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1

I N T RO D U C T I O N

In serious life-threatening situations a fast ambulance response is required.
Late arrivals can have a serious impact on the well-being of the patients, and
can also have consequences regarding to policy making. Ambulance service
providers (ASPs) face a broad range of challenges in order to realize fast
response times. While remote rural areas face the challenge to provide care
for an aging population that decreases in size, urban areas are making efforts
to cope with the increasing demand on the number of calls. In the meantime,
regional characteristics are subject to constant change in regulations, changes
in hospital openings, and alterations in the ambulance fleet’s composition and
size.

There are many questions to be addressed in realizing high quality ambulance
care: What are good locations for ambulance bases? How many ambulances
should be positioned at each base location? How should a dispatcher reposition
ambulances that are free and available over the region to maintain an optimal
coverage level? How should the dispatch center be staffed? What would be
the effect on the response times of a given policy change?

In the ever-changing landscape of ambulance care there is a trade-off between
costs and quality care. This raises the need for methods and tools that effec-
tively enable decision makers to make optimal use of the resources at hand. The
efficiency of decision making can constantly be improved by these increasingly
sophisticated models in combination with emerging data technology. Topics
in this thesis help practitioners and scientists to bridge real-life problems and
mathematical models.

In this thesis we propose and study a range of models that address the questions
above—models that function on both the tactical and the operational level.
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8 I N T RO D U C T I O N

1.1 Emergency medical services
In this section we give a brief outline of emergency medical services (EMS)
systems, with a primary focus on the Netherlands. The structure of ambulance
care is largely similar within the Europen Union [29, 57, 140] and the rest of
the world [43].

1.1.1 Regions
Ambulance care is spatially partitioned into multiple regions in the fast major-
ity of countries; each region has an ambulance fleet and is coordinated by one
dispatch center. Currently, the Netherlands is partitioned into 25 of these EMS
regions; see Figure 1.1. For each region, the ASPs work operationally together
as one organization called a RAV (in Dutch: regionale ambulancevoorzien-
ing) [D6]. Each RAV is responsible for its business processes, performance
and finances.

1.1.2 Dispatch centers
A request for ambulance care starts by an applicant at an incident location who
believes that professional medical aid from emergency medical technicians is
required; see Figure 1.2. In most countries, a request for EMS is executed by
calling a nation-wide emergency telephone number, such as 1-1-2 or 9-1-1. The
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Figure 1.1 The Netherlands is partitioned into 25 ambulance regions.
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Figure 1.2 The ambulance service process as it usually takes place consists
of various steps: at the incident, in the dispatch centers, and at the
ambulance.

request is answered by a call center agent. Depending on the country’s system,
this call center handles the entire request, or the agent determines the region
and emergency service one needs, whereafter the request is forwarded to the
correct regional call center. This may be a general call center for emergency
services, or a specific medical or EMS call center. Medical professionals
and other emergency services have a separate telephone number that directly
connects them to the right dispatcher. The call center is called the dispatch
center in the case it is the last of multiple call centers that an applicant speaks
to in order to get access to ambulance care.
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The dispatch center has the task to determine the level of the injury in the
so-called triage procedure, that is the assignment of degrees of urgency to
wounds through performing a questionnaire. Consequently, an ambulance is
sent to incidents only in the case the patient really needs this service. The
number of ambulances is limited, and it is important to have an ambulance
available for dispatch when needed. If ambulance care is required, i.e., the
request for EMS is honored, an available ambulance is sent to the incident
during the dispatch procedure, and care is provided when the ambulance arrives
at the incident location. More information on the choice of the ambulance is
provided in Section 1.1.4.

To bridge the time gap until the medical professionals arrive, the dispatch
center may provide the applicant with additional instructions on first aid
actions. Reanimation instructions are a clear example of these additional
instructions to an applicant who has no medical know-how. If the patient needs
hospital care, transportation to a hospital is provided. The dispatch center is in
control when it comes to coordination of the EMS services. EMS call center
agents communicate with hospitals and ambulance teams and if necessary also
with police, firefighters, and other EMS or homeland security call centers.

1.1.3 Urgency levels
Each honored call is assigned an urgency level. The Dutch EMS system
distinguishes three levels: A1, A2, and B.

A1 An urgent call with an acute threat to the patient’s life. Vital functions
of the patient are not or rarely present, or cannot be determined through
the telephone. The EMS vehicle uses optical and visual signals and
tries to get to the patient as soon as possible. Examples: heart attack,
reanimation or serious traffic incidents.

A2 A patient’s life is not under direct threat, but there might be serious
injuries. The EMS vehicle may use optical and visual signals if the
EMS personnel have discussed this with the dispatch center, but this
only happens on rare occasions. Examples: a broken leg or a general
practitioner asks for transportation to a hospital.

B A non-urgent call in which the patient must be transported within a given
predetermined time interval. A typical B-call exists of transferring a
seriously ill person from one hospital to another, because this hospital
is specialized in the patient’s condition. When a seriously ill person
receives a scheduled transport from an EMS vehicle to his or her home,
it will be classified as a B-call as well. Calls with this urgency level are
commonly referred to as ordered transportations.
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A major difference between calls that are labeled with urgencies A1 and A2
on the one hand and calls with urgency B on the other is that the occurrence
of calls with A1 or A2 urgency are not known beforehand, while calls with
urgency B can be planned.

Internationally, it is common practice to differentiate between urgency levels,
with only Hong Kong being the known exception. Most countries have a
completely separated system for ordered transportations [29].

1.1.4 The ambulance service process
Once a dispatch center agent has determined the urgency and incident location,
the search for the best ambulance to dispatch starts. Usually, this is the
ambulance that can reach the incident location in minimal time, although in
practice many other variables play a role, such as the vehicle transportation
capabilities and the remaining shift time. Not all vehicle types can attend
any incident type. For instance, in a fleet with multiple ambulance types
the cheaper to operate basic life support ambulances can only attend ordered
transportations. When a shift is about to end, or when emergency medical
technicians (EMTs) just have attended a severe incident, a dispatcher can
decide to send another ambulance that travels a bit longer, but is better for the
overall fleet’s morale.

When the pagers of the EMTs are activated at dispatch, some time passes
before the ambulance starts moving, since it takes time to get into the vehicle.
This time period is called the chute time. The entire duration of a call entering
the system until the ambulance starts moving is called the pre-trip delay.

Next, the EMTs drive to the patient. When the ambulance arrives at the
incident location, the response time is known. The response time is defined
as the length of the time interval between the moment that the call enters the
queue at the call center agent until the moment the EMS vehicle arrives at the
incident location.

After driving to the incident follows the treatment of the patient. In some
cases, the patient is treated at the incident location, after which the ambulance
returns to the base location. In other cases, the patient is transported to the
hospital. In some countries a patient is always transported to the hospital,
either because ASPs are paid per transport, or because the country’s legislation
states that the ASP must provide fastest means to the hospital and the medical
professionals start treatment there instead of at the incident location. Literature
is not unambiguous about whether ‘stay and treat’ outperforms ‘scoop and
run’; while [116] says ‘scoop and run’ gives a 38% reduction in the odds
of dying, [69] says that it is not clear which policy has the preference. The
Netherlands uses the ‘stay and treat’ policy.
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Each call is classified as declarable, EHGV or loss. A call is classified as
declarable if transportation is required: either a patient is brought to a hospital
or to his home. An EHGV call (in Dutch: eerste hulp, geen vervoer) is a type
of call within the ‘stay and treat’ policy where the EMS team can provide
care locally, and the patient does not require transportation to a hospital. EMS
personnel determines this status at the incident location. For EHGV calls
ambulances drive back to the base after treating the patient. Sometimes an
EMS team arrives at the scene and no patient is present. This might be the
result of a patient who left after the call was made or a prank call to the
emergency number. This type of call can be classified as a loss call. In case
a patient in a hospital is not ready for transportation at the moment the EMS
vehicle arrives, the call will be classified as a loss call as well.

After the transport of the patient to the destination follows the transfer of the
patient that usually bridges pre-hospital care with hospital care. Sometimes
the transfer time is referred to as the turn-around time. After finishing up the
transfer, the ambulance is available for handling the next incident. If there is
no nearby patient to attend, the last stage of the ambulance trip consists of
driving back to its base location. Here it waits for a new call, or until the shift
ends.

For basic life support (BLS) transport, and occasionally for advanced life
support (ALS) transport, it is possible that the incident location is a hospital. In
that case, the destination may be another hospital or a home address. This can
happen if a patient is brought home after a day treatment, or when another hos-
pital is specialized in the patient’s medical condition. Since our primary focus
is on ALS transport with random arrivals, we keep respecting the definitions
mentioned before, even if the patient’s destination is not a hospital.

1.1.5 Response times
The public perception with respect to ambulance care dictates that every second
counts. Throughout the world, the response times are used as a proxy for the
quality ambulance care. Multiple times questions have been asked about the
quality and origins of this proxy, which is the motivation for this section. Does
every second count?

The key performance indicator (KPI) is the fraction of late arrivals for poten-
tially life-threatening incidents; that is, the number of calls that exceed a given
response time threshold divided by the total number of calls in the system.
The response time threshold is set to 92% in 12 minutes for Hong Kong, and
Australia uses 50% within 10 minutes. The Netherlands [D2, D7] and parts
of Germany use 95% within the 15 minutes. Larger countries differentiate
response times and have other KPIs for urban, rural and wilderness [43]. Too
many late arrivals can result in a penalty or can have an adverse impact on the
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reputation of the EMS provider. Traditionally, this KPI is calculated for an
entire ambulance region, over a whole year.

The origin of the common response time threshold in North American cities,
being 90% in 8:59 minutes, can be found in [33], which was published in 1976.
This research shows that eight minutes is the case of cardiac resuscitation
survival limit, which is only a small fraction of the high urgency calls. The 59
seconds are added on top as to accommodate for the inaccuracy of the punch
clocks used at the time [43]. The Dutch performance requirement of 95%
within 15 minutes for high urgency calls was put in place in the late nineties, a
time period when politicians wanted to have more control on health care costs,
and accordingly, performance indicators were developed [70].

But is there a better alternative? Scientific literature provides some insight.
Articles [38, 90] show that there are only a few validated indicators of the
effectiveness and quality, which mostly relate to patient satisfaction and general
system processes, each providing an indirect measure of quality which is
difficult to relate to outcomes in patient care. Two other studies [92, 95]
conclude that no statistical evidence can be found that short responses increase
the probability of survival.

Ambulance crews also find this measurement overly simplistic and thereby
put patients and ambulance crews at risk [101]: “You see, it’s an unfortunate
situation. With this eight minutes, if you arrive in seven minutes and the patient
dies it’s a success. If you arrive in nine minutes and the patient lives, and it’s a
good outcome, you’ve failed. Which to me is absolute rubbish. And we are
now treating the clock and not the patient. The patient care, in my view, is
gone, absolutely. Well it’s terrible. It’s awful. (Andy)”.

However, there are studies showing the opposite. Especially in the field of
heart attacks fast responses do save lives [74, 79, 134, 139]. Furthermore,
there is no chance of survival if the response time exceeds 30 minutes [135].
The one-year survival rate increases even more if bystanders or police officers
provide external cardiac massage and artificial respiration, also known as
CPR [79, 136]. Also, for roadside incidents it is shown that a response time
reduction from 25 minutes to 15 minutes causes a third fewer mortalities [117].
Finally, [3] indicates that response times, amongst others, is a valid indicator
of the quality of care for cardiac arrests.

Based on the heart attack survival curves, ambulances location models are
created that maximize the probability of survival [40, 89]. As a result, it is
shown that maximizing response time thresholds can actually serve as effective
proxies for patient survival if this limit is set to seven or eight minutes. These
models can even incorporate survival functions for other incident types. So
perhaps a response time threshold is not so bad as it first looks likes after all.
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In the year 2008, the Dutch Parliament asked the Minister of Health Care
about lowering the response time threshold from fifteen to eight minutes. He
answered that this would significantly increase the costs, which he could not
justify, because scientific research has not provided strong evidence on the
effect of increased health outcomes [D4].

In the end, some things are not contradicted. More research is needed to get
survival curves of other injury classes to which ambulances respond. Also, it
does not negatively influence the medical outcome if the ambulance arrives
faster, because of efficient pre-dispatch ambulance positioning. And last but
not least, it feels reassuring for the patient and bystanders if professional help
can assist within a short time span after a potentially life-changing incident
has happened.

1.2 Outline of the thesis
There are numerous interesting mathematical challenges in ambulance care.
Fields include the development and analysis of dispatch center models, facil-
ity location problems, ambulance allocation models, and operational control
methods that real-time distribute available vehicles through dynamic ambu-
lance management (DAM) models. Topics in this thesis touch several of these
challenges. Various results presented in this thesis have already found their
way to ambulance service providers.

In Chapter 2 we propose simulation models for evaluating the performance of
ambulance dispatch centers. So far, dispatch center simulation has been fairly
untouched in the literature. The models address dispatch center formats that
are encountered in practice, in which the agents can have one or more roles:
only call taking, only dispatching, or the generalist specialism that can do both.
Characteristic for this dispatch center model is that it can be seen as a call
center network, in which a call can enter the same queue multiple times through
a feedback mechanism. This mechanism models the multiple emergency
situation update contacts between the dispatch center and ambulance team.
The model enables EMS planners to better understand the impact of these
features on the response time performance of EMS dispatch centers. Extensive
simulations show that there is not one model that outperforms all others. These
models found their way to practice by its inclusion in the report Models for the
national ambulance plan in the Netherlands [D5].

The distribution of ambulances over the bases resulting from most existing
allocation models is out of balance for regions with combinations of urban and
rural demand, concerning the fraction of late arrivals for each area within a
region. In so-called regional coverage location problem models that focus on
region-wide coverage, ambulances are more likely to be positioned in urban
areas due to the large call volume, while the set coverage models try to spread
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the ambulances as much as possible and provide relatively too much coverage
in rural areas. To be able to meet local needs, one wants to allocate ambulances
such that there is a guarantee of the minimal performance in each area of the
region. The existing so-called minimal reliability and maximal availability
models address this problem, but require homogeneity in the call arrival rate,
service time and minimum required reliability level. It is known that these
minimal reliability models lead to major over-estimations on the required
number of ambulances if they are applied to real inhomogeneous ambulance
regions—against their original design. Maximal availability models have
similar issues that result in fewer people being covered than necessary. As
a result, they are hardly used in practice. Chapter 3 provides fundamental
new insight into why this overstaffing takes place and solves the issues by
replacing two assumptions by their respective generalizations in what is called
the adjusted queuing approach. This approach allows for fluctuations in
the call arrival rate, the service time and the minimum required reliability
level, and thereby make regional coverage location problems applicable to real
ambulance regions.

Chapter 4 proposes two minimal reliability models that follow the adjusted
queuing approach that was introduced in Chapter 3. The first model formulates
a mixed integer program that solves the minimal reliability problem. The
main drawback of this model is that it can only be applied to relatively small
model instances because of its calculation complexity. The second model is a
heuristic that uses a post-processor that adds ambulances on top of a relatively
simple IP-formulation until the reliability condition is satisfied, and can be
applied to larger model instances. The model outcomes of both models are
compared to the best-known model from literature. The results show a strong
reduction in the required number of ambulances, and come close to the realistic
numbers used by the ambulance service providers. To our best knowledge,
these models are the first of its kind that is ready to be used in practice.

Chapter 5 focuses on the real-time relocations of ambulances. Dynamic
ambulance models give dispatchers advice on how to redistribute their available
ambulances over a region to minimize late arrivals. Usually, the request to
an ambulance is to relocate to a base location, without real-time usage on the
other available ambulance on how to drive, i.e., what route to follow. Most time
ambulance drivers take the fastest or shortest route. Taking an alternative route
has an impact on the coverage during the relocation. Chapter 5 formulates a
method to obtain a good alternative route, and shows improved intra-regional
fairness for three real ambulance providers.

In Chapter 6 we evaluate two dynamic ambulance management policies in
practice through a pilot study. The models used, numerical results and user
experiences from the dispatchers and management are shown. During the pilot
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the number of late arrivals was reduced by a third, resulting in the first time of
ASP GGD Flevoland’s history that the requirement of 95% of the high urgency
calls was responded to within the response time threshold of 15 minutes. Based
on the success of this pilot the software is still used in daily operation and
under continuous refinement. Current developments prepare the software for a
roll-out in other dispatch centers.

Chapter 7 gives an overview on the structure of the testing interface for ambu-
lance research, TIFAR—a powerful software framework that can be used to
evaluate what-if scenarios in ambulance care. The TIFAR software framework
is omnipresent in this thesis, as it enables us to create simulation models and
solve optimization problems; these are the so-called refinements. This chapter
provides detailed descriptions for four refinements: (1) the dispatch center
simulation model of Chapter 2, (2) an ambulance allocation model of Chap-
ter 4, (3) the road domain simulation engine that has been used to generate
the results for Chapter 5, and (4) the operational version that is presented in
Chapter 6. In order to solve mixed integer problems, TIFAR is linked to the
optimization suite Coin-OR [O2]. TIFAR has extensive reporting possibilities,
such that a wide range of analysis can be made. The TIFAR simulation engine
for the road domain is used to evaluate new model updates, and to provide
advice to actual problems that ambulance providers encounter in their daily
life.

A list of all abbreviations used can be found on pages 191–195, and a full
variable listing is provided on pages 197–200.
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D I S PAT C H C E N T E R S I M U L AT I O N M O D E L S

In pre-hospital health care the dispatch center plays an important role in the
coordination of EMS. A dispatch center handles inbound requests for EMS
and dispatches an ambulance if necessary. The time needed for triage and
dispatch is part of the total response time to the request, which, in turn, is a
key performance indicator for the quality of EMS. The call center agents of
the dispatch center should perform the triage efficiently, so that incoming calls
have short waiting times, and the dispatch of ambulances must be adequate
and swift to get a fast EMS response. This chapter presents and compares
three discrete event simulation models for dispatch centers. The first has two
different call center agent classes between whom communication tasks are
split, while the second has one class of call center agents that share all tasks.
The third model is a combination of both. The models provide new insight
into the dispatch center processes and can be used to address strategic issues,
such as capacity and workforce planning. The analysis and simulations of
urgent communication and decision processes in this chapter are also valuable
to other emergency call centers.

This chapter is based on the following publications:

[A1] M. van Buuren, G. J. Kommer, R. D. van der Mei, and S. Bhulai. “A
Simulation Model for Emergency Medical Services Call Centers”.
Proceedings of the 2015 Winter Simulation Conference. Dec. 2015,
pp. 844–855

[A2] M. van Buuren, G. J. Kommer, R. D. van der Mei, and S. Bhulai.
“EMS Call Center Models With and Without Function Differenti-
ation: A Comparison”. Operations Research for Health Care 12
(Mar. 2017), pp. 16–28
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2.1 Introduction
The dispatch center has the task to perform the triage and dispatch adequately.
That is, to determine the need and urgency level for EMS properly, so that
an ambulance is sent to incidents only in the case the patient needs this ser-
vice. The dispatch center is also the central communication hub between the
ambulances and other partners in the emergency process.

The total time needed for taking the request, performing the triage, and dis-
patching an ambulance is called the call center time, which is part of the total
response time. In the case of life-threatening situations short response times
are crucial. Hence, it is essential to have short waiting, triage, and dispatch
times at the dispatch center.

The three discrete event simulation (DES) models for a dispatch center de-
veloped in this chapter provide insight into these crucial variables. They use
the policy of the dispatch center and the number of call center agents as an
input. The models simulate the communication processes at the dispatch center
in detail, and they can be used to evaluate and predict the dispatch center’s
performance. Results are shown for all three models for realistic call volumes
and durations, where the input contains call record data provided by a real
dispatch center.

In Section 2.1.1 we give an overview of the dispatch center’s processes. Sec-
tion 2.1.2 concludes the current section by stating the contribution of our
models.

2.1.1 Overview
Before going in-depth we provide a high-level model overview that discusses
some typical model characteristics.

Three call center agent classes
Most dispatch centers have two classes of call center agents, who work in
cooperation. The first class is the call takers. They handle the inbound

Triage

Add. instructions
if applicable

Follow-up contact
Block2

if applicable

End of
service

Follow-up contact
Block3

if applicable

Dispatch
(is Block1)

Follow-up contact
BlockB

if applicable
Call taking domain Dispatching domain

Forward jumps

Is honored?

No

Yes

B blocks

Figure 2.1 High-level description of the dispatch center. The separation of the
call taking and dispatching domains is shown by dotted contours.
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Model name Call takers Dispatchers Generalists

1 Function
X Xdifferentiation

2 Solely generalists X
3 Mixed model X X X

Table 2.1 The call center agent classes for each model.

requests and perform communication with the caller, also referred to as the
applicant. Dispatchers are the second call center agent class. They take care
of the dispatch process, the communication with the ambulance team and the
hospitals in various follow-up contact moments of the service. An example
of a follow-up call is a request from the ambulance team for additional health
condition information while driving to the incident. The dispatcher has logistic
skills and can be supported by decision support software (DSS) to determine
the most appropriate ambulance to send to the incident.

The just mentioned type of dispatch centers make a distinction between call
takers and dispatchers. This is called function differentiation. Other call centers
have one class of call center agents, called generalists, that do both tasks. One
can consider a generalist as a call taker and dispatcher embedded in one person.

Figure 2.1 illustrates the processes of the call taking domain and the dispatching
domain. The call taking domain contains a triage procedure, in which is
decided if a request is honored. Sometimes, when the need for an ambulance
has been determined, additional instructions are given by the call taker while at
the same time the dispatcher is assigning a call to an ambulance. The dispatch
process and follow-up contacts are modeled through a block sequence, which
is described in Section 2.3.3.

The three dispatch center models use different call center agent classes, which
is displayed in Table 2.1.

Prioritizing calls
Requests can be made by several disjunct applicant classes, such as civilians,
general practitioners, or police officers. The priority of an incoming request
depends on this applicant class, i.e., an ambulance service provider can choose
to give civilians a higher priority than hospitals to prevent call center agents
from taking a hospital line if there are civilians waiting in a life-threatening
situation.

The applicant’s class may affect the service time distributions in the call taking
domain. Requests applied for by a general practitioner or a police officer
generally do not require extensive triage and therefore may have a shorter
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service time than requests from civilians. Requests from civilians always need
to be triaged in order to determine the need and urgency of the service.

Requests for EMS are often categorized into urgency levels. This chapter
uses high urgency in the case of a potentially life-threatening situation, to low
urgency where a patient is stable and an immediate life-saving response is not
required. Low urgency requests are for instance planned transports from and
to a hospital. This corresponds to the Dutch urgency levels A1, A2, and B,
respectively.

Only requests that are honored by the call taker—or generalist, depending on
the model—get an urgency assigned. The urgency is used for prioritizing in
the dispatch domain: dispatchers only address low urgency tasks if all potential
life-threatening high urgency tasks are completed.

Note the difference between priority and urgency: the priority for an incoming
request is used to decide what telephone line to answer when there are multiple
waiting calls in the telephone system, while an urgency, which is assigned
during the triage procedure, gives information as regards the seriousness of
the injuries, and consequently how the EMS should respond in the dispatch
domain.

2.1.2 Contribution of our models
This chapter presents the first simulation models for dispatch centers that: (1)
contain multiple call center agent classes, as can be found in a modern dispatch
center, (2) contain follow-up contact moments, (3) simulate dispatch center
processes in high detail, (4) use real dispatch center data sets as simulation
input to gain insights, and (5) provide a comparison between multiple dispatch
center models.

Regular call centers versus dispatch centers
There are two main differences between a regular call center and a dispatch
center. By regular call centers we mean call centers that handle incoming calls
for a service of a company, with questions on a particular subject. The first is
the urgency at which calls need to be taken and processed. Requirements on
the quality of service of dispatch centers are much stricter than regular call
centers due to the urgency. A noticeable subject is the respectable uncertainty
of demand in combination with the fact that a request for EMS may not wait too
long, because it might involve a life-threatening situation. As a result, we take
in the numerical analysis the strict requirement of at most six seconds waiting
time as a key performance parameter which is common in Dutch dispatch
centers, whereas in a regular call center a typical response time requirement is
often not that strict.
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The second difference between a dispatch center and a regular call center is the
fact that the dispatch center has more communication tasks in the coordination
of the EMS services. Dispatch center agents communicate with hospitals and
ambulance teams and if necessary also with police, firefighters, and other
EMS or homeland security call centers. These tasks are also done under time
pressure. The number and characteristics of these communication processes
are uncertain and difficult to include in an analytical model. Simulation models
do not have the difficulty that an analytic solution to a mathematical problem
needs to be determined. As analytic modeling is not possible for dispatch
centers, simulation techniques seem the best ways to analyze and evaluate
dispatch center systems.

Contribution to practice
The implemented simulation models can be used by decision makers, managers
of dispatch centers, and other policy makers in managing the operational
subjects of the dispatch center. All processes are assumed to be stochastic, the
simulations make use of the uncertainties in call volumes and lengths of the
communications. The models give insight into the variance of the workload in
different situations. It is possible to study economies of scale in the case of
increasing call volumes. The outcomes of individual simulation runs include
the workload of the system and the waiting times for different applicant classes.
These performance indicators can be examined to explore optimal staffing
strategies, staffing levels, and service level requirements.

This chapter compares the performance of the two most common staffing
policies from practice: with function differentiation and with only general-
ists. A third model we propose and analyze, the so-called mixed model, is a
generalization of the other two policies.

In Section 2.2 we provide a literature overview. Section 2.3 describes our
models from a queuing theoretical perspective. Section 2.4 shows realistic
parameters that were obtained from a real dispatch center database and expert
guesses, used to generate the results of Section 2.5. In the results section we
also provide new insights, which are concluded and discussed in Section 2.6.

2.2 Literature
The current literature review makes a distinction between general call center
simulation models and dispatch center simulation models. For simulation
models that focus on the ambulance domain we refer to Chapter 7.
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Regular call center simulation
The literature on the more general call centers is broad and vast, in contrast to
dispatch centers. Topics of research are arrival processes, optimal staffing of
call centers, estimation of demand and expected future demand for services,
and routing of specific types of demands. Koole and Mandelbaum give a
good introduction to this subject [71], while other papers review research on
customer call centers [47, 72]. The surveys show that call centers are mainly
analyzed within the framework of queuing theory. In order to keep the queuing
models tractable, most papers deal with a single call type with a homogeneous
pool of agents. The extension to multiple call types and a heterogeneous pool
of servers leads to complex and intractable models [23, 114]. Because of this
complexity, simulation is an appropriate tool to analyze more complex call
centers, such as dispatch centers.

Dispatch center simulation
There are limited simulation models that focus on the call center domain of
the EMS process. Kozan and Mesken have modeled the dispatch center within
a simulation context [73]. They developed a simulation model to analyze the
effects of varying call volumes, personnel resources, and workload distributions
on the performance of the call center. Ross [113] studies the Toronto dispatch
center and develops a simulation model to examine the effect of changes of the
dispatch processes on the workload of the call center staff. For this research,
communication flows at the call center are identified and different dispatch
systems are evaluated. Other preliminary work on dispatch center simulation
can be found in [37, 102].

2.3 Models
This section describes the three models in detail. In Section 2.3.1 we formu-
late our assumptions on the ambulance practice, followed by the model with
function differentiation in Section 2.3.2. All models contain a block sequence,
the inner working of which is explained in Section 2.3.3. Section 2.3.4 de-
scribes the second model holding the classic regime with solely generalists
who do both call taking and dispatching. We conclude with the mixed model
in Section 2.3.5.

2.3.1 Assumptions
We assume that an ambulance region has exactly one regional dispatch center
that is responsible for both the call taking and the dispatch of ambulances.
As stated before, we assume that there are three classes of dispatch center
agents, each with their own set of skills and costs: call takers, dispatchers, and
generalists. Another assumption is that there are no call abandonments in the
dispatch center.
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Each honored request gets an urgency assigned. We assume that this urgency
is not subject to change during the remainder of the call handling. In practice,
urgency mutations do occur but often seldom. We assume that an ambulance
service provider uses the totally ordered set of urgency classes U .

We assume that to each honored request exactly one ambulance is dispatched.
After dispatch, it can generate follow-up calls. In practice, there are situations
where multiple vehicles are dispatched to a request, each generating follow-up
calls.

Performance indicators
The quality standard and volume of care differ per country, and they depend
on legislation, tradition, culture, and prosperity level. In some countries
ambulances are staffed with paramedics, while other countries employ specially
trained nurses. Hoogeveen provides a European overview [57]. Hence, various
countries use different KPIs for EMS care, as is discussed in Section 1.1.5.
Most countries use a constraint for the fraction of late arrivals. KPIs of dispatch
centers are not always well defined for lower urgency calls.

The KPIs used in this chapter are the waiting time before a call is taken, the
average workload for a call center agent, and the total call center time. These
KPIs are inspired by the service requirements that are applicable to most
Western countries. Recall that, by definition, the call center time is the time
elapsed between the moment when an incoming request enters the system and
the moment the ambulance has been dispatched by a dispatcher. Follow-up
contacts and the additional instructions are not included in the call center time,
but they are, however, part of the workload of an agent.

Formalized, we limit ourselves to the following performance indicators for all
models in the remainder of this chapter:

1. The fraction α1 of the calls that are picked up by the call taker (or
generalist) within at most r1 time units.

2. The fraction α2(u) of the honored calls of urgency u ∈ U that have a call
center time at most r2(u) time units.

3. The average workload on a call center agent, if applicable split by call
center agent class.

Our goal is to gain insight into the required number call takers ncalltaker and
dispatchers ndispatcher in the model with function differentiation, or generalists
ngeneralist in the model with solely generalists, to reach certain performance
indicator thresholds. In the mixed model we use all these variables. Let n
denote the total number of agents in the system.
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2.3.2 Dispatch center model with function differentiation
Our first model describes the communication processes at a dispatch center
with function differentiation in detail; a schematic for this model is displayed
in Figure 2.2. Inspired by the literature, the dispatch center is modeled as
a queuing model; it encapsulates all communication moments and delays in
queuing systems, in which call center agents are the servers and communication
moments are the tasks. Using this approach, each domain can be modeled as
a queuing system with priority queues and a server pool, conditional routing
statements, and assignment blocks.*

Priority queues at the two queuing systems
The priority queues in our models all have similar behavior. All tasks are
non-impatient. This means that once they have entered the system, they wait
until they are served. All priority queues have an infinite capacity and no
overflow regulations. Tasks are handled on a preemptive priority first-come
first-served basis by a fixed number of servers. This means that when a task
enters the highest priority queue and finds all servers busy, a task of the lowest
priority in service is put on hold and the respective server starts serving the task
from the highest priority queue. This task resumes service from the point at
which it was put on hold when a server becomes available and stays in service
with a duration of the remaining service time, but only if there are no tasks to
serve with a higher priority. As a result, higher priority tasks are not influenced
by the presence of lower priority tasks.

Call taking domain
Requests from applicant classes whose requests have a similar behavior are
bundled into one incoming stream. It is allowed that an incoming stream
consists of only one applicant class.

Inbound requests are modeled as new tasks for the queuing system of the call
taking domain. The request arrival process is assumed to be dependent on time
and the applicant class.

Depending on the incoming stream of a task, the call is routed to one of the
priority queues at the call taker. Tasks originating from the same incoming
stream are led to the same priority queue of the call taker queuing system.

The call taker queuing system has a fixed number M1 of priority queues,
denoted by QC

1 ,QC
2 , . . . ,QC

M1
. The priorities are strictly decreasing, i.e., QC

1 is
the priority queue with calls of the highest priority. These priority queues are
also filled by a feedback loop containing the extra communication moments in
the case the call taker gives additional instructions.

*Technically, the dispatcher domain contains multiple queuing systems, since each block
has one, as we show in Section 2.3.3.
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Figure 2.2 Representation of the call taker and dispatching domains of the
dispatch center.

When a server is available the task immediately receives service. The service
time distribution depends on the applicant class and the urgency. In practice
the urgency is assigned during the service, and the call taking duration depends
on that urgency. Therefore, we actually calculate the urgency at the start of the
service, though in the schematic we have not found a way to clearly denote it
and we choose to display it at service completion.

The first time a task arrives at the ‘Holds additional instructions?’ statement,
the answer is no. In the next routing statement, either with probability 1− ph
the call is not honored and the request ends service. Otherwise, with probability
ph an ambulance is to be sent to the incident. In the latter case the request gets
randomly an urgency u ∈ U assigned and we say that a request is honored. The
probability ph depends on the incoming stream.

With probability pa(i,u) the call taker gives additional instructions to the
applicant of a call with urgency u that originates from incoming stream i; see
the ‘Need additional instructions?’ conditional fork in Figure 2.2.

When the applicant receives additional instructions in the model, the task splits
into two separate tasks. One goes to the priority queues at the call takers using
a feedback stream, while the other directly goes to the dispatcher. Using this
conditional fork both a call taker and dispatcher can work simultaneously. If
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the priority queue at the dispatcher is of the highest priority, QC
1 , it acts as an

uninterrupted call at the call taker. An additional instruction task ends service
when the agent puts down the telephone.

If there are no additional instructions required, the task directly enters the
dispatcher domain. This happens through an initial dispatch stream and Block1
to one of the priority queues of the dispatcher. The routing to the priority queue
at the queuing system in the dispatching domain depends on the urgency of
the request.

Dispatching domain
Task handling at the dispatcher server pool is done by a priority queuing policy,
just like at the call taker server pool. The M2 priority queues QD

1 ,QD
2 , . . . ,QD

M2
are filled by honored requests of the call taker and communication moments
with ambulance and hospital, represented by blocks. The service time distri-
bution depends on the call’s urgency, incoming stream, and if applicable the
block it originates from.

The model contains a sequence of blocks representing the interarrival times,
contact probabilities, routing, and the service time of follow-up contact mo-
ments with ambulance teams of the dispatching domain.

A block starts with a period of waiting, advances to a possible contact with
the dispatcher in a feedback contact, and concludes with the continuation to
a succeeding block or the end of service. A more detailed description of the
block sequence is given below.

2.3.3 Block description
All models have a block sequence that consists of a fixed number of B blocks;
a schematic picture of a block is displayed in Figure 2.3.

The number of priority queues open to receive feedback from the blocks is
denoted by M. Note that M = M2 for the model with function differentiation,
and a similar expression can be found for the other two models.

A special case is Block1. This block is always present and on all occasions
leads to feedback; this represents the dispatch of an ambulance where the
priority and service time of the dispatch equal the priority and service time by
the assigned server in the dispatch server pool.

Without loss of generality we describe the structure of Blockb, b∈ {1,2, . . . ,B},
and we illustrate its behavior for a request with urgency u ∈ U . The incoming
tasks originate from previous blocks (for b > 1) or the newly honored calls that
enter the dispatch domain (for b = 1). To mimic the behavior of a time interval
in which no communication occurs, tasks are handled by an infinite-server pool
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Figure 2.3 The structure of a block in detail.

with generally distributed service times. This service time can be interpreted
as a delay by a driving time or contact moment with a patient at the incident
location or hospital.

At this point in time the decision has to be made whether the ambulance
team and call center agent have a contact moment using a priority queue in
{QD

1 ,QD
1 , . . . ,QD

M2
}, which is indexed by m. With probability q f m

b (u) a contact
occurs through the feedback loop mechanism to priority queue Q·m, and with
probability p fb(u) no contact occurs in this block and the call moves forward
to the next decision moment. The service time is generally distributed, and the
parameters may depend on b and u. Note that p fb(u)+∑1≤m≤M q f m

b (u) = 1,
for all b and u.

Immediately after service completion, the feedback task enters Blockb again.
Both the tasks from the feedback loop and tasks that had no feedback continue
to the next decision moment. Now we determine whether the task moves to a
succeeding block, with probability peb(u), or alternatively if there is an end of
service. If b = B we take peb(u) = 0; this leads to an end of service. The last
decision moment of Blockb, (b 6= B) tells us at which block the task continues,
the so-called forward jump. With probability p jb′

b (u) we redirect to Blockb′ .
For b′ ≤ b we have p jb′

b (u) = 0, and ∑b′>b p jb′
b (u) = 1 for all b 6= B,u. Notice

that “End of Service” can also be implemented as a special case of a forward
jump to a dummy block B+ 1.

2.3.4 Dispatch center model with solely generalists
In this section we describe the dispatch center model with solely generalists.
Figure 2.4 provides a schematic overview of this model.

There is a major difference between this model and the model with function
differentiation of Section 2.3.2. In this model with only generalists there is



28 D I S PAT C H C E N T E R S I M U L AT I O N M O D E L S

Incoming streams
1
2

n

Feedback streams

Q1

Q2

QM3

ngeneralist servers

From
feedback

loop?
Is honored?

Yes

No, from an
incoming stream

Holds
additional

instr.?

No

Yes
Block1

dispatch Block2 BlockB
End of
service

Feedback loop

Need add.
instructions?

+

Assign
urgency

Duplicate iff needed
else only to Block1

Yes

No Entering feedback B blocks
Forward jumps

Priority queues

Figure 2.4 Representation of the model with solely generalists.

only one finite server pool with agents, thus the feedback from blocks and
additional instructions is mixed with the incoming demand. In this section we
build upon the assumptions of Section 2.3.1 and the blocks from Section 2.3.3.

A new request generates an incoming task from an incoming stream into one
of the M3 priority queues for the server pool with ngeneralist generalists. The
priority queue assignment is based on the incoming stream. The service time
distribution depends not only on the incoming stream, but also on the temporary
hidden urgency of the request, like in the model with function differentiation.
Recall that this choice is made because in reality the urgency is determined
during the service. Similar to the call taker queue in the model with function
differentiation, tasks waiting to be served by a generalist are put in a priority
based preemptive FCFS queue with an infinite capacity.

At service completion of the call taking process, the call has probability ph(i)
to be honored by the call center agent, similar to the model with function
differentiation. An urgency u ∈ U gets assigned to each honored request, based
on a categorical distribution. Its parameters depend only on the incoming
stream. Not honored requests exit the system. Directly after the urgency
assignment, there is a conditional fork that generates an extra task in the
case there is an additional instructions contact. Whether this is the case is
determined by a Bernoulli distribution that depends on the incoming stream.

Further distribution parameters depend on the urgency, the incoming stream,
and the block last visited. The extra task is led to one of the priority queues
with the highest priority. This additional instruction task exits the system at
service completion. The other task leaves the conditional fork to Block1, which
contains the dispatch.

A block sequence mimics the behavior of the dispatch, driving to an incident,
taking care of the patient at the incident, et cetera. The distribution can be
determined using a best-fit approach from real data sets. After the last block
the call is ended, but it is also possible that another block already ended the
call.
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2.3.5 Mixed model
The mixed model contains call takers, dispatchers, and generalists. It is similar
to the model with function differentiation; see Section 2.3.2. The major
difference between the two models is that there is an extra server pool with
ngeneralist generalists. A generalist starts to provide service to a task when there
are no call takers or dispatchers available to take it, i.e., it handles the overflow
from both the call takers and the dispatchers. Generalists respect the priority of
jobs like any other call center agent class. If an agent of another class becomes
available, the generalist finishes the task that he services instead of giving the
remaining service to the available centralist.

2.4 Input
In this section we discuss the input data and parameter estimations. We use
two data sources of the dispatch center in the city of Utrecht in the Netherlands
over a period of three months. The first is the telephone information (TI) data
set that originates from a server that monitors all in- and outbound telephone
calls. The second contains call record details of the ambulance services in
this period, which include status updates from the ambulance teams. Every
inbound request to the ambulance service provider has its own row in the
ambulance services call record details data set. Parameters that could not be
determined from the data sets are estimated through expert opinion.

We group the input parameters as Bernoulli distributions and service time
distributions. The parameters that are discussed in Sections 2.4.1 to 2.4.5 are
the same for both models.

In Section 2.4.1 we describe the data sets that we used as an input source.
Section 2.4.2 explains our aggregation to reduce multiple applicant classes
into incoming streams. Sections 2.4.3 and 2.4.4 describe parameters for the
call taking and dispatching domains, respectively. Section 2.4.5 gives the
service time distributions for all call taking and dispatching processes. Finally,
Section 2.4.6 discusses the routing policies toward the priority queues for both
models separately.

2.4.1 Processing the data sets
The TI data set contains the timestamps for the telephone communication,
i.e., the moment the dispatch center agent lifted the handset, when the call
ended, and if it was an in- or outbound call. This data set consists of 109,000
inbound and outbound telephone calls, of which 79% are inbound. The TI data
set does not include any information on the content of the calls, such as the
applicant class (e.g., civilian or police), and whether the request was honored.
The records do not indicate if the call was a newly incoming call or a follow-up
call by an ambulance team.
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Incoming stream Applicant classes Percentage
Civilian 1-1-2 and 9-1-1 24.4
Hospital–low Hospitals* 17.4
Others Unspecified and others 15.3
Dispatch center Dispatch center agents 13.9
GP–low GPs* and GP centers* 11.7
GP–high GPs* and GP centers* 10.2
Health care institutions Psychiatric, midwives, and homecare 3.3
Police Police and fire fighters 2.6
Hospital–high Hospitals* 1.3

Table 2.2 The distribution of new requests over the incoming streams.

Additional information was linked to the TI records by matching it to the
database of the call record details. In this time period there were 41,000
requests for ambulance care. The matching is done probabilistically, in the
sense that we coupled the start of the ambulance service request to the most
likely corresponding telephone contact in the TI data set. In the matching
process, usually one inbound call was matched to one request and, thereby, to
one service. In some cases an inbound call was matched to multiple services;
we omitted these multiple matches in the estimation of the parameters. A
fraction of 92% of the call record details were matched to a TI record. From
these matched data records we identified applicant classes, urgencies, priorities,
and service times. Unmatched TI records were classified as follow-up calls.

2.4.2 Aggregation to incoming streams
Every applicant class is mapped onto one incoming stream. For example,
the incoming stream health care institutions contains every request from the
applicant classes psychiatric, midwives, and home care. This grouping is
based on applicant classes with similar substantive grounds, service time
distributions and priorities. Table 2.2 lists the call volume per incoming stream
as percentages of the total call volume. It also shows which applicant classes
are contained in each stream.

