming tools for the Java platform. JVMDI allows the user to inspect
the state of the virtual machine as well as control over the execution of appli-
cations. JVMDI provides a two-way interface which can be used to receive
and subscribe to events of interest and query and control the application.

The JVMDI supports the following functionality:

• Memory management hooks. Functions to allocate memory and re-
place the default memory allocator with a custom one.

• Thread and thread group execution functions. Allowing the status of
threads to be queried (including information on monitors), threads to
be suspended, resumed, stopped (killed), or interrupted (waking up a
blocked thread and sending an exception).

• Stack frame access. Functions to inspect the frames on call stacks of
threads. Stacks frames are used to store data structures needed to
implement sub-routine calls, i.e. method invocation and return.

• Local variables functions. Functions to get and set local variables.

• Breakpoint functions. Functions to set and clear breakpoints in Java ap-
plications. Breakpoints trigger the debugger when a certain condition
is reached, e.g. some method implementation.

2.3. Measurement APIs and tools 23

• Functions for watching fields. Allowing the debugger to receive an event
when a variable is accessed or modified in the application. Functions
for obtaining class, object, method, and field information. This in-
cludes class definitions, source code information (file name of source
file, line numbers), signatures of methods, defined variables, local
variables in methods, etc. This mostly concerns static information
allowing the application structure to be queried.

• Raw monitor functions. These functions provide the debugger devel-
oper with monitors needed to make the debugger functionality using
the JVMDI multi-thread capable. The Java application may have more
than one thread triggering debugger functionality (events) at the same
time. Using the raw monitors the data structures of the debugger can
be locked for a single thread while they are modified.

The JVMDI requires the virtual machine to run in debugging mode, making
JVMDI less suitable for performance measurement (because of the debugging
overhead) and production systems (e.g., for online performance monitoring
in production systems).

JVMDI is part of the Java Platform Debugger Architecture (JPDA), but can be
used independently of the other parts. Besides the JVMDI, the JPDA parts
are JDWP and JDI. JDWP is a wire protocol allowing debug information to be
passed between the debuggee virtual machine and the debugger front-end,
which may run in another virtual machine and hence can run on another
host. The JDWP even allows debugger front-ends to be written in other
programming languages than Java. JDI is a high-level Java API for supporting
debugger front-ends. JDI implements common functionality required by
debuggers and other programming tools. The JDI is not required to write
debugger and other programming tools, both the JVMDI and JDWP can be
used independently from JDI.

Java Virtual Machine Profiler Interface (JVMPI)

The JVMPI allows a user provided profiler agent to observe events in the Java
virtual machine. The profiler agent is a dynamically linked library written
in C or C++. By subscribing to the events of interest, using JVMPI’s event
subscription interface, the profiler agent can collect profiling information
on behalf of the monitoring tool. Figure 2.2 depicts the interactions between
the JVMPI and the profiler agent.

24 Chapter 2. Performance Measurement

Java VM

Java application to
be monitored

JVMPI

Profiler
agent

OS process
event subscription

events (using
callback mechanism)

Observer

Figure 2.2: Interactions between JVMPI and the Profiler Agent

An important feature of JVMPI is its portability; its specification is indepen-
dent of the virtual machine implementation. The same interface is available
on each virtual machine implementation that supports the JVMPI specifi-
cation. Furthermore, JVMPI does not require the virtual machine to be in
debugging mode (unlike JVMDI), it is enabled by default. The Java virtual
machine implementations by Sun and IBM support JVMPI.

JVMPI supports both time-driven monitoring and event-driven monitoring.
This section only discusses the functionality in JVMPI that is relevant for
event-driven monitoring. The profiler agent is notified of events through a
callback interface. The following C++ fragment illustrates a profiler agent’s
event handler:

void NotifyEvent (JVMPI_EVENT * ev) {
switch (ev−>event_type) {
case JVMPI_CLASS_LOAD :

// Handle ’ c l a s s load ’ event .
break ;

case JVMPI_CLASS_UNLOAD:
// Handle ’ c l a s s unload ’ event .
break ;

. .
}

}

Listing 2.1: JVMPI event handling

2.3. Measurement APIs and tools 25

The JVMPI_EVENT structure includes the type of the event, the environment
pointer (the address of the thread the event occurred in), and event specific
data:

typedef s t r u c t {
j i n t event_type ;
JNIEnv * env_id ;
union {

s t r u c t {
// Event s p e c i f i c data for ’ c l a s s load ’ .
} class_load ;
. .

} u ;
} JVMPI_EVENT ;

Listing 2.2: JVMPI event type

JVMPI uses unique identifiers to refer to threads, classes, objects, and meth-
ods. Information on these identifies is obtained by subscribing to the defining
events. For instance, the ‘thread start’ event, notifying the profiler agent of
thread creation, defines the identifier of that thread and has attributes de-
scribing the thread (e.g., the name of the thread). The ‘thread end’ event
undefines the identifier. For certain identifiers it is not required to be sub-
scribed to their defining events to obtain information on the identifier. In-
stead, the defining events may be requested at a later time. For instance,
defining events for object identifiers can be requested at any time using the
RequestEvent() method of the JVMPI API.

JVMPI profiler agents have to be multithread aware, since JVMPI may gener-
ate events for multiple threads of control at the same time. Profiler agents can
implement mutual exclusion on its internal data structures using JVMPI’s raw
monitors. These monitors are similar to Java monitors, but are not attached
to a Java object.

The following events are supported by JVMPI:

• JVM start and shutdown events. These events are triggered when the
Java virtual machine starts and exits, respectively. These events can be
used to initialize the profiler agent when the virtual machine is started
and to release resources (e.g., close log file) when the virtual machine
exits.

• Class load and unload events. These events are triggered when the Java
virtual machine loads a class file or unloads (removes) a class. The at-

26 Chapter 2. Performance Measurement

tributes of the class load event include the names and signatures of the
methods it contains, the class and instance variables the class contains,
etc. The class loading and unloading events are useful for building
and maintaining state information in the profiler agent. For instance,
when JVMPI informs the profiler agent of a method invocation it uses
an internal identifier to indicate what method is being invoked. The
class load event contains the information that is needed to map this
identifier to the class that implements the method and the method
signature.

• Class ready for instrumentation. This event is triggered after loading a
class file. It allows the profiler agent to instrument the class. The event
attributes are a byte array that contains the byte-code implementing
the class, and the length of the array. Using the Java virtual machine
specification, profiler agents may interpret the byte array, and change
(instrument) the implementation of the class and its methods. JVMPI
doesn’t provide interfaces to instrument class objects though. So, all
functionality needed to manipulate the array of byte-code needs to be
implemented by the user of JVMPI.

• Thread start and exit. These events are triggered when the Java virtual
machine spawns and deletes threads of control. The events attributes
include the name of the thread, the name of the thread-group, and the
name of the parent thread.

• Method entry and exit. Method entry events are triggered when a
method implementation is entered. Method exit events are triggered
when the method exits. The time period between these events is the
wall-clock completion time of the method.

• Compiled method load and unload. These events are issued when
just-in-time (JIT) compilation of a method occurs. Just-in-time com-
pilation of a method compiles the (virtual machine) byte-code of the
method into real (native) machine instructions. Sun’s HotSpot [50]
technology automatically detects often-used methods, and compiles
them to native machine instructions automatically.

• Monitor contented enter, entered, and exit. These events can be used
to monitor the contention of Java monitors (due to mutual exclusion).
The monitor contented enter event is issued when a thread attempts
to enter a Java monitor that is owned by another thread. The monitor

2.3. Measurement APIs and tools 27

contented entered event is issued when the thread that waited for the
monitor enters the monitor. The monitor contented exit event is issued
when a thread leaves a monitor for which another thread is waiting.

• Monitor wait and waited. The monitor wait event is triggered when
a thread is about to wait on an object. The monitor waited event is
triggered when the thread finishes waiting on the object. These events
are triggered due to waiting on condition variables for the purpose of
cooperation between different threads.

• Garbage collection start and finish. These events are triggered before
and after garbage collection by the virtual machine. These events can
be used to measure the time spent on collecting garbage.

• New arena and delete arena. These events are sent when heap arenas
(areas of memory) for objects are created and deleted. (Currently, in
Java 2 SDK 1.4.2, not implemented by the JVMPI)

• Object allocation, free, and move. These are triggered when an object is
created, released, or moved in the heap due to garbage collection.

Like the JVMDI, JVMPI also provides various utility APIs to create new system
threads (which can be used in the performance tool implementation), raw
monitors like (to make the performance tool thread aware), and to trigger a
garbage collection cycle.

Unlike the JVMDI, JVMPI does not provide additional APIs like the JDWP and
JDI APIs.

Using the event subscription API described above the JVMPI can be used to
developed event-driven performance monitors. In addition to these event
related capabilities, the JVMPI can also dump the heap and monitors on
request. These dump capabilities can be used to develop profiler tools to
find software bottlenecks, such as methods with large completion times and
monitors that are often contended. Upon Java virtual machine initialization
the profiler agent implementation can ask the JVMPI to create a new system
thread. This thread could periodically call the GetCallTrace() function of the
JVMPI to dump a method call trace for a given thread, or request a dump of
the contents of the heap or a list of monitors.

28 Chapter 2. Performance Measurement

Evaluation of the JVMDI and JVMPI

The JVMDI is meant to observe the qualitative behavior of a Java application,
while the JVMPI focuses on the quantitative behavior. Both JVMDI and JVMPI
can be used for studying the behavior of an application, i.e. the execution
control flow (which threads are there, which methods are executed, etc.). The
JVMDI can annotate this control flow information with context information
such as contents of local variables, method parameters, and such. The JVMPI
can annotate the control flow information with performance related events,
such as the occurrence of garbage collection and locking contention.

For performance measurement JVMPI provides many useful features de-
scribed above. However, there are some weak points in the JVMPI. First, a
common activity in performance measurement is measuring the completion
times of method invocations. The JVMPI allows the user to subscribe to
method invocation events, but the user cannot give a fine-grained speci-
fication of which method invocations should be observed. So, events are
generated for every method invocation in the Java virtual machine, result-
ing in a significant performance overhead. Secondly, the JVMPI does not
provide a working API for measuring CPU times with a high-resolution. On
the Linux platform the GetCurrentThreadCpuTime() function of the JVMPI
simply returns the wall-clock time. Thirdly, while the JVMPI allows the user
to intercept classes being loaded into the virtual machine, so the byte-code
can be modified, the JVMPI does not provide an API to modify the byte-code;
all the user gets is an array of byte-code. Fourth, JVMPI only detects and
generates events for contended monitors, unlike JVMDI which allows the
user to query all existing monitors. This is not an issue for performance
measurement itself, but it is something to keep in mind when using JVMPI to
study the performance behavior of an application. Contention for monitors
may only occur for specific workloads. It is the job of the performance analyst
to make sure extensive load testing (using different workloads) is done to
detect monitors for which significant contention may occur.

Despite the limitations described above the JVMPI is an incredibly base for
developing performance tools such as profilers and monitors. Additional
functionality can be provided by the performance tool developer to work
around the limitations. For instance, the tool developers can develop their
own byte-code instrumentation API, use byte-code instrumentation to mon-
itor selected method invocations, use platform dependent APIs to query
performance counters to annotate the information JVMPI provides, and scan
the byte-code for instructions related to monitor contention.

2.3. Measurement APIs and tools 29

JVMPI does not allow us to monitor disk and network I/O and interactions
with the operating system and system libraries. The developer of perfor-
mance tools based on JVMPI has to implement platform specific functional-
ity in the profiler agent, interacting with APIs outside the virtual machine, if
such functionality is required.

In Chapter 3, we present our performance monitoring tool ‘JPMT’, which
combines functionality from JVMPI and operating system specific APIs, work-
ing around the limitations of JVMPI and adding performance information
outside the realm of the Java virtual machine such as observation of network
and disk I/O and operating system thread scheduling behavior.

2.3.5 The system library layer

Sometimes instrumentation of the environment is required to obtain the
required monitoring data. For instance, a library used by the application
we want to collect monitoring information for can be replaced with an in-
strumented library. Operating systems may support a more dynamic way to
instrument a library. For instance, most runtime linkers (functionality that
links application code to shared libraries when the application is started)
in UNIX operating systems support the LD_PRELOAD mechanism. This
mechanism allows function calls to some library to be overridden by calls to
a user supplied library. This user supplied library could implement wrapper
functions around the real library functions the user is interested in moni-
toring, i.e. the user library acts as a proxy to the real library. In the wrapper
functions the required instrumentation can be added.

2.3.6 The network

To monitor network socket I/O the system’s libraries could be instrumented,
wrapping existing socket I/O routines as described in the previous section. A
more comprehensive way of monitoring network I/O is using a ‘sniffer’.

A network sniffer hooks into the operating system’s networking layer to pro-
vide access to raw packet data of network adapters. With a sniffer we can
monitor network communication between applications running on different
systems. Sniffer monitoring results can be used to study network interac-
tions between applications, measure response times of remote applications,
characterize the workload an application receives via the network, and such.
For example, using a network sniffer we can study the performance of a web
server, focusing on its workload and overall response times.

30 Chapter 2. Performance Measurement

The network sniffer does not necessarily have to run on the system where
the applications are running on. It may be deployed on any machine the
communication of the application is routed through.

The Packet Capture Library (PCAP) [35] is the basis of most network sniffing
software on Microsoft Windows and UNIX systems. Examples of such sniffers
include tcpdump and ethereal.

Many tools are available to measure response times and bandwidth of the
network itself. The most well known tool to measure the response time is
probably the ‘ping’ tool, available on most operating systems including Win-
dows and UNIX, measures round-trip times on IP networks using ICMP
ECHO_REQUEST and ECHO_RESPONSE packets. Examples of network
bandwidth measurement tools include ‘bing’ for most UNIX systems and
‘iperf’ for UNIX and Windows.

2.4 Summary

In this chapter we introduced performance measurement activities, termi-
nology and concepts. Furthermore, we discussed measurement difficulties
and provided an overview of techniques, APIs and tools for performance
measurement in applications, their supporting software layers, and hard-
ware.

The next chapter presents our performance monitoring tool for Java applica-
tions and the Java host infrastructure middleware layer.

C
H

A
P

T
E

R

3
THE JAVA PERFORMANCE MONITORING

TOOL

To build performance models of a system, a description of its execution behav-
ior is needed. The description should include performance annotations so that
the performance analyst is able to identify the behavior relevant for perfor-
mance modeling. Accurate performance models require a precise description
of the behavior, and good quality performance estimates or measures. [65] Our
objective is to design a performance monitoring toolkit for Java that obtains
both a description of the behavior of a Java application, and high-resolution
performance measurements. In this chapter we present our performance mon-
itoring tool for Java applications and the Java host infrastructure middleware
layer.

This chapter is structured as follows. Section 3.1 presents our performance
monitoring tool requirements. Section 3.2 presents the architecture of our
performance monitoring tool. Section 3.3 explains how our tool can be used.
Section 3.4 discusses implementation details of our tool. Section 3.5 discusses
the intrusion of our tool. Section 3.6 summarizes this chapter.

31

32 Chapter 3. The Java Performance Monitoring Tool

3.1 Requirements

The Java Virtual Machine (JVM) is often used as host infrastructure mid-
dleware in current enterprise e-business applications. Parts of e-business
applications are implemented in Java, including web-servers, middleware
servers, and business logic. Rather than instrumenting these applications
themselves, we want to monitor events that occur inside the virtual machine.
This approach has several advantages; it allows so-called black-box appli-
cations (no source code availability) to be monitored and allows aspects of
performance that cannot be captured by instrumenting the application itself
to be captured. These include garbage collection and contention of threads
for shared resources.

The monitoring tool should be able to monitor the following elements of
execution behavior:

• The invocation of methods. The sequence of method invocations
should be represented by a call-tree. To produce call-trees we need to
monitor method entry and exit.

• Object allocation and release. In Java, objects are the entities that
invoke and perform methods. The monitoring tool should be able to
report information on these entities.

• Thread creation and destruction. Java allows multiple threads of con-
trol, in which method invocations can be processed concurrently. The
monitoring tool should be able to produce call-trees for each thread.

• Mutual exclusion and cooperation between threads. Java uses monitors
[30] to implement mutual exclusion and cooperation. The monitoring
tool should be able to detect contention due to mutual exclusion (Java’s
synchronized primitive), and measure the duration. Furthermore, the
monitoring tool should be able to measure how long an object spends
waiting on a monitor, before the object is notified (wait(), notify(), and
notifyAll() in Java).

• Garbage collection. Garbage collection cycles can have a significant
impact on the performance of an application. Stop-the-world garbage
collection, used by default in Java, introduces variability in the perfor-
mance. Opening and closing network connections and bytes being
transfered. Opening and closing files and reading and writing.

3.1. Requirements 33

Further requirements:

• Attributes to add. The monitoring results should include attributes
that can be used to calculate performance measures. For instance, to
calculate the wall-clock completion time of a method invocation the
timestamps of the method entry and exit are needed. The timestamps,
and other attributes used, should have a high-resolution. For instance,
timestamps with a granularity of 10ms are not very useful to calculate
the performance of method invocations, since a lot of invocations may
use less than 10ms.

• Support modeling. Performance modeling is a top-down process. At
various performance modeling stages, performance analysts may have
different performance questions. During the early modeling stages the
analyst is interested in a global view of the system to be modeled. The
analyst tries to identify the aspects relevant for performance modeling.
In later stages the analyst has more detailed performance questions
about certain aspects of the system. The monitoring toolkit should
support this way of working.

• Instrumentation: minimal overhead and automated. Instrumentation
of a Java program is required to obtain information on its execution
behavior. For performance monitoring it is important to keep the over-
head introduced by instrumentation minimal. So, we only want to
instrument for the behavior we are interested in. During the early mod-
eling stages, when the performance analyst wishes to obtain a global
view of the behavior, the overhead introduced by instrumentation is
not a major issue. However, when the analyst needs to measure the
performance of a certain part of the system it is important to keep the
instrumentation overhead to a minimum, since the measurements
need to be accurate. This means that we need different levels of in-
strumentation depending on the performance questions. Manually
instrumenting the Java program for each performance question is too
cumbersome and time consuming. Therefore we require some sort of
automated instrumentation based on a description of the behavioral
aspects the performance analyst is interested in.

• Allow development of custom tools to process monitoring results. Tools
are required to analyze and visualize the monitoring results. Since per-
formance questions may be domain specific it’s important that custom
tools can be developed to process the monitoring results. Hence, the

34 Chapter 3. The Java Performance Monitoring Tool

monitoring results should be stored in an open data format. An appli-
cation programming interface (API) to the monitoring data should be
provided to make it easy to build custom tools.

3.2 Architecture

The architecture of JPMT is based on the event-driven monitoring approach,
described in Chapter 2. JPMT represents the execution behavior of the appli-
cation it monitors by event traces. Each event represents the occurrence of
some activity, such as method invocation or the creation of a new thread.

The following figure, Figure 3.1, illustrates our architecture in terms of the
main building blocks of our tool, and the way they are related (e.g., via input
and output files).

Event trace file (event trees per thread)

Convert binary to text

Event trace browser GUI, Ruby scripts

Event trace API (C++ and Ruby)

 JPMT configuration

 Binary event log file

 Java VM flat event collection file

Event collection merger

Event logs

External
tools

Combined flat event collection file

Event trace generator

ObserverJava VM
Monitored application

Figure 3.1: Overview of the monitoring architecture. The boxed with round
edges are files. The boxes with square edges indicate software components.

3.3. Usage 35

First, the events of interest are specified in a configuration file. By using event
filters, events can be included or excluded from the set of interesting events.
For example, certain methods of a given class may be interesting, while the
rest should not be monitored.

During run-time the observer component collects the events of interest.
Instrumentation is added to enable generation, observation, and logging of
these events. The observed events are stored in a memory-mapped binary
file.

After monitoring, the binary file containing the collected events can be ana-
lyzed. The binary file is converted to a textual representation, from which
event traces can be produced by the event trace generator.

The toolkit can obtain monitoring data from different sources. The primary
source is the observer, which is described next section. It is also possible
to use event collections from other monitoring tools to add more detail to
the JPMT traces. For instance, detailed thread scheduling behavior can be
obtained from operating system monitors, such as the Linux Trace Toolkit
[67]. The event collections obtained from external monitoring tools can be
merged with Java VM event collections.

The event traces can be accessed using an event trace API. This API is the
main building block for tools that analyze or visualize event traces. The
event trace API allows the performance analyst to build custom analysis
tools and scripts. The API provides an object-oriented view on the event
traces. Classes represent the various event types; events are instances of those
classes (objects). Event attributes can be queried by invoking methods on
the event objects. This API is implemented in two programming languages:
C++ and Ruby. The toolkit provides two applications based on the C++ event
trace API; an event trace browser and an event trace analyzer. The Ruby API
allows for fast and easy development of event trace post-processing scripts.

3.3 Usage

3.3.1 Configuration

JPMT is configured using a configuration file for each application it monitors.
This configuration file is read by the JPMT when the Java virtual machine
that will run the Java application is started. The configuration file allows the
user to choose an output file to log events to (the output option), whether
or not object allocation, garbage collection, method invocation, use of Java

36 Chapter 3. The Java Performance Monitoring Tool

monitors are to be logged (that implement synchronization and cooperation
mechanisms), whether or not to use byte-code instrumentation to monitor
method invocations (instead of using JVMPI’s method invocation monitor-
ing mechanism), and whether or not to monitor operating system process
scheduling using the Linux Trace Toolkit [67]. Using the method and thread
filters the user can specify which methods and threads should be monitored,
and which should not be monitored. JPMT applies these filters in the same
order as they are specified in the configuration file (from top to bottom). By
default all threads are monitored and no method invocations are monitored,
i.e. ’include_thread *’ and ’exclude_method * *’ are the default thread and
method filter settings. All ’yes/no’ configuration directives default to ’no’.
Table 3.1 summarizes the user configurable options.

Directive Parameters Example
output Filename output logs/logfile
object_allocation “yes” or “no” object_allocation no
garbage_collection “yes” or “no” garbage_collection no
method_invocation “yes” or “no” method_invocation yes
bytecode_rewriting “yes” or “no” bytecode_rewriting yes
monitor_contention “yes” or “no” monitor_contention no
monitor_waiting “yes” or “no” monitor_waiting no
ltt_process_scheduling “yes” or “no” ltt_process_scheduling no
include_thread Thread name or wildcard include_thread MyApplication:Pool:*
exclude_thread Thread name or wildcard exclude_thread *
include_method Method name or wildcard include_method com.test.package

Hello
exclude_method Method name or wildcard exclude_method * *

Table 3.1: JPMT configuration options

The following configuration file example logs events to log/mylogfile.bin, tells
JPMT to monitor all method invocations in the com.example.test package
using byte-code rewriting, and excludes all other method invocations from
monitoring.

output log / mylogfi le . bin
observe_method_invocations yes
bytecode_rewriting yes
include_method com. example . t e s t . * *
exclude_method * *

Listing 3.1: JMPT configuration example

3.3.2 Processing monitoring results

This section describes the contents of the human-readable event traces.
These event traces are generated from the binary monitoring log-files by

3.3. Usage 37

JPMT’s event trace generation tool. The generated event trace file starts with
some generic information, such as information on the system (processor
type and speed, available memory, and timestamps of the first and last
events). This generic information is followed by monitoring information
of all threads of execution (if not excluded by a thread filter). For every
thread basic information such as its name, parent thread, and thread group
is printed, along with the timestamps when the thread started and exited
(if monitoring was not stopped before thread exit). After the basic thread
information, all the events that occurred in the thread are listed. Method
invocations are presented in a call-tree notation (i.e. a method invocation
tree). Events occurring within the context of a method invocation are listed
in a sub-tree.

The events that can be monitored by JPMT are described below.

• Thread synchronization. This event describes the contention for Java
monitors (i.e. mutual exclusion between threads). When monitor
contention occurs, the following event parameters are logged: the
timestamp when access to a monitor was requested, the timestamp
of when the monitor was obtained, and the timestamp of when the
monitor was released. In addition to these timestamps, information on
the Java object representing the monitor is shown, such as the name of
the class of the object, but only when object allocation monitoring has
been configured in the configuration file.

