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Abstract

The paradigms of service–oriented computing (SOC) and its underlying service–
oriented architecture (SOA) have received a lot of attention recently and have
changed the way software applications are designed, developed, deployed, and con-
sumed. Due to these paradigms, software engineers can realize applications by ser-
vice composition, using services offered by third parties. In the competitive market
of composite services, the commercial success of composite service providers (CSP)
is directly related to their ability to offer services at sharp price/quality ratios.

This raises the need to realize desired client perceived Quality of Service (QoS)
levels at minimal cost. The problem of controlling QoS in SOC is complex in that
the ownership of the services is decentralized, as a composite service makes use of
services offered by third parties. Although a plethora of well–known QoS–control
mechanisms exists for “atomic” Web services used for the composition, it remains
a challenge how to exploit these mechanisms for QoS–control in SOA in a cost–
effective way. The great potential for composite service providers to realize dramatic
cost savings and/or revenue improvements by optimizing the QoS–control in SOA
has not been exploited much so far. To address this issue, proper modelling of the
effects of QoS–control parameters is required. Once the models are specified, analysis
of these models to derive the optimal settings of the parameters is a natural next
step.

This thesis contributes models and methods to address these QoS–control issues
within SOA. We develop the models of the runtime end–to–end QoS–control mech-
anisms, that are used to satisfy QoS requirements of an individual composite service
request (e.g. response time) while optimizing some long–term goal (e.g. execution
cost minimization, expected revenue). These models, based on per–request, per–task
service selection, facilitate development (using, among others, dynamic programming
approach) of simple, yet effective optimal decision–making policies in order to satisfy
specified QoS levels. We demonstrate the effectiveness of the developed solutions as
well as significant revenue improvements by extensive numerical experiments. The
derived policies have negligible overhead with respect to the decision–making process
and control actions to be taken by the CSP. Besides, the implementation of these
policies is relatively simple, e.g. as a lookup table. The control actions may be au-
tomated, and allow for fast reactions to the changes in the volatile service execution
environment.

In our view this thesis presents a significant step forward to envisioned autonomous,



Abstract

economically profitable systems of services and applications of the future. Our ap-
proach opens many interesting opportunities for further research in the challenging
area of QoS–control of such “system of systems”.

x



CHAPTER 1

Introduction

The goal of this chapter is to introduce the research questions addressed in this
thesis, and to detail our contributions. To do so, we first position and motivate the
work presented in this thesis in Section 1.1. The problem statement is discussed in
Section 1.2. In Section 1.3 we formulate our research questions, which are followed
by an outline of the main contributions of the thesis in Section 1.4. Finally, in
Section 1.5 the structure and organization of the thesis is presented.

1.1 Background and motivation

Almost 90% of the data in the world today has been created in the last two years
alone [54]. According to the recent study [16], Americans consume on average 3.6
zettabytes (3.6 · 1021 bytes) per day. The consumed information is provided by
many applications that have blended into our everyday lives. These applications
are deployed at versatile platforms and use communication networks that span our
world. The emergence of the Internet allows newly deployed applications and services
to easily find the way to the millions of users. At the same time, the companies
developing applications are engaged in global competition, and we witness a sharp
decline in new applications’ time–to–market. The ever shorter time–to–market is
achieved as more and more applications are built by integrating and composing
already existing services offered by different stakeholders.

The composition and integration of services is possible due to the fact that there is
an ongoing evolution of (software) systems. In previous decades, software applica-
tions and services evolved from monolithic, mainframe–centric and centralized, via
client–server systems and applications, to recent data–centric, dynamic and highly
distributed. One of the latest “species” evolved during the course of this evolu-
tion is Service–Oriented Computing (SOC). SOC [77] is a computing paradigm that
utilizes services as fundamental elements to support rapid, low–cost development of
distributed applications in heterogeneous environments. Rather than building a soft-
ware system “from scratch”, according to the SOC paradigm, the applications are
developed by composing autonomous, loosely–coupled, and platform–independent
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Web services 

Input: abstract composition (workflow) 

Discovery 

QoS-based  
selection 

Output: concrete composition 

Abstract service 

Concrete web service 

Alternative web services 

Figure 1.1: Conceptual overview of service composition. Abridged from [2].

networked services [40, 78]. These services can be discovered and invoked by differ-
ent participants and used for different applications. The architecture that underlies
SOC is Service Oriented Architecture (SOA) [45, 53, 80]. The process of building
service–oriented applications from existing services is known as service composition
and the result of the composition process is called a composite service [35]. The
problem of service composition, i.e. how to select services that implement tasks
within a given workflow, is one of the most challenging ones within SOC. Service
composition should satisfy both functional and non–functional (e.g. Quality of Ser-
vice) requirements of the designer that performs the service composition, and we
denote this composition QoS–aware service composition.

In Figure 1.1 a conceptual overview of the QoS–aware service composition problem is
given [2]. For a given business description of the service composition (i.e. workflow),
there are (potentially) many functionally equivalent services implementing a single
task within given workflow. These concrete services for each task in the workflow
are identified by the discovery engine using syntactic/semantic functional matching
between the tasks and service descriptions. This results in a list of functionally
equivalent alternative services per task. These alternative services differ only with
respect to their QoS properties. The goal of QoS–aware service selection is to select
one or more concrete services from each list so that the aggregated QoS values

2



1.2. Problem statement

satisfy the client’s end–to–end QoS requirements. The problem of optimal QoS–
aware service composition, i.e. the selection of services whose composition results in
the“best”QoS of composite web services, is known to be a NP–hard problem [2,8,21].

1.2 Problem statement

As the services used for composition are usually deployed in a volatile execution envi-
ronment, performance–related problems could occur relatively often during services’
execution processes. The QoS experienced by the end–user of a composite service
depends on the QoS levels realized by the individual services; a poorly performing
service used for composition may strongly impact the end–to–end QoS of a com-
posite service. This may lead to the client’s dissatisfaction and loss of revenue for
composite service providers (CSP). To address this problem a number of re–active
adaptations based on monitoring of services’ execution process have been proposed.
These solutions usually require human intervention for the root–cause analysis of
the problem, and alternation (i.e. adaptation of) the service composition in order
to improve on QoS.

There is a need for pro-active run–time end–to–end QoS–control that properly re-
sponds to short–term QoS degradations. The actions (controls) are taken in order
to satisfy end–to–end QoS requirements of an individual composite service request
(e.g. response time) while optimizing some long–term goal (e.g. execution cost
minimization). The actions (controls) taken for a single composite service request
depend on information gathered using real–time monitoring of QoS. In some cases,
the QoS–control may require run–time service selection for each task within a given
workflow.

The actions taken would certainly impact the revenues of the CSP. For example,
one of the alternative services for a single task from Figure 1.1 may provide faster
response (i.e. smaller response time) than other services, but this comes with a
price, as this service is likely to be more expensive than slower alternatives. The
question for the CSP is how much more expensive it is to execute the adapted service
composition as compared to the original one. This important aspect of the cost of
control has been in general neglected so far, with a noticeable exception of [62].

There is an apparent tradeoff between the CSP’s objective to realize and retain end–
to–end QoS guarantees to its customers and at the same time optimize its revenue.
The problem is that the available QoS–control concepts are powerful, but that today
little is known about how to cost–efficiently exploit the possibilities for QoS–control
in SOA.

Run–time mechanisms are particularly promising (because they allow for per–request
state–dependent control decisions), but the proper use of these complex mechanisms
in the volatile and heterogeneous SOA environment is highly challenging. In this
thesis we develop and analyze quantitative models and methods for the optimal use

3
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of these mechanisms, balancing the complex trade–off between guaranteeing QoS on
the one hand and minimizing cost (optimizing revenue) on the other hand.

1.3 Main research questions

The problems outlined in Section 1.2 motivate the research conducted as part of this
thesis work. More specifically, the following central research questions are addressed
in this thesis:

1. How to model the effect of the parameter settings of the QoS–control mech-
anisms on the end–to–end QoS? The models should capture the dominant
factors that influence QoS yet allow for (mathematical) analysis and optimiza-
tion.

2. How to analyse and use these models to derive optimal settings of the pa-
rameters of the control mechanisms? The optimal settings should maximize
(long–term) revenue subject to pre–set QoS requirements and related costs and
rewards/penalties.

1.4 Contributions

Guided by the research questions stated in Section 1.3, the main contributions of this
thesis to the state–of–the–art in service composition research can be summarized as
follows:

Contribution I We develop models and derive rules for the optimal setting of so–
called admission control mechanisms for QoS control of composite services.
These highly effective mechanisms are aware of the execution state within the
composition.

Contribution II We develop a model and investigate the performance potential of
dynamic service selection based on delayed state information.

Contribution III We develop models and methods to identify optimal stopping
policies that may be applied during the execution of a workflow. These policies
are derived with the objective to maximize revenue of the CSP subject to end–
to–end QoS constraints.

Contribution IV We develop various models for the analysis of QoS–aware per–
request run–time service composition. Using these models, we formulate algo-
rithms to identify optimal policies for dynamic service compositions, subject
to end–to–end QoS constraints.

Contribution V We develop models and methods to identify optimal setting of
conditional retry mechanisms for service composition. A retry (service request)

4



1.5. Overview of the thesis

is generated when a service selected to execute a task within a workflow does
not generate the response within a pre–determined time.

1.5 Overview of the thesis

The remainder of this thesis is organized as follows:

Chapter 2 provides background information on relevant concepts and techniques, as
well as research related to the remainder of this thesis. We discuss the main relevant
ideas of SOA and state–of–the–art QoS–aware service composition and QoS–control
mechanisms.

In Chapter 3 overload control for composite Web services in SOA is studied. Two
practical admission control rules are developed resulting in effective mitigation of the
severe overload effects for the service composition. The objective of these rules is to
keep end–to–end response time and availability at agreed QoS levels. The theoret-
ical background and design of these admission control rules as well as performance
evaluation results obtained by both simulation and experiments are discussed. This
results of this chapter are the foundation of our first contribution.

In Chapter 4 the performance potential of dynamic (run–time) Web service selec-
tion is investigated for a single task implemented by a number of alternative concrete
services. The response times for the case of static web service selection and for the
case where dynamic web service selection is applied, are compared. Simulation re-
sults are presented for different run–time selection strategies in scenarios ranging
from the “ideal” situation (i.e. up–to–date state information, no background traffic)
to more realistic scenarios in which state information is stale and/or background
traffic is present. In particular, the effectiveness of a selection strategy based upon
the “synthesis” of the Join the Shortest Queue and Round Robin strategies is illus-
trated. For some specific scenarios we derive and validate insightful (approximate)
analytical results for the response times. The results of this chapter represent our
second contribution.

In Chapters 5–8 we focus on the problem of per–request, per–task service selection
for composite web services represented by workflows that contain multiple tasks.
The CSP is rewarded by its clients when the achieved end–to–end response time
is smaller then the promised deadline. The long–term objective of such dynamic,
run–time service selection strategies is to maximize the profit of the CSP, taking into
account the execution costs incurred by the CSP per service request. We gradually
increase the amount of additional choice that is utilized to make decisions. The last
three contributions of this thesis are established in chapters 5–8.

In Chapter 5 the problem of expected profit maximization for orchestrated sequen-
tial service composition is investigated. The main question addressed is whether to
terminate the execution of a single request within the composite service workflow,
and if so, when to do it. Depending on the actual response time of executed services,

5



Chapter 1. Introduction

and taking into account the execution costs, as well as revenue and penalty functions,
a dynamic programming based algorithm and a heuristic solution are compared. For
both solutions the revenue gains are quantified when compared to the baseline case
of static service composition.

In Chapter 6 the question of run–time dynamic service composition is addressed.
For each of the tasks within a given workflow, a number of service alternatives may
be available, offering the same functionality at different price/quality levels. We
present a fully dynamic service composition approach, where for each individual
request and each task in the workflow it is decided at runtime which service is
invoked. The decisions are based on observed response times, costs and response
time characteristics of the alternatives as well as end–to–end response time objectives
and corresponding rewards and penalties. We derive the service selection policy
maximizing expected revenue using a dynamic programming approach. Extensive
numerical experimentation demonstrates huge potential gain in expected revenues
using the dynamic approach compared to other, non–dynamic approaches.

In Chapter 7 the revenue improvements for the orchestrated composite service are
quantified for the case when service availability is taken into account next to the
non–functional QoS parameters considered in the model in previous chapters. The
availability of services is represented by an (a–priori) known probability. Which
service alternatives are available for the task that is to be executed is known at the
decision moment.

In Chapter 8 optimal run–time service selection methods based on conditional re-
quest retries are investigated, and the model specified in Chapter 6 is extended to
accommodate for these requests. Here, the actual service requests may be used as
probes to assess whether a service used for composition is available or not. We also
extend upon the analysis presented in Chapter 7, as this analysis assumes that it is
“known” (e.g. due to constant monitoring of the services) which of the service alter-
natives are available for given task. Instead of constant monitoring of the services
by probes, i.e. service requests that are not part of the composite service execu-
tion, the actual service requests are used to determine whether the selected service
is transiently non–responsive (i.e. not available) and what is the optimal moment
to make such a conclusion. When the service that has been selected to serve the
request is not responsive, an alternative service implementing the same task may be
selected, provided that the benefits of such action (reward for CSP when deadline is
met) outweigh the costs of it (penalty and additional execution costs).