We assume the arrival process for applicant class k to be a Poisson process
with rate fk. Then the arrival process for an incoming stream i can be modeled
as a Poisson process with rate

λi = ∑
k is included
in stream i

fk, i ∈ {1, . . . ,n}

for a fixed number of incoming streams n, where applicant k is included in
incoming stream i.

∗ Differences between starred entries are addressed in Section 2.4.5.
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Incoming stream Urgency
High Medium Low

Civilian 60.1 37.8 2.1
Hospital–low 0 0 100
Others 20.1 64.6 15.3
dispatch center 5.1 84.1 10.8
GP–low 0 23.7 76.3
GP–high 72.6 27.4 0
Health care institutions 7.1 17.7 75.2
Police 48.7 49.7 1.6
Hospital–high 38.9 61.1 0

Table 2.3 The urgency distribution (in %) for every incoming stream.

The call flow matches the Dutch practice. An underlying assumption is that
civilians have inadequate knowledge of what to do in emergency situations
and GPs can determine well when they require ambulance services on short
notice, yielding the result that the two streams are answered directly. A call
from these classes even may force ongoing calls of a lower priority ‘on hold’.
All other incoming callers have some basic knowledge of how to keep the
patient stable. Therefore, they have a somewhat lower urgency, and are routed
to the medium priority queue. The low priority calls are made from hospitals,
and often contain a request for patient transfer to another hospital or house
address.

2.4.3 Bernoulli parameter estimations for the call taking domain
The call taking domain holds Bernoulli distributions for a request being hon-
ored, call urgency assignment, and receiving additional instructions.

Only civilian requests qualify for not being honored; this happens with prob-
ability 22%, a value obtained from the call records data set. Every honored
request gets an urgency assigned. We use three urgencies: u1 = High, u2=
Medium, and u3 = Low. Table 2.3 shows the urgency distribution for each
incoming stream.

With probability 10% a request from a civilian gets additional instructions,
which is independent of the urgency. This value is obtained from expert
guesses. The rest of the applicants do not need additional instructions.

2.4.4 Bernoulli parameter estimations for the dispatching domain
The Bernoulli distributions in the dispatching domain are structured in blocks:
for each block these parameters consist out of the follow-up contact, end of
service, and forward jump probabilities. Let us describe these parameters for
the B = 6 blocks that we use in our simulation runs.
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The probabilities for a follow-up contact are listed in Table 2.4. They are all
based on expert opinion, and they are addressed for each block individually in
high detail. The probability distribution for the infinite server agents for each
block is obtained from the service detail records; these are the durations for the
travel times, treatment duration, transfer duration at the hospital, etc. We fitted
a log-normal, normal, and exponential distribution and used the mean squared
error to determine the best fit. These distributions depend only on the urgency
and status, and in particular not on the incoming stream. Another choice one
could have made is to use an empirical distribution. The best-fit distributions
and their parameter values from our data set are listed in Table 2.5.

Forward jumps only occur from Block4 (During patient treatment) to Block6
(Transfer at the hospital); that is when a patient does not require transport
to a hospital. The probability that a forward jump p j6

4(u) occurs is 41.87%
for high urgency, 40.34% for medium urgency, and 15.29% for low urgency
requests. We only use a redirect to End of Service in the last block.

We look at each of the blocks individually to set the remaining routing parame-
ters. Parameters that are not mentioned explicitly are zero-valued.

Block1 (dispatch)
This block includes the dispatch process of choosing the right vehicle for
every honored request, and the contact moment from the dispatch center
to the ambulance team to give initial instructions. Also time for optimiz-
ing the coverage of the fleet using dynamic ambulance management (DAM)
methodology, see Chapter 6, is included in this block. Giving the initial
instructions often is done digitally by sending a notification to the team’s
pagers. Note that the block’s infinite-server pool has a zero service time for
all calls, because there is no time delay between call taking and dispatch-
ing other than the queues of the dispatcher pool. There is a feedback loop
which directs to the dispatch-queue whose name is similar to the calls urgency
q f D:High

1 (High) = q f D:Medium
1 (Medium) = q f D:Low

1 (Low) = 1; see Table 2.7
in Section 2.4.6 for details on the queues. Based on the assumption that enough

Block Status Urgency (in %)
High Medium Low

Block1 Dispatch 100 100 100
Block2 Leaving the base location 15 15 15
Block3 Driving to patient 30 10 10
Block4 During patient treatment 10 0 0
Block5 Transport of patient 0 0 0
Block6 Patient transfer at hospital 100 100 100

Table 2.4 The probability ∑
M
i=1 q f i

b(u) (in %) that a follow-up contact occurs.
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ambulances are available, a request cannot end at this stage: pe1(u) = 1. When
an ambulance is already on the road, there is no departure from the base, but
the EMS team has motivation for similar questions to the dispatch center and
Block2 is not skipped. Notice that in this case its block name is not fully
accurate, although the behavior can be included in the service time distribution
for the infinite-server pool in Block2. There is always a redirect to Block2:
p j2

1(u) = 1 for all u ∈ U .

Block2 (leaving the base location)
When an ambulance team reads the incident description on the on-board
monitor, there may be pressing questions about medical uncertainties or special
equipment that must be taken on board. Another reason for contact is that the
incident location might be unclear to the EMS team. Under the assumption
that a request is not canceled at this stage, the request is passed to Block3:
pe2(u) = 1, p j3

2(u) = 1 for all u ∈ U .

Block3 (driving to patient)
When the ambulance arrives at the incident location, there can be a contact
moment with the dispatch center for various reasons: the EMS team can find
the patient or there is a request for assistance by another team. In most cases
the dispatch center specifies the location in more detail. Because the EMS
team is assumed to search for the patient or start treating, there is a forward
jump to Block4: p j4

3(u) = 1 for all u ∈ U .

Block4 (during patient treatment)
Depending on the findings at the incident locations, there are multiple possible
outcomes. When a patient is treated and needs transportation to a hospital,
the crew can contact the dispatch center to ask them to notify the hospital’s
emergency department. When a patient is not found, not yet ready for trans-
portation, or can be treated at the incident location, the crew becomes available
again. In that case they can give a situation update to the dispatch center
and go to a base location to wait for a new request being assigned to them.
When a patient needs transport to a hospital or other destination we redirect
to Block5. If a patient is treated at the incident location, forward jumps occur
with probabilities p j6

4(u) as discussed earlier.

Block5 (transport of patient)
It is unlikely that a contact occurs upon arrival at a hospital. Ambulance
providers whose dispatch center agents provide extra motivation to the EMS
team to become available again on short notice may include those contact
moments in this block. We include this stage as a delay, although it could be
merged with Block6 in our case. The only non-zero parameters are pe5(u) = 1
and p f5(u) = 1 for all u ∈ U .
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Block6 (transfer at the hospital)
At the hospital the patient is transferred to another health care provider, and
the EMS team take a few minutes to refresh themselves. Ambulances in some
EMS regions refill medical materials at the hospital. When the ambulance has
handed over the patient, the dispatch center is notified that they are available
for dispatch again. Since this is the last block in line, it results by definition in
an End of Service: pe5 = 0.

Incoming stream Priority µ σ Mean SD
High 4.604 0.695 2:07 1:40

Civilian Medium 4.579 0.697 2:04 1:38
Low 4.689 0.616 2:11 1:29
High 4.432 0.761 1:52 1:39

Police Medium 4.417 0.689 1:45 1:22
Low 4.744 0.496 2:10 1:09
High 4.559 0.746 2:06 1:49

Others Medium 4.645 0.667 2:10 1:37
Low 4.620 0.606 2:02 1:21

Health care institutions High 4.518 0.538 1:46 1:01
Medium 4.821 0.502 2:21 1:15
Low 4.615 0.599 2:01 1:19
High 4.471 0.582 1:44 1:06

Hospital–high Medium 4.695 0.500 2:04 1:06
Low N.A. N.A. N.A. N.A.
High 4.538 0.579 1:50 1:10

GP–high Medium 4.744 0.390 2:04 0:50
Low N.A. N.A. N.A. N.A.
High N.A. N.A. N.A. N.A.

GP–low Medium 4.744 0.390 2:04 0:50
Low 4.715 0.540 2:09 1:15
High N.A. N.A. N.A. N.A.

Hospital–low Medium N.A. N.A. N.A. N.A.
Low 4.644 0.605 2:05 1:23
High 4.471 0.737 1:55 1:37

EMS dispatch center Medium 4.626 0.687 2:09 1:40
Low 4.579 0.657 2:01 1:29

Additional instructions All 3.926 0.624 1:02 0:43
High 3.926 0.624 1:02 0:43

Dispatch Medium 4.244 0.717 1:30 1:14
Low 3.988 0.570 1:03 0:39

Follow-up call Medium 3.389 0.846 0:42 0:43

Table 2.6 The log-normal service time distribution for the dispatch center
agents is shown below. Units are in seconds, or min:sec.



36 D I S PAT C H C E N T E R S I M U L AT I O N M O D E L S

2.4.5 Service time distributions
We discuss the service time distributions for the call taking and dispatching
domains separately.

Call taking domain
In line with related papers in the literature [27, 37, 144], we assume that the
service time distribution at the call taker is log-normal for each incoming
stream and urgency couple. For all models we take the same service time
distributions. The parameter values for every incoming stream and priority
couple are listed in Table 2.6.

Hospitals and GPs each have two separate lines to reach the dispatch center and
are able to prioritize their request using these lines. For hospitals we assume
that the high urgency line is used if and only if it leads to a high urgency call.
For GPs we assume that high and low urgencies are from the high priority and
low priory lines, respectively. For the medium urgency we assume that the
calls were evenly distributed over the high and medium urgency lines.

The service time distribution for the additional instructions equals the chute
time of high urgency calls, because we have no data to support a better assump-
tion, and this choice feels reasonable. Recall that the chute time is the time it
takes the EMS team to leave the base location.

Dispatching domain
The service time distribution for the dispatch time is also not contained in the
data sets provided, and hence is assumed to be the same as the service time
distributions of the chute time for high and medium urgency calls. Because
the dispatch of low urgency calls require less time and are assumed to be
log-normally distributed, we have omitted outliers that are over three standard
deviations above the mean, and made a best fit log-normal distribution.

The service time distribution of the dispatcher’s follow-up contacts is obtained
from unmatched TI records. Because we were unable to distinguish between
the status in the process, priority or urgency, we used the same best-fit log-
normal distribution for every follow-up contact with a mean of 42 seconds.

2.4.6 Routing policies toward the priority queues
Regardless of the model, all agent pools handle tasks on a priority based
first-come first-served policy. This means that tasks with a higher priority are
handled first, and for tasks with the same priority the call takers handle them
on a first-come first-served basis. Notice that the infinite-server pools in the
blocks have no queues and priorities because there are enough agents to start
any incoming service directly.
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Call taking domain
Priority Name Task originates fromqueue
QC

1 C: Ultra high Additional instructions.
QC

2 C: High Incoming streams: civilian, GP–high.
QC

3 C: Medium Incoming streams: police, others,
health care institutions, hospital–high,
GP–low, dispatch center.

QC
4 C: Low Incoming stream: hospital–low.

Dispatching domain
Priority Name Task originates fromqueue
QD

1 D: High High urgency, from Block1(dispatch).
QD

2 D: Medium Medium urgency, from Block1(dispatch).
All feedback from Block2(leaving the base location)
up to and including Block6(trans f er at the hospital).

QD
3 D: Low Low urgency, from Block1(dispatch).

Table 2.7 Priority queues for dispatch center agents for the model with function
differentiation.

Model with function differentiation
The priority queues in the model with function differentiation are listed in
Table 2.7. In the call taking domain, the civilian calls and high urgency general
practitioners calls are of high priority. Giving their additional instructions a
slightly higher priority leads to an uninterrupted call: these additional instruc-
tion tasks are directly picked up by a call taker after finishing the triage process
and the number of additional instructions cannot exceed the number of call
takers, thus all additional instructions have zero waiting time.

In the dispatching domain, the dispatch of high urgency calls have the highest
priority, and the dispatches of low urgency, often ordered patient transports,
are done when there are no remaining tasks left. Relocations are considered
part of the dispatch procedure.

Model with solely generalists
Table 2.8 describes the priority queues of the model with solely generalists:
the two priority queues of the model with function differentiation are zipped
together. The main idea is that dispatching an ambulance to a request with a
certain urgency is more important than taking a call with compatible priority.
In fact, communication with a team that may need additional assistance may
be more important than taking a new request from the police.
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2.5 Results
To assess performance, and to gain insight into the optimal staffing decisions
in dispatch centers, we have performed extensive simulation experiments
based on the models with and without function differentiation described above.
Recall that the KPIs are:

1. the waiting time before the call is taken, for high, medium and low
priority classes,

2. the average call center time, i.e., the time duration from call entering
the call taker queue until a call is dispatched, and

3. the average workload for a call center agent, for call takers, dispatchers
and generalists.

In general, the cost of hiring different agent classes depend on the required level
of education. The total yearly cost for call takers, dispatchers, and generalists
is assumed to be ¤70k, ¤55k, and ¤90k, respectively; these numbers are
representative for the Netherlands. For convenience, we denote the staffing
policy by the triple

n := (ncalltaker,ndispatcher,ngeneralist), (2.1)

where ncalltaker, ndispatcher, and ngeneralist are the numbers of call takers, dis-
patchers, and generalists, respectively.

Solely generalists versus function differentiation
Table 2.9 shows the results of extensive simulations for the models with solely
generalists and function differentiation. For each arrival rate between 100
and 3000, and for both models, we determined what the lowest cost and
corresponding policy are for which the KPI requirements are met. For brevity

Priority Name Task originates from
queue
Q1 C: Ultra high Additional instructions.
Q2 D: High High urgency, from Block1(dispatch).
Q3 C: High Incoming streams: civilian, GP–high.
Q4 D: Medium Medium Urgency, from Block1(dispatch).

All feedback from Block2 to Block6.
Q5 C: Medium Incoming streams: police, others,

health care institutions, hospital–high,
GP–low, dispatch center.

Q6 D: Low Low urgency, from Block1(dispatch).
Q7 C: Low Incoming stream: hospital–low.

Table 2.8 The priority queues for the model with solely generalists.
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λ Best model n n Costs Fraction within 6 sec Call center time Busy fraction

(in k¤) (in %) (in min:sec) CT Disp
High Medium Low High Medium Low Gen (in %)

100 FD (1, 1, 0) 2 125 96.3 87.4 85.9 3:09 3:22 3:45 14.5 11.1
(0, 0, 2) 2 180 99.8 98.1 96.9 2:59 3:04 3:15 12.8

200 SG (0, 0, 2) 2 180 99.4 92.9 89.8 3:02 3:09 3:35 25.5
(2, 1, 0) 3 195 99.7 97.2 96.3 3:01 3:10 3:42 14.5 22.1

300 SG (0, 0, 2) 2 180 98.7 85.6 80.2 3:06 3:17 4:13 38.3
(2, 1, 0) 3 195 99.3 94.2 92.5 3:03 3:16 4:12 21.7 33.2

400 FD (2, 1, 0) 3 195 98.9 90.2 87.8 3:07 3:24 4:54 28.9 44.3
(0, 0, 3) 3 270 99.8 94.4 91.5 3:00 3:06 3:29 34.0

500 FD (2, 2, 0) 4 250 98.2 85.3 82.0 3:07 3:19 3:47 36.2 27.7
(0, 0, 3) 3 270 99.7 90.4 84.9 3:02 3:09 3:50 42.6

600 FD (2, 2, 0) 4 250 97.6 79.7 75.6 3:12 3:27 4:09 43.4 33.2
(0, 0, 3) 3 270 99.4 85.3 77.0 3:04 3:14 4:22 51.1

700 FD (2, 2, 0) 4 250 96.8 73.7 68.0 3:17 3:37 4:37 50.6 38.7
(0, 0, 4) 4 360 99.90 93.6 88.8 3:00 3:06 3:36 44.7

800 FD (3, 2, 0) 5 320 99.5 90.9 88.7 3:02 3:12 3:58 38.6 44.2
(0, 0, 4) 4 360 99.8 90.4 83.2 3:01 3:08 3:53 51.0

900 FD (3, 2, 0) 5 320 99.4 88.0 84.8 3:03 3:15 4:16 43.4 49.8
(0, 0, 4) 4 360 99.8 86.4 77.0 3:02 3:11 4:19 57.4

1000 FD (3, 2, 0) 5 320 99.2 84.8 80.3 3:05 3:18 4:38 48.2 55.2
(0, 0, 4) 4 360 99.7 81.3 68.7 3:04 3:15 4:57 63.8

1200 FD (4, 3, 0) 7 445 99.90 92.7 89.7 3:01 3:08 3:37 43.4 44.2
(0, 0, 5) 5 450 99.96 88.0 77.6 3:01 3:09 4:12 61.2

1400 FD (4, 3, 0) 7 445 99.8 88.7 84.4 3:02 3:11 3:56 50.6 51.6
(0, 0, 6) 6 540 100 92.4 83.5 3:00 3:06 3:49 59.5

1600 FD (4, 3, 0) 7 445 99.6 83.6 77.0 3:05 3:16 4:26 57.8 58.9
(0, 0, 6) 6 540 99.98 87.1 72.5 3:01 3:08 4:29 68.0

1800 FD (5, 3, 0) 8 515 99.90 91.7 87.3 3:01 3:09 4:35 52.0 66.3
(0, 0, 7) 7 630 99.98 91.7 79.1 3:00 3:06 4:00 65.6

2000 SG (0, 0, 7) 7 630 99.98 88.0 69.4 3:01 3:08 4:44 72.8
(6, 4, 0) 10 640 99.97 95.8 92.8 3:00 3:05 3:38 48.2 55.2

2200 FD (6, 4, 0) 10 640 99.96 94.0 89.2 3:00 3:07 3:53 53.0 60.7
(0, 0, 8) 8 720 99.99 92.1 76.3 3:00 3:06 4:10 70.1

2400 FD (6, 4, 0) 10 640 99.95 91.6 84.9 3:01 3:08 4:14 57.7 66.2
(0, 0, 8) 8 720 99.99 88.3 65.7 3:01 3:08 4:57 76.4

2600 FD (6, 4, 0) 10 640 99.95 88.7 80.1 3:02 3:11 4:45 62.5 71.7
(0, 0, 9) 9 810 99.98 92.1 73.2 3:00 3:06 4:18 73.6

2800 FD (7, 5, 0) 12 765 99.97 93.8 87.6 3:00 3:06 3:46 57.7 61.8
(0, 0, 10) 10 900 99.99 94.6 79.3 2:59 3:05 3:56 71.3

3000 FD (7, 5, 0) 12 765 99.96 91.6 84.2 3:01 3:08 4:00 61.8 66.1
(0, 0, 10) 10 900 100 92.3 71.7 3:00 3:06 4:26 76.3

Table 2.9 Simulation results for the optimal policies for function differentia-
tion (FD) and solely generalists (SG) for various rates.

of the table we only show results in steps of 200 after λ = 1000, although
we consider every λ that is a multiple of 100 in our analysis. We require that
at least 95% of the calls must be taken within six seconds, and low urgency
calls must have a call center time of at most five minutes. We do not pose a
boundary on the busy fractions. We call a policy better than another one when
it has a lower cost. Various interesting insights can be gained from this data.

First, there is not one model that outperforms the other for all rates. For the
lowest arrival rate we see that we need two agents, though we can do it at a
lower cost with function differentiation. For λ = 300 two generalists can reach
the required performance. From that point, the lowest cost model with function



40 D I S PAT C H C E N T E R S I M U L AT I O N M O D E L S

differentiation is slightly cheaper than the model with solely generalists. The
only exception can be found at λ = 2000, where the two models are nearly
equal, since solely generalists are ¤10k cheaper on annual basis.

Second, the latencies for high priority calls are exceeding 99.5% in nearly
all of the cases, especially for higher arrival rate values λ . For lower and
medium priority calls we can see a clear, though not completely unanimous,
the difference in favor of the model with function differentiation.

Third, busy fractions of call center agents do not exceed 76.4%. In general,
one can say that generalists have a higher workload than call center agents in
the model with function differentiation. The latter model has at most two call
center agents more, which helps to explain this difference.

Fourth, notice that the best policy with function differentiation in the cases
considered has at least the same number of dispatch center agents as the model
with solely generalists. Thus the number of work stations will not decrease
when switching from a solely generalists policy to function differentiation.

We observe that good prioritizing of tasks by the EMS call center agents, in
combination with a good KPI requirement for the low urgency and low priority
calls, leads to good results for medium and high urgency and priority calls.
This is due to the fact that KPIs of higher urgency calls are not affected by the
lower priorities.

Mixed model
Table 2.10 shows the results of extensive simulations of mixed policies, com-
bined with the other two models. More precisely, it shows the KPIs for those
combinations n as defined in Equation (2.1) on page 38, for which no additional
agent (of any class) can be hired within the budget constraint, and for which
also the system is stable. We call a model stable when every queue length stays
within bounds. In the simulations, the total annual budget for hiring agents is
¤500k. The table shows a KPI for generalists, in addition to the three already
mentioned:

4. The work distribution, i.e., the average fraction of the time that the
generalists spend taking calls versus dispatching.

To gain insight into the implications of staffing decisions on the KPIs, we
have performed extensive simulations. The results are outlined below. In the
examples discussed below the call arrival rate was taken to be λ = 2000, i.e.,
a rate of 83.33 requests per hour, and the service time distributions were taken
from Table 2.6. The results lead to a number of observations.
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n n Fraction within 6 sec (in %) Call center time (in min:sec) Busy fraction (in %) Work distribution gen. (in %)

High Medium Low High Medium Low CT Disp Gen Call taking Dispatching
(0, 4, 3) 7 95.8 29.9 2.5 05:02 07:01 33:51 N.A. 53.5 98.7 98 2
(0, 2, 4) 6 99.3 57.9 27.0 03:24 03:50 10:27 N.A. 77.3 88.8 81 19
(1, 4, 2) 7 95.8 30.3 3.3 05:03 07:08 22:34 98.9 53.6 98.2 97 3
(1, 2, 3) 6 99.3 58.9 28.8 03:24 03:51 10:21 91.2 78.4 87.3 76 24
(1, 1, 4) 6 99.9 70.6 39.1 03:10 03:26 09:37 88.5 84.1 84.3 59 41
(2, 4, 1) 7 95.8 30.6 4.8 05:05 07:06 06:02 98.2 54.0 97.3 95 5
(2, 3, 2) 7 99.3 66.8 46.5 03:18 03:40 05:56 83.7 64.1 75.2 81 19
(2, 1, 3) 6 99.9 72.4 42.5 03:10 03:26 10:56 84.7 86.7 84.6 47 53
(2, 0, 4) 6 99.9 77.2 46.6 03:06 03:20 11:26 83.7 N.A. 85.7 36 64
(3, 5, 0) 8 95.8 31.2 8.0 05:07 06:57 42:30 96.3 44.2 N.A. N.A. N.A.
(3, 3, 1) 7 99.3 68.0 49.9 03:18 03:39 05:57 79.1 66.4 73.4 70 30
(3, 2, 2) 7 99.9 82.2 66.0 03:05 03:16 05:30 73.9 75.0 69.1 49 51
(3, 0, 3) 6 99.9 78.7 51.0 03:07 03:21 24:08 77.7 N.A. 92.3 20 80
(4, 4, 0) 8 99.3 70.7 57.3 03:15 03:35 05:02 72.2 55.2 N.A. N.A. N.A.
(4, 2, 1) 7 99.9 83.9 71.1 03:04 03:16 07:33 67.0 82.3 77.2 27 73

Table 2.10 The simulation results for the mixed policies.

First, comparing the results for the cases (0, 4, 3) and (4, 2, 1), it is quite
remarkable that we can observe that the fraction of calls that meets the 6-
second target is higher for all priority classes in the case (4, 2, 1). This seems
rather counter-intuitive, since it would be natural to say that swapping agents
between different classes would favor at most one or two classes at the expense
of another class. Note also that the total cost for the case (4, 2, 1) is 480, which
is less than the cost of 490 for the case (0, 4, 3). Looking at the call center
times, we see that the case (4, 2, 1) outperforms (0, 4, 3) for all urgency classes.
To understand why this is the case, we observe from the work distribution
results that in the case (0, 4, 3) the generalists are heavily loaded (in fact, 98.7%
utilization), of which 98% is spent on call taking and only 2% on dispatching,
whereas in the (4, 2, 1) case the workload is much more balanced.

Second, the results show that in none of the cases considered only generalists
were chosen, whereas intuitively it would make sense to do so, because of the
facts that a generalist is flexible and hiring a generalist is less expensive than
hiring both a call taker and a dispatcher. Consider for example the case (0, 2,
4) and compare this with the case (0, 0, 5). In the former case, in which six
persons are hired, the system is stable, whereas in the latter case the system is
unstable.

Third, there is an important difference between general call centers and dispatch
centers with respect to the utilization of specialists versus generalists. This is
so because in general call centers generalists are expensive, and hence, call
center planners will tend to maximize their busy fraction, because idle time of
generalists is costly. On the contrary, in dispatch centers there is an incentive
for planners to keep the utilization of generalists low, because the generalists’
idle times can be used to support other EMS services. For example, compare
the case (3, 3, 1) to the case (3, 2, 2). Their performances are similar, while in
the case (3, 2, 2) the generalists are less heavily loaded.
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Technical details
This study contains 2676 unique simulations runs: 2200 for a call center with
function differentiations, 450 for a call center with solely generalists, and
26 for the mixed policy study. For each simulation run we simulated 50,000
incoming calls. If there were over a thousand calls in the system, that is the
total of all queues, we said that the simulation is unstable and excluded it from
further analysis.

The simulation engine is written in a C++ and MariaDB using the TIFAR-
framework that we developed [A7], see Chapter 7. The correct working of the
software was validated by intensively tracing individual tasks and call center
agents. We validated the input distributions and parameters against the output
database.

The simulations have run on a Calleo Application Server 2260 that is dedicated
to this project. This machine contains two Intel Xeon Processor E5-2640v2
(8 cores, 20MB cache, 2.0GHz) and hyper-threading enabled, resulting in
maximal 32 cores. The RAM equals 256GB at 1600MHz. Running all 2676
required simulations took 37,871 wall seconds (10h 31m), and during this time
period on average 14.12 CPU’s where in use simultaneously. TIFAR makes
use of multi-threading and was limited to 16 cores maximal, as the database
and operation system also needed processing power.

2.6 Conclusion
In this chapter we presented three performance and capacity simulation models
for dispatch centers. The first model, with the function differentiation policy
includes two classes of dispatch center agents: call takers and dispatchers. The
second model contains solely generalists, a call center agent class that can
do both call taker and dispatcher tasks. The third, mixed model, allows for a
mixture of call takers, dispatchers and generalists.

A key feature of the models is that it includes follow-up calls from EMS
teams and hospitals. The model also discriminates between multiple types of
applicants which differ in priorities. The model enables EMS planners to better
understand the impact of these features on the response time performance of
dispatch centers.

In the comparison between the function differentiation and solely generalists
models, we concluded that there is not one model that outperforms the other
for all arrival rate. Another interesting conclusion is that if the two minimal
requirements (1) ALS calls are answered within six seconds and (2) low
urgency calls are answered within five minutes are met, then in most cases the
in 99.5% of the cases the telephone is answered within six seconds. In that
case the busy fraction of the agents does not exceed the 96%.
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In the analysis of the mixed model our primary finding is that it can be ben-
eficial to have one generalist working alongside multiple call takers and dis-
patchers: the generalist can than take the overflow from one of the other
policies.

We continue with some remarks.

We assume that the service time distributions of both call takers and dispatchers
are independent of the workload. In reality, the time used for servicing a call
may depend on the workload and service time decreases when the workload
increases. The inclusion of workload dependent service time distributions may
have a significant impact on the response time performance of dispatch centers.

The input originates from actual call center databases. There are some estima-
tions in our results; they cannot directly be used for management decisions
without further research. Probability distributions and parameters may differ
for various ambulance regions.

Our model assumes that switching occurs instantaneously. However, in practice
switching between tasks takes time, which is a motivation for the six-second
response time threshold. The inclusion of non-negligible switching times is an
interesting subject.

There are some secondary advantages and disadvantages in function differenti-
ation. In a dispatch center with function differentiation a general assumption
is that dispatchers work faster than generalists in doing the same tasks. This is
because the full focus is on the logistics domain. An advantage of generalists
is that they are easy to deploy in the case of sickness absence.

The models presented in this chapter are also applicable to other call centers
that take calls, dispatch and perform coordination, in situations where short
response times are required. These include, but are not limited, to police,
firefighters, taxi service, and roadside assistance. However, before proper use
in another context the model’s input parameters should be adapted, amongst
others, the arrival distributions, the number of urgencies, priorities, queues,
and blocks.

This chapter opens up interesting topics for further research.

One may consider a dispatch center as a multi-skilled call center. This means
that there are people, the so-called junior call takers, who can only take the
easy calls from selected incoming streams, e.g., from police, firefighters and
hospitals. In addition, newly introduced senior call takers are able to serve
life-threatening calls. We can even introduce a third call taker class, equipped
to handle all calls. This also opens the possibility of other combinations, such
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as dispatch center agents who do both dispatching and low priority call taking,
which is a combination that also exists in practice.

Another interesting extension of the models is to include so-called ramping,
which occurs when the emergency departments of the hospitals are over ca-
pacity, which implies that ambulances have to wait in line to transfer a patient.
Regions suffering from occasional ramping may want to include extra contact
moments with a dispatch center to cope with this load. We have not included
ramping in the current model since this is not seen in the ambulance region
that provided us with the data sets.

It is interesting for future research to evaluate the use of these models in other,
non-EMS, emergency call centers, and conclude if the claims we make also
hold in these contexts.

As a final remark, note that the effect on the choice of triage protocols, which is
also in focus in various parts of the world, is not considered in this study. This
choice is part of the service time distributions, and therefore it is considered as
an input for our models.
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T H E A D J U S T E D Q U E U I N G F R A M E W O R K

Minimal reliability and maximal availability models guarantee a minimum
performance level at each demand point, in contrast to the majority of facility
location and allocation models that guarantee a minimum performance that
is aggregated over the entire ambulance region. As a consequence, existing
models generally lead to overstaffing, particularly in ‘mixed’ regions with both
urban and rural areas, which leads to unnecessarily high costs. This chapter
addresses this strategic problem. To this end, we first introduce the concept
of demand projection to give fundamental insight into why this overstaffing
takes place. Next, we overcome the overstaffing by the so-called adjusted
queuing (AQ) approach that provides generalizations of the existing models.
We provide proofs for the correctness of the AQ-approach.

This chapter is based on the following publication:

[A3] M. van Buuren, R. D. van der Mei, and S. Bhulai. “Demand-point
Constrained EMS Vehicle Allocation Problems for Regions with
Both Urban and Rural Areas”. To appear in Operations Research
for Health Care (2018)
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3.1 Introduction
Ambulance server providers are interested in what the best locations for am-
bulance bases are, and what the optimal number of ambulances is for each of
these bases. Overcapacity of ambulances leads to unnecessarily high costs,
while extensively reducing the costs can lead to dangerous situations.

Most systems try to express the performance of an ambulance region in a
single value, e.g., by calculating the fraction of late arrivals aggregated over
the entire ambulance region for a duration of one year. When maximizing this
covered fraction, it may lead to low coverage in rural areas in favor of densely
populated cities. This problem is addressed in the so-called regional coverage
location problem (RCLP) class of models; a name that stresses the regionally
aggregated key performance indicator.

Another approach is to evaluate the performance of each subarea in the region
individually, and satisfy at least a minimum required performance threshold
that is set for each subarea in the best possible way. This can be achieved by
giving a minimum performance constraint to every subarea.

This either means to find an ambulance allocation that maximizes the total
demand over the subareas that receive the minimum required performance
when limited resources are available (maximal availability), or to determine
the minimum number of ambulances and the resulting allocation such that the
minimum requirement for every subarea is satisfied (minimal reliability). This
leads to the minimal reliability and maximum availability (MR-MA) class of
models. The current chapter has its focus on this class.

Currently, RCLP is mostly used in practice, although we note an emerging
balance shift in favor to MR-MA. Erkut, Ingolfsson, and Budge [39] wrote in
what they call a critique on the MR-MA models that “the objective functions of
the models in this class are not the same as the expected coverage performance
measure that typically drives EMS system design”. This is still a valid argument
though it loses its strength as time goes on. The trend shift from ambulance
practice moving away from purely focusing on this RCLP class objective
is due to pressure from local intra-regional governments. Although the key
performance indicator for the regions that we consider in the results section
in practice still is the fraction of calls covered within a time threshold of 15
minutes measured on a yearly basis, ASPs have to deal with mayors of rural
municipalities in their region who insist on a minimum coverage level for
their own population. As a result, every subarea (or: municipality) within
the ambulance region must also receive coverage under a minimum reliability
constraint. The current MR-MA models in the literature are not suited for
regions that have both rural and urban areas. The practical need for MR-
MA models that are suitable for these so-called mixed regions provides the
motivation for this research.
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The existing high-end MR-MA models in the literature Q-PLSCP and Q-
MALP [82, 83], throughout this thesis referred to as the Q-models, are made for
regions where the demand is fairly homogeneously spread. If they are applied
to actual regions with inhomogeneous demand—against their original design—
they generally lead to over-estimations for the required number of vehicles [20,
22]. As a consequence, ambulance providers have an unnecessarily high cost.

In this chapter we propose a new MR-MA approach that is applicable to
regions with both urban and rural demand: the so-called mixed regions. Our
approach is based on many concepts that can be found in the Q-models, to
such an extent that we call our solution the adjusted queuing approach.

The present chapter can be divided into two parts. First, we provide an in-depth
explanation of why the over-estimation takes place when Q-models are directly
applied to mixed regions. Secondly, we propose the AQ-approach that leads to
credible results. We use the minimal reliability model Q-PLSCP for illustration
purposes throughout the current chapter, although the findings are not limited
to this model.

The adjusted queuing (AQ) approach improves on the queuing approach as
follows.

• Q-models tend to project urban demand to rural areas that may lead
to major local overstaffing in rural areas. The AQ-approach that we
propose solves this problem, leading to better staffing for these rural
areas.

• Contrary to Q-models, we allow for major differences in demand and
service time.

• In AQ-models, the required reliability or availability level is demand
point dependent instead of a system wide constant.

We provide proofs that the AQ-approach works. Existing papers use simulation
studies to illustrate that their approach work [82, 83]. Because the models in
these papers are special cases of AQ-models, this chapter also includes the
proofs of these models.

The remainder of this chapter is organized as follows. In Section 3.2 we give
an extended literature review on the line of models that leads to the Q-models.
Section 3.3 starts with some definitions and assumptions on the ambulance
practice, and it provides a detailed description of the Q-PSCLP model that is
required later on in the chapter. We show in Section 3.4 why the Q-models
give over-estimations on the number of ambulances needed in an ambulance
region. In Section 3.5 we replace the main assumption of previous models
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with the more general workload condition. In Section 3.6 we give a solution to
the over-estimation. Section 3.7 contains the conclusion and gives advice for
future research.

Chapter 4 is a continuation of this chapter, that shows the extent of the im-
provements for minimal reliability models through numerical results.

3.2 Literature
This section starts with an overview of the RCLP models, and elaborate on
the model MEXCLP that is referred to on multiple occasions throughout this
thesis. Subsequently, we describe the MR-MA models. We end this section by
mentioning a few other related research topics in the field of EMS logistics.

Good reviews on EMS facility location and ambulance allocation models are
available [31, 78, 81]. Facility location and staffing take place in the strategic
and tactical domain of EMS. Golberg [51] discusses the properties, advantages,
and disadvantages of the various models in his review paper. Recent review
papers are [17] and [107].

3.2.1 Regional coverage location problems
Early proposed ambulance location models were linear integer programming
formulations, such as the Maximal Covering Location Problem (MCLP) [32].
This model discretizes an ambulance region into a set of demand points, and
maps each incident onto the nearest demand point. The expected workload
in a demand point is called the demand. MCLP positions a given number of
ambulances such that the demand that is covered at least once is maximized.
The RCLP model called Maximum Expected Coverage Location Problem
(MEXCLP) [35] extends on MCLP, and is amongst the first that can be used to
link EMS facility location to the stochastic nature of EMS logistics, which is
the largest shortcoming of MCLP. Many papers can be found in the literature
that are in some sense extension of MEXCLP.

A drawback of a single coverage function as in MCLP is that once the ambu-
lance gets dispatched, people in the same area of the previous incident can
become out-of-reach of ambulance care. To address this issue, the notion of
double coverage is introduced in the Backup Coverage Problems (BACOP) [56]
and the Double Standard Model (DSM) [49]. An additional feature of DSM is
that it allows for two different response time thresholds. A fleet can contain
multiple vehicle types, which is addressed in the TEAM and FLEET models
that are also based on MCLP [120]. The main difference is that the FLEET
model allows ambulances of different types to be positioned on separate base
locations, whereas the TEAM model can only position the second ambulance
type where a unit of the first type is present. The Two-tiered Model (TTM)
brings the stochastic nature of EMS in the [80] is the TEAM model’s objective
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function. The MOFLEET model combines MEXCLP and FLEET [24]. A
time-dependent version of MEXCLP, called TIMEXCLP, runs MEXCLP once
for every time interval [105]. More recently, Rajagopalan et al. [103] have
tried four multiple meta-heuristic search approaches to find good solutions in
case MEXCLP becomes hard to solve.

3.2.2 The maximum expected coverage location problem
The MEXCLP, as published in [35], is an IP-formulation that maximizes the
expected covered demand. We use the model in Chapters 5 and 6 as well. The
model defines the coverage of a region in terms of a busy fraction, which it
denotes as q. The busy fraction can be estimated by dividing the expected
workload of the system by the total number of available ambulances. This
busy fraction is predetermined, and is assumed to be the same for all vehicles.
Furthermore, vehicles are assumed to operate independently. Consider a
demand point i, which is within the range of ki ambulances. Using expected
travel times we can directly determine this number k. The travel times should
be taken as estimates for movements, which are faster because ambulance
sirens are on. The probability that at least one of these ki ambulances is
available at any point in time is then given by 1−qki . Denote the demand by
di, that is a proxy for the fraction of the total workload of the ambulance region
that is aggregated to demand point i. The expected covered demand of this
vertex is Ei = di(1−qki). The MEXCLP policy positions the ambulances such
that the total maximum expected covered demand, summed over all demand
vertices, is reached. This method has two major disadvantages that other newer
methods still inherit:

1. Many regions have both rural and urban areas. A constant system-wide
busy fraction q for each ambulance is not realistic because demand
points with fewer demands will most likely have a lower busy fraction.

2. Rural areas have a lower population density, so the method decreases
coverage in rural areas in favor of densely populated urban population.
Major differences in ambulance care between a region’s population can
occur. From an equity perspective this may be deemed unfair. For further
work on fairness in EMS logistics we refer to [64].

Although the MEXCLP model has some limitations, most notably the assump-
tion of the ambulances being independent, it is still widely used as starting
model for extensions. For instance, in [16], the hypercube correction fac-
tors proposed in [75] were incorporated in the MEXCLP model to relax this
independence assumption. Various extensions on the hypercube model are
provided in the literature [16, 46, 65, 76, 103]. In [40], the MEXCLP model is
extended to a model in which survival probabilities and probabilistic response
times are incorporated.
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3.2.3 Minimal reliability and maximal availability models
The MR-MA class of models has a completely different approach at which
a minimum local coverage performance level is set for every demand point,
called the minimum reliability level. Minimal reliability (min-rel) guarantees
that every demand point has the minimum required coverage, and minimizes
the total number of ambulances in the system to achieve this. Maximal avail-
ability (max-av) swaps these objective function and constraints, thus allocating
a fixed number of ambulances, such that a maximum demand is covered under
the minimum reliability level.

The Set Coverage Location Problem (SCLP) [132] is the first minimal reli-
ability model that optimizes the number of facilities such that each demand
point can be reached by at least one ambulance within a given response time
threshold. The PLSCP model [110] poses an upper-bound on the reliability of
every demand point, and it ensures that every demand point is covered by a
minimum reliability level. The Reliability Perspective (Rep-P) [11] provides a
generalization of the objective function of PLSCP that allows for various cost
functions and blocking probabilities.

The Maximal Availability Location Problem (MALP) [109] is the first maximal
availability model. A demand point is covered when the probability that it
can be reached within the response time (or distance) threshold by at least
one ambulance exceeds a constant α . In the first MALP model there is a
system-wide busy fraction for the ambulances used, and a binomial approach
similar to MEXCLP calculates for each demand point the minimum number of
ambulances that is required to satisfy the required minimum required coverage
probability constraint. MALP allocates a fixed number of ambulances, such
that the total covered demand is maximized. The same paper [109] proposes an
extension where the ambulance’s busy fraction depends on the demand point.

MALP and Rel-P are adjusted by [28] such that the busy fraction of each base
location depends on a preference list that each demand point holds. This way,
the busy fraction becomes more realistic, and the authors show that it leads to a
reduction in the number of vehicles. The LR-MEXCLP [126] is a combination
of MEXCLP’s maximum coverage objective with the reliability constraints
of MALP. This is achieved by using a slope with the reliability by which a
demand point is covered instead of the Boolean coverage constraint by demand
point. A multi-objective extension of Q-MALP is presented in [54].

Q-PLSCP and Q-MALP by Marianov and Revelle are the queuing versions
of PLSCP and MALP [82, 83]. Instead of a binomial approach, they use an
Erlang B formulation. Our AQ-models extend these models. Subsection 3.3.4
describes the Q-PLSCP in detail. Because the literature is rather limited on
the subject, the difference in assumptions and outcomes between the binomial
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approach of PLSCP and MALP and the queuing approach of Q-PLSCP and
Q-MALP is described in Section 3.3.5.

3.3 Preliminaries
This section starts by giving definitions and abbreviations for the ambulance
process. Next, we discuss the assumptions on the ambulance practice. There-
after, we give a detailed description of the Q-PLSCP model that is our baseline
for illustration purposes. Since the queuing approach for ambulance allocation
models is not generally known, we end this section by sharing the differences
between this approach and the binomial approach found in many papers.