• Thread cooperation. This event describes the occurrence of coopera-
tion between threads in Java (i.e. condition variables that allow cooper-
ation between threads). The event parameters include the timestamp
of when the thread started waiting and the timestamp when it stopped
waiting, and whether it stopped waiting because a timer expired or
because it got a notification from another thread. Like the mutual ex-
clusion event, information on the Java object representing the monitor
is shown, such as the name of the class of the object, but only when
object allocation monitoring has been configured in the configuration
file.

• Process (thread) scheduling information. This provides information
on the operating system process schedule changes involving the mon-
itored thread. There are two events describing process scheduling
changes in JPMT: thread-in and thread-out. Together they describe
when a thread was actually running and when other processes where

38 Chapter 3. The Java Performance Monitoring Tool

running. Event parameters include the reason of the process schedule
change (for instance, a change due to blocking for a resource, or a
forced (involuntary) process schedule change), the timestamp when
the schedule change occurred, and the threads involved. Currently,
these events are not supported on other plat-forms than Linux. The
Linux Trace Toolkit (LTT) is used to obtain this monitoring information.

• Method invocations. A method invocation event includes the times-
tamp of when it occurred, the used wall-clock time in microseconds,
the used CPU time in microseconds, and whether or not the method
was compiled from byte-code into native code by the Java virtual ma-
chine. Method invocations are represented in call-tree notation. The
wall-clock and CPU time event parameters of the caller method include
the wall-clock and CPU time of callee methods. Mutual exclusion, co-
operation, garbage collection, process scheduling events, and such,
are shown within the method in which they occurred.

• Object allocation and release. The object allocation and release events
describe the allocation and release of dynamically allocated memory
for objects. Along with the timestamp of when the event occurred,
information on the object involved, such as the name of the object
class, is also shown.

• Garbage collection. This event describes the occurrence of garbage
collection. Parameters include the start and end timestamps of the
garbage collection cycle.

3.3.3 Presentation of monitoring results

The observer produces a binary log file containing the collected events. From
this event collection, event traces can be generated. The toolkit provides an
event trace generator that produces and event trace for each program thread.
Tools are needed to visualize and analyze these event traces.

JPMT provides an event trace API that can be used to implement event trace
processing tools. The API provides an object-oriented view on the event
traces. C++ classes represent the various event types; events are instances of
those classes (objects). Event attributes can be queried by invoking methods
on the event objects.

We have implemented two tools on top of this API: (i) an event trace browser
(or visualizer), and (ii) a command-line tool for analyzing event traces.

3.3. Usage 39

The event trace browser provides a simple graphical user interface for brows-
ing the event trace. Events, including performance attributes, are displayed
on the screen in a tree-like structure. The user is able to expand and collapse
sub traces, depending on the level of detail the user requires.

Figure 3.2 presents a screenshot of the event-trace browser. It is a trace frag-
ment of a request dispatching thread of a CORBA implementation. The first
column contains the name of the methods that are being invoked, including
caller-callee relationships (tree hierarchy). The second column contains the
measured wall-clock completion time in microseconds. The third column
contains the measured CPU usage in microseconds. The fourth column
shows queuing information of the request; before being dispatched requests
sit in a queue waiting for a dispatcher thread to become available. The
column shows that request number 87 spent 749066 microseconds in the re-
quest queue and that there are still 4 requests in the queue (excluding request
number 87). The queuing information is obtained by replaying actions in
the event trace related to the request queue, i.e., the en-queue and de-queue
operations of the queue.

Figure 3.2: Event-trace browser screenshot

The command-line tool can be used in scripts that post- process the event
traces for specific experiments, for example, to obtain input data for GNUplot
(a tool to generate plots). The command-line tool can also be used to export
the event traces to a human readable text format.

We plan to add language bindings for the Java and Ruby programming lan-
guages to the API, such that performance analysis applications can be written
in those languages too.

40 Chapter 3. The Java Performance Monitoring Tool

3.4 Implementation

3.4.1 The JPMT Virtual Machine Observer

Our first profiler agent prototype logged events in a human readable (text)
ASCII data format. Threads writing to the log file needed to obtain a global
lock for the file. This lock is held while writing the event to the file.

Our second prototype replaced the text format with a binary format, which
is significantly faster. The binary log file is memory-mapped into the profiler
agent’s address space. Different threads can write simultaneously to the
memory map. Of course, threads should not log events in the same location
of the memory map. A position in the memory map is assigned using a
position counter. Incrementing the position counter in the memory map
requires mutual exclusion. The position counter is increased with the size of
the data that is to be written.

The combined use of a binary data format, memory-mapped I/O, and mutual
exclusion to a position counter instead of the whole file, makes this solution
much faster than using text files. There is a downside though; portability is
sacrificed. Each operating system may implement different interfaces for
memory-mapped files. For example, on POSIX mmap(2) [57] is used, while
Microsoft Windows has CreateFileMapping(Win32).

Initialization, configuration, and maintenance of internal tables

During its initialization the profiler agent reads a user specified configura-
tion file, containing event filters. For example, the user may indicate which
classes and methods are to be monitored, or whether locking contention
is to be monitored. The configuration file format was described earlier in
Section 3.3.1.

After specifying the log file, the above configuration turns on observation
of monitor contention, object allocation, and method invocations. Further-
more, it indicates that byte-code rewriting is to be used to instrument for
method invocation monitoring. Finally, it specifies the methods to be ob-
served, using include and exclude filters. These filters take two arguments:
the class name and the method name. Wildcards are allowed in these filters.

When the virtual machine loads a class file the JVMPI informs the profiler
agent about it using a ‘class load’ event. This event has the following at-
tributes:

s t r u c t {

3.4. Implementation 41

char * class_name ;
char *source_name ;
j i n t num_interfaces ;
j i n t num_methods ;
JVMPI_Method *methods ;
j i n t num_static_fields ;
JVMPI_Field * s t a t i c s ;
j i n t num_instance_fields ;
JVMPI_Field * instances ;
JobjectID c l a s s _ i d ;

} class_load ;

Listing 3.2: JVMPI class_load structure

The profiler agent uses the attributes from the ‘class load’ event to build
hash tables that map class and method identifiers to class and method in-
formation, respectively. The hash tables only keep information for classes
and methods that are to be monitored. A ‘class unload’ event causes the
information related to the class to be removed from the hash tables. The fol-
lowing code fragment depicts how the information on classes and methods
are stored in hash tables.

c l a s s ClassInfo
{
public :

jobjectID classID ;
char *name;
bool dumped;

} ;

c l a s s MethodInfo
{
public :

jmethodID methodID ;
ClassInfo * c l a s s I n f o ;
char *name;
char * signature ;
bool dumped;

} ;

typedef hash_map<
jobjectID ,
ClassInfo * ,
hash<jobjectID > > ClassMap ;

42 Chapter 3. The Java Performance Monitoring Tool

typedef hash_map<
jmethodID ,
MethodInfo * ,
hash<jmethodID> > MethodMap;

Listing 3.3: JPMT class en method information

Class and method information is written to the log file on demand. For in-
stance, when a monitored method is invoked for the first time, information
on that method is logged. The ‘dumped’ fields in the ClassInfo and Method-
Info classes indicate whether the information has been logged or not. The
following class information is logged:

• The ‘classID’ field, which uniquely identifies a class.

• The ‘name’ field, which contains the name of the class.

The following information is logged for methods:

• The ‘methodID’ field, which uniquely identifies the method.

• The class identifier of the class the method is part of, obtained via the
‘classInfo’ reference to the object that holds the class information.

• The name of the method, which is stored in the ‘name’ field.

• The signature (return type and types of the parameters) of the method,
which is stored in the ‘signature’ field.

Monitoring thread spawning and deletion

The profiler agent records the spawning and deletion of every thread of
control, using the ‘thread start’ and ‘thread exit’ JVMPI events. A thread is
identified by its environment pointer (thread_env_id). The profiler agent
maintains a hash mapping of this environment pointer to a structure that
contains information on the thread. When the thread exits the profiler agent
removes the thread information from the hash map. The following code
fragment shows the attributes of the ‘thread start’ event, and how thread
information is stored in a hash table.

s t r u c t {
char *thread_name ;
char *group_name ;
char *parent_name ;

3.4. Implementation 43

jobjectID thread_id ;
JNIEnv * thread_env_id ;

} thread_start ;

c l a s s ThreadInfo
{
public :

char *name;
char *groupName ;
char *parentName ;

} ;

typedef hash_map<
JNIEnv * ,
ThreadInfo * ,
hash<JNIEnv *> > ThreadMap ;

Listing 3.4: JPMT thread information

Spawning and deletion of threads is recorded in the event log file. The follow-
ing information is logged when a thread is spawned:

• The environment pointer of the thread.

• The object identifier of the thread, when the profiler agent is configured
to monitor object allocations. The object identifier can be used to
obtain type information of the thread object, e.g., the name of the class
of the thread object.

• The name of the thread, the name of the parent thread, and the name
of the thread group this thread is part of.

• A timestamp, representing the time the event occurred.

When a thread is deleted the following information is logged:

• The environment pointer of the thread.

• A timestamp, representing the time the event occurred.

44 Chapter 3. The Java Performance Monitoring Tool

Monitoring method invocations using JVMPI method entry and exit
events

JVMPI notifies the profiler agent of method invocations using the method
entry and method exit events. Both JVMPI events have one event specific
attribute, the method identifier.

s t r u c t {
jmethodID method_id ;

} method ;

Listing 3.5: JPMT method information

When the profiler agent is notified of a method entry it executes the following
algorithm:

1. Obtain the thread local storage to store per-thread data. The pro-
filer agent creates this thread local storage when it processes the first
method entry in the thread.

2. If the method hash map doesn’t contain information for the method
identifier (meaning that the method is not to be monitored) then a
counter in the thread local storage is increased and the event handler
exits. This counter represents the number of un-logged method invo-
cations in the thread of control. It can be used to correct the event trace
for perturbation. For example, if a logged method calls 5 other meth-
ods that are filtered out (not logged), the CPU usage and completion
time of that method includes the time for observing and filtering the
un-logged method invocations. By keeping track of the number of un-
logged invocations, we can subtract the costs of observing and filtering
out these method invocations from the CPU usage and completion
time of the logged method.

3. If the method hash map does contain information on the method iden-
tifier then information on the method and its class is logged if it hasn’t
been logged before. The un-logged method-invocation counter is reset
and its old value is pushed on a stack in the thread local storage. Sub-
sequently, the information on the method entry is logged, including
timing related attributes, and the event handler exits.

A logged method entry contains the following attributes:

• The environment pointer of the thread that executes the method invo-
cation.

3.4. Implementation 45

• The identifier of the method.

• The value of the un-logged method invocations counter, before it has
been reset.

• Information needed to determine the CPU usage of the method.

• A timestamp, representing the time the event occurred.

Unfortunately, each operating system implements interfaces to obtain CPU
timing information differently. For example, POSIX (a UNIX standard) offers
the times(2) call, Windows offers GetThreadTimes(Win32) and GetCurrent-
ThreadCPUTime(Win32), BSD UNICES and derivatives have getrusage(2),
and Sun Solaris has gethrtime(2) and gethrvtime(2).

JVMPI offers GetCurrentThreadCpuTime(), which is supposed to return the
CPU time in nano-seconds. However, on Linux it returns the same value as
gettimeofday(2) does: the current wall-clock time in micro-seconds.

Often, CPU time information has a 10ms resolution, e.g. POSIX’ times(2),
BSD’s getrusage(2), and Windows’ GetThreadTimes(Win32) have a 10ms
granularity. This is too coarse to be used as a performance measure for Java
method invocations. This is caused by the frequency of the clock interrupt
timer. Most operating systems are configured to generate 100 clock interrupts
per second.

There is a solution for this problem: architecture specific hardware perfor-
mance counters. All modern micro processors, including Intel’s Pentium
family, IBM/Motorola’s PowerPC, and Compaq/DEC’s Alpha, implement
such performance counters.

These hardware counters don’t have the granularity problem, but they still
have an interfacing problem: there is no common interface to access these
counters. Libraries such as PAPI [7] provide a common interface to these
counters. The current implementation of the profiler agent doesn’t use such
a library, but implements similar functionality.

The profiler agent accesses the hardware performance counters using an
operating system specific device driver. On the Linux operating system
Mikael Pettersson’s PerfCtr [44] package is used.

Besides propagating hardware performance counter values to user-land,
these device drivers could also implement virtual performance counters
for each process (thread). Virtual counters are only incremented when a
process is executing, not when it is waiting in the operating system’s process

46 Chapter 3. The Java Performance Monitoring Tool

scheduler queue. So, in contrast to global counters, these counters provide
precise timing information for the process.

On the Intel platform information that can be obtained using hardware
performance counters includes the number of processor cycles since the
processor was booted [11]. We use this counter to calculate the CPU usage of
a method invocation. The information that can be obtained using hardware
performance counters can be much more detailed, e.g. efficiency of the
caches, and efficiency of branch prediction. For our purposes this is far too
detailed.

The CPU usage of a method can be calculated by subtracting the number
of processor cycles at method entry from the number of processor cycles at
method exit.

Monitoring contention during mutual exclusion

The JVMPI ‘monitor contented enter’, ‘entered’, and ‘exit’ events are logged
with timestamps, the environment pointer of the thread, and the object-id of
the Java object that is associated with the monitor.

Monitoring cooperation

The JVMPI ‘monitor wait’ and ‘waited’ events are logged with timestamps,
the environment pointer of the thread, and the object-id of the Java object
that is associated with the monitor.

Object allocation

In case information on Java objects is needed, for instance when there is
contention for a monitor, the observer queries JVMPI for object information.
This information is stored in the observer’s internal data structures. To keep
this information valid the observer also needs to monitor ‘object free’ events,
and ‘object move’ events (an object may be moved to another address during
garbage collection). The object information is also logged, so that the ana-
lyzer and visualizer tools can display object information of objects associated
to monitor contention and cooperation events.

Java byte-code instrumentation

Processing method entry and exit notifications sent by the JVMPI for every
method invocation introduces a lot of overhead. At minimum, two hash table

3.4. Implementation 47

lookups are required (to see whether or not to log the method entry and exit).
To reduce the overhead introduced due to monitoring method invocations
we have also implemented another monitoring approach: instrumentation of
the byte-code of method implementations. This instrumentation mechanism
only inserts instrumentation in methods that we want to monitor. This is
different from JVMPI’s method entry and exit events, which are triggered for
every method invocation, similar to the interceptor design pattern [13].

JVMPI provides the ‘class ready for instrumentation’) event, which can be
used to insert instrumentation in Java classes. However, no user-friendly
interface is provided to change the implementation of the classes. For Java,
libraries are available that provide the user with APIs for rewriting the imple-
mentation of classes, such as the Byte Code Engineering Library (BCEL) [38].
Unfortunately, we cannot use these libraries since the profiler agent has to be
implemented in C or C++. Rewriting classes before run time is not an option,
since that solution is in conflict with the requirement that the insertion of
instrumentation should be transparent to the user, and be done at run-time.

We choose to implement the byte-code instrumentation ourselves, in the
profiler agent. The ‘class ready for instrumentation’ event provides us with a
byte array that contains the compiled class object. The format of the class ob-
ject is described in the Java Virtual Machine Specification [37]. The following
pseudo-code fragment describes the structure of class objects. Data types
represented are: u2 and u4, which are 2-byte and 4-byte unsigned numbers;
cp_info, field_info, method_info, and attribute_info, which are structures that
describe constant pool entries (e.g., names of methods), variables, methods,
and attributes, respectively.

C l a s s F i l e {
u4 magic ;
u2 minor_version ;
u2 major_version ;
u2 constant_pool_count ;
cp_info constant_pool [constant_pool_count −1];
u2 access_f lags ;
u2 t h i s _ c l a s s ;
u2 super_class ;
u2 interfaces_count ;
u2 i n t e r f a c e s [interfaces_count] ;
u2 fields_count ;
f i e l d _ i n f o f i e l d s [f ields_count] ;
u2 methods_count ;
method_info methods [methods_count] ;

48 Chapter 3. The Java Performance Monitoring Tool

u2 attributes_count ;
a t t r i b u t e _ i n f o a t t r i b u t e s [attributes_count] ;

}

Listing 3.6: Java ClassFile

The byte-code rewriter takes the original byte-code array, rewrites it, and
returns the rewritten byte-code array to the virtual machine. The rewriting
algorithm consists of the following steps (the rewriting algorithm is only
executed if the class contains methods that we should monitor):

• All bytes of the class are copied to a newly allocated byte array that
keeps the instrumented class.

• The constant pool of the class is parsed and several administration
tables are built, containing information about constants. The constant
pool contains, for instance, references and names of classes the class
refers to, and references and names of methods it calls.

• New constant pool entries for the class and methods that implement
the instrumentation (i.e. the call-back handlers in the observer that
will be called for each instrumented method entry and exit) are added
to the instrumented class.

• Subsequently, the list of methods is iterated. If a method is to be
monitored, instrumentation is inserted at the method entry point and
before every method exit. The instrumentation contains byte-code
that notifies the profiler agent of method entry and exit. The insertion
of byte-code instructions renders branching offsets, and position coun-
ters of exception handlers invalid. The rewriting algorithm fixes these
relative and absolute addresses. In addition, the maximum stack size
may need to be updated, since the instrumentation contains method
invocations of the profiler agent’s method entry and exit handlers.
Method invocations use the stack to store parameters.

Below we illustrate the rewriting algorithm by showing how a simple Java
method is rewritten. First, the Java source code:

public s t a t i c i n t test2b (i n t i) {
i f (i == 2) return test2a (i + 1) ;
e lse return test2a (i) ;

}

Listing 3.7: Java method example

3.4. Implementation 49

Now we show the byte-code the Java compiler produced:

PC OPCODE OPERANDS
0x0 0x1a iload_0
0x1 0x05 iconst_2
0x2 0xa0 if_icmpne 0x0 0xa
0x5 0x1a iload_0
0x6 0x04 iconst_1
0x7 0x60 iadd
0x8 0xb8 invokestat ic 0x0 0x2
0xb 0xac ireturn
0xc 0x1a iload_0
0xd 0xb8 invokestat ic 0x0 0x2
0x10 0xac ireturn

Listing 3.8: Java byte-code before instrumentation

If the performance analyst indicated in JPMT’s configuration file that the
method test2b() is to be monitored, JPMT’s byte-code rewriting engine in-
serts instrumentation at the method entry point and every method exit point.
In this example there are two exit points, because of the two return state-
ments in the if statement. The instrumentation inserted by JPMT is depicted
by a ’*’ in the code fragment below. The instrumentation consists of two
byte-code instructions. First, we push the method identifier JPMT allocated
for this method (in this case the operand 0x01) onto the stack using the bi-
push instruction. The sipush instruction is used instead of bipush once we
start monitoring more than 256 methods (bipush pushes a byte, sipush a
short integer). Then we invoke, using the invokestatic method, a call-back
handler in the JPMT observer for either a method entry (operands 0x00
0x1E) or method exit (operands 0x00 0x1F). Recall from the instrumenta-
tion algorithm explanation above, that the algorithm adds class and method
information for JPMT’s call-back handlers to the instrumented class. The
operand values of the invokestatic byte-code instruction are index values of
the instrumentation call-backs in the instrumented class’ constant pool.

PC OPCODE OPERANDS
0x0 0x10 bipush 0x01 *
0x2 0xb8 invokestat ic 0x0 0x1e *
0x5 0x1a iload_0
0x6 0x05 iconst_2
0x7 0xa0 if_icmpne 0x0 0 x f
0xa 0x1a iload_0
0xb 0x04 iconst_1
0xc 0x60 iadd

50 Chapter 3. The Java Performance Monitoring Tool

0xd 0xb8 invokestat ic 0x0 0x2
0x10 0x10 bipush 0x01 *
0x12 0xb8 invokestat ic 0x0 0 x1f *
0x15 0xac ireturn
0x16 0x1a iload_0
0x17 0xb8 invokestat ic 0x0 0x2
0x1a 0x10 bipush 0x01 *
0x1c 0xb8 invokestat ic 0x0 0 x1f *
0 x1f 0xac ireturn

Listing 3.9: Instrumented Java byte-code

3.5 Intrusion

The overhead of monitoring depends on the amount of instrumentation.
We identified two distinct levels of monitoring: (i) exploring the behavior
of the monitored software and (ii) measuring performance of parts of the
software to answer specific performance questions. For exploring behavior
it doesn’t really matter how much overhead is introduced. For performance
measurement however, we like to minimize the overhead, since it disrupts
the measurements. We can do this by filtering out events we’re not interested
in.

Monitoring of method invocations causes the most overhead. On a Pen-
tium III 700 MHz system the overhead for monitoring and logging a method
invocation is 6 microseconds (on an AMD Athlon XP 2000 at 1.67 Ghz we
measured 5 microseconds) when the byte-code rewriting algorithm is used to
instrument methods. This can be split evenly in 3 microseconds for monitor-
ing the method entry event, and 3 microseconds for monitoring the method
exit event. Logging itself costs 1 microsecond for each event (excluding disk
flushes of the memory map). The other 2 microseconds per event are caused
by the invocation of our method invocation event handler and obtaining
timestamps and CPU performance counters. To compare, a Java method
that does a print-line on the screen (System.out.println()), costs 16us (on the
AMD machine we measured 17 microseconds). We provide a small utility to
measure overhead caused by the instrumentation on other platforms.

3.6 Summary

The construction of performance models requires insight in the execution be-
havior (how does the application work performance-wise) and good-quality

3.6. Summary 51

performance measurements (how fast does the application perform its work,
and which resources are used) [65]. The insight on the execution behavior
can be used to develop the structure (topology) of the performance model.
The performance measurements can be used to identify the parts of the
execution behavior that need modeling, to validate performance models,
and they can be used as performance model parameters.

Our Java Performance Monitoring Tool (JPMT) is based on event-driven
monitoring [32]. JPMT represents internal execution behavior of Java ap-
plications (also middleware and web servers) by event traces, where each
event represents the occurrence of some activity, such as thread creation,
method invocation, and locking contention. JPMT supports event filtering
during and after application execution. Each event is annotated by high-
resolution performance attributes, e.g., duration of locking contention, and
CPU time usage by method invocations. The instrumentation required for
monitoring the application is added transparently to the user during run-
time. Source code of the application is not required, making the tool suitable
for monitoring so-called black-box applications for which no source code is
available. Overhead is minimized by only adding instrumentation for events
the user (of the tool) is interested in and by careful implementation of the
instrumentation itself.

In the next chapter we discuss the inner workings of CORBA object middle-
ware and thread scheduling, and present our performance models for CORBA
object middleware.

C
H

A
P

T
E

R

4
PERFORMANCE MODELING OF CORBA
OBJECT MIDDLEWARE

In this chapter we discuss the inner workings of CORBA object middleware
and thread scheduling, and present our performance models for CORBA object
middleware.

This chapter is structured as follows. Section 4.1 introduces CORBA middle-
ware. Section 4.2 discusses the specification and implementation of threading
in CORBA. Section 4.3 presents our performance models. Section 4.4 discusses
how we generate workload in our experiments. Section 4.5 compares the
throughput of the various threading strategies. Section 4.6 discusses the im-
pact of marshaling in CORBA. Section 4.7 discusses performance modeling
of the thread scheduler of the operating system. Section 4.8 summarizes this
chapter.

4.1 CORBA object middleware

The Common Object Request Broker Architecture (CORBA) [41] specified by
the Object Management Group (OMG) is the de-facto object-middleware
standard. CORBA mediates between application objects that may live on
different machines, by implementing an object-oriented RPC mechanism.
This allows application objects to communicate with remote objects in the

53

54 Chapter 4. Performance Modeling

same way as they communicate with local objects. Besides this object location
transparency, CORBA also implements programming language transparency.
Object interfaces are specified in an interface description language (IDL).
These IDL interfaces are compiled to so-called stubs and skeletons, which
act as proxies for the client and server objects, respectively. The client and
server objects may be implemented in different programming languages, for
instance Java and C++.