Chapter 9 concludes the thesis and provides an outlook on future research directions
opened up by this work.

6
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CHAPTER 2

Service Composition and Quality Control

In Chapter 1 we scoped this thesis to end–to–end QoS control of Web service compo-
sitions within SOA. In this chapter, we will provide background on the techniques,
approaches and solutions that are the most relevant for our work.

In Section 2.1 we introduce the most important elements and characteristics of SOA
relevant for the problem at hand. In Section 2.2 we discuss the Web services and Web
services protocol stack since Web service technology is currently the most prominent
realization of SOA. In Section 2.3 two general types of service composition, namely
orchestration and choreography are defined. The main concepts of QoS and SLAs are
presented in Sections 2.4 and 2.5, respectively. The QoS control mechanisms relevant
for this thesis, namely admission control and QoS–aware service composition, are
discussed in Section 2.6. Finally, an extensive state–of–the–art overview of these
control mechanisms is given in Section 2.7.

2.1 Service Oriented Architecture - basic concepts

There are many different definitions of SOA and its main characteristics, especially
among practitioners. This resembles a bit the famous poem of John Godfrey Saxe
entitled “The Blind Men and the Elephant” [85]. In it, six blind men from In-
dostan encounter an elephant – each of the men then describes the elephant differ-
ently because they are influenced by their individual experiences (see Figure 2.1).
SOA was first introduced in 1996 by the Gartner Group [87]. SOA originates from
object–oriented and component–based software development, and aims at enabling
developers to build collaborative applications, regardless of the platform where the
applications run and of the programming language used to develop them. This is
achieved by the use of independent software units, called services.

A service is a valuable resource offered by a provider usually for a fee. The resource
may be physical or a process that is made available for use by others. In general, SOA
consists of three classes of entities: the providers, consumers and registries. Services
are typically discovered through a service registry, which decouples service provider
and service client. In this way, the well–known SOA “triangle” [52] is established,
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Figure 2.1: Six blind men and the elephant. Taken from [66].

see Figure 2.2. A service–oriented system can have many consumers and providers
that are possibly located anywhere on a computer network.

Don Box summarized the essential common principles of SOA into four tenets [20]:

• Boundaries are explicit. A service–oriented application consists of services that
are spread over large geographical distances, ownership and trust domains,
and operation environments. In order to reduce the cost of cross–boundary
communication, explicit message passing is applied for services rather than
implicit method invocation.

• Services are autonomous. Services are independently deployed and a deployed
service does not assume the existence of its consumers. The topology of a
service–oriented system is dynamic, i.e. changing with time. New services
may be introduced to the system without announcements. The applications
consuming a service can leave the system or fail without notification.

• Services share schema and contract, not class. Services interact by message
passing. Message structures are specified by schemas, and message–exchange
behaviours are specified by contracts.

• Service compatibility is based on policy. A service has a set of policies that

8



2.2. Web Services

depict the properties of interaction with a service, e.g. security protocols,
transactional properties, and so on.

So far, the most common realisation of SOA is achieved by using Web ser-
vices [11, 102]. Web services provide a set of technologies to support the vari-
ous elements that include service description (WSDL, [51, 105]), service discovery
(UDDI, [93]) and service binding (SOAP, [104]). The Internet is the ubiquitous
underlying infrastructure of Web Services, and therefore Web Services inherit both
the virtues and vices of the Internet. The virtues include pervasiveness, ubiquity,
openness and flexibility. The vices originate in the open nature of the Internet that
is a possible cause of many QoS–relating issues. As the web service technology is

Service 

Consumer

Service 

Provider

Registry

Invoke/bind

publishfind

Figure 2.2: Basics of the Service Oriented Architecture.

currently the most prominent realization of SOA, we explain it in some more detail
in the next section.

2.2 Web Services

The World Wide Web Consortium (W3C) defines two major classes of Web ser-
vices: arbitrary Web services and REST–compliant Web services. Arbitrary Web
services comprise the following core open technologies and specifications (see also
Figure 2.3): Extensible Markup Language (XML) and XML Schema Definition Lan-
guage (XSD), Standard Object Access Protocol (SOAP), Web Services Description
Language (WSDL) and Universal Description, Discovery, and Integration (UDDI).
Communication between services is message based and specified in standards. SOAP
is a XML–compliant specification recommended by W3C as the communication stan-
dard for Web services. SOAP messages are transported using the Hypertext Trans-
port Protocol (HTTP). WSDL specifies how to construct a SOAP message to be
able to communicate with a service. The WSDL interface of a service describes the
operations supported by the service. UDDI is a mechanism to register and locate
web service applications on the Internet.

9
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Figure 2.3: Overview of Web Service protocol stack and standards.

A rather new style for designing web services is the Representational State Transfer
or REST–style architecture. The term REST was first introduced in 2000 by Roy
T. Fielding in his PhD thesis [41]. REST ignores the details of component imple-
mentation and protocol syntax and focus on the roles of components, the constraints
upon their interaction with other components, and their interpretation of significant
data elements [42]. A RESTful Web service is based on the concept that a service
consists of different sources of specific information, each of which is referenced with
a unique global identifier. The resources can be manipulated by exchanging docu-
ments through a standardized interface using a limited number of methods in HTTP
1.0 or extensions as defined in HTTP 1.1.

We do not make a distinction in this thesis between above–mentioned two classes of
Web services. We are mainly focused on non–functional, i.e. QoS properties of these
services. The actual implementation and class of Web service are of little importance
to us here.

2.3 Service composition

One of the basic claims of Web services is their composability [52] into value–added
structures, so–called service compositions. Service composition is often cited as one
of the key research topics in SOC [78]. Generally, two types of composition (see also
Figure 2.4) can be distinguished [62,79]:

• Service orchestration refers to compositions where one central controller “or-
chestrates” (steers) the execution logics. The execution control is central-
ized in a single composition engine. The service orchestrations are intra–
organizational and reflect business processes within an organization, although
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Figure 2.4: Two basic types of composition: orchestration (left) and choreography.

some of the services used in the orchestration may well be external to the or-
ganization. Service orchestrations are the compositions most commonly seen
in practice, and many tools and languages exist to model orchestrations.

• Service choreography is the more complex case of service composition, and no
central controller exists in it. Every organization participating in the choreog-
raphy has its own composition engine, and control over the execution is passed
between those engines using well–defined interfaces. There is no entity with
knowledge of the whole composition. Each partner only knows its own internal
execution flow and the interfaces of the entities it interacts with. Due to this,
choreography has proven challenging to implement in practice and has gained
little attention so far.

The work described in this thesis deals solely with issues of service orchestration.
Hence, in the remainder, the terms composition and orchestration are used inter-
changeably.

2.4 Quality of Service

According to ISO 8402 [55], the quality of software is defined as “The totality of
features and characteristics of a product or service that bear on its ability to satisfy
stated or implied needs”. Those needs can be interpreted in various ways depending
on an application domain. Although definitions of the basic QoS metrics in litera-
ture [59, 82] may vary to a certain extent, one of the most common ways to define

11
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the most frequently used QoS metrics is the following [36,67]:

Availability: Availability describes the ratio of the time the service is available for
accepting requests over the total time.

Performance: Performance includes such metrics as latency, service response time
and service throughput.

• Throughput is defined as the number of requests served per unit of time.

• Response time refers to the time required for processing a single request.

• Latency is the time elapsed since a request from a client has been sent
and a corresponding response was obtained. From a client’s perspective,
latency includes network delay and response time.

Reliability: Reliability refers to the ratio of the successful service invocations over
the total number of service invocations. A service invocation is considered
successful if it does not result in an exception or failure on the service site.

In this thesis, we have mainly considered response time (latency), availability and re-
liability QoS metrics. These QoS metrics are usually part of Service Level Objectives
(SLOs), which themselves are part of SLAs. Next to the QoS metrics (SLOs), service
level agreements usually specify the execution costs, which refer to the amount of
money that the service consumers pay to the service provider for the execution (i.e.
usage) of its services. Further, SLAs may specify the amount of money that the
service provider reimburses to its clients when one or more service–level objectives
are not been met, in the form of a penalty. This is further described in the next
section.

2.5 Service Level Agreements

A SLA is a legal contract that specifies the minimum expectations and obligations
that exist between a service provider and a service consumer [100]. It has to be mu-
tually agreed by both sides. A typical SLA consists of two main parts. The first part
represents the functional aspects of the respective service, e.g. what does the service
do, which input parameters are required, in which format, which results the service
sends back to the consumer, and so on. The second part specifies the guaranteed
aspects which include, among others, SLO, service level evaluation rules, measure-
ments criteria, and ramifications of failing to meet (or indeed exceeding) these SLOs.
The refund policies (penalties) for service–level violations can be specified relative
to the service cost or in absolute terms.

Even without a SLA, a service can still be invoked. In such a scenario, there is no
QoS guarantee, and no–one is responsible in the case of service changes due to poor
performance, functional service change, QoS constraint change, and so on [84].
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In this thesis we consider two different SLA types: a) the SLA between the CSP
and its clients (composite SLA) and b) the SLA between the CSP and third–party
domains (“individual” SLA). The composite SLA specifies nominal response–time
SLO, i.e. the a single value as the end–to–end response–time deadline. Therefore
the CSP guarantees response times smaller than a certain value. Besides, this SLA
may specify (or omit) the fraction of response time realisations that should be within
the deadline. So we consider both hard and soft response–time SLOs in the composite
SLA. Besides, the composite SLA contains possible reward/penalty per composite
service request when end–to–end deadline per individual request is met/missed.

The usage of nominal response–time SLOs within individual SLAs lead to pessimistic
response–time targets and may be overly inefficient as shown in [83]. Therefore, the
SLA agreed between the third–party domains and the CSP specifies soft response–
time SLO, and it is represented by the response–time PDF. The individual SLA also
specifies the execution costs, i.e. how much the CSP pays to the third–party domain
for the execution of a single request. From the viewpoint of third–party domain,
this value represents reward.

The penalties considered in this thesis are in the form of penalty functions. The
penalty function specifies the amount of money that the service provider reimburses
to its clients when one or more objectives that are part of a SLA have not been met.
There are different functions that could be used for this purpose [17,62], but we have
mainly considered the case of constant penalty for the composite service provider in
this thesis. This means that the CSP pays back to its clients a fixed amount of
money for each composite service request that missed the response–time deadline
promised to the customers.

We also assume that, once agreed, SLAs are “static”, i.e., do not change during the
execution of the composite service.

2.6 QoS control mechanisms

In order to realise the performance guarantees (satisfy QoS levels) given to its clients,
the Web service provider may apply different QoS–control mechanisms. These mech-
anisms are, among others, caching, load balancing, content adaptation, admission
control and request scheduling [47]. These QoS–control mechanisms are usually
applied to a single Web server/Web service.

In this thesis we consider end–to–end QoS control mechanisms for composite service,
and have in particular focused on admission control and dynamic service selection
in QoS–aware service composition as the control mechanisms. Therefore, we first
briefly describe these two mechanisms, and then focus on state–of–the–art overview
of admission control and QoS–aware service composition in the next section. At the
end, we briefly describe how we extend current research in this thesis with respect
to application of these mechanisms within SOA.

13
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2.6.1 Admission control

The performance of a Web server/Web service can be affected due to many rea-
sons, e.g. “flash crowds”, sudden execution of background jobs at the server, net-
work/server failure, etc. Some of these reasons are the principal cause of an overload
of the Web system, which typically means that the performance of this system de-
teriorates. One way to mitigate the system overload is admission control, i.e. a
design of admission control policies that will prevent the overload situation. A good
admission–control mechanism improves the Web service performance during over-
load by only admitting a certain limited amount of customers’ request at a time
to the service. The reasoning behind this is that it may be better to reject some
requests in order to complete the other requests and thereby generate some revenue
for the provider.

An admission control mechanism typically consists of three parts: a gate, a controller,
and a monitor. The monitor measures one or more so–called control variables, and
based on the gathered information, the controller decides the rate at which requests
can be admitted to the system. The gate rejects requests that cannot be admitted.
Optionally, a notification message is sent to a rejected client. The requests that are
admitted to the system are served.

There are two basic types of admission control schemes that may be used in Web
services: request–based and session–based. In a request–based scheme there is an
upper limit of the number of requests served by the provider. The customers may
be therefore rejected in the middle of their sessions. In a session–based admission
control scheme, once a customer has been admitted, the the customer is guaranteed
that session would be completed.

2.6.2 Dynamic service selection as part of QoS–aware service
composition

The process of building service–oriented applications from existing services is known
as service composition and the result of the composition process is called a composite
service [35]. The term service composition is very broad and can be classified in many
different ways. We have seen in Section 2.3 that there are two basic classifications,
namely orchestration and choreography. Another possible research domain with
respect to the service composition is QoS–aware service composition.