3.3.1 Definitions
We briefly repeat the ambulance service process in order to introduce abbrevia-
tions that are used in the remainder of this thesis, for an extensive description
we refer to Section 1.1.4. Figure 3.1 illustrates the stages and time intervals of
the EMS process.

c c c c c c c c- - - - - - -
1 2 3 4 5 6

Call enters
the system

EMS team
receives call

on their pagers

EMS vehicle
departs to

incident location

EMS vehicle
arrives at

incident location

EMS vehicle
departs to

patient’s destination

EMS vehicle
arrives at

patient’s destination

EMS vehicle
is called free
and returns
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EMS vehicle
arrives at

base location

CCT� - CHT� - DTI� -
PTD� -

TMT� - DTH� - TFT� - DTB� -
Response time� -

Service time� -

Figure 3.1 Trace of call statuses and the corresponding time intervals.

When a call enters the system, an agent at the dispatch center needs time to
perform the triage procedure, and if required, dispatch an ambulance; this
is the so-called call center time (CCT). When the pagers of the EMTs are
activated at dispatch, some time passes before the ambulance starts moving,
since they have to get to the vehicle. This time period is the chute time (CHT).
The entire duration from a call entering the system until the ambulance starts
moving is the pre-trip delay (PTD).

The next stage is the driving time to the incident (DTI), which is followed by
the treatment time (TMT). In the case of a declarable call the patient is brought
to the hospital. We call this time interval the driving time to the hospital (DTH),
after which we have a transfer time (TFT) that bridges pre-hospital care with
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hospital care. The last stage of the ambulance trip consists in driving back to
its base location (DTB).

The service time is the time interval during which an ambulance is busy
and cannot respond to newly incoming incidents. This starts when the EMS
team receives a notification from the dispatch center, and it stops when the
ambulance arrives back at its base location. Note that some authors define
the service time as the moment that the EMS vehicle becomes available at the
hospital. The choice that ambulances become available at their base location
guarantees that rural demand points at the region borders directly receive
coverage when an ambulance becomes available again, since hospitals are
most often located in urban areas.

The response time starts from the moment the call enters the system, and it
ends when the ambulance arrives at the patient.

3.3.2 Assumptions
Incidents only occur at demand points. The number of demand points should be
large enough to give an adequate representation of the region, but small enough
to perform calculations within an acceptable time. Postal code areas with
several thousand inhabitants are a good candidate for a demand aggregation.

We have a fixed and bounded set of demand points, potential base locations,
and hospitals in each ambulance region. These locations are all assumed to
be known a priori. It is possible to give a model free choice of base locations
by making every demand point a potential base location. Every demand point
can be reached by at least one potential base location within the response time
threshold. We assume that a region contains at least one hospital.

Arrivals occur according to a Poisson process. For every demand point the
frequency of incident arrivals is given. There is only one urgency class, and
there is one type of ambulance that can handle all calls. The service time may
depend on the incident location, base location, and ambulance allocation, and
it is determinable and finite for all calls.

Parameters PTD, TMT, and TFT are assumed constant in this chapter; they are
the same for every call. The driving times DTI, DTH, and DTB can be obtained
from a lookup table or by navigation software. Travel times are assumed to be
symmetric, i.e., swapping origin and destination of one route has no effect on
the driving times.

Once assigned to a base location, the ambulance starts and ends every service
on its base location. There are no relocations of ambulances between base
locations. Every hospital has unlimited capacity and any patient can be brought
to any hospital. When necessary one can include ramping, i.e., the waiting



3.3 P R E L I M I NA R I E S : D E FI N I T I O N S , A S S U M P T I O N S & P R E V. M O D E L S 53

duration until the hospital’s emergency department (ED) has free space, by
including its mean time in the TFT.

Any call that does not receive immediate service from an available ambulance
within the given response time standards is lost. There is no queue for waiting
calls. In practice, a lost call is either served by a neighboring ambulance
service provider or by another base location that has the capacity.

For the Q-models the assumption is required that ambulances from base lo-
cations that have an overlap in demand points do not have major differences
in call arrival rate, mean service time and minimum reliability level. This
assumption is not required for the proposed AQ-models.

3.3.3 Variables
LetH be the finite set of hospital locations, let I be the set of demand points,
and let J be the set of potential base locations. If a demand point is located at
the same location as a hospital, we add two elements with the same coordinates;
one forH and one for I . The three sets are not empty. Denote V :=H∪I∪J .

Denote the minimum driving time from point k to point ` by tk,` (k,` ∈ V).
Recall that symmetric driving times are assumed, thus tk,` = t`,k. We denote
the response time by

ri, j := PTD+ t j,i (i ∈ I, j ∈ J ).

If ri, j ≤ R we say that i is covered by j, for a constant system-wide response
time threshold R.

For each demand point i ∈ I we require a minimum reliability level of at
least αi ∈ [0,1), i.e., the probability that an ambulance is available to reach a
patient within R time units must be at least αi. A typical value one can take is
αi = α = 0.95 for all demand points i ∈ I.

In minimal reliability models, the total number of ambulances in the system
is denoted by Z as this is the variable we want to minimize, and the variable
x j ≥ 0 denotes the utilized capacity of potential base location j ∈ J . The
utilized capacity of a potential base location is the number of ambulances that
are allocated to this base.

For each demand point i ∈ I, we denote the call arrival frequency by fi ≥ 0.
This is the number of calls per time unit that enters the system at this demand
point.

The mean service time of a demand point is the average time an ambulance
is busy to a call that takes place at that demand point and therefore is not
available for dispatch to a new incident. We denote the mean service time
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of demand point i by βi. Usually, there are no major differences in the mean
service times between demand points because differences in driving times are
rather small compared to the entire service duration.

Denote the set of demand points that can be reached, i.e., have a response time
within R time units from i ∈ I by

Ni := {i′ ∈ I | ri,i′ ≤ R},

throughout the thesis referred to as the neighborhood of demand point i. We
can interpret this as the set of all demand points that would be covered if there
were a base location collocated to i. For referral to demand points near a base
location j ∈ J we extend the notation with N j := {i′ ∈ I | r j,i′ ≤ R}, i.e., the
set of demand points that can be reached from base location j. Similarly for
the base locations near demand points or base locations, we define the set

Mi := { j′ ∈ J | ri, j′ ≤ R}.

3.3.4 Queuing probabilistic location set coverage problem
The Queuing Probabilistic Location Set Coverage Problem (Q-PLSCP) [83]
is a minimal reliability model that minimizes the total number of ambulances
in an ambulance region such that the minimum reliability level requirements
are met for all demand points. This is done in two phases: the first calculates
right-hand side values for the constraints of a mixed integer program (MIP),
and the second phase solves the resulting MIP.

This model needs an extra assumption, the so-called isolation assumption,
which is used to justify the application of the Erlang B formula later on.

Assumption 3.1 (isolation assumption). For each neighborhood the ambu-
lance allocation can be considered as an isolated problem.

In Q-PLSCP, every neighborhood gets a number of ambulances bi assigned
(i ∈ I). In the case that all bi ambulances in Ni are busy, ambulances from
bordering neighborhoods can respond. Similarly, ambulances from bordering
neighborhoods may receive assistance from ambulances of Ni. The influx
and outflux cancel out, because there are minor differences between bordering
neighborhoods in the call arrival rate, mean service time, and minimum relia-
bility level. Thus each individual neighborhood may be treated as an isolated
area; this addresses the core of isolation assumption. The average number of
assigned ambulances that is available or serving calls in Ni is on average close
to bi.

By assumption we have independent Poisson arrivals, and we denote its arrival
rate by fi≥ 0 for all i∈V . The service time duration is taken constant at β time
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units for all calls, and the minimum reliability level α is a fixed system-wide
constant.

The arrival rate in neighborhood Ni is calculated by λi = ∑k∈Ni fk. Using the
isolation assumption, the Erlang B blocking formula gives the probability that
no ambulance is available in neighborhoodNi if it has ni serving ambulances:

ErlangB(λi,β ,ni) =

(λiβ )
ni

ni!

∑
ni
ι=0

(λiβ )
ι

ι !

. (3.1)

Because values for λi,β , and α are determined or given, the Erlang B formula
provides a lower-bound on the number of required ambulances in neighbor-
hood Ni, which is denoted by bi ∈N:

bi = argminn∈N≥0
{ErlangB(λi,β ,n) ≤ 1−α}.

Due to the assumption of symmetric travel times, the number of ambulances
in neighborhood Ni equals the number of ambulances that can reach demand
point i ∈ I from their base location. Thus it poses a constraint of the form
∑ j∈Mi x j ≥ bi to every demand point i when allocating ambulances to bases,
which concludes the first phase. Recall that x j denotes the number of ambu-
lances at base j ∈ J .

In the second phase an integer program is solved to ensure that every neighbor-
hood gets coverage by at least the minimum number of required ambulances.

min Z = ∑
j∈J

x j

s.t. ∑
j∈Mi

x j ≥ bi, (i ∈ I)

xi ∈N≥0.

After solving the IP-problem x j holds the number of ambulances allocated
to base location j ∈ J , and Z equals the total number of ambulances in the
ambulance region.

The authors of [83] chose a fixed service time for all calls. The frequency fi is
taken proportional to the population at i ∈ I . Instead of a travel time constraint,
they took an action radius in miles from the base location to the demand points.

Reference [83] proves that the Erlang B approach works for exponential service
times, although their result is just as valid for general service times. Hence,
their method is much stronger than suggested by the paper.
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3.3.5 Comparison of the binomial and queuing approaches
In this section we compare the Erlang Blocking approach used in the Q-models
to the binomial approach that is used in PLSCP [110] and MALP [109]. The
authors of the Q-models show with computational results that these models
require fewer ambulances than PLSCP and MALP for the same coverage
constraints. We consider a theoretical point of view and discuss the advantages
and disadvantages of both approaches, and we conclude that generally the
queuing approach outperforms the binomial approach when all its assumptions
can be satisfied.

In calculating the blocking probabilities in facility location and allocation
problems in the rather limited literature on this subject, we encounter two
approaches: (1) the binomial, and (2) queuing approaches. In this subsection
we compare the two approaches for a classical toy example: the island model.
This comparison provides the motivation why we continue research on the
queuing approach, instead of the binomial approach.

Consider a small enough island with one base location j ∈ J , which covers
the entire island, i.e., |J |= 1. Particularly, this base location is not influenced
by other base locations; see Figure 3.2. Subsequently, the set of the (potential)
serving basesMi is the same singleton for all demand points i ∈ I. Also the
arrival frequency fi for each demand point i ∈ I is given, and thereby the total
demand that must be served by ambulances that are stationed at base location j.

We pose some assumptions that are required by the models. Arrivals are
independent and require service from one ambulance. We assume for this
island is that every demand point can reach every other demand point within
the response time constraint, i.e., Ni = I for all i ∈ I. The island contains
one hospital and differences between the travel times are assumed negligible
compared with the mean service time of a call, hence we take βi = β constant.
We assume that the minimum reliability level requirement is constant: αi = α

for all i ∈ I. The last assumption is that any call that cannot be immediately
assigned to an available ambulance is lost.

We take a number of ambulances Z = x j at j ∈ J and calculate the blocking
probability for each approach.

Binomial approach
The binomial approach uses a fixed busy fraction q for every ambulance, that
may be estimated from historically recorded data. Under this assumption, the
probability that an ambulance is not available at call arrival is q. Hence, the
probability that none of the x j ambulances at this base is available is given by
the following probability:

PBin(no ambulance is available) = qx j .
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1
2 (R−PT D)

Figure 3.2 In the island model there is only one base location (denoted •).
Every demand point (denoted ◦) can reach every other demand
point within the response time norm.

When determining the required number of ambulances such that a minimum
reliability level of at least α is met, we get constraints of the form q∑ j∈Mi x j ≤
1−α for every demand point i. Taking bBin = bBin

i := log(1−α)/ log(q)
yields constraints

∑
j∈Mi

x j ≥ bBin
i (i ∈ I).

The island model has Z = x j = bBin
i = log(1−α)/ log(q) for the binomial

approach (for all i ∈ I, j ∈ J ).

General assumptions of the binomial approach are (1) that the busy fraction of
an ambulance is constant, and (2) that the number of ambulances ∑ j∈J x j is a
good approximation to handle the workload of the entire region. When using
the binomial approach for a realistic situation with multiple base locations an
IP-formulation fits the number of ambulances to at most this (acceptable) busy
fraction q instead of to the region’s KPI.

Queuing approach
The queuing approach considers each neighborhood as an isolated area and
uses the Erlang B blocking formula for an M/G/c/c-loss system with Poisson
arrivals, general service time distribution with finite mean and a server pool
with c servers, with the assumption that calls that cannot be directly served are
lost.
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Because of the small size of the island we consider the arrival rate λi equally
valued for every demand point: λi = ∑i′∈Ni fi′ = ∑i′∈I fi′ . Recall that the mean
service time βi and minimum reliability level αi are assumed constant over all
i ∈ I.

Knowing λi, βi, and αi we can calculate the minimum number of required
ambulances stationed atMi (i ∈ I), which is equally valued for all demand
points:

bErl
i = argminb′∈N≥0

{ErlangB(λi,βi,b′) ≤ 1−αi}.
This leads to the same family of constraints as the binomial approach, but with
a different calculated value for bi:

∑
j∈Mi

x j ≥ bErl
i (i ∈ I).

The island model has Z = x j = bErl
i = argminb′∈N≥0

{ErlangB(λi,βi,b′) ≤
1−αi} for the queuing approach (for all i ∈ I, j ∈ J ).

Differences between the approaches
The main difference between the two approaches is that the queuing approach
does not consider the busy fraction as an input parameter, whereas the queuing
approach outputs the busy fraction through the relation q = qi = β /(biλi).

By taking the busy fraction as an input parameter the binomial approach has
an unwanted side effect. To see this, we construct an example where the island
has only one demand point. The busy fraction is kept fixed. In practice, when
ambulances are added to the base location the busy fraction for each ambulance
decreases as the workload gets shared between the ambulances. This does
not happen in the binomial approach; instead we observe a strange effect. By
keeping the busy fraction q fixed as the number of ambulances x increases,
the binomial approach indirectly assumes that either the rate of the incoming
calls λ or the mean service time β , or both, increase. This contradicts the
fact that the number of incoming calls and mean service time are fixed input
parameters. Especially at rural bases with low demand, such as one or two
ambulances, adding an extra ambulance has a significant impact on the busy
fraction of ambulances that are allocated at that base, which is not adequately
incorporated in the binomial approach. This effect becomes smaller when
more ambulances are allocated to the base locations. Therefore, the binomial
models provide credible results when many vehicles are required per base
location, that is, in highly populated areas.

When an ambulance region has both urban and rural areas the binomial ap-
proach may not be the best choice. In practice, in the case of a constant
system-wide minimum reliability level, the busy fractions of ambulances posi-
tioned at a rural base location are much lower in contrast to ones at urban base
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locations. In the queuing approach this effect is incorporated into the Erlang B
formulation. However, by design, the Q-models may not be applied to mixed
regions because their demand may not significantly fluctuate. What happens
the Q-models are applied, is discussed in detail in Section 3.4.

It is straightforward to change binomial models to their queuing counterpart,
since they only differ in the way bi is calculated (i ∈ I).

We conclude that Erlang Blocking formulations are preferred over the binomial
choice in minimal reliability and maximal availability models when all model
assumptions can be satisfied.

3.4 Motivation
This section explains why the Q-models give over-estimations (min-rel) or
undercoverage (max-av) when they are applied to mixed regions, and it turns
these insights into a search direction for the solution that we follow in the
remainder of this chapter.

It is generally agreed that the current minimal reliability and maximal avail-
ability models yield over-estimation and undercoverage, relatively, if they are
applied to mixed regions. The effect is mentioned in [22] at multiple occasions,
and computational comparisons with other facility location models that show
the over-estimation can be found in [19, 20, 22] and computations the next
chapter. We must note, however, that the Q-models are originally not designed
to be used in mixed regions. This over-estimation provides motivation for the
development of models that do not have this shortcoming.

Recall that Q-PLSCP (or MR-MA in general) consists of two phases: First we
calculate the lower-bound for the required number of ambulances bi (i ∈ I),
and second, we solve an IP-problem that provides the ambulance allocation.
We show that the over-estimation is mainly caused in the first phase for regions
with varying demand.

We illustrate the over-estimation for Q-PLSCP using two separate situations.
In Subsection 3.4.1 we take a realistic situation and show why Q-PLSCP
yields an over-estimation. Subsection 3.4.2 gives a theoretical example that
demonstrates that the so-called demand projection effect can result in an over-
estimation of any extent. The solution we propose is presented in the next two
sections.
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Figure 3.3 The required coverage bi for each demand point i ∈ I without (left)
and with (right) frequency adjustment is shown as numbers. The
neighborhood N •Purmerland is shaded for both methods.

3.4.1 Real life illustration
In this illustration, we highlight the small village of Purmerland with a popula-
tion of approximately 500 people (just north of the city Amsterdam). Figure 3.3
illustrates that this approach results in too many ambulances that are required
to cover most rural neighborhoods, up to three ambulances near Purmerland.
After applying our proposed AQ-approach, we see that only one ambulance is
sufficient for this village—a difference by a factor of three. The figure shows
that this leads to an additional ambulance at base Purmerend.

In our calculation, we took the average demand at each demand point between
10:00 and 12:00 AM on working days measured over a period of five years,
with αi = 0.95 and mean service time βi calculated from the nearest actual
base location to the nearest actual hospital with an emergency department for
each demand point i ∈ I. This mean service time approximation technique is
explained in Section 4.4.

The source of the over-estimation on the number of ambulances can be found
in the approximation of the arrival rates λi rather than in the mean service
times βi (i ∈ I).

If the current queuing approaches are used for this region, NPurmerland con-
tains many demand points of the nearby cities of Amsterdam and Purmerend.
Consequently, the arrival rate at Purmerland’s neighborhood λPurmerland =
∑k∈NPurmerland

fk is not representative for the demand point Purmerland itself
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because the arrival rate of neighborhood Purmerland is dominated by urban de-
mand, and so is the value bPurmerland . Because Purmerend is the only base loca-
tion that can provide coverage to Purmerland, the IP-formulation in the second
phase of Q-PLSCP shows that base Purmerend gets xPurmerend ≥ bPurmerland
ambulances allocated.

We have shown that base Purmerend provides coverage for non-existing de-
mand that is projected from Amsterdam onto Purmerland. We call this effect
demand projection. In general, we see that the same effect can occur for all
rural base locations that have a driving time between response time threshold
R and 2R from a large enough city’s border.

The underlying cause is that the isolation assumption says that no major
fluctuations in demand between the region’s neighborhoods may occur when
you apply Q-PLSCP. This is not realistic for ambulance regions in reality
as demand fluctuations occur all-around. The ‘faulty’ use of the Q-models
to the mixed region in this illustration provides insight what to do next. To
make the Q-models applicable to mixed regions, the isolation assumption of
the Q-models needs to be replaced by a mathematical structure that allows
for major fluctuations in the arrival frequency. This structure is the workload
condition that is introduced in Section 3.5. Next, using this workload condition,
we can redefine the way the arrival rate of in neighborhood is calculated such
that demand projection cannot occur; see Section 3.6.

3.4.2 Theoretical example
The theoretical example of the current section shows that demand projec-
tion, being the over-estimation effect of rural areas, can be extended to any
magnitude.

To study this effect for Q-PLSCP, we consider a one-dimensional scenario
with five demand points, of which the first three, A,B, and C, are in an urban
area and the latter two, D and E, are rural. At the locations of central urban
point B and outer rural point E are potential base locations; see Figure 3.4.

Our focus is on the arrival rates, and therefore we take the service time and
minimum reliability level system-wide constants: β = βi and α = αi for all
i ∈ I = {A,B,C,D,E}. Hence, the minimum required staffing bi through
Erlang B only depends on the arrival rates λi, i.e., bi = bi(λi) for all i ∈ I . The
scenario has driving times rA,B = rB,C = rD,E = R−PT D− ε and tC,D = 2ε

for a small enough constant ε > 0, and an allowed response time threshold of
R > ε minutes.

The scenario is designed such that MA =MB =MC = {B} and MD =
ME = {E}.
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Figure 3.4 Our theoretical region contains urban and rural demand points. The
filled points also have both demand and a base.

The substitution of λi = ∑i′∈Ni fi′ yields:

bA = bA( fA + fB),
bB = bB( fA + fB + fC),
bC = bC( fB + fC + fD),
bD = bD( fC + fD + fE), and
bE = bE( fD + fE).

In a desirable situation, Q-PLSCP allocates ambulances such that demand
of A, B, and C is covered by base B, and demand of D and E is served by
the ambulances at base location E. Particularly, we do not want to staff base
location E for any urban demand.

This fails if fA = fB = fC = M, fD = ε ′, and fE = 0.1 for small enough
ε ′ ∈R>0 and a large enough M ∈R>>ε ′ . After all, using the constraints of
the IP-formulation, we can approximate the number of ambulances assigned to
base E by

xE = max{bD(M+ 0.1+ ε
′),bE(0.1+ ε

′)}
= bD(M+ 0.1+ ε

′)

≈ bD(M).

However, we wish that our method returns a staffing of bE(0.1) for base
location E. The demand projection of the urban demand point C onto demand
point D results in an order of magnitude too high staffing at base location
E, while demand point C is not even within reach of base location E. This
is exactly the effect that causes major over-estimation in the Q-models for
realistic regions, such as Purmerland.

The so-called outer region U j ⊆ I of base location j ∈ J is the set of demand
points that cannot be reached within response time threshold R from j, but that
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Rj

2R

i

i′

Figure 3.5 Demand point i is in the outer region U j for base j ∈ J , because
there exists a demand point i′ that can be reached from both i
and j within R time units (and i itself cannot be reached from j).
Likewise, outer region U j consists of all demand points (◦) that
are located in the gray area.

can be reached within R time units by a demand point i′ that can be reached j
within time threshold R, i.e.,

U j := {i ∈ I : ∃i′ ∈ I,ri′,i ≤ R,ri′, j ≤ R,ri, j > R}.

A good approximation of the outer region is the set of demand points that
are contained in a torus with center j and a radius between R and 2R; see
Figure 3.5. In our example UB = {D} and UE = {C}.

The number of ambulances allocated to a potential base location is only too
high when the so-called density in the outer region of that base is significantly
higher than any of the densities in the inner region Ni of that base. Various
choices for the definition of the density of a demand point ψi can be made. For
example: the density ψi of a demand point may be the population divided by
the area that is mapped onto demand point i, or one may choose to define the
density as the frequency fi while assuming a constant area for each demand
point. The example in this subsection uses the latter option, leading to ψi = fi
for all i ∈ I. In general we assume that demand points with a higher density
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also have a higher performance requirement: if ψi1 ≤ ψi2 then αi1 ≤ αi2 for all
i1, i2 ∈ I.

This can also be seen as follows: Fix all variables in our example except for
the frequency at demand point D. Observe the staffing at base location B:

xB = max(bA( fA + fB), bB( fA + fB + fC), bC( fB + fC + fD))

= max(bA(2M), bB(3M), bC(2M+ fD))

= max(bB(3M), bC(2M+ fD)).

Only when fD exceeds M it can have an unwanted influence by unnecessarily
increasing bB.

This has two consequences:

1. If the density of any demand point in U j significantly exceeds the density
of all demand points in N j, then base j ∈ J gets overstaffed through
demand projection.

2. If all demand points in N j have at least the density of all demand points
in U j, there will be no overstaffing at base j ∈ J .

3.4.3 Differentiating the minimum reliability level in the Q-models
It the Q-models it is not trivial to implement a differentiation of the minimum
reliability level. That is, having a parameter αi that significantly differs for
bordering neighborhoods (i ∈ I). The reason is that the isolation assumption
of the Q-models loses its validity when one does.

Key element is the Erlang Blocking formula Erlang(λ ,β ,c) ≤ 1−α for an
M/G/c/c-loss system where c represents the number of servers (ambulances).
Recall that in these models λ ,β , and α are input parameters, and the minimum
value c for which the inequality is satisfied is the output parameter. For the
isolation criteria to hold, the inflow and outflow over a neighborhood’s border
to adjacent neighborhoods must cancel out. Hence, both λ ,β and α should
be treated equally. If one of the three fluctuates while the other two are kept
stable, it results in a non-zero flux over a neighborhood border. Thus α should
also be stable across bordering neighborhoods for the isolation criteria to hold.

More in line with the literature, likewise to the call arrival rate, one could
say in Q-PLSCP and Q-MALP that one allows for a demand point dependent
minimum reliability level αi, as long as αi does not differ to a significant extent
from the minimum reliability level of the neighborhoods that border i. Such
a small difference, however, may not be manageable from an administrative
point of view. In the literature we see that α does not vary over i [82, 83].
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3.4.4 Concluding: necessary changes to the minimal reliability and
maximal availability models for application to mixed regions

There are two challenges that must be addressed and solved to allow MR-MA
models to be applied on ambulance regions with both urban and rural areas:

Challenge 1 The isolation assumption for a neighborhood should be gen-
eralized and made more explicit. In areas with both urban
and rural demand the isolated neighborhood assumption is not
realistic, in particular, the case when an urban located base
location covers rural areas near the city that has no closer base
locations, or when larger base locations are located near a neigh-
borhood’s border. A generalization of this condition is handled
in Section 3.5.

Challenge 2 We need a new neighborhood definition such that demand pro-
jection cannot happen. The solution is discussed in Section 3.6.

It is shown in the literature that maximal availability models give urban areas
a relatively high coverage at the cost of the rural areas [19]. Similar to our
examples for min-rel models, it can be shown that this effect is also caused by
the demand projection.

3.5 Workload condition
Section 3.4 showed for minimal reliability models that the demand projection
effect can cause over-estimation on the required numbers of ambulances to any
extent when Q-PLSCP is applied to a mixed region. This section discusses
an approach that can replace the isolation assumption that was introduced in
Assumption 3.1 on page 54. This poses a solution to Challenge 1. Another
advantage of the workload condition is that it allows for a demand point
dependent minimum reliability level requirement αi instead of a system-wide
constant.

From a theoretical point of view, it is not necessary that all ambulances at
Mi must be able to serve demand at i ∈ I: our guarantee is that by a given
probability an ambulance within the driving time R is available for dispatch,
and this is not necessarily the ambulance that can arrive at the incident the
fastest. Recall that the concept of neighborhoods Ni is only used to get a
notion of the workload if i would be the only base location within a response
time radius of at most R.
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Notation 3.1. We introduce the following notations (i ∈ I):

a. Denote the set of ambulances in the system by A.
b. Denote the set of ambulances that serve demand at i by Ai ⊆A.
c. Denote the number of ambulances that serve demand at i by ni = |Ai|.
d. Denote the number of ambulances stationed at bases ofMi by yi = |Ai|.
e. Denote the number of ambulances that can reach i within response time R

by xi.

There is a relation between variables x j en y j in Q-PLSCP. Solving the IP-
formulation yields values x j ( j ∈ J ), and equation bi ≤ yi = ∑ j∈Ni x j holds
for all demand points i ∈ I.

Note it is not necessary that each ambulance for which ta,i ≤ R holds is an
element of Ai. This makes our adjustment also possible for max-avail.

3.5.1 Bounds on the busy fractions
In the remainder of the chapter the (offered) workload that is generated in a
neighborhood, and the busy fraction of the ambulances play a central role.

Definition 3.1 (workload and Erlang blocking formula). We define the
workload and Erlang B for the remainder of the chapter as follows.

a. Define for arrival rate λ and mean service time β the workload

ρ := λβ .

Similarly, the workload at demand point i ∈ I is denoted by ρi := λiβi.

b. For the remainder of this chapter we redefine Erlang B as a function
of ρ and b by substituting ρ = λβ , which is equivalent to Equation 3.1
on page 55:

ErlangB(ρ ,b) :=
ρb

b!

∑
b
k=0

ρk

k!

Similarly, we get ErlangB(ρi,bi) := ρbi

bi!
/∑

bi
k=0

ρk

k! for i ∈ I.

We define the bounds on the busy fraction of an ambulance, and in Section 3.5.2
we illustrate how they are used. A starred notation (∗) refers to the solution of
the problem that we found, and hence depends on ni; this is not necessarily a
global optimum.
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Definition 3.2 (bounds on the busy fraction). Consider an independent sys-
tem with Poisson arrivals, workload ρ , and a fixed minimum reliability level
α .

a. Define the minimum required number of ambulances at workload ρ by

b(ρ) := argminb′∈N{ErlangB(ρ ,b′) ≤ 1−α}.

For a neighborhoodNi, i ∈ I , we have a demand point dependent αi and
define it as

bi(ρi) := argminb′∈N{ErlangB(ρi,b′) ≤ 1−αi}.

b. Define the lower-bound on the busy fraction per ambulance with n > 0
serving ambulances by

qlow(ρ ,n) = ρ/n.

Furthermore, define qlow(ρ) := ρ/b(ρ) and q∗,low
i (ρ) := ρ/ni for i∈ I

where we have ni = |Ai| ambulances that serve demand point i. Denote
qlow

i := qlow(ρi), and q∗,low
i := q∗,low(ρi,ni) for i ∈ I.

c. Define the upper-bound on the busy fraction per ambulance for a system
with offered workload ρ by

qupp(ρ) := max
ρ ′

(ErlangB(ρ
′,b(ρ))≤ 1−α)/b(ρ).

Consequently, the upper-bound on the busy fraction per ambulance for
a neighborhood Ni, i ∈ I, is the maximum on the busy fraction serving
each ambulance inNi such that any more workload leads to an additional
ambulance:

qupp
i := max

ρ ′
(ErlangB(ρ

′,bi) ≤ 1−αi)/bi,

q∗,upp
i := max

ρ ′
(ErlangB(ρ

′,ni) ≤ 1−αi)/ni.

Denote the corresponding arguments by ρ
upp
i and ρ

∗,upp
i , respectively.

The next section provides the intuition in words to the meaning of the lower
and upper-bounds on the busy fraction.
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ρA = 0.2
αA = 0.8
bA = 1
nA = 1
xA = 1
qlow

A = 0.2
qupp

A = 0.25

xJ = 1
qJ = E

ρB = 1.5
αB = 0.95
bB = 4
nB = 4
xB = 4
qlow

B = 0.375
qupp

B = 0.3825

xK = 3
qK = 0.375

A B

J

K

NA NB

Figure 3.6 In this counterexample for a region where rural neighborhood NA
and urban NB share one ambulance at J, the workload conditions
of both neighborhoods cannot be fulfilled simultaneously.

3.5.2 The basic idea
The basic idea behind the workload condition consists of two insights.

1. Handling overcapacity
We staff for an isolated neighborhood i ∈ I with workload ρi and mini-
mum reliability level requirement αi. This yields a minimum number
of ambulances bi required in the neighborhood Ni. We do realize that
due to bi being an integer we have a slight overcapacity of ambulances
in the neighborhood. This overcapacity can be used to serve outside
neighborhood i.

2. Busy fraction per ambulance
Neighborhoods share ambulances, while an ambulance a ∈ A may only
have one busy fraction at which it operates. Ambulances can only serve
neighborhoods if these neighborhoods’ have no conflicting constraints
on the ambulance’s busy fraction. We formalize this concept later in this
section.

Clarification by a counterexample
We clarify the need for the various bounds on the busy fraction through a
counterexample. In our counterexample, an assignment through Q-PLSCP
with demand point dependent minimum reliability level requirements fails in
the case that demand between adjacent neighborhoods differs significantly; see
Figure 3.6.
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Consider an ambulance region with two demand points A and B, with ρA = 0.2,
ρB = 1.5, αA = 0.8, and αB = 0.95. We assume NA to be an isolated region,
that is using the isolation concept of Q-PLSCP where a neighborhoods where
a neighborhoods receives as much help from bordering neighborhoods as it
provides the other way around. Then, substituting these parameter values in
Erlang B from Definition 3.2a yields bA = 1. Because ErlangB(ρ = 0.25,b =
1) = 0.2 we have qlow

A = 0.2/1 = 0.2 and qupp
A = 0.25/1 = 0.25. Likewise,

we have bB = 4 and ErlangB(ρ = 1.53,b = 4) = 0.05, hence qlow
B = 1.5/4 =

0.375 and qupp
A = 1.53/4 = 0.3825. Figure 3.7 shows this behavior. If yi =

ni = bi for all i ∈ I, there is a slight overcapacity of workload OA = (0.25−
.2)1 = 0.05 Erlang in place for NA, and NB has an overcapacity of OB =
(0.3825−0.375)4 = 0.03 Erlang.

Let us now consider two base locations J and K, such thatMA = {J} and
MB = {J,K}. An optimal solution to the IP of Q-PLSCP is xJ = 1 and
xK = 3. If we focus on the ambulance at J we see that neighborhood NA says
that its workload may not exceed qupp

A = 0.25, because any extra workload
yields the need of an additional ambulance at MA to keep the guarantee
that the minimum reliability level is at least αA = 0.8. On the other hand,
neighborhood NB requests from each of its ambulances to handle a workload
of at least qlow

B = 0.375. If the busy fraction of an ambulance goes below this
value, we cannot guarantee the minimum reliability level (for insight, see that,
when n ambulances are put to work with busy fraction qlow, the maximum
workload that they can serve with the minimum provided reliability level is
ρ = qlow

B nB, while the higher workload ρB is being offered). We see that the
two neighborhoods have contradicting requirements for the workload of this
ambulance. Hence, the ambulance can only satisfy the reliability requirement
of one of these neighborhoods.

This illustrates why an extra condition on the workload for a valid ambulance
allocation is required: we will call this condition the workload condition.

Intuition behind the various busy fractions
The counterexample shows that an ambulance allocation cannot guarantee
the minimum reliability level αi for demand point i1 ∈ I if there is another
demand point i2 ∈ I, such that:

1. either q∗,low
i1 > q∗,upp

i2 or q∗,low
i2 > q∗,upp

i1 , and

2. demand points i1 and i2 share ambulances.

We adjust the queuing approach such that this cannot occur, which is a step
forward in our quest to replace the isolation assumption by a more general
structure.
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From the negation of this statement we draw a hypothesis, that we later prove
to be correct. Take any ambulance a ∈ A at random. If q∗,low

i1 ≤ q∗,upp
i2 holds

for all combinations of demand points i1, i2 ∈ I that a serves, then we are able
to guarantee the minimum reliability level αi for demand point i ∈ I.

This is only the case if there is a variable aqdum such that q∗,low
i ≤ aqdum ≤

q∗,upp
i holds for all demand points i that ambulance a serves. We call aqdum

the ambulance’s dummy busy fraction. It can be easily shown that the dummy
busy fraction is an upper-bound to the actual busy fraction that the ambulance
gets using the allocation that follows from the solution. (To prove, add only
for ambulance a, a minimum dummy demand of the type ‘keep on waiting’
to all demand points that a serves until all these demand points have a similar
lower-bound on the busy fraction per ambulance.)
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Figure 3.7 The lower-bound on the busy fraction per ambulance qlow(ρ) is
shown for a given workload ρ = λβ , such that the minimum
reliability level α is met with a minimum number of ambulances b
induced by Erlang B.
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Definition 3.3 (dummy busy fraction). The dummy busy fraction of ambu-
lance a, denoted by aqdum, is an approximation for the busy fraction of an
ambulance, such that:

1. ambulance a can serve all demand offered by its assigned neighborhoods
under the reliability constraints, when working at speed aqdum, and

2. it is an upper-bound on the busy fraction of a after allocation of the IP
solution.

The overcapacity Oi := (q∗,upp
i − q∗,low

i )ni may be used to serve calls out-
side Ni.

3.5.3 Workload condition
This section formalizes the hypotheses from Section 3.5.2. In the AQ models
we replace the isolation assumption of the Q-models by the workload condition.

Theorem 3.1 (workload condition). The minimum reliability level αi is guar-
anteed for every demand point i ∈ I if there exists an assignment of dummy
variable aqdum for every a ∈A and an assignment Ai ⊆A for every i ∈ I such
that all these conditions hold:

q∗,low
i ≤ aqdum ≤ q∗,upp

i .

Proof. In the proof we need the following property: For each number of servers
s ∈N>0 and workload ρ , ErlangB(ρ ,s) is continuous, strictly increasing in ρ ,
and surjective to the open interval (0,1). This is a direct result of Theorem 1 of
Jagers [62], and the notion that ErlangB is a cumulative probability function.

Assume that there exists an assignment aqdum for every a ∈ A and an assign-
ment Ai ⊆A for every i ∈ I such that the condition holds. We need to show
that the minimum reliability level αi is guaranteed for every demand point
i ∈ I by two steps: first, showing that the ambulances work hard enough that
they can handle the workload at each demand point they serve and, second,
other demand points outside the neighborhood Ni do not use an excess of
capacity fromMi.

a. Choose i∈I at random and keep it fixed. Take qmin,dum
i =mina′∈Ai

a′qdum

the minimum value of the assigned ambulances’ dummy busy frac-
tions. Because by assumption the workload condition holds, we have
q∗,low ≤ aqdum for all a ∈ Ai, thus q∗,low ≤ qmin,dum

i . The workload at i
can be served by its ni = |Ai| serving ambulances since ρi = q∗,low

i ni ≤
qmin,dum

i ni ≤ ∑a′∈Ai
a′qdum =: ρdum. In words, the workload that the ni

ambulances can handle within the minimum reliability level αi (that
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is ρdum) exceeds the workload that the neighborhood Ni generates (that
is ρi).

b. By assumption, the capacity of ambulances inAi to serve demand points
outside Ni is limited to q∗,upp

i for all a ∈ Ai. By Definition 3.2c,

ρ
∗,upp
i := argmaxρ ′(ErlangB(ρ

′,ni) ≤ 1−αi)/ni

is the maximum workload that ni ambulances can handle with a mini-
mum reliability level of αi. It corresponds to a maximum workload of
q∗,upp

i . Because aqdum ≤ q∗,upp
i for all a ∈ Ai summation over all ambu-

lances in Ai gives us ρi ≤ ρ
∗,upp
i . Combine this with the knowledge that

ErlangB(ρi,ni) is strictly increasing in the workload (see the property)
and aqdumni = ρi to conclude that if ErlangB(q

∗,upp
i ni,ni)≤ 1−αi, then

also ErlangB(ρi,ni)≤ 1−αi holds. Consequently, other demand points
outside the neighborhood Ni do not use an excess of capacity from
ambulances in Ai.

Hence, the workload condition provides inspiration for a new definition of
coverage for a demand point. Using this definition, every demand point is
covered if and only if the workload condition holds.

Definition 3.4 (coverage of a demand point). Given a set of ambulances A,
and a couplingAi between a demand point and a subset of ambulances (i ∈ I),
such that every a ∈ Ai is stationed at any j ∈Mi and has a fixed dummy busy
fraction aqdum. We say that demand point i is covered if q∗,low

i ≤ aqdum≤ q∗,upp
i

holds for all a ∈ Ai.

The following theorem gives a relation between the workload condition and
the isolation assumption.

Theorem 3.2 (generalization of isolation assumption). If the isolation as-
sumption holds for an allocation through a Q-model, then the workload condi-
tion is satisfied.

Proof. The isolation assumption states that the demand over the neighborhood
borders cancels out and that demand between neighborhood borders does
not vary much over space. Because demand and mean service time does
not differ much over space, and the minimum reliability level is the same
for all demand points, this balance can only be upheld if the ambulances
are evenly spread over the region. Because ρ = λβ , also the workload per
demand point doesn’t vary much over space. Hence, the upper-bound on the
ambulance’s busy fractions (qlow

i and qupp
i ) do not differ much in space. In
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fact, if the variations are small enough the upper-bound is equally valued for
all demand points. Take the dummy busy factions of each ambulance a ∈ Ai
serving in neighborhood Ni equal to the upper-bound on the busy fraction:
aqdum = q∗,upp. Also, q∗,low

i ≤ q∗,upp
i if ni ≥ bi, which is the case because of

the Q-model’s IP-formulation constraints. Combining these two statements
yields q∗,low

i ≤ aqdum ≤ q∗,upp
i for all a ∈ Ai. The IP-formulation through a

Q-model guarantees bi≤ ni. Since i is chosen at random it holds for all demand
points.

Theorem 3.2 shows that the workload condition is a generalization of the
isolation assumption that Q-models use.

Corollary 3.1 (generalization of coverage). The demand point coverage in
Definition 3.4 is a generalization for the definition of coverage found in the
Q-models.

Proof. The Q-models say that an ambulance is covered if yi = ni ≥ bi. In Q-
PSCLP the isolation assumption holds, Theorem 3.2 states that the workload
condition is satisfied. Hence, every demand point is covered in Definition 3.4.
Remark: for Q-MALP a prior step is required. If a demand point is not covered
in Q-MALP, ni ≤ bi, and thus it cannot be covered according to our definition.
Remove all uncovered demand points from I so that we are left with the
covered demand points. For these remaining demand points, we can use the
same proof as for Q-PLSCP.

The workload condition is a sufficient condition, not a necessary one. Using
the actual average workloads of ambulances it may be possible to construct
an example where the minimum reliability level is guaranteed for all demand
points, while the workload condition is not satisfied. We leave the construction
of a counterexample open for future research.

3.5.4 Satisfying the workload condition
Recall that we replace the isolation assumption of the queuing models by the
workload condition, and drop the assumptions that the demand and minimum
reliability levels between neighborhoods do not vary much over space. When
the IP-formulation of a minimal reliability model is solved, it is not always the
case that the workload condition holds for the resulting allocation.

Widening a demand point’s acceptance gap
We show in the current paragraph for min-rel models that when enough ambu-
lances are added we can fulfill the workload condition for any region. After
applying the Q-model’s IP to a possibly homogeneous region, the requirement
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on the various busy fractions is usually not fulfilled. We show that it is pos-
sible for any ambulance region that this ‘workload condition’ gets fulfilled
when enough ambulances are strategically added to the base locations by a
post-processor, on top of the allocation we already obtained from the IP. This
lays the base for the proposed AQ-approach.

When ni increases, i∈I , both the lower and upper-bounds on the busy fractions
for the ambulances in neighborhood Ni change: the lower-bound on the busy
fraction decreases in ni, while the maximum workload per ambulance increases
in ni. This gets formalized in the following proposition.