3: ORB library

2: stub

1

1: method
invocation on

the object
reference

Client

5: ORB library

6: POA

8
8: object

implementation
(servant)

Server

7: skeleton

4: Client ORB sends request to server
(over TCP/IP), after request processing

the server ORB sends back a reply

Figure 4.1: Anatomy of a CORBA method invocation

To invoke a method on a remote CORBA object, the following sequence of
steps is taken, as illustrated by Figure 4.1 (illustrating a two-way request-and-
reply method invocation).

1. Remote method invocation. The client obtains the object reference of
the remote target object and performs a method invocation on it as if
the object were a local (e.g. Java) object.

2. Stub processing and marshaling. What really happens is that the client
invokes the method on the stub, which is the local proxy of the remote
target object. A reference to the proper stub is obtained from the object
reference of the target object. The stub constructs a CORBA request
object and translates the method invocation parameters, which are

4.1. CORBA object middleware 55

expressed using programming language, operating system, and archi-
tecture specific data types, to a common data representation (CDR).
This translation process is called marshaling. The marshaled data
is added to the request object. Subsequently, the request object is
forwarded to the client-side object request broker (ORB) library.

3. Client-side ORB processing. The client-side ORB library uses a TCP/IP
connection to communicate with the server-side ORB library. The ad-
dress of the server-side ORB is obtained from the target object’s object
reference. The object reference was created by a portable object adapter
(POA) in the server-side ORB. Each object is managed by exactly one
POA. A POA implements the adapter design pattern [13] to adapt the
programming language specific object interfaces to CORBA interfaces,
making the target object implementation accessible from the ORB. The
POA manages references to active objects in the active object map. This
map associates object identifiers with object implementations. Object
implementations are called servants. The object reference contains
server information, such as hostname and port number, the name of
the POA, and the object identifier of the target object.

4. ORB communication. The client-side ORB sends the request object to
the server-side ORB.

5. Server-side ORB processing. The server-ORB obtains the target object’s
POA and object identifiers from the request object, and forwards the
request to the POA managing the target object.

6. Object adaptor processing. The POA looks up the servant in its active
object map using the object identifier and forwards the request to the
skeleton of the target object.

7. Un-marshaling. The skeleton un-marshals the method invocation
parameters and looks up the method implementation.

8. Method invocation in the object implementation. The skeleton invokes
the request on the proper method implementation inside the object
implementation of the target object.

9. The road back, creating a reply and sending it to the client. When the
method invocation returns, the skeleton creates a CORBA reply object,
marshals the return parameters, and inserts the return parameters in
the reply object. The reply object is forwarded to the server-side ORB.

56 Chapter 4. Performance Modeling

Subsequently, the server-side ORB forwards the reply object to the
client-side ORB. Then, the client-side ORB forwards the reply object to
the stub, and finally, the stub un-marshals the return parameters and
forwards those to the client.

This description is a bit simplified. A full description of what happens during
a method invocation is available from [41] and from many books on the topic,
such as [29].

4.2 Specification and implementation of CORBA
threading

In this section we describe what threading strategies are, and what kind of
threading strategies are implemented in popular CORBA implementations.
A CORBA threading strategy determines how communication and execution
of requests take place. A thread is a light-weighted process, having its own
execution context (processor and memory state), but sharing memory and
file descriptors with other threads inside the process. By using multiple
threads, an ORB can receive and execute multiple requests concurrently.
Threading allows for more efficient use of the systemss resources, to achieve
a higher request throughput.

4.2.1 Threading in the OMG CORBA specification

The CORBA specification [41] specifies multi-threading policies for portable
object adapters (POA). It doesn’t specify how ORBs should implement thread-
ing and what threading strategies they should implement. Multi-threading
implementation in the ORB itself is left as platform-specific. The POA thread-
ing policies are there to ‘support threads in a portable manner across those
ORBs’ that implement multi-threading. The CORBA specification doesn’t
require the ORB to be multi-threaded, however ORBs are required to imple-
ment the POA threading policies if they are multi-threaded.

The specification defines three threading policies for portable object adapters:
the Single Thread Model, the ORB Controlled Model, and the Main Thread
Model. These threading policies determine what concurrency constraints
the POA will enforce while executing requests. The ORB Controlled Model
(the default) doesn’t impose any concurrency constrains, requests to ob-
jects managed by the POA may execute in parallel. The Single Thread Model
only allows one request to objects managed by the POA at a time (the POA

4.2. Specification and implementation of CORBA threading 57

dispatches requests sequentially). Requests to a single threaded POA are
mutually exclusive, a lock (mutex) is introduced (by the ORB vendor in the
middleware implementation), and locking contention may occur. The Main
Thread Model only allows one request at a time to be processed by any POA
with the main thread policy. Requests to any POA with main thread policy
are mutually exclusive, a lock (mutex) is introduced, and locking contention
may occur. The lock is shared by all main threaded POAs. The Main Thread
Model was introduced in the CORBA 2.4 specification. In this work we focus
on the ORB Controlled Model (the default).

4.2.2 Server side thread categories

On the server side of a CORBA application we can distinguish the following
kinds of threads: acceptor threads, receiver threads, dispatcher threads,
application specific threads, and administrative threads.

A common way of implementing I/O, i.e. connection setup and exchange of
GIOP (General Inter-ORB Protocol, CORBA’s messaging protocol) messages
between client and server, is to use a specific acceptor thread for listening
to incoming connections to CORBA objects (really the POA manager that
manages the object). Typically, for every new connection a receiver thread is
spawned that will handle the exchange of GIOP messages.

GIOP messages are received in receiver threads. In some threading strategies
the method invocations to CORBA objects are executed in receiver thread.
During this time the receiver thread cannot handle new GIOP messages,
such as a new method invocation request. For applications that use method
invocations with longer completion times it may be better to ‘delegate’ the
execution to a separate thread: a dispatcher thread. The dispatcher thread
will then handle the dispatching of the method invocation request to the ser-
vant. The method invocation will be executed in the context of the dispatcher
thread. After delegating the method invocation request to the dispatcher
thread, the receiver thread is free to receive the following GIOP message.
Some time may elapse between the receiver thread handing over the re-
quest to a dispatcher thread, and the dispatcher thread actually handling the
request.

The application running on top of the ORB can be multi-threaded also. Usu-
ally the ‘ORB Controlled Model’ threading policy is used in POAs that manage
servants for that application. The application (including the servants belong-
ing to that application) is designed to handle requests concurrently – the
application takes care of implementing critical sections (mutual exclusion)

58 Chapter 4. Performance Modeling

where required.

Besides the above mentioned kinds of CORBA related threads several Java vir-
tual machine related administrative threads, such as Java garbage collection
threads, will be active.

4.2.3 Threading strategies in ORBacus

We have used the ORBacus CORBA middleware by IONA to conduct our
performance experiments. The reason for using ORBacus is threefold. First,
ORBacus provides a complete set of threading strategies, which is most im-
portant to make a performance comparison of the most widely used thread-
ing strategies. Second, ORBacus is widely applied and available for both
C++ and for Java. Third, ORBacus is both commercially and academically
available. Other implementations, such as Orbix, Visibroker, JacORB and
OpenORB, support comparable threading strategies with comparable fea-
tures. We will describe the differences between the different CORBA imple-
mentations where applicable.

The thread-per-client threading strategy uses receiver threads for both receiv-
ing and dispatching the requests to servants. Because requests are dispatched
by the same thread as they are received in, following requests by the client
are blocked until the receiver thread is done processing the current request.
Effectively, only one request per client is active in user code, i.e. in the ser-
vants. Each client-server connection has its own receiver thread, so multiple
requests from different clients can be active in user code.

The threaded threading strategy is the same as the thread-per-client model,
but with an additional constraint: only one request may be active in user code.
The ORB serializes requests from the receiver thread when dispatching them
to servants, using a global ORB mutex. While in the thread-per-client model
one request per client could be active in user code (so multiple requests could
be active if multiple clients are connected to the ORB), only one request ORB-
wide can be active in user code in the threaded model.

Both the thread-per-client and the threaded threading strategies use the
receiver thread for receiving and dispatching requests to servants. The thread-
per-request threading strategy separates receiving requests and dispatching
requests in separate threads. After receiving a request from a client, the
receiver thread creates a new dispatcher thread. That thread dispatches the
request to the servant, and sends the reply back to the client. Meanwhile
the receiver thread can receive new requests (and dispatch them in new

4.2. Specification and implementation of CORBA threading 59

dispatcher threads). Thus, in the thread-per-request model multiple requests
from the same client can be active in user code.

The thread-pool threading strategy is a refinement of the thread-per-request
model. It addresses several issues that may arise when using the thread-
per-request model. First, the number of dispatcher threads is not bounded
in the thread-per-request model. This can lead to an uncontrolled growth
of the number of dispatcher threads. With many dispatcher threads active,
the context switch overhead becomes very large, and even trashing behav-
ior may occur, where the machine is mostly busy switching contexts rather
than executing user code. Another problem of the thread-per-request model
is that thread creation and destruction is needed for each request. Espe-
cially for requests that don’t require a large amount of processing time, the
added overhead of thread creation and destruction is relatively large, thus
leading to inefficiencies. The thread-pool model addresses these issues by
pre-allocating a fixed number of dispatcher threads when the ORB starts.
Instead of creating new dispatcher threads, the receiver thread en-queues
requests in the FIFO request queue of the dispatcher thread pool. The dis-
patcher thread pool assigns a dispatcher thread to process the request when
an idle (non-working) dispatcher thread is available.

4.2.4 Threading strategies in other CORBA implementations

All ORBs discussed in this section implement the thread-pool model, albeit
in different variations. ORBacus implements a global thread pool (shared
between all POAs) with a fixed size. The thread pool is allocated (all threads
are created) when the ORB starts. Idle threads are not killed, but remain in
the thread pool. OpenORB and Orbix also implement a global thread pool,
but with a minimum and maximum number of threads. When the ORB starts,
a minimum number of threads are allocated. The actual number of threads
in the thread pool will vary between the minimum and maximum depending
on the load. Idle threads are killed when there are no requests available
for processing and when the thread pool is larger than the minimum size.
JacORB implements thread pools per POA. These thread pools have a maxi-
mum size and a maximum number of idle threads. Threads are killed when
they return and find that the maximum number of idle threads has been
reached. Visibroker implements thread pools per POA. These thread pools
have a minimum and maximum size. Visibroker implements the leader/-
follower design pattern [47] to dispatch requests to servants. The request is
dispatched to the servant in the same thread as it was received in; a thread is
taken from the thread pool to listen for new requests. So, contrary to other

60 Chapter 4. Performance Modeling

thread pool implementations described in this section, the request will not
be handed over to a dispatcher thread (taken from the thread pool). Sun’s
CORBA implementation built-in JDK 1.4.1 also implements a thread pool,
but this pool has an unbounded size. Idle threads have a two-minute timeout
before they’re killed. The thread pool is global (for all POAs). All non-fixed
thread pools grow towards the maximum number of threads when a request
arrives and no idle thread is available.

ORBacus, Orbix and Visibroker are the most flexible CORBA implementations
for Java when it comes to threading models. All three implementations offer
various threading models. Orbix offers a ‘ThreadFilter’ API to the CORBA
application programmer, where custom threading models can be imple-
mented. Visibroker offers are similar facility to plug-in custom threading
models. Visibroker and ORBacus seem to be the only ORBs implementing
threading models that dispatch requests in the same thread as they are re-
ceived in (thread-per-session in Visibroker, thread-per-client and threaded
in ORBacus).

Implementation Dispatching models Thread-pool Supported threading
strategies

JacORB 2 beta Separate request proces-
sor threads.

Thread-pool for each
POA, with a maximum
number of idle threads
and a maximum size.

Thread-pool.

OpenORB 1.4.0 Separate request proces-
sor threads.

An ORB-wide thread
pool, with a minimum
and maximum size.

Thread-pool.

ORBacus 1.4.1 Supports both the same
thread model and sep-
arate request processor
thread model.

An ORB-wide thread
pool, with a fixed size.

Thread-per-client,
threaded, thread-per-
request & thread-pool.

Sun JDK ORB 1.4.1 Separate request proces-
sor threads.

An ORB-wide thread
pool, with an un-
bounded size and a
2-minute timeout be-
fore idle threads are
killed.

Thread-pool (basically
thread-per-request with
temporary caching of
non-idle threads) . No
support for the single
threaded POA policy.

ORBix 3.3 Separate request proces-
sor threads.

An ORB-wide thread
pool, with a minimum
and maximum size.

Thread-per-process
(thread-per-request),
thread-per-object
(thread-per-servant),
thread-pool & a thread-
filter API allowing cus-
tom threading models
to be implemented.

VisiBroker 4.5 Supports the same
thread model for the
thread-per-session
strategy, the leader-
follower model for the
thread pool strategy.
The threading model is
configurable per POA.

Thread-pool for each
POA, with a minimum
and maximum size
and a timeout for idle
threads.

Thread-per-session
(thread-per-client) &
thread-pool (but uses
leader/follower design
pattern).

Table 4.1: Threading strategies of popular CORBA implementations

4.3. Performance models of threading strategies 61

Table 4.1 contains one thread model that has not been discussed above: the
thread-per-object threading model implemented by Orbix. In the thread-
per-object model each servant has its own thread for executing requests.
The ORB thread that received the request en-queues the request in the FIFO
request queue of the target servant. The servant thread processes requests
from that queue one by one. The thread-per-object threading model thus
restricts the number of active requests in a certain object to one at a time.

All Java ORBs discussed in this section implement the same I/O threading
model: a listener (or acceptor) thread listens for new connections and re-
ceiver (or receptor) threads are created for each connection.

4.3 Performance models of threading strategies

To highlight the differences in the dynamic behavior of the four threading
strategies we present performance models for each of the threading strate-
gies. We present the performance models in an extended queuing network
notation [36] [32]. Figure 4.2 depicts some modeling constructs that require
further explanation. First, a thread is modeled by a service center inside a
square. All steps inside the dashed box are executed in the context of that
thread. These steps contribute to the holding time of the thread. While the
thread is busy, requests can queue in the FIFO queue in front of the thread. A
thread pool is a group of threads that can execute some steps depicted in the
dashed box. A thread pool is modeled as a multi-server with a FIFO queue
in front of it. A mutex is modeled by a queue and a dashed box denoting the
processing steps inside the critical section of the mutex. Finally, we use a
kind of zooming construct to denote the steps taking place inside a CORBA
portable object adapter. We separate the logical and physical resource layers.
The logical resource layer contains the threads and mutexes, while the physi-
cal resource layer contains the CPUs. The CPU service demands described in
the logical resource layer are executed on the CPUs in the physical resource
layer.

Our performance models focus on CORBA middleware implementations
and their threading behavior, and do not include performance aspects of the
network, disk I/O and memory resources in the physical resource layer. This
does not mean we think these are not important performance aspects. For in-
stance, network latency is of key importance in so-called ‘chatty’ distributed
applications (applications performance many fine-grained remote method
invocations). Network performance is also important in distributed applica-
tions moving around big datasets between locations and widely distributed

62 Chapter 4. Performance Modeling

applications. Memory is especially important when it is a scarce resource
(causing systems to swap out memory to the disk). In Java virtual machines
the configuration of the memory garbage collection algorithm is important
too. The configuration needs to be in line with the type of application, its
memory allocation behavior and its workload.

∞

POA Steps ...∞

∞

Thread pool

Thread

Mutex (critical
section)

Steps taking
place in POA

Figure 4.2: Performance model notation

4.3.1 Thread-per-client

The simplest threading strategy available in ORBacus is the thread-per-client
model. In the thread-per-client model a receiver thread is created for every
incoming connection request of a client. Since clients could ask for multiple
connections using the private connection policy or connect to different
POA managers in the same server, a better name for this model would be
thread-per-connection. This section discusses the performance model of the
thread-per-client threading strategy. Figure 4.3 contains the performance
model in an extended queuing network notation.

Performance model description

Requests arrive at receiver threads with connection k (of Ncon connections)
arrival rate λi , j ,k for POA i and Object j. During request processing the
receiver thread is occupied, this resource possession is depicted by a dashed
line around the receiver thread logical resource. The thread-per-client model

4.3. Performance models of threading strategies 63

∞λi,j,1

Root POAbrec

∞
bser
bsern

bser
bsern

bdisp bunm bmar breply

POA 2

ST
POA NPOA

∞

∞
bser
bsern

bser
bsern

bdisp bunm bmar breply

∞λi,j,2
brec

∞λi,j,k
brec

Receiver
threads Servant 1

POA1

Servant Nser_1

POA1

Servant 1
POANPOA

Servant Nser_1

POANPOA

logical resource layer

physical resource layer∞
CPU

Ncon
ST POA
mutex

Operating system
scheduler runs
threads on Ncpu

CPUs

Figure 4.3: Performance model of the thread-per-client strategy

implements the same-thread dispatching model: requests are received and
dispatched to servants in the same thread (the receiver thread). While the
receiver thread is processing a request, newly incoming requests queue in
the FIFO queue.

The receiver thread first receives the request from the network, then it un-
marshals the request header and a part of the request body, to obtain the POA
and object identifiers. A series of request de-multiplexing steps is needed
to locate the target POA, target object, and target method implementation.
The POA identifier is used to locate the POA. In the performance model
the aforementioned processing steps (including the de-multiplexing step
to obtain the target POA, but excluding the other de-multiplexing steps)
are modeled by a service demand br ec . The request is forwarded to the
located POA, one of Npoa POAs. De-multiplexing continues with locating the
target object in the POA’s active object map, using the earlier obtained target
object identifier. Now we have located the CORBA skeleton of the target
object. The last de-multiplexing step is to locate the method implementation
inside the skeleton. Finally, the request is dispatched to the target object’s

64 Chapter 4. Performance Modeling

skeleton. These two de-multiplexing steps and the dispatching are modeled
by a service demand bdi sp .

The remainder of the request (partial un-marshaling already took place ear-
lier), including the request parameters, is un-marshaled by the skeleton.
This un-marshaling step is modeled by a service demand bunm_i , j . The
service demand depends on the amount and type of data that needs to be un-
marshaled. The method implementation is invoked with the un-marshaled
method parameters. The service demand of the method implementation is
modeled by bser _i , j (CPU service demand) and bser n_i , j (delay introduced
by non-CPU resources, e.g. remote database access or remote procedure
calls).

A POA may be configured using the single-thread threading policy, meaning
that only one method at a time can be active inside the POA (i.e. in the objects
managed by that POA). Access to the objects managed by this POA needs
to be serialized. In single-threaded POAs the un-marshaling of the request
parameters and the invocation of the method implementation are protected
by a mutex, as depicted in the performance model by the ST-POA mutex (a
FIFO queue). The critical section, protected by the mutex, is denoted by a
dashed line drawn around the involved service centers. The Root POA, the
POA created when the ORB starts, is always configured to be multi-threaded
(it uses the ORB Controlled Model threading policy by default). The servant
implementation may have a critical section too, which can also be modeled
by FIFO queues as depicted in the model. The service centers that represent
the servants with service demand bser _i , j and delay bser n_i , j may be replaced
by sub-models if the performance behavior of the servant cannot be captured
using these parameters.

After method invocation the return parameters need to be marshaled. This is
modeled by a service demand bmar _i , j . The service demand depends on the
amount and type of data that needs to be marshaled. Finally, a reply message
is created with the marshaled return parameters. The reply is sent back to
the client over the same TCP/IP connection as the request arrived. This last
step is modeled by a service demand br epl y .

The threads that execute the mentioned steps for each request that is being
served, share the physical server resources (such as the CPU, memory and
I/O), as indicated in Figure 4.3.

4.3. Performance models of threading strategies 65

4.3.2 Threaded

The threaded threading strategy is similar to the thread-per-client threading
strategy. The only difference is that in the threaded threading strategy there
may only be one active request at a time in the servants. Access to the
servants is serialized by an ORB-wide mutex. This threading strategy is
used by CORBA applications that are not multi-thread aware. For instance,
legacy CORBA applications that are developed for single-threaded ORBs
can use this threading strategy. Similar to the thread-per-client model, the
threaded model also implements the same-thread dispatching model, where
the receiver thread both receives requests from clients and dispatches them
to the servants.

The performance model of the threaded threading strategy is similar to the
one of thread-per-client, except that the mutex for single-threaded POAs is
removed (the ORB wide mutex basically makes all POAs single-threaded) and
an ORB-wide mutex has been added in the POA model. Figure 4.4 contains
the performance model in an extended queuing network notation.

∞λi,j,1
Root POAbrec

∞
bser
bsern

bser
bsern

bdisp bunm bmar breply

POA 2

ST
POA NPOA ∞

bser
bsern

bser
bsern

bdisp bunm bmar breply

∞λi,j,2
brec

∞λi,j,k
brec

Receiver
threads Servant 1

POA1

Servant Nser_1

POA1

Servant 1
POANPOA

Servant Nser_1

POANPOA

logical resource layer

physical resource layer∞
CPU

Ncon

∞
ORB

Mutex

Operating system
scheduler runs
threads on Ncpu

CPUs

Figure 4.4: Performance model of the threaded strategy

66 Chapter 4. Performance Modeling

Performance model description

Requests arrive at receiver threads with connection k (of Ncon connections)
at rate λi , j ,k for POA i and Object j. During request processing the receiver
thread is occupied, this resource possession is depicted by a dashed line
around the receiver thread logical resource. The threaded model implements
the same-thread dispatching model: requests are received and dispatched to
servants in the same thread (the receiver thread). While the receiver thread is
processing a request, newly incoming requests queue in the FIFO queue.

The receiver thread first receives the request from the network, then it un-
marshals the request header and a part of the request body, to obtain the POA
and object identifiers. A series of request de-multiplexing steps is needed
to locate the target POA, target object, and target method implementation.
The POA identifier is used to locate the POA. In the performance model
the aforementioned processing steps (including the de-multiplexing step
to obtain the target POA, but excluding the other de-multiplexing steps)
are modeled by a service demand brec. The request is forwarded to the
located POA, one of Npoa POAs. De-multiplexing continues with locating the
target object in the POA’s active object map, using the earlier obtained target
object identifier. Now we have located the CORBA skeleton of the target
object. The last de-multiplexing step is to locate the method implementation
inside the skeleton. Finally, the request is dispatched to the target object’s
skeleton. These two de-multiplexing steps and the dispatching are modeled
by a service demand bdi sp .

The remainder of the request (partial un-marshaling already took place ear-
lier), including the request parameters, is un-marshaled by the skeleton.
This un-marshaling step is modeled by a service demand bunm_i , j . The
service demand depends on the amount and type of data that needs to be un-
marshaled. The method implementation is invoked with the un-marshaled
method parameters. The service demand of the method implementation is
modeled by bser _i , j (CPU service demand) and bser n_i , j (delay introduced
by non-CPU resources).

In the threaded threading strategy only one method at a time can be active in-
side any POA. Access to all objects needs to be serialized. The un-marshaling
of the request parameters and the invocation of the method implementa-
tion are protected by a mutex, as depicted in the performance model by the
ORB mutex (a FIFO queue). The critical section, protected by the mutex,
is denoted by a dashed line drawn around the involved service centers. In
this threading strategy the servants don’t have critical sections, as they are

4.3. Performance models of threading strategies 67

single-threaded. As with the thread-per-client model, the service centers
that represent the servants with service demand bser _i , j and delay bser n_i , j

may be replaced by sub-models if the performance behavior of the servant
cannot be captured using these parameters.

After method invocation the return parameters need to be marshaled. This is
modeled by a service demand bmar _i , j . The service demand depends on the
amount and type of data that needs to be marshaled. Finally, a reply message
is created with the marshaled return parameters. The reply is sent back to
the client over the same TCP/IP connection as the request arrived. This last
step is modeled by a service demand br epl y .