QoS–aware service composition refers to the composition that is carried out with the
aim to satisfy both functional and non–functional (e.g. QoS) requirements of the de-
veloper. The QoS–aware service composition may be either static or dynamic. Static
service composition takes place before a composite service is actually deployed, and
implies re–active root cause analysis and adaptation (by humans) of the composite
service. Dynamic service composition involves adaptation(s) during the execution
of a service composition.
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The QoS–based service selection is a common QoS–control mechanism for QoS–
aware service composition. QoS–based service selection leads to the optimization
problem to find a service per workflow task from a list of candidate services with the
objective to satisfy certain predefined end–to–end QoS goals. This problem is known
to be NP–hard in general, and a number of heuristics have been suggested. In case
of dynamic service composition, service selection may happen during runtime, and
takes into account the perceived QoS–levels. That requires the optimization problem
to be re–solved, and implies delay in the decision–making process. Therefore, state–
of–the–art solutions perform the per–task selection of services before a composite–
service request is served. In general, the service composition remains the same for a
given request.

In this thesis we focus on dynamic, per–request, per–task QoS–aware orchestrated
service composition, with a minimal impact on the decision–making process. A
short overview of research in the area of QoS–aware service composition is given in
the next section.

2.7 State–of–the–art

In this section we give a high–level overview of the state–of–the–art for admission
control and dynamic, QoS–aware service composition. Specific related works and
their relationship to our contributions are discussed in the corresponding chapter of
each contribution.

We first present specific related works and conclude each sub–section with a high–
level overview of our extension of presented research.

2.7.1 Admission control

The problem of Web server/Web service admission control has received a lot of
attention so far. The most significant Web admission control approaches are briefly
described here.

Kanodia and Knightly [57] develop a multi–class session admission control based on
latency targets. The authors propose a server architecture having one request queue
per service class. The admission controller attempts to meet latency bounds for the
multiple classes using measured request and service rates of each class. Aweya et
al. [10] propose a load–balancing scheme in a cluster of Web servers that includes an
admission control algorithm based on the CPU utilisation metric, that is retrieved
from the Web servers at fixed intervals. The acceptance rate of client requests is
adaptively set based on the CPU performance measures. Cherkasova and Phaal [27],
consider the rejection of sessions when the Web server is overloaded in order to avoid
the consumption of the server resources by a user session that may be interrupted.
The metric used to monitor the Web system performance is the CPU utilisation,
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which is measured during predefined time intervals and used to compute a predicted
utilisation. In case the predicted utilisation exceeds a threshold, the new sessions
that arrive for the next interval are rejected, but the service of already accepted
sessions continues. Once the observed utilisation drops below the given threshold,
the server begins to admit and process new sessions again.

Elnikety et al. [39] develop a session–based admission control and user–level request
scheduling for e–commerce Web sites. The admission control algorithm determines if
admitting the request will exceed the capacity of the system by using an estimation of
the resource usage for that request. The requests are scheduled using their expected
processing times in a Shortest–Job First (SJF) queue. The load of the system is
measured each second, but the admission control is executed each time a servlet
requests a database connection. One of the benefits of this proposal is that it does
not require any modification in the operating system nor the Web software (Web
server, application server or database).

Kihl and Widell [58] monitor the processing delay of each request and, based on this
information, the admission control algorithm considers the admission, or not, of a
new session or request on commercial QoS–aware Web sites. Chen and Mohapa-
tra [26] design a scheduling scheme based on the session–level traffic model. They
propose a Dynamic Weighted Fair Sharing (DWFS) scheduling algorithm to control
overload in Web servers that is based on the probability of of the session that the
requests belong to. Bartolini et al. [14] describe a policy that switches between two
modes depending on the arrival rate detected. When the system is not overloaded,
their approach takes admission control decisions at fixed intervals of time. In case
the arrival rate exceeds a limit, the admission control decisions are taken each time
a new session arrives to the system.

Our extension of State–of–the–Art

Although admission control has received a lot of attention, the majority of the
solutions developed till now are applied within the context of a single domain, either
a single server/service or, more recently, service farm deployments. These solutions
do not include awareness of the execution state of the workflow within a service
composition. In this thesis we focus on admission control rules that can be applied
on per–request, per–task basis within a service composition. In order to achieve this,
the orchestrator keeps track of the execution state within the considered composition.

2.7.2 QoS–aware service composition

QoS–aware service composition has recently been surveyed by Xianglan et al. [108],
and Strunk [90]. A popular field of research is QoS–based service selection. QoS–
based service selection finds an assignment of services (from a set of selected ser-
vices) to tasks within the workflow which maximizes a certain QoS–relating utility
function. This leads to the multidimensional optimization problem that is NP–
hard [113]. Popular techniques in literature to solve this challenge efficiently are
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integer programming (Zeng et al. [113]) and genetic algorithms (Canfora et al. [21]).

Zeng et al. [112, 113] present a QoS–aware composition approach based on state
diagrams to model a composition. A composition is split into multiple execution
paths, each considered to be a directed acyclic graph. For local optimization they
use Multiple Criteria Decision Making (MCDM) to choose a service which fulfils all
requirements and has the highest score. Global optimization is achieved by using
a naive global planning approach (high runtime complexity) and an Integer Pro-
gramming (IP) solution. The authors also describe an approach to re–plan and
re–optimize a composition based on the fact that QoS can change over time. There-
fore, a composition is split into regions according to the state of the tasks that
allow a re–planning by adding constraints of what has already been accomplished to
optimize services that still have to be executed.

Canfora et al. [21] propose an approach to solve the QoS–aware composition problem
by applying genetic algorithms. The genome represents the composition problem by
using an integer array where the number of items equals the number of distinct
abstract services. Each item, in turn, contains an index to the array of the concrete
services matching that abstract service. The cross–over operator is a standard two–
point cross–over, while the mutation operator randomly selects an abstract service
(position in the genome) and randomly replaces the corresponding concrete service
with another one from the pool of available concrete services. The selection problem
is modeled as a dynamic fitness function with the goal to optimize the QoS attributes.
Additionally, the fitness function must penalize individuals that do not meet the
QoS constraints. The approach is evaluated by comparing it to well–known integer
programming techniques. The authors also describe an approach that allows re–
planning of existing service compositions based on slicing [22].

Ardagna, Pernici et al. [7, 8] propose a QoS–aware optimization approach using
dynamic service selection where each service in the composition process can be sub-
ject to global and local constraints which are fulfilled at runtime through adaptive
re–optimization. The authors apply loop–peeling techniques to optimize loop it-
erations and negotiation techniques to find a feasible solution to the optimization
problem. They solve the optimization problem, in particular the fulfilment of global
constraints, under more stringent constraints.

An efficient global optimization approach for QoS-aware service composition sup-
porting global constraints on a composition level is proposed by Alrifai and Risse [2].
The authors decompose global QoS constraints into local constraints with conser-
vative upper and lower bounds. These local constraints are resolved by using an
efficient distributed local selection strategy. The proposed solution consists of two
steps: first, the authors use mixed integer programming (MIP) to find the optimal
decomposition of global QoS constraints into local constraints. In the second step,
they use distributed local selection to find the best Web services that satisfy these lo-
cal constraints. Although this approach is highly efficient compared to existing work
supporting only hard constraints, it does not allow to specify global soft constraints.
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Jaeger et al. [56] present an approach for calculating the QoS of a composite service
by using an aggregation approach that is based on the well–known workflow patterns
by Van der Aalst et al. [95]. The authors analyze all workflow patterns and then
derive a set of abstractions that are well–suited for compositions, so–called com-
position patterns. Additionally, the authors define a simple QoS model consisting
of execution time, cost, encryption, throughput, and uptime probability including
QoS aggregation formulas for each pattern. The computation of the overall QoS of
a composition is then realized by performing a stepwise graph transformation. It
identifies a pattern in a graph, calculates the QoS according to pre–defined aggrega-
tion functions and replaces the calculated pattern with a single node in the graph.
The process is repeated until the graph is completely processed and only one single
node remains. For optimizing a composition, the authors analyze two classes of al-
gorithms, namely the 0/1-Knapsack problem and the Resource Constrained Project
Scheduling Problem (RCSP). For both algorithms, a number of heuristics are defined
to solve the problems more efficiently.

Yu et al. [111] discuss algorithms for Web service selection with end–to–end QoS con-
straints. Their approach is based on several composition patterns similar to [56] and
they group their algorithms according to flows that have a sequential structure and
others that solve the composition problem for general flows (i.e., flows with splits,
loops etc). Based on this distinction, two models are devised to solve the service
selection problem: a combinatorial model that defines the problem as Multidimen-
sional Multi–Choice Knapsack Problem (MMKP) and the graph model that defines
the problem as a Multi–Constrained Optimal Path (MCOP) problem. These models
allow the specification of user-defined utility functions to optimize some application–
specific parameters and to enable the specification of multiple QoS criteria taking
global QoS into account. In the case of the combinatorial model, the authors use a
MMKP algorithm that is known to be NP–complete, therefore, heuristics are applied
to solve the problem in polynomial time. For the general flow structure, the authors
use an IP approach (also NP–complete), thus they again apply different heuristics
to reduce the time complexity.

Conditional retry

Dynamic QoS–aware service composition may be also achieved using retries. When
a Web service is invoked by a client, it expects a response to be generated. If the
reply does not come, either the service is down/overloaded, or some network/service
failure occurred. In the latter case, a retry may be issued, and the response may be
generated. Otherwise, within a typical SOA environment, a retry may be issued to
a different, functionally equivalent service instead of the original one.

The retry as a solution for temporarily unavailable services, have been identified
and classified, among others, in [7, 13]. The performance of basic retry mechanisms
has been analysed in detail by van Moorsel, Wolter, et al. [97, 98, 103]. Their work
has focused on optimal retry mechanisms for a single service with the objective to
minimize the expected response time. Okamura et al. [74] analyse the restart policies
when response–time deadline is given and develop on–line adaptive algorithms for

18



2.7. State–of–the–art

estimating the optimal restart time interval via reinforcement learning. The cost of
the retries are defined as additional time to re–issue the service request.

Yousefi et al. [110] describe a strategy for QoS–aware service selection which takes
advantage of the existing variability in QoS data to provide higher quality services
with less cost compared other QoS–aware service selection methods. In their method,
each request is replicated over multiple independent services to achieve the required
QoS, i.e. to limit the response time by a certain pre–assigned value.

Our extension of State–of–the–Art

With respect to the dynamic QoS–aware service composition, we focus on per–
request, per–task QoS–aware service composition, taking into account different
price/quality levels, as well as reward/penalty functions. We try to perform the
optimal service selection for the task at hand, with the long–term objective such
as profit maximization of the CSP. By doing this, we take into account the cost of
control (adaptation of service composition) as well. Besides, we consider the con-
ditional request retries as one option for dynamic, QoS–aware service composition.
We consider conditional retries for service compositions described by a workflow
that may have more than one task. The request retries are issued only when the
orchestrator estimates that the invoked service (for a given workflow task) is non–
responsive. The estimation is performed using the actual request, and following a
“watchdog timer” approach. Once the timer expires, a retry is issued to e.g. one of
the available alternative services implementing the same task.
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CHAPTER 3

Intelligent Overload Control for Composite Web
Services

As discussed in Chapter 2 the overload of Web services lead to reduced availability
as well as higher response times, resulting in degraded quality as perceived by end
users. Although admission control schemes have been widely accepted and applied,
the application of these control schemes for orchestrated Web services poses a number
of challenges that need to be addressed. One challenge results from the fact that any
provider of the service used for the composition can apply its own admission control
rules. There may not be an alignment of admission control between third–party
provider and CSP. The other challenge is that orchestrator needs to apply admission
control rules that take into account actual QoS levels (e.g. response time) before the
next task in the workflow is to be executed. The admission control schemes that
include awareness of the execution state of the workflow in a composition of web
services, has been rarely analysed so far.

In this chapter, we focus on overload control for orchestrated Web services in SOA.
Specifically, we investigate how orchestrator can deny service for some of the tasks
in order to keep overall web service performance (in terms of end–to–end response
time and availability) at agreed QoS levels.

The main contributions of this chapter are as follows:

• Modeling of admission control for orchestrated Web services using queueing
theory based models.

• Design of two admission control rules for orchestrated Web services using the
proposed models.

• Evaluation of these control rules with respect to both performance and avail-
ability conducted by simulations. Besides, experimental validation of one of
the rules is conducted using actual composite services.

The rest of the chapter is organized as follows. In Section 3.1, we describe the
overload control problem and provide the queueing theory based model of analysed
system. In Section 3.2, we provide a brief overview of related literature. In Sec-
tion 3.3, two algorithms for admission control by the orchestrator are derived from
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the model adopted in Section 3.1. In Section 3.4, the simulation setup to investigate
our solutions is described as well as two simulation cases. In Section 3.5, the results
of an experimental validation are described. In Section 3.6, we conclude the chapter
with suggestions for the future work.

This chapter is based on paper [68].

3.1 Problem description and modelling

Figure 3.1 shows a simplified orchestrated SOA architecture that illustrates our
problem setting. The composite web service comprises of three web services identified
by W1 through W3. The orchestrator consists of a scheduler and a controller. The
scheduler determines the order of the requests to web services W1 through W3, since
it may be different per client. The controller implements web admission control
(WAC) mechanisms. It may happen that web services W1 through W3 implement
WAC mechanisms themselves.