Proposition 3.1 (strictly increasing and decreasing busy fraction bounds).
For b ≤ n, the following two conditions hold for any ρ ≥ 0 and any fixed
α ∈ [0,1].

a. qlow(ρ ,n) ≤ qlow(ρ ,b). Equality holds if and only if n = b.

b. qupp(ρ ,n) ≥ qupp(ρ ,b). Equality holds if and only if n = b.

Proof. For this proof we need the following statement: For each t ∈R, number
of servers s ∈N>0 and workload ρ > 0, ErlangB(tρ , ts) is strictly decreasing
in t. A proof found by Burke is given in the appendix of [125].

a. qlow
i (ρ ,n) = ρ/n ≤ ρ/b = qlow

i (ρ ,b). Note that ρ/n = ρ/b if and
only if ni = bi.

b. That equality holds when b = n is trivial. We consider the case b < n.
The property in the proof of Theorem 3.1 implies that, for given s, there
is a unique value of ρ for which ErlangB(ρ ,s) = 1−α . This value of
ρ is denoted by ρ̂s. In this construct there is no overcapacity, hence we
have qupp(ρ̂s,s) = qlow(ρ̂s,s) = ρ̂s/s Also by definition, for s ∈ N>0,
ErlangB(ρ̂s,s) = 1−α . By substituting t = s+1

s in Burke’s statement, it
follows that

ErlangB

(
s+ 1

s
ρ̂s,s+ 1

)
< ErlangB(ρ̂s,s) = 1−α .

Since ErlangB(
s+1

k ρ̂s,s+1)< 1−α , ErlangB(ρ̂s+1,s+1) = 1−α , and
the property tells Erlang B increases in ρ , we know that ρ̂s+1 >

s+1
s ρ̂s.

This directly leads to ρ̂s+1
s+1 > ρ̂s

s . Induction shows that qupp(ρ̂s,s) = ρ̂s/s
is increasing in s. The result follows directly.

Proposition 3.1 shows that the gap between qlow(ρ ,n) and qupp(ρ ,n) widens
if n increases from two sides: both the lower-bound decreases and the upper-
bound increases. For q∗,low

i and q∗,upp
i we call this the acceptance gap. As
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a result, once a neighborhood is covered, it stays covered when additional
ambulances are included in Ai.

As n increases, the lower-bound on the busy fraction for each ambulance goes
to zero, and the upper-bound exceeds one. This is an important insight that is
required to prove that the proposed AQ-approach always leads to a feasible
solution for minimal reliability problems.

Proposition 3.2. For any i ∈ I, ρi > 0, αi ∈ [0,1) for ni→ ∞, we have

a. q∗,low
i ↓ 0, and

b. q∗,upp
i ↑ 1

1−αi
> 1.

Proof. We address the two parts subsequently.

a. This part is a direct result of the fact that limni→∞ q∗,low
i = ρi/ni ↓ 0.

b. Let ni→∞, while there is precisely enough work to keep all agents fully
busy, the busy fraction of an agent approaches 1. Because the agent is
allowed to miss a fraction αi of its total offered load, we conclude that
the maximum allowed workload that the agent receives equals 1

1−αi
. The

inequality then follows directly from the assumption that 0≤ αi < 1.

Adjustment options
Theorem 3.1 shows a sufficient condition that proofs for an ambulance al-
location that the reliability requirement is met for every demand point. An
allocation from MR-MA models applied on a mixed region does not necessar-
ily meet this condition. Proposition 3.2 shows that it is possible to meet the
requirements by only adding ambulances on top of the solution provided.

Despite the fact that the workload condition is usually not fulfilled after solv-
ing the IP-formulation, there are multiple approaches possible to adjust the
solution from the IP-formulation to satisfy this requirement on the various
busy fractions:

1. Adjust the IP-formulation
It is possible for small enough model instances to adjust the IP-formulation
such that the workload condition always holds. This approach is fol-
lowed in Section 4.2.
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2. Alternative optimum
Find an alternative optimum to the IP-formulation for which the work-
load condition holds. In the counterexample xJ = 4 and xK = 0 would be
such a solution with the same objective value Z = 4, while all constraints
are still respected. This approach is especially relevant for max-av mod-
els.

3. Postprocessor: increase minimum required number of ambulances
For min-rel, a post-processor on top of the existing IP-formulation is
introduced to adjust the solution. In the case that a solution of a Q-model
does not respect the workload condition, we demand a higher minimum
coverage by stating bi← bi+1 for each neighborhood that cannot satisfy
the condition, and solve the IP-formulation again.

4. Postprocessor: increase number of ambulances allocated to a base
For min-rel, a post-processor on top of the existing IP-formulation is
introduced to adjust the solution. Put extra ambulances at a base location
in a neighborhood where the workload condition is not satisfied. This
approach is followed in Section 4.3.

3.6 Demand aggregation
Section 3.4 illustrated the cause of over-estimation for the required number
of ambulances in each neighborhood for realistic ambulance regions and
showed that two challenges must be solved in order to resolve this. Section 3.5
proposed the workload condition as a generalization of the isolation assumption
and provides a solution to Challange 1; see Theorem 3.2. This section proposes
a solution to Challenge 2 that does not contain the demand projection effect:
the density-dependent demand aggregation.

Our solution to the over-estimations lies primarily in the way the arrival rate
λi is approximated for each demand point i ∈ I. We propose an alternative
calculation method. We also allow for a more precise way of approximation
of the mean service time βi; however, we leave the details for Chapter 4. The
next section also contains two AQ-model variants of the Q-PLSCP that use the
findings of this section as an input.

The AQ-approach uses another calculation methodology for the three Erlang B
input parameters of demand point i’s neighborhood (i ∈ I): arrival rate λi,
mean service time βi, and minimum reliability level αi. We discuss these input
parameters one at a time.

The first difference is that the minimum reliability level αi is a demand-point-
based fixed input parameter instead of a system-wide constant. This is a trivial
change, and needs no further elaboration.
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The second difference is that the mean service time may be different for other
demand points. From practice it is known that there are only small differences
in mean service time between close by demand points, since differences in
driving times are rather small compared to the total service time. It is also
shown that models can be quite robust towards changes in the mean service
time [66]. The mean service times can be calculated from the call record
details. In this chapter we do not further elaborate.

The approximation of the arrival rate, the most important change, is discussed
in the next section.

3.6.1 Arrival rate
In the AQ-approach we calculate λi differently than the Q-models, and (option-
ally) add a post-processing phase that guarantees a valid solution. Whether or
not a post-processor is added in a min-rel model depends on the IP-formulation
chosen. Directly after proposing our adjustments we provide theorems that
prove that the proposed adjusted queuing approach guarantees the minimum
reliability level at each demand point.

Method
The method consists of an initialization, solving an IP-formulation and finally
(possibly) a post-processing phase that makes the solution satisfy the workload
condition.

Initialization
To each demand point i ∈ I we assign a fixed density value ψi ∈ R that
reflects an approximation of the fraction of total workload we can expect in
neighborhood Ni. Various choices for the density ψi can be made. One choice
is to take ψ

FAQ
i = fi (FAQ-models), and another choice is to take the population

per square meter for some system-wide constant C > 0 (DAQ-models):

ψ
DAQ
i =C ·pNi/aNi .

Here pNi denotes the number of inhabitants of neighborhood Ni (i.e., the
population), and aNi denotes the size of the area of neighborhood Ni in square
meters. The AQ-approach redefines the neighborhood N AQ

i by only including
demand points that have at most the same density value of demand point i
(i ∈ I):

N AQ
i := {i′ ∈ I : tii′ ≤ R and ψi′ ≤ ψi}.

The arrival rate λ
AQ
i of neighborhood N AQ

i is obtained by summation over its
demand points of at most the same density:

λ
AQ
i := ∑

k∈N AQ
i

fk = ∑
k∈NQ

i
ψk≤ψi

fk (i ∈ I).
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Denote the neighborhood of the Q-models byNQ
i . Note thatN AQ

i ⊆NQ
i . The

general concept of neighborhood is denoted by Ni, and it will not be used in
mathematical formulations from hereon because it has become ambiguous;
instead we use NQ

i or N AQ
i .

IP-formulation
Similar to the literature, Erlang B yields

bAQ
i := argminb′∈N(ErlangB(λ

AQ,β AQ,b′) ≤ 1−αi),

which takes the places of bi in the IP-formulation of the Q-models.

Post-processing
In the case of a minimal reliability problem, if the allocation from the IP-
formulation does not satisfy the workload condition of Theorem 3.1, a post-
processor can transform the allocation to a feasible solution. For example,
through local search and putting additional ambulances at base locations. As
discussed in Section 3.5.4 there are multiple options for a post-processor.

Correctness of adjusted queuing approach
Theorem 3.3 shows that the new adjusted neighborhood definition for demand
aggregation may be used similarly to the ones in the Q-models.

Theorem 3.3 (correctness of the AQ-approach). The ambulance allocation
using the AQ-approach’s neighborhood definition guarantees minimum relia-
bility level αi for each demand point i ∈ I that is covered.

Proof. Consider an ambulance region and an ambulance allocation (also re-
ferred to as the solution) at this region {x j, j ∈ J } that:

1. respects the workload condition, and
2. uses the adjusted queuing definition for the arrival rate λ

AQ
i (i ∈ I).

We show that minimum reliability level αi is guaranteed for each demand
point i in this ambulance region (min-rel), or that the minimum reliability
level is guaranteed for the demand points that are said to be covered (max-av).
In particular, we show that it is allowed to omit demand points with a lower
density in the calculation of the arrival rate, in the way that the AQ-approach
does.

Only for maximal availability models, we start by discarding the demand
points from I for which the solution does not provide coverage. This way, we
have to proof for all other demand points that the remaining demand points
receive the required coverage.
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Consider the density measure ψ = {ψi : i ∈ I} on I that was used to generate
the solution. Because there are a finite number of demand points, there is
always a demand point with the largest density. Take a so-called density
ordering v : I 7→ {0,1, . . . , |I|− 1}, such that v(i1) ≤ v(i2) if ψi1 ≥ ψi2 . In
words, the demand point with the highest density value is mapped onto the 0,
and the demand point with the lowest density value is mapped onto |I|− 1.
In the case of equally density valued demand points we choose an order of
demand points and keep this order fixed, such that v is a bijective mapping.
Denote the inverse of v by v−1.

The mean service time βi can be calculated, and the minimum reliability level
αi is given for each demand point i ∈ I. Now, all input parameters that are
required to calculate the minimum required number of ambulances bi for each
demand point i ∈ I are known. The calculation of the solution also provides
values for qqdum. Consider all these values as known and fixed during the
remainder of the proof.

Define the set of demand points that has at least density ψi by

Îi := {i′ ∈ I | vi′ ≤ vi} for all i ∈ I.

For the proof we use induction over the density ordering v.

Take in the base case i = i0 = v−1(0) as the inductive variable; that is the
demand point with the highest density. At i, we place a virtual base location to
determine the arrival rate in its neighborhood, that is the arrival frequency over
the demand points within the response time threshold: λ

AQ
i := ∑k∈N AQ

i
fk =

∑k∈NQ
i , ψk≤ψi

fk. Knowing also the mean service time βi and minimum reli-
ability level α , provides values for the minimum required number of ambu-
lances bAQ

i , qlow
i (ρi,ni) and qupp

i (ρi,ni). By assumption ambulance allocation
from the solution respects the workload condition for an allocation using
arrival rate λ

AQ
i , hence there are at least bi ambulances in a ∈ Ai, such that

qlow
i (ρi,ni)≤ qqdum ≤ qupp

i (ρi,ni) for each of these ambulances. These ambu-
lances work hard enough to guarantee with minimum reliability level αi that
ρi can be handled (the proof for this i equals the proof at Theorem 3.1a). Other
remaining neighborhoods, that is neighborhoods Ni′ with v(i′) > v(i) do not
use an excess of capacity from the ambulances in Ai such that actually more
ambulances are needed (the proof for this i equals the proof at Theorem 3.1b).
Hence, reliability αi is guaranteed for i.

The key insight is that demand points that are proven to be covered do not have
to be taken into account in the coverage of the next demand points, because it
is proven that ‘some process’ already insures that its minimum reliability level
is met. Also, because the ambulances work hard enough to guarantee with
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minimum reliability level α , it is proven that demand point i does not require
‘extensive service’ from ambulance resources shared with demand points that
remain to be proven covered. Hence, we do not have to consider demand point
i in any further calculations.

Now take any other random demand point i. As induction hypothesis we
assume that all other demand points than i in Îi are proven to be covered.
From hereon, we focus on the remaining demand points that did not receive
coverage yet. Using the same arguments as in the base case, we can prove that
i is covered.

Consequently, we can ignore i in all upcoming iteration steps. Induction over v
gives the reliability guarantee for all demand points.

Any density measure ψ works, though some will perform significantly better
than others. This is the case because value λi depends on the set of density
values {ψi, i ∈ I}. Another choice for the density measure leads to other
neighborhood definitions Ni, and hence it can change arrival rate λi in neigh-
borhood Ni.

Illustration for the theoretical example
In Section 3.4.2 for the one-dimensional example of Figure 3.4.1 that, once a
Q-model is applied to a mixed region, the demand projection can give a serious
overstaffing for minimal reliability models. Using the same illustrative region,
we show that the adjusted queuing models do not have this staffing.

Take αA = αB = αC = 0.95, αD = αE = 0.80, and βi = 1 for all i. Recall
that fA = fB = fC = M, fD = ε ′ and fE = 0.1 for large enough M and small
enough ε ′ > 0. We take the frequency adjusted density function, that is ψ = fi
yields

bA = bA( fA + fB) = bA(2M),
bB = bB( fA + fB + fC) = (3M),
bC = bC( fB + fC + fD) = bC(2M+ ε

′),
bD = bD( fD) = bD(ε

′), and
bE = bE( fD + fE) = bE(0.1+ ε

′).

The allocation by the IP that follows is

xB = max{bA,bB,bC}= bB(3M), and
xE = max{bD,bE}= bE(0.1+ ε

′).

This way, base location B gets staffed for the urban demand at A,B and C, and
E gets staffed for rural demand at D and E. This allocation is exactly like the
desired situation.
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We check if the workload condition is fulfilled. First, we consider the three
urban demand points. Take for example M = 60, i.e., every minute an incident
that takes an ambulance on average an hour, then bB = 194 and bA = bC = 133.
Hence, qlow

B = 0.928, qlow
A = qlow

C = 0.902, qlow
B = 0.936, qupp

A = qupp
C = 0.929.

Choose aqdum = 0.929 for all ambulances stationed at B, withAA =AB =AC
and the workload condition certainly holds for the urban subarea. For one
ambulance and miniaml reliability level 0.80 stationed at the rural E, we can
calculate that q∗,upp = 0.25. Because both D and E have a non-zero workload
not exceeding the 0.25 (= q∗,uppn with n = 1), and q∗,low ≤ q∗,upp if ni ≥ bi,
the workload condition gets fulfilled if we choose aqdum = 0.25 for the one
ambulance at E that serves all demand at both D and E. Consequently, a 95%
minimum reliability level for urban and an 80% minimum reliability level is
guaranteed for the calculated allocation.

This shows that the adjusted queuing approach solved the problem of demand
projection for the theoretical example.

The choice of density values: Frequency vs density adjusted queueing
Choosing other orders than FAQ has two implications: (1) Because demand
points with higher densities are included in more neighborhoods, they are
counted multiple times. Hence, the mean demand over the area increases
leading to a higher number of vehicles. Of course this is a valid bound to reach
a minimum reliability level of α , but our proposed ordering yields a sharper
bound. In this argument we used the symmetric travel times assumption. (2)
The FAQ ordering guarantees that demand concentrates at the demand point
of interest. Any other ordering is likely to lead to demand projection to some
extent.

DAQ projects demand to some extent to regions where the population density
is relatively high in relation to the historic incidents. This choice leads to more
conservative solutions in the case of demographic changes due to an aging
population.

3.6.2 Relation between Q-models and AQ-models
We conclude this chapter with statements about the relationship between the
Q-models and AQ-models.

Theorem 3.4 (generalization of Q-models). The AQ-models are a general-
ization of the Q-methods.

Proof. Take ψi = ψ and αi = α constant for all i ∈ I and assume the isolation
assumption. Theorem 3.2 states that now the workload condition is satisfied.
Because the density values are the same for every demand point i ∈ I , we have
equal neighborhood definitions for every demand point N AQ

i =NQ
i .
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Corollary 3.2 (correctness of the Q-models). The ambulance allocation us-
ing the queueing approach’s neighborhood definition, the isolation assumption,
and constant minimum reliability level α guarantees a minimum reliability
level of at least α for each demand point i ∈ I that is covered.

Proof. Theorem 3.3 states that all AQ-models are correct. Theorem 3.4 states
that the Q-models are a special case of the AQ-models. Hence, also the
Q-methods are correct.

Note that the proof of Corollary 3.2 does not rely on a cancellation argument
like the Q-method papers, but instead uses the workload condition.

Proposition 3.3 shows that the minimum required number of ambulances for a
demand point is an increasing function for the workload. The proposition is
used in the theorem that follows.

Proposition 3.3 (more workload never implies fewer ambulances). Increased
workload yields at least the same minimum required number of ambulances
(for a constant minimum reliability level):

b(ρ1) ≤ b(ρ2) if ρ1 ≤ ρ2.

Proof. Take ρ1 ≤ ρ2, and minimum reliability level α fixed. By definition:

b(ρ1) = argminb′1∈N{ErlangB(ρ1,b′1) ≤ 1−α}, and

b(ρ2) = argminb′2∈N{ErlangB(ρ2,b′2) ≤ 1−α}.

Directly from the definition follows ErlangB(ρ2,b(ρ2)) ≤ 1−α . Because
ρ1 ≤ ρ2 and Erlang B is increasing in ρ (see proof of Theorem 3.1), we have
ErlangB(ρ1,b) ≤ ErlangB(ρ2,b) for b servers. Taking b = b(ρ2) yields

ErlangB(ρ1,b(ρ2))≤ ErlangB(ρ2,b(ρ2))≤ 1−α .

By definition, b(ρ1) is the lowest value such that ErlangB(ρ1,b(ρ1))≤ 1−α .
Because the inequality holds for b(ρ2), and b(ρ1) is the lowest value for which
it holds, our result follows immediately: b(ρ1) ≤ b(ρ2).

The next theorem shows that, for minimal reliability problems, the number
ambulances with the AQ-neighborhood definition will never exceed the number
of ambulances using the Q-models’ neighborhood definition.
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Theorem 3.5 (AQ never underperforms Q [min-rel]). The required number
of ambulances for a minimal reliability adjusted queuing model ZAQ is at most
the number of required ambulances ZQ, i.e., ZAQ ≤ ZQ, through Q-PLSCP
for constant αi = α over all demand points i ∈ I if the solution of the IP-
formulation respects the workload condition without the need of additional
ambulances by a post-processor.

Proof. The arrival rate for each demand point in AQ-PLSCP is bounded by
the arrival rate for the same demand point in Q-PLSCP:

λ
AQ
i = ∑

k∈N AQ
i

fk = ∑
k∈NQ

i
ψk≤ψi

fk ≤ ∑
k∈NQ

i

fk = λ
Q
i .

For small enough variations in the service times this means ρ
AQ
i ≤ ρ

Q
i . Propo-

sition 3.3 then gives bAQ
i ≤ bQ

i . Because the required number of vehicles on
each demand point for AQ is at most the corresponding number for the queuing
approach, it means that the IP-formulation yields for the number ZAQ ≤ ZQ.
Because the solution of the IP-formulation respects the workload condition,
the post-processor does not have any effect on the outcomes.

Similar, for maximal availability problems, we can show that the results of
adjusted queuing are never worse when using the AQ-approach’s neighborhood
definition compared to the queueing approach’s neighborhood definition.

Theorem 3.6 (AQ never underperforms Q [max-av]). The maximum cov-
ered demand for a maximal availability adjusted queuing model PAQ, is at least
the covered populated PQ through Q-MALP for the same number of vehicles
and constant αi = α over all demand points i ∈ I , if the workload condition is
satisfied for the solution of Q-MALP.

Proof. For the same arguments as in the proof of Theorem 3.5 we have bAQ
i ≤

bQ
i . Introduce equal to MALP and Q-MALP [82, 109] the binary variable ŷi,k =

1 iff at least k ambulances serve i. Hence ŷi,k ≤ ŷi,(k−1) for k = {2,3, . . .bi}.
We show that the solution ŷi,k of Q-MALP is also feasible for its adjusted
queuing counterpart. If ŷi,bQ = 1 then ŷi,bAQ = 1, because bAQ

i ≤ bQ
i (i ∈ I).

For the objective function of (Q-)MALP we now have:

PQ = ∑
i∈I

diŷi,bQ
i
= ∑

i∈I
diŷi,bAQ

i
= PAQ.

By assumption, the workload condition is satisfied for Q-MALP. Then the
workload condition is also satisfied for AQ-MALP (Theorem 3.4). Hence the
solution of Q-MALP is a lower-bound on the solution of the adjusted queuing
maximal availability problem, i.e., PAQ ≥ PQ. This concludes the proof.
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The following property shows that the same solution is provided by AQ-PLSCP
and Q-PLSCP if a region satisfies all requirements of the queuing models.

Property 3.1 (AQ equals Q if the isolation assumption holds). If a region
satisfies all assumptions of a Q-model, then this Q-model and its frequency
adjusted queuing counterpart give the same number of required vehicles (for
min-rel) or the same demand covered (for max-av) if one chooses αi = α

constant for all demand points i ∈ I . Furthermore, if the solver has no random
components, the facility location and allocation solutions are equal for both
models. We assume that the same solver is used for both IP-formulations, and
for min-rel that the post-processor stops if the workload condition can be met.

Proof. Take any region that respects all assumptions of the Q-models. Q-
models use the isolation assumption that states that demand is evenly and well
spread between adjacent neighborhoods. We can say that a constant β = βi cor-
responds to base locations and hospitals being evenly and well spread between
adjacent neighborhoods. Because demand is evenly spread between adjacent
neighborhoods, we see that ϕi = fi takes equal values, hence N FAQ

i = NQ
i .

Thus λi is similar for all demand points i∈ I. Furthermore values βi are similar
in both the FAQ-models and the Q-models for all i ∈ I . By assumption αi = α

is constant, hence through identical computations bi gets the same value for
the queuing approach and frequency adjusted queuing approaches for all i ∈ I.
Now, note that bi is similar valued for all neighborhoods. In other words, all
neighborhoods get the same number of the minimum required ambulances.
Consequently, the IP-formulations for the queuing and adjusted queuing ap-
proaches are identical, and consequently, also its solutions (we assume that the
same solver is used and not an alternative solution is produced). Because the
isolation assumption holds on the Q-model, also the workload condition holds
for the solution for the Q-model (Theorem 3.2). Equal solutions yield that the
workload condition holds for the solution of the AQ counterpart. In the case of
a min-rel model with postprocessor, by assumption, this post-processor does
not change the solution. We have shown that the queuing and adjusted queuing
approaches give exactly the same facility location and allocation solutions.

3.7 Conclusion
In this chapter we propose an adjusted queuing approach to the minimal re-
liability and maximal availability facility location and allocation model. To
this end, we address and explain the cause of the over-estimation problem
that existing queuing based MR-MA models have; e.g., a combination of
so-called demand projection and conflicting neighborhood requirements on an
ambulance’s busy fraction. The adjusted queuing approach solves the later by
generalizing the isolation assumption to the so-called workload condition. The
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former is solved by a newly proposed neighborhood definition that only in-
cludes demand points that are at least as busy as the considered neighborhood’s
defining demand point.

It is not necessarily hard to rewrite binomial and queuing MR-MA models
into their adjusted queuing counterparts, as the minimum required number of
ambulances bi for demand point i ∈ I and neighborhood definitions Ni are
usually core components of such a model, which can be calculated a priori.

Adjusted queuing MR-MA models allow for fluctuations in the arrival rate,
mean service time and minimum reliability level, in contrast to the Q-models
that do not. This means that urban subareas of an ambulance region can have
another minimum reliability level than rural subareas.

The theoretical framework provided in the chapter provides proofs that the
AQ-approach gives the guaranteed reliability for each covered demand point.
We show that the adjusted queuing models lead to improved results for regions
that have both urban and rural areas, both for the minimal reliability and the
maximal availability problems.

We also showed that the Q-models are a special case of the AQ-models for
regions in the case that an ambulance satisfies all assumptions of the Q-models:
that is, homogeneous demand, service time and a constant reliability level for
all demand points. For these regions the Q-models and frequency AQ-models
give the same solution.

There are some interesting topics left open for future research.

A key performance indicator in practice is the fraction of late arrivals, which
strongly depends on the travel time distribution. To this end, it would be inter-
esting to extend the current deterministic travel time model toward stochastic
travel times. Extending the current fixed travel time model toward models with
stochastic travel times is an interesting topic for further research.

Whether an ambulance is on-time or late is a binary variable. An interesting
extension is taking the probability that an ambulance is on-time. This can be
done by taking the continuous counterpart of Erlang B, e.g., by allowing 2.5
ambulances to cover a demand point.

It is also interesting to research how we can incorporate the case when no
available back-up EMS provider is available, and what effects this may have
on the number of required ambulances. A good first approximation is to use
Erlang C.
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Another subject of interest is to research if the adjusted queuing models can
be applied to a fleet with multiple vehicle types; see for example the FLEET
model [120].

Our method aggregates at demand-point level. This can be extended by giving
a minimal reliability or availability on a set of demand points, so that we could
say that a municipality is covered with 80% certainty instead of a separate
constraint for every single demand point in the municipality.

Models with a binomial approach also have a queuing approach equivalent.
Hence, they have an adjusted queuing approach. Because the isolation as-
sumption limitation has been overcome in this chapter, this opens up an entire
new family of models, for example AQ-REL-P and AQ-MALP. Using these
insights it might be even possible to find the adjusted queuing counterpart of
MEXCLP where the AQ definitions of coverage and busy fraction are being
used; this loosens the hard assumption of a system-wide busy fraction.

Chapter 4 uses the theory of the current chapter to develop two adjusted
queuing models for the minimal reliability problem.



4

M I N I M A L R E L I A B I L I T Y A D J U S T E D Q U E U I N G
M O D E L S

The adjusted queuing probability location set coverage problem discussed in
Chapter 3 provides a solution for the overstaffing of existing MR-MA models
on mixed regions by first providing a set of sufficient conditions that guarantee
the minimum reliability level at each demand location. These conditions, better
known as the workload condition, contain a mutual dependency between the
ambulance busy fractions and the allocation that make the problem hard to
solve. The current chapter proposes two models that provide a solution to
the minimal reliability problem. The first is a mixed integer linear program
formulation that does directly provide the optimal solution to the minimal
reliability problem, which can be applied to small enough model instances.
The second model is a heuristic that uses a basic postprocessor that can handle
larger model instances. Numerical results show significant improvements as
regards the number of required ambulances for four actual ambulance regions.

This chapter is based on the following publications:

[A3] M. van Buuren, R. D. van der Mei, and S. Bhulai. “Demand-point
Constrained EMS Vehicle Allocation Problems for Regions with
Both Urban and Rural Areas”. To appear in Operations Research
for Health Care (2018)

[A4] M. van Buuren, R. D. van der Mei, and S. Bhulai. “Ambulance
Allocation in a Mixed Region with Guaranteed Performance at
Every Urban and Rural Area”. Submitted (2018)
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4.1 Introduction
Currently, in rural areas late ambulance arrivals are a hot topic. In practice
EMS providers frequently have to explain bad local performance to mayors
of rural municipalities. In this chapter, we provide two minimal reliability
models to address these concerns. Recall from the previous chapter that in
minimal reliability models, instead of a system-wide busy fraction, a minimum
performance constraint is posed on every demand point.

However, minimal reliability models, such as the Probability Location Set
Coverage Problem (PLSCP) [108] and the Queuing Probability Location
Set Problem (Q-PLSCP) [83] give substantial over-estimations when they
are applied to regions with both urban and rural demand [20, 22]. These
methods are designed to be used for homogeneous demand and service times,
and a constant minimum reliability level. Recently, the cause for the over-
estimation in mixed regions had been found and a solution was provided by
first calculating the per demand point arrival rate differently, and second by
the so-called workload condition (Theorem 3.1). The latter provides sufficient
conditions on the relation between the ambulances busy fraction and the
allocation for a minimum reliability level requirement to hold.

The workload condition, however, has a mutual dependency between the ambu-
lance allocation and the ambulances dummy busy fractions, which complicates
the development of an adjusted queuing MR-MA model: the ambulance allo-
cation x j and Ai is used to calculate values ni, and consequently values q∗,low

i
and q∗,upp

i (i ∈ I, j ∈ J ); see Definition 3.2bc. The other way around, an
ambulance may only be assigned to serve demand point i if its dummy busy
fraction is between q∗,low

i and q∗,upp
i , hence the dependency ofAi and x j on the

variables q∗,low
i and q∗,upp

i . Section 3.5.4 provides four approaches that solve
this issue.

The main contribution of this chapter is that it presents two models for the
minimal reliability problem.

The first model is a mixed integer program that calculates an exact solution
for this optimization problem; the so-called Adjusted Queuing Mixed Integer
Probability Set Coverage Location Problem (AQ-MIPSCP).

The second model is a heuristic that iterative updates the busy fractions and
the ambulance allocation, and stops when this workload condition is met. This
model is called the Adjusted Queuing Heuristic to the Probability Set Location
Problem (AQ-HPLSCP). The AQ-HPLSCP can be applied to larger model
instances, and provides a lower bound on the required number of ambulances.
This solution leads to a lower number of required ambulances than Q-PLSCP.
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For both models, the model assumptions known from the previous chapter are
in effect; see Section 3.3.2. For each demand point, the arrival frequency fi,
mean service time βi and minimum reliability level αi can be calculated or
are given (i ∈ I). The PTD, TMT, TFT are given, and driving times between
every two points can be calculated (see page 51). Each demand point can be
reached from at least one potential base location within the given response
time threshold R, and the ambulance region has at least one hospital.

Both models are open to any choice for the density value that is used in the
neighborhood definition. Taking ψi = fi the arrival frequency leads to the FAQ-
MIPLSCP and FAQ-HPLSCP, while taking ψi = di the population density
leads to DAQ-MIPLSCP and DAQ-HPLSCP (i ∈ I).

The remainder of this chapter is as follows. In Section 4.2 we propose the AQ-
MIPLSCP model, and Section 4.3 introduces the AQ-HPLSCP. In Section 4.4
we describe our input data, which Section 4.5 uses to provide the results for
four actual ambulance regions. A conclusion and proposals for future research
are given in Section 4.6.

4.2 Model I: Mixed integer program
In this section we formulate a mixed integer program, the so-called Adjusted
Queuing Mixed Integer Probability Location Set Coverage Problem (AQ-
MIPLSCP), that fulfills the workload condition with a minimum number of
ambulances.

After providing the model outline in Section 4.2.1, we discuss the preprocessor
that calculates helper variables in Section 4.2.2. Sections 4.2.3 and 4.2.4
explain the objective function and the constraints in detail.

4.2.1 Model outline
Denote the set of ambulances A. For the binary variable ya,i we have ya,i = 1
if and only if ambulance a ∈ A provides coverage to demand point i ∈ I. The
allocation of ambulance a to base location j ∈ J is denoted by the binary
variable xa, j = 1, and it is zero if it is not allocated to the base. We start with a
large enough set of ambulances that may get relocated, and we try to allocate
a minimum number of ambulances, i.e., we do allow ambulances to remain
unallocated. In particular, we denote the binary variable ga = 1 if and only if
ambulance a is in use. We note that this is an uncommon approach for minimal
reliability problems.

Take the upper-bound M = ∑i∈V bAQ
i on the number of ambulances in the

system. Other techniques may provide a lower value for M. Lower values for
M make the solver run faster. Notice that, depending on the value M, many
ambulances can be kept unallocated when an optimal solution is found.
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min Z = ∑
a∈A

ga− (aqdum/(M+ 1))

s.t. ∑
a∈A

ya,i ≥ ki i ∈ I

∑
j∈Mi

xa, j ≥ ya,i a ∈ A, i ∈ I

∑
j∈J

xa, j ≤ 1 a ∈ A

∑
i∈I

ya,i ≤ |I| ·ga a ∈ A

M

∑
k′=1

zi,k′k
′ ≤ ki i ∈ I

M

∑
k′=1

zi,k′ ≥ 1 i ∈ I

M

∑
k=1

zi,kq∗,low
i,k − (1− ya,i) ≤ aqdum a ∈ A, i ∈ I

M

∑
k=1

zi,kq∗,upp
i,k +(1− ya,i) ≥ aqdum a ∈ A, i ∈ I

∑
a∈A

xa, j ≤ C j j ∈ J

xa, j, ya,i, zi,k, ki, ga ∈ {0,1} 1≤ k ≤C j, i ∈ I, j ∈ J , a ∈ A
aqdum ∈ [0,1] a ∈ A

Mathematical Program 4.1 AQ-MIPLSCP

Recall from the workload condition that the minimum reliability level αi is
guaranteed for every demand point i∈ I if there exists an assignment aqdum for
every a ∈ A and an assignment Ai ⊆A for every i ∈ I such that the following
condition holds:

q∗,low
i ≤ aqdum ≤ q∗,upp

i .

The following variables are introduced to formulate the workload condition.
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Denote the lower and upper-bound on the busy fraction per ambulance for a
neighborhood Ni, i ∈V , with 1≤ k ≤M serving ambulances, by

q∗,low
i,k = ρi/k and

q∗,upp
i,k = argmaxρ ′(ErlangB(ρ

′,k) ≤ 1−αi)/k,

respectively. The last variable of the workload condition, the dummy busy
fraction aqdum ∈ [0,1] for each ambulance a, gets a value assigned by the
mixed integer problem later on.

We assume that ρi > 0 for every demand point, hence bi > 0. This can be
achieved by simply omitting all demand points that generate no demand, before
solving the mixed integer program.

The proposed mixed integer program provides a solution to the ambulance
allocation problem that respects the workload condition with a minimum num-
ber of ambulances. The objective function and each constraint are addressed
thoroughly in the remainder of this section.

4.2.2 Preprocessing
Calculate λi, βi, ρi and bi for each demand point i ∈ I. In the calculation
of the arrival rate we use the adjusted queuing neighborhood definition from
Section 3.6.1: λ = λ AQ.

Hence, in the pre-processing stage for every k ∈ {1, . . . ,M} we can calculate
the bounds on the busy fractions q∗,low

i,k and q∗,upp
i,k . This means that the lower

and the upper-bounds on the dummy busy fractions of all ambulances that serve
demand point i when exactly k ambulances are assigned to provide coverage
to this demand point.

The heuristic AQ-HPLSCP, which follows in Section 4.3, can be used to
calculate good values for M and βi.

4.2.3 Objective function
The objective is to minimize the number of ambulances in the system

Z = min ∑
a∈A

ga− (aqdum/(M+ 1)).

Within the solution space of number of ambulances we prefer a solution where
the busy fractions of ambulances become realistic and low, i.e., we minimize
the dummy workload. Hence, we include ∑a∈A(

aqdum/(M+ 1)). Notice that
aqdum ∈ [0,1] and |A|= M; hence 0≤ ∑a∈A(

aqdum/(M+ 1))< 1. In words,
this results in a higher contribution to the objective function when an allocation
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can be done with an ambulance fewer, no matter what the dummy busy fraction
of the ambulances is.

4.2.4 Constraints
The constraints are placed to ensure that ambulances provide coverage to their
assigned areas, and the workload condition is respected, amongst others.

Ambulances providing coverage to each demand point
Denote the number of ambulances that are assigned to provide coverage to i
by ki, such that ∑a∈A ya,i = ki, for all i ∈ I.

Restrict by ambulances in the neighborhood
Only ambulances that can reach the patient in time may provide health care.
Hence ya,i = 0 if ∑ j∈Mi xa, j = 0. The constraints do not force ya,i = 1 if a
provides coverage to i, but they leave room to allow for it: ∑ j∈Mi xa, j ≥ ya,i
for all a ∈ A, i ∈ I.

Unique allocation to a base location
An ambulance may be positioned on at most one base location. Hence, we get
the constraints ∑ j∈J xa, j ≤ 1 for all a ∈ A.

Notation of ambulances in use
The binary value ga equals 1 if and only if ambulance a is used in the allocation.
Hence, it must equal 1 if for any i, ya,i = 1 holds. We can realize that behavior
through the constraints ∑i∈I ya,i ≤ |I| ·ga for all a ∈ A. The objective value
sets ga = 0 when ambulance a is not providing coverage to any demand point.

Workload condition
We require q∗,low

i,k ≤ aqdum ≤ q∗,upp
i,k to hold if there are ki ambulances assigned

to i ∈ I , but only in the case that ambulance a ∈ A provides coverage to i. For
all other values ki, or when a does not provide coverage to i, this constraint is
not required. We use two steps to meet this condition. First, we turn ki into
an array of binary variables zi,k′ , such that only zi,k′ = 1 if and only if k′ = ki.
This can be obtained through

M

∑
k′=1

zi,k′k
′ = ki (i ∈ I),

M

∑
k′=1

zi,k′ = 1 (i ∈ I).
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The workload condition is rephrased through the following two sets of con-
straints:

M

∑
k=1

zi,kq∗,low
i,k − (1− ya,i) ≤ aqdum (a ∈ A, i ∈ I),

M

∑
k=1

zi,kq∗,upp
i,k +(1− ya,i) ≥ aqdum (a ∈ A, i ∈ I).

Here we used the property that aqdum takes values 0 and 1; hence the addition
and subtraction of the term (1− ya,i) satisfy the latter two equations for any
ambulance effective busy fraction if a does not provide coverage to i, i.e., the
term (1− ya,i) = 1 (or equivalently ya,i = 0).

Base capacity
We can limit the maximum allowed number of ambulances C j ∈N assigned
to base j ∈ J through ∑a∈A xa, j ≤C j, for all j ∈ J .

For computational ease the constraints are relaxed. Mathematical Program 4.1
summarizes the objective function and all relaxed constraints.

4.3 Model II: Heuristic
This section provides a model description for the AQ-HPLSCP.

The heuristic consists of applying two transformations to Q-PLSCP. First, we
replace the neighborhood definition NQ

i by the adjusted queuing version N AQ
i

(i ∈ I). Second, we make sure that the workload condition is satisfied by
applying a post-processor. We leave the IP-formulation of Q-PLSCP intact.

Section 4.3.1 provides the preprocessing of helper variables. Subsequently,
Section 4.3.2 gives the model formulation.

4.3.1 Preprocessing
If a patient at demand point i ∈ I is served by an ambulance that departs from
base location j ∈ J and brought to hospital h ∈H, the mean service time for
a call, β̄h,i, j, is defined by

β̄h,i, j := ri, j + th,i + th, j +T MT +T FT −CT T + addonh,i, j.

To accommodate a demand point dependent mean service time βi we make
use of a weighted summation over variables β̄h,i, j. A full explanation of the
calculation methodology follows in Section 4.4.1.

We explain how and why the value for addonh,i, j is calculated. When a
patient is transported from a hospital, and there is a base location in the same
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postal area, we have t j,i = 0 seconds. This is not realistic, because often the
ambulance station is positioned in a separate building. For example, we can use
a constant of five minutes driving time between these buildings. This includes
the opening and closing of the garage doors. If we assume that a patient is
brought to the nearest hospital and in the case an incident happens in a hospital,
the nearest hospital would be the hospital itself, leading to a DTH of 0 seconds
(see page 51). Because calls that originate in a hospital often concern a patient
brought home or taken to another hospital, this is not realistic. From the call
record details database we can calculate an average DTH for every demand
point that contains a hospital and use that as addonh,i, j.

4.3.2 Model formulation
The adjusted queuing heuristic probability location set coverage problem (AQ-
HPLSCP) uses an iterative process to obtain a realistic approximation of the
mean service time at each demand point. The heuristic model formulation is
as follows.

Initialization

1. Calculate values λi = ∑ i′∈Ni
ψi′≥ψi

fi′ for all i ∈ I.

2. Calculate values β̄h,i, j for all combinations of h ∈H, i ∈ I, and j ∈ J .

3. Set x j = 1000 (or higher bound if required) for exactly one randomly
chosen base location j ∈J . It also works for other choices of allocations
with a huge upper-bound for the number of ambulances.

Iterations

1. Calculate the values of βi for all i ∈ I:

βi = max
j∈Mi

(
∑i′∈N j di′minh∈H, j′∈J ,x j′>0 β h,i′, j′

∑i∈N j di

)
.

A full explanation is provided in Section 4.4.1.

2. Calculate bi from Erlang for each i ∈ I:

bi = argminb′∈N≥0
{1−ErlangB(λi,βi,b′) ≥ α}. (4.1)
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3. Allocate x j ambulances at base j ∈ J by solving the IP-formulation,

min Z = ∑
j∈J

x j

s.t. ∑
j∈Mi

x j ≥ bi (i ∈ I),

x j ∈N≥0.

4. Run the post-processor that follows below on the allocation.

Stop condition
Stop when the number of vehicles ∑ j∈J x j stays the same for two successive
iterations. Although a rigorous proof is missing, in practice we noticed that
this algorithm converges to its accumulation point within a few iterations.

Post-processor
The AQ-HPLSCP uses a basic post-processor; see Algorithm 1. This post-
processor assumes that every used potential ambulance within the response
time threshold must be able to respond to a call. It also assumes that the dummy
busy fraction of ambulances that are stationed at the same base location is
always the same. It prefers to add ambulances to base locations where it has
the most added value.

It is not hard to see that the basic post-processor satisfies the workload condi-
tion: take aqdum = q∗,upp

j if a is stationed at j and note that Line 13 in combina-

tion with the stop condition w= undefined guarantees q∗,low
i ≤ q∗,upp

j (≤ q∗,upp
i )

for all i ∈ I. Note that ni = yi holds.

A property of this post-processor is that either all ambulances of a base location
cover a demand point, or none does.

4.4 Input
In this section we compare results from the Q-PLSCP, AQ-MIPLSCP, and AQ-
HPLSCP models. The same input data set is used for all models, that originates
from actual call record databases from four actual ambulance regions. For the
adjusted queuing models we consider both call arrival frequency adjustment
(FAQ) and population density adjustment (DAQ), i.e., ψi = fi and ψi = di,
respectively (i ∈ I).