4.3.3 Thread-per-request

The thread-per-request threading strategy separates the request receiving
and dispatching steps into separate threads. After the receiver thread receives
a request from a client, a new thread is spawned to dispatch the request to
the servant. Execution of the method implementation takes place in that
dispatcher thread. After spawning the dispatcher thread and forwarding the
request to that thread, the receiver thread is ready to receive the next request
from the client. When the dispatcher thread is done with dispatching the
request to the servant and sending the reply back to the client, it kills itself.
The advantage of this threading strategy is that multiple requests from the
same client can be dispatched to servants concurrently. The disadvantage
of this threading strategy is the costs of thread creation and destruction for
every request. Especially for requests that require little time to complete, the
added overhead of thread creation and destruction is relatively high. How-
ever, for requests that take a long time to complete this threading strategy
is useful, because it doesn’t block further requests by the same client. Be-
cause the number of dispatcher threads is unbounded (they are created by
receiver threads for incoming requests, as long as the operating system has
sufficient resources for the threads) it can lead to an uncontrolled growth
of dispatcher threads. When a lot of threads are simultaneously active the
memory resources of the machine are drained, and the overhead caused by
thread context switches can lead to trashing behavior, where little time is left
for actual request processing. Figure 4.5 contains the performance model in
an extended queuing network notation.

68 Chapter 4. Performance Modeling

∞λi,j,1
Root POAbrec

∞
bser

bsern

bser

bsern

bdisp bunm bmar breply

POA 2

ST
POA NPOA ∞

bser

bsern

bser

bsern

bdisp bunm bmar breply

∞λi,j,2
brec

∞λi,j,k
brec

Receiver
threads

Servant 1
POA1

Servant Nser_1

POA1

Servant 1
POANPOA

Servant Nser_1

POANPOA

logical resource layer

physical resource layer∞
CPU

Ncon

btc

btc

btc

btk

Dispatcher
threads

∞

ST POA
mutex

Operating system
scheduler runs
threads on Ncpu

CPUs

Figure 4.5: Performance model of the thread-per-request strategy

Performance model description

Requests arrive at receiver threads with connection k (of Ncon connections)
with request arrival rate λi , j ,k for POA i and Object j. During request process-
ing the receiver thread is occupied, this resource possession is depicted by
a dashed line around the receiver thread logical resource. The thread-per-
request model implements the separate-thread dispatching model: requests
are received in receiver threads and dispatched to servants in other threads,
the dispatcher threads. While the receiver thread is receiving a request, newly
incoming requests queue in the FIFO queue.

The receiver thread first receives the request from the network, then it un-
marshals the request header and a part of the request body, to obtain the POA
and object identifiers. A series of request de-multiplexing steps is needed
to locate the target POA, target object, and target method implementation.
The POA identifier is used to locate the POA. In the performance model
the aforementioned processing steps (including the de-multiplexing step to
obtain the target POA, but excluding the other de-multiplexing steps) are
modeled by a service demand br ec .

Then, a new dispatcher thread is created by the receiver thread. The cost of

4.3. Performance models of threading strategies 69

thread creation is modeled by the service demand btc . The dispatcher thread
continues processing the request, and the receiver thread is now ready to
receive the next request from the queue. After these processing steps the
receiver thread is done with the 1st phase of its request processing. The
2nd phase consists of cleaning allocated data-structures and preparations to
process the next request. After the 2nd phase the receiver thread will block if
no new request is available.

The dispatcher thread forwards the request to the located POA, one of Npoa

POAs. De-multiplexing continues with locating the target object in the
POA’s active object map, using the earlier obtained target object identifier.
Now we have located the CORBA skeleton of the target object. The last de-
multiplexing step is to locate the method implementation inside the skeleton.
Finally, the request is dispatched to the target object’s skeleton. These two
de-multiplexing steps and the dispatching are modeled by a service demand
bdi sp . The remainder of the request (partial un-marshaling already took place
earlier), including the request parameters, is un-marshaled by the skeleton.
This un-marshaling step is modeled by a service demand bunm_i , j . The
service demand depends on the amount and type of data that needs to be un-
marshaled. The method implementation is invoked with the un-marshaled
method parameters. The service demand of the method implementation is
modeled by bser _i , j (CPU service demand) and bser n_i , j (delay introduced
by non-CPU resources).

A POA may be configured using the single-thread threading policy, meaning
that only one method at a time can be active inside the POA (i.e. in the objects
managed by that POA). Access to the objects managed by this POA needs
to be serialized. In single-threaded POAs the un-marshaling of the request
parameters and the invocation of the method implementation are protected
by a mutex, as depicted in the performance model by the ST-POA mutex (a
FIFO queue). The critical section, protected by the mutex, is denoted by a
dashed line drawn around the involved service centers. The Root POA, the
POA created when the ORB starts, is always configured to be multi-threaded
(it uses the ORB Controlled Model threading policy by default). The servant
implementation may have a critical section too, which can also be modeled
by FIFO queues as depicted in the model. The service centers that represent
the servants with service demand bser _i , j and delay bser n_i , j may be replaced
by sub-models if the performance behavior of the servant cannot be captured
using these parameters.

After method invocation the return parameters need to be marshaled. This is

70 Chapter 4. Performance Modeling

modeled by a service demand bmar _i , j . The service demand depends on the
amount and type of data that needs to be marshaled. Finally, a reply message
is created with the marshaled return parameters. The reply is sent back to
the client over the same TCP/IP connection as the request arrived. This last
step is modeled by a service demand br epl y .

Now that the request dispatching is done and a reply has been sent to the
client, the dispatcher thread kills itself. The cost of killing the thread is
modeled by a service demand btk .

4.3.4 Thread-pool

The thread-pool threading strategy addresses the disadvantages of the thread-
per-request threading strategy, while still implementing the separate-thread
dispatching model. In the thread-pool model the dispatcher threads are
pre-created. Idle dispatcher threads are put in a pool, the dispatcher thread
pool. When a request arrives at the receiver thread, it doesn’t need to create
a new thread for request dispatching, instead the receiver thread forwards
the request to the thread pool, where it is queued (in FIFO order). The
thread pool request queue is monitored by the idle dispatcher threads. Idle
dispatcher threads remove requests from the queue, and dispatch them to
servants. When the dispatcher thread is done, it doesn’t kill itself, but instead
it returns to the thread pool. The thread pool has a fixed size. Therefore the
thread-pool threading strategy doesn’t suffer from the uncontrolled thread-
growth phenomena, unlike the thread-per-request model. Also, since threads
are pre-created, the thread creation and destruction costs btc and btk of
the thread-per-request model are not present here. Figure 4.6 contains the
performance model in an extended queuing network notation.

Performance model description

Requests arrive at receiver threads with connection k (of Ncon connections)
with arrival rate λi , j ,k for POA i and Object j. During request processing the
receiver thread is occupied, this resource possession is depicted by a dashed
line around the receiver thread logical resource. The thread-pool model
implements the separate-thread dispatching model: requests are received in
receiver threads and dispatched to servants in other threads, the dispatcher
threads. While the receiver thread is receiving a request, newly incoming
requests queue in the FIFO queue.

The receiver thread first receives the request from the network, then it un-
marshals the request header and a part of the request body, to obtain the POA

4.3. Performance models of threading strategies 71

∞λi,j,1
Root POAbrec

∞
bser

bsern

bser

bsern

bdisp bunm bmar breply

POA 2

ST
POA NPOA ∞

bser

bsern

bser

bsern

bdisp
bun

m
bmar breply

∞λi,j,2
brec

∞λi,j,k
brec

Receiver
threads

Servant 1
POA1

Servant Nser_1

POA1

Servant 1
POANPOA

Servant Nser_1

POANPOA

logical resource layer

physical resource layer∞
CPU

Operating system
scheduler runs
threads on Ncpu

CPUs

Ncon

Dispatcher
threads

∞

Pool of
Ndisp

threads

∞

ST POA
mutex

Figure 4.6: Performance model of the thread-pool strategy

and object identifiers. A series of request de-multiplexing steps is needed
to locate the target POA, target object, and target method implementation.
The POA identifier is used to locate the POA. In the performance model
the aforementioned processing steps (including the de-multiplexing step to
obtain the target POA, but excluding the other de-multiplexing steps) are
modeled by a service demand brec. Then, the receiver thread enqueues
the request in a FIFO request queue in front of the dispatcher thread pool.
The dispatcher thread pool contains Ndi sp threads. After enqueuing the
request, idle dispatcher threads are signalled that a new request is available
in the queue. The request remains in the queue until a dispatcher thread is
available to dispatch the request. After these processing steps the receiver
thread is done with the 1st phase of its request processing. The 2nd phase
consists of cleaning allocated data-structures and preparations to process
the next request. After the 2nd phase the receiver thread will block if no new
request is available.

The dispatcher thread forwards the request to the located POA, one of Npoa

POAs. De-multiplexing continues with locating the target object in the
POA’s active object map, using the earlier obtained target object identifier.
Now we have located the CORBA skeleton of the target object. The last de-

72 Chapter 4. Performance Modeling

multiplexing step is to locate the method implementation inside the skeleton.
Finally, the request is dispatched to the target object’s skeleton. These two
de-multiplexing steps and the dispatching are modeled by a service demand
bdi sp .

The remainder of the request (partial un-marshaling already took place ear-
lier), including the request parameters, is un-marshaled by the skeleton.
This un-marshaling step is modeled by a service demand bunm_i , j . The
service demand depends on the amount and type of data that needs to be un-
marshaled. The method implementation is invoked with the un-marshaled
method parameters. The service demand of the method implementation is
modeled by bser _i , j (CPU service demand) and bser n_i , j (delay introduced
by non-CPU resources, such as remote database access or remote procedure
calls).

A POA may be configured using the single-thread threading policy, meaning
that only one method at a time can be active inside the POA (i.e. in the objects
managed by that POA). Access to the objects managed by this POA needs
to be serialized. In single-threaded POAs the un-marshaling of the request
parameters and the invocation of the method implementation are protected
by a mutex, as depicted in the performance model by the ST-POA mutex (a
FIFO queue). The critical section, protected by the mutex, is denoted by a
dashed line drawn around the involved service centers. The Root POA, the
POA created when the ORB starts, is always configured to be multi-threaded
(it uses the ORB Controlled Model threading policy by default). The servant
implementation may have a critical section too, which can also be modeled
by FIFO queues as depicted in the model. The service centers that represent
the servants with service demand bser _i , j and delay bser n_i , j may be replaced
by sub-models if the performance behavior of the servant cannot be captured
using these parameters.

After method invocation the return parameters need to be marshaled. This is
modeled by a service demand bmar _i , j . The service demand depends on the
amount and type of data that needs to be marshaled. Finally, a reply message
is created with the marshaled return parameters. The reply is sent back to
the client over the same TCP/IP connection as the request arrived. This last
step is modeled by a service demand br epl y .

Now that the request dispatching is done and a reply has been sent to the
client, the dispatcher thread returns to the thread pool and is ready to process
the next request.

4.4. Workload generation 73

4.4 Workload generation

To aid in our experiments, we developed a synthetic workload generator so
that we could automate performance experiments with different scenarios.
The workload generator consists of a client and server application.

The server side application offers the following scenario configuration op-
tions:

• Specification of the POA hierarchy, including POA managers and POA
policies (e.g. single-threaded POAs).

• Deployment of objects on the specified POAs.

• Service demands for methods in the object implementation. Both
CPU time usage and waiting time can be described. The CPU time
can be used to work that is done by the object implementation. The
waiting time can be used to simulate that the object implementation
is waiting for an external entity, for instance a query to a remote SQL
database. Currently two distributions are supported, exponential ser-
vice demands and deterministic service demands.

• Configuration options for the ORB, for instance which threading model
to use or connection reuse policies.

The client-side application executes a given workload on the server applica-
tion. The workload description consists of a collection of arrival processes.
An arrival process description consists of:

• The total number of requests to generate.

• The targets of the arrival process. A description of a target consists of
the name of the remote object, the name of the method to invoke, and
(if applicable) requests parameters (payload). If an arrival process has
multiple targets, then by default the requests are equally distributed
over the targets. It is possible, however, to specify routing probabilities
for each target.

• Request inter-arrival times can be defined using the deterministic and
exponential distribution (Poisson inter-arrivals). Support for other
distributions can easily be added. Requests are generated regardless of
the completion of previous requests; i.e. a transaction-class workload,
modeled as open arrivals in queuing models.

74 Chapter 4. Performance Modeling

• Another option is to use a closed arrival process. Requests are sent
one after another (at most one outstanding request per arrival process
definition) optionally with delays between requests (representing user
thinking time); i.e. a new request is sent after the reply to the previous
request is received by the client.

Support for non-synthetic workload distributions can be easily added to this
CORBA middleware workload generator. An example of such non-synthetic
workload is trace-driven load generation using logged workload information
from a production environment.

Performance experiments often iterate one or more parameters in the sce-
nario. For instance, a series of experiments can be performed to study the
effect of an increasing request rate or an increasing number of clients on the
mean response time of requests. We use scripts that iterate these parameters
and instantiate workload scenarios templates using the parameter values.

W
ar
m
-u
p

C
oo
l-d
ow

n

t1 t2

Figure 4.7: Warm-up and cool-down

We illustrate the warm-up and cool-down issues in Figure 4.7. During the
warm-up phase the system initializes itself, the Java virtual machine compiles
any code hot spots to machine code (just-in-time compilation), caches are
filled, etc. The system warm-up is completed when the system has adapted to
the given workload, in Figure 4.7 we denote this by t1. At time t2 the workload
generator has sent all requests specified in the workload definitions and
stops generating new requests. The system may still be working on requests
and the load generator waits for those to complete. Meanwhile the load of
the system goes down as fewer requests are being processed. This has an
impact on the measured performance, e.g. the response times will drop since
there are fewer requests inside the system sharing the resources.

4.5. Throughput comparison of the threading strategies 75

Request measurements before t1 and after t2 should not be used as they are
influenced by warm-up and cool-down effects. The workload generator has
no features of its own to deal with system warm-up and cool-down issues.
This is left to the performance analyst. In our experiments we filter the
requests in the scripts that process all the measurement results.

4.5 Throughput comparison of the threading
strategies

In this section we assess and explain the impact of threading strategies on
the server performance by doing an experimental comparison of the thread-
per-client, threaded, thread-per-request and thread-pool strategies.

4.5.1 Experimental setup

We perform a series of experiments using a closed arrival process with an
increasing number of clients. Initially each client sends a single request and
waits for the reply. Then a new request is sent after the reply to the previous
request is received by the client. This way each client has at most one out-
standing request. The reason for using a closed arrival process, instead of
an open arrival process, is twofold. First of all, in a set-up with open arrivals
TCP/IP sessions have to be set-up and terminated during the experiments.
This overhead will degrade the end-to-end performance, and the perfor-
mance of the threaded and thread-per-client strategy will be affected most.
Because we are focusing on a fair comparison of server performance we want
to exclude this effect from our results. Secondly, since we are comparing the
performance of several threading strategies, the most interesting results are
regarding the performance under ‘maximum load’ instead of under light load.
With the closed loop arrival process used in this experiment, the ‘maximum
load’ for each strategy is realized automatically.

Each client has its own TCP/IP connection to the server ORB, and thus its
own receiver thread on the server. Our test-bed consists of two machines:
Utip267 and Utip442. Utip267 is a Pentium IV 1.7 GHZ with 512 MB of
memory. Utip442 is a Pentium III 550 MHz with 256 MB of memory. In these
experiments Utip442 acts as the CORBA server and Utip267 as the CORBA
client. Notice that we used the faster machine as the client in order to make
sure that the client does not become the bottleneck in the experiments. In
particular, for all results presented below we verified that the request rate
generated by the client was at least enough to keep the server busy at all

76 Chapter 4. Performance Modeling

times (i.e. the client is not the bottleneck). Both machines run the Linux
2.4.19 operating system and the Sun Java 2 standard edition v1.4.1. The
Java virtual machine is configured with default garbage collection settings
and without run-time pre-compilation optimization features. The CORBA
implementation we use in this example is IONA ORBacus/Java 4.1.1. The
thread pools used in the experiments with the thread-pool strategy hold
a number of threads equal to the number of clients (i.e. it varies with the
number of clients). The following is a fragment of the IDL definitions used in
the experiments.

i n t e r f a c e PerformanceTest
{

long doSomeWork () ;
} ;

Listing 4.1: IDL definitions for the throughput experiments

The doSomeWork method executes a configured work-load on the system.
In the experiments we use three workload cases. The 1 ms CPU demand
scenario represents the CPU processing cost of a simple method. The 5 ms
CPU demand represents the CPU processing costs of a scenario with a more
complex method (a CPU bound application). Finally, the 50 ms delay (not
CPU processing time) represents the delay induced from a simple SQL query
on a database server running on another machine (an I/O bound, database
driven application). All service demands and delays are configured to have
an exponential distribution. We run the experiment with 2, 4, 8, 16, 32 and
64 clients. Some experiments are also executed with 128 clients, depending
on the CPU utilization at 64 clients. Each client executes a work-load of 200
requests on the server. We also have configured a minimum duration of 45
seconds for each experiment, so that we get enough measurements for runs
with a small number of clients.

4.5.2 Experimental results

In all experiments the thread-per-client threading strategy is expected to
be the most efficient, since we use single-threaded clients executing one
blocking request at a time. In this scenario it doesn’t make sense to release
the receiver thread for processing forthcoming requests, since they won’t
arrive because the client is single threaded and blocking until it receives
a reply for the current outstanding request. Therefore, the results for the
thread-per-client strategy can be regarded as best case results. We emphasize
that this observation is based on our choice to use a closed arrival process.

4.5. Throughput comparison of the threading strategies 77

1 ms servant CPU demand

Figure 4.8 shows the throughput (in number of requests per second) as a
function of the number of clients, for the different threading strategies. The
results demonstrate that the thread-per-client and thread-pool threading
strategies perform best in this experiment and scale well with the number
of connected clients. The slow decrease of the throughput presented in
Figure 4.8 is due to the fact that the CPU service time per request increases
slightly from roughly 1.8 ms for 2 clients to 2.3 ms for 64 clients. This increase
in CPU service time is most likely due to additional context switching activity.

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70

Throughput comparison (1 ms servant CPU demand)

Th
ro

ug
hp

ut
 (r

eq
ue

st
s

p
er

 s
ec

on
d

)

Number of clients

Threads-per-client Threaded
Thread-per-request Thread-pool

Figure 4.8: Measured throughputs with 1 ms servant CPU demand

The thread-per-request strategy suffers from high thread creation and de-
struction costs, especially compared to the small service demand of 1 ms
CPU time. This is the reason why the throughput obtained with the thread-
per-request strategy is lower than the throughput for the thread-per-client
and thread-pool strategy. For the threaded strategy the ORB mutex turns out
to be a bottleneck, especially with a large number of clients. In particular,
the locking activity strongly increases the processing time. For 2 clients the

78 Chapter 4. Performance Modeling

CPU service time per request is approximately equal to 1.8 ms, while for 64
clients the CPU times have increased to 5.4 ms. The increase of CPU times
causes the linear decrease of throughput for the threaded strategy shown in
Figure 4.8.

5 ms servant CPU demand

Figure 4.9 contains the throughputs for the different threading strategies
and the scenario with 5 ms CPU servant demand. First of all, note that the
throughputs are significantly lower than the throughputs for the previous
case. Of course, this is due to the fact that the servant is now more CPU
demanding. Similar as for the previous scenario the thread-per-client and
thread-pool perform best of the four threading strategies.

80

100

120

140

160

0 10 20 30 40 50 60 70

Throughput comparison (5 ms servant CPU demand)

Th
ro

ug
hp

ut
 (r

eq
ue

st
s

p
er

 s
ec

on
d

)

Number of clients

Threads-per-client Threaded
Thread-per-request Thread-pool

Figure 4.9: Measured throughputs with 5 ms servant CPU demand

The throughput for the thread-per-request strategy remains smaller than
the throughput for the thread-per-client and thread-pool strategy, but rela-
tively the thread-per-request strategy performs better in this scenario. For
a scenario with 1 ms CPU servant demand the throughput for the thread-

4.5. Throughput comparison of the threading strategies 79

per-request strategy was between 75 and 80% of the throughput for the
thread-per-client strategy. For the 5 ms CPU servant demand the relative
throughput increases to between 85 and 90%. This relative improvement
of the thread-per-request strategy is due to the fact that the thread creation
and destruction overhead becomes less, relative to the increased servant
CPU demand. For the threaded strategy we observe the same phenomenon
as for the previous scenario. For a small number of clients the throughput
performance is comparable to the throughput achieved with the thread-per-
client and thread-pool strategy. However, for a large number of clients the
throughput performance becomes significantly worse. Again this is caused
by the additional CPU demand for handling locking contention for the ORB
mutex of the threaded threading strategy.

50 ms servant delay

Figure 4.10 contains the throughput comparison for the thread-per-client,
thread-per-request, thread-pool and threaded threading strategies, for 50 ms
‘sleep time’ at the servant. The performance of thread-per-client and thread-
pool is the same again. Observe that the throughput curves are different from
the previous throughput curves. In particular, for a low number of clients
the throughput increases linear with the number of clients. This effect is
due to the servant ‘sleep time’ of 50 ms. Observe that the sleep time causes
that the request ‘loop time’ (i.e. the elapsed time between two consecutive
arrivals of a request at the server) is at least 50 ms and this provides an upper
bound on the maximum throughput per client, of 1 / 0.05 = 20 requests per
second. Then, for n clients the maximum achievable throughput equals n x
20 requests per second. For a large number of clients the CPU becomes the
bottleneck. For the thread-per-client and thread-pool strategy this point is
reached at approximately 30 clients. For the more CPU demanding thread-
per-request strategy this point is reached around 20 clients.

For the threaded strategy we observe a completely different throughput
performance. Again, this is due to the ORB mutex, which does not allow the
servant to be invoked by more than one request at the time. In combination
with the ‘loop time’ observation above, it follows that the servant can never
handle more than 20 requests per second. And this exactly corresponds to
the throughput results shown in Figure 4.10.

80 Chapter 4. Performance Modeling

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70

Throughput comparison (50 ms servant CPU delay)

Th
ro

ug
hp

ut
 (r

eq
ue

st
s

p
er

 s
ec

on
d

)

Number of clients

Threads-per-client Threaded
Thread-per-request Thread-pool

Figure 4.10: Measured throughputs with 50 ms servant delay

4.5.3 Summary

To summarize, the thread-per-client threading strategy is the best performer.
This was to be expected since the work-load of clients executing one request
at a time perfectly fits that threading strategy. The thread-pool is overall the
second best performer. Contrary to the thread-per-client threading strategy,
the thread-pool model also copes with multi-threaded clients, which invoke
more than one method at a time over a client-server connection. In the
thread-per-client threading strategy the receiver thread is not separated from
the method dispatching thread, i.e. the server ORB cannot handle requests
coming from the same client concurrently. The thread-pool model is a good
choice for applications that have multi-threaded clients.

When designing and implementing a CORBA application, the choice of which
threading strategy to use is an important issue. In many cases the require-
ments of an application already point to certain threading strategies. For
instance,

4.6. Impact of marshaling 81

• Legacy applications would use the threaded model if they cannot han-
dle concurrent requests.

• Applications that want to restrict the number of simultaneous method
invocations by a client can use thread-per-client, so that only one
request at a time is handled for each client.

• Thread-per-client or thread-pool would be used for applications with
multi-threaded clients.

• Applications that will likely suffer from uncontrolled thread growth,
for instance, when bursts of requests are expected at times, can use
thread-pool with a number of pre-allocated threads.

• Applications with CPU intensive servants will likely want to limit the
number of simultaneously active dispatching threads, for instance for
QoS reasons. These applications would use the thread-pool threading
strategy. The thread-per-client threading strategy could also be used
to this end, but the number of clients should be bounded.

Applications whose client-side is not multi-threaded will not benefit from
the thread-per-request and thread-pool threading strategies. The server-
ORB should be deployed with the thread-per-client threading strategy if only
single-threaded clients connected, or clients that only invoke one (blocking)
method at a time. Single-threaded clients that use non-blocking requests
(oneway asynchronous or deferred synchronous), could still benefit from the
concurrency of thread-per-request or thread-pool.