To illustrate operation without overload, let us suppose that a request from Client 1
(#1) arrives at the orchestrator. The scheduler analyses the request, and determines
that the web service W1, W2, and W3 should be invoked in that order. Before
delegating a first job to W1, the controller decides that W1 is not in overload and
assigns it to W1 (#2). On the response (#3) from W1, the scheduler requests the
controller permission to invoke a next job at W2 (#4), and so on until all web
services are invoked, and the response (#10) to Client 1 is generated within a given
deadline. To demonstrate an overload situation, let us suppose that a request from
Client N (#11) arrives at the orchestrator. The scheduler analyses the request,
and determines that the web services W1 and W2 should be invoked in that order.
Before delegating a first job to web service W1, the controller decides that W1 is
not in overload and assigns it to W1 (#12). On the response (#13) from W1,
the scheduler requests the controller permission to invoke a next job at W2, which
is denied as W2 is in overload. As a result, the orchestrator is able to respond to
Client N with a service unavailable message (#14) within given deadline as well as to
prevent escalation of the overload situation of W2. We can see that in the described
overload situation resources of web service W1 have been wasted. Providers of web
services W1 through W3 may apply different state–of–the–art techniques, such as
over dimensioning of computing resources, load balancing, and caching, to prevent
overload in their own domain. However, such performance–improving measures are
beyond the control of the orchestrator as the composite web service typically consists
of web services running in different administrative domains.

We derive next a queueing model of a composition of web services, including an or-
chestrating web service see Figure 3.1. The queueing model forms the mathematical
foundation for our admission control rules.

Suppose that the composite web service consists of web services from the set W =

22



3.1. Problem description and modelling

W1 

W2 

W3 

Client 1 

Client N 

Orchestrator 

Controller 

Scheduler 

1 

2, 12 

3, 13 

4 

5 

8 

9 

11 

14 

10 

requests jobs 

Figure 3.1: Jobs for client requests are routed through a network of web services
(W1, W2 and W3) by an orchestrator.

{W1,W2, . . . ,WN}. In general, the Wj ∈ W, j = 1, 2, . . . , N may be composite web
services themselves. The incoming client requests at the orchestrator are composed
of tasks (jobs) to be sequentially executed by a composition of web services from the
set W. Thus, each task within the request is served by a single web service. Since
the orchestrator may control different composite web services offered by the same
provider, the order in which jobs are executed may differ per client request. The
orchestrator tracks task execution on a per request basis.

In practice, web services serve jobs using threading, which could be modeled using
a round–robin service discipline in which jobs are served for a small period of time
(δ → 0) and are then preempted and returned to the back of the queue. Since δ → 0,
assuming there are n jobs with the same service rate µw, the per job service rate
is µw/n. To simplify analysis, this process is modeled as an (egalitarian) processor
sharing service discipline.

The service time distribution of web service Wj , j = 1, 2, . . . , N is assumed to be
exponential with parameter µj . Jobs arrive at web service Wj with arrival rate λj
and the load of web service Wj is defined as ρj = λj/µj .

We define the response time Li of an incoming client request i as the total time it
takes for a request to be served. The sojourn time (i.e. time spent in the system)
of task j served by the web service Wj from request i is denoted by Sij . We assume
that the orchestrator is not a single point of failure, i.e. that it can instantly serve
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and process all requests. We also ignore possible delay due to network traffic and
orchestrator activity, so it holds that

Li =

N∑
j=1

Sij . (3.1)

A client considers request i as successful when its response time Li is smaller than
given maximum Lmax. We denote by cj a maximum number of jobs allowed to be
served simultaneously by web service Wj . When cj requests are served, the next
request that arrives to be serviced by Wj is denied service by the admission control
rules at service itself. The admission control rule for web service Wj can be modeled
by the blocking probability pcj . Since our objective is to serve as many requests as
possible (within Lmax) in an overload situation, our goal is to find the optimal values
of the cj .

To further simplify analysis, we assume that the web services Wj have the same
values of cj , λj , pcj , and µj , denoted as c, λ, pc and µ, respectively. We address
this optimization problem by modeling the web services Wj ∈ W as a M/M/1/c
Processor Sharing Queue (PSQ). It is generally known that the blocking probability
pc of the M/M/1/c PSQ equals

pc =
ρc

c∑
k=0

ρk
, (3.2)

and that the expected sojourn time at each of the web services equals

E[S] =

1
µ

1− ρ(1− pc)
. (3.3)

3.2 Related work

The use of admission control for Web Servers has been analysed in, for exam-
ple [39,96,109]. Sharifian et al. [89] propose an approximation–based load–balancing
algorithm with admission control for cluster–based web servers. The algorithm clas-
sifies requests based on their service times and track numbers of outstanding requests
for each class of each web server node and also based on their resource demands to
dynamically estimate the loads of each node. Then the estimated available capacity
of each web server is used for load balancing and admission control decisions. The
use of Web Admission Control (WAC) to prevent overload for Web Services has been
discussed in [94, 107]. In the field of composite web services several contributions
have been made focusing on web service scheduling, for instance in [37,38].

Although some of the solutions could be applied to the problem of admission control
for orchestrated services, this has not been specifically analysed in above mentioned
admission control schemes. Besides these schemes do not include awareness of the
execution state of the workflow in a composition of web services.
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3.3 Dynamic admission control algorithms

In the following sub–sections, two dynamic admission control algorithms, so–called
algorithm S and algorithm D are derived from the model discussed in the previous
section.

3.3.1 Dynamic Admission Control Algorithm S

The basic underlying principle of this algorithm is that the expected sojourn time
E[S] of a job in a Web service should be less than or equal to the average available
time for the jobs within the request. Thus, the problem of serving the client request
within Lmax is split up in consecutive steps. In each step, a limit on the expected
sojourn time is calculated in the following way.

The orchestrator divides the maximum response time Lmax over all jobs. At the
moment t∗ when a request enters the orchestrator, the due date for the next task j∗

is calculated. First, the total remaining time for this request, i.e. Lmax−
j=j∗−1∑
j=1

Sij ,

is determined. Then, the remaining time to deadline is divided over all remaining
jobs in proportion to their service requirements. Let Dij∗ be the due date of job j∗

from request i, let Ji be the total number of jobs from request i, let t∗ be the time at
which the due date for job j∗ is calculated, and let νij denote the expected service
time of job j from request i. Now the following relation holds:

Dij∗ = t∗ +

Lmax −
j=j∗−1∑
j=1

Sij

 νij∗∑Ji
j=j∗ νij

. (3.4)

As a result, the remaining time for job j from request i at time t is given by Rij(t) =
Dij − t. When the total remaining time of a request is less than zero, the request is
discarded by the orchestrator and the client is notified. Let R̄ denote the average of
Rij(t).

Dynamic admission control algorithm S is derived using the following constraint: the
expected sojourn time E[S] of a job in a web service should be less than or equal to
the average available time. Therefore, our optimization problem is defined as follows:

max
c

{
c : E[S] ≤ R̄

}
. (3.5)

In 3.5, both c and R̄ are time–dependent, but we omit this to simplify our notation.
Computation of R̄ is straightforward since due times of all jobs within the composite
service are known.
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Substituting 3.3 in 3.5 yields:

max
c

{
c :

1
µ

1− ρ(1− pc)
≤ R̄

}
. (3.6)

Substituting 3.2 in 3.6 yields:

max
c

{
c : c ≤ logρ

(
1 + µR̄(ρ− 1)

)}
for ρ > 1. (3.7)

Therefore, the admission control algorithm is now defined as:

Allow arriving jobs service if ρ < 1 or n ≤ log
(
1 + µR̄(ρ− 1)

)
still holds after the

new job is allowed service.

There are two major issues concerning the algorithm S. First, in order to compute
c the value of ρ is needed and thus the values of λ and µ as well. It is assumed
that the service requirement rate µ is known, but the value of λ is not. The arrival
process (of a web service) will in reality not be known and thus must be estimated.
Therefore, the question arises what is the time period to estimate λ and how to
estimate this value.

The second issue is that the arrival rate is explicitly used to estimate the value of c.
Intuitively the number of jobs, which can be simultaneously served, does not depend
on the number of jobs which arrive at the system. The web service is capable of
simultaneously serving c jobs. The blocking probability adjusts for this fact, but
further investigation of this issue is required.

In the next sub–section, an alternative dynamic admission control rule is derived, in
which the arrival rate λ (and hence ρ) is not used to determine the maximum value
of the number of jobs allowed.

3.3.2 Dynamic Admission Control Algorithm D

The goal of algorithm D is to implement an admission control rule that does not
require the knowledge of the arrival rate λ. This algorithm is based on the relaxed
constraint that only the jobs of “average” size have to be completed on time. Al-
though in practice jobs may enter the system or depart from the system while such
an “average” job is served, we assume that the number of jobs in the system remains
the same. Under these conditions/assumptions we investigate whether effective ad-
mission control is possible.

When the number of jobs n in the queue is assumed to be constant, the expected
sojourn time for a job equals n

µ . When all jobs must be served before their due dates
the problem is defined as follows:

max
c
{c : E[S] ≤ Rij , for all jobs in service} . (3.8)
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Figure 3.2: Overview of the simulation model.

In our case E[S] equals c
µ , and Rij is replaced by R̄, where R̄ determines the average

remaining available service time for all jobs in service. These relaxations lead to the
following optimization problem:

max
c

{
c :

c

µ
≤ R̄

}
. (3.9)

The solution of this trivial problem yields c = µ · R̄. Hence we define the more
practical admission control algorithm D as follows:

Allow arriving jobs service when for number of jobs in service n, inequality n ≤ µ · R̄
still holds after the arriving job is allowed service.

Note that for the calculation of the admission control parameter c, the arrival rate
(and thus ρ) is not needed, which is the major advantage from a practical point of
view compared to algorithm S.

3.4 Numerical experiments

A discrete–event simulation model is constructed to evaluate the proposed admission
control rules. The model is implemented using the software package eM–Plant [91].
The simulation model basically consists of four components as illustrated in Fig-
ure 3.2. Component ‘Client’ generates new requests according to a Poisson distri-
bution with rate λ. Requests are dispatched by component ‘Broker’, that offers
different composite services to its clients. Once a request has been generated a com-
posite service that serves it is randomly assigned. Composite service is described by
its workflow that indicates which web services are invoked in order to serve the gen-
erated request. Each web service is an instance of component ‘WS’. The completed
or denied requests arrive at component ‘Output’, where relevant data is collected.
Before a task is executed by one of the web services in the selected composition, the
web service checks whether this job is allowed or denied service. In case admission
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Figure 3.3: Flowchart of the orchestrator in case of admission control.

control is not used, all incoming jobs are allowed. When admission control is used,
the web service uses an admission control rule to decide whether the incoming job
may be served or not. Figure 3.3 illustrates the flowchart of the orchestrator in case
of admission control. When a new request comes in, the orchestrator determines
whether the response time of this request has already reached deadline, i.e. whether
the remaining time to serve the request is less than zero. If the deadline is reached,
the request is denied service and sent to the output component. It may happen that
the request has been allowed by the orchestrator, but still the web service itself can
not serve the request. That is why, even when the remaining time is greater than
zero, the orchestrator determines whether the request has been denied service by a
single web service used for the composition. If so, the request is also sent to the
output component. If neither the response time deadline has been reached nor the
request has been denied service previously, the next web service in a composition
needed to complete the request is determined. The orchestrator calculates the due
time for the next job, and then invokes the determined web service. For this calcu-
lation the total remaining time for the request is divided over all remaining jobs in
proportion to their service requirements. When all jobs in the request are served,
the response is sent to the output component as well. Two simulation scenarios (or-
dered and with irregular order) were designed to be used to compare the proposed
admission control rules:

• Ordered simulation scenario: The web services are placed in a specific order
i.e. if web service X is invoked before web service Y for one composite service,
the precedence in execution would be the same for every composite service
offered by the orchestrator that uses both X and Y .
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Table 3.1: The workflows of composite services in ordered simulation scenario.

Composite Percentage of
Workflow

service requests
1 W1 →W2 →W3 →W7 →W8 →W9 →W11 5
2 W1 →W2 →W3 →W8 →W9 →W10 20
3 W1 →W2 →W7 →W8 →W9 →W10 5
4 W1 →W2 →W8 →W9 →W10 5
5 W1 →W4 →W8 →W9 →W10 5
6 W1 →W4 →W8 →W9 →W11 10
7 W5 →W10 40
8 W1 →W6 →W8 →W9 →W11 5
9 W2 3
10 W4 2

• Simulation scenario with irregular order: There is no specific execution order
of web services. We have chosen the most of composite services offered by the
orchestrator make use of two specific web services.

Both scenarios are described by

• the (sequential) workflow of each composite service offered by the orchestrator,

• the distribution of requests over the different composite services,

• the (required) service rates of all web services used for the composition.

The arrival rate λ and the deadline Lmax are parameters specified within a given
scenario. There are two performance indicators for the given admission control rules
observed:

• the total number of successfully served requests,

• goodput, defined as the average number of successfully served requests per
second.

A bootstrap period (used to estimate λ) of 15 minutes is chosen as well as a (single)
simulation time of 15 minutes. A total of 15 simulations per scenario have been run.

Ordered simulation scenario

A total of eleven web services W1,W2, . . . ,W11 are used for composition of ten
different orchestrated services. The orchestrated services are represented by their
respective sequential workflows shown in Table 3.1. This table also presents the
distribution of requests over composite services, expressed as the percentage of the
total of service requests. The required service rates of all web services (W1 to W11)
used for the compositions are presented in Table 3.2. The response time deadline
for each composite web service has been set to the same value, Lmax = 8 seconds.
Using test runs, we found the system gets overloaded for λ ≈ 3s−1. Without WAC,
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Table 3.2: The service rates of web services.