4.4.1 Parameter estimations
The calculation of the call arrival rate is straightforward. In this section we
discuss an iterative method to get good estimates for the mean service time
per demand point, and we explain our choice for the demand point dependent
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Algorithm 1 Basic post-processor for minimal reliability models
1: repeat
2: for all i ∈ I do
3: update q∗,low

i and q∗,upp
i

4: end for
5: for all j ∈ J do
6: q∗,upp

j ←min{q∗,upp
i : j ∈Mi and i ∈ I}

7: end for
8: for all j ∈ J do
9: m j← 0 . uncovered demand m j through workload condition

10: m∗,upp← 0 . m∗,upp holds the maximum uncovered demand
11: w← undefined . base location w has the highest uncovered workload
12: for all i ∈ I do
13: if j ∈Mi and q∗,low

i > q∗,upp
j and n j > 0 then

14: m j← m j + fi
15: if m j > m∗,upp then
16: w← j . j has the most uncovered demand so far
17: m∗,upp = m j
18: end if
19: end if
20: end for
21: end for
22: if w 6= undefined then
23: xw← xw + 1 . add an additional vehicle at w and repeat this procedure
24: end if
25: until w = undefined . if w 6= undefined, the workload condition is not satisfied

minimum reliability level. Model results are compared with the actual number
of ambulances that the ambulance providers have in service. An ambulance
may only be allocated to a base location that is currently in use.

First we determine a set of parameters that are input for all calculations, next we
compare Q-PLSCP to FAQ-HPLSCP and DAQ-HPLSCP. These calculations
give the minimum number of vehicles needed to provide coverage.

Dataset
Utrecht and Amsterdam-Waterland are urban regions with rural outskirts; Gooi
& Vechtstreek is a small region with mid-sized villages, and Flevoland is a
large rural area with two cities and multiple small-scaled towns. Tables 4.1

Region Utrecht Amsterdam-Waterland Gooi & Vechtstreek Flevoland
Demand points 220 103 41 94

Table 4.1 Number of demand points for every ambulance region.
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Region Urgencies Number PTD CHT TMT TFT Fractions
of calls of HU HU & MU LU by ALS

Utrecht Only ALS 28,109 2:51 1:35 17:58 16:52 53.74% 42.88%All calls 73,668 2:33 16:46 18:59 25.03%
Amsterdam- Only ALS 26,259 3:32 1:22 19:05 19:37 77.32% 54.59%Waterland All calls 59,060 2:54 17:23 20:06 30.56%
Gooi & Only ALS 4061 2:37 1:04 15:57 10:49 75.48% 54.49%Vechtstreek All calls 8930 2:08 14:14 12:13 34.32%

Flevoland Only ALS 6640 2:50 1:22 15:46 17:13 59.21% 40.59%All calls 12,725 2:25 14:54 16:58 33.04%

Table 4.2 Constants calculated from the actual call record database, for week-
days 10:00–12:00 over the years 2008–2012.∗

and 4.2 show the number of demand points, the number of base locations, the
call volume, the mean values of pre-trip delay (PTD), the chute time (CHT),
the treatment time (TMT), and the transfer time (TFT). Recall that the pre-
trip delay is the time from the ringing of the telephone until the ambulance
starts moving. To get a correct coverage region, we assume the pre-trip delay
for high urgency (HU) calls. Because advanced life support (ALS) vehicles
occasionally do low urgency (LU) transportations, it is too short-sighted to
base the number of ALS vehicles only on the high urgency workload. Instead,
we correct the number of ALS ambulances by subtracting the fraction of the
time that they spend on LU calls. The historical fractions of HU and LU calls
by ALS ambulances taken from the dataset are used for this correction.

For the evaluation of fixed base locations we use the actual location at the time
that our dataset originates from. We did not pose any restriction on the base
capacity through our choice C j = M for all j ∈ J .

We limit ourselves to weekdays between 10 and 12 am. These intervals do not
contain a shift change for any of the ambulance regions we considered, and
they have a reasonably constant but substantial arrival rate. There are also no
major fluctuations in demand between these weekdays.

Travel speeds
We aggregate to four position postal code level; see Table 4.1 for the number
of demand points in every ambulance region. Because minimal reliability
models assume that every demand point can be reached from at least one
base location, we omit a few isolated demand points to be able to perform
calculations. Table 4.2 displays all input constants, which are calculated from
actual call center data records.

∗ These durations are not necessarily equal to the regions’ official performance. For the
official numbers we refer to [D2].
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All travel speeds are deterministic and are being requested by navigation
software. We correct the travel speeds for traveling with optical and auditory
signals in the case the ambulance travels to a high urgency (HU) patient. This
is the highest class of ALS urgency, and the only class where an ambulance
always travels with active optical and auditory signals. Medium urgency (MU)
calls are also classified as ALS, and all low urgency (LU) calls are considered
BLS. In reality ALS ambulances can respond to both ALS and BLS calls, and
BLS ambulances can only respond to BLS calls.

In our analysis we differentiate in two min-rel cases. The first case calculates
the minimum required number of ALS ambulances to serve all HU and MU
demand. This calculation requires a correction because in practice the ambu-
lances in our data set do also respond to BLS calls. Details on this correction
are discussed as Remark 1 in the results section. The second case has one
ambulance type that responds to calls regardless of the urgency.

The arrival rate
The arrival frequency fi for every demand point is calculated from the actual
call detail records that were provided by each of the individual ambulance
regions, over the years 2008–2012. We counted the number of dispatched calls
and divided through the total duration over all these two-hour interval blocks.

Another differentiation we make in calculations is on the two density measures
that were introduced in Section 3.6.1. We evaluate the frequency adjustment
ψi = fi, and the density adjusted ψi =C pNi/aNi density measures. The latter
divides the population through the area that has postal code i. The choice of
the scaling parameter C > 0 does not influence the outcome of the methods.

The mean service time
We use a fixed-point method to calculate the mean service time βi of an
ambulance covering i ∈ I. Every demand point i ∈ I may have multiple base
locations by which it can be reached, i.e., |Mi| ≥ 1. It is reasonable to assume
that ambulances that are allocated to the same base location have the same
mean service time.

Differences in the mean service time between neighboring base locations
are not that large due to the fact that PTD, TMT, and TFT are system-wide
constants, and the differences in driving time are relatively small compared
to the mean service time. Moreover, increasing the value of the service time
leads to conservative solutions because we rather allocate more ambulances
than less, i.e., a slight over-estimation of βi is allowed to honor the reliability
constraint, in contrast to an underestimation that may break this constraint.

We take a demand point i ∈ I at random and describe how we calculate its
mean service time βi. The values of βi are calculated iteratively where we
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alternate the update of the allocation by solving the IP-formulation and values
for βi. During initialization the ambulances are allocated at random. Recall
that we use a clear overcapacity for the AQ-HPLSCP model, e.g., we put 1000
ambulances on a single base. Recall our assumption that base locations are
‘reasonably located’ and demand points are most likely to be served by the
nearest ambulance base location. Hence, we assume that the response time is
dominated by the travel time from the nearest base location that has at least
one ambulance stationed.

Consider only the demand at this demand point, and ignore for now that
ambulances are shared with other demand points. We can approximate the
mean service time of an ambulance serving exclusively this demand point i,
thereby ignoring the fact that the service is influenced by all other demand
points. The contribution of this exclusive mean service time β̃i to the mean
service time of an ambulance serving demand point i can be approximated by
the time from the nearest base location with at least one ambulance allocated
to the nearest hospital. This value can be interpreted as the contribution
of the demand point to the mean service time β̂ j of an ambulance at this
base location j ∈ J . We have

β̃i = min
h∈H, j∈J , x j>0

β̄h,i, j. (4.2)

In words, that is the shortest round-trip from a manned base j to an incident i
transporting the patient to hospital h, and returning to base j.

Recall that the ambulances are the servers in our Erlang B approach, and the
service time depends on the base locations and the vertices they serve. For
every base location, we now have to find a reasonable approximation of the
mean service time by taking the weighted average mean service time over all
exclusive mean service times in the base’s neighborhood N j:

β̂ j =
∑i′∈N j ψi′ β̃i′

∑i′∈N j ψi′
.

We do not condition the neighborhood on the density value in this calculation,
since the allocation by the IP-formulation assumes that this base location can
service any demand that it covers. Also recall that we may slightly overestimate
mean service times. A corollary is that the mean service time of base locations
with a large overlap in demand points is limited.

Because base locations with an ambulance stationed in the vicinity of i are
more likely to cover demand points with a large response time from this base j
than the demand point close to j, this β̂ j is conservative. Here we used the
assumption that base locations are reasonably spread over the region.
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Region Urgencies Actual Q-PLSCP FAQ-MIPLSCP DAQ-MIPLSCP FAQ-HPLSCP DAQ-HPLSCP
Base locs Base locs Base locs Base locs Base locs

Act. C/R Fixed Free Fixed Fixed Fixed Free Fixed Free

Utrecht Only ALS 31 C: 21.0 34 28 21 23 18-27 16-30 23-25 18-27
All calls 37 R: 35 65 48 31* 37* 25-33 25-46 35-40 28-45

Amsterdam- Only ALS 35 C: 20.7 41 33 21 42 18-28 17-36 20-30 19-35
All calls 40 R: 39 81 59 34* 42* 30-42 29-54 37-49 Waterland 35-66

Gooi & Only ALS 7 C: 4.1 5 5 4 4 4-4 4-7 4-5 4-5
Vechtstreek All calls 7 R: 6 9 9 6 6 6-7 5-8 6-7 6-8

Flevoland Only ALS 13 C: 9 17 13 13 13 12-13 11-12 13-13 10-13
All calls 13 R: 11 21 18 15 16 14-17 13-17 16-16 14-18

Table 4.3 The required number of ambulances for weekdays 10:00–12:00 over
the years 2008–2012 for the three reliability models.†

Staying conservative, for the mean service time of demand point i we can take
the largest value β̂ j that can be reached from the base location. Most likely
this is a sharp upper-bound for the actual mean service time of ambulances
that serve i. We have

βi = max
j∈Mi

β̂ j.

Q-models take βi = β as a system-wide constant [83, 109]. Also, a statement
can be found about taking βi equal to the average amount of work on the
fictional server in the neighborhood Ni, effectively saying

βi =
∑i′∈Ni minh∈H λi′ β̄hi′i

∑i′∈Ni λi′
.

For the Q-PLSCP model we use for all i ∈ I a mean service time βi = β̃i. In
the evaluation of the AQ-MIPLSCP model we use the per-demand point mean
service time that results from the AQ-HPLSCP model’s iteration.

An improvement is made by giving the actual server, i.e., the ambulance(s) on
a staffed ambulance base, a central role in the calculation of βi.

Minimum reliability level
An ambulance service provider provided us with values αi = 0.95 for urban
and αi = 0.80 for rural areas. After plotting the population density per postal
code area on a map we choose a good threshold value between urban and rural
areas. The population density does not necessarily depend on ψi. Although
Q-PLSCP is not designed for a variable reliability value, we use it for a fair
comparison; after all the real regions also do not meet the isolation assumption.

† Notation AQ-HPLSCP: Before–after applying the post-processor. (C) Actual number
of ALS vehicles, when corrected for their BLS transportations. (R) Advised number of
ambulances for 95% within R = 15 minutes subject to at least one ambulance at every base
location by RIVM. (*) Starred values are the best-found results after two hours of solving.
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4.5 Results
Table 4.3 shows results for Q-PLSCP, AQ-HPLSCP, and AQ-MIPLSCP.

The model is used to solve various scenarios. We made a distinction between
calls of ALS urgency only, and all calls. A second distinction we made was
between a free choice of base location and fixed locations. In the free base
location, also known as a greenfield scenario, a potential base location is placed
at the location of each demand point. For the fixed locations we used the actual
base locations that were in use during the time where our data originates from.
With the hardware provided it is not possible to calculate the AQ-MIPLSCP
with a free choice of bases in an acceptable time. We use a constant response
time threshold of R = 15 minutes.

We make various observations.

First, we see that FAQ-MIPLSCP outperforms all other models, especially for
the larger regions. This confirms that the AQ-MIPLSCP is better suited for
ambulance regions with urban and rural demand (Theorem 3.5), and shows the
extent of the improvements.

Second, the AQ-MIPLSCP usually finds a better solution than the best solution
found by the post-processor provided by AQ-HPLSCP. The only exceptions
are when the lower bound and the best solution found are equal, and for the
FAQ on Flevoland for Only ALS.

Third, for AQ-MIPLSCP the frequency adjustment never gives worse results
than the density adjustment. This was not the case for AQ-HPLSCP; in some
instances the best solution found for FAQ-HPLSCP exceeded that of DAQ-
HPLSCP.

Fourth, comparing the Only ALS results of FAQ-MIPLSCP with the corrected
number (C) of ambulances, we see that AQ-MIPLSCP provides a perfect fit
for all regions with the only exception of Flevoland. This shows that the model
can be used for real applications. In Flevoland there are a few rural outskirts
that do not have an 80% coverage in practice. Using AQ-MIPLSCP these bases
should have two ambulances, whereas in practice only one is used. As of the
year 2017 ambulances were added to this region as the only-one ambulance
per base policy was not sustainable.

Fifth, comparing the All calls results of AQ-MIPLSCP with the actual number
of ambulances, DAQ-MIPLSCP yields results closer to reality than FAQ-
MIPLSCP. A possible explanation can be found in the fact that ambulances
in reality are distributed for quick response to ALS demand, as hospitals can
provide help for life-threatening situations. For All calls the population density
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adjusted DAQ represents incidents without direct medical intervention better
than FAQ, which has peaks around hospitals.

Also some interesting findings can be made for the heuristic.

Sixth, for all scenarios with fixed base locations, the required number of
ambulances in Q-PLSCP exceeds FAQ-HPLSCP, and that the actual numbers
for the fixed base locations are much closer to the actual (corrected) numbers
than Q-PLSCP. In the case the model instance becomes too large for AQ-
MIPLSCP, AQ-HPLSCP has a preference over Q-PLSCP.

Seventh, for Only ALS we see that the corrected actual number of ambulances
for Utrecht and Amsterdam-Waterland lies between the FAQ-HPLSCP num-
bers with free and fixed bases. This is realistic, because in practice dynamic
ambulance management yields an optimization on the scenario with fixed base
locations, and a free choice of base locations can be seen as optimal locations,
which provides a lower bound. For All calls we see that FAQ-HPLSCP gives
a slight underestimation for these two regions. We assume the main cause is
the way BLS calls differ from ALS calls, and BLS calls are a major part of the
total volume.

Eighth, Gooi & Vechtstreek is the smallest region of the country, and it has
only ALS vehicles. The Q-PLSCP model gives over-estimations, while the
other models give realistic numbers.

Ninth, Flevoland is a rural area with two large cities. We see that all minimal
reliability models require more ambulances than what Flevoland currently
has. In reality we see that the urban areas have a good score, while the rural
areas underperform. The minimal reliability models allocate an additional
ambulance on rural bases to meet performance which explains the slightly
higher numbers. A clear difference between Q-PSCLP and AQ-HPLSCP can
be observed.

We end this section with remarks about the implications of the models intro-
duced.

Remark 1: Correction on advanced life support vehicles for basic life
support load
Regions Utrecht and Amsterdam-Waterland have both ALS and BLS vehicles.
ALS vehicles are capable of handling BLS load, but this does not hold the
other way around. To compare our results with the actual numbers, we have to
correct the realistic number of ALS vehicles for their BLS load.

We know that BLS vehicles have a higher busy fraction than ALS vehicles
because they handle the load that can be planned in advance. We assume
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that ALS vehicles will only do BLS within their own region, and that the
longer inter-regional rides are all handled by the dedicated BLS vehicles. This
yields similar driving times for all calls handled by ALS vehicles: the variance
is in the order of minutes rather than hours—the mean service time of is
approximately one hour.

Our correction is done through an estimation. Realistic numbers for the busy
fractions are 0.8 for BLS and 0.6 for ALS for dense regions like Utrecht and
Amsterdam-Waterland. The times used for these estimates include the driving
back to base. When ALS vehicles handle BLS calls they are more time efficient
than handling ALS calls. This is because first of all the stochasticity of the
arrival rate is reduced by introducing planned transportations, and second,
because the ALS vehicles only do BLS load when there is an overcapacity in
ALS vehicles. When dealing with BLS load, we assume that ALS vehicles are
as effective as BLS vehicles doing the same work.

This means that when an ALS vehicle handles BLS load, it has 0.8/0.6 =
4/3 times the effectiveness. If we know the fraction of BLS load done by
an ALS vehicle, we can use this fraction and the effectiveness measure to
correct the actual number of vehicles for the BLS work they do. This yields a
corrected number of 21.0 vehicles for Utrecht and 20.7 vehicles for Amsterdam-
Waterland.

Remark 2: Practical implications
The actual numbers are not necessarily the optimal allocation, because the
regions optimize another objective function than we do. On the one hand they
try to minimize the number of late arrivals, while keeping local communities
satisfied. Also, it may be that due to shift lengths they have a temporary
over- or undercapacity, and they correct this in another time block to meet the
constraints and objective.

Remark 3: Dynamic ambulance management
All regions perform some kind of dynamic ambulance management (DAM).
In our calculations we assumed that every ambulance returns to its home base.
It is generally known that DAM increases performance.

Remark 4: Response radius
We assumed that every call should be available as if it were a high urgency
call. The area in the calculation of λi equals that of a high urgency call.
When considering other ALS calls that have a larger response radius and BLS
vehicles that have no response time threshold, we see that our method may
yield a slight over-estimation.



104 M I N I M A L R E L I A B I L I T Y A D J U S T E D Q U E U I N G M O D E L S

Remark 5: Late arrivals limit versus mean response time
There are two extremes in facility locations; one can either minimize the
number of late arrivals, or one can minimize the mean response time. We pose
a lower bound on the late arrivals for every demand point. The result is that
in some areas, the mean arrival time may approach the response time limit
for various bounds. Especially when these demand points have a considerable
demand, ambulance providers may choose to position more ambulances than
strictly needed by our response time threshold, such that the mean response
time decreases.

Remark 6: Spiking
The demand point dependent minimum reliability level requirement αi, i ∈ I,
can result in an effect that we call spiking in small towns marked as urban in
an otherwise rural environment. If there is a small area with relatively high
demand and large αurban encapsulated by a rural area with a low αrural , the
arrival rate λ• of urban demand points can be dominated by the summarized
arrival frequency of the rural demand points. However, αi depends only on
the urban area. Hence, through this effect the rural demand is rated under the
minimum reliability level of urban demand. This combination may lead to
relatively high values bi for these urban demand points. An overcapacity of
about three ambulances in the ambulance region Flevoland is caused by this
effect.

Technical details
We have implemented Q-PLSCP, FAQ-HPLSCP, and DAQ-HPLSCP in the
TIFAR framework (see Chapter 7 and [A7]), and used the Coin-OR CBC
solver through the CoinMP interface [O2] to solve the IP-formulation. These
problems are solved on a MacBook Pro (17-inch, Mid 2009) with a 2.8 GHz
Intel Core 2 Duo, and 8GB 1067 MHz DDR3. Each model instance was solved
within minutes.

The AQ-MIPLSCP is implemented in AIMMS 4.28.1.0 and solved with
CPLEX 12.6.3 on a Windows 7 PC with an Intel Core i7-4770K LGA1150 pro-
cessor (8 hypercores at 3.5GHz) and 16GB Corsair Vengeance Pro 2400MHz
(2x8GB) RAM on an Asus Z87-K motherboard. All Gooi & Vechtstreek and
Flevoland computations were done within 18 seconds. Computation times of
Only ALS scenarios for Utrecht and Amsterdam-Waterland ranged from 10
minutes to 1.5 hours. All calls scenarios for the latter two ambulance regions
were all interrupted after two hours.

4.6 Conclusion
This chapter addresses the minimal reliability ambulance allocation problem,
that aims to find a static ambulance allocation such that an on-time ambulance
response can be guaranteed by a given minimum reliability level. The Q-
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PLSCP model that is known from literature is not suitable for so-called mixed
regions, which have both urban and rural demand; applying it nevertheless
provides an unrealistic over-estimation of the number of required ambulances.
The (theoretical) adjusted queuing framework that we proposed in the previous
chapter solves this over-estimation problem.

This chapter proposes two minimal reliability models that use this theoretic
adjusted queuing framework, i.e., the adjusted queuing neighborhood definition
and the workload condition. The first model, a mixed integer program, gives an
exact solution to this problem. Calculation times, however, limit the application
of this model to small model instances. The second model is a heuristic that is
derived from Q-PLSCP that can be applied to larger model instances.

Application of these two models to four actual ambulance regions shows
improved results for the minimum required number of ambulances. The AQ-
MIPLSCP is the first minimal reliability model that is designed for application
in mixed regions, and it solves it to optimality. Results show that FAQ-HPLSCP
finds realistic values for Only ALS, as does DAQ-HPLSCP for All calls.

However, it should be noted that the objective for actual ambulance regions
and minimal reliability models are not necessarily the same.

There are some issues open for further research.

When the numbers of potential ambulances and demand points grow, so does
the number of binary variables of the mixed integer program. If the problem has
around a hundred demand points and fifty ambulances, CPLEX can solve AQ-
MIPLSCP within a couple of hours, but for regions with hundreds of demand
points and ambulances this may be too much to ask for current state-of-the-
art computers and solvers. Mixed integer programs are NP-hard. However,
heuristics can be found to provide good approximations of the optimum.

The AQ-HPLSCP leads to a wide optimization gap between the lower bound
and the solution found that leaves room for improved heuristics.

Although this chapter is motivated by the EMS context, the models are useful
for a wide spread of applications that statically position high valuable assets
that must be available for an unplanned emergency by at least a given probabil-
ity at any pre-determined location. Examples include specialty units of a police
department, positioning valuable tools that need post-processing after every
use, or choosing what volunteers to provide with basic life-saving education in
the case that there are limited training spaces available.

An open question that helps the applicability to larger model instances is how
a better post-processor can be designed for the heuristic. The question if FAQ
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always outperforms (or equals) DAQ, in the case the (heuristic) model solves
to optimality, is an interesting open question for further research.

The present chapter focuses on minimal reliability models, although a simi-
lar mixed integer adjusted queuing technique as the AQ-MIPLSCP may be
applied to maximal availability location models that have a limited number
of ambulances to provide maximum coverage. It is an interesting question to
what extent the maximal availability models can be improved by the adjusted
queuing framework.

In the calculation of β̃i we assume that the ambulance is dispatched from the
nearest opened base location. An interesting enhancement would be to adapt
this such that all staffed base locations that can reach the demand point are
included in the calculation. We can do that by taking the probability that a base
location is the one that sends the ambulance, multiplied by the driving time.
One can also estimate a good distribution for the busy time at each demand
point using call center records details.
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O N - RO U T E C OV E R AG E B Y AVA I L A B L E
A M B U L A N C E S T H RO U G H RO U T E O P T I M I Z AT I O N

Dispatchers usually relocate ambulances by the fastest route. However, there
are cases when the fastest relocation is not the best one, as the transitory
coverage while driving over the fastest route can be relatively low. When a
fast relocation happens over the highway with a limited number of exits the
ambulance is less flexible, while a longer route through villages can lead to
a higher performance due to transitory coverage. In this chapter, we study
the effect of taking alternative routes in ambulance relocations, which is an
unaddressed problem in the literature. Results for four actual ambulance
regions show that this so-called dynamic routing can help at an operational
level to obtain a more fair distribution of ambulance coverage.

This chapter is based on the following publication:

[A5] M. van Buuren, C. W. P. Huibers, and R. D. van der Mei. “On-route
Coverage by Available Ambulances Through Route Optimization”.
Submitted (2018)
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5.1 Introduction
Dynamic ambulance management, DAM, distributes available ambulances
over an ambulance region to minimize late arrivals. When an ambulance
finishes a service at a hospital, or when a dispatch to a new incident occurs, it
is generally beneficial to ask available ambulances to drive to another location
than a fixed base location, such that the coverage increases. An ambulance
movement for improved coverage is called a relocation. Relocations may only
go to a limited number of predefined relocation points—often these are base
locations.

The DAM models known from literature often start by determining for each
ambulance to what base locations it can be relocated, and consequently, what
configuration scores best. After calculating the optimal configuration, the
output for each ambulance from what origin to what destination it must move;
this is called an OD-pair. These models, however, do not specify how an
ambulance should drive to the destination. Usually it is assumed that the
ambulances take the fastest route.

Ambulances in densely populated areas such as the Netherlands are distributed
for fairness: no matter where in the country you are, there must be a reasonable
probability that an ambulance is nearby. Because the performance indicators
are aggregated over the year and the entire ambulance region, there is an
incentive to concentrate ambulances around cities with high demand. Recall
that Chapters 3 and 4 address this issue and propose facility and allocation
models to increase fairness.

The main contribution of the current chapter is that we focus on the question
what route the ambulance should take to drive to its destination. While an
available ambulance is moving to its destination, the route choice has an
influence on the coverage, and thereby, both on the volume and the spatial
distribution of late arrivals. This so-called dynamic routing can be highly
effective in increasing fairness over an ambulance region, particularly for
regions where subareas are not covered from existing base locations. We show
results for three ambulance regions.

A literature review is provided in Section 5.2. Next, in Section 5.3, we propose
our dynamic routing model. Results for actual ambulance regions are provided
in Section 5.4. This chapter ends with a conclusion in Section 5.5.

5.2 Literature
Many methods address the issue of how to choose the ambulance movement,
see Section 6.2 for a literature overview on this topic. We first discuss ways
for alternative routing. Directly after, we give a brief overview of the Dynamic
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Maximum Expectated Coverage Location Problem (DMEXCLP) that is used
in this chapter.

Generating a routeset, i.e., a set containing route alternatives, in combination
with a route choice model is well studied in the literature. An early review of
this topic is given in [99]. Further extensive literature can be found in [104]
and [112].

Various techniques are proposed to deal with uncertainty in travel costs [34,
42, 98]. Stochastic approaches calculate iteratively each route alternative in
two phases. In the first phase, the edge costs are drawn from a distribution, and
in the second phase a shortest path is calculated [26, 36]. Doubly stochastic
models are an extension that also randomize the objective function, in the
case it consists of multiple weighted link properties [30, 93]. The labeling
approach generates a routeset for multi-criteria objective by including one
route for each of the criteria [18]. Link elimination alternatively executes
two procedures: a shortest path algorithm and a path deletion algorithm that
deletes the characteristic link [9, 100]. A breath-first search can be appended
to link elimination to speed up the process of generating a high diversity of
paths [112].

The models mentioned above are designed to find a good fastest route. Our ob-
jective, however, differs because we wish to incorporate the coverage provided
by a route.

The route selection problem for hazardous material transports is a relatable
problem to ambulance routing, since both involve coverage. Instead of taking
routes with the least coverage, the ambulance context wants us to take a route
that generates the most coverage in their objective function. A known approach
is to first define the edge risk for each road segment (that is the probability
that an incident occurs on an edge multiplied by the damage), and thereafter to
calculate a minimal path [1, 41, 115, 123].

There are differences between hazardous materials and real-time ambulance
allocation is the required calculation speed. Whereas hazardous material routes
can be calculated weeks in advance, the ambulance dispatch centers need a
faster method that can provide an answer within seconds. Also, in ambulance
care the route choice depends on the locations of other available ambulances,
which is not the case for hazmat transports.

In this chapter we use the DMEXCLP model for the calculation of the OD-pairs,
and base our route choice on the MEXCLP model (see Section 3.2.2 and [35]
for more details). An outline of DMEXCLP follows (an extensive description
can be found in Section 6.3.1 and [63]). The basic idea of DMEXCLP is to
take multiple coverage into account, and consequently, sending an ambulance
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to the base location where its marginal contribution is the highest. To this
end, a constant busy fraction q is introduced, that is the average fraction of
the time that an ambulance attends an incident. The marginal contribution to
the coverage of the kth ambulance on demand point i (denoted by ki) is given
by Ci = di(1− q)qki−1. Summation over all demand points yields the total
contribution of an ambulance movement.

5.3 Model
The DMEXCLP-model from the previous section, or any other DAM-model,
provides the origin O and destination D for ambulance a to send. The goal of
our model is to optimize the route for ambulance a, while taking transitory
coverage into account.

The ambulance region is discretized in a set of demand points I (where demand
point i has demand demand di) and base locations J , similar to Chapter 3
and 4. The set of waypoints, denoted by Y , is the set of the locations of all
road intersections and all locations where a road changes direction—a curve in
the road can be modeled by placing multiple waypoints. Take L := Y ∪I ∪J
as the set containing the waypoints, the demand points, and with the base
locations. Denote the minimum travel time between two points `1,`2 ∈ L by
t`1,`2 . The road network is modeled as a directed complete graph with nodes
w ∈W and the minimum travel times as the edge weights. We assume that the
grid of demand points is dense enough in relation to the travel speeds.

A route is modeled by a finite sequence r = (`0,`1, . . . ,`|r|−1) that has taken all
its elements from L. A set of routes is referred to as a routeset, and is denoted
byR.

The proposed dynamic routing method consists of two phases. First, we
generate a routeset that contains a fixed number of alternative routes from O
to D (see Section 5.3.1). Subsequent, we evaluate each of the routes in this
routeset individually (see Section 5.3.2). The ambulance is sent over the
highest valued route alternative.

5.3.1 Generating routesets
In this section we show how to calculate the routesetR for a given OD-pair.
In this context, there is a trade-off: on the one hand we need enough routes in
the routeset to make a good choice, but on the other hand lead too many routes
to unacceptably long calculation times during the evaluation. Therefore, the
limited number of routes must be sufficiently different to cover the entire area
between O and D.
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From practice we get two constraints on a route:

1. It should be easy to explain the route in words over the telephone to
an ambulance driver, e.g., a route alternative may not meander through
residential areas.

2. EMTs do not accept ‘large detours’ to reach their destination.

In any case, we want to evaluate the fastest route between O and D as a route
alternative. Hence, this is the first route that we include in the routeset.

Decision points
We do not follow the approach from most models in the literature that changes
the arc properties for the entire road network in the calculation of a route
alternative, as this is too calculation intensitive. Instead, we introduce decision
points on the road network that help us generate more routes, denoted by v∈Z
(Z ⊆ Y). Decision points are waypoints that lay on the road network where
a main road splits, and are used as via-points. That is, a route alternative
is a combination of the fastest route from the origin to the decision point,
and the fastest route from the decision point to the destination. A method
that calculates the decision points follows in Section 5.4. We allow route
alternatives to be outside the ambulance region for a limited time. The (partial)
travel time matrix with entries twi is precomputed (w ∈W , i ∈ I).

Figure 5.1 The decision points for ambulance region Gooi & Vechtstreek are
indicated by black crosses.
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W

H

Figure 5.2 The decision points between Hilversum (H) and Weesp (W).

This satisfies the first constraint: decision points are easy to explain. As an
illustration Figure 5.1 shows the decision points for ambulance region Gooi &
Vechtstreek.

The second constraint motivates to take a subset of the decision points be-
tween O and D, and only to consider these decision points as a via-point:

ZO,D := {z ∈ Z : tO,z ≤ tO,D and tz,D ≤ tO,D}. (5.1)

Figure 5.2 shows the resulting decision points between Hilversum and Weesp.

W
M

H

(a) Route without snapping.

W
M

H

(b) Route with snapping.

Figure 5.3 Illustration of snapping on a route from Hilversum (H) to
Weesp (W) through Muiderberg (M).
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Algorithm 2 The snapping algorithm
1: r1← routepart of r from (not incl) O to (not incl) p
2: r2← routepart of r’s inversed route from (not incl) D to (not incl) p
3: for all `1 ∈ r1 do . visit each waypoint `1 on r1 in order
4: for all `2 ∈ r2 do . visit each waypoint on the inversed route in order
5: dsnap← dist(`1, `2). . Euclidean distance in meters
6: if dsnap ≤ ∆ then . points are within the snapping distance threshold
7: if tz1 p ≤ S and tpz2 ≤ S then . pivot p remains covered
8: return append(route(O,`1), route(`1,`2), route(`2,D))
9: end if . the route function gives the fastest route

10: end if
11: end for
12: end for

Snapping
We apply the so-called snapping to a route alternative. This procedure is
designed to prevent going back and forth over the same path when we create
the shortest path through the decision point by removing paths that we travel
over in opposite directions. We limit snapping to S minutes: if the original
via-point is not reachable by its resulting route alternative, we communicate
the point of snapping in its place.

Figure 5.3 illustrates snapping. While generating route alternatives between
Hilversum (H) and Weesp (W ), a decision point next to Muiderberg (M) is
taken as a pivot. Figure 5.3a shows the route alternative without snapping.
This route alternative is not acceptable for EMTs because it (locally) is a large
detour: the same road is traveled twice while entering and leaving Muiderberg.
In Figure 5.3b we applied snapping, and we do not go into Muiderberg, but we
still cover the area because the ambulance drives past it.

Algorithm 2 describes the snapping process. We assume two waypoints on
opposite sides of the road if their difference is at most ∆ meter.

Generation algorithm
From hereon we explain the workings of our routeset generation algorithm.

For each decision point in ZO,D we keep track whether there is already a route
that visits the decision point: in the case that any route from the routeset visited
a decision point, this decision point is marked as visited.

After adding the fastest route and marking all the decision points along its way
as visited, we take an unvisited decision point as the pivot p. The next route
alternative we consider to add to the routeset is the fastest route from O via p
to D. We mark all decision points on this new route alternative as visited. For
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each route alternative r that is already in the routeset, we calculate the fraction
of overlap with the new route. That is, the number of decision points that is
both in the new route and r divided by the total number of decision points that
the new route has. If the fraction of overlap is below a given threshold δ for
all routes in the routeset, we consider the new route to be sufficiently unique.
Only then, we add this route to our routeset. We repeat this process until all
decision points in ZO,D are marked visited.

We use a method to speed up routeset generation, which prevents picking
multiple decision points on a road facing outward. Figure 5.2 illustrates the
motivation for the so-called counter-clockwise pivot picking strategy. If one
first takes the route through the green decision point, one will not reach the red
decision point, and thus we have to look at a route through the red decision
point at a later time as well, since it is still unvisited. This route will be very
similar to the route through the green decision point, and we want to avoid
similar routes. Thus, by picking the more outward decision points first, we
mark more decision points and prevent looking at too many similar routes.

The counter-clockwise pivot picking strategy is as follows. We first choose the
unvisited decision point with the lowest y-coordinate as our pivot. As the next
pivot we take the unvisited decision point with the highest x-coordinate. Next
we take the highest y-coordinate, and at last, the lowest x-coordinate. Then we
look again at the unvisited decision point with the lowest y-coordinate, and we
repeat this procedure until all decision points are visited. Hence, we mark the
decision points in a counter-clockwise fashion, starting from the outside and
working towards the inside of the ambulance region.

Lower values of δ result in smaller routesets. Figures 5.4a, 5.4b and 5.4c
show multiple routesets that are generated between Hilversum and Weesp for
different values of δ . The thickness of the black line indicates the number of
route alternatives that use the road segment.

Algorithm 3 concludes the routeset generation algorithm.

5.3.2 Route choice model
The previous section provided a routesetR. This section shows how a coverage
value can be assigned to each route alternative. The route alternative with the
largest value is advised to the ambulance.
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Algorithm 3 Routeset generation
1: calculate ZO,D . use the definition from Equation (5.1)
2: mark all decision points in ZO,D as not visited
3: calculate route(O, D) . fastest route from O to D
4: mark all decision points on Route(O, D) as visited
5: put route(O, D) in the routesetR
6: repeat
7: p← first unvisited decision point according to the pivot picking strategy
8: PivotRoute← append(route(O, p), route(p,D))
9: mark all decision points on PivotRoute as visited

10: PivotRoute← snapping(PivotRoute) . using Algorithm 2
11: FractionO f Overlap←maxr∈R{|PivotRoute∩ r|/|PivotRoute|}
12: if FractionO f Overlap≤ δ then
13: put PivotRoute in routesetR
14: end if
15: until every demand point in ZO,D is marked as visited
16: returnR

W

H

(a) δ = 0.1, two routes were added.

W

H

(b) δ = 0.5, four routes were added.

W

H

(c) δ = 0.9, sixteen routes were added.

Figure 5.4 Routesets between Hilversum (H) and Weesp (W) with different
values for δ .
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Outline
Recall that incidents are aggregated to demand points i ∈ I, and the route
alternative visits various waypoints in order, denoted by the sequence r =
(O,`1,`2, . . . ,D). These transitional waypoints are not limited to the origin,
the decision points and the destination. All changes of travel speeds occur at a
waypoint. This is, the speed between two neighboring waypoints is assumed
to be constant.

The coverage value of route r can be approximated by adding two terms: (1)
the transitional coverage while being on route,* and (2) the coverage when
being at the destination.

The resulting coverage value of route r is given by the expression:

Ξr = ∑
`∈r
6̀=O

∑
i∈I

∫ t̃`

t̃`−1

f (tx(θ ),i)e
−γθ dθ + ∑

i∈I

∫
∞

t̃D
f (tD,i)e−γθ dθ . (5.2)

Here, the preceding waypoint to ` is denoted by `−1. The travel time from
O to v is t̃v. Variable x(τ) is the position of the ambulance at time τ , that
is a linear interpolation in time and space between ` and `− 1. Discount
parameter γ models the fact that uncertainty increases as time goes on. Value
function f (τ) gives the marginal contribution of the relocating ambulance to
the coverage value as a function of the driving time τ . The integral provides a
fair comparison between various routes, because the coverage at the destination
weighs heavier if the ambulance arrives sooner.

The coverage value for the maximum expected coverage location problem
Recall that the marginal coverage function is denoted by f (τ) for travel time τ .
Function f depends on the location of the other ambulances. For MEXCLP
we can use the known result

f (τ) = 1{τ≤R}di(1−q)qki−1, (5.3)

where 1E denotes the indicator function on the event E, q is the average
ambulance busy fraction, di is the demand at i, and the relocating ambulance is
the ki-th ambulance that can reach i within time threshold R.

*For the first term, that is the contribution to the transitional coverage while being on
route, we integrate over the travel time θ during the route. We split the integral over the entire
route into `−1 integrals, one for each road segment. Next, for each point x(τ) on the route r
we calculate the marginal contribution to each demand point i as defined by function f (·),
where tx(θ ),i denotes the travel time from the position on the route x(θ ) at time θ to i.
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Inspired by literature [14, 63], we fix the locations of all other ambulances
A− at their current position for the ease of calculations. That is, if they
are on a main road we teleport them to the next decision point, and when
they are in a residential area we teleport them to the closest demand point.
Using the preprocessed travel time matrix, we can rapidly calculate ki =
1+∑a∈A− 1{ta,i≤R} the number of ambulances that can reach i within time
R, in the case that the relocating ambulance can be on-time at i (i ∈ I). We
compute the contribution if the relocating ambulance is at most R time units
away from i, which is independent of the path chosen:

Ci = di(1−q)qki−1.

From hereon, we evaluate each route alternative r ∈ R in the routeset. For
waypoints ` ∈ r on the main road network we calculate the coverage from
the next decision point the ambulance visits, where we make a correction
by subtracting the driving time towards this decision point from the value
function’s argument. For all other waypoints, which are usually waypoints
in residential areas, we calculate the coverage as if the ambulance is at the
closest demand point. This is a good approximation because the demand
point aggregation is assumed sufficiently dense. Note that by this method the
coverage calculation from each waypoint is always calculated from an element
inW .

For each pair of demand point i and the route segment preceding `, we compute
by linear interpolation the number of seconds that the ambulance is within
R time units from i, while driving on this route segment. We assume that
the travel speed does not change between two waypoints, which allows us
to perform a linear interpolation inside the route segment. Hence, when
substitution Equation (5.3) in the first term of Equation (5.2), the summation
over all road segments of the route r gives the following contribution ξr,i to i:

ξr,i = ∑
`∈r
6̀=O

∫ t̃`

t̃`−1

f (tx(θ ),i)e
−γθ dθ = ∑

`∈r
6̀=O

∫ t̃`

t̃`−1

1{tx(θ ),i≤R}Cie−γθ dθ

= Ci ∑
`∈r
6̀=O

∫ t̃`

t̃`−1

1{tx(θ ),i≤R}e
−γθ dθ =Ci ∑

`∈r
6̀=O

∫ t̃`

lb(`−1,`,i)
e−γθ dθ

=
Ci

γ
∑
`∈r
6̀=O

(
e−γ lb(`−1,`,i)− e−γ t̃`

)
.

Here the lower bound lb(`−1,`, i) is the time on the road segment between
`−1 and ` when the ambulance driving on this segment becomes within the R
time units driving of i. The time measure starts at the route’s origin. If i cannot
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be reached in R time units from the entire segments, we say lb(`−1,`, i) = t`,
which results in a zero contribution of this segment. Recall that the travel
speed does not change on a road segment that lays between two waypoints.
We get the following expression for lb:

lb(`−1,`, i) =


t̃` R < t`,i,
t̃`−1 t`−1,i ≤ R and t`,i ≤ R,
t̃`−1 +

R−t`−1,i
t`,i−t`−1,i

(t̃`− t̃`−1) R < t`−1,i and t`,i ≤ R.

Here, we use the assumption that the ambulance has a constant speed between
two waypoints. For the moment of arrival at the destination we get:∫

∞

t̃D
f (tD,i)e−γθ dθ = 1{tD,i≤R}

Ci

γ
e−γ t̃D .

This gives us the simplified path contribution for the MEXCLP coverage
function:

Ξr = ∑ `∈r
6̀=O

∑i∈I

(
Ci
γ

(
e−γ lb(`−1,`,i)− e−γ t̃`

))
+∑i∈I 1{tD,i≤R}

Ci
γ

e−γ t̃D

= 1
γ ∑i∈ICi

((
∑ `∈r
6̀=O

(
e−γ lb(`−1,`,i)− e−γ t̃`

))
+ 1{tD,i≤R}e−γ t̃D

)
.

5.4 Results
In this section we show simulation results for the ambulance regions Gooi
& Vechtstreek, Amsterdam-Waterland, and Utrecht. We compare the fastest
route to the best route generated by the MEXCLP dynamic routing policy. As
key performance indicators we use the fraction of late arrivals and the mean
response time. In both policies we use DMEXCLP for the calculation of the
OD-pair.