4.6 Impact of marshaling

In this section we investigate the overhead of the marshaling and un-marshaling
actions in CORBA method invocation requests. Marshaling and un-marshaling
is the conversion to and from a common data representation by the ORB.
This conversion to a common data representation is needed to ensure in-
teroperability between ORBs running on different machine architectures.
The marshaling and un-marshaling actions part of the request processing
can take a significant portion of the request processing time [15]. Previous
research [4] concluded that the overhead is linearly dependent of the size of
the data that is marshaled and un-marshaled. [4] also concluded that the
data-type wasn’t a major factor in the overhead. This section presents results
from performance experiments that quantify the overhead of marshaling

82 Chapter 4. Performance Modeling

and un-marshaling for various data-types and various data sizes. We found
that garbage collection is also an important factor to consider, so we have
included garbage collection statistics in the experiments results too.

4.6.1 Experimental setup

These experiments use the same test-bed as described in Section 4.5.1.
Utip442 acts as the CORBA server and Utip267 as the CORBA client, run-
ning the workload generator. We have configured our CORBA workload
generator to send one request after another (i.e. there is at most one active
CORBA method invocation). In the experiments we used the data-types octet,
char, long, float and string. The following is a fragment of the IDL definitions
used in the experiments.

i n t e r f a c e PerformanceTest
{

typedef sequence<octet > OctetSeqType ;
typedef sequence<char> CharSeqType ;
typedef sequence<long> LongSeqType ;
typedef sequence< f l o a t > FloatSeqType ;

void marshalTest_in_octetSeq
(in long in_octetSeq_size ,

in OctetSeqType in_octetSeq) ;
void marshalTest_in_charSeq

(in long in_charSeq_size ,
in CharSeqType in_charSeq) ;

void marshalTest_in_longSeq
(in long in_longSeq_size ,

in LongSeqType in_longSeq) ;
void marshalTest_in_floatSeq

(in long in_floatSeq_size ,
in FloatSeqType in_floatSeq) ;

void marshalTest_in_string
(in long i n_ s tr i n g_ s i z e ,

in s t r i n g i n _ s t r i n g) ;
void marshalTest_out_octetSeq

(in long in_octetSeq_size ,
out OctetSeqType out_octetSeq) ;

void marshalTest_out_charSeq
(in long in_charSeq_size ,

out CharSeqType out_charSeq) ;
void marshalTest_out_longSeq

(in long in_longSeq_size ,

4.6. Impact of marshaling 83

out LongSeqType out_longSeq) ;
void marshalTest_out_floatSeq

(in long in_floatSeq_size ,
out FloatSeqType out_floatSeq) ;

void marshalTest_out_string
(in long i n_ s tr i n g_ s i z e ,

out s t r i n g out_string) ;
} ;

Listing 4.2: IDL definitions for the marshaling experiments

The octet, char, long and float data is sent in sequences (arrays), except for
the string data-type which is already an array of character data. The following
sequence sizes are used: 0, 1024, 2048, 4096, 8192, 16384, 32768, 40960, 65536,
73728, and 98304.

4.6.2 Experimental results

Processing times for marshaling and un-marshaling

The following table, Table 4.2, contains CPU processing times for marshaling
and un-marshaling of the octet, char, string, long, and float basic types.

Octet Char String Long Float
Size Mars. Un-

m.
Mars. Un-

m.
Mars. Un-

m.
Mars. Un-

m.
Mars. Un-m.

0 0.0073 0.0093 0.0072 0.0093 0.0364 0.0312 0.0072 0.0094 0.0072 0.0092
1024 0.0270 0.0173 0.5142 0.4090 0.5734 0.4529 1.2598 1.2408 1.6914 1.7549
2048 0.0318 0.0206 1.0065 0.8045 1.1076 0.8773 2.4957 2.4686 3.3626 3.4876
4096 0.0461 0.0268 1.9921 1.5966 2.1780 1.7333 4.9760 4.9286 6.6142 6.9525
8192 0.0730 0.0440 3.9577 3.1762 4.3450 3.4705 9.9349 9.8451 13.3899 13.8978
16384 0.1483 0.0857 7.9300 6.3422 8.6376 6.9440 19.2034 20.4090 26.6143 28.0180
32768 0.2736 0.1575 15.8735 12.6667 16.1777 13.7096 38.3185 40.8920 53.5810 56.0637
65536 0.5441 0.3277 31.5984 25.3374 32.5772 30.8475 76.9825 82.0031 108.4025 112.3944

Table 4.2: Processing times for marshaling and un-marshaling

All experiments for both marshaling and un-marshaling show a linear de-
pendency between the amount of data which needs to be marshaled or
un-marshaled and the amount of CPU processing time required for mar-
shaling and un-marshaling. From the data we can also conclude that the
processing costs for marshaling are comparable to those of un-marshaling,
for the same data type and amount. When looking at the individual types,
octet has the smallest marshaling overhead; this is because octets are trans-
ferred as is, no conversion is done. Sequences of characters and strings have
comparable marshaling costs. The more complex basic types long and float
have the largest marshaling costs. Finally, we can observe that the costs per

84 Chapter 4. Performance Modeling

byte for all types except octet are reasonably similar (the long and float are 4
bytes, char 1 byte, and a string is basically an array of char).

Garbage collection

In these experiments we used the default garbage collector, the stop-the-
world collector. We also used the default garbage collector settings, such
as the size of the heap. The results show increased garbage collection ac-
tivity with higher sequence sizes. The garbage collection cycles can have a
major influence on the completion times of requests. Especially with the
stop-the-world garbage collector in current Java virtual machines, garbage
collection is a QoS issue: garbage collection can cause large variances be-
tween completion times. Modern virtual machines include better garbage
collection algorithms, such as incremental garbage collection. With incre-
mental garbage collection the virtual machine is not stopped during garbage
collection cycles, and the cycles are more evenly distributed during program
execution. Especially for programs that more stringent QoS constraints than
best-effort, we recommend the use of more advanced garbage collectors. We
can also observe differences in the garbage collector times, some cycles take
around 30 msec while other cycles take around 130 msec. The stop-the-world
collector uses 2 different object groups: young and old generation objects.
Objects that exist for a longer duration are promoted to the old generation
group. Garbage collection cycles for the young generation objects takes less
time than those for the old generation. Also, garbage collection cycles for the
old generation occur less frequently.

4.7 Modeling the thread scheduling

The processing steps performed by the threads in the performance models
described in the previous sections share the various hardware resources,
among them the central processing unit (CPU). In this section we will discuss
how this CPU sharing could be implemented in the performance models.
First, by employing the often used processor sharing (PS) scheduling disci-
pline. Second, by modeling the scheduling in more detail. In our case, by
exploring Linux thread scheduling.

4.7.1 Processor sharing

The most straightforward way to describe the sharing of the CPU resource
by the threads is to model the CPU resource by a queuing node with the

4.7. Modeling the thread scheduling 85

processor sharing (PS) scheduling discipline. That is, if at some point in time
there are in total N receiver and dispatcher threads active, then each of them
receives a fraction of 1/N of the available processor capacity.

4.7.2 Linux 2.4 thread priority scheduling

In modern operating systems the threads are scheduled according to some
priority mechanism. For instance, Linux v2.4 schedules thread execution us-
ing a time sharing scheduler with variable quantum of 10 – 110 milliseconds
(depending on the time-slice a thread has left to spend) [6]. The scheduling
order of threads depends on the time-slice threads have left: when the kernel
needs to determine the next thread to schedule, runnable threads with a
higher time-slice have higher priority. When there are no runnable (non-
blocking) threads left with a time-slice larger than zero, the time-slices of all
threads are recalculated. Threads keep half of their remaining time-slice from
the last scheduler round and some constant amount of time-slice is added.
By allowing threads to keep half of their remaining time-slice, Linux favors
threads that don’t spend a lot of time on the CPU (i.e. sleeping / blocking
threads). In other words, Linux favors I/O bound threads over CPU bound
threads. Every 10 milliseconds the kernel decrements the time-slice of the
running thread, this happens during the system’s timer-interrupt handling.

Runnable Running

Blocked

1

2
3

4
5

Figure 4.11: The three main thread states

In Figure 4.11 the three most important states a thread can be in are depicted:
running, runnable, or blocked. A running thread is the thread that is currently
using the CPU. Runnable threads are ready to use the CPU, but have to wait
for the running thread to switch context. Blocked threads are threads that are
waiting for some resource to become available, for instance a packet from
the network, or a request in a queue (e.g. the dispatcher thread-pool’s queue).

86 Chapter 4. Performance Modeling

A thread’s state changes as a result of events that occur in the system. In
Figure 4.11 there are five of such events:

1. A currently runnable thread becomes the running thread. This hap-
pens when the current running thread runs out of time-slice or blocks
for some resource. The runnable thread with the highest remaining
time-slice becomes the running thread. The former running thread
changes to runnable state if the time-slice ran out, or blocked if it is
blocking for some resource. When no runnable threads with a time-
slice larger than zero are left, the scheduler recalculates all time-slices
and a new scheduler round is initiated, as discussed above.

2. A currently running thread changes to runnable state. This happens
when a thread with a higher remaining time-slice than the running
thread un-blocks. The un-blocked thread becomes the running thread.
This state change also occurs when the running thread runs out of
time-slice (see 1.).

3. A currently running thread blocks for some resource. One of the
runnable threads becomes the new running thread (see 1.).

4. A blocked thread un-blocks because some resource has become avail-
able and the un-blocked thread has a higher remaining time-slice than
the current running thread and all the runnable threads.

5. A blocked thread un-blocks because some resource has become avail-
able, but the un-blocked thread does not have a higher remaining time-
slice than the current running thread and all the runnable threads.
Note that this state change (from blocked to runnable) may still trigger
another runnable thread to become the running thread, since after
un-blocking the scheduler checks if there is a runnable thread with
a higher time-slice remaining than the current running thread (the
current running thread’s time-slice may have been decremented one
or more times when timer interrupts occur).

As mentioned above, Linux, and in fact many modern operating systems,
including many UNIX systems [57] and Microsoft Windows [46], calculate
thread scheduling priorities based on their CPU usage. This influences the
scheduling behavior of the middleware’s receiver and dispatcher threads.
For example, if we have one receiver thread which uses 1 millisecond of
CPU time to process an incoming request and one dispatcher thread which

4.8. Summary 87

uses 5 milliseconds of CPU time per request, the dispatcher thread uses 5
times as much CPU time. This means that if such a middleware server is
under a continuous load the scheduling priority of the receiver thread would
be 5 times higher than the dispatcher thread’s priority. However, when the
middleware server is configured with 5 dispatcher threads, the requests are
spread over those 5 threads and the priorities of the receiver thread and a
dispatcher thread would be about the same. When the middleware has 10
dispatcher threads, the priorities of those dispatcher threads would be higher
than the priority of the receiver thread. In the new simulation results in
Section 5.3.3 we can see this behavior clearly: around 5 dispatcher threads
the lines of the receiver and dispatcher thread’s queuing times cross each
other.

Note that without sufficient load the middleware threads remaining time-
slices would converge to the maximum in the Linux kernel (which is 110
milliseconds) and their priority would be the same, since the threads would
mostly be blocked (and hence can save up time-slice).

4.8 Summary

In this chapter we have explored threading in CORBA middleware imple-
mentations. We have combined our insight in CORBA object middleware,
Java and multi-threading behavior to construct performance models for four
often implemented threading strategies

In the next chapter we will discuss the implementation of these performance
models using the Extend simulation environment [33] and our own perfor-
mance simulation tool for distributed applications. We validate the perfor-
mance models by comparing model-based results with real-world measure-
ments.

C
H

A
P

T
E

R

5
PERFORMANCE MODEL VALIDATION

In this chapter we describe simulations implementing the CORBA performance
models along with their experimental validation.

This chapter is structured as follows. Section 5.1 discusses how we simulate
our performance models. Section 5.2 introduces our performance simulation
engine for distributed applications. Section 5.3 validates the performance
model for the thread-pool scheduling strategy for an increasing number of
dispatcher threads. Section 5.4 validates our performance models for an
increasing number of clients. Section 5.5 summarizes this chapter.

5.1 Performance model implementation

We have implemented the thread-pool performance model described in
section 4.3.4 in the Extend [33] simulation environment. The Extend en-
vironment can be used to implement models without having to use an ad-
vanced simulation programming language, though under water there still is
a simulation programming language. Models are constructed by connecting
pre-built model building blocks together on a grid, using the Extend GUI.
The user is not restricted to the pre-built building blocks. It is possible to add
new building blocks, using the built-in simulation language ModL. Extend
has a large library with pre-built building blocks, for instance blocks that
implement the FIFO (first-in first-out) and PS (processor sharing) service

89

90 Chapter 5. Performance Model Validation

disciplines. Extend models can be expressed in hierarchical manner, where
blocks implement sub-models. Each block can have various parameters.
The model parameter values can be specified in the notebook, for instance
the inter-arrival times between requests, and the number of threads in the
dispatcher thread pool.

For generating simulation results, Extend offers various building blocks to cal-
culate results and report graphs. Using these blocks the model implementer
can retrieve the required performance measures from the model, such as
response times, throughput, queuing times, and resource utilizations.

Our first version of the middleware performance model in Extend used the
processor sharing discipline, described in section 4.7.1. While the predic-
tions by this model were good for many scenarios, it would not predict queu-
ing times accurately in all cases. We have replaced the processor sharing
discipline with a fixed priority scheduler in the Extend model. The priori-
ties are calculated based on the CPU service demands of threads for each
request, before the simulation starts. Clearly, using fixed priorities works best
if the CPU service times of the threads in the system are deterministically
distributed. Variation in the workload and service demands may lead to less
accurate results, since the fixed priorities will represent the average case.

The implementation of the performance model in Extend has been a bug-
ridden process. At various occasions we found bugs or quirks in the Extend
simulation library that caused our performance model to generate invalid
results. In our first performance model we had problems with the implemen-
tation of processor sharing scheduling in Extend. During the development of
the second model, with fixed priority scheduling, we had problems with the
implementation of priority queues in Extend.

Our problems with the Extend simulation tool and our desire to experiment
with various scheduling algorithms caused us to develop a custom discrete
event simulation engine. The next section describes this simulation engine.

5.2 The Distributed Applications Performance
Simulator

DAPS (Distributed Applications Performance Simulator) is a discrete event
simulator, especially targeted at distributed multi-threaded applications. The
DAPS simulation engine offers the following buildings blocks to the mod-
eler: schedulers, threads, queues, mutexes, network delay servers, programs,
mutexes, and open arrival processes.

5.2. The Distributed Applications Performance Simulator 91

A scheduler represents the heart of a machine. It schedules threads for execu-
tion on the CPU using some scheduler algorithm. The simulator supports the
processor sharing scheduler, the round-robin scheduler, and the Linux 2.4
scheduler (an abstraction of the scheduler present in the Linux 2.4 operating
system). Each thread handles work that is en-queued in its source queue.
These queues can be shared by multiple threads (implementing threads
pools) or be private to a single thread (implementing for instance connec-
tion accepting threads). The simulator offers a simple program building
block to express actions to be performed by the threads. These actions in-
clude using a certain amount of CPU time, sleeping (waiting), obtaining a
lock (mutual exclusion), performing a nested call on another thread, and
performing a forwarding call on another thread. The difference between
a nested and forwarding call is that with nested calls, the caller waits for
the callee to finish execution. After execution of the nested call the caller
continues work (meanwhile the caller thread blocks). With forwarding calls
the responsibility to returning a reply to the client is forwarded to the callee
and the caller can continue execution without having to wait for the callee to
finish execution. An example of a forwarding call is the receiver thread in our
middleware model. It moves the request to the dispatcher thread pool queue,
after en-queuing the request the receiver thread is ready to receive the next
request. The responsibility of sending a reply to the client, is forwarded to
the dispatcher thread. The mutex building block can be used by programs to
simulate mutual exclusion. Locking contention results in a blocked thread.
Releasing a lock causes blocked threads (contending for the lock) to become
runnable again. Lastly, requests can be generated by the open arrival process
building block.

Figure 5.1 depicts the performance model structure in DAPS. The bottom
layer consists of a discrete event simulation. On top of this simulation var-
ious schedulers can be instantiated, representing various machines used
by the distributed application. For instance, the physical resource layer of
our performance model in Figure 4.6, consisting of a thread scheduler, is
represented here. Finally, the application performance behavior, the logical
resource layer in Figure 4.6, consisting of logical resources and the interac-
tions/dependencies between them, is modeled on top of the schedulers.

The DAPS simulator has some limitations. Firstly, the simulator cannot be
used to simulate multi-processor machines. Secondly, the network delay
‘server’ implementation is too simplistic to accurately model TCP response
times for RPC and HTTP traffic. Thirdly, closed arrival processes have not
been implemented yet. Fourth, resource constraints, such as maximum

92 Chapter 5. Performance Model Validation

Discrete event simulator

Linux 2.4 / Round Robin / Processor Sharing
schedulers

Threading strategy performance model (threads +
queues + locks)

Figure 5.1: Modeling in DAPS

number of threads to allocate and maximum number of TCP connections,
have not been implemented in this version of the simulator.

The next section discusses the validation of the performance model for the
thread-pool scheduling discipline, for both the Extend PS & fixed priority
model implementations and the implementation using DAPS.

5.3 Validation of the thread-pool strategy for an
increasing number of dispatchers

In this section we validate the performance model of the thread-pool thread-
ing strategy.

5.3.1 Experimental setup

Our test lab consists of 2 machines interconnected using a local network.
The server machine is a Pentium III 550 MHz with 256 MB RAM. The client
machine is a Pentium IV 1.7 GHz with 512 MB RAM. Both machines run the
Linux v2.4 operating system and the Java 2 standard edition v1.4.1. For this ex-
periment we disabled priority scheduling of processes on the Linux machines
and used high-resolution timers to generate accurate arrival processes. The
CORBA implementation we use is ORBacus 4.1.1 by IONA Technologies [OR-
Bacus00]. In the experimental setup one target object, managed by the Root-
POA, is instantiated in each scenario. The client machine runs a synthetic
workload generator that produces workload for the CORBA implementation
running on the server machine.

To obtain measurement data of the CORBA server, we used our Java Perfor-
mance Monitoring Toolkit (JPMT). Amongst other measures, we monitored

5.3. Validation of the thread-pool strategy for an increasing number of
dispatchers 93

the following performance data during the experiments:

• Queuing times before the receiver thread and the dispatcher thread-
pool.

• CPU usage of the receiver and dispatcher threads.

• Holding times of the receiver and dispatcher threads, plus 1st and
2nd phase times of receiver and dispatcher threads. The holding time
is the total time a thread is busy processing a request. The holding
time consists of a 1st phase and a 2nd phase. The 1st phase is the
actual processing of the request by the thread. This phase ends with
the receiver or dispatcher thread moving the request to a queue or
another thread, or sending a reply to the client. The 2nd phase is the
cleaning up afterwards (for instance data-structures) and getting ready
to process the next request.

• CPU utilization, so that we know our experiments do not saturate the
CPU resource, thus making the system unstable.

5.3.2 Experiment results

We configure the CPU service demand of the target object to be 5 milliseconds
with a deterministic distribution. The client ORB will generate a workload
of 15000 requests using a Poisson process, via one connection. The arrival-
rate for the Poisson process is 1 request per 10 milliseconds. The number
of dispatcher threads available in the server ORB varies per experiment,
between 1 and 10 threads.

Tables 5.1, 5.2, 5.3 and 5.4 contain a summary of the performance mea-
surement results, together with simulation results from both our previous
and updated simulators. The columns with results from the performance
experiments are marked ‘Experiment’. The columns with simulation results
are discussed in the next section.

94
C

h
ap

ter
5.

P
erfo

rm
an

ce
M

o
d

elV
alid

atio
n

Dispatcher
threads

Receiver
queuing
time Exper-
iment

Receiver
queuing
time Ex-
tend PS

Receiver
queuing
time Ex-
tend Fixed
Prio

Receiver
queuing
time DAPS
L24

Receiver
queuing
time DAPS
PS

Dispatcher
queuing
time Exper-
iment

Dispatcher
queuing
time Ex-
tend PS

Dispatcher
queuing
time Ex-
tend Fixed
Prio

Dispatcher
queuing
time DAPS
L24

Dispatcher
queuing
time DAPS
PS

1 0.53 0.00 0.50 0.05 4.76 6.71 7.25 5.96 7.38 8.49
2 0.59 0.01 0.50 0.12 5.15 5.45 5.23 5.48 5.83 5.87
4 1.55 0.01 0.50 1.52 5.49 3.57 1.68 4.60 3.80 1.86
6 3.59 0.02 6.99 4.36 6.15 1.86 0.66 0.00 1.21 0.00
8 5.39 0.03 7.04 5.22 5.36 0.74 0.37 0.00 0.47 0.00
10 6.01 0.03 7.09 6.15 5.70 0.40 0.10 0.00 0.13 0.00

Table 5.1: Comparison of receiver and dispatcher thread queuing times

Dispatcher
threads

Receiver
holding
time Exper-
iment

Receiver
holding
time Ex-
tend PS

Receiver
holding
time Ex-
tend Fixed
Prio

Receiver
holding
time DAPS
L24

Receiver
holding
time DAPS
PS

Dispatcher
holding
time Exper-
iment

Dispatcher
holding
time Ex-
tend PS

Dispatcher
holding
time Ex-
tend Fixed
Prio

Dispatcher
holding
time DAPS
L24

Dispatcher
holding
time DAPS
PS

1 0.92 1.69 2.33 0.97 1.72 6.30 6.36 6.42 6.25 6.39
2 0.95 2.10 2.34 1.04 2.20 8.86 10.32 10.94 8.44 11.79
4 1.73 2.52 2.34 2.27 2.73 10.14 14.62 17.66 10.07 17.01
6 3.64 2.69 6.72 4.90 2.90 8.65 16.45 5.75 5.91 18.59
8 5.66 2.74 6.72 6.00 2.81 6.84 16.95 5.75 6.79 18.22
10 6.19 2.73 6.72 6.41 2.93 6.36 17.16 5.75 5.97 18.83

Table 5.2: Comparison of receiver and dispatcher thread holding times

5.3.
V

alid
atio

n
o

fth
e

th
read

-p
o

o
lstrategy

fo
r

an
in

creasin
g

n
u

m
b

er
o

f
d

isp
atch

ers
95

Dispatcher
threads

Receiver
1st phase
time Exper-
iment

Receiver
1st phase
time Ex-
tend PS

Receiver
1st phase
time Ex-
tend Fixed
Prio

Receiver
1st phase
time DAPS
L24

Receiver
1st phase
time DAPS
PS

Dispatcher
1st phase
time Exper-
iment

Dispatcher
1st phase
time Ex-
tend PS

Dispatcher
1st phase
time Ex-
tend Fixed
Prio

Dispatcher
1st phase
time DAPS
L24

Dispatcher
1st phase
time DAPS
PS

1 0.91 N/A 2.28 0.93 1.63 6.28 N/A 5.77 6.17 6.35
2 0.91 N/A 2.29 0.93 2.07 8.82 N/A 6.03 8.42 11.71
4 1.11 N/A 2.29 0.99 2.58 10.08 N/A 6.95 10.15 16.90
6 1.16 N/A 0.93 1.02 2.73 8.59 N/A 5.71 8.10 18.47
8 1.14 N/A 0.93 0.99 2.64 6.76 N/A 5.71 6.73 18.10
10 1.13 N/A 0.93 0.93 2.76 6.33 N/A 5.71 5.67 18.71

Table 5.3: Comparison of receiver and dispatcher 1st phase completion times

Dispatcher
threads

Server re-
sponse time
Experiment

Server re-
sponse time
Extend PS

Server re-
sponse time
Extend Fixed
Prio

Server re-
sponse time
DAPS L24

Server re-
sponse time
DAPS PS

1 14.43 15.31 14.52 14.57 21.23
2 15.81 17.66 14.30 15.26 24.80
4 16.18 18.83 14.34 16.34 26.83
6 15.11 19.82 13.62 14.40 27.35
8 13.92 20.08 13.65 13.39 26.10
10 13.72 20.02 13.68 13.14 27.16

Table 5.4: Comparison of middleware server response times

96 Chapter 5. Performance Model Validation

The presented values are all averaged over the 15000 requests. The measured
receiver queuing time represents the time that requests are queued before the
receiver thread (somewhere between client and server-side receiver thread,
e.g. in socket buffers). The measured dispatcher queuing time represents the
time that requests are queued at the dispatcher thread-pool. The measured
1st phase time of the receiver and dispatcher threads equal the (average)
time between the arrival at the thread and departure of a request from the
thread. After the 1st phase the thread enters the 2nd phase, where the thread
is still busy, but no longer actually processing the request. The measured
holding time of receiver and dispatcher threads consists of the 1st and 2nd
phase time.