Web service W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11

Service rate 5 10
3 5 5 10

3 5 5 10 10 10
3 10

Figure 3.4: Percentage of served requests for ordered simulation scenario.

the simulation runtime rapidly increases as λ increases. For λ = 1s−1 the runtime
(without WAC) is about half a minute. For λ = 10s−1 the runtime has increased
to about 45 minutes. To keep simulation runtimes acceptable, the arrival rates
λ > 10s−1 are not investigated for the situation without admission control. It is
expected that the total of successfully served request and the goodput both have
rapidly decreasing values close to zero when λ > 10s−1 and without WAC.

Simulation results are summarized in Figures 3.4 and 3.5, including 99.7% individual
confidence intervals. Notice that the scale of the horizontal axis changes after λ =
10s−1. It can be seen that both admission control rules seem to perform equally
well and they have a positive effect on goodput. Only at extreme arrival rates, the
difference with the theoretical maximum increases. Goodput drops when admission
control is not used. However, when admission control is not used, there is a slight
increase in goodput between λ = 5s−1 and λ = 9s−1. Especially at λ = 9s−1 the
percentage of successful requests is much larger than expected.

Given the confidence intervals it seems unlikely that this is due to the stochastic
nature of the experiment results. We call this phenomenon the arrival paradox and
it is explained by the following example illustrated by Figure 3.6: consider three
web services, W1, W2 and W3 each with service rate 5. Requests are first served
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Figure 3.5: Goodput for ordered simulation scenario. The case when no WAC is
applied is simulated only for arrival rate(s) λ < 10s−1 due to the length of simulation,
and the fact that goodput would decrease rapidly to the values near zero.
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Figure 3.6: Example of the arrival paradox, where web services coloured grey indicate
overload.

either by W1 or W2 and consequently by W3. If both W1 and W2 are not overloaded,
the goodput from these web services equals the arrival rate of these web services.
Therefore the arrival rate at W3 equals the sum of the arrival rates at W1 and
W2 and hence W3 is in overload and its goodput drops to zero. When the arrival
rates are doubled, one of the web services W1 and W2 may get overloaded. Because
admission control is not used, sojourn times at W1 (as illustrated in Figure 3.6) will
explode. The composite service requests served by W1 will therefore exceed their
respective deadlines. Once served by W1, these requests would be pre–empted by
the orchestrator, as the deadline is missed. Therefore the arrival rate at web service
W3 decreases due to the higher overall arrival rate and W3 no longer is in overload.
Hence, the goodput of W3 increases.
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Table 3.3: The workflows of composite services in simulation scenario with irregular
order.

Composite Percentage of
Workflow

service requests
1 W8 →W6 →W2 15
2 W5 →W2 →W3 →W7 →W6 →W1 10
3 W4 →W3 →W7 →W2 →W6 5
4 W8 →W7 →W5 →W5 →W9 →W1 10
5 W7 →W8 →W2 →W5 →W9 →W1 →W6 20
6 W7 →W4 →W6 →W3 →W5 5
7 W8 →W9 →W1 →W5 5
8 W5 →W8 →W3 →W9 10
9 W6 →W5 →W4 15
10 W1 →W9 →W8 →W2 5

Simulation scenario with irregular order

A total of nine web services W1,W2, . . . ,W9 are used for composition of ten dif-
ferent orchestrated services. The invocation precedence of web services is different
for different composite services, and the most of compositions use either W5 and/or
W6. The orchestrated services are represented by their respective sequential work-
flows shown in Table 3.3. This table also presents the distribution of requests over
composite services.

For the ordered simulation scenario it could be argued that some web services would
never get overloaded. For simulation scenario with irregular order this cannot be
argued. Requests are first served by web services W1, W4, W5, W6, W7 or W8.
Any of these web services will get in overload when the arrival rate is high enough.
Simulation results are summarized in Figures 3.7 and 3.8. Just as in the previous
case, the differences between the two admission control rules seem almost negligible,
except for the goodput achieved for relatively high arrival rates. For relatively low
arrival rates, λ < 5s−1, the D rule results with a slightly worse performance than
without admission control. In all other cases the admission control rules both per-
form better than when admission control is not used. The difference between the
theoretical maximum for the goodput and the observed goodput is larger compared
to ordered simulation scenario, even for small values of λ. In ordered simulation
scenario, the goodput is increasing function, even at high arrival rates. However, in
this simulation scenario, the goodput decreases after λ = 12s−1. This is due to the
fact that more different web services used for the compositions would get overloaded
for considered simulation scenario.
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Table 3.4: The service rates of web services.

Web service W1 W2 W3 W4 W5 W6 W7 W8 W9

Service rate 5 5 4 10 4 4 10 5 5

Figure 3.7: Percentage of served requests for simulation scenario with irregular order.

Figure 3.8: Goodput for simulation scenario with irregular order. The case when
no WAC is applied is simulated only for arrival rate(s) λ < 10s−1 due to the length
of simulation, and the fact that goodput would decrease rapidly to the values near
zero.

33



Chapter 3. Intelligent Overload Control for Composite Web Services

Orchestrator 

JMeter 

W1 W2 W4 W5 W3 

Figure 3.9: System setup for empirical validation of admission control.

3.5 Experimental validation

In this Section we describe the empirical experiments used to validate the simula-
tions of admission control rule D. A total of five web services were built and ten
different orchestrated services were composed. The goodput of orchestrated services
are compared to the simulation results for implemented control rule D.

The functionality of the web services is irrelevant for goodput comparison. In addi-
tion, for setting up the tests, it is convenient when the CPU demand of executing
a web service can be controlled. We therefore implemented web services that cal-
culate a Fibonacci number and each service gets its own number to calculate. The
choice of Fibonacci number influences the CPU consumption of a web service. We
compared the experiments and simulations for the ordered simulation scenario with
admission rule D (WAC D), as well as for the case when no admission control is
applied (NOWAC). A global overview of the experimental setup is given in Fig-
ure 3.9. We used the software package JMeter [5] to generate the requests for the
composite services. The orchestrator and the individual web services (W1 through
W5) are implemented following the design and implementation of the corresponding
components in the simulations. All software was written in Java and executed on
Tomcat [6] extended with Axis2 [4] for web service functionality.

The orchestrated services and distribution of services’ requests are presented in Ta-
ble 3.1. No values of the service rates of web services are given as all individual
web services were configured to calculate the same Fibonacci number. Both the
JMeter and the orchestrator run on the system equipped with 2GB RAM and sin-
gle Pentium IV processors clocked at 3.2GHz. The web services W1, . . .W5 run on
systems equipped with memory capacity of 0.5GB, 1GB, 1GB, 0.5GB and 0,5GB,
respectively, and with Pentium IV processors at 1GHz, 2.4GHz, 2.4Ghz, 1GHz and
1GHz respectively. In each run of JMeter a fixed number of threads (between 1
and 200) were active. Each run used a total time of 30 minutes. An overview of
the experimental results is given in Figure 3.10. The empirical and simulation re-
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Table 3.5: The workflows of composite services in ordered simulation scenario.

Composite Percentage of
Workflow

service requests
1 W1 10
2 W4 10
3 W1 →W2 →W3 →W4 →W5 10
4 W1 →W2 →W4 →W5 10
5 W1 →W2 10
6 W1 →W4 →W5 10
7 W1 →W3 →W5 10
8 W1 →W3 →W4 10
9 W2 →W5 10
10 W3 →W4 10

Figure 3.10: Results of the empirical tests.

sults correlate well. Using WAC the overall goodput was noticeably higher than the
NOWAC scenario. The NOWAC scenario reaches a maximum goodput when there
are a little bit more than 4 requests per second at 15 concurrent threads. The WAC
scenario seems to level between 6 to 7 requests per second at 50 concurrent threads.

3.6 Conclusions and future work

In this chapter we focused on the use of admission control rules by the orchestra-
tor to prevent the composite web service from becoming generally unavailable in an
overload situation. We developed model of the orchestrated web service with admis-
sion control in which Web services are modeled using queueing theory (in particular
M/M/1/c PSQ) and the admission control rule for web service is modeled by the
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blocking probability. The model allows to find the optimal values of the maximum
number of requests to be served simultaneously by a web service, with the objective
to serve as many requests as possible within specified end–to–end response time. Us-
ing this model, two admission control rules (S and D) for orchestrated web services
were derived.

For a number of different web service compositions, the simulations were conducted
with these two rules and a benchmark (in which no admission control rule is used).
Based on simulation results, we conclude that in most situations both admission
control rules S and D resulted in a considerably higher objective value (measured
in goodput) than the benchmark. While the difference is small, rule S does perform
better than rule D. However, it can be observed that the results are dependent on
the case, the workflow and interaction patterns of the used web services.

The admission control rule S requires the estimation of the arrival rate of composite
service requests, and it is therefore challenging to implement this rule in actual
web services. Given this constraint, and the fact that simulations showed small
difference between the two rules, we performed an empirical evaluation of rule D.
The evaluation results confirmed the outcome of the simulations.

To achieve further improvements, the empirical experiments should be scaled up
to evaluate a broader range of different and larger service oriented infrastructures.
Such experiments would be primarily focused on obtaining the optimal goodput as
well as incorporating other objectives (e.g. costs) in the admission control rules.
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CHAPTER 4

Performance Evaluation of QoS–aware Run–Time
Web Service Selection Strategies in Service

Oriented Architecture

In the previous chapter we developed relatively simple admission control rules in
order to keep end–to–end response time and availability at agreed QoS levels. The
considered service composition assumed there is a single service implementing any
given task within the workflow. In practice, there may be many different, function-
ally equivalent services that implement a single task.

In this chapter we consider dynamic, run–time service selection as the QoS control
mechanism. This means that the orchestrator representing the composite service
provider may apply one of possible service selection strategies per single request (i.e.
request dispatching) in order to achieve better QoS control (e.g. response time). We
particularly focus on the achievable performance gain of dynamic selection of services
implementing a single task. The selection is made from a set of pre–selected concrete
services for the task considered, and we evaluate different selection strategies.

The performance improvements of service selection may be impacted by practical
conditions such as background traffic or delayed (concrete) service state information.
Composite service provider assures certain QoS levels to different clients. When con-
sidering guarantees for particular client, CSP has to take into account requests origi-
nating from other clients (background traffic) as well. The system state information
like the number of requests waiting to be processed by particular concrete service,
may be delayed significantly compared to the arrival rate of observed requests. We
therefore also analyse the impact of these conditions to the aforementioned perfor-
mance improvements.

The main contributions of this chapter are as follows:

• Quantification of the achievable performance gain versus the number K of pre–
selected concrete services by a fair comparison with respect to the base case of
static web service selection. The base case corresponds to the situation when
there is only one pre–selected concrete service, i.e. when K = 1. We establish
that even for relatively small values of K, significant response–time reductions
are feasible.
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• Quantification of the achievable gain in terms of reduced response time when
background traffic is present at the pre–selected concrete services for different
dispatching strategies. We show that the response–time performance of Join
the Shortest Queue (JSQ) is quite robust with respect to the presence of back-
ground traffic. An insightful approximate formula for the response time under
the JSQ dispatching strategy is derived for cases where the background traffic
is dominant.

• Quantification of the achievable gain in terms of reduced response time in
case of delayed state information. A stateless dispatching algorithm such as
Round Robin (RR) always improves upon the base case (K = 1). However,
stateful dispatching algorithms such as JSQ may result in increased response
time compared to the base case. We therefore analyse performance gain of a
combination of RR and JSQ strategies, referred to as JSQ–RR. We show that
JSQ–RR performs better than RR and hence the base case when delayed state
information is used for service selection, even when this delay tends to infinity.

The remainder of this chapter is organized as follows. First, in Section 4.1, we
describe the performance model and explain the underlying assumptions that capture
the essential system characteristics needed for our study. Next, in Section 4.2, we
discuss literature related to our work. In Section 4.3, our simulation results and
results obtained by analytical modelling are presented, and we discuss and explain
the observations. Finally, in Section 4.4, we draw conclusions and give suggestions
for further research.

This chapter is based on paper [121].

4.1 Problem description and modelling

We consider one abstract service with K concrete service implementations as given
in Figure 4.1. There are two classes of incoming service requests:

• Foreground service requests are received by the dispatcher, which decides at
runtime to which of the K service instances a particular request is assigned
for getting the required service. The foreground requests arrive to the dis-
patcher according to a Poisson process [65] with rate Λ and have exponen-
tially distributed service requirements with mean 1

µ . The rate at which fore-

ground traffic requests are offered (by the dispatcher) to service i is denoted
by λFTi, i = 1, 2, . . . ,K.

• Background service requests arrive at service instance i according to a Poisson
process with rate λi, i = 1, 2, . . . ,K, respectively. The background service
requests are exponentially distributed with mean 1

µi
, i = 1, . . . ,K. The back-

ground traffic arrival processes are independent from each other and are also
independent from the foreground arrival process.
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Figure 4.1: Performance model for the case of a single abstract service with K
different implementations (concrete services).

Request scheduling at each service instance is modelled by a PS infinite–capacity
single server queue. Served requests leave the system.