Setup
We use a so-called trace-driven simulation strategy for the months September
and October 2015. In these months there are no major holidays. In a trace-
driven simulation we simulate incidents at exact same time and place as they
occurred in reality. The only difference is the way we relocate the ambulances.
More information about simulation is provided in Chapter 7.

A hexagonal equidistant demand point grid is used, such that there is a 1
kilometer distance between the grid points. Demand patterns are calculated
from one year historical data. We use δ = 0.5, q = 0.3 and γ = 1/(λM) the
expected inter-arrival time for a particular ambulance. Here, M is the number
of ambulances in the region. The Open Source Routing Machine (OSRM) [O4]
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Fastest route Dynamic routing
Fraction of Mean response Fraction of Mean response

late arrivals (%) time (min:sec) late arrivals (%) time (min:sec)
Gooi & Vechtstreek 15.03 11:23 15.87 11:28
Amsterdam-Waterland 0.69 7:50 0.67 7:38
Utrecht 7.03 9:32 7.15 9:28

Table 5.1 Simulation results for the three regions.

is used for navigation—this software is constructed such that the speed does
not change between two waypoints.

From OpenStreetMap (OSM) [O5], we create the set of decision points on
the major road network Z . These decisions points are identified in OSM as
the nodes that lay on a way with highway tag highway, trunk or primary (and
their resp. links) that either intersect with another road type or are included in
at least three ways. In the Netherlands this results in 49,887 decision points.
The choice of including primary but not secondary roads is made because it
is generally not hard to turn roads of type secondary or lower. We assume
that ambulances pass the following decision point when being dispatched to
an incident. For each region, we truncate the set Z to demand points that are
either in the region, or are less than 30 km away from any point in the region.
The choice is based such that all demand points of the region are unreachable
in 12 minutes driving when not exceeding 150 km/h. This significantly reduces
the set Z .

Table 5.1 shows the simulation results for the fastest route and dynamic rout-
ing policies. In the remainder of this section we consider each of the three
ambulance regions separately.

5.4.1 Gooi & Vechtstreek
The EMS region Gooi & Vechtstreek is the smallest in the Netherlands, both in
size and number of calls. It is a rural area with a population just over 250,000.
Most people live in the north and the east of the region. The south-west mainly
consists of lakes and forests. Yearly, there are over 18,000 incidents. There are
three base locations, situated in Hilversum, Blaricum and Weesp. Figure 5.5
shows a map of the region with its base locations and call volume distribution.

Table 5.1 shows that there is a small increase in the mean response time. To
get a better understanding of where and when we get the most improvement,
we look at Figure 5.6. Nodes are colored green if the dynamic routing method
outperforms the fastest route policy, that is where dynamic routing has less late
arrivals. A red node indicates that dynamic routing method performs worse.
Deeper analysis gave the insight that the high percentage of late arrivals is due
to a shortage of ambulances in the evening, especially in the weekends. At
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that time there are barely enough ambulances available to handle the incoming
calls.

Figures 5.6 and 5.8 show that the most improvement is in Wijdemeren, the
municipality in the south-west corner of the region. This comes at the cost of
more late arrivals in the municipality Gooise Meren, which is located in the
north. Dynamic routing thus moves the location of late arrivals to more rural
areas, since we now take the highway through Gooise Meren less and instead
drive through Wijdemeren.

Because the region is understaffed in the evening, we are interested if our
method performs better or worse in the evening compared to the rest of the
day. Figure 5.7 shows the late arrivals in the evening compared to the rest of
the day. Here the evening is from 16:00 to midnight.

We observe that dynamic routing performs significantly worse in the evening
compared to the rest of the day. Sometimes there is a shortage in the number
of available ambulances during the evening, which might be the reason that
dynamic routing performs worse. The results might improve if we make the
discount parameter γ and the busy fraction q time dependent.

Figure 5.5 The blue area is the EMS region Gooi & Vechtstreek. The three
base locations are indicated by black dots. Darker shades of blue
correspond to a higher call volume.
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Figure 5.6 Comparison of the number of late arrivals in Gooi & Vechtstreek.
Green areas show improvement with dynamic routing, in contrast
to reds. The black dots indicate the base locations.

(a) Evening. (b) Rest of the day.

Figure 5.7 Comparison of the number of late arrivals for different times of the
day for workdays. Green areas are improved with dynamic routing,
in contrast to reds.
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Figure 5.8 The relative improvement in late arrivals for Gooi & Vechtstreek.
Green municipalities show improvement with dynamic routing, in
contrast to reds. The black dots indicate the base locations.

If we focus on the per-municipality statistics, we see a shift in the number of
late arrivals. Since there is a relatively low call volume in Wijdemeren, any
extra on-time arrival results in a larger relative improvement compared to the

more densely populated areas that have a high call volume. Figure 5.8 shows
this relative improvement.

There is a relative improvement in Wijdemeren and Huizen, while dynamic
routing performs worse in Weesp. Note that both Wijdemeren and Huizen do
not have a base location. Wijdemeren normally has the lowest percentage on
time arrivals. Dynamic routing redistributes the late arrivals so the percentage
late arrivals of each municipality gets closer together.

5.4.2 Amsterdam-Waterland
Amsterdam-Waterland has a higher call volume than any other ambulance
region in the Netherlands, as it counts 121,000 incidents a year. Fraction 68%
of its 1.30 million inhabitants live in the city Amsterdam. This region is
densely populated compared to Gooi & Vechtstreek. Figure 5.9a shows the
region, its base locations and distribution of demand.

Figure 5.9b shows the difference in the number of late arrivals for both policies,
where a green node indicates more on-time arrivals for the dynamic routing
policy.

Recall that Table 5.1 shows that the late arrivals in the ambulance region stay
about the same, but the mean response time decreases when we use dynamic
routing. This is mainly because dynamic routing has the largest improvement
in Amsterdam Zuid-Oost (south-east Amsterdam), shown in Figure 5.9b. This
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comes at the expense of the semi-rural areas outside of the city Amsterdam
that get more late arrivals, especially at Volendam. Observe that Amsterdam
Zuid-Oost does not have a base location for ambulances. Thus dynamic routing
sends an ambulance over Amsterdam Zuid-Oost to increase coverage over that
part of the region. Nowadays, there is a base located in Amsterdam Zuid-Oost.

This illustrates that dynamic routing can be used to cover an area where one
would want a base location, and might even be used to search for appropriate
base locations.

5.4.3 Utrecht
Utrecht is a densely populated area with approximately 1.27 million inhabitants.
It is amongst the largest EMS regions in the Netherlands. The ambulance
provider handles over 90,000 incidents each year. The region and its base
locations are shown in Figure 5.10. We compare both methods similar to the
analysis for Gooi & Vechtstreek and Amsterdam-Waterland.

(a) Darker shades of blue correspond to a
higher call volume.

(b) The number of late arrivals. Green ar-
eas show improvement with dynamic
routing, in contrast to reds.

Figure 5.9 Comparisons for the EMS region Amsterdam-Waterland. The base
locations are indicated by black dots.
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Recall that Table 5.1 shows a slight increase in the number of late arrivals
for the dynamic routing policy. In Figure 5.11 we see that the most decrease
happens in the cities Amersfoort and Veenendaal. There is a small decrease in
the mean response time as well. This can be because the ambulances respond
quicker to incidents farther away from base locations when we use dynamic
routing. The mean response time for this ambulance region is slightly faster.

The most improvement is gained in semi-rural areas with no base location.
Especially in Lopik in the south-west and Eemnes in the north-east we see a
large increase of on-time arrivals. This is because dynamic routing relocates
ambulances through these regions. However, there is a lower performance
in the other corners of Utrecht. In both in the north-west and the south-east
dynamic routing is outperformed by the fastest route policy. Both these regions
have base locations, as opposed to Lopik and Eemnes. Thus because of
dynamic routing, the ambulances arrive later at the base locations in these
corners of the region, which results in more late arrivals. Hence, we see a
redistribution of the late arrivals over the region, where the areas with a lower
percentage on time arrivals improve.

Since we have the most improvement in more thinly populated areas, we are
interested in the relative improvement of the region. Figure 5.12 shows the
relative improvement for each municipality in Utrecht.

Figure 5.10 The blue area is the EMS region Utrecht. The base locations are
indicated by black dots. Darker shades of blue correspond to a
higher call volume.
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Figure 5.11 Comparison of the number of late arrivals in Utrecht. Green areas
show improvement with dynamic routing, in contrast to reds. The
base locations are indicated by black dots.

L

E
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V

Figure 5.12 Comparison of the number of late arrivals in Utrecht. Green mu-
nicipalities show improvement with dynamic routing, in contrast
to reds. The base locations are indicated by black dots. Marked
are Lopik (L), Eemnes (E), Amersfoort (A) and Veenendaal (V).
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5.5 Conclusion
Classically ambulances are relocated to a base location using the fastest route.
In this chapter we proposed a so-called dynamic routing policy that looks for
the best relocation route instead. Simulation results increase the fairness of the
ambulance region, while keeping the fraction of late arrivals over the entire
ambulance region stable.

Simulations provide interesting additional insights.

First, in the ambulance regions Gooi & Vechtstreek and Utrecht dynamic
routing gives more on-time arrivals in rural areas, at a relatively small cost
in the larger cities. The large relative improvement in the urban areas and
areas with no base locations shows that dynamic routing ensures a more even
distribution of the ambulances.

Second, Amsterdam-Waterland shows that dynamic routing can be used to
compensate for suboptimal locations of ambulance bases. Dynamic routing
contributes the most in Amsterdam Zuid-Oost in regards to the number of late
ambulance arrivals. This can be explained by a densely populated area without
any base location. We note, however, that at the time of writing a new base
location in Zuid-Oost is installed.

Third, an interesting topic for further research is to investigate the effect of
the discount parameter γ which reduces the ambulance’s contribution on the
overall coverage value as time passes. Possibly, there is too much emphasis on
the beginning of the route, which is the result of a high choice for the discount
parameter. This can lead to ambulances arriving later at their destination, and
potentially to unnecessary late arrivals.

Last, it is possible to restrict dynamic routing when certain restrictions are
satisfied, i.e., we can only consider dynamic routing during certain times of
the day. Further research is needed on the effects of such limitations.

Acknowledgements
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P I L OT S T U DY F O R DY NA M I C A M B U L A N C E
M A NAG E M E N T

A promising means to reduce late arrivals is to proactively relocate ambulances
to have ‘good coverage’ of the available ambulances in real time. This chapter
evaluates two dynamic relocation policies that are adjusted for operational use
by an ambulance service provider in the Netherlands and implemented in a
software tool for real-time decision support. These policies were evaluated
in the dispatch center of GGD Flevoland for a period of twelve weeks. This
chapter describes the relocation methods, evaluates the pilot, provides statistics
for the efficiency improvements, and discusses the experiences of ambulance
dispatchers and management.

This chapter is based on the following publication:

[A6] M. van Buuren, C. J. Jagtenberg, T. C. van Barneveld, R. D. van der
Mei, and S. Bhulai. “Ambulance Dispatch Center Pilots Proac-
tive Relocation Policies to Enhance Effectiveness”. To appear in
Interfaces (2018)
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6.1 Introduction
Ambulance service providers, ASPs, worldwide deal with incentives to work
more efficiently. They can obtain efficiency via changes to medical equipment,
staff training, and the logistics domain. In this chapter, we focus on the latter.
The goal is to allocate the right resources at the right time at the right place,
such that the probability of meeting the response time targets, within given
budget constraints, is maximized.

The traditional ambulance service provisioning paradigm is static and reactive.
That is, each ambulance has a fixed base location, from which it is dispatched
in response to an incoming emergency call. When the ambulance becomes
available again, it is sent back to either its home location or to service another
emergency. This classic static and reactive approach to ambulance service
provisioning is simple, but often highly inefficient, particularly in situations
where multiple emergencies occur simultaneously, and potentially leads to
coverage problems, the late arrival of ambulances, and ultimately to the loss of
lives.

A promising and powerful means to boost efficiency is enforcing proactive
relocations, i.e., to proactively relocate ambulances to locations at which
they can provide a better coverage to the ambulance region compared to a
simple policy such as assigning every ambulance a fixed base location to
which it always returns after completing a service. In practice, one has to
carefully balance the trade-off between coverage improvement and additional
cost: over time, a relocation leads to additional fuel costs, and wear and tear
on the ambulances. Moreover, ambulance personnel are often reluctant to
making seemingly unnecessary relocations, unless they believe the relocations
are absolutely necessary. That is, practitioners accept the enforcement of
proactively relocations only if they improve efficiency and limit the number of
relocations.

Motivated by these factors, we developed several algorithms to optimize
proactive relocations; that is, we developed methods that generate suggestions
to the agents (dispatchers) in the ambulance dispatch centers about when to
relocate, which ambulance to relocate, and where to relocate that ambulance.
In practice, relocation suggestions are made by simply displaying an arrow
on the dispatcher’s monitor; the arrow indicates which ambulance to relocate
to which base location. Relocations suggestions are simply made by showing
an arrow that appears on a monitor in front of a dispatcher. We emphasize
that these arrows only give suggestions for relocations: the dispatching agent
makes the final decision on whether to enforce a relocation.

To assess the practical usefulness and performance of our algorithms, we
have performed a real-life pilot for a period of twelve weeks. In doing so,
we adapted these dynamic relocation policies so that they comply with local
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regulations and ease integration to the dispatchers’ daily practice. In this
study we partnered with GGD Flevoland, an ambulance service provider in
the Netherlands, and CityGIS Homeland Security, a company that provided us
with real-time data streams and navigation software. Based on the success of
this pilot, GGD Flevoland and other dispatch centers adopted our policies for
ongoing use and permanent implementation.

We organized the remainder of this chapter as follows. In Section 6.2, we
review the relevant literature. Outlines for two relocation policies are described
in Section 6.3. Subsequently, in Section 6.4, we show how we adjust these
two dynamic relocation models for use in practice. In Section 6.5, we discuss
the results of the pilot, which we ran in a real EMS dispatch center to evaluate
performance statistics and practitioner experiences. We provide concluding
remarks and give recommendations in Section 6.6.

6.2 Literature
Static location models such as the ones presented in Section 3.2, do not
explicitly consider the state of the system following events, such as a change
in the availability of an ambulance (when an ambulance has been dispatched
or completed servicing a patient), the arrival of an ambulance at the scene of
an emergency, or the departure of an ambulance for a hospital. In contrast,
relocation executed in real time is the topic of many papers in the literature on
dynamic models.

In the literature on dynamic models, one can distinguish offline and online
models. Offline models, which can be solved a priori, generate a look-up-table
solution. Such a table provides a redeployment strategy for each possible
system state. If the state of the system is described by the number of available
ambulances, i.e., ambulances not busy with patient-related matters, such a
table is called a compliance table. This table indicates the ideal locations for
each possible number of available ambulances. Examples can be found in [13,
50], and [129].

Other offline dynamic models, not related to compliance tables, include the
approximate dynamic programming (ADP) approaches proposed in [86] and in
[87]. In these papers, an approximate policy iteration is run offline to search for
a good value function approximation. Once such a value function is obtained,
the computation of a redeployment decision is fast and can be executed in
real time. The computation of relocation and dispatching decisions by ADP
is also the subject in [121]. Examples of other methods include stochastic
programming [91] and simulation-based optimization [25].

In online models, no precomputation is executed. Based on the system state, a
relocation decision is computed in real time, without using the results of an
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a priori computation. The first online relocation model, based on the double
standard model of [49], is proposed in [48]. A tabu search heuristic and
parallel computing are used to solve the relocation problem. The notion of
preparedness is used by [5] in the computation of redeployment decisions.
Finally, our work is based on two online relocation models in [63] and [14].
These two policies have in common that they consider all redeployment options,
compute a heuristic value for the benefit of each movement, and eventually
propose the move with the best value. The policies differ, however, in how they
define the value for a specific movement, and how they handle the statuses of
ambulances.

Few of the dynamic relocation policies described above have been implemented
in practice. To our knowledge only one company, Optima Corporation (recently
acquired by Intermedix [60]), had implemented reposition models prior to
the study we describe in this chapter. It developed a commercial package,
Optima Live; however, because this package is commercial all its details are
not available to us. One feature that has been published is that Optima Live uses
the real-time multiple-view generalized-cover repositioning model, from [85].
It provides real-time ambulance relocation suggestions to dispatchers that
maximize service quality and minimize relocation costs. Other work that
the Optima Corporation supports is presented in [111] and [142]; the latter
includes more details on the software.

6.3 Models
In our real-life pilot, we tested two relocation policy models in practice: (1)
the Dynamic Maximum Expected Coverage Location Problem (DMEXCLP),
and (2) the Penalty Heuristic (PH). This section describes the two relocation
policies, and compares them.

6.3.1 The dynamic maximum expected coverage location problem
The DMEXCLP policy, proposed in [63], mandates that when a vehicle be-
comes idle after completing service for a patient, that vehicle goes to the base
of choice within the region. Its sole objective is to maximize the number of
incidents that are addressed within the time threshold R. We first describe
which aspects of the current state of the ambulance system should be used
as input for the policy, and then we explain how to compute the relocation
decision based on this input.

At a decision moment, the current state of the ambulance system may be
observed. Equally to Chapters 3, 4, and 5, we denote the set of base locations
by J , and the set of demand points by I. The DMEXCLP policy disregards
all information about ambulances that are busy, and it focuses purely on the
set of available ambulances. As we mentioned above, it uses the destination
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of the ambulances, rather than the actual location. For ambulances that are
idle at a base, the destination equals the current location. This information is
captured by the variables n j; that is the number of available ambulances that
have destination j ( j ∈ J ).

We next describe how the DMEXCLP algorithm computes the recommended
relocation based on the previously described information. In some sense, we
can regard this policy as a dynamic version of the maximum expected covering
location problem—hence, its name. MEXCLP was designed to calculate an
optimal static distribution of ambulances over base locations, by calculating the
coverage of the region using an integer linear programming (ILP) formulation.
The DMEXCLP policy reuses this definition of coverage, but it computes it
for relocation purposes (without resorting to ILP solvers).

The DMEXCLP policy is a dynamic version of the MEXCLP model that is
discussed in Section 3.2.2 and 5.3.2. The busy fraction q is predetermined
and the same for all vehicles. Consider a demand point i ∈ I, which is within
the range of ki = ∑ j∈Mi x j ambulances (see the definition ofMi at page 54).
Recall that the probability of at least one of these ki ambulances is available at
any point in time is then given by 1−qki . If we let di be the demand at demand
point i, the expected covered demand of this vertex is Ei = Ei(ki) = di(1−qki).
The MEXCLP policy positions the ambulances such that the total expected
covered demand is the ambulance region is maximized.

The DMEXCLP policy proposes to send the ambulance that just became
idle, to the base, such that this allocation results in the greatest coverage
according to the MEXCLP model. This is equivalent to choosing the base that
gives the largest marginal coverage over all demand. This marginal coverage
for demand point i can be interpreted as the added value of having a ki-th
ambulance nearby, and is given by Ci = Ei(ki)−Ei(ki−1) = di(1−q)qki−1.
The base that gives the largest marginal coverage over the entire region, and
hence the destination that DMEXCLP proposes, can be expressed as follows:

argmax j∈J ∑
i∈I

di(1−q)q
k̃(i, j,n j1 ,...,n j|J | )−1 ·1{t j,i≤R−PT D}, (6.1)

where k̃(i, j,n j1 , . . . ,n j|J |) = ∑
j′∈J

n j′ ·1{t j′,i≤T}+ 1{t j,i≤R−PT D. (6.2)

Recall from Section 3.3 that PT D denotes the pretrip delay. The expression
for k̃ in Equation (6.2) simply counts the number of available ambulances
that have a destination within the range of demand point i, assuming that the
ambulance that is up for relocation will be sent to j. That is, it counts the
number of ambulances that in the near future may respond timely to an incident
at demand point i. Since the number of base locations is typically small, the
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maximization in Equations (6.1) and (6.2) can be computed by brute force (i.e.,
we iterate over all possible base locations and select the best location).

6.3.2 The penalty heuristic
The PH policy, proposed in [14], consists of two steps performed in sequential
order. In Step 1, we compute the desired ambulance configuration (i.e., the
distribution of the available ambulances over the different base locations).
In the computation of this configuration, it uses the unpreparedness of each
demand point, a reachability measure based on the response time of the closest
available ambulance—that unpreparedness score. In Step 2, we calculate the
actual movements of ambulances needed to reach the desired configuration
(determined in Step 1), starting at the current configuration. The set of move-
ments may include the use of chain relocations (i.e., where multiple relocations
are executed simultaneously in order to achieve the desired configuration in
minimal time).

Based on the observed information, the destinations of available ambulances,
and the location and elapsed service time of ambulances at hospitals, an ambu-
lance configuration minimizing the unpreparedness is suggested. Unprepared-
ness is a measure of the (in)ability to quickly respond to incoming emergency
calls, based on the configuration of ambulances. We refer to [14] for a formal
definition of this concept. We prefer to talk about unpreparedness instead of
coverage due to the objective criterion of interest: we define a penalty function
by assigning a specific penalty to each realized response time. Note that this
induces a generalization of the coverage concept: one can incorporate the
commonly used performance criterion of coverage by defining a 0-1 function.
Other performance criteria, such as response time or lateness minimization, or
maximization of survival probabilities, can also be incorporated.

To compute the unpreparedness level of the region, we consider for each
demand point i the ambulance a f astest

i that can be onsite as quickly as possible
(i ∈ I). This ambulance could be idle, but it is also possible that none of the
ambulances can respond to such an incident in a timely manner. In that case,
an ambulance currently busy with the transfer of a patient at the hospital may
be asked to wrap up its task and depart for the emergency scene as quickly
as possible. We are only allowed to preempt if the hospital transfer time has
already lasted for a substantial amount of time, e.g., ten minutes.

Let τi denote the expected travel time to demand point i of the ambulance that
can arrive the fastest. This can either be an idle ambulance, or an ambulance
that is at a hospital. Note that in the latter case we must add the remainder of a
ten minute allowed transfer time to the ambulance’s driving time:

τi = ta f astest
i ,i +max{0, 10 minutes−passed transfer time}.



6.3 M O D E L S 133

DMEXCLP PH
Uses destinations of idle vehicles. X X
Uses time until busy vehicle becomes idle. - X
Focuses solely on one response time target. X optional
Uses multiple coverage. X -
Allows relocation when vehicle becomes idle. X X
Allows relocation when vehicle becomes busy. optional addition X
Relocates multiple vehicles per decision moment. - X
Computes solution brute force in real time. X X

Table 6.1 Summary of properties for both relocation methods, and whether
the property is included (X), not-included (-) or optional.

The unpreparedness is defined as the weighted sum of these τi. That is,
∑i∈I di f (τi), where di denotes the demand probability of point i, and f (τi)
denotes the penalty value that corresponds to a minimal response time τi for
demand point i.

There are two decision moments: (1) when an ambulance has just been dis-
patched, and (2) when an ambulance becomes available after servicing a patient.
At decision moments of the first type, the ambulance configuration, which is
the resulting configuration if each idle ambulance is at its destination, may be
changed at at most one pair of base locations. That is, one base location is
selected as origin and one as destination. An ambulance leaves the origin and
one arrives at the destination. Using brute force, we compute the unprepared-
ness among all allowed configurations. For a decision moment of the second
type, the origin is given. This concludes the first part of the policy.

In the second step, we compute the optimal move to obtain the desired ambu-
lance configurations, which is based on the current location of the ambulances,
not the destinations. Quickly attaining this configuration is important. There-
fore, we solve a Linear Bottleneck Assignment Problem [96]. In this problem,
one aims to find an assignment of ambulances to base locations that minimizes
the maximum travel time to attain the desired configuration. Note that relocat-
ing multiple vehicles is allowed if this reduces the time until compliance. We
refer to [14] for an illustration.

6.3.3 Comparison of the relocation methods
In this section, we compare the characteristics of the DMEXCLP and the PH
policies that we discussed in the two preceding sections. In Table 6.1, we
compare properties of the relocation methods. The main difference is that
the PH provides an optimal homogeneous distribution of ambulances over the
ambulance region, while the DMEXCLP focuses on multiple coverage. As a
result, rural areas tend to get more ambulances with the PH, and large cities
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get fewer ambulances. In contrast, DMEXCLP keeps ambulances near the
cities, and only provides coverage to rural areas when a sufficient number of
available ambulances is available.

An additional difference is that the PH considers ambulances that are in a
hospital. This slightly favors rural areas, because hospitals are often located in
cities. An ambulance can be sent out of a city when another becomes idle at a
hospital on short notice.

We end this section with remarks about the model assumptions of the DMEX-
CLP and PH policies.

Remark 1: Discretization of the area in demand points
Both the DMEXCLP and the PH policies assume that the service area is dis-
cretized and partitioned into, for example, N subareas (which are represented
by the demand points). Thus, the next incident will occur at exactly one of
these demand points; the probability that the next incident will occur at demand
point i is denoted by a vector of probabilities pi (i = 1, . . . ,N) that sum up
to 1. Thus, the demand location is modeled by a vector (p1, . . . , pN), which
can be estimated or forecast based on historical data. For both policies, we
aggregated to four-digit postal code numbers, each with an average of 4000
inhabitants, and used the normalized number of inhabitants as the demand.

Remark 2: Base locations and travel times
Both policies require information about the locations of the existing base loca-
tions, and the expected driving time between each base location and demand
point. Based on discussions with ASP management, we decided to only use
the base locations, and excluded relocation destinations that dispatchers used
only occasionally (e.g., parking lots). Driving times between base locations
and demand points were all precalculated and available in a database. We used
navigation software to calculate the driving times from ambulances that were
available, but not located at a base location.

Remark 3: Teleportation assumption
At a decision moment, both relocations policies use the locations of avail-
able ambulances in the coverage calculation. Some of these ambulances are
typically waiting at a base location, while others are driving toward a base
location. Instead of keeping track of their true locations, we assume that they
are instantaneously moved to their destination (also referred to as the tele-
portation assumption). This choice has two important advantages. First, in a
real-time system, keeping track of destinations is typically easier because these
destinations change less frequently than the current location of ambulances,
which reduces calculation times when driving times are stored in a memory
cache. Second, there is a strategic advantage: for a moving ambulance, its
current location is only relevant for a very short time, while our relocation
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decision should be beneficial to the system for a longer time. Hence, using
their destinations can in some sense be regarded as taking a snapshot of the fu-
ture. In Chapter 5 we discussed an alternative for this teleportation assumption
called dynamic routing.

6.4 Model adjustments for practice
The two relocation models described above cannot directly be used in practice.
During the implementation phase we encountered a number of practical con-
straints that required adjustments in order to be applicable in an operational
dispatch center. In this section we describe the adaptations that were made to
make the models ready for use.

6.4.1 Relocation chains
We implemented a post processor for both models, such that a long relocation
distance is ‘cut’ into multiple simultaneous ambulance movements, forming
a relocation chain. Relocation chains provide a means to quickly reach at a
desired configuration of an ambulance, given the current ambulance configura-
tion. For example, consider the situation where a relocation policy determines
that an ambulance must be relocated from A to C, which takes 30 minutes.
If base location B, located half way through this route, also contains an am-
bulance, simultaneously relocating one ambulance from A to B, and another
one from B to C is a better option. Using this chain, the relocation duration is
decreased from 30 to 15 minutes.

In discussions with dispatchers and management, we determined that a relo-
cation chain may contain at most two simultaneous ambulance movements,
and that we would use such a chain only when we could ensure a relocation
duration gain of at least ten minutes. When multiple relocation chains are
possible, we use the one with the minimal relocation duration.

6.4.2 Adjustment series 1: Adjusting policies to the region’s workflow
In the implementation and system integration stage of the pilot, we had to
make four adjustments to the original models to simplify the dispatchers’ daily
work.

First, we extended the DMEXCLP policy with chain relocations similar to the
PH policy, which is a fairly straightforward process.

Second, we realized that the theoretical definition of relocation and the defini-
tion used in practice were different. In the theoretical policies, each ambulance
that finishes a call receives a relocation instruction back to a base location.
In practice, each ambulance has a default location to which it returns when
it becomes available. Because entering a relocation requires the dispatcher
time and effort, and because the dispatcher will be more willing to accept the
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relocation module’s recommendation when it is in accordance with the ASP’s
historical procedure (i.e., the procedure the ASP has used for many years), we
changed the original policies to respect that all ambulances have historically
defined default behaviors. Each shift has a default base location assigned.
We assume that all available ambulances that are not actively performing a
relocation must move to their default base location. For example, the D1 shift
has as default base location, Dronten, and its hours are defined as 07:30 am to
16:30 pm. When an ambulance becomes available or when its shift starts, we
assume that the vehicle moves to this base location. After 16:30 pm, we label
this ambulance in overwork. Only when a dispatcher enters a relocation for an
ambulance with the D1 shift into the system, the destination of that ambulance
changes based on the information the dispatcher has entered.

Third, if the ambulance region is in a rural area, some shifts include a sleeping
stage. During a night shift, the emergency medical technicians (EMTs) are
allowed to sleep and may only be contacted when they are assigned to an
incident. Hence, EMTs who are sleeping cannot be relocated, and assigning
another ambulance to a base location at which they are sleeping is also pro-
hibited. In the models, these base locations with sleeping ambulance teams
are not included in the set of destinations. Base locations that are located in
cities include some night shifts during which the emergency personnel must
stay awake.

Fourth, we added decision moments at which a new relocation could be
proposed. The DMEXCLP policy had only one decision moment: when an
ambulance became available again, it should be optimally included in the
fleet (i.e., optimal with respect to the objective function of the chosen policy).
Discussions with the ASP management motivated us to include five additional
decision moments, which we list below, to these policies. These decision
points are used in both policies, but only at the moments at which relocation
decisions are made.

1. Start of shift
EMTs contact the dispatch center when they start their shifts, and a
dispatcher assigns the employees to ambulances and also specifies shift
codes. In practice, ambulances, EMTs, and shifts are coupled as units,
and can therefore be considered as interchangeable for the purposes of
our work. When the dispatcher has completed entering a new shift in
the system, the relocation module is activated. In the DMEXCLP model,
the ambulance to which a shift code has just been assigned will be the
origin of the relocation proposal.

2. End of shift
A shift can end in one of two ways. The most common way is when
the scheduled end time of the shift is reached. In the case of overtime
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(i.e., an EMT has exceeded his (her) scheduled number of working-
hours), the relocation module excludes all vehicles on which the EMTs
are working overtime, because they cannot be dispatched to a new
emergency. Alternatively, a dispatcher can manually end a shift.

3. Ambulance dispatch
When an ambulance is coupled to an incident, the relocation module
proposes a new relocation.

4. Ambulance availability
When an ambulance is coupled to an incident, the relocation module
updates its relocation proposal.

5. Relocation entry into the system
If an ambulance receives relocation instructions, the relocation mod-
ule is updated with the new instructions. If the dispatcher follows the
relocation proposal, as he (she) usually does, the system assumes that
the optimal configuration has been achieved and does not provide any
additional recommendations. Therefore, the relocation arrows on the
dispatcher’s monitor disappear. If a dispatcher makes a different reloca-
tion decision, the relocation module considers the relocation entered and
generates a counter proposal (i.e., another relocation).

6. Sleep interval beginning
When a sleep interval starts, all EMTs who are allowed to sleep go to
their assigned night bases, and other EMTs who do not have permission
to sleep are requested to leave all base locations where colleagues will
go to bed. We model this by sending all these ambulances back to
their default bases. Consequently, a new relocation recommendation is
calculated to optimally redistribute the ambulances.

DMEXCLP-specific adjustment
We used the parameter value q = 0.3 for the busy fraction, which was a realistic
value for the pilot region. Base locations that host sleeping shifts are excluded
from j ∈ J in the argmax-argument of Equation (6.1), such that no relocation
is recommended to a base at which people are sleeping. Ambulances that
are out-of-region are not considered in calculating variable ni, (i ∈ I). At
other relocation moments, we remove an ambulancefrom the system state, and
calculate its relocation recommendation to be when it would become available
at its current location. We repeat this procedure for each available ambulance,
and suggest to the dispatcher the one that provides the highest contribution to
the coverage. Relocation chains are formed similarly to the PH.



138 P I L OT S T U DY F O R DA M I N P R AC T I C E

PH-specific adjustments
In the PH policy, bases that have at least one ambulance are not considered
as destinations. In the adjusted version, we do allow a base to have a second
ambulance when all bases are filled. This is computed by first teleporting
available ambulances to their destination. Then, we remove base locations
that reached their maximal capacity from the set of destinations to choose
from. Then we look for the minimum number of ambulances at each base
that remained, and remove this number from each base location that has the
capacity. This way, there is at least one base with zero ambulances. We only
consider ambulances on base locations with the maximum capacity as an origin
for the relocation, such that a maximum ambulance spread is obtained. Finally,
the PH value function on the resulting state space is calculated.

6.4.3 Adjustment series 2: Out-of-region
After the first six weeks of policy evaluation, we discussed updates that would
improve the performance and could be implemented within a week. One
update addressed ambulances that are outside the ambulance region.

In some cases, EMTs on an ambulance must drive a patient outside their ambu-
lance region and for multiple hours; for example, a patient that needs basic live
support (BLS) might require transportation to a hospital that has a particular
medical specialization. When the ambulance becomes available again, the
previous adjustment includes the current destination of the ambulance. Using
coordinates to determine when the ambulance reenters its own region is diffi-
cult. Therefore, we use the navigation software to determine if a base location
is within a 20-minute drive from any base location in its own region. If we do
not find such a base location, we label the ambulance as outside the region.
When the ambulance is within a 20-minute drive from any base location within
its region, the ambulance is marked as inside the region and the relocation
module is updated to show that this ambulance is available.

An out-of-region ambulance is never considered to be the closest ambulance
to respond to an incident. Furthermore, such an ambulance is not counted as
driving to a base location.

6.4.4 Technical details
We wrote the relocation module using the C++11-framework TIFAR, see
Chapter 7. CityGIS Homeland Security provided the navigation software and
the communications interface for the system state designed we for this chapter,
which includes the location and status of each ambulance. This navigation
software is the standard for emergency services in the Netherlands and includes
all roads and travel speeds that EMS personnel use. The National Institute for
Public Health and the Environment (RIVM), which also uses the navigational
software, provided a look-up table for travel times between every pair of postal
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Stage Week no. Policy
1, . . . , 35 Implementation and system integration at the dispatch center.

1 36, 37, 38 Evaluating Adjusted DMEXCLP 1.
39 Changing the policy.

2 40, 41, 42 Evaluating Adjusted PH 1.
43 Fixed out-of-region ambulances.

3 44, 45, 46 Evaluating Adjusted DMEXCLP 2.
47 Changing the policy.

4 48, 49, 50 Evaluating Adjusted PH 2

Table 6.2 Overview in what week of the year 2015 each pilot stage or switching
week took place.

codes. Statistics Netherlands (CBS) provided demographic data for each postal
code during the year 2013. The initial start-up of the program takes between
ten to twenty seconds because of cache creation; the program usually computes
run-time relocation recommendations almost instantaneously—but sometimes
may take up to a few seconds if other systems also require processing time
from shared resources.

6.5 Evaluation
We evaluated both policies for six weeks in the dispatch center of Flevoland,
an ambulance region in the Netherlands. Table 6.2 lists the various stages. In
the first stage, we tested the Adjusted DMEXCLP 1 policy for three weeks,
spent a week switching policies, and then evaluated the Adjusted Penalty
Heuristic 1 for three weeks. During the next week, we implemented and
tested the Adjustment Series 2 for both policies. During the second half of
the pilot, we evaluated three weeks of Adjusted DMEXCLP 2, one week of
switching policies and one week of Adjusted Penalty Heuristic 2. In our study,
we omitted data for the three weeks during which we switched policies (39,
43, and 47).

During the pilot, dispatchers were required to follow our relocation proposals,
unless they had information not available to the system; examples include
when an ambulance will be required for a BLS call in the near future or when
a shift will ends. In 2015, no policy or operational changes were made, other
than the use of the relocation decision support software.

The pilot evaluation of the dispatching policies included both quantitative and
qualitative aspects, as we discuss below.

6.5.1 Quantitative analysis
We start the quantitative analysis by analyzing long-term patterns. Table 6.3
shows the results over 2015, which GGD Flevoland provided, and the preceding
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Year 2015 2014 2013 2012 2011 2010
Call volume 24,136 23,337 22,459 22,427 21,521 20,884
Response time ≤ 15 minutes 95% 94% 94% 93% 93% 92%
High-urgency volume 13,427 11,006 9863 10,707 10,245 9534

Table 6.3 The fraction of late arrivals for high-urgency emergencies and the
call volume (number of calls) over the years for ambulance service
provider GGD Flevoland.

five years (see [D1]). As the table shows, the total call volume increases three
to four percent per year, which is approximately the national average; the year
2013 was the only exception.

The primary performance indicator for Dutch ambulance care is the fraction of
late arrivals for high-urgency calls. Measured over the calendar year, Dutch
ambulance law requires that for high-urgency calls each ASP must meet a
response time requirement of a fraction of 95% of the calls within 15 minutes;
the timer starts when an agent at the regional EMS dispatch center answers the
telephone, and stops when an ambulance arrives at the incident. Various im-
provements by GGD Flevoland have provided a steady increase in performance
over the past years.

In the year 2014, only seven out of the 24 ambulance regions met this require-
ment; thus, a national average of 93% of the high-urgencies calls was met
on-time (see [D1]). In 2015, the year of this pilot, GGD Flevoland met the
95% on-time criterion for the first time in its history.

GGD Flevoland provided us with a database that includes details of call records;
this enabled us to calculate the performance indicators that we list in Table 6.4.
Analyzing the four stages yielded the following insights.

First, in all stages, we met 96.0% to 97.3% of the high-urgency calls on-time,
significantly exceeding the 95% requirement. Thus, the results we obtained
during the pilot period compensated for the lower score of 94.4% achieved
during the first months of the year; as we stated above, this was the first year
that GGD Flevoland met the legal response time requirement.

Second, in the first stage, the dispatch center followed all of our relocation pro-
posals, which resulted in 480 relocations in a three-week period. Historically,
approximately 420 relocations are normal for this ambulance region. Based on
feedback we received and follow-up discussions with the EMS management,
we determined that we would have to assign a lower bound on the contributed
value of a relocation (i.e., the improvement on the objective function of the
chosen policy). We omitted relocations that provide a lower contributed value.
Because EMTs went on strike during the final three stages, thus leading to a
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data transfer delay of several months, we could only directly adjust the bound
after the first stage. The results show that we significantly reduced the number
of relocations.

Third, we see that performance in the third and fourth stages was worse than
the first two. We can explain this by the increase in high-urgency call volumes
and the decrease in the number of relocations.

Finally, the number of ambulances remained almost constant over the last
years six years. An additional ambulance was provided in the year 2013 only,
resulting in a total of fourteen ambulances during the day. With an increase
in call volume, a decrease in the number of relocations, an equal number of
ambulances, and an increased fraction of on-time arrivals, we can conclude
that our work resulted in more efficient relocations.

6.5.2 Qualitative analysis: End-user experiences
We observed that the dispatchers adopted our relocation proposals as much
as they could. To accommodate legislation limitations or an approaching
end of shift, or for another valid reason they were allowed to ignore our
relocation proposals. If a dispatcher decided to enforce a relocation, it always
matched our relocation proposal. In the feedback that dispatchers gave us,
they mentioned that the relocation proposals often coincided with their own
insight. In some instances, where our policies were counter to the dispatchers’
intuition; however, when they applied our policies, they agreed these policies
were better than their former ways of working (e.g., by intuition). Based on
the new insights from our work, they have changed their daily routines. Other
than the situations we discuss below, we are not aware of instances in which
dispatchers strongly disagreed with our proposal.

At the start of the pilot, some dispatchers did not like the concept of a relocation
tool, which they believed would tell them how to perform their work. Their
opinions changed during their weeks of use, and the dispatchers realized that
the tool was supporting them—not controlling their work. Dispatchers always

Stage 1 2 3 4
Response time ≤ 15 minutes 97.2% 97.3% 96.0% 96.8%
High-urgency volume 596 619 668 682
Number of relocations 480 353 360 328

Table 6.4 The three key performance indicators for each of the four pilot
stages: the fraction of late arrivals at high-urgency calls, the number
of high-urgency calls in three weeks, and the number of relocations.
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had the final say in each relocation decision. At the completion of the pilot,
they rated their overall user experiences as very good.

In their previous method of working, the dispatchers used a small offline
relocation look-up table, which told them where the first five, of the 13 available
ambulances during the day, had to be positioned. This left many degrees of
freedom for the dispatcher. Our relocation tool put in place a uniform policy
that depends less on human decisions, ensures that the relocation decision is not
dispatcher dependent, provides good coverage, and improves communications
among the ambulance team. Although during the first stage of the pilot, the
EMTs told that there were too many relocations, in the later stages, because
of the low number of relocations, they sometimes asked if the pilot had been
terminated early.

In situations with many concurrent incidents, dispatchers know that the priority
is communicating medical information to the healthcare professionals; because
of this necessity to communicate, relocations have a high added value in
ensuring optimal coverage. Another advantage of a relocation tool is that it
reduces the time required to provide a relocation when the dispatcher is time
constrained and under stress.

Using our software, the dispatchers could see the location of all available
ambulances projected on one map. They were not given unnecessary infor-
mation, which could cloud their ability to make decisions. It gave them a
good overview of ongoing incidents and the status of the ambulances; in some
situations, dispatchers were not able to determine the location and status of an
ambulance prior to looking on our screen.

Ambulance care is a field where the logistic requirements change constantly.
The causes include demands from local governments, agreements between
neighboring ambulance regions, and new ambulance-management insights.
Using a relocation tool provides an opportunity for management to modify the
way that dispatchers work.

The DAM policies mentioned in this chapter leave room for improvement.
Working-hour legislation dictates that the employees on 24-hour and 16-hour
shifts may be working 13 hours and 9 hours, respectively. During the remainder
of the time on these shifts, they must relax at their home base locations. Our
implementation does not address these issues; hence, the dispatcher must
ignore some relocation proposals. Only a few locations have shifts of this
length.