The CPU consumption of the receiver thread is 0.925 milliseconds per request.
A dispatcher thread consumes 5.6 milliseconds per request, including the 5
milliseconds of the method executed by the target object. The changes in
the queuing behavior for the receiver thread and the dispatcher thread-pool,
when the size of the thread-pool is increased from 1 to 10, are clearly visible
in the experimental results. The queuing time before the receiver thread
grows, while the queuing time before the dispatcher thread-pool goes down.
Because the dispatcher thread’s priority is often higher than the receiver
thread priority for a higher number of dispatcher threads, the receiver thread
often has to wait for a dispatcher thread to finish processing the request
before it can finish the 2nd phase. This causes higher holding times for the
receiver thread, and thus higher queuing times before the receiver thread.

The effects of changing thread priorities are also visible in the 1st phase
completion times of the dispatcher threads. When looking at the experiment
results for the 1st phase completion times, we first see a growth and then
around 5 dispatcher threads the 1st phase completion times go down again.
The growth is caused by a dispatcher thread being interrupted by another
thread (receiver thread) in the system, because it has a higher priority. The
dispatcher thread has to wait in runnable state for some time before it returns
to running state again, causing higher completion times. The priorities
of the dispatcher thread get higher as more dispatcher threads are added,
causing less forced context switches of the dispatcher threads, and thus lower
completion times.

5.3.3 Validation results

Tables 5.1, 5.2, 5.3 and 5.4 contain simulation results from both our previous
and updated simulators, along with the experimental results discussed in

5.3. Validation of the thread-pool strategy for an increasing number of
dispatchers 97

the previous section. The columns with values from the first performance
model implementation in Extend, using the processor sharing scheduler, are
marked ‘Extend PS’. The columns with values of the new Extend performance
model, using the fixed priority scheduler, are marked ‘Extend Fixed PRIO’.
The columns with values of the DAPS performance model using the Linux
2.4 scheduler abstraction are marked ‘DAPS L24’. The columns with values
of the DAPS performance model, using the processor sharing scheduler, are
marked ‘DAPS PS’.

Our first performance model in which we modeled the scheduling behavior
using a processor sharing node yielded encouraging performance predic-
tions, but overestimated the holding times of the dispatcher threads and
underestimated receiver thread holding times and queuing times for the
receiver threads. As shown in Table 5.2, the dispatcher thread holding times
in the Extend simulation are much higher than measured during the ex-
periments. These higher holding times are caused by the processor sharing
scheduling, which effectively schedules all runnable threads with an infinitely
small time quantum. The server response times were over estimated by the
Extend simulation, shown in Table 5.4, mostly because of overestimation of
the dispatcher thread holding times. The receiver holding times were under-
estimated, shown in Table 5.2, again, caused by scheduling behavior (receiver
threads don’t have to wait for a higher priority dispatcher thread to finish
processing when using processor sharing scheduling). The underestimation
of the receiver holding times in turn caused underestimation of the receiver
queuing times, shown in Table 5.1.

After the first performance model in which we modeled the CPU resource
by a queuing node with processor sharing (PS) discipline we replaced the PS
node with a sub-model that more accurately captures the priority scheduling
features described in Section 4.7. As shown in Table 5.1 and Figure 7-1,
these two new performance models correctly predict the queuing behavior
of the receiver and dispatcher threads. The breakpoint around 5 threads (see
Section 4.7.2), where the dispatcher threads priorities are higher than the
receiver thread priority, was correctly predicted by both new models. The
abrupt changes in the queuing predictions made by the Extend fixed priority
model are expected. In the real system the thread priorities are dynamic.
However, in the Extend model the priorities of the receiver and dispatcher
threads are fixed. In the DAPS L24 model the priorities are dynamic, like in
the real system, resulting in a more accurate prediction of queuing times. Im-
plementing a more elaborate scheduler in Extend is possible, but not trivial.
Extend is a more general purpose simulator, while DAPS is designed from

98 Chapter 5. Performance Model Validation

ground-up to model software interactions, making it easier to implement
schedulers.

Note: 1st phase completion times of the receiver and dispatcher threads were
not available in the old Extend model, since that model didn’t support the
notion of 1st and 2nd phase processing.

Figure 5.2, Figure 5.3, Figure 5.4, and Figure 5.5 illustrate the queuing times,
holding times, 1st phase completion times, and server response times of the
experiments and various performance models.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 6 7 8 9 10

Comparison of queuing times

Th
ro

ug
hp

ut
 (r

eq
ue

st
s

p
er

 s
ec

on
d

)

Number of clients

Receiver experiments Receiver DAPS L24
Receiver Extend Prio Dispatcher experiments
Dispatcher DAPS L24 Dispatcher Extend Prio

Figure 5.2: Comparison of queuing times

5.4 Validation of the threading strategies for an
increasing number of clients

In the previous section we validated the performance model of the thread-
pool strategy, simulated using Extend with a processor-sharing (PS) scheduler

5.4. Validation of the threading strategies for an increasing number of
clients 99

0

3

5

8

10

13

15

18

20

1 2 3 4 5 6 6 7 8 9 10

Comparison of holding times

Th
ro

ug
hp

ut
 (r

eq
ue

st
s

p
er

 s
ec

on
d

)

Number of clients

Receiver experiments Receiver DAPS L24
Receiver Extend Prio Dispatcher experiments
Dispatcher DAPS L24 Dispatcher Extend Prio

Figure 5.3: Comparison of holding times

and a fixed-priority scheduler, and using DAPS with a Linux 2.4 alike thread
scheduling discipline. In this section we validate the models of the thread-
per-request, thread-per-client, threaded and thread-pool strategies, using
the DAPS simulation tool.

5.4.1 Experiment setup

In the experiments we use three different servant service demands. First,
a 0.5 msec CPU demand, which represents the CPU processing cost of a
simple method. Second, a 5 msec CPU demand, which represents the CPU
processing costs of a more complex method (a CPU bound application).
Third, a 50 msec delay (not CPU processing time), which represents the delay
induced from a simple SQL query on a database server running on another
machine (an I/O bound, database driven application). All service demands
and delays are configured to have an exponential distribution.

100 Chapter 5. Performance Model Validation

0

1

3

4

6

7

8

10

11

1 2 3 4 5 6 6 7 8 9 10

Comparison of 1st phase completion times

Th
ro

ug
hp

ut
 (r

eq
ue

st
s

p
er

 s
ec

on
d

)

Number of clients

Receiver experiments Receiver DAPS L24
Receiver Extend Prio Dispatcher experiments
Dispatcher DAPS L24 Dispatcher Extend Prio

Figure 5.4: Comparison of 1st phase completion times

We compare the four threading models of ORBacus with an increasing num-
ber of connected clients. Each client has its own TCP/IP connection to the
server ORB, and thus its own receiver thread on the server. Our test-bed
consists of two machines: Utip267 and Utip442. Utip267 is a Pentium IV 1.7
GHZ with 512 MB of memory. Utip442 is a Pentium III 550 MHz with 256
MB of memory. In these experiments Utip442 acts as the CORBA server and
Utip267 as the CORBA client. Both machines run the Linux 2.4.19 operating
system and the Sun Java 2 standard edition v1.4.1. The Java virtual machine
is configured with default garbage collection settings and without run-time
pre-compilation optimization features. The CORBA implementation we use
in this example is IONA ORBacus/Java 4.1.1. We have configured our CORBA
workload generator to send one request after another for each client (i.e.
there is at most one active CORBA method invocation for each individual
client). The thread-pools used in this experiment hold a number of threads
equal to the number of clients.

5.4. Validation of the threading strategies for an increasing number of
clients 101

12

13

13

14

15

15

16

16

17

1 2 3 4 5 6 6 7 8 9 10

Server response times

Th
ro

ug
hp

ut
 (r

eq
ue

st
s

p
er

 s
ec

on
d

)

Number of clients

Experiments DAPS L24 Extend Prio

Figure 5.5: Server response times

In this experiments we use the following workloads as described above:

• 0.5 msec CPU demand

• 5 msec CPU demand

• 50 msec delay (not CPU demand)

We run the experiment with 1, 2, 4, 8, 16, 32 and 64 clients. Some experiments
are also executed with 128 clients, depending on the CPU utilization at 64
clients. Each client executes a work-load of 200 requests on the server. We
also have configured a minimum duration of 45 seconds for each experiment,
so that we get enough measurements for runs with a small number of clients.

The following sections summarize the experimental and simulation results
in tables for each experiment. Figures have been added to illustrate the
experiment and simulation results.

102 Chapter 5. Performance Model Validation

5.4.2 Experiment results

This section summarizes the experiment results. Tables with detailed exper-
iment results are included in the appendix. In all experiments the thread-
per-client threading model is expected to be the most efficient, since we
use single-threaded clients executing one blocking request at a time. In this
scenario it doesn’t make sense to release the receiver thread for processing
forthcoming requests, since they won’t arrive because the client is single
threaded and blocking until it receives a reply for the current outstanding
request.

0.5 msec servant CPU demand

Figure 5.6 contains the completion times for the different threading models.
The thread-per-client and thread-pool threading models perform best in
this experiment. Especially with a large number of clients, the ORB mutex
present in the threaded threading model proves to be a bottleneck. Thread-
per-request suffers from high thread creation and destruction costs, espe-
cially when compared to the small service demand of 0.5 msec CPU time.
The thread-per-client and thread-pool threading models scale well with the
number of connected clients. A knee can be seen for the threaded, around
64 clients. The overhead of thread-per-request is linear with the number of
clients, but the completion times grow much faster than those of thread-per-
client and thread-pool.

5 msec servant CPU demand

Figure 5.7 contains the completion times for the different threading models.
Thread-per-client and thread-pool perform best of the four threading models.
The contention for the ORB mutex of the threaded threading model causes it
to be the worst performing threading model with a large number of clients.

The increasing performance difference between thread-per-client and the
thread-pool may be surprising, but can be accounted to the Linux thread
scheduler. The Linux thread scheduler favors threads that use small amounts
of CPU time over threads that use larger amounts of CPU time. In this
experiment we have increased the service demand of the servant from 0.5
msec to 5 msec, i.e. the CPU time required by the dispatcher thread has
increased. The completion times for thread-per-client, thread-per-request,
and thread-pool grow linearly with the number of clients. A curve can be
seen for the threaded threading model.

5.4. Validation of the threading strategies for an increasing number of
clients 103

0

100

200

300

400

500

600

0 32 64 96 128

Completion times for 0.5 msec CPU servant demand

C
om

p
le

tio
n

tim
e

(m
se

c)

Number of clients

Threads-per-client Threaded
Thread-per-request Thread-pool

Figure 5.6: Completion times for 0.5 msec CPU servant demand

50 msec servant delay

Figure 5.8 contains the completion times for the thread-per-client, thread-
per-request and thread-pool threading models. The performance of thread-
per-client and thread-pool is almost exactly the same. Queuing delays in the
thread-pool threading model remain low, because the servant execution (part
of the dispatcher threads) only use a wall-clock delay (not doing any work
on the CPU). The Linux thread scheduler does not penalize the dispatcher
threads in this experiment. The completion time with the thread-per-request
model grows a lot faster compared to thread-pool and thread-per-client. On
a busy system the creation of new threads is delayed. The time between
signaling the system for thread creation and the system actually creating and
starting the thread is called ‘handover’ time in the experiment results. We
can observe that the handover time grows with the number of clients, and
accounts for a large portion of the completion time. We can also observe that
the lowest measured completion time lies around 60 msec, where 50 msec
could be expected. The difference can be explained by the granularity of the

104 Chapter 5. Performance Model Validation

0

100

200

300

400

500

600

0 16 32 48 64

Completion times for 5 msec CPU servant demand

C
om

p
le

tio
n

tim
e

(m
se

c)

Number of clients

Threads-per-client Threaded
Thread-per-request Thread-pool

Figure 5.7: Completion times for 5 msec CPU servant demand

sleep() system call on Linux, which is 10 msec. When the sleep() system call
is invoked, the thread has been active for a while already and already took
a share of the current scheduler time-slice. Effectively, adding the 50 msec
sleep interval would round the completion time up to 60 msec.

The completion times for the threaded threading model are plotted in Fig-
ure 5.9. The plot shows that the contention for the ORB mutex is responsible
for the high completion times.

5.4.3 Validation results

We have configured the DAPS simulation tool to use the Linux 2.4 scheduler
model, to schedule thread execution on the CPU resource in the model. In
this section the experiment results from the previous section are compared
with DAPS simulation results.

5.4. Validation of the threading strategies for an increasing number of
clients 105

0

45

90

135

180

225

0 32 64 96 128

Completion times for 50 msec CPU servant delay

C
om

p
le

tio
n

tim
e

(m
se

c)

Number of clients

Threads-per-client Thread-per-request handover
Thread-per-request Thread-pool

Figure 5.8: Completion times for 50 msec servant delay for the thread-per-
client, thread-per-request and thread-pool threading models

Thread-per-client strategy

The thread-per-client threading strategy is the most basic threading strategy
available. It uses a single thread to receive and process requests from the
same client. This thread receives the request from the network, dispatches
the request to the right POA and servant, executes the method invocation re-
quest on the servant, and sends back the reply to the client over the network.

Threaded strategy

The threaded threading strategy is a variation on the thread-per-client strat-
egy. The only difference is that all requests are serialized by an ORB-wide
mutex. Only one method invocation can be processed by any of the servants
at a time. This threading strategy can be used for applications that are not
multi-thread aware.

106 Chapter 5. Performance Model Validation

0

500

1000

1500

2000

2500

3000

0 16 32 48 64

50 msec CPU servant delay with the threaded model

Ti
m

e
(m

se
c)

Number of clients

Completion time Waiting for ORB mutex

Figure 5.9: Completion times and ORB mutex contention for 50 msec servant
delay with the threaded treading model

Clients Experiment response time Simulation response time
1 1.96 1.83
2 2.79 3.62
4 5.72 6.75
8 11.92 12.84
12 18.46 19.26
16 24.46 24.74
32 57.33 56.53
48 89.60 86.34
64 118.10 115.16

Table 5.5: Thread-per-client experimental and simulation results for 0.5 ms
servant CPU demand

Thread-per-request strategy

The thread-per-request threading strategy separates the receiving and dis-
patching phases of requests into two separate threads. A receiver thread is
allocated for each client (for the duration of the client-server binding). The
receiver thread receives the request from the network, and locates the right
POA to forward the request to. Then a dispatcher thread is allocated (one
new thread for each request), and the request is forwarded to that thread for

5.4. Validation of the threading strategies for an increasing number of
clients 107

0

20

40

60

80

100

120

0 16 32 48 64

Thread-per-client - 0.5 msec CPU demand

R
es

p
on

se
 t

im
e

(m
se

c)

Number of clients

Experiment Simulation

Figure 5.10: Thread-per-client response times for 0.5 ms servant CPU de-
mand

Clients Experiment response time Simulation response time
1 6.50 5.94
2 10.00 11.50
4 20.17 22.33
8 39.70 43.61
12 59.01 66.16
16 80.61 87.46
32 160.24 177.84
48 243.33 273.72
64 340.52 360.77

Table 5.6: Thread-per-client experimental and simulation results for 5 ms
servant CPU demand

the request dispatcher phase. During the dispatching phase the dispatcher
thread dispatches the request to the right servant, where it is executed. Af-
ter the method invocation on the servant, the dispatcher thread sends the
reply to the client. After creating the dispatcher thread, the receiver thread
can process new requests by the same client. So, at the same time multiple
dispatcher threads may be processing requests for the same client. That is

108 Chapter 5. Performance Model Validation

0

50

100

150

200

250

300

350

400

0 16 32 48 64

Thread-per-client - 5 msec CPU demand

R
es

p
on

se
 t

im
e

(m
se

c)

Number of clients

Experiment Simulation

Figure 5.11: Thread-per-client response times for 5 ms servant CPU demand

Clients Experiment response time Simulation response time
1 64.00 64.92
2 64.93 64.87
4 67.83 64.86
8 63.46 64.77
12 63.87 64.67
16 63.42 64.70
32 66.38 65.57
48 80.07 82.05
64 104.21 105.78

Table 5.7: Thread-per-client experimental and simulation results for 50 ms
servant delay

the advantage of this threading strategy; it allows multiple requests from the
same client to be processed concurrently. The disadvantage of this threading
strategy is that it creates a new thread for each request, and destroys the
thread after executing the request.

The simulation results show that the ‘handover’ time (can also be thought
of as ‘setup’ time for the thread) is under-estimated. The handover time
measure represents the time between creation of the thread and the time the

5.4. Validation of the threading strategies for an increasing number of
clients 109

60

70

80

90

100

110

0 16 32 48 64

Thread-per-client - 50 msec servant delay

R
es

p
on

se
 t

im
e

(m
se

c)

Number of clients

Experiment Simulation

Figure 5.12: Thread-per-client response times for 50 ms servant delay

Clients Experiment re-
sponse time

Experiment mutex
contention

Simulation re-
sponse time

Simulation mutex
contention

1 2.51 0.01 1.89 0.00
2 3.60 0.07 3.66 0.00
4 6.77 0.66 6.62 0.40
8 14.06 4.12 12.60 3.22
12 21.69 8.95 18.59 7.21
16 29.82 15.05 27.72 13.65
32 63.32 39.35 58.34 38.47
48 93.02 62.65 90.02 69.89
64 131.96 92.19 124.84 103.33

Table 5.8: Threaded experimental and simulation results for 0.5 ms servant
CPU demand

thread actually starts to execute the request, i.e. when it gets scheduled by
the operating system’s thread scheduler. In our simulation model the new
dispatcher thread can start to execute the request as soon as it gets sched-
uled by the scheduler. However, in reality there are a number of interactions
between the thread spawning the new dispatcher thread and the dispatcher
thread, to setup the new thread. During these interactions the new thread
gets scheduled in a couple of times. After the setup phase of the new dis-

110 Chapter 5. Performance Model Validation

0

28

56

84

112

140

0 16 32 48 64

Threaded - 0.5 msec CPU demand

R
es

p
on

se
 t

im
e

(m
se

c)

Number of clients

Experiment response time
Experiment mutex wait time
Simulation response time
Simulation mutex wait time

Figure 5.13: Threaded response times for 0.5 ms CPU servant demand

Clients Experiment re-
sponse time

Experiment mutex
contention

Simulation re-
sponse time

Simulation mutex
contention

1 6.44 0.01 6.74 0.00
2 10.68 1.50 13.19 1.23
4 21.84 5.86 25.01 4.22
8 49.31 21.34 52.49 17.73
12 77.53 41.26 77.98 37.27
16 107.80 64.13 105.30 61.23
32 231.78 168.00 227.15 168.92
48 384.11 301.01 378.29 294.84
64 574.30 474.74 563.19 446.08

Table 5.9: Threaded experimental and simulation results for 5 ms servant
CPU demand

patcher thread has completed, the receiver thread has to start the dispatcher
thread (after setup the new thread is in suspended state). This behavior is
really behavior of the Java platform (the VM in particular) rather than appli-
cation or operating system behavior. We haven’t captured this behavior in

5.4. Validation of the threading strategies for an increasing number of
clients 111

0

120

240

360

480

600

0 16 32 48 64

Threaded - 5 msec CPU demand

R
es

p
on

se
 t

im
e

(m
se

c)

Number of clients

Experiment response time
Experiment mutex wait time
Simulation response time
Simulation mutex wait time

Figure 5.14: Threaded response times for 5 ms CPU servant demand

Clients Experiment re-
sponse time

Experiment mutex
contention

Simulation re-
sponse time

Simulation mutex
contention

1 59.30 0.01 54.00 0.00
2 128.47 62.32 100.39 47.00
4 199.72 134.15 178.45 125.24
8 344.39 279.04 365.84 312.73
12 462.97 397.16 504.23 451.12
16 618.74 553.40 664.22 611.11
32 1210.12 1144.68 1379.29 1326.14
48 2136.09 2070.26 2092.14 2038.44
64 2853.70 2787.53 2849.30 2795.38

Table 5.10: Threaded experimental and simulation results for 50 ms servant
CPU delay

our simulation model yet, therefore it underestimates the handover time.

112 Chapter 5. Performance Model Validation

0

600

1200

1800

2400

3000

0 16 32 48 64

Threaded - 50 msec servant delay

R
es

p
on

se
 t

im
e

(m
se

c)

Number of clients

Experiment response time
Experiment mutex wait time
Simulation response time
Simulation mutex wait time

Figure 5.15: Threaded response times for 50 ms servant delay

Clients Experiment re-
sponse time

Experiment han-
dover time

Simulation re-
sponse time

Simulation han-
dover time

1 2.78 0.68 2.98 0.00
2 5.22 1.87 5.99 1.26
4 11.85 7.15 14.15 3.35
8 26.81 20.03 27.69 8.54
12 41.34 33.66 41.54 13.24
16 55.59 47.76 54.29 18.73
32 113.71 104.64 112.19 38.92
48 174.70 161.89 173.44 60.71
64 233.46 219.57 231.04 81.32

Table 5.11: Thread-per-request experimental and simulation results for 0.5
ms servant CPU demand

Thread-pool strategy

The thread-pool threading strategy is a refinement of the thread-per-request
strategy. Instead of creating a new thread for every request, a pool of pre-
allocated threads is used for request dispatching. Like the thread-per-request

5.4. Validation of the threading strategies for an increasing number of
clients 113

0

50

100

150

200

250

0 16 32 48 64

Thread-per-request - 0.5 msec CPU demand

R
es

p
on

se
 t

im
e

(m
se

c)

Number of clients

Experiment response time
Experiment handover time
Simulation response time
Simulation handover time

Figure 5.16: Thread-per-request response times for 0.5 ms CPU servant
demand

Clients Experiment re-
sponse time

Experiment han-
dover time

Simulation re-
sponse time

Simulation han-
dover time

1 7.48 0.71 8.09 0.00
2 14.16 3.80 15.97 1.53
4 30.25 13.60 34.26 8.85
8 62.24 42.18 67.56 20.84
12 97.72 70.99 102.40 33.09
16 131.67 104.07 134.34 44.98
32 250.90 216.93 269.99 91.73
48 381.50 348.97 402.34 140.43
64 521.64 483.89 532.88 184.34

Table 5.12: Thread-per-request experimental and simulation results for 5 ms
servant CPU demand

strategy, a receiver thread receives requests from a client (one receiver thread
per client). But instead of creating a new dispatcher thread, the receiver
thread en-queues the request in a FIFO queue. This queue is processed

114 Chapter 5. Performance Model Validation

0

120

240

360

480

600

0 16 32 48 64

Thread-per-request - 5 msec CPU demand

R
es

p
on

se
 t

im
e

(m
se

c)

Number of clients

Experiment response time
Experiment handover time
Simulation response time
Simulation handover time

Figure 5.17: Thread-per-request response times for 5 ms CPU servant de-
mand

Clients Experiment re-
sponse time

Experiment han-
dover time

Simulation re-
sponse time

Simulation han-
dover time

1 65.63 0.73 64.71 0.00
2 68.39 0.84 64.01 0.55
4 62.13 1.00 64.12 0.84
8 63.73 1.67 65.07 1.07
12 66.03 2.48 65.16 1.22
16 67.63 4.38 65.67 1.62
32 97.10 29.41 67.92 3.26
48 147.18 76.68 91.13 18.79
64 199.84 128.13 125.29 40.42

Table 5.13: Thread-per-request experimental and simulation results for 50
ms servant CPU delay

by a fixed number of pre-allocated dispatcher threads (the thread-pool).
Idle dispatcher threads obtain a request from the queue, and execute it.
After execution and sending the reply to the client, the dispatcher thread is

5.4. Validation of the threading strategies for an increasing number of
clients 115

0

40

80

120

160

200

0 16 32 48 64

Thread-per-request - 50 msec servant delay

R
es

p
on

se
 t

im
e

(m
se

c)

Number of clients

Experiment response time
Experiment handover time
Simulation response time
Simulation handover time

Figure 5.18: Thread-per-request response times for 50 ms servant delay

idle again and can process further requests. The advantage of this strategy
compared to the thread-per-request strategy is that threads are pre-allocated,
so thread creation and destruction does not occur for every request. Another
advantage is that the thread-pool strategy can cope with bursts of requests.
The number of simultaneously processing requests is bound by the size of
the dispatcher thread-pool. With the thread-per-request strategy a request
burst may cause a large number of threads to be created in a short amount of
time, possibly causing stability problems. The disadvantage of the particular
thread-pool strategy we’ve modeled (there are variations on this strategy,
see Section 4.2) is that the threads are pre-allocated rather than created on
demand. A dynamically growing and shrinking thread-pool can still have the
advantages of the thread-pool studied here (not allocating and destroying
threads for each request & a bounded number of threads), but doesn’t need
all threads pre-allocated.