Obviously, the achievable performance gain of dynamic service selection compared to
a pure static approach depends heavily on the nature of the workload fluctuations at
the different service instances. It is clear that in the case of slowly and independently
varying loads (e.g., due to fluctuations in the service demand over the day) high
performance gain can relatively easy be achieved. However, in such cases the runtime
character of dynamic service selection may be an “overkill” and the performance gain
could largely also be obtained by less flexible service selection approaches. Therefore,
this chapter focuses on exploiting workload fluctuations at the services instances
that occur at relatively small time scales mainly caused by the random behaviour
of individuals in a large population of potential users. In that perspective, and to
keep the parameter space manageable, we will assume that the model is symmetric,
i.e., λi = λBT, µi = µ, i = 1, 2, . . . ,K. The utilization per service i (i = 1, 2, . . . ,K
is then defined as ρtot = λtot

µ , where λtot is the rate of the aggregated (foreground

and background) traffic, i.e., λtot = λFTi + λi = λ + λBT. The stability condition
per service requires that the expected number of requests per service remains finite,
i.e., ρtot < 1.

Ignoring possible delays due to the queueing and processing at the dispatcher, as
well as network delay, arriving service requests are instantaneously forwarded to one
of the K service instances according to the dispatching strategy. Various strate-
gies can be used for selection of one of the K service instances upon arrival of a
new request. The dispatching strategies could be roughly divided into two cate-
gories, namely stateless and stateful. Decision making is independent of the system
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state information for the stateless strategies. Conversely, decision making takes into
account (stale) system state information for stateful strategies.

The delay in obtaining the information per service instance is represented by pa-
rameter ∆i, i = 1, 2, . . . ,K. In this chapter we have adopted the case when system
state information (queue length, response time, etc.) is collected periodically with
the same period ∆ > 0. This information gathering may require sending separate
requests (“probes”) by the dispatcher to all of the K web services, and collecting
information in such a manner introduces an overhead to the system, which influ-
ences system performance. This issue as well as using other ways to collect system
state information are beyond the scope of the work presented here. The update
period ∆ has been related to the intensity of the aggregated traffic as ∆ = D · 1

λtot
.

where D is integer. All dispatching decisions between time instances ti = i ·∆ and
ti+1 = (i + 1) · ∆, i = 0, 1, 2, . . . are made based on the system state information
obtained at ti.

The dispatching strategies considered are Bernoulli (BL), RR, JSQ and a combi-
nation of the latter two, JSQ–RR. BL and RR are typical examples of stateless
strategies while JSQ and JSQ–RR are examples of stateful dispatching strategies.
In case of the Bernoulli strategy, the requests are randomly distributed over the
queues, i.e., a newly arriving request is assigned to queue i, i = 1, . . . ,K, with prob-
ability 1

K . This case is used as representation of the performance for the static SOA
service selection. For RR, the k–th request is assigned to queue (kmodK) + 1. In
JSQ, the request is assigned to the queue with the smallest number of requests wait-
ing to be served. Ties are resolved by randomly assigning the request to one of the
shortest queues. In case when system state information delay is present in the sys-
tem, an additional stateful dispatching strategy could be defined, namely JSQ–RR.
For JSQ–RR, once the actual system information is obtained, the queues are sorted
in non–descending order by the queue lengths. Any request coming to the dispatcher
between two state updates is then assigned following the RR scheme, i.e., the first
request is assigned to the queue with smallest queue length, the second request is
assigned to the queue with smallest queue length from the remaining queues, etc.

4.2 Related work

In this section, we give a short overview of papers related to different aspects (e.g.,
web service selection, composition, performance) of the run–time web service selec-
tion in SOA. However, each of these papers treats only a (different) subset of issues
relating to run–time web service selection. The analysis of potential performance im-
provements of different dispatching strategies, based on PS modelling of the request
scheduling at web service(s) within SOA, which includes impact of stale system state
information and/or background traffic is, to our best knowledge, non–existent.
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4.2.1 Web service selection and composition

In [63], an overview of common misconceptions about SOA is given. Among others,
the issue of dynamic selection of web services is identified, and it is indicated that
current SOA solutions lack advanced automatic discovery and composition of web
services at runtime.

A lot of attention within SOA community has been dedicated to static QoS–aware
composition problem (see e.g., [21, 81, 111] and references therein). The problem
of static QoS–aware composition is known to be NP–hard [113] where two service
selection approaches for constructing composite services have been proposed: local
optimization and global planning.

In [76], several architectures and their respective models that assist in dynamic in-
vocation of web services are discussed. These models allow the client to dynamically
select the current best web service, based on certain non–functional criteria (avail-
ability, reliability, and estimated response time). These clients gather runtime web
service information, evaluate the performance of the previously used web services,
and may share this information with other clients. The selection decision is let to the
clients, which contain intelligent agents and therefore the complexity of the clients
increases. The inherent problem is that different clients may decide to use the same
web service, which would eventually result in worsened performance e.g., due to the
overload of the targeted web service.

The framework proposed in [64] enables quality–driven web service selection, based
upon evaluation of the QoS of a vast number of web services. The fair computation
and enforcing of QoS of web services takes place when making the web service
selection. In order to provide fair computation the feedback from clients is gathered.

4.2.2 Performance of dispatching strategies

Performance of dispatching strategies in multi–server systems has been a topic that
received a lot of attention within the queueing theory research community. Specifi-
cally, a lot of work has been done for systems with First Come First Served (FCFS)
scheduling at the queues, [19,29]. In the most of the papers written for JSQ/FCFS,
explicit results for response times are given only for the case K = 2 servers, an
exponential job size distribution and the mean response time metric [43]. The per-
formance of the JSQ/FCFS strategy for K > 2 servers has been analysed in [71]
where the approximation of the mean response time for K homogeneous servers is
given. In [72], an extension to this approximation has been given, however, the
approximation is less accurate as the requests’ size variability increases.

Opposite to the JSQ/FCFS systems, JSQ/PS systems have not received so much
attention. The notable exceptions are [18], and, more recently, [48] where approxi-
mate analysis of JSQ in the PS server farm model for general job size distributions
is presented. The queue length of each queue in the system is approximated by a
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one–dimensional Markov chain, and based on this approximation the distribution of
the queue length at each queue is determined. In [3], the authors investigate opti-
mal dispatching strategies for a multi–class multi–server PS systems with a Poisson
input stream, heterogeneous service rates, and a server–dependent holding cost per
unit time.

4.2.3 Performance of dispatching strategies with stale system
information or background traffic

In [69], the problem of dispatching with stale system status information (server load)
is analysed in case of FCFS. Servers’ status information is periodically updated and
three strategies are compared: random selection, selection of the server with the
least load (based on the stale system information), and random selection of a small
subset of servers and then selecting the least loaded of the chosen servers (based
on up–to–date information about their loads). It is shown that the latter strategy
mostly outperforms the other ones, even for a small randomly chosen subset of e.g.,
two servers, while the overhead (due to processing and information retrieval) remains
limited.

In [24], the authors present a strategy that routes the jobs to the server with ex-
pected shortest FCFS queue. The decisions are made based on stale information
and elapsed time since the last state update. This strategy works well, but does
not always minimise the average response time. In [50], a dispatching policy based
on splitting foreground traffic according to a predefined rule described by a certain
parameter vector is analysed while background traffic is modelled as independent
Poisson processes with different rates. Due to the assumptions made each of the N
servers in isolation can be represented as a two–class M/G/1 PS queue. The ap-
proximation of the response times is deduced for the case of light foreground traffic
and an optimal parameter vector is found.

4.3 Numerical experiments

In this section, we present and discuss simulation results for the run–time service
selection strategies described in Section 4.1 in order to investigate their performance
potential. For some special scenarios we also present numerical results obtained from
analytical modelling.

The simulations were performed using the simulation tool implemented in Java pro-
gramming language, and using the Java library for stochastic simulation (SSJ) [32].
In order to make the simulations less sensitive to the startup transient, the num-
ber of foreground traffic arrivals per simulation has been set to at least 0.5 · 106.
Besides, in order to improve the accuracy, we have trimmed simulation results for
certain number of foreground traffic arrivals at the end of the arrival process.
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We have considered four main categories of simulation scenarios:

• Baseline scenarios – these simulations were performed for the system with-
out background traffic and with up-to-date system state information. The
simulation results are given in subsection 4.3.1.

• Scenarios with stale system state information – these simulations were per-
formed for the system without background traffic in which system state in-
formation is only periodically updated i.e., the dispatching process does not
(always) use up-to-date information. The results are presented in subsection
4.3.2.

• Scenarios with background traffic – these simulations were performed for the
system with up-to-date system state information and different intensities of
background traffic. In addition to the simulations we derived an analytical ap-
proach to study the performance for these scenarios. The results are presented
in subsection 4.3.3.

• Scenarios with background traffic and stale system state information. The
simulation results are presented in subsection 4.3.4.

4.3.1 Baseline scenarios

The goal of these simulation scenarios was to establish the performance results in
case when there is no background traffic and system state information is up-to-date
at the dispatcher.

In Figure 4.2, we show mean response times for different dispatching strategies (JSQ,
RR, BL) as a function of the number of concrete services, K and for different values
of utilization per service, ρtot. The utilization per service is kept constant in order to
have a fair assessment of the impact of K; otherwise, an increase of K would simply
be interpreted as capacity add-on to the system. Since JSQ–RR is identical to JSQ
when up-to-date system state information is available at the dispatcher, the results
for JSQ–RR are not shown. For ρtot = 0.8, the mean response time for JSQ strategy
with K = 4 services is around 66% of mean response time for the same strategy
when K = 2. Similarly, in case of JSQ with K = 8 and K = 16 services, response
times are 49% and 40% of the response time for K = 2, respectively. In case when
one of the K services becomes unavailable, the performance of the system (response
time) does not deteriorate dramatically, as long as the utilization per queue remains
(approximately) the same. The utilization per queue can be kept the same when,
e.g., K + 1 services are pre–selected, of which given (fixed choice) K services are
used for dispatching. The remaining (K+1–th) service is placed ”on hold” and when
one of the chosen K services becomes unavailable, it is immediately replaced.

Figure 4.3 shows relative comparisons between JSQ and BL (with BL as the baseline)
and JSQ and RR strategies (with RR as the baseline), respectively. Stateful strategy
(JSQ) is superior to either of the stateless strategies (BL, RR), which confirms that
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Figure 4.2: Comparison of mean response times for JSQ, RR and BL strategies for
different number of services K and different values of ρtot. There is no system state
information delay and only foreground traffic is present in the system.

more (and accurate) state information made available to the dispatcher leads to
better decision making.

The potential performance improvements in the first case range from 28% to 46%
for K = 2, depending upon the utilization per queue, ρtot and are in the range from
49% to 86% for K = 16. What is also of interest is when do the gradient of the
performance improvement is highest, taking into account the increase of the number
of services. From Figure 4.3 we see that this is the case when the number of services
increases from 2 to 4. The gradient of the gains is (significantly) smaller when the
number of services increases from 4 to 8 or 8 to 16, respectively.
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Figure 4.3: Relative comparison of mean response times between JSQ and BL (left)
and JSQ and RR (right) strategies for different number of services K and different
values of ρtot. The system state information is up-to-date and only foreground traffic
is present in the system.

Based on these simulation results, we can draw the following conclusions:

• Large performance improvements compared to the static service selection are
possible with relatively small values of K.

• The largest relative improvements of response time for number of services,
K > 1, are obtained when we increase the number of services that are used
from 2 to 4.

4.3.2 Scenarios with stale system state information

The goal of these simulations was to analyse the impact of the stale system state
information to the response time of the system for different dispatching strategies.
No background traffic has been assumed. The simulations were performed only for
the stateful strategies, i.e., JSQ (see Figure 4.4) and JSQ–RR, see Figure 4.5. The
response times for stateless strategies, RR and BL, are not affected by (stale) system
state information, and are shown for comparison as well.

From Figure 4.4 we see that, for relatively small values of parameter D that de-
termines the update interval, JSQ still performs better than RR or BL dispatching
strategy. However, as expected, when parameter D increases performance of JSQ
deteriorates e.g., for D = 20 response time for JSQ is worse than either RR or BL
for almost complete range of parameter ρtot. When D →∞, the system state infor-
mation is obtained just once, and then all arrivals are “blindly” assigned to the queue
which had the smallest queue length when system state information was obtained.
In that case, the service composition in this case is static, and the system model
reduces to a M/M/1/PS queue with arrival rate Λ and mean service time µ.

We have also investigated the behaviour of the JSQ–RR strategy for systems with
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Figure 4.4: Comparison of mean response times for the following dispatching strate-
gies: BL, RR, JSQ with up-to-date system state information, and JSQ when sys-
tem state information (queue lengths) is obtained with period ∆ = D · 1

λtot
, where

D ∈ {1, 10, 20}. Background traffic is not present and the number of services K = 4.

stale state information. Figure 4.5 shows that, as expected, JSQ–RR strategy is less
sensitive to stale information than “blind” JSQ strategy. For example, when D = 10
and ρtot = 0.7, response times for BL, RR, JSQ and JSQ–RR are 2250 ms, 1515 ms,
3200 ms (!) and 1350 ms, respectively. For comparison, the response time for JSQ
without stale information and the same ρtot is approximately 1020 ms.

Based on the simulations which results are presented at Figure 4.4 and Figure 4.5
we can draw the following conclusions:

• When D → 0, JSQ–RR is identical to JSQ and when D → ∞, JSQ–RR is
identical to the common RR strategy.