The implementation does not ensure that an ambulance is back at its home
location when its shift ends. Dispatchers using our software must always keep
this in mind. A fairly straightforward solution that the dispatchers use is to
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instead send another ambulance that has sufficient remaining shift time and
is also available at the same base location as the ambulance that the software
suggests. We noticed that overtime by the ambulance teams did not increase
during the pilot.

6.6 Conclusion
In this study, we put two dynamic ambulance management-policies into prac-
tice at an EMS dispatch center in Flevoland, an ambulance region in the
Netherlands. We observed that the effectiveness of relocations improved when
using a dynamic relocation policy, compared to previous years in which relo-
cation algorithms where not used. One advantage we perceived is less latency,
that is, the number of service calls for which the response time exceeds the
threshold set, for a similar demand volume and number of relocations. The
EMS region met the response time requirement of 95% within for the first time
in its history in the year 2015. The results indicate that both DAM policies
perform comparably.

Other advantages are (1) all dispatchers work in a consistent way, (2) relocation
decisions can be made faster during busy times at the dispatch center, (3) new
policies can be introduced more rapidly, (4) dispatchers have a better overview
over their available vehicles, and (5) the management also prefers the use of
scientifically proven policies instead of dispatcher intuition improves efficiency
and enables management to provide better oversight.

Overall, the advantages strongly outweigh the disadvantages. Our implementa-
tion does not address the start and ends of shifts, or working-hour legislation;
each would be an appropriate topic for further research. Methods to include
the shift changes are proposed in [124]. Recently, a relocation method was
developed that combines the features of the PH and DMEXCLP policies [15].

As a result of this study, multiple ASPs have adopted our policies for ongoing
use and permanent implementation.
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T I FA R S I M U L AT I O N A N D C O M P U TAT I O N
F R A M E W O R K

In this chapter we introduce and discuss the testing interface for ambulance
research (TIFAR) framework. The main goal of TIFAR is to ease the im-
plementation of software programs—the so-called TIFAR refinements—that
address operations research problems in the context of ambulance care. Simula-
tion and decision support tools for researchers, EMS managers and dispatchers
can be implemented in TIFAR. This chapter discusses the basic structure of
TIFAR, and outlines four TIFAR refinements. Together these refinements show
that TIFAR is an extremely powerful tool, which is able to address a wide
range of EMS challenges.

This chapter is an extended version the following publication:

[A7] M. van Buuren, R. D. van der Mei, K. I. Aardal, and H. N. Post.
“Evaluating Dynamic Dispatch Strategies for Emergency Medical
Services: TIFAR Simulation Tool”. Proceedings of the 2012
Winter Simulation Conference. Dec. 2012, 46:1–46:11
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7.1 Introduction
In EMS research, we typically want to predict the effect of a certain policy
change. For example, we are interested in the impact on the waiting times
if we adjust the staffing policy in a dispatch center, or we want to know the
difference in the number of late arrivals if we change the relocation policy.

All research questions addressed in this thesis have similarities: (1) they all
apply to the logistics domain of ambulance research, and (2) they all need
software (components to be programmed) to find an answer. Furthermore,
our mathematical problems have many components in common, such as the
ambulances and base locations. We transform each of these components into
a structure that is called a class in computer science. The TIFAR software
framework is a collection of classes that relate to the ambulance context, and
which can relatively easily be interconnected and manually adjusted to form a
fully functional computer program that fits the model and gives the required
(graphical) model output. Such a computer program is called a refinement of
the TIFAR framework.

We often resort to simulation models, as analytical models become too complex
to solve for large instances. An advantage of simulation models is that they are
open to a wide variety of model assumptions, and thereby, are highly flexible.
The simulation models of the dispatch center (Chapter 2) and dynamic routing
ambulance policy (Chapter 5) are simulation models programmed as TIFAR
refinements. The structure of the operational software used in the real-life
dispatch center (Chapter 6) has only a few differences with the latter model.
Instead of the next ‘system state’ being calculated by a simulation engine, the
new system state is taken from real-time third-party data resources that are
available within the dispatch center. Additionally, where a relocation proposal
is executed in the simulation software, the operational version only displays
these proposals in the interface.

The results for most facility location and ambulance allocation models of
Chapter 4 are also calculated by a specific TIFAR refinement. In order to solve
the mixed integer programs, TIFAR is linked to the Coin-OR computational
infrastructure [O2].

This chapter gives an overview of the TIFAR software framework. That is,
a description of its classes and the relationship between them in each of the
four refinements. We limit ourselves to the basic idea and the basic program
structure for each refinement; a full software manual would be too extensive
and falls outside the scope of this thesis.

In Section 7.2 we provide a literature overview of EMS simulation. Thereafter,
we specify the inner workings of the TIFAR framework. Section 7.3 provides
the classes that the refinements have in common. Next, we specify each
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refinement in order, starting in Section 7.4 with the road domain simulation, in
Section 7.5 with the dispatch center simulation, in Section 7.6 with the facility
location and allocation refinement, and in Section 7.7 with the operational
branch that provides real-time advices to dispatchers. Section 7.8 concludes
the chapter.

7.2 Literature
In this section we give a brief overview of the available literature on simulation
models for EMS systems. An extensive review on simulation models in EMS
is available in the literature [2]. A recent literature review on EMS models
includes simulation models [7].

Most models, like the first EMS simulation model by Savas in 1969 [119],
were designed as a DES tool for the road domain of the ambulance services,
i.e., distribution or availability of ambulances. Other early work on ambulance
simulation models can be found in [61, 133]. These models can be used to
explore facility locations [6, 10, 52, 58, 88], ambulance allocation [21, 59],
determining the number of resources needed for optimal services [44, 128],
and dispatch policies of ambulances [12]. Also, simulation models are used
to validate relocation policies [2, 54, 87, 105, 129, 143]. Hospital selection
policies are studied in [138]. Although most models measure the performance
based on a response time threshold or the average response time [2], there are
simulation models that focus about the probability that the patient survives,
and make use of survival curves in the objective [5, 12, 67, 77, 130]. The agent-
based simulation technique can be used to model (parts of the) ambulance
service processes [4, 6, 8, 137].

Two simulation packages are worth mentioning: BartSim and SIREN. BartSim
is a simulation package developed in [55] for St. Johns Ambulance Service
in Auckland, New Zealand, to assist in policy making. EMS vehicles have
a computer-aided dispatch system that logs all call data such as travel times,
treatment time and transfer time. This simulation engine is the first of its kind
that uses real data for modeling calls. In this way, data does not have to be
recorded manually as in previous EMS studies; Henderson and Mason state
that that for the survey in [131] data was gathered manually for a period of two
weeks. They also point out that using a GIS-system is relatively new in EMS
planning. The travel speed of the EMS vehicles is time-dependent in BartSim.
The BartSim simulator works as a discrete-event simulator. SIREN is the
successor of BartSim and it simulates EMS movements as well. This software
package was used for both the Auckland and Melbourne areas. Currently, this
simulation package is integrated into commercial packages. Some information
about SIREN can be found in [55] and [84]. SIREN also includes stochastic
travel times and non-homogeneous call generation, yielding an improvement
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of up to 9% on the previous strategy used by Melbourne. The simulation
package can also dispatch more than one vehicle to the same call.

Simulation models are used as a decision and management support tool for the
logistic part of the ambulance services. Henderson and Mason discuss simula-
tion and data visualization in EMS by means of an example of a simulation
model of the ambulance service in New Zealand [55]. The simulation model
of Peleg and Plisking [94] use a graphical interface and draw time-dependent
polygons. When each available ambulance gets repositioned into a polygon,
the coverage gets maximized.

Many ambulance simulation models are tailer-made for the ambulance sys-
tem of a particular country or region. Studies are available for Austria [68],
Brazil [122], China [143], England [88], France [2], Italy [6], Japan [58], and
Thailand [45], among others. Some simulation models differentiate between
multiple ambulance types [68, 127, 130]. The helicopter ambulance services
simulation is studied by [53].

Most EMS simulation models have an explicit focus on a particular question.
Therefore, Pinto et al. [97] propose a generic ambulance simulator that can
be adjusted for a wide variety of research questions that encountered in the
literature. Various languages and tools are suitable for the implementation of
ambulance simulation models, such as C++ [85, 88], Java [53], AnyLogic [6],
Arena [2, 68, 97], and eM-Plant [127].

7.3 Model
The model description consists of two parts: (1) general information on the
assumptions underlying TIFAR, and (2) descriptions of the classes that are
frequently used.

7.3.1 Assumptions
In this section we provide assumptions and discuss choices made during the
development of TIFAR. If required by the underlying model, a refinement can
deviate from an assumption. In that case, it is explicitly specified in the text.

TIFAR and its refinements are programmed in ANSI C++11. This makes it
easily transferable to different platforms and easy to perform maintenance.

Visual and speed simulation modes
TIFAR can run in two modes: visual mode and speed simulation mode. The
only two ways in which these two modes differ are the moments on which they
set the next time stamp where the (new) state of the system gets calculated,
and how they perform output.
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The visual mode uses a GUI for output and the internal computer clock to
determine the next time in which the current system state gets calculated. In
this way, one can see the EMS movements in real-time, or with a speed factor.

The speed simulation mode is a discrete event simulator that holds an ordered
list with the end times of all currently ongoing events. For example, at the
moment when an EMS vehicle departs, we can calculate the moment when
the vehicle arrives. This gives a new end time. An end time enters the list
when a call enters the system, when a vehicle departs from a location or
when a vehicle arrives at a location. The next time at which the state of the
system must be calculated then equals the first one in this ordered list. When
a predetermined end time has passed, speed simulation mode terminates the
program and displays statistics in the terminal. Speed simulation mode is faster
than the visual mode, because the renewal loop only gets called at necessary
time stamps. For both modes there is a separate main loop included in the
program.

Call generation
The incident generator loop generates calls with the following properties:

1. The model time when the incident occurs, called the start time.

2. The location on the map where the incident occurs, called the incident
location.

3. The treatment time, i.e., the time the EMS personnel must spend at the
incident location.

4. The transfer time, i.e., the time the EMS personnel must spend at the
hospital to transfer the patient into hospital care. Only if the call is not
EHGV or loss.

5. The urgency of the call, being A1, A2, or B.

6. Whether the call is declarable or EHGV. Recall that EHGV means that
the patient does not require transportation to the hospital, whereas a
declarable a call needs transportation of the patient.

There are two ways to generate calls: one can choose (1) to give each demand
point its own interarrival time distribution, or (2) to have one distribution
for the moment when a call in the ambulance region occurs and a separate
distribution to determine the incident location of a call within the ambulance
region. TIFAR makes use of the latter. Calls are generated according to an
inhomogeneous Poisson process with known rates.
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Spatial aggregation
Both for incident generation and coverage calculations there is a need for
spatial aggregation. A refinement can choose to have a different aggregation
for each of these purposes.

There are a couple of possible choices for generating the set of demand points:

1. Using RD-coordinates
The Netherlands has its own Cartesian coordinate system called the
rijksdriehoekscoördinaten, where the unit is 1 meter. When knowing
the border of the ambulance region in RD-coordinates, one can generate
an equidistant grid over the region, using a given granularity. Historic
incidents or population can be mapped to the nearest demand points to
get a spatial historic incident distribution. One can randomly select one
of these demand point as the incident location. The main advantage is
that an incident can happen at every location within the region, even on
water. One still has to keep in mind that this location must be mapped
upon the road network which might lead to major granularity errors. The
main disadvantage is that rural areas may have relatively many demand
points, which results in longer calculation times.

2. Using postal codes
Each address with a mail box in the Netherlands has one postal code
assigned. Such a postal code consists of four digits and two letters,
for example 1011 AA. There are buildings with the same postal codes,
i.e., a part of the same street can share a postal code. However, by
design the combination of a postal code and house number forms a
unique combination. The four digits are forming the neighborhood,
while the two letters specify the location within this neighborhood.
People involved in route planning in the Netherlands make the distinction
between these so-called 6PP- and 4PP-postal codes. A rule of thumb
states that the cumulative amount of mail for all houses with the same
6PP postal code is the quantity that a postman can hold in his hands.
One can map a postal code onto RD-coordinates. The main advantage of
this way of generating incident locations is that the population density is
included, as one can estimate that the number of people located on each
postal code is almost equal. One must however keep in mind that streets
with only one mail box and not many inhabitants have their own postal
code, while on the other hand nursing homes have one postal code and a
high potential that an EMS vehicle should be called. The disadvantage
is that forests, beaches, water and highways do not have postal codes
because there are no mail boxes. Still, incidents can happen at these
places.
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3. Using bootstrapping
Using EMS data from the past, one knows where an incident has hap-
pened, and thus where an incident can happen again. In the Netherlands,
all EMS data is stored. Incidents in the model can be generated using a
bootstrap procedure from this data. The main advantage is that places
where many incidents happen in reality, will be represented very ac-
curately. The disadvantage is that there are a lot of places where no
incident has happened before, but where new incidents might occur. Fur-
thermore, new neighborhoods are not included in this way of incident
generation. The use of historical EMS data can also involve privacy
concerns, though if one can afford to lose some precision, the location
can be made anonymous by mapping it onto the 4PP postal code.

4. Using trace-driven simulation
When using the EMS’s call record database, we know where and when
every incident has happened. Using a simulation tool, we can simulate
incidents with exactly the same characteristics and see how an alternative
dispatch strategy performs. Comparing these statistics with the actual
performance measured by EMS yields an excellent evaluation tool. An
advantage is that it provides a good comparison between the simulated
and actual data. However, we have the same privacy issues as with the
bootstrapping procedure.

TIFAR mostly uses the postal codes method for the coverage calculation
aggregation, and the trace-driven simulation for the incident generation.

Dispatching policy
When a call occurs, we have to assign an EMS vehicle to the call. TIFAR has
a queue that contains all calls. We assign EMS vehicles to calls in order of
priority: first we assign vehicles to calls with urgency A1 on a first-come-first-
served basis, and if all calls with urgency A1 are served we start assigning
vehicles to calls with urgency A2 on the same basis. The dispatch center
always assigns the nearest (in time) available EMS vehicle to a call. Note that
a similar approach has been taken in [106].

For ease of the model, it is assumed that each call is handled by exactly one
EMS vehicle. Note that this assumption can easily be relaxed by having two
calls simultaneously appearing at the same location.

Once an EMS vehicle has been assigned to a call, the call will not be handled by
another EMS vehicle. Not even when the other EMS vehicle gets available for
dispatch while being closer to the incident location than the already assigned
vehicle. This assumption is based on the fact that in practice, it rarely occurs
that an EMS vehicle gets assigned to another call.
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When driving to an incident with urgency A1, we assume the vehicle has
auditory and visual signals, and when driving to a call with urgency A2 we
assume that the vehicle drives without them. Sometimes an EMS vehicle drives
with these signals to a call with urgency A2, but since this rarely occurs we
have not implemented this in TIFAR. When driving to a hospital, we assume
that the EMS vehicle goes without auditory and visual signals and we adjust
the speed accordingly. The speed at which a vehicle moves depends on the
type of road it is on (e.g., highway, road in a city, road in the countryside) and
whether or not auditory and visual signals are used. In reality, an EMS vehicle
may drive with signals to a hospital in the case of a life-threatening situation.

When a call is declarable, the patient will be brought to the nearest hospital.
We assume that this corresponds well with the real situation, although there are
cases in which a specialized hospital should be chosen instead of the nearest
one, see [D3]. When an EMS vehicle departs from a hospital, it will head to the
nearest base unless a relocation rule decides otherwise. The exception to this
rule is a trace-driven simulation; then the patient is brought to the destination
that is specified in the data set.

Code correctness
There are many techniques to validate the correctness of the source code [118,
141]. It is a good practice to use multiple validation techniques.

We have used the animation technique on many occasions. In the graphical
user interface we follow the ambulances and the incidents as they are served.
Many irregularities can be observed using this technique.

The operational refinement has been tested by manually entering events and
checking if the relocation rules are performed correctly. This is called the
event validity technique. Because test cases have to be developed and manually
entered and checked, it is labor intensive.

Also, in the development and the shadow stages of the pilot study (see Chap-
ter 6), the face validity technique was used. In this technique, specialists
(dispatchers) monitor the model’s outcome and report situations that are hard
to explain. These situations have been investigated; sometimes this led to a
bug fix, and sometimes the system differed from their original way of working,
was perceived to the dispatchers as counterintuitive, but was actually correct.

For all simulation models the traces technique has been used. In this technique,
the developer uses the debugger to closely follow each step of a given call,
starting from the call initiation until the call is completed and written into
the database. This procedure had been repeated for multiple calls. In the
dispatch center simulation refinement, this technique was the one most used,
in combination with the trace analysis technique which was applied to the
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output databases. The latter technique checks the input data and the random
variables drawn (with fixed seed) against the output data. The facility location
and allocation refinement also used a type of traces. For a couple of demand
points, the calculation of the parameters was done manually and compared
to the software. The outcomes were visually checked using the interface and
compared to the real data.

For the road domain simulation refinement, we have compared the output of
the visual mode against that of the speed simulation mode, which provided
identical outputs. This is the so-called comparison technique. Also, the
output of the simulation model was compared to the real data sets in order
to find errors, e.g., to try to explain why strange outliers from the simulation
model occurred. In trace-driven mode, the number of calls and ambulances at
each given time can be compared to the real schedule to see if shift changes
and incident handling always lead to an end—the so-called historical data
validation technique.

In addition to the source code validation, various checks were performed on
the input data sets that were provided by the ambulance service providers: the
orders of the date stamps must be correct, and the fields must not be empty.
Faulty rows were corrected if possible, or removed otherwise.

7.3.2 Classes
In this class description we provide the responsibilities and characteristic
variables of the classes that are used in more than one refinement. The next
sections that contain descriptions of the refinements use these model classes.

Timer
The timer is responsible for time-related operations. It knows the real time
passed, and the current time in the model. Furthermore, the timer holds the
event list for the discrete event simulators. In a discrete time model, the timer
also progresses the model time to the next time step at which the new system
state gets calculated. If there are no events left, or if the simulation end time is
reached, the timer activates the processes that close down the program.

MySQL and PostgreSQL
TIFAR has connectors for easy access to database systems from other classes:
it supports MySQL (and its open source fork MariaDB [O3]), and Post-
greSQL [O6].

The MySQL connector can run in three modes: input, output and operational.
Input is mainly used during the program initiation to get the base locations, hos-
pital locations, schedules, incident information, and demand point information.
Output is used to write completed calls to the database. For the ease of data
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analyses, the structure for the calls table of both the input and output tables are
similar. At initiation, the output database gets the unique simulation identifier
that is used for later data-analysis; each completed call in the output database
is accompanied by this simulation identifier. Also at the program’s initiation,
the output database writes the simulator’s parameters into the designated tabels,
e.g., the call arrival rate during the dispatch center refinement. The third mode
is only used in an operational dispatch center, and is used to read the current
system state real-time from a common database.

The Postgres database connector is used by our navigation software, see the
route class, to get information from datasets provided by OpenStreetMap [O5]
and the Netherlands’ cadastral Basisadministratie Adressen en Gebouwen
(BAG) [O1].

Log entry and logbook
TIFAR provides an easy to use logging system. At each significant change to
the system state a class is supposed to create a new log entry in the logbook.
Each log entry also has both the real- and model times, and is written in the
standard out. The logbook is used for debugging purposes only.

Schedule
The schedule holds the shifts for a unit. It administrates if this unit is on- or
off-shift. The schedule holds a list of shift intervals. A shift interval stores
at which timestamp in the week the shift starts and at timestamp in the week
the shift ends. A timestamp in the week is a combination of a day name
and a time. The schedule assumes a weekly repeating pattern. In the case
the schedule changes from one year to the next, a shift interval has a valid
from and to dates. Only between those dates the shift interval gets evaluated.
An example of a shift interval is: from 2015-01-01 00:00:00 to 2015-12-31
23:59:59 the schedule must output status on-shift between Monday 23:00 and
Tuesday 07:00. If no shift interval yields an on-shift, the schedule assumes
the unit is off-shift. The schedule also holds the base where the unit starts and
ends its shift. For the operational refinement the schedule is extended with
sleeping times, see Section 7.7.

Vertex
A vertex is a data structure that represents a geographical point of interest. It
holds a set of coordinates, and has many properties attached. Hospitals and
base locations are represented by a vertex. Demand points are also vertices in
the system, and incidents always happen on a vertex. Demand point related
data, such as the neighborhood parameters in the heuristic from the facility
location model, are stored as vertex properties.
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Environment
The environment is a container that holds vertices. It can efficiently perform
mass selections on the vertices, such as returning all base locations or all
demand points.

Call
A call object acts as a data container for a particular incident. At creation,
it gets all properties that we cannot influence: the vertex with the incident
location, whether the ride is declarable or EHGV, and if the ride declarable the
destination of the patient. Other properties include the time of arrival in the
dispatch center and the durations of the CTT, CHT, TMT, and TFT (defined on
page 51). The urgency of a call is also an input parameter.

During the simulation data gets written into the call. The first data is the
status of the call; its value tells if it is still a so-called future call that waits
to get released into the call takers queue, the call is being handled by the
dispatch center, the call is coupled to an ambulance, or if it is completed.
During execution the call object receives values for the location from where
the ambulance departed, the driving time to the incident, the driving time to
the destination, and what ambulance served the call. When a call gets released
from an ambulance, it gets the status completed which marks that it can be
cleaned from memory.

For the dispatch center model refinement the call class is extended, as will be
discussed in Section 7.5.

Calls
The calls class is not to be confused with the call class. The plural form that
we now discuss is a container that holds multiple calls and is able to perform
group operation on them, e.g., it can return all calls that are waiting at the
dispatch center, all ongoing calls, or all calls that have been completed.

A special feature of the calls class is that it can ‘clean’ itself, that is, writing all
completed calls into the output database and deleting them from memory.

Incident generator
The incident generator creates new calls and puts them in the queue of the
dispatch center. The incident generator can operate in two modes. In the first
mode it generates new incidents according to a Poisson process. All properties
of the new call are drawn from probability distributions. The second mode,
called trace-driven simulation, does not generate new calls at random. Instead,
it takes the call and its properties from a historic data set that is provided by an
ASP.
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When the current model time corresponds with the starting time of a future
call, the incident generator sets the status of this call to queued at the dispatch
center. This mechanism allows a new call to be dispatched at the right time.

Route
The route class is more powerful than the name suggests at first glance. It
provides an API to navigation software of multiple third-parties and even
contains a resolver that finds the coordinates that belong to a text-written input
string. The navigation software the API supports is Transdev’s routebeheer-
systeem (RBS, previous version), CityGIS navigator, and Open Street Map
Routing Machine (OSRM). For the helicopters also the RIVM lifeliner model
is implemented.

The resolver gets an input string and tries to find coordinates best-effort making
use by matching the input string to two known datasets: the BAG for addresses
and a list with hectometer poles for incidents that happened on a highway. For
example "1098XG 123" and "Amsterdam Science Park 123" both resolve into
the coordinate that corresponds to the front door of CWI. And "A10 L 1210"
gets resolved to the left side (outer ring) of the A10 highway where the exit to
the Middenweg starts.

When getting travel information from the route class, one has to provide values
to the arguments from, to, fastest, routing model and what. The from-part can
be an ambulance object, a vertex, a list with ambulances, a list with vertices,
a set of coordinates, or an input string that needs resolving. The to-part has
similar options. The fastest argument has a boolean value, that only when set
to true, ensures that the designated data fields are holding routing information
for the ambulance that can be present the fastest. The routing model specifies
if a roadside navigation model or helicopter model is used. The what-part
specifies if we only want the travel time, or also the distance and trace. Only
getting the driving time is a relatively cheap operation.

Based on the arguments, selected variables get set. If ambulances are used
in the from-part in the combination with the fastest, the route object knows
what the closest ambulance is. Similar, when a list of vertices, each holding a
hospital, is given in the to-part, the route knows what hospital can be reached
the fastest. In the case the trace is requested, the route object knows the exact
position of the unit at every given moment in time.

Because routing is such a all-round core functionality, the route class can be
accessed from anywhere in the program.
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Ambulance
An ambulance object (1) holds the properties of an ambulances, and (2) mimics
the status behavior of the ambulance. Properties include, but are not limited to,
the identification number of the ambulance, type of ambulance, its schedule,
its status, the call it is currently serving (if any), the route it is currently driving
(if not on a vertex) and the vertex it is currently on (if not having a route).

The ambulance can receive orders from another class. Giving it an unattended
call acts as a dispatch. The ambulance is responsible for all status updates, that
is having a chute, moving to the incident, treating the patient at the destination,
and if applicable transporting and transferring the patient to its destination. At
each status update the ambulance writes statistics in the call. At becoming
available, the ambulance calls back to the dispatch center and asks to what base
location it should return. The dispatch center returns a swift answer based on a
default behavior that does not require extensive calculation, such as head to
the nearest base or head to its default base. Also, at the moment of becoming
available, the ambulances registers itself in the relocation module as becoming
available. If the relocation policy provides a better destination, the relocation
module directly overwrites the base to what the ambulance must return to.

A call gets released by an ambulance when it returned back at a base location,
or when it was dispatched to another call.

When the schedule of an available ambulance says that an ambulance is off-
shift, this ambulance returns to its default base (as defined in the schedule)
and gets status off-shift. Similar, when the schedule becomes on-shift, the
ambulance gets status at base and is considered available for dispatch.

Also common questions can be asked to an ambulance, such as if it is available
for dispatch, or relocatable to a given base location.

Fleet
The fleet is a container that holds ambulance objects. Its purpose is to do
mass operations on ambulances, or select a subset of ambulances based on
a criterium. For example, upon request the fleet can return all available
ambulances, or all ambulances that are currently driving to a particular base.

Dispatch center
The dispatch center has two functions: (1) dispatching calls that the incident
generator provided, and (2) providing call-back answers from ambulances.

The dispatch center first gets all calls of the highest urgency, and dispatches
them first come first served. Always the nearest (in time) available ambulance
gets dispatched to a call. After all calls of the highest urgency are dispatched,
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the calls of the next urgency class get dispatched on the same first come first
served base. We repeat this procedure until all calls are dispatched or no
ambulances are available.

Ambulances can ask the dispatch center to what base they should return, or in
the case no destination is known to what hospital the patient should be brought.

In the dispatch center refinement the dispatch center also acts as a container
for the agents, and coordinates the telephone calls of the dispatch center.

Relocation module
The relocation module is the core of the dynamic ambulance management.
Although it originally was part of the dispatch center class, it became its own
class because of the extent of the source code.

At every decision moment an ambulance, or other class, registers the event in
relocation module. Examples of relocation events are the program initiation,
the manual entry of a relocation (in the operational mode), or updating the
status of an ambulance: going on- or off-shift, getting inside or outside the
region, being dispatch or becoming available.

The relocation policy decides if a relocation proposal must be calculated. If so,
the program starts with the so-called forced relocations, that is for example
sending ambulances to their base in the case they may sleep. Forced relocations
are relocations inspired by legislation regardless of the DAM policy.

After the relocation is calculated, the programs sees if relocation chains can
speed up the relocation. In the simulation mode, all relocation movements are
followed. In the operational refinement, the resulting relocation proposals are
only displayed in the interface.

Interface
The interface displays the current system state on a graphical user interface
(GUI). It shows the map of the ambulance region, its bases and current position
of each ambulance. Figures 7.1–7.3 (at end of the current chapter) illustrate
the capabilities of the interface.

Next to an ambulance base the number of ambulances at that base and at
close-by hospitals is shown. The color of the ambulance identification number
indicates its status: green means available, red ambulances are responding to
a call, yellow are at an incident, orange ambulances are driving to a patient’s
destination and purple indicates that the vehicle is at destination. Usually,
off-shift ambulances are not displayed, but there is an option to show them in
blue. Ambulances in overwork turn dark red, regardless of their status.
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An ambulance identification number can have a text appended. ‘VWS’ means
they are currently performing a relocation, and ‘Zzz’ indicates that an am-
bulance is currently sleeping. If an ambulance nears it end of shift, a text
indicates how long the shift remains.

A relocation proposal is displayed with black arrows. In the case an arrow
becomes too small to notice, a black circle appears around the base. The
upper left corner contains the relocation advices in plain text to so one can
differentiate between ambulances that are near to each other.

Green arrows indicate relocations being followed. Each available ambulance
that drives to a base is accompanied by a green arrow. Forced relocations are
indicated by orange arrows.

Routes that are currently being traveled are highlighted in blue when ambu-
lances travel with regular speed, or red when ambulances are driving with
optical and auditory signals.

TIFAR also monitors keyboard input, e.g., pressing the escape key will termi-
nate the program. Keyboard inputs are commonly used to toggle displayed
elements and texts.

Initiator
The initiator uses an input database to populate the entire program. At first,
the demand points and their properties get filled. Next, the hospitals and base
locations follow.

The input database only has the shift intervals. While loading the shifts into
ambulances, the initiator tries to find an ambulance with a matching default
base location, which has no other shift interval overlapping in its schedule
with the one we are trying to add. If such an ambulance is found, we add the
shift interval to this ambulance. If not, we create a new ambulance on this
base location and assign this shift interval. This procedure ensures that limited
ambulances are added to the simulation engine.

If the program runs in a trace-driven simulation mode, the historic incidents
are loaded from the input database into the calls, such that gets simulated. All
these incidents get the status of a future call. The incident generator pushes
the call forward to the dispatch center at the right time.

Main
As is common in software engineering, the main class has the task to create all
classes, make the simulation engine run, and correctly shut down the program
when the simulation has finished. The main class also makes the links between
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various classes, e.g., it tells the interface where it can find all ambulances and
vertices, such that they can be displayed.

7.4 Refinement 1: Road domain simulation
The road domain simulation tool is the first refinement of TIFAR. The main
goal of the roadside simulation refinement is to determine what the effect
of policy change is on the ambulance response times. This refinement is
especially suited to evaluate the effect of a change in the relocation or the
dispatch policy.

Algorithm 4 outlines the structure of the road domain simulation model. The
main function starts by creating the timer, the logbook, the environment, the
fleet, the calls, the database connectors, the incident generator, the dispatch
center, and the relocation module. Because logging and accessing the time are
such basic functionalities, all classes need access to it. Although not explicitely
specified in the algorithm, all classes also have full access to the functionalities
of the route class.

Next, the environment gets populated by reading the demand points and their
properties from the input database. Amongst the properties is the demand and
the display name of the demand point. Also base locations and hospitals are
loaded from the input database. Using the shift table from the input database
the ambulances and their schedules are created and put into the fleet object.

If we are performing a trace-driven simulation, historical incidents that oc-
curred during our period of interest are loaded from the input database, each
being transformed into a call object. The call objects get future call as their
status.

Based on the exact goal of the simulation, parameters are written into the output
database. A parameter is the unique identification number of the simulation,
accompanied by a variable name, a variable value and an optional variable unit.
Examples are the region number, number of ambulances, or the arrival rate. In
the data analysis phase that follows the simulation, the parameters can be used
to get the simulation identifier that belongs to certain settings.

After the initiation the simulation loop is executed. Only at t = 0 we register
the relocation trigger called program initiation, such that the ambulances get
distributed in line with the current relocation policy.

First, the simulation engine checks for each ambulance if it should should go
on- or off shift. TIFAR makes a distinction between the schedule being off
shift and an ambulance having status off shift. When the schedule reaches the
end time, it goes off shift. An ambulance can only go off shift when it is at its
own default base. When a schedule goes off shift, the ambulance returns to its
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Algorithm 4 Roadside simulation
1: create new timer
2: create new empty logbook
3: create new empty environment
4: create new empty fleet
5: create new empty calls
6: create new database connectors
7: create new incident generator
8: create new dispatch center
9: create new relocation module

10: bind all classes to the timer and logbook
11: bind all other classes where needed
12: load the settings for this simulation
13: load all bases, hospitals, demand points
14: load all shifts
15: load all historic incident into calls . only for trace-driven simulation
16: write the simulation parameters into the output database
17: start the interface . only in visual mode
18: register the program initiation at the relocation module
19: repeat
20: renew the fleet
21: for each ambulance do
22: check if the ambulance goes on-shift or off-shift
23: if so, register the relocation trigger at the relocation module
24: check if the ambulance goes inside or outside the region
25: if so, register the relocation trigger at the relocation module
26: check if the ambulance starts or ends a sleeping interval
27: if so, send the ambulance to the base and mark it as sleeping, or
28: . . . mark it as awake
29: check if the status of the ambulance should be updated
30: if so, update the status and release the call when returning at base
31: register a relocation trigger if applicable for the change of status
32: end for
33: renew the accident generator
34: generate new calls if the list if there are no future calls . not when trace-driven
35: Set all calls that enter the dispatch center at the current model time to queued
36: . . . at call taker
37: clean the completed calls.
38: renew the dispatch center
39: Dispatch all calls queued at the call taker
40: renew the relocation module
41: empty the cache holding all relocation arrows
42: first, perform all forced relocations. Put the corresponding ‘orange’ arrows
43: . . . in the cache.
44: for each registered trigger do
45: calculate the relocation proposal
46: calculate the relocation chain
47: put all ‘black’ relocation arrows in the cache
48: perform the resulting relocations
49: end for
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50: renew the interface
51: update the ambulances in the interface
52: update the texts displayed at the vertices, including the bases and hospitals
53: update the texts at the calls
54: update the arrows, i.e., relocation proposals, relocation arrows and
55: . . . forced relocations
56: progress the timer to the next event time
57: until the simulation end time is reached or no events are left or received a manual
58: . . . closedown instruction
59: write all finished calls in the output database
60: write concluding remarks in the standard out
61: close the program

own base at the first moment it is available. If the schedule of an ambulance is
off shift, it cannot be dispatched to a new call.

The next check for the ambulances is if they are inside or outside the region.
Ambulances that are marked as outside the region are not taken into consid-
eration by the relocation module while calculating a relocation proposal. We
define an ambulance out-of-region when it is over 20 minutes driving from
every base of the ambulance region. When an available ambulance drives
inside or outside the region, a new relocation advise will be computed. The
program also checks if an ambulance starts or end a sleeping shift. If the right
of sleeping starts, the ambulance is marked as sleeping. Sleeping ambulances
get a forced relocation to their sleeping post; all other ambulances cannot
be relocated to this post when a sleeping ambulance is present and it gets
emptied. When a sleeping ends, the ambulance is marked as not sleeping and
a relocation trigger gets registered.

Next, the program checks if the status of the ambulance must be updated.
This happens when the end of a time interval has been reached. At a status
update the ambulance class registers a trigger and it updates its call, both only
if applicable. The status update can depend on the call’s properties, e.g., the
call being declarable or EHGV. Also, the ambulance can contact the dispatch
center to ask for a new destination. In the update step the ambulance can log
timestamps and durations into the call object, which later find their way to the
output database. A status update ends by writing the time of the next status
update into the event list. Directly after a status update, the ambulance looks
back if it must go off shift now, or if it can directly progress to the next status
(that is, the current time period takes zero seconds).

After all ambulances received their correct status for the current model time, the
calls are getting updated. In the case incidents are not taken from a historical
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Figure 7.1 A screen shot of the road simulation domain for the region Gooi &
Vechtstreek.∗

dataset, new calls are generated if the number of future calls gets under a given
threshold. Subsequently, each future call that should arrive at the dispatch
center gets the status queued at the call taker. Next, the completed calls are
written to the output database and removed from the calls object.

In the next step the dispatch center considers all calls that are queued at the
call taker, in order of urgency. If two calls have the same urgency they are
handed first come first served. In any case, the available ambulance that can be
at the incident the fastest gets dispatched. At dispatch, a relocation trigger gets
registered at the relocation module. Note: the dispatch center model (Chapter 2
and the next section) makes a clear distinction between urgency and priority.
The current model makes only use of the output variables of the dispatch center

∗ Ambulance 14104 with shift HD2 responds to an A2 call in the western part of the
town Huizen. Currently, the response time of this call is 3:04 minutes and counting. As a
consequence of this dispatch, the available ambulance 14102 BD1 that was originally driving
to base Weesp, has been requested to return to base Blaricum. In Hilversum a rapid responder
ambulance is present. Also, the 14101 WD1 is in Hilversum at location of an A1 incident. Its
response time was 8:38—an on-time response.
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process, which are the urgency of the call and the CTT. In other words, this
model does not distinct being queued at the call taker and being queued at the
dispatcher.

Next, the relocation module calculates and performs the relocations. First it
performs the so-called forced relocations. These are empty ambulance move-
ments that must happen and on which the dispatch center has limited influence,
e.g., the end of a shift, the labor hour legislation (in Dutch: arbeidstijdenwet
[ATW]), and for the right of sleeping during the night. The relocation module
calculates a relocation proposal on the resulting state space. That is, for each
registered trigger it contacts the relocation module of choice (defined by a
setting) and asks if a new relocation must be calculated for the trigger. If so,
it provides the relocation method with the ambulance activating the trigger
and the current system state (the environment and the current fleet). The
relocation method returns a relocation proposal that exists of a single ambu-
lance movement: what ambulance must be moved to what post. The chain
forming method takes this output and calculates if the movement can be faster
by performing multiple ambulances movement simultaneous. The resulting
relocation proposal and the forced relocations are stored in a cache that is
emptied every time a new relocation proposal gets calculated. The relocation
module ends by performing all proposed ambulance movements, that is, these
ambulances get the instruction to relocate to the specified destination base.

In the case the program runs in visual mode, the graphical user interface gets
updated; see Figure 7.1. The ambulances are displayed at their new locations,
the incidents are drawn, the capacity of each base location gets updated, and
all relocation arrows are drawn.

The simulation loop ends by progressing the model time. In visual mode, there
are two candidates for the next model time: (1) the next event time in the list,
and (2) a time based on the simulation speed setting of the graphical mode.
The minimum of the two is taken as the next even time, and in the first case
the event time is removed from the event list. This method ensures that each
event time in the event list gets evaluated, and the simulation goes not too fast
for human eyes to follow. In the discrete event simulator mode that has no
interface, the next event time is always taken from the event list.

7.5 Refinement 2: Dispatch center simulation
The dispatch center simulation refinement is the only one of the four discussed
that does not use the fleet and ambulance classes. Because there are no
relocations generated, the relocation module is also absent. Of the refinements
discussed, this is the only one without a graphical user interface.



7.5 R E FI N E M E N T 2 : D I S PAT C H C E N T E R S I M U L AT I O N 165

7.5.1 Call
The call class gets extended to hold service time information for each block:
we make a distinction between the total service time and service time left, both
being equal at construction. If there is no contact with the dispatcher, it holds
a zero service time for that block. The call also has an extra status that tells if
it is queued or attended by an agent.

Furthermore, the call stores the incoming stream and the priority that depends
on this incoming stream.

7.5.2 Dispatch center agent
The dispatch center has an extra class, the so-called dispatch center agent.
Each agent has a unique identifier and a type: nullifier, call taker, dispatcher or
generalist. The nullifier is a programming technique that is used to progress
tasks that require zero seconds of service, and which put no load on an agent.
For example, this is the case when a block does not require contact with the
dispatch center. Directly after progressing the task, the nullifier becomes
available again for a next service.

Similar to how an ambulance progresses the status of a call, the dispatcher also
sets the new status of a call. Every time that an agent ends a phone conversation,
it logs the call identifier, waiting time, call duration, agent identifier, priority
and call status in the output database such that making a detailed analysis is
possible.

Note that the class definition does not make a distinction between the types of
dispatch center agent.

7.5.3 Dispatch center
For the current refinement the dispatch center gets extended. To suit its
additional purpose of being the dispatch center agents’ container class it holds
an ordered list. This ordered list first has the nullifier, then all call takers, then
all dispatchers, and finally the generalists.

In the process of answering waiting calls, it iterates over the list and attaches a
task to the first agent that may take its call. The dispatch center also progresses
the status of a call.

7.5.4 Incident generator
The incident generator is adapted to populate the additional data fields of a call.
The inter arrival times between the incidents are drawn from an exponential
distribution. The incoming stream and the service times during the follow-up
contact blocks are also drawn from random distributions.
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7.5.5 Algorithm
The initiation of the dispatch center refinement is similar to that of the road
simulation: the required objects are created and interlinked where needed.

The settings provide the number of call takers, dispatchers and generalists.
Besides the nullifier, the dispatch center gets populated with the right number
of agents of all classes.

The parameters are written inside the output database. In this refinement a key
parameter is the arrival rate.

The simulation loop starts with the generation of new calls in the case the
number of future calls are below a preset threshold. Subsequently, the status
of the calls that must enter the queue at the call taker at the current model time
gets their corresponding status. Additionally, each of these calls is marked as
queued.

The dispatch center considers the queued calls in order of priority and arrival
time. Because the first available agent in the ordered list serves a call, the
generalist only receives work if there are no call takers and dispatchers avail-
able. A higher priority call can interrupt an ongoing service. In that case the
remaining service time of the interrupted call gets updated, and this interrupted
call gets queued again. If an agent continues with this call later on, it only
serves for the duration of the remaining service time. If a service is completed,
the call and agent get disconnected, after which the telephone contact gets
written into the output database.

Next, the dispatch center checks for each call if the status must be progressed
at the current model time. The methodology is similar to how an ambulance
object progresses the status of the road domain simulation refinement. An
additional feature of the dispatch center refinement is that an extra check can
be included such that a status update can only happen when the remaining
service time at the dispatch center equals zero.

The simulation ends when the required number of calls has been cleaned, i.e.,
written into the output database.

Algortihm 5 provides details on the dispatch center simulation.