116 Chapter 5. Performance Model Validation

Clients Experiment re-
sponse time

Experiment dis-
patcher queuing
time

Simulation re-
sponse time

Simulation dis-
patcher queuing
time

1 2.13 0.09 2.39 0.00
2 3.49 0.55 4.79 0.94
4 7.77 0.85 8.68 1.76
8 16.37 1.15 16.63 2.40
12 24.65 1.59 24.73 2.21
16 32.94 1.80 33.46 2.60
32 72.41 4.11 74.10 6.08
48 109.70 5.65 112.31 8.61
64 141.93 7.48 148.59 10.14

Table 5.14: Thread-pool experimental and simulation results for 0.5 ms ser-
vant CPU demand

Clients Experiment re-
sponse time

Experiment dis-
patcher queuing
time

Simulation re-
sponse time

Simulation dis-
patcher queuing
time

1 6.71 0.11 6.84 0.00
2 12.44 1.36 13.60 1.91
4 25.85 2.46 26.78 2.45
8 52.74 3.60 51.46 3.58
12 79.18 4.59 75.62 4.11
16 106.40 5.00 104.50 3.90
32 208.30 6.92 204.47 5.09
48 312.99 14.82 306.51 5.27
64 423.68 13.62 409.22 6.25

Table 5.15: Thread-pool experimental and simulation results for 5 ms servant
CPU demand

Clients Experiment re-
sponse time

Experiment dis-
patcher queuing
time

Simulation re-
sponse time

Simulation dis-
patcher queuing
time

1 64.92 0.04 64.71 0.00
2 63.97 0.06 63.78 0.01
4 63.99 0.08 63.78 0.01
8 63.50 0.08 64.56 0.06
12 63.16 0.09 64.40 0.15
16 63.49 0.10 64.45 0.22
32 65.56 0.32 65.72 0.60
48 80.89 0.97 84.93 2.86
64 101.15 1.96 108.22 2.39

Table 5.16: Thread-pool experimental and simulation results for 50 ms ser-
vant CPU delay

5.5 Summary

In this chapter we have discussed the simulation of the performance models
and we compared the experimental results of various scenarios using four
different threading strategies with simulation results. The simulation results
match accurately with the experimental results, except for the ‘handover

5.5. Summary 117

0

30

60

90

120

150

0 16 32 48 64

Thread-pool - 0.5 msec CPU demand

R
es

p
on

se
 t

im
e

(m
se

c)

Number of clients

Experiment response time
Experiment queuing time
Simulation response time
Simulation queuing time

Figure 5.19: Thread-pool response times for 0.5 ms CPU servant demand

time’ measure in the thread-per-request threading strategy. The handover
times are under-estimated because our performance model does not capture
some of the interactions in the Java virtual machine needed to setup new
threads. Further study of this behavior is needed to refine our performance
models.

In the next chapter we present a quantitative performance model for the end-
to-end response time performance of a broad class of e-business applications,
namely, interactive web-browsing (IWB) applications using middleware back-
end servers.

118 Chapter 5. Performance Model Validation

0

90

180

270

360

450

0 16 32 48 64

Thread-pool - 5 msec CPU demand

R
es

p
on

se
 t

im
e

(m
se

c)

Number of clients

Experiment response time
Experiment queuing time
Simulation response time
Simulation queuing time

Figure 5.20: Thread-pool response times for 5 ms CPU servant demand

5.5. Summary 119

0

22

44

66

88

110

0 16 32 48 64

Thread-pool - 50 msec servant delay

R
es

p
on

se
 t

im
e

(m
se

c)

Number of clients

Experiment response time
Experiment queuing time
Simulation response time
Simulation queuing time

Figure 5.21: Thread-pool response times for 50 ms servant delay

C
H

A
P

T
E

R

6
PERFORMANCE MODELING OF AN

INTERACTIVE WEB-BROWSING

APPLICATION

In this chapter, we develop a quantitative performance model for the end-to-
end response time performance of a broad class of e-business applications,
namely, interactive web-browsing (IWB) applications using middleware back-
end servers.

This chapter is structured as follows. Section 6.1 introduces our interactive
web-browsing application use-case. Section 6.2 describes the local weather
service application. Section 6.3 describes the performance model of the LWS.
Section 6.4 describes the performance experiment results of the LWS. Section 6.5
presents simulation results and compares them with the experimental results.
Section 6.6 summarizes this chapter.

6.1 Interactive web-browsing applications

An interactive web-browsing (IWB) application is a web based application
that can dynamically create web pages depending on the user’s input by
combining and integrating information from different geographically dis-
tributed information systems. A key aspect that complicates the analysis
of many e-business applications is their multi-domain nature: they com-

121

122
Chapter 6. Performance Modeling of an Interactive Web-Browsing

Application

bine and integrate information from different geo-graphically distributed
information systems, ranging over multiple administrative domains. In this
context, the end-to-end performance experienced by the end user depends
on many factors, such as combined performance of access and core net-
works, application servers, middleware, databases and operating systems.
These observations raise the need for the development of performance mod-
els that describe the combined impact of these factors on the end-to-end
user perceived performance. In this chapter we focus on the end-to-end
response time performance, the key performance metric that determines the
end-user’s perception for interactive e-business applications [58].

To avoid being overly generic and less specific, we will present a model for our
Local Weather Service (LWS), a specific but representative example of an IWB
application that includes the main performance aspects of IWB applications
(e.g., clients, web servers, middleware, operating systems, heterogeneity
and multi-domain nature of the environment). The model is validated by
comparing results from lab experiments with simulation results for a number
of realistic workload scenarios. The results demonstrate that the performance
predictions based on the model match well with the results from the lab
experiments.

6.2 The local weather service application

In this section we describe the Local Weather Service (LWS). The LWS gives
the user a weather forecast for the user’s current location. The LWS runs
on a distributed platform consisting of a mobile access network, an IP core
network, a web server, a servlet (generating the local weather forecast web-
page using various back-end servers), a location server (where locations of
mobile phones can be looked up), a weather server (where local weather
forecasts can be looked up), and various databases (where authentication,
location, and weather data content is stored).

Figure 6.1 shows the interactions that take place for each local weather query.
The following steps take place for each request:

Step-1 The mobile phone user requests a local weather forecast from the
web-server.

Step-2 The web-server forwards the request to a servant. The servlet authen-
ticates the client, followed by requests to the location and weather
server, if the client authenticated, described in steps 3 and 4. After

6.2. The local weather service application 123

Mobile
Access

IP Core
Web

server

Public
IP

Location
server

Weather
server

Serv
lets

1. Request local
weather forecast

5. Retrieve images

2. Servlet
processing

3. Get
location

4. Get weather
forecast

Figure 6.1: The local weather service

the requests to the location and weather server the servlet generates a
dynamic web-page with the local weather forecast. This is forwarded
to the web-server, which returns it to the mobile phone user. Weather
images retrieved from the weather server are temporarily stored on
disk, to be retrieved later by the user in subsequent requests to the
web-server, see step 5.

Step-3 The servlet does a CORBA IIOP (object-oriented RPC) request on the
location server, requesting the location of the mobile phone user.

Step-4 The servlet does another CORBA IIOP request, this time on the
weather server, using the location of the mobile phone as a parameter.
This request returns the local weather forecast, consisting of a text
describing the weather, an image containing rain radar information,
and temperature and weather type for the next three days.

Step-5 The web-browser of the mobile phone user receives the HTML page
and sees a reference to the rain radar image. The browser issues
another request to the web-server, this time a GET request, to obtain
the image. The web-server receives the GET request and returns the
image, stored on disk by the servlet, to the client.

124
Chapter 6. Performance Modeling of an Interactive Web-Browsing

Application

Figure 6.2: Screenshot of a web browser using the LWS

6.3 Performance model

In this section we present a model for the end-to-end response-time perfor-
mance for the LWS. The model includes the combined impact of the session
arrival process, web servers, middleware, databases, operating systems and
communication networks. We emphasize that the end-to-end response-time
performance generally depends on the specifics of these factors. Conse-
quently, accurate performance models also depend on the specific choice of
the web servers, middleware, databases, operating systems and communi-
cation networks. The model proposed below is based on the characteristics

6.3. Performance model 125

of a W3C Jigsaw web server [62] with servlet technology, the ORBacus [31]
CORBA object middleware [61] and the Linux operating system [6].

The system is composed of multiple sub-systems, each of which is dedicated
to process a specific task. For example, in Figure 6.1 the sub-systems are (1)
the web server responsible for handling the HTTP request and for creating
dynamic web pages, (2) the location server responsible for retrieving the
location information for the mobile phone user, (3) the location database,
(4) the weather server responsible for retrieving the weather forecast, and (5)
the weather forecast database. The retrieval of a weather forecast of a mobile
phone user requires a number of interactions between these subsystems.
Each subsystem follows a number of processing steps to execute its task.
These processing steps require both physical and logical resources.

In the model for the web server the processing steps involved are the han-
dling of incoming connections, the processing of requests arriving over these
connections and the creation of dynamic web pages. These processing steps
are implemented by an acceptor thread, an HTTP thread-pool and a servlet
thread-pool, respectively. The HTTP thread-pool can dynamically grow to-
wards a maximum number of threads (which can be configured). Idle threads
are killed after a configurable amount of seconds. However, a minimum num-
ber of idle threads can be configured. The web server will not remove idle
threads below that number. When connection requests arrive at the acceptor
thread and the maximum number of client threads has been reached, the
connection will be refused. The servlet thread-pool also dynamically grows,
but no maximum is defined, or configurable. Idle servlet threads are removed
after 24 hours (non configurable). However, the maximum is determined
indirectly by the maximum number of client threads. We have investigated
performance for stable systems, which is why we have not modeled the ac-
ceptor thread behavior of dropping requests when the maximum number of
client threads has been reached. We also have not modeled thread creation
and destruction costs, and thus also not thread idle times.

Both the location server and the weather server consist of application logic
(servants) running on top of CORBA object middleware. In the models of
these servers the processing steps are the receipt of the requests from the
web server servlets, and the execution of the application logic. These steps
are implemented by a receiver thread and a pool of dispatcher threads. The
application logic can access database servers for information retrieval.

The middleware performance models are described in more detail in Chapter
4 of this thesis. Here we limit the model description of the middleware to

126
Chapter 6. Performance Modeling of an Interactive Web-Browsing

Application

features relevant to the LWS application.

Note that the connections between the web server, and the location server
and the weather server are established at application startup. Hence, connec-
tion setup processing does not occur on a per-request basis. For this reason,
an addition acceptor thread is not included in the model of the middleware.
Similarly, the connections between the middleware servers and the database
servers also use persistent connections.

6.3.1 Queuing network

In this section we propose a queuing network to model the performance
of the processing steps of the system (described above). To this end, the
processing steps are modeled by nodes consisting of one or more servers
representing logical resources (in our case: threads), and an infinite-size
queue of pending requests that are served on a First Come First Served
(FCFS) basis.

Acceptor
thread

Receiver
thread

Dispatcher
thread pool

Servant
thread pool

HTTP client
thread pool

Location server

Receiver
thread

Dispatcher
thread pool

Weather server

Web server

Blocking request over network
Blocking request
Request forwarding

λ

Location
database
server

Weather
database
server

Bpage

Bimage

Bacc

Bservlet

Blocrec

Bwearec

Blocdisp

Blocdb

Bweadb

Bweadisp

Figure 6.3: Performance model of the LWS application

Jobs arrive at the web server’s acceptor node according to an arrival process
with rate λ. (We emphasize we do not pose any restriction on the arrival
process. In practice, one may use any synthetic or trace-driven workloads
as the arrival process.) The service time at the acceptor thread is an inde-
pendent random variable Bacc with a general distribution with mean βacc .
Jobs that find the acceptor thread busy upon arrival are placed in the queue.

6.3. Performance model 127

After receiving service at the acceptor node the job is forwarded to the HTTP
request processor node, which is equipped with CHT T P threads. After for-
warding the acceptor thread is free to process a new job. The service time
of a job at the HTTP request processor node is a random variable Bpag e ,
with a general distribution with mean βpag e . After receiving service at the
HTTP node the job is forwarded to the servlet node, which is equipped with
Cser vl et threads. The HTTP request processor node stays occupied (multiple
resource possession) until the servlet node is done servicing the job. The
service time of a job at the servlet node is a random variable Bser vl et , with a
general distribution with mean βser vl et . After receiving service at the servlet
node the job is forwarded to the receiver node of the location server. The
servlet node stays occupied until the location server is done servicing the
job. At this point two threads in the web server are occupied for the job, a
HTTP request processor thread and a servlet thread. The service time of a
job at the receiver node of the location server is a random variable Bl ocr ec ,
with a general distribution with mean βlocr ec . After receiving service at the
receiver node, the job is forwarded to the location request dispatching node,
which is equipped with Cl ocdi sp threads. This node performs the location
lookup application logic. The receiver node is free to process a new request.
The service time of a job at the dispatcher node of the location server is a
random variable Blocdi sp Blocdisp, with a general distribution with mean
βlocdi sp . After receiving service the job is forwarded to the location database
server. The dispatcher thread of the location server stays occupied. At this
point there are two threads occupied in the web server and one thread in
the location server. The database is modeled as an infinite server node. The
service time of a job at the location database server is a random variable
Bl ocdb , with a general distribution with mean βlocdb . After receiving service
at the database node, the job is forwarded back to the dispatcher node at the
location server. Then, the job is forwarded back to the servlet node at the
web server. The dispatcher thread of the location server is released back into
the thread-pool.

At this point the servlet knows the location of the mobile phone user and
forwards the job to the receiver node of the weather server to obtain the
weather forecast for that location. The servlet node stays occupied until
the weather server is done servicing the job. At this point there are still two
threads in the web server occupied for the job, a HTTP request processor
thread and a servlet thread. The service time of a job at the receiver node of
the weather server is a random variable Bwear ec , with a general distribution
with mean βwear ec . After receiving service at the receiver node, the job is

128
Chapter 6. Performance Modeling of an Interactive Web-Browsing

Application

forwarded to the weather request dispatching node, which is equipped with
Cweadi sp threads. This node performs the weather forecast application logic.
The receiver node is free to process a new request. The service time of a job
at the dispatcher node of the weather server is a random variable Bweadi sp ,
with a general distribution with mean βweadi sp . After receiving service the
job is forwarded to the weather database server. The dispatcher thread of the
weather server stays occupied. At this point there are two threads occupied in
the web server and one thread in the weather server. The weather database
is also modeled as an infinite server node. The service time of a job at
the weather database server is a random variable Bweadb , with a general
distribution with mean βweadb . After receiving service at the database node,
the job is forwarded back to the dispatcher node at the weather server. Then,
the job is forwarded back to the servlet node at the web server. The dispatcher
thread of the weather server is released back into the thread-pool. The servlet
is now done processing and forwards the job back to the HTTP processing
node. The servlet thread is returned to the thread-pool.

At this point the web server has generated the dynamic web page with the
weather forecast, and sent is to the client. However, the web page contains an
embedded rain radar image which needs to be fetched from the web server.
To fetch this image a new job is sent to the acceptor node of the web server.
The service time and distribution for this job is the same as described above
for the request of the web page, an independent random variable Bacc with a
general distribution with mean βacc . Jobs that find the acceptor thread busy
upon arrival are placed in the queue. After receiving service at the acceptor
node the job is forwarded to the HTTP request processor node, which is
equipped with CHT T P threads. After forwarding the acceptor thread is free
to process a new job. The service time of a job at the HTTP request processor
node is a random variable Bi mag e , with a general distribution with mean
βi mag e . After receiving service at the HTTP node, processing of the job is
finished and the job departs the queuing network.

6.4 Experiments

In this section we describe our experiment setup and present the experiment
results.

6.4. Experiments 129

6.4.1 Setup

Our laboratory setup for the LWS consists of three machines. The HTTP load-
generator runs on a Pentium III 800 MHz with 128 MB RAM. The web-server
runs on a Pentium IV 1.7 GHz with 512 MB RAM. The middleware servers run
on a Pentium III 550 MHz with 256 MB RAM. The HTTP load-generator has a
100 Mbit/s network connection with the web-server. The web-server has a
10 Mbit/s network connection to the middleware servers. Both middleware
servers, the location server and weather server, run on the same machine.

All machines run the Linux 2.4 operating system and Java 2 standard edition
v1.4.1. For this experiment we used high-resolution timers to generate ac-
curate arrival processes. The CORBA middleware implementation we use is
ORBacus 4.1.1 by IONA Technologies [31]. The web-server implementation
we use is Jigsaw [62], a reference implementation web-server by the World
Wide Web consortium (W3C).

Our LWS produces web pages around 2500 bytes, plus one image, around
25000 bytes. The 100 Mbit network from the load-generator to the web server
has a RTT of 0.1 milliseconds. The 10 Mbit network of the web server to the
middleware servers has a RTT of 0.5 milliseconds.

We have not used real database systems in our experiments, for practical rea-
sons. The focus of our modeling work lies on application servers, web-server,
middleware servers, and applications. In our experiments we have modeled
the database accesses by delays, which can be configured by experiment
parameters.

To obtain measurement data, we used our Java Performance Monitoring
Toolkit (JPMT), described in Chapter 3 of this thesis. Amongst other mea-
sures, we monitored the following performance data during the experiments:

• Wall-clock completion times and CPU times of methods and threads
in the load generator (client), web-server, and middleware servers

• CPU utilization, and

• Garbage collection.

We have performed two experiments. The first experiment, scenario A, stud-
ies how the LWS performs if there would be no delays (i.e. instantaneous
database access by the authentication, location, and weather servers). This
experiment stresses the CPU utilization of the servers to a point where one

130
Chapter 6. Performance Modeling of an Interactive Web-Browsing

Application

of the servers becomes a bottleneck. The second experiment, scenario B,
studies how the LWS performs if there would be delays induced by database
accesses. In both experiments user session arrivals are described by Poisson
processes. Paxson and Floyd have shown [43] [12] that Poisson distributions
are valid for describing the arrivals of new user sessions. A session consists of
two requests from the web-browser to the web-server. The first request initi-
ates a new session, requesting a local weather forecast and yields a web-page,
but without images. After receiving the web-page itself, the web-browser
requests the images linked in the web-page from the web-server.

6.4.2 Scenario A

In the first experiment, scenario A, we configured all delays (authentication,
location lookup time, and weather lookup time) to be 0.

Arrival
rate
(re-
q/s)

Client-
side
total
(ms)

Client-
side
page
only
(ms)

Client-
side
image
only
(ms)

Web
server
page
(ms)

Web
server
image
(ms)

Web
server
servlet
(ms)

Location
server
(ms)

Weather
server
(ms)

0.98 93.78 55.90 35.88 56.21 33.91 54.74 3.67 32.68
4.57 106.66 63.50 42.00 61.83 39.69 58.46 5.10 33.36
8.56 130.93 75.72 54.06 65.62 49.41 63.34 7.54 34.56
10.28 146.49 80.79 64.90 73.69 67.02 68.68 9.20 35.58
15.20 241.25 125.88 111.04 105.09 104.37 93.53 16.04 43.89
16.61 284.55 162.69 119.25 114.39 112.36 114.53 21.12 48.78
17.52 328.54 197.83 127.24 121.33 112.71 131.20 25.11 54.31

Table 6.1: Measured wall-clock response times for scenario A

The response times we measured have been listed in Table 6.1. The 1st
column specifies the measured rate of arrivals the load-generator generated.
The 2nd, 3rd and 4th column show the response times at the load-generator
(client) for the total reply (web page + image), the web page alone, and the
image alone. The 5th and 6th column list the completion times of the client
thread, for the web page and the image, respectively. The 7th column shows
the completion time of the servlet thread, these are usually very close to the
completion time of the client thread that handle the request to the servlet.
The last two columns, the 8th and 9th, show the response times experienced
by the web server for the calls to the location server and weather server,
respectively.

Table 6.2 shows the CPU service demands of the client, the web server, the
location server, and the weather server, needed for a single request. Note that
the CPU times are dependent on the machines on which they are measured.
It is clear that the web server is the bottleneck, even when it was running

6.4. Experiments 131

Client-
side total
(ms)

Web
server
page
(incl.
Servlet)
(ms)

Web
server
image
(ms)

Location
server
(ms)

Weather
server
(ms)

3.65 21.07 29.00 1.95 4.06

Table 6.2: Measured CPU times for various parts of the request

on the fastest machine in our laboratory setup. At an arrival rate of 17.54
requests per second, the CPU utilization of the web server was around 88%,
while the load-generator on the client, the location server, and the weather
server all used less than 10% of the CPU. It is noteworthy that the CPU service
demand required to handle the request to fetch the weather image is higher
than the demand needed to create the HTML code of the web page of the
weather forecast. The CPU service demand needed for handling the request
to the weather image is used to calculate the MD5 checksum of the weather
image.

Web server (ms) Location server (ms) Weather server (ms)
3 0 4

Table 6.3: Measured garbage collection times (averaged per request)

Table 6.3 shows the garbage collection times per request in the web server,
location server, and the weather server. In practice they are note averaged per
request. Instead some requests incur garbage collection during executions,
while others do not. This introduces variance in the response times. Again,
these times are machine dependent. These garbage collection times are
not part of the CPU times we measure for each request. They are measured
separately.

6.4.3 Scenario B

In scenario B we use delays to represent database query times for authentica-
tion, location lookup, and weather lookup. The configured delays, which are
deterministic, are 30 milliseconds for authentication, 310 milliseconds for
the location lookup, and 110 milliseconds for the weather forecast lookup.

Table 6.4 lists the measured wall-clock times for this scenario. The content of
the columns is described in the previous section. In this experiment the CPU
utilization of the web server was 12% at the highest. In this scenario the CPUs
are not the bottleneck, but the number of threads allocated by the web server,

132
Chapter 6. Performance Modeling of an Interactive Web-Browsing

Application

Arrival
Rate
(re-
q/s)

Client-
side
total
(ms)

Client-
side
page
only
(ms)

Client-
side
image
only
(ms)

Web
server
page
(ms)

Web
server
image
(ms)

Web
server
servlet
(ms)

Location
server
(ms)

Weather
server
(ms)

0.52 547.25 513.17 34.10 513.35 35.74 508.95 313.93 143.00
0.72 547.70 512.48 35.22 509.72 34.98 508.72 313.93 142.64
1.03 550.88 514.16 36.72 512.45 36.50 509.90 314.07 143.39
1.18 552.88 515.17 37.70 513.51 39.10 509.80 314.17 142.98
1.52 554.72 517.49 37.23 515.59 36.94 510.67 314.44 143.23
1.76 557.93 517.95 39.98 514.88 40.15 510.85 314.38 142.93
2.04 559.40 518.09 37.79 517.28 35.97 511.96 314.88 144.22

Table 6.4: Measured wall-clock response times for scenario B

location, and weather servers are the bottleneck. Because of the large delays,
the holding time for each thread is quite long compared to scenario A. When
looking at the configured delays alone, the holding times for the client thread
of the web server are at least 450 milliseconds. So when the load generator
send more than 1000/450 requests per second the number of client threads
will grow towards the configured maximum. When the maximum is reached,
further connections to the web server will be refused.