• With respect to the response time, the JSQ–RR strategy is never worse than
RR, regardless of the delay within the system. This makes JSQ–RR appealing
strategy for systems with delay without background traffic.

4.3.3 Scenarios with background traffic

In the previous simulation scenarios we have assumed that the concrete services were
used by the foreground traffic clients only. In what follows we look into the situation
when background traffic is present as well, and the dispatcher has up-to-date system
state information.
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Figure 4.5: Comparison of mean response times for the following dispatching strate-
gies: RR, JSQ with up-to-date system state information and JSQ–RR when sys-
tem state information (queue lengths) is obtained with period ∆ = D · 1

λtot
, where

D ∈ {1, 5, 10, 100}. Background traffic is not present and the number of services,
K = 4.

Our simulations and analysis are directed to answering the question of the impact
of the background traffic to the response times. The simulations results are shown
in Figure 4.6 for K = 4 services and BL, RR, and JSQ strategies. Since the system
state information is assumed to be instantaneously available, JSQ–RR is identical
to JSQ, and therefore not shown. We have recorded the response times of the fore-
ground requests only. For given utilization per queue ρtot, and dispatching strategy,
foreground traffic percentage of ρtot has been varied from as little as 10% (i.e., 90%
background traffic) to 99% (i.e., 1% background traffic). Apart from the case of
the BL dispatching strategy when response times are constant, as expected, from
Figure 4.6 it follows:

• In case of the RR strategy response times decrease as the percentage of fore-
ground traffic increases. It seems that response times dependency from the
given percentage is linear.

• In case of the JSQ strategy response times show linear non-increasing depen-
dency from the given percentage of foreground traffic. The decrease of the
response time is limited by 15% for the considered cases. It seems that the
JSQ strategy is rather insensitive to the background traffic.
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The intuitive explanation for the decreasing nature of response times in case of RR
and JSQ strategies may be given as the following – the response time in the case
of these two strategies is biggest for the smallest percentage of foreground traffic,
due to the fact that only foreground traffic is “intelligently” assigned to one of the
queues.

Response time for JSQ with low foreground traffic load

Let us now consider the situation where the foreground traffic constitutes only a small
percentage of the total traffic. We will analyse the mean response time of a tagged
foreground traffic arrival. According to the JSQ policy this arrival will be dispatched
to the queue (out of K queues) with the smallest length. Since the foreground
traffic is negligible and the background traffic arrival processes are mutually i.i.d.,
the random processes representing the queue lengths are also independent from each
other and behave as the queue length of an M/M/1 PS queueing model with load
ρtot. The queue length distribution for this model is geometric with parameter
ρtot [92]. As shown in [30, 60], the probability distribution of a random variable
that represents the minimum of K mutually i.i.d. geometric random variables with
parameter ρtot is also geometric, with parameter ρKtot. Hence, the probability that
the queue selected for the tagged foreground job contains n (background) jobs is
given by:

Prob{n jobs in selected queue} =
(
1− ρKtot

)
(ρKtot)

n, n = 0, 1, . . .
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Once the tagged arrival is placed to a particular queue, that queue further behaves
as an “ordinary” M/M/1 PS queue with utilization ρtot = λBT

µ , as the foreground
traffic is negligibly small.

Now, let us denote by Xn(τ) the random variable whose distribution is that of the
“delay” experienced by the tagged arrival if it would have service requirement τ and
arrives when there are n background jobs in the queue. The total time spent in the
system for the tagged arrival (i.e., response time) is then Xn(τ) + τ .

From the detailed analysis of the M/M/1 PS queue in [30], it follows that (cf. Eq.
(33) in [30]):

E[Xn(τ)] =
ρtotτ

1− ρtot
+ [n(1− ρtot)− ρtot] ·

1− e−(1−ρtot)µτ

µ(1− ρtot)2
, τ ≥ 0, n = 0, 1, . . . .

Since the r.v. Xn(τ) is conditioned by n, E[X(τ)] is given by the following equation:

E[X(τ)] =

∞∑
n=0

(
1− ρKtot

)
(ρKtot)

n · E[Xn(τ)], τ ≥ 0,

which leads to

E[X(τ)] =
ρtotτ

1− ρtot
+
ρKtot − ρtot

1− ρKtot

· 1− e−(1−ρtot)µτ

µ(1− ρtot)2
, τ ≥ 0.

The overall mean response time for the tagged arrival is given by

RT =
1

µ
+

∫ ∞
0

E[X(τ)]d(1− e−µτ ),

which finally gives

RT =
1

µ
+

ρtot

µ(1− ρtot)
+
ρKtot − ρtot

1− ρKtot

· 1

µ(1− ρtot)
· 1

2− ρtot
. (4.1)

The equation 4.1 gives a surprisingly simple relationship between the response time
for the foreground traffic, the number of services K, the utilization per queue ρtot

and the mean of the foreground job sizes 1
µ . When number of services K →∞, the

response time equation 4.1 can be further simplified to

RT =
2

µ(2− ρtot)
.

These formulae have been deduced under the assumption that foreground traffic
intensity is negligible compared to background traffic. Inspired by the numerical
results in Figure 4.6 we investigated whether this response time formula could be
used as an approximation for larger values of the percentage of the foreground traffic.
A first comparison between our approximate formula and simulations, taking the
simulations as the baseline, is given in Table 4.1. The comparison indicates that:
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• As expected, for a fixed number K of concrete services, the difference between
our analytical results and simulation increases when the percentage of fore-
ground traffic becomes larger. This is because our formula has been deduced
under the assumption that there is only one foreground traffic arrival.

• Roughly speaking, the error of our approximate formula increases as the num-
ber of services K increases (and all other parameters remain the same).

• The relative difference between our formula and simulation increases when ρtot

increases and all other parameters remain the same

Table 4.1: Relative comparison between the response times obtained by simulations
and response times calculated using the formula.

K = 2 K = 4 K = 8
FG traffic (%) → 5 10 5 10 5 10

ρtot = 0.5 0.1% 0.19% 0.5% 1.6% 1.8% 1.5%
ρtot = 0.7 1.1% 1.7% 1% 1.3% 2.4% 8.2%
ρtot = 0.9 1.7% 4.6% 5.2% 8.6% 5.0% 13.5%

4.3.4 Scenarios with background traffic and stale system state
information

For these scenarios we have conducted simulations in order to investigate which
factor has more impact to the response time: delayed system state information or
background traffic.

The simulation results presented in Figure 4.7 for the JSQ–RR strategy, apply to
the case when ρtot is fixed at 0.7 and the number of services K = 4. Results are
shown for four different values of the parameter D representing the system state
information delay: D ∈ {1, 2, 5, 10}. As for the case with up-to-date system state
information (D = 0) considered in the previous subsection, we see that the response
time as function of the percentage of foreground traffic has a decreasing trend. Obvi-
ously, when background traffic diminishes, the response time approaches the values
obtained for the scenarios without background traffic considered in subsection 4.3.2.
However, all together, it is hard to determine from this figure which of the two
factors has predominant influence on the response time.

In order to investigate whether delayed system state information or intensity of the
background traffic has more impact to the system performance, we compare results
from Figure 4.7 (RTBG+∆) to results when only stale information is present (RT∆).

The comparison is presented at Figure 4.8 and represents the ratio r = RTBG+∆

RT∆
for

different values of the system state information delay parameter D. The ratio r is
lower bounded by 1, and when r → 1 delay has more influence on RTBG+∆ than
background traffic.
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The following conclusions can be made from Figure 4.8:

• The larger D, the more influence the background traffic has on RTBG+∆. Sup-
pose that the percentage of the foreground (background) traffic in the system
is fixed. As D increases, the interval when state information is collected be-
comes larger. The larger the interval, the more background traffic arrivals to a
queue between two state information updates. The response time of the tagged
foreground arrival will therefore be influenced by more background arrivals.

• For smaller values of parameter D, the relative change of ratio r is smaller.
For example, when D = 1 the ratio changes from 1.88 (30% foreground traffic)
to 1.28 (90% foreground traffic), compared to change from 2.41 to 1.31 when
D = 10, respectively. This means that absolute influence of background traffic
is smaller for smaller values of D. The smaller the period of the system state
information update, less background traffic arrivals are probable within one
such period.

4.4 Conclusions

In this chapter, we have investigated the performance potential of dynamic, run–time
web service selection within SOA, under various assumptions regarding the available
system state information and/or presence of background traffic. Using the model
of request scheduling at individual web services as PS queueing system, simulation
results are presented for different run–time selection strategies in scenarios ranging
from the “ideal” situation (up–to–date state information, no background traffic) to
more realistic scenarios in which state information is stale and/or background traffic
is present. In particular, we show the effectiveness of a selection strategy based upon
the “synthesis” of JSQ and RR strategies. For some specific scenarios we derive
and validate insightful approximate formulae for the resulting response times. The
observed performance improvements result from exploiting workload fluctuations
that occur at relatively small time scales mainly caused by the random behaviour of
potential clients.

The promising results raise several directions for further research. One of possible
directions is the performance analysis under more general assumptions regarding the
requests’ arrival processes and their service requirements. Also, the impact of the
resulting overhead due to making the required system state information available
needs to be addressed as well. Consequently, the performance of alternative dis-
patching strategies without additional overhead, e.g. strategies based on response
times from previously assigned jobs instead of explicit (stale) system information
may be an interesting field for future work.

The analysis for a single task presented in this chapter may be used as a starting
point and indication of the potential performance gain for a composite service which
workflow consists of more than one task. The service selection presented in this chap-
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ter uses (stale) information about the status/performance of considered services. In
the following chapters, we will consider models that are based on statistical informa-
tion of considered services, and will extend the analysis to the worfklows with more
than one task, with the objective to maximize the profit of the composite service
provider.
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CHAPTER 5

Optimal Stopping Policies for Dynamic Service
Composition

In the previous chapter, the performance potential of dynamic web service selection
for a single task has been studied. This service selection uses (stale) information
about the status/performance of considered services. As the individual services
used for service composition are owned and controlled by independent third–party
domain owners, gathering of detailed service usage and state information may be
challenging for the CSP. In this context, it may be useful to model the services using
black–box models. For example, the response time of a service can be modeled based
on its specification (e.g. average, variance, percentile) in the SLO.

Next to modelling QoS attributes in an alternative way, for the rest of the thesis we
focus on the problem of per–request, per–task optimal service selection for composite
web services represented by workflows that contain multiple tasks. The long–term
objective of this dynamic, run–time service selection approach is to maximize the
profit of the CSP, taking into account execution costs incurred by CSP per web
service request. When the CSP responds to a service request within a pre–specified
deadline, it receives a reward, otherwise it pays a penalty to its clients. In our
approach we gradually increase the amount of additional choice that the orchestrator
has for service selection decisions in the consecutive chapters. A key motivation for
such approach comes from the idea that taking advantage of even a small amount of
additional choice [70] for an orchestrator can lead to significant performance (profit)
improvements.

In this chapter we investigate the problem of profit maximization for composite web
services by allowing the orchestrator to block requests before executing the next
task in the workflow. The orchestrator may terminate the execution of a single
request e.g. in the case when the end–to–end deadline would be almost certainly
missed, and there are still some tasks to be executed. We focus on the scenario of
composite service represented by sequential workflow. In fact, we derive decision
logic for request control that uses actual time–to–deadline as well as parameters
in SLAs among different parties to optimize profit for the composite web service
provider. The main question we investigate is whether the orchestrator should ever
terminate the execution of a single request within the composite service workflow,



Chapter 5. Optimal Stopping Policies for Dynamic Service Composition

and if so, when to do it.

The main contributions of this chapter include:

• A model for sequential decision–making for the composite service.

• Estimation of the profit(s) for different cost structures when two types of
decision–making algorithms are used (a) the optimal, dynamic programming
backward recursion and (b) heuristic, “forward–looking” algorithms. These
profits are also compared with the basic scenario when no decision–making is
applied.

• Analysis of the errors made during the decision process for both algorithms.

The chapter’s structure is as follows: after an overview of related work in Section 5.1,
we develop the model of the considered system in Section 5.2. In Section 5.3, we
specify two algorithms to derive decision logic for request control. Following the
results from experiments on the algorithms presented in Section 5.4, we conclude
the chapter in Section 5.5.

This chapter is based on paper [118].

5.1 Related work

The general sequential decision problem and optimization approaches are discussed,
among others, in [9,46]. However, none of the many papers dedicated to it describe
its usage within the context of the composite web services. Cardellini et al. [25]
discuss the solution to dynamically adapt at runtime the composite service configu-
ration. The solution is based on a service selection scheme that minimizes the cost
while guaranteeing the negotiated QoS specified within the SLAs. However, this pa-
per does not consider the rewards and penalties when QoS targets for e.g. response
time are met/missed. Shaaban and Hillston [88] propose a cost–based admission
control approach with main goal to preserve QoS in Internet commerce systems. Dif-
ferent from rejecting customer requests in a high–load situation, a discount–charge
model is used, that depends on system load and internal service structure, in order
to encourage customers postponing their requests. They apply a scheduling mech-
anism based on load forecasting in order to schedule user requests in more lightly
loaded time periods. However, this has not been applied within the composite ser-
vice environment, and the main goal is to preserve the QoS of the system, not to
maximize the profit of the CSP when admitting requests to the system.