7.6 Refinement 3: Facility location and allocation
The third refinement is used for the calculation of the Q-PLSCP and the AQ-
HPLSCP heuristic. The structure differs from the previous two refinements,
because there is no simulation involved. Therefore, this refinement does not
make use of the timer, the dispatch center, the fleet, the ambulance, the calls
and the incident generator classes. Instead, it extends the vertex class such that
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Algorithm 5 Dispatch center simulation
1: create new timer
2: create new empty logbook
3: create new empty environment
4: create new empty calls
5: create new database connectors
6: create new incident generator
7: create new dispatch center
8: bind all classes to the timer and logbook
9: bind all other classes where needed

10: load the settings for this simulation
11: create the required number for each agent skill into the dispatch center
12: write the simulation parameters into the output database
13: repeat
14: renew the accident generator
15: generate new calls if the list if there are no future calls
16: set all calls that enter the dispatch center at the current model time to
17: . . . queued at call taker
18: renew the dispatch center
19: clean the completed calls
20: sort all calls waiting for an agent in order of priority and time of arrival.
21: for each waiting call do
22: if the end time of the call its current status has been reached then
23: if an agent is currently servicing the call, disconnect this agent
24: if the last status was a call being served at the call center then
25: update the end time of the current service as the current time plus
26: . . . the length of the current interval
27: update the status of the call
28: write the new end of service time in the event list
29: else
30: for each agent do
31: if the agent is available then
32: Set the agent as serving this call
33: if another call is interrupted, update its remaining
34: . . . service time and set its status to queued
35: update the status of the call
36: update the end time of this service
37: write this end of service time in the event list
38: end if
39: end for
40: end if
41: end if
42: In the case a call was interrupted, restart the for-loop
43: end for
44: progress the timer to the next event time
45: until there are no events left
46: write concluding remarks in the standard out
47: close the program
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all demand point and base dependent variables used in the heuristic can be
properly stored. Also a new connector class with COIN-OR’s CBC solver is
introduced.

7.6.1 Vertex
For the facility location and allocation refinement, the vertex class gets ex-
tended. It gets new variables for the arrival frequency, the arrival rate, the
round-trip time, the mean service time in the case it is a base, the mean service
time for the demand point, the reliability threshold, the density value, the
minimal number of required ambulances and the number of ambulances allo-
cated to the base. For the post-processor also additional variables are required:
the lower and upper bound on the ambulances busy fraction, and in the case
of a base the busy fraction of the ambulances stationed over there. Also the
getters and the setters are provided. The arrival frequency, the density and the
reliability threshold for each demand point are set during the initiation of the
program.

7.6.2 Optimizer
The optimizer is the class that connects the TIFAR classes with the Coin-OR
CBC framework [O2]. It takes the current environment and fleet and transforms
it into the data arrays that make up the constraint matrix and the objective
function’s coefficients of the IP formulation, amongst others. We refer to the
CBC documentation for details on the implementation of an IP program. When
the problem is solved, it stores the optimal objective value in a way that it
can be easily be accessed from other classes. It also stores the number of
ambulances allocated to each base, by writing these number in the designated
(new) variable within each vertex.

7.6.3 Algorithm
The initiation is quite similar to the previous two refinements: all required
objects are created, the environment gets populated and the necessary bindings
are formed. The fleet puts 1000 (or any other large enough number of) ambu-
lances on a base location, such that the variables for the round trip time can be
populated, and an improvement on the initial solution can be found. Details
are given in Algorithm 6.

The iterations go as follows; we refer to the mean service time paragraph on
page 98 for the details. First we calculate for each demand point i the exclusive
mean service time β̃i to the mean service time of an ambulance serving demand
point i. Next, we calculate for each base j the reasonable approximation of the
mean service time β̂ j. Next, we can calculate a good approximation for the
mean service time βi of the neighborhood around each demand point i.
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Algorithm 6 Facility location and allocation
1: create new empty logbook
2: create new empty environment
3: create new database connectors
4: create new graphical user interface
5: bind all classes to the logbook
6: bind all other classes where needed
7: load the settings for this facility location
8: load the demand points with the arrival frequency and density values
9: write the simulation parameters into the output database

10: populate the fleet: put 1000 on the first base loaded in memory
11: calculate the arrival rate for each demand point based on a given density value
12: repeat
13: update the mean service time from the nearest ambulance to nearest base (β̃i)
14: update the mean service time for each base (β̂ j)
15: update the mean service time for each demand point (βi)
16: calculate the minimal number of required ambulances for each demand point (bi)
17: populate the optimizer with:
18: · the demand points, the base locations, and the maximal base capacities
19: · the minimal number of required ambulances for each demand point
20: · the driving time matrix
21: Call the solver of the optimizer
22: For each base, get the number of allocated ambulances from the solver and store
23: . . . this number in the base vertex.
24: Run the post-processor
25: until the objective function is not improved
26: write the solution from the algorithm in the standard output
27: start the graphical user interface
28: update the interface: the demand points, the vertices and show the number of ambulances
29: . . . at each base
30: wait until the graphical user interface is closed
31: write concluding remarks in the standard out
32: close the program

Knowing the arrival rate, the mean service time and the reliability threshold
for each demand point, we can calculate the minimal number of required
ambulances bi. Now, all input parameters for the IP formulation are known
and provided to the optimizer. That is, each base location and its maximal
capacity, each demand point and its minimal required number of ambulances
bi, and the driving time matrix with driving from each base location to each
demand point. The optimizer transforms it into the IP formulation, and solves
it. The resulting ambulance allocation gets stored in the vertices that represent
the base locations.

The post-processor mentioned in Algorithm 1 is implemented in the environ-
ment class, and it raises the number of ambulances until the workload condition
is satisfied.
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Figure 7.2 A screen shot of the allocation by the DAQ-HPLSCP with fixed
bases, ALS-calls only, for the ambulance region Utrecht.∗

With the new allocation, the values of β̃i change. Hence, we do a new iteration
until there is no improvement in the number of ambulances.

If there is no better solution found, the loop ends. The best solution found
is written to the standard output. At this time, the graphical user interface
is started and it displays the number of ambulances allocated to each base,
alongside debug information that can be toggled by keyboard strokes.

When the interface is closed, some final remarks are written inside the standard
output and the program will be closed. This refinement has the option to
disable the graphical user interface.

7.7 Refinement 4: Operational modus for practice
The fourth and last refinement has many similarities with the road domain
simulation refinement. The main purpose of the current refinement is to
provide the dispatch center agents with real-time relocation advices. The only

∗ The number of ambulances that results from the allocation model is shown at each
base. The names of bases are in white; some are left empty. In blue, the centroid of each four
position postal code—the aggregation level of this study—is mentioned. Thin blue lines show
what base location can reach what demand point within the response time limit.
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major changes are found in the way the state space is progressed and the way
the the relocation triggers are registered. The new state of the ambulances
is taken from a new class, the operational API that takes the current system
state from real-time third-party operational database: specialized software
from our partner CityGIS writes the current state space of all ambulances of
interest in this database, which the operational API reads. We cannot give
ambulances relocation instructions, because these are still manually entered by
the dispatchers. Instead, we only show the relocation arrows. The timer takes
the wall clock time as the current model time, but still has a (less used) event
list such that schedules can go off-shift in-time.

7.7.1 Operational API
The operational API gets the state space data from the shared operational
database and updates TIFAR’s fleet and active relocation proposals accordingly.
This database contains four interesting data sets: (1) The set of ambulances and
their current shift name, (2) the set of ambulances that are available and their
current coordinates, (3) the set of ambulances that are currently at a hospital,
their coordinates, and the time they arrived at the hospital, and (4) the set of
ambulances that have active relocation instructions with the coordinates of
their current location and destinations.

Note that this operational API does not make a distinction between ambulances
that are off shift or are serving an incident, because all these ambulances are
not present in any of the datasets. Ambulances become visible again once they
arrive at a hospital, or start a shift. In the interface we only show the available
ambulances and the ambulances that have the at destination status.

7.7.2 Algorithm
The initiation goes similar to all previous refinements; the timer, container
classes and database connectors are started and where necessary bound. The
operational refinement does not load the ambulances, as this will be done
through the operational API. The program initiation trigger is registered at the
relocation module.

The program loop starts by updating the state space from the operation API. It
first loads all available ambulances that have no relocation instruction, and puts
them at their respective coordinates. For this ambulance, it requests the name
of the shift and sets the ambulance’s shift accordingly. If the coordinates of the
ambulance are within a predetermined euclidean distance from its default base
we set the ambulance status to at base, if not, we set the ambulance status to
driving to base with the destination to its default base. A similar technique is
applied for ambulances that have a relocation instruction; instead of using the
default base we use the base that is defined by the destination coordinates that
is taken from the operational database. The so-called hospital ambulances are
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set to status at destination at their current location. Also, their duration at the
destination is calculated and set, as this is a required variable for the penalty
heuristic. All ambulances that are not present in these three datasets are put off
shift.

In the ambulance renewal the same checks are performed as in the road simu-
lation refinement. That is, the booleans are set for inside or outside the region,
going off shift, and sleeping. The status update loop is disabled in the current
refinement.

The relocation module is also similar to the road simulation. The only change
is that the ambulances do not receive any relocation instruction, as these are
manually entered by the agent and received by use through the operational
database.

Every time the status or the shift name of an ambulance is changed, the opera-
tional API looks if for the transition a trigger must be registered. Subsequently
it registeres the necessary triggers in the relocation module.

The operational interface does not differ from the one of the road simulation
refinement. Because ambulances that serve an incident are put off shift, only
the available ambulances are displayed in the interface.

Algorithm 7 describes the operational modus. A photograph of the interface in
the dispatch center is displayed in Figure 7.3.

Algorithm 7 Operational modus for practice
1: create new timer
2: create new empty logbook
3: create new empty environment
4: create new empty fleet
5: create new database connectors
6: create new dispatch center . only the call back functionalities are used.
7: create new operational API
8: create new relocation module
9: bind all classes to the timer and logbook

10: bind all other classes where needed
11: load the settings for this simulation
12: write the model parameters into the output database
13: start the interface
14: register the program initiation at the relocation module
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15: repeat
16: renew the fleet
17: load changes from the API
18: for each ambulance do
19: check if the ambulance is already seen by the ambulance
20: if not, create the ambulance
21: check if the name of the shift is still correct
22: if not, change the current shift and register a relocation trigger
23: update the coordinates
24: update the destination, in the case of a relocation
25: update the time at the destination, in the case of status at hospital
26: update the status. Non-available ambulances (except at hospital)
27: . . . are put off-shift
28: register a relocation trigger if applicable for the change of status
29: end for
30: for each ambulance do
31: check if the ambulance goes off-shift because the end-of-shift time
32: if so, register the relocation trigger at the relocation module
33: check if the ambulance goes inside or outside the region
34: if so, register the relocation trigger at the relocation module
35: check if the ambulance starts or ends a sleeping interval
36: if so, mark it as sleeping, or mark it as awake
37: end for
38: renew the relocation module
39: empty the cache holding all relocation arrows
40: first, put ‘orange’ arrows in the cache for all forced relocations
41: for each registered trigger do
42: calculate the relocation proposal
43: calculate the relocation chain
44: put all ‘black’ relocation arrows in the cache
45: end for
46: renew the interface
47: update the ambulances in the interface
48: update the texts displayed at the vertices, including the bases and hospitals
49: update the texts at the calls
50: update the arrows, i.e., relocation proposals, relocation arrows and forced
51: . . . relocations.
52: progress the timer to the next event time
53: until the simulation end time is reached or no events are left or received a manual
54: . . . closedown instruction
55: write all finished calls in the output database
56: write concluding remarks in the standard out, and close the program
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Figure 7.3 Photograph of a screen at the dispatch center in Lelystad.∗

7.8 Conclusion
TIFAR is a powerful software framework that enables us to create so-called
refinements. Researchers, managers and dispatch center agents can use these
refinements as decision support software. After providing high-level descrip-
tions of TIFAR’s classes and assumptions, the current chapter showed the
basic structure of four refinements that are used during the thesis: (1) The road
romain simulator, (2) the dispatch center model, (3) the facility location and
allocation model, and (4) the operational branch for the pilot study.

TIFAR allows highly detailed simulations and calculations, leading to small
granularity errors. The graphical user interface can display effects of decisions

∗ This display shows that the photo is taken one year after the pilot study, on 2016-08-18
07:51:07AM. The ambulance 25112 drives to base Zeewolde, as is indicated by a small green
arrow and its text. Each base mentions a number beside its name; this is the number of
available ambulances driving to or stationed at this base. Remaining ambulance shift time is
mentioned between brackets. The 25117 U24 is displayed in red because it has to return to
Emmeloord because its shift ends; an orange arrow is present but barely visible. The black
arrows indicate a relocation chain by two ambulances from Almere via Lelystad to Dronten.
The text in the upper left corner emphasizes the names of the vehicles.
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in real-time. It is easy to implement relocation rules. It is also easy to adapt
models, relocation methods and other components, which make this a powerful
tool. The structure of the output database allows for a broad range of statistical
analysis.

Although not discussed in this thesis, many other refinements are created in
the TIFAR framework during the REPRO project. In the initial data cleaning
process, the bots that clean the data sets are TIFAR refinements that use the
data-interface and resolver (see the route class). One of these bots enriches each
address field (departure location, incident, destination) with the coordinates.
Another TIFAR bot writes a travel time matrix from every base location
and demand point, that the route class loads as a pre-calculated travel time
matrix, which, in turn, enormously speeding up the start-up time of any TIFAR
refinement. Other refinements are made to display routes, reachability, or other
static images.

Many extensions on the TIFAR framework are possible in future developments.
Other fields of application can be included, such as firefighters, policy, roadside
assistance, and spare part distributions, amongst others. The current version
of TIFAR is primarily tailered to the Dutch ambulance system design and
rijksdriehoeks (RD) coordinate system. It would be a welcome extension to
include the characteristics that can be found in other countries.
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Throughout the thesis a consistent set of abbreviations is used, as listed below.

Variable Description
Ambulance Terminology

ASP Ambulance service provider
An organization that is responsible for ambulance care in a
specific geographical region.

CPR Cardiopulmonary resuscitation
The name of a particular reanimation protocol.

DAM Dynamic ambulance management
The process of distributing available ambulances over the
regions to achieve a higher coverage.

ED Emergency department
The hospital department where ambulances usually bring
their patients.

EMT Emergency medical technician
Someone who works on an ambulance vehicle.

EMS Emergency medical services
Ambulance services in general.

GP General practitioner
A family doctor.

TI Telephone information
Metadata from a ASP’s telephone recording system.

Vehicle Types

ALS Advanced life support
Focuses on patients that are in a life-threatening situation.

BLS Basic life support
Focuses on stable patients that cannot move with regular
taxis.

RR Rapid responder
An ALS vehicle that can usually move faster through traffic
but has no transportation capacity.
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Variable Description
Modeling Terminology

ADP Approximate dynamic programming
A technique to solve large discrete time stochastic control
problems.

DES Discrete event simulation
A simulation technique in which time jumps from one event
to the next event, without evaluating the system state
between the events.

DSS Decision support software
Supporting software that helps professionals in decision
making in complex situations.

KPI Key performance indicator
A mean performance measure of a system.

MDP Markov decision problem
A mathematical framework for modeling and solving
stochastic discrete time processes.

OR Operations research
The field of mathematics that focusses on optimization of
processes.

TIFAR Testing interface for ambulance research
A software framework dedicated to simulation and
optimization problems in ambulance care, which is widely
used in this thesis.

Dispatch Center Terminology
C / CT Call taker related

A variable or queue decorator that reflects a property of a
call taker.

D / Disp Dispatcher related
A variable or queue decorator that reflects a property of a
dispatcher.

FD Function differentiation
A policy for a dispatch center staffed with call center agents
of types call taker and dispatcher, but not with generalists.

SG Solely generalists
A policy for a dispatch center staffed with generalists,
but not with call takers and dispatchers.
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Variable Description
Selected Models

Model Classes

RCLP Regional coverage location problem
The class of optimization problems that aggregate an
ambulance region’s performance into one single
number.

MR-MA Minimal reliability and maximum availability
The class of optimization problems where the performance
is evaluated for each demand point individually.

min-rel Minimal reliability
A model class that minimizes the required number of
ambulances such that each demand point is covered.

max-av Maximal availability
A model class that maximizes the covered demand
with a limited number of ambulances.

Well-Known Models

MEXCLP Maximum Expected Coverage Location Problem [35]
A model that allocates a limited number of ambulances
such that the expected demand is maximized.

MCLP Maximal Coverage Location Problem [32]
A single coverage facility location problem that maximizes
the demand covered with limited capacity.

BACOP Backup Coverage Problem [56]
A double coverage facility location problem. An extension
also weighs single covered demand.

DSM Double Standard Model [49]
A double coverage facility location problem that forces a
given fraction of the demand covered by one ambulance.

TEAM Tandem Equipment Allocation Model [120]
A single coverage model with two types of vehicles. A
demand point is covered if both vehicle types can reach
it in time.

FLEET Facility-Location, Equipment-Emplacement Technique [120]
The TEAM model with a limit on the number of bases.

TTM Two-tiered Model [80]
The TEAM model with a generalized objective function.
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Variable Description
MOFLEET Multiple-cover, One-unit FLEET Problem [24]

The FLEET model with a MEXCLP objective function.

TIMEXCLP The MEXCLP with Time Variation [105]
A time-dependent MEXCLP model.

SCLP Set Covering Location Problem [132]
A single coverage facility location problem that minimizes
the required number of ambulances to cover all demand.

MALP Maximum Availability Location Problem [109]
A binomial based max-av model.

Rep-P Reliability Perspective [11]
A binary-valued min-rel model.

PLSCP Probability Location Set Coverage Problem [110]
A binomial based min-rel model.

Queuing Related Models

Q-PLSCP Queuing Probability Location Set coverage Problem [83]
A queuing based min-rel model.

Q-MALP Queuing Maximum Availability Location Problem [82]
A queuing based min-rel model.

AQ-
MIPLSCP

Adjusted Queuing Mixed Integer Probability Location Set Cov-
erage Problem

An adjusted queuing mixed-integer min-rel model,
that is proposed in Section 4.2.

Q-. . . Queueing prefix
A queuing approach to an MR-MA model.

AQ-. . . Adjusted queuing prefix
An adjusted queuing approach to a MR-MA model,
as is proposed in this thesis.

FAQ-. . . Frequency adjusted queueing prefix
AQ with the demand point’s frequency as density function.

DAQ-. . . Density adjusted queueing prefix
AQ with the demand point’s population density as density
function.
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Variable Description
Specific for the Netherlands

EHGV Eerste hulp geen vervoer
A treatment provided at the incident location, but no patient
transport required.

RAV Regionale ambulancevoorziening
Collaboration of ambulance service providers within one
region.

RD Rijksdriehoekcoördinaat
The coordinate system in use in the Netherlands government
organizations.

VWS Voorwaardescheppende rit
A relocation instruction to an ambulance.

BAG Basisadministraties adressen en gebouwen
A cadastral data set containing extensive (geographical)
information on every building in the Netherlands. [O1]

Urgencies

A1 An urgent call with an acute threat to the patient’s life.

A2 A call where the patient’s life is not under direct threat, but there
might be serious injuries.

B An ordered transportation: the patient must be transported within
a given predetermined time interval.
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Throughout the thesis a consistent set of variables is used, as listed below.

Variable Description
Chapter 2

ndispatcher Number of dispatchers in the system.
ncalltaker Number of call takers in the system.
ngeneralists Number of generalists in the system.
n Total number of call center agents in the system.
α1,r1 Fraction of the calls that are picked up by the call taker (or

generalist) within at most r1 time units.
α2(u),r2(u) Fraction u ∈ U of the honored calls that have a call center time

at most r2(u) time units.
M1 Number of priority queues at the call taker of the dispatch center.
M2 Number of priority queues at the dispatcher of the dispatch

center.
QCT

1 , . . . ,QCT
M1

Priority queues of the call taker, decreasing in priority.
QD

1 , . . . ,QD
M2

Priority queues of the dispatcher, decreasing in priority.
ph The probability that a call is honored.
pa Probability that an applicant needs additional instructions.
B Number of blocks in the block sequence.
q f m

b (u) Probability that a feedback contact occurs with urgency u, prior-
ity queue m and block b.

p fb(u) Probability that no feedback occurs in block b for ugency u.
peb(u) Probability that another block follows after block b for urgency

u. Alternatively, an end of call occurs.
p jb′

b (u) Probability that block b′ directly follows after block b for urgency
u (jumping probability).

λi Arrival rate at incoming stream i.
fk Arrival rate for applicant class k.

Chapter 3
q Busy fraction of an ambulance, a system-wide constant variable.
di Demand at demand point i, that is a proxy for the fraction of the

total workload that is aggregated i.
Ei Expected covered demand at demand point i.
αi Probability that an ambulance is available to reach a patient

at i within R time units must be at least αi (minimal required
reliability level).
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Variable Description
Chapter 3 (cont’d)

H Set of hospitals.
I Set of demand points.
J Set of (potential) base locations.
V Set that contains all hospitals, demand points and potential base

locations.
U Set of urgencies.
tv1,v2 The travel time from v1 to v2 (v1,v2 ∈V ).
ri, j Response time from demand point i from base j.
R Response time threshold.
Z Total number of ambulances in the system (only for min-rel).
x j Number of ambulances assigned to base j.
yi Number of ambulances that are positioned at bases in neighbor-

hoodMi (definitionMi follows).
fi Arrival frequency at demand point i.
βi Average service time at demand point i.
ni Number of ambulances that serve demand at i, which is solution

dependent.
ρi Workload that is generated at demand point i.
bi(ρ) Minimal required number of ambulances at workload ρ at de-

mand point i.
A Set of all ambulances.
Ai Set of ambulances that may serve demand at i.
qlow(ρ ,n) Lower bound on the busy fraction for an ambulance at workload

ρ and n serving ambulances.
q∗,low(ρ) Lower bound on the busy fraction for an ambulance at workload

ρ in our solution.
aqdum Dummy busy fraction of an ambulance: a virtual ambulance busy

fraction that after solving the program is within some bounds to
the actual value.

qupp(ρ ,n) Upper bound on the busy fraction for an ambulance at workload
ρ and n serving ambulances.

q∗max(ρ) Upper bound on the busy fraction for an ambulance at workload
ρ in our solution.

Oi Workload that ambulances stationed at Mi can serve outside
neighborhood Ni (overcapacity).

ρ
upp
i Workload at the time when bi ambulances work that hard that

exactly the allowed reliability level αi is met.
ρ
∗,upp
i Workload at the time when ni ambulances work that hard that

exactly the allowed reliability level αi is met.
pNi The population of neighborhood Ni.
aNi The area of neighborhood Ni in square meters.
ψi A density assigned to i.
Îi An ordered list of all demand points, using densities ψi.
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Variable Description

The following variables Ni, N j,Mi, bi and λi may be augmented
by Bin, Erl, Q, AQ, FAQ, DAQ. The decoration specifies the
calculation method of the variable’s value.

Nι (Set of demand points in the) neighborhood of ι ∈ I ∪J , which
depend on a given response time threshold.

Mi Set of base locations in the neighborhood of i, which depend on
a given response time threshold.

bi The number of ambulances that must at least be assigned to
neighborhoodMi.

λi(ψ) Arrival rate at demand point i given density measure ψ .

Chapter 4
The notation is a continuation of Chapter 3.

ȳai Binary variable equal to one if and only if ambulance a provides
coverage to demand point i.

x̄a j Binary variable equal to one if and only if ambulance a is allo-
cated at base location j.

ga Binary variable equal to one if and only if ambulance a is allo-
cated to a base location.

C j Capacity for base location j: the maximum number of ambu-
lances that can be allocated to j.

bi(ρ) The minimal required number of ambulances at workload ρ at
demand point i.

bi Short notation for bi(ρi).
β̄h,i, j The round trip time (without the driving to base time) for a trip

from j to i to h.
β̃i An approximation for the mean service time at i.
β̂ j An approximation for the mean service time of an ambulance

stationed at j.

Chapter 5
q Busy fraction of an ambulance. A system-wide constant variable.
di The demand of demand point i, that is a proxy for the fraction of

the total workload that is aggregated to i.
R The response time threshold.
O Origin of a route, i.e., its starting point.
D Destination of a route, i.e., where it ends.
r A route.
R A routeset: a set that contains multiple routes.
L Set of waypoints.
Z Set of decision points on the road network.
ZO,D A subset of Z that can be regarded as in between O and D.
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Variable Description
Chapter 5 (cont’d)

W The set containing all demand points, base locations and way-
points.

∆ Maximum allowed snapping distance threshold between two
waypoints at snapping.

S Maximum allowed snapping distance threshold between the pivot
and the waypoint at snapping.

δ The maximum allowed fraction of overlap between two routes,
in order to add an route candidate into a routeset.

t̃` Cumulative travel time from the origin to waypoint `.
τ Variable of time, usually used in the context of integration.
γ Time discount parameter.
Ξr Coverage value of route r.
ξr,i Contribution of the coverage value of route r to demand point i.
Ci (Marginal) contribution if demand point i receives coverage by

the moving ambulance.
Chapter 6

Ei Expected covered demand at demand point i.
n j The number of ambulances positioned at base j ∈ J .
ni The number of idle ambulances with destination i ∈ I.
ti The response time to i ∈ I of a given ambulance.
f (τ) The penalty value corresponding to response time τ .
A− The set of available ambulances that are currently not considered

for relocation.
ai An ambulance that is stationed at a hospital, and can be fasted

on-site at demand point i.
Chapter 7

The notation is a continuation of Chapter 4.
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Mathematical models can contribute substantially to improve the service qual-
ity of ambulance care. This Ph.D. thesis entails various new models, which are
not only interesting from a scientific point of view, but which have also widely
found their way into practice.

The dispatch center model, as presented in Chapter 2, is a simulation model
that describes the processes of the dispatch center agents in detail. Although
the literature on general dispatch centers is diverse and extensive, it appears that
specific models for ambulance dispatch centers are scarce. Characteristic for
dispatch centers is that there are very strict requirements on the response times
and a large diversity of tasks. Unique in our approach is that we have included
various feedback moments, respect the priorities of the incoming call type,
and that we can simulate the multiple dispatch centers staffing policies. More
specifically, our model allows for both the function differentiation and the only
generalist policies. In (complete) function differentiation there is a group of
specialized centralists called the call takers who answer incoming emergency
calls, and who perform the triage procedure. Another group of specialists
are responsible for the coordination of the fleet and the communication to
third-parties such as hospitals; these are the so-called dispatchers. Generalists
are flexible because they can do both the call taking and dispatching, but they
are more expensive. The mixed model allows for a function differentiation
policy that is supplemented with generalists. The dispatch center model, in all
its forms, predicts the waiting and sojourn times, given the number of operators
of each specialism. Based on the model results a cost–benefit analysis can
be carried out. Using meta-data of telephone conversations by the dispatch
center in Utrecht, we have been able to make good parameter estimations. We
conclude that depending on the workload of the dispatch center, the optimal
staffing policy changes: for low arrival rate, generalists are the most cost-
efficient, but as this rate increases, function differentiation pays off. On top of
the function differentiation policy, it is beneficial to have one generalist who
can assist when the workload peaks, either in the call taking or the dispatching.

Chapters 3 and 4 present the so-called adjusted queuing framework. Primarily,
ambulance service providers are assessed on the fraction of in-time ambulance
arrivals for (potentially) life-threatening situations. For example, a fraction of
94% of the high urgency calls of an ambulance region has a response time of
at most 15 minutes. In this calculation, the annual performance of the entire
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ambulance region is aggregated into a single number, i.e., into one point in
space and time. The disadvantage of this approach is that local interests are
barely represented; after all, it pays off to concentrate all ambulances around
the urban areas that have the majority of the demand, and as a consequence,
take the relatively small amount of late ambulance arrivals in the rural areas
for granted. Minimal-reliability (min-rel) models approach the performance
differently. They calculate the minimal number of ambulances required, such
that a given response time performance can be achieved at any subarea in
the region. The related maximal availability (max-av) models try to place a
limited number of ambulances, such that as many potential patients as possible
are served within the given performance target. Existing min-rel and max-
av models have a number of drawbacks. Many models have a system-wide
busy fraction that is the equal for every ambulance, which is unrealistic as
ambulances in rural areas are more at the base locations than urban ambulances.
In previously published models, the arrival rate, the mean service time and
the minimal required reliability threshold may not differ too much between
neighboring (demand) points in the ambulance region; if that happens, it results
in a higher number of required ambulances. Our approach, on the other hand,
allows the aforementioned three parameters to differ for every demand point,
and on top of that, in our approach the busy fraction can have a different value
for each ambulance. In Chapter 3 we explain why the earlier models give
an overestimation, and we show how these models have to be adapted such
that they can be applied to the mixed regions that have both urban and rural
demand. This results in the so-called adjusted queuing framework.

Chapter 4 introduces two new min-rel models that use the adjusted queuing
framework from the previous chapter. The first model formulates a mixed
integer program that finds the absolute optimum for the minimum number of
ambulances, such that the required performance is achieved at every point in
the ambulance region. A drawback of this model is that it is only applicable for
relatively small model instances, because of the complexity and the calculation
times. The second model is a heuristic that can provide solutions for larger
model instances. We evaluate these models on the basis of real ambulance
regions that contain a mixture of both rural and urban subareas. Numerical
calculations show that (and how) we can meet the given reliability requirements
for each point with fewer ambulances than in the previous models. The
results of Chapter 4 are in line with the numbers that are used in practice.
Consequently, these are the first min-rel models that can be used in practice.

Chapter 5 focuses on an operational issue, the so-called dynamic routing.
In addition to achieving the response time of as many emergency calls as
possible within the 15 minutes threshold, ambulance services also want each
municipality to score well: if a municipality scores very badly, ambulance
service providers have to give a good explanation to the regional politicians.
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During a relocation, an available ambulance is requested to move to a specific
location for the benefit of providing an improved coverage. Various models
for dynamic ambulance management (DAM) already exist to determine what
vehicle should drive to what location. According to what route this ambulance
has to drive to its destination such that it can provide an as good as possible
coverage while driving, is still an open question in the literature. This might
contribute to the performance of (parts of) the region, because the ambulance
generates coverage during the driving to the relocation destination station, in
particular over the areas it passes. By requiring an ambulance to drive a given
route, it may take a little longer for the ambulance to arrive at its destination,
but in the meantime it provides a better coverage of (subareas of) the region.
In this chapter a method is developed to calculate good alternative routes
for ambulances. Then we show to assign a coverage value to a route. By
calculating alternative routes for each route to the destination and giving each
route a coverage value, an efficient route to the destination can be given to
the ambulance. We show that timeliness is distributed more fairly across the
region, while the number of journeys that arrive on time does not change. Most
local performance gain is achieved in places that are difficult to reach from a
base location. Dynamic routing is much faster to implement and cheaper to
realize as a solution than building a new base location.

Chapter 6 describes a pilot study, which we performed to evaluate DAM
policies in practice. In collaboration with ambulance service provider GGD
Flevoland, two policies that have been developed within the REPRO research
project have been evaluated over a period of twelve weeks. For this study
both policies have been adjusted to be able to apply the policies in practice.
Furthermore, software has been created and made available for operational use
in the dispatch center. During the pilot the fraction of late ambulance arrivals
was decreased by a third, making it the first year that the ambulance region
reached the national standard of responding in 95% of the high urgency calls
within 15 minutes. We also observed qualitative advantages that we had not
previously predicted: centralists take faster relocation decisions (especially
when there is a high workload in the dispatch center), and the software enables
the dispatchers to have a better overview of the available ambulances.

The testing interface for ambulance research software, TIFAR, is a software
framework that focuses on calculating the implications of decisions in the
logistic processes within ambulance care—though simulation and optimization.
In Chapter 7 we give an overview of the structure of TIFAR. This can be used
to evaluate the consequences of policy changes, such as moving base locations,
adjustments in personnel planning, or a replacement of the relocation policy.
TIFAR contains classes that can accurately address the behavior of ambulances
and the dispatch center, and it has easy-to-use connectors to various databases
that contain information about the ambulance region, including information
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about schedules and historical call record data. Through a link with the Coin-
OR optimization software, mathematical models can also be implemented in
TIFAR that calculate the optimal base locations. The results of Chapters 2, 4
and 5 were obtained using TIFAR’s simulation engine or calculated using its
classes and database infrastructure. Furthermore, this framework was used to
implement the software of the pilot study as described in Chapter 6.
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Ambulancezorg is een toepassingsgebied waaraan wiskundige optimalisatie-
modellen substantieel kunnen bijdragen. Dit proefschrift behandelt diverse
nieuwe modellen, die niet alleen vanuit een wetenschappelijk oogpunt in-
teressant zijn, maar die ook grotendeels hun weg gevonden hebben naar de
praktijk.

Het meldkamermodel, dat in Hoofdstuk 2 behandeld wordt, is een simu-
latiemodel dat in detail de processen van de meldkamer-centralisten nabootst.
Hoewel de literatuur over algemene meldkamers divers en omvangrijk is, blijkt
dat specifieke modellen voor ambulancemeldkamers nagenoeg afwezig zijn.
Meldkamers ambulancezorg (MKA’s) onderscheiden zich door zeer strikte
eisen aan de responstijden en een grote diversiteit aan taken. Uniek in onze
benadering is dat de diverse feedback-momenten in kaart worden gebracht,
de prioriteiten van de verschillende soorten telefoongesprekken gerespecteerd
worden, en vooral dat er meerdere manieren zijn waarin de simulatiemodellen
voor MKA’s ingericht kunnen worden, d.w.z. dat zowel functiedifferentiatie
als (uitsluitend) generalisten wordt toegelaten. Bij (volledige) functiedifferen-
tiatie is er een groep gespecialiseerde centralisten die de aanname doet, o.a.
de triage, en een andere groep specialisten die verantwoordelijk zijn voor
de coördinatie van het wagenpark en de communicatie met derde partijen
zoals ziekenhuizen, de zogenaamde uitgiftecentralisten. Generalisten zijn
flexibel omdat ze zowel de aanname als de uitgifte kunnen doen, maar zij zijn
daarentegen wel duurder. Het tevens behandelde mixed model is de ‘gulden
middenweg’ die een combinatie van aannamecentralisten, uitgiftecentralisten
en generalisten toestaat. Het meldkamermodel, in al zijn vormen, voorspelt
de wacht- en doorlooptijden gegeven het aantal centralisten van ieder specia-
lisme. Op basis daarvan kan een kosten–baten analyse gedaan worden. Aan de
hand van meta-data van telefoongesprekken door meldkamer Utrecht konden
er goede schattingen gemaakt worden van de modelparameters. Er wordt
geconcludeerd dat afhankelijk van de werklast van de meldkamer de optimale
indeling verandert: bij lage aantallen hulpverzoeken zijn generalisten het meest
kosten-efficiënt, maar naarmate dit aantal toeneemt, loont functiedifferentiatie.
Bij functiedifferentiatie zal het vaak zin hebben om één generalist te houden
die bij pieken van zowel aanname als uitgifte kan bijspringen.

Hoofdstukken 3 en 4 behandelen het zogenaamde adjusted queueing frame-
work. Primair worden ambulancediensten beoordeeld op de fractie van ritten
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waarbij de ambulance tijdig aanwezig. In deze berekening beschouwt men
alleen de (potentieel) levensbedreigende situaties, dat zijn de ritten met A1-
urgentie. Als behaalde prestatie wordt bijvoorbeeld vermeld dat 94% van de
ritten met A1-urgentie van een verzorgingsgebied is binnen de 15 minuten
ter plaatse. Hierin wordt in dimensie tijd het jaargemiddelde genomen, en in
ruimte alles platgeslagen tot één punt, waardoor er één regionaal getal berek-
end kan worden dat de jaarprestaties van de hele regio omvat. Het nadeel van
deze benadering is dat lokale belangen amper vertegenwoordigd zijn. Het
loont immers om alle ambulances rondom de stedelijke gebieden met het over-
grote deel van de zorgvraag te concentreren en de enkele rijtijdoverschrijding
in de landelijke gebieden voor lief te nemen. Minimal-reliability (min-rel)
modellen benaderen de prestaties anders. Zij rekenen het minimale aantal
ambulances uit dat nodig is zodanig dat op elk punt van de regio een gegeven
tijdigheidspercentage gehaald kan worden. De maximal availibility (max-av)
modellen zijn hieraan verwant; deze proberen een beperkt aantal ambulances
zodanig te plaatsen dat zoveel mogelijk potentiële patiënten binnen dit gegeven
tijdigheidspercentage bereikt kunnen worden. Bestaande min-rel en max-
av modellen hebben een aantal nadelen. Veel modellen hebben een vaste
bezettingsgraad die voor elke wagen gelijk is, wat onrealistisch is aangezien
ambulances in stedelijke gebieden meer dan in landelijke gebieden op een
post zijn. Bij andere voorgaande modellen mogen de aankomstintensiteit,
de bedieningsduur en het toegestane percentage rijtijdsoverschrijdingen niet
teveel afwijken tussen verschillende punten in de veiligheidsregio; als dat toch
gebeurt, zal dat meer benodigde ambulances als gevolg hebben. Onze aanpak
staat daarentegen wel toe dat de voorgenoemde drie parameters voor ieder punt
ongelimiteerd verschillen, en dat de bezettingsgraad per ambulance ook niet
gelijk hoeft te zijn. In Hoofdstuk 3 wordt uitgelegd waarom de eerdere mod-
ellen overschattingen geven, en wordt uiteengezet op welke wijze de modellen
aangepast moeten worden zodat ze toepasbaar worden op veelzijdige regio’s.
Dit resulteert in het adjusted queuing framework.

Hoofdstuk 4 introduceert twee nieuwe min-rel modellen die gebruik maken
van het adjusted queuing framework uit het voorgaande hoofdstuk. Het eerste
model formuleert een mixed integer program dat het absolute optimum vindt
voor het minimaal aantal ambulances zodanig dat op elk punt in de regio de
vereiste prestaties behaald wordt. De keerzijde van dit model is dat het alleen
toepasbaar is voor relatief kleine modelinstanties, vanwege de complexiteit
en de daarmee gemoeide rekentijden. Het tweede model is een heuristiek
die ook in staat is om voor grotere modelinstanties oplossingen te geven.
Deze modellen worden geëvalueerd aan de hand van gegevens van echte
ambulanceregio’s die zowel landelijk als stedelijk gebied bevatten. Numerieke
berekeningen laten zien dat voor elk punt aan de gegeven eisen met minder
ambulances dan in de voorgaande modellen voldaan kan worden. De resultaten
uit Hoofdstuk 4 komen overeen met de aantallen die in de praktijk in gebruik
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zijn, waardoor dit de eerste min-rel modellen zijn die bruikbaar zijn in de
praktijk.

Hoofdstuk 5 richt zich op een operationeel vraagstuk, de alternatieve routes.
Ambulancediensten willen, behalve de responstijd van zoveel mogelijk spoedrit-
ten binnen de 15 minuten te halen, ook dat elke gemeente afzonderlijk goed
scoort: als er een gemeente zeer slecht scoort, dan moeten ze daar een goede
uitleg voor geven. Bij voorwaardescheppende (VWS) ritten wordt een vrij
inzetbare ambulance verzocht om naar een specifieke standplaats te bewegen
ten behoeve van de dekking. Diverse modellen voor dynamisch ambulanceman-
agement (DAM) bestaan al om te bepalen welk voertuig naar welke standplaats
moet rijden. Een open vraag is nog volgens welke route deze ambulance “het
beste” naar z’n bestemming kan rijden. De routekeuze kan uitmaken voor
de prestaties van de regio, omdat de ambulance tijdens het rijden naar de
VWS-bestemmingspost dekking genereert over de gebieden waar hij langs
komt. Door een ambulance te vragen om te rijden kan het wel zijn dat hij
er langer over doet om op zijn bestemming aan te komen, maar als voordeel
levert deze ambulance ondertussen een betere dekking over de regio op. Netto
kan dat er dus voor zorgen dat er (lokaal) meer hulpverzoeken binnen de
normtijden gehaald worden. In dit hoofdstuk wordt een methode ontwikkeld
waarmee voor ambulances goede alternatieve routes kunnen worden berekend.
Vervolgens wordt getoond hoe er aan een route een dekkingswaarde toegekend
kan worden. Door voor elke route naar de bestemming alternatieve routes te
berekenen, en iedere route een dekkingswaarde te geven, kan een efficiënte
route naar de bestemming aan de ambulance worden meegeven. De resulaten
tonen aan dat de tijdigheid eerlijker over de regio verdeeld wordt, terwijl het
aantal ritten dat op tijd komt niet verandert. De meeste winst wordt behaald op
plaatsen die vanaf een standplaats slecht te bereiken zijn. Alternatief routeren
is bovendien een stuk sneller en goedkoper te realiseren dan een standplaats
bijplaatsen.

In Hoofdstuk 6 wordt de pilotstudie beschreven, waarin de in het onderzoeks-
project ontwikkelde methoden in de praktijk getest worden. In samenwerking
met ambulancedienst GGD Flevoland zijn gedurende twaalf weken twee DAM
methoden getest, die binnen het REPRO-onderzoeksproject ontwikkeld zijn.
Voor deze studie zijn de methoden aangepast om deze in de praktijk toe te
kunnen passen. Bovendien is er software geschreven die de VWS-voorstellen
uitrekent en deze inzichtelijk met pijlen op een kaart van de ambulanceregio
aan de centralisten toont. Tijdens de pilot was er een reductie van een derde
in rijtijd-overschrijdingen, waardoor dit het eerste jaar was dat de veiligheids-
regio de landelijke norm haalde. Ook waren er kwalitatieve voordelen die
we voorheen niet voorspeld hadden: centralisten zijn wanneer het drukker
is sneller in staat om een VWS-beslissing te nemen, en worden door onze
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software in staat gesteld om een beter overzicht te houden van de vrij inzetbare
ambulances.

De testing interface for ambulance research software, kortweg TIFAR, is een
simulatie-framework dat zich richt op het simuleren en doorrekenen van lo-
gistieke vraagstukken in de ambulancezorg. In Hoofdstuk 7 wordt de structuur
van TIFAR beschreven. Hiermee kan in kaart gebracht worden gebracht wat
het gevolg is van het veranderen van de standplaatslocaties, aanpassingen aan
dienstroosters, of een vervanging van het VWS-beleid. TIFAR bevat klassen
die het gedrag van ambulances en de meldkamer nauwkeurig kunnen naboot-
sen, en eenvoudige koppelingen hebben met diverse databases die informatie
over de regio bevat, waaronder informatie over de roosters en historische rit-
ten. Door een koppeling met de Coin-OR optimalisatie software kunnen in
TIFAR ook wiskundige modellen geïmplementeerd worden die de optimale
standplaatslocaties berekenen. De resultaten van Hoofdstukken 2, 4 en 5 zijn
in TIFAR gesimuleerd of met z’n klassen en database-infrastructuur berekend.
Ook de pilotstudie van Hoofdstuk 6 is in dit framework geschreven.
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