The garbage collection times for this scenario are similar to the ones in
scenario A.

6.5 Validation

In this section we present the simulation results for scenarios A and B (de-
scribed in the previous section). To assess the validity of the performance
model, we compare these simulation results with the experiment results for
these scenarios.

6.5.1 Scenario A

Table 6.5 contains the simulation results for scenario A. Figure 6.4 contains
plots for the experimental end-to-end response times and the end-to-end
response times from the simulation.

The curves of the measured and simulated response times in Figure 6.4 are
alike. At higher arrival rates, the response times of the simulation grow faster
than the experimental response times. In future work these differences will
be further investigated, so that the model can be refined. We expect one
of the reasons to be our modeling of garbage collection. In the simulation
we used the same values for garbage collection overhead per request for

6.5. Validation 133

Arrival
Rate
(re-
q/s)

Client-
side
total
(ms)

Client-
side
page
only
(ms)

Client-
side
image
only
(ms)

Web
server
page
(ms)

Web
server
image
(ms)

Web
server
servlet
(ms)

Location
server
(ms)

Weather
server
(ms)

0.98 74.42 40.30 30.47 39.27 29.09 35.31 4.95 30.36
4.52 83.32 47.57 32.09 45.37 29.60 39.99 8.67 31.28
8.46 99.45 58.98 36.82 54.61 32.34 46.69 12.29 34.04
10.28 114.69 69.59 41.41 63.02 35.74 51.82 13.78 37.17
15.00 252.72 153.68 95.37 139.09 84.74 89.01 20.44 58.10
17.54 402.05 281.70 116.64 262.82 102.14 153.61 25.18 104.01

Table 6.5: Simulated wall-clock response times for scenario A

each simulated arrival rate. In practice however, garbage collection does not
have to occur during every request, some request incur garbage collection
overhead, while other requests do not. Also, garbage collection runs at a
lower priority than normal Java threads. At higher CPU utilizations the lower
priority threads will execute less often, yielding other garbage collection
behavior and overhead.

25

105

185

265

345

425

0 4 7 11 14 18

Local Weather Service - Scenario A

R
es

p
on

se
 t

im
e

(m
se

c)

Arrival rate (requests/sec)

Experiment Simulation

Figure 6.4: Experiment and simulation results for scenario A

134
Chapter 6. Performance Modeling of an Interactive Web-Browsing

Application

6.5.2 Scenario B

Table 6.6 contains the simulation results for scenario B. Figure 6.5 contains
plots for the experimental end-to-end response times and the end-to-end
response times from the simulation.

Arrival
Rate
(re-
q/s)

Client-
side
total
(ms)

Client-
side
page
only
(ms)

Client-
side
image
only
(ms)

Web
server
page
(ms)

Web
server
image
(ms)

Web
server
servlet
(ms)

Location
server
(ms)

Weather
server
(ms)

0.50 534.94 497.40 33.90 496.61 30.95 492.51 314.90 147.42
0.75 534.94 497.39 33.90 496.57 31.05 492.63 314.75 147.03
1.00 536.14 498.55 33.94 497.92 31.05 493.63 315.22 148.17
1.25 537.10 499.32 34.13 498.49 30.98 494.16 315.86 148.12
1.50 540.58 501.54 35.39 500.69 31.69 495.15 315.51 148.76
1.75 542.82 503.30 35.87 502.17 31.83 496.52 316.09 150.16
2.00 545.95 506.09 36.21 505.08 31.61 497.74 316.54 150.40

Table 6.6: Simulated wall-clock response times for scenario B

The curves of both measured and simulated response times, in Figure 6.5,
are similar. However, there is a gap of about 10 milliseconds between the
measured and simulated response times, a relative error of about 2 to 3%. We
suspect these differences are caused by the granularity of the timer on the
machines used in the experiments. Most operating systems (e.g. Windows
and Linux) use a 10 millisecond timer resolution.

6.6 Summary

In this chapter we have reported on our performance experiments for our
Local Weather Service, an interactive web-browsing application. We have
developed a simulation model for this application, for which we have done
initial validation using two different scenarios. The simulation model was
able to predict the response times experienced by the client very well.

The simulation model can be refined in a number of directions. First, the
impact of garbage collection on the performance was often found to be
significant during the experiments. Therefore, the model may be extended to
include the impact of garbage collection on the response-time performance.
Second, the network delay model needs to be refined.

The experimental results show that the model accurately predicts the end-
to-end performance for different load scenarios. In particular, it was found
that the model accurately predicts the infamous “engineering knee”, i.e. the
load values for which performance degradation becomes significant. This

6.6. Summary 135

500

520

540

560

580

600

0,40 0,64 0,89 1,13 1,37 1,61 1,86 2,10

Local Weather Service - Scenario B

R
es

p
on

se
 t

im
e

(m
se

c)

Arrival rate (requests/sec)

Experiment Simulation

Figure 6.5: Experiment and simulation results for scenario B

observation opens the possibility for the implementation of effective Web
Admission Control (WAC) schemes to prevent the system from performance
degradation due to overload [14]. Analyzing the effectiveness of such a WAC
scheme with our model-based predictions is a challenging topic for further
research.

In the next chapter we will conclude this thesis.

C
H

A
P

T
E

R

7
CONCLUSIONS

In this chapter, we present the conclusions of this thesis and make suggestions
for further research.

This chapter is structured as follows. Section 7.1 reviews the thesis objectives.
Section 7.2 discusses further research options.

7.1 Review of the thesis objectives

This thesis has contributed in the development and validation of quantitative
performance models of CORBA object middleware. In this chapter we review
the thesis objectives.

The overall objective of this thesis was to develop and validate quantitative
performance models of distributed applications based on middleware tech-
nology. In order to reach the overall objective, we have split this objective
into the following sub-objectives:

1. Investigate and develop techniques to identify and quantify perfor-
mance aspects of Java applications and components. These techniques
will enable us to learn about performance aspects of software, and to
quantify these performance aspects.

2. Obtain insight in the performance aspects of the Java virtual machine.

137

138 Chapter 7. Conclusions

3. Obtain insight in the performance aspects of CORBA object middle-
ware.

4. Obtain insight in the impact of multi-threading and the influence of the
operating system’s thread scheduler on the performance of threaded
applications.

5. Combine these insights to construct quantitative performance models
for CORBA object middleware.

6. Validate these performance models by comparing model-based results
with real-world measurements.

In the following sections we come back to these objectives.

Develop insight in the performance aspects of CORBA, Java and threading

In Chapter 2 we have studied various techniques for measuring performance
aspects in Java applications, the Java virtual machine, the operating system
and the network. These techniques form the basis of our Java Performance
Monitoring Tool (JPMT) that we have introduced in Chapter 3. Using this
tool we can learn about the performance behavior of Java applications. The
tool can be used to obtain insight in the execution behavior of an application.
It does this by providing detailed execution traces of the application and
its interaction with the underlying Java virtual machine and the operating
system. The tool also provides measurements of this execution behavior. The
tool combines monitoring results of instrumentation of the Java virtual ma-
chine, the system libraries and the operating system kernel into a complete
picture of the application behavior.

Construction of performance models

Construction of performance models require insight in the performance
behavior of an application. This insight can be obtained from studying docu-
mentation and source code, but also from studying the execution behavior
of applications under various experimental workloads. The results of this
study can be used to identify the parts of the application that are relevant to
performance modeling. During this ‘learning’ phase, the application JPMT
instruments the application very broadly, in order to obtain as much infor-
mation as possible. A performance model can be constructed from what
we have learned. To obtain input parameters for the performance model,
JPMT can be used to only instrument the parts of the application that are
relevant to the performance model, minimizing the overhead of the instru-

7.2. Future work 139

mentation. In Chapter 4 we construct performance models for a CORBA
object middleware implementation.

Validation of these performance models

Chapter 6 discusses the implementation and the validation of the perfor-
mance models. We developed a library for simulating performance aspects of
distributed applications, called DAPS (Distributed Application Performance
Simulator, Section 5.2), and implemented the performance models of Chap-
ter 5 on top of this library. To validate these performance models we have
compared simulation results with real-world experiment results for various
workloads. The simulation results match accurately with the experimental
results, except for the predicted time between the creation of a new dis-
patcher thread and the time this thread actually starts to execute the request
in the thread-per-request threading strategy. This ‘handover time’ is probably
under-estimated because our performance model does not capture some
of the interactions in the Java virtual machine needed to setup new threads.
This requires further research.

7.2 Future work

On the performance models

In the past chapters we identified several areas in which the the performance
models could be improved. First, in Section 5.4.3 we have seen an inaccurary
in predicting the time between the creation of a new dispatcher thread and
the time this thread actually starts to execute the request. The effect is dis-
cussed, but requires further study and validation. Second, in Section 4.6 we
found the impact of Java garbage collection to be, at times, significant dur-
ing our experiments. More research is needed on when to incorporate Java
garbage collection in the performance models and how to do so. Third, the
performance model could be extended to incorporate the aspects of CORBA
marshaling, see Section 4.6. Fourth, the performance models could be ex-
tended by modeling the impact of the network in remote method invocations,
see Section 4.3.

On the distributed application performance simulator

The DAPS simulation tool can be refined in several areas. First, the current
implementation of the network ‘delay server’ is too simplistic for accurately
modeling network response times for RPC and HTTP traffic. Second, the
tool does not support multi-processor and multi-core machines. Third, the
tool does not facilitate closed arrival processes. Fourth, resource constraints,

140 Chapter 7. Conclusions

such as the maximum number of threads to allocate and maximum number
of TCP connections, have not been implemented.

On the Java performance monitoring tool

The JPMT tool can also be improved in various areas. First, the current im-
plementation only supports the JVMPI API. JVMPI, the Java Virtual Machine
Profiling Interface, and JVMDI, the Java Virtual Machine Debugger Interface,
have been deprecated in Java 5 and removed in Java 6. They have been re-
placed by the Java Virtual Machine Tool Interface (JVMTI) API. Second, the
tool could be updated to use the Performance Application Programming
Interface (PAPI), instead of accessing perfctr counters direcly. This will make
JPMT more portable (it currently only works on Linux). Third, JPMT produces
event-traces for offline analysis. The tool could be extended towards support-
ing online monitoring scenarios and provide an API to obtain performance
statistics of Java applications. This API can be used for controlling Quality of
Service, monitoring service level agreements, and such.

REFERENCES

[1] Ari, I., Hong, B., Miller, E., Brandt, S., and Long, D. Managing flash
crowds on the internet. In 11th IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer Telecommunications
Systems (MASCOTS) (October 2003). 11

[2] Arnold, K., Gosling, J., and Holmes, D. The Java Programming Language.
Addison Wesley, 2000. 2

[3] Balsamo, S., Marco, A., Inverardi, P., and Simeoni, M. Model-based
performance prediction in software development: a survey. IEEE Trans.
on Software Engineering 30, 5 (May 2004). 3

[4] Beekhuis, R. Comparative performance evaluation of CORBA and
DCOM. Master’s thesis, KPN Research and University of Groningen,
1998. 81

[5] Berrendorf, R., Ziegler, H., and Mohr, B. The performance counter
library. http://www.fz-juelich.de/zam/PCL, 2003. 18

[6] Bovet, D., and Cesati, M. Understanding the Linux Kernel, 2nd edition ed.
O’Reilly Media, Inc., 2002. 85, 125

[7] Browne, S., Dongarra, J., Garner, N., Ho, G., and Mucci, P. A portable pro-
gramming interface for performance evaluation on modern processors.
The International Journal of High Performance Computing Applications
14, 3 (2000), 189–204. 18, 45

[8] Cantrill, B., Shapiro, M., and Leventhal, A. Dynamic instrumentation
of production systems. In USENIX Annual Technical Conference (June
2004). 20

[9] Cardellini, V., Casalicchio, E., Colajanni, M., and Yu, P. The state of art in
locally distributed web-server systems. CM Computing Surveys (CSUR)
34, 2 (2002). 4

141

142 References

[10] Chen, T., and Hu, L. Internet performance monitoring. Proc. of IEEE 90,
9 (September 2002), 1592–1603. 11

[11] Corporation, I. Intel Architecture Software Developer’s Manual – Volume
3: System Programming Guide. Intel Corporation, 1999. 46

[12] Floyd, S., and Paxson, V. Difficulties in simulating the internet. In
IEEE/ACM Transactions on Networking (August 2001), vol. 9, pp. 392–
403. 130

[13] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.
47, 55

[14] Gijsen, B., Meulenhoff, P., Blom, M., van der Mei, R., and van der Waaij, B.
Web admission control: improving performance of web-based services.
In Proc. of the 30th International Conference for the Resource Manage-
ment and Performance Evaluation of Enterprise Computing Systems
(CMG 2004) (Las Vegas, Nevada, USA, 2004). 135

[15] Gokhale, A., and Schmidt, D. Principles for optimizing corba internet
inter-orb protocol performance. In Proc. of HICSS ‘98 (Maui, Hawaii,
1998). 81

[16] Gosling, J., Joy, B., Steele, G., and Bracha, G. The Java Language Specifi-
cation, 3rd edition ed. Addison Wesley, 2005. 21

[17] Grundy, J., and Hosking, J. Wiley Encyclopedia of Software Engineering,
2nd ed. Wiley Interscience, J. Wiley and Sons, 2001, ch. Software Tools.
4

[18] Harkema, M. Instrumentation for performance measurements. Deliv-
erable 2.1.1, Senter EQUANET, End-to-End Quality of Service in Next-
Generation Networks, March 2003. 6

[19] Harkema, M. Performance modeling of the equanet interactive web-
browsing use-case. Deliverable 2.1.5, Senter EQUANET, End-to-End
Quality of Service in Next-Generation Networks, November 2004. 6

[20] Harkema, M. Performance model validation of middleware threading
models. Deliverable 2.1.6, Senter EQUANET, End-to-End Quality of
Service in Next-Generation Networks, February 2005. 6

References 143

[21] Harkema, M., Gijsen, B., and van der Mei, R. Performance of middleware
based architectures: A quantitative approach. In 30th International
Conference for the Resource Management and Performance Evaluation
of Enterprise Computing Systems (CMG 2004) (Las Vegas, Nevada, USA,
December 2004). 6

[22] Harkema, M., Gijsen, B., and van der Mei, R. Report on validation of
quantitative performance models of middleware. Deliverable 2.1.4,
Senter EQUANET, End-to-End Quality of Service in Next-Generation
Networks, February 2005. 6

[23] Harkema, M., Gijsen, B., van der Mei, R., and Hoekstra, Y. Middleware
performance: A quantitative approach. In 2004 International Sympo-
sium on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS 2004) (San Jose, California, USA, July 2004). 6

[24] Harkema, M., Gijsen, B., van der Mei, R., and Nieuwenhuis, L. Per-
formance comparison of middleware threading strategies. In 2004
International Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS 2004) (San Jose, California, USA,
July 2004). 6

[25] Harkema, M., Quartel, D., Gijsen, B., and van der Mei, R. Performance
monitoring of java applications. In ACM 3rd International Workshop
on Software and Performance (WOSP 2002) (Rome, Italy, July 2002),
pp. 114–127. 6

[26] Harkema, M., van der Mei, R., and Gijsen, B. Performance evaluation of
middleware threading models and marshaling. Deliverable 2.1.3, Senter
EQUANET, End-to-End Quality of Service in Next-Generation Networks,
November 2003. 6

[27] Harkema, M., van der Mei, R., and Gijsen, B. Report on basic quanti-
tative performance models for middleware. Deliverable 2.1.2, Senter
EQUANET, End-to-End Quality of Service in Next-Generation Networks,
May 2003. 6

[28] Harkema, M., van der Mei, R., Gijsen, B., and Quartel, D. Jpmt: a java
performance monitoring tool. In 13th International Conference on
Modelling Techniques and Tools for Computer Performance Evaluation
(TOOLS 2003) (Urbana, Illinois, USA, September 2003). 6

144 References

[29] Henning, M., and Vinoski, S. Advanced CORBA Programming with C++.
Addison Wesley, 1999. 56

[30] Hoare, C. Monitors: An operating system structuring concept. Commu-
nications of the ACM 17, 10 (October 1974), 549–557. 20, 32

[31] IONA Technologies, Object Oriented Concepts Inc. ORBacus 4 for Java.
http://web.progress.com/en/orbacus/, 2003. 125, 129

[32] Jain, R. The Art of Computer Systems Performance Analysis. Wiley Pro-
fessional Computing, 1991. 3, 12, 13, 51, 61

[33] Krahl, D. The extend simulation environment. In Proc. of the 2000
Winter Simulation Conference (Orlando, FL, USA, 2000). 87, 89

[34] Lamport, L. Time, clocks and the ordering of events in distributed
systems. Communications of the ACM 21, 7 (July 1978), 558–565. 14

[35] Lawrence Berkeley National Laboratory. Packet capture library (pcap).
http://www.tcpdump.org, 2005. 30

[36] Lazowska, E., Zahorjan, J., Graham, G., and Sevcik, K. Quantitative
System Performance. Prentice-Hall Inc., 1984. 3, 61

[37] Lindholm, T., and Yellin, F. The Java Virtual Machine Specification, 2nd
edition ed. Sun Microsystems, 1999. 21, 47

[38] M. Dahm, Date-Added = 2011-06-20 15:38:03 +0200, D.-M. . . I. . F. M. . A.
N. . B. T. . B. T. . T. Y. . . Tech. rep. 47

[39] Menasce, D., and Almeida, V. Capacity Planning for Web Services. Pren-
tice Hall, Inc., 2002. 14

[40] Microsoft Corporation. Platform sdk: Performance monitoring. 2005.
20

[41] Object Management Group. The Common Object Request Bro-
ker Architecture and Specification, revision 2.5. OMG document
formal/2001-09-01, 2001. 1, 53, 56

[42] Odlyzko, A. Internet traffic growth: Sources and implications. In Proc.
of Optical Transmission Systems and Equipment for WDM Networking II
(2003), B. Dingel, W. Weiershausen, A. Dutta, and K. Sato, Eds., no. 5247,
The International Society of Optical Engineering (SPIE), pp. 1–15. 1

References 145

[43] Paxson, V., and Floyd, S. Wide-area traffic: The failure of poisson mod-
eling. In IEEE/ACM Transactions on Networking (June 1995), vol. 3,
pp. 226–244. 130

[44] Pettersson, M. The perfctr package for linux.
http://user.it.uu.se/ mikpe/linux/perfctr/, 2004. 45

[45] Rolia, J., and Sevcik, K. The method of layers. IEEE Transactions on
Software Engineering 21 (1995), 689–699. 3

[46] Russinovich, M. Inside the Windows NT scheduler. Windows IT Pro
Magazine (July 1997). 86

[47] Schmidt, D., Stal, M., Rohnert, H., and Buscmann, F. Pattern-oriented
Software Architecture, Volume 2: Patterns for Concurrent and Networked
Objects. John Wiley Sons, 2000. 59

[48] Schroeder, B. On-line monitoring: A tutorial. IEEE Computer 28, 6 (June
1995), 72–77. 11, 13, 14

[49] Snodgrass, R. A relational approach to monitoring complex systems.
ACM Transactions on Computer Systems 6, 2 (May 1988), 157–196. 13

[50] Sun Microsystems. The java hotspot virtual machine. Technical White
Paper, 2001. 2, 26

[51] Svodobova, L. Performance monitoring in computer systems: A struc-
tured approach. Operating Systems Review 15, 3 (1981), 39–50. 11

[52] Szyperski, C. Component Software – Beyond Object-Oriented Program-
ming. Addison Wesley, 1999. 4

[53] The Economist, and IBM Corporation. The 2004 e-readiness rankings.
http://www.eiu.com/, 2004. 3

[54] The Object Management Group. http://www.omg.org/. 1

[55] Tran, P., Gosper, J., and Gorton, I. Evaluating the sustained performance
of cots-based messaging systems. vol. 13. 2003, pp. 229–240. 11

[56] Trivedi, K. Probability and Statistics with Reliability, Queuing and Com-
puter Science Applications, 2nd ed. John Wiley Sons, 2002. 3

[57] Vahalia, U. Unix Internals – The New Frontiers. Prentice Hall, 1996. 40,
86

146 References

[58] van der Gaast, S., Beerends, J., Ahmed, K., and Meeuwissen, H. Quan-
tification and prediction of end-user perceived web-browsing quality.
White contribution COM 12-C3 to ITU-T Study Group 12 (November
2004). 122

[59] van der Mei, R., Gijsen, B., and van den Berg, J. End-to-end quality of
service modeling of distributed applications: the need for a multidisci-
plinary approach. CMG Journal on Computer Management 109 (2003),
51–55. 3

[60] van der Mei, R., and Harkema, M. Modelling end-to-end performance
for transaction-based services in a distributed computing environment.
In Proceedings 1st Korea-Netherlands Joint Conference on Queueing The-
ory and its Applications to Telecommunication Systems (Seoul, June 2005)
(Seoul, South Korea, June 2005). 6

[61] Vinoski, S. Corba: Integrating diverse applications within distributed
heterogeneous environments. IEEE Communications Magazine 35, 2
(1997), 46–55. 1, 125

[62] W3C. Jigsaw: W3C’s Server. http://www.w3.org/Jigsaw/. 125, 129

[63] Wilson, P. Uniprocessor Garbage Collection Techniques. LNCS 637.
Springer Verlag, 1992, pp. 1–42. 21

[64] Wisniewski, R., and Rosenburg, B. Efficient, unified, and scalable per-
formance monitoring for multiprocessor operating systems. Proc. of
ACM Supercomputing 2003 (November 2003). 11

[65] Woodside, C. Software performance evaluation by models. Performance
Evaluation, LNCS 1769 (2000), 283–304. 3, 31, 51

[66] Woodside, C., Neilson, J., Petriu, D., and Majumdar, S. The stochastic
rendezvous network model for performance of synchronous client-
server-like distributed software. IEEE Transactions on Computers 44, 1
(1995), 20–34. 3

[67] Yaghmour, K., and Dagenais, M. R. Measuring and characterizing system
behavior using kernel-level event logging. In USENIX Annual Technical
Conference (June 2000). 20, 35, 36

	Performance Modeling of Object Middleware
	Contents
	1 Introduction
	1.1 The emergence of Internet e-business applications
	1.2 Objectives and scope
	1.3 Outline of the thesis

	2 Performance Measurement
	2.1 Performance measurement activities
	2.2 Measurement terminology and concepts
	2.3 Measurement APIs and tools
	2.4 Summary

	3 The Java Performance Monitoring Tool
	3.1 Requirements
	3.2 Architecture
	3.3 Usage
	3.4 Implementation
	3.5 Intrusion
	3.6 Summary

	4 Performance Modeling of CORBA Object Middleware
	4.1 CORBA object middleware
	4.2 Specification and implementation of CORBA threading
	4.3 Performance models of threading strategies
	4.4 Workload generation
	4.5 Throughput comparison of the threading strategies
	4.6 Impact of marshaling
	4.7 Modeling the thread scheduling
	4.8 Summary

	5 Performance Model Validation
	5.1 Performance model implementation
	5.2 The Distributed Applications Performance Simulator
	5.3 Validation of the thread-pool strategy for an increasing number of dispatchers
	5.4 Validation of the threading strategies for an increasing number of clients
	5.5 Summary

	6 Performance Modeling of an Interactive Web-Browsing Application
	6.1 Interactive web-browsing applications
	6.2 The local weather service application
	6.3 Performance model
	6.4 Experiments
	6.5 Validation
	6.6 Summary

	7 Conclusions
	7.1 Review of the thesis objectives
	7.2 Future work

	References