5.2 Model description

In this section we describe our mathematical model for analysis of the problem at
hand, using the representation of service composition in Figure 5.1, in which the
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Figure 5.1: Sequential composite service orchestration.

(individual) Web Services are executed sequentially. There are in total N individual
services in the orchestration. The response time Di ≥ 0 of service i is a random vari-
able for which (an estimate of) the PDF is given. In practice, this PDF may either be
estimated from measurements carried out by the CSP, or the third–party domains
may publish, or otherwise make available, such information. In our model these
PDFs are not time–dependent, but in practice their estimates can be dynamically
adjusted. The PDFs are general (i.e. not assumed to belong to any particular class
of distribution) and we denote these with fi(x) for service i. The realisation di of the
response time is a single value drawn from the given PDF. Let pi := P {Di ≤ δip},
i.e. the probability pi that Di is smaller than the value δip. We assume that all
probabilities within observed system are equal, i.e. pi = p and that the response
times of individual web services are mutually independent.

The random variable representing the end–to–end response time, D, is given as
D = D1 + · · · + DN . Since the response time PDFs of individual web services are
known, the response time distribution f∗(x) for the composite web service, can be
computed by convolving the response time PDFs of the third party domains. The
convolution(s) of the probability density functions can be done offline, i.e. before
the composite service is deployed, but must be updated if dynamic estimates for the
PDFs are used. The realisation of D is represented by d, and let pe2e := P {D ≤ δp}
be the probability that D is smaller than the given target δp.

We refer to the client–CSP SLA as cSLA while the SLA between CSP and third–
party domains i, i = {1, 2, . . . , N} is referred to as iSLAi. The iSLAi (i = 1, 2, . . . , N)
contains the following elements:

• The response–time probability density function.

• The response–time penalty deadline δip [time unit].

• The probability that the penalty deadline is met, pi (0 < pi ≤ 1).
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• The reward that the service provider gets for executing a single request, ci
[money unit]; from the CSP viewpoint, this value represents cost.

The cSLA contains the following elements:

• The end–to–end response time penalty deadline δp [time unit].

• The probability that the end–to–end penalty deadline is met pe2e (0 < pe2e ≤
1).

• The reward R [money unit] that the CSP gets for executing a single request
within penalty deadline δp.

• The penalty that the CSP pays to the end customer when the request has not
been completed, or the agreed end–to–end deadline for given request is not
met, V [money unit].

The SLAs, once agreed, do not change, i.e. above mentioned parameters do not
change either with time. The CSP obtains the reward when the response time of
the request is below the promised value δp. Otherwise, the CSP pays the penalty to
the clients. The promised deadline δp is met with probability pe2e. Suppose that the
request has been served by the composite service within agreed time. The profit in
that case is R −Nc. The biggest loss for the CSP occurs when the complete chain
is traversed and the end–to–end deadline is not met. This loss amounts to V +Nc.
Taking into account probabilities specified in SLAs, in order for the CSP to make
profit, the following should hold

pe2e · (R−Nc)− (1− pe2e) · (V +Nc) > 0.

However, it may happen that the orchestrator decides to terminate the execution of
the composite request after service k (1 < k < N), for example because the promised
response time δp is already breached, and continuation of the service execution would
only increase the loss of the composite service provider. Also, depending on the
response times and costs involved, the orchestrator may decide to terminate the
further execution because the risk of not reaching the promised response time is
significantly high.

5.3 Sequential decision processes

In this section we describe two decision algorithms. The first algorithm, called
the Dynamic Programming Algorithm (DPA), is based on the backward–recursion
principle [15]. The second algorithm, called the Forward Looking Algorithm (FLA),
which is based on ideas expressed in [9].

The algorithms considered facilitate decision–making process of the orchestrator i.e.
whether to further traverse the workflow after each task within the workflow has
been executed. The actions that the orchestrator could take are:
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• stop the execution. The CSP pays the costs to the third party providers of
used services. Besides, the CSP pays the penalty to its client(s),

• continue the execution, i.e. execute the next task.

If the last service is executed the CSP pays the actual costs to the third-party
providers. When the end–to–end deadline is met the CSP obtains reward from the
client(s); otherwise, the CSP pays the penalty to the client(s).

The profit gains for both the DPA and the FLA are calculated in absolute terms,
and compared to the “worst case scenario” (WCS) when all tasks within workflow
are always executed. For all algorithms, the first task within the workflow is always
executed. The DPA algorithm results in pre–calculated decision policy, i.e. actions
to be taken by the orchestrator after task k (k = 1, 2, . . . , N − 1) has been executed,
and for any given value of remaining time to deadline δ∗ ≤ δp. Due to the backward–
recursion principle, the calculated policy would specify optimal actions for considered
task k, taking into account all possible actions (stop/continue) for tasks k+1, . . . , N
and given δ∗.

On the other hand, the FLA is heuristic that determines actions to be taken by the
orchestrator after task k (k = 1, 2, . . . , N − 1) has been executed by comparison of
decisions to stop the execution or to continue and execute all of the remaining N−k
tasks.

5.3.1 The Dynamic Programming Algorithm

The DPA is based on a one-dimensional recursion that calculates a set of optimal
decisions, namely continue or stop, given the decision is taken before service k and
δ∗ units of time budget are left before the agreed deadline is exceeded. Using the
notation introduced in previous sections, the backward recursion is formulated as
follows: For 1 < k < N ,

E[RN | δ∗] = max
{
− V,−c− P(DN > δ∗)V + P(DN ≤ δ∗)R

}
, (5.1)

E[Rk | δ∗] = max
{
− V,−c− P(Dk > δ∗)V +

δ∗∫
0

fk(t)E[Rk+1 | δ∗ − t]dt
}
,

E[R1 | δp] = max
{
− V,−c− P(D1 > δp)V +

δp∫
0

f1(t)E[R2 | δp − t]dt
}
.

Here E[Rk | δ∗] (1 < k < N) is the expected reward in case the decision made is
continue and E[R1 | δp] is the total expected reward given an overall deadline of
δp time units. In practice, the recursive equations (5.1),can be solved efficiently by
discretizing the response–time distributions.
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5.3.2 Forward–looking decision process

The FLA decision mechanism is based on evaluation of the expected reward once
the first k (k = 1, . . . , N − 1) tasks within workflow are executed. The orchestrator
decides whether the remaining N − k tasks will be executed. At the decision–taking
moment, the orchestrator knows:

• the response times of the services already executed, i.e. the realisations
d1, d2, . . . , dk of D1, D2, . . . , Dk, respectively.

• the response time probability–density functions for each of the N − k services
to be executed.

Based on this information, the orchestrator calculates the following:

• The remaining “response–time budget”, δ∗ = δp −
k∑
i=1

di.

• P0, the probability that δ∗ will be met. The reward of the CSP in this case is
R−Nc.

• Probability that δ∗ will not be met, PLOSS = 1 − P0. The loss in this case is
−V −Nc.

After the service k (k = 1, 2, . . . , N) has been executed, the algorithm calculates the
expected reward, as if all the remaining tasks within workflow would be executed,
and compares it to the loss in case the execution is terminated after service k. The
expected reward is

E[Rk] = P0 · (R−Nc)− PLOSS · (V +Nc). (5.2)

The loss when the execution terminates (after execution of the service k) is

THk = −V −
k∑
i=1

ci = −V − kc. (5.3)

The FLA is then based on the following decision rule:

E[Rk] > THk =

{
true, continue

false, stop.
(5.4)

5.4 Numerical experiments

The framework and the two algorithms described in this chapter can be used to
numerically determine the corresponding decision strategies. In order to test a wide
range of (heuristic) strategies, including the WCS without decision control, we also
developed a simulation tool. In this section we give an overview results that were
obtained with our simulation tool, to illustrate the effectiveness of our algorithms
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and demonstrate the practical usability of our algorithms. Here, we limit ourselves
to comparison of our two algorithms with the WCS. Further experimentation for a
wider set of strategies is subject of current research.

In the experiments presented here, we have chosen the following parameter settings:

• Requests consist of a chain of N = 6 services.

• The response–time distributions used for experiments were normal (with trun-
cation of negative values) for all services.

• The probabilities that (individual or composite) service would meet its deadline
were identical and set to one of the values 0.75, 0.8, 0.85, 0.9 or 0.95.

• The reward parameter is fixed to a value of 2.5.

• The cost and penalty parameters have been chosen in such a way that the
expected profit per request E[RWCS ] made by the CSP is positive for the
WCS and remains the same. The relationship between V and c is determined
by

c =
Rp− V (1− p)− E[RWCS ]

N
.

The two main experimental setups are

Setup A: In this setup response time PDFs of the services were identical, and repre-
sented by (truncated) normal distributions with the same parameters for expectation
and variance. The values selected were N (µ, σ2) = N (15, 4).

Setup B: In this setup the response time PDFs of the services were not identical,
although all considered distributions were (truncated) normal. The expectation and
variance of the first two services within the chain are chosen to be significantly
higher than expectation and variance of the services within the rest of the chain.
The values selected for the experiments were N1 = N (150, 25), N2 = N (100, 16),
and N3−6 = N (15, 4).

The fact that distributions are identical in setup A allows that delays (i.e. deadlines)
that are not met “early” in the chain could be compensated by better than expected
performance as the request traverses the chain. The chance of prematurely termi-
nating the execution of the composite request therefore increases. Good algorithms
would show quantifiable improvements even for these scenarios.

The setup B has been used to verify the accuracy of the algorithms observed, since
delays introduced by services at the beginning of the chain cannot be made up for by
the services close(r) to the end of the chain. It may be expected that the algorithms
would defer requests at one of the first two services more often than at one of the
last four services.
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Figure 5.2: Comparison of expected rewards per request using different algorithms
for setup A and B. The promised percentage of requests within end–to–end deadline
p = 90%.

Our results emphasise two performance aspects of the algorithms:

• Increase in the reward (absolute and/or relative) that algorithms yield when
compared to the WCS, i.e. the “do nothing” scenario.

• Amount of erroneous decisions made.

5.4.1 Reward improvements

For each value of the probabilities, cost parameters selection made, and both setup
A and B, we have recorded the performance of the DPA and the FLA. Some results
are summarized in Figure 5.2 for setup A and B, and Figure 5.3 for setup B.

The following conclusions can be made from the experiments:

• Setup A shows less improvement than setup B.

• If the penalty becomes much higher than the cost parameter, the expected
reward drops to the WCS value.

• Performance results are better in case when deadline probabilities chosen are
smaller. Put simply, the higher probability deadline is met, the less requests
could be terminated by the algorithms. The less requests that are terminated,
the less profit is gained by the algorithms when compared to WCS.
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Figure 5.3: Comparison of expected rewards per request with different p values for
setup B.

5.4.2 Decision errors

We define two type of decision–making errors: Type I and Type II. Type I errors
are made within the decision process when execution of the request is terminated
before the end of the chain is reached, while the optimal decision is to traverse the
whole chain. Type II errors are made within the decision process when the request
traverses the complete chain, while the optimal decision is to terminate the request.

Suppose that a Type I error has been made by terminating the request once the
service k has been executed. The composite service provider is left without reward
and also has to pay the penalty. The net loss is therefore−R−V +(N−k)c. Similarly,
Type II errors reduce the algorithm performance for that request to the worst case
scenario, and the net loss reduces to the costs made by redundant invocation of
services within the chain. Therefore, in general, reduction of Type I errors leads to
larger profit increase than the reduction of Type II errors.

The experimental results are summarized in Figure 5.4, which shows percentage of
errors made for different values of the penalty/cost ratio V/c. We observe that,
for both DPA and FLA, the percentage of Type I errors decreases as the ratio V/c
increases. This is due to the larger impact of the penalty, as stopping becomes
extremely expensive compared to the additional invocation cost of the next sub–
service. Similar reasoning explains percentage increase of Type II errors as ratio
V/c increases. Besides, DPA is not optimal when it comes to Type II errors, and the
percentage of Type II errors for both DPA and FLA is below 2.5% for the observed
ratio interval.
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5.5 Conclusions

In this chapter we have discussed decision–making mechanisms for the composite web
services within service oriented architecture. First, we have considered the model
of the composite web service in which the CSP pays a certain amount per request
to each third party provider. In addition, the CSP pays a penalty to the customer
whenever the execution of the composite service request is prematurely terminated
or the agreed end–to–end response time is above the threshold promised by the CSP.
Further, a stochastic model has been formulated in which the sub–service response
times are modeled as stochastic variables with probability distributions known a
priori.

Based on the derived model, two different decision–making approaches have been
discussed, the DPA and the FLA. These two approaches were compared to the
WCS approach (without decision–making) and to each other. In the performed
simulations, two main scenarios have been examined. Firstly (symmetric scenario)
we considered a composite web service consisting of the chain of six sub–services
with identical response time distributions. In the second, asymmetric scenario the
first two sub–services have a significantly larger expected response time and variance.
We have shown that huge profit gains with respect to WCS can be made using any
of the two algorithms. As expected, the profit gains in asymmetric scenario(s) were
much higher than in the case of symmetric scenarios. The DPA is optimal when it
comes to the CSP profit, whereas the FLA performs better when it comes to errors
made when the request traverses the complete chain, while the optimal decision is
to terminate the request.

We presented numerical results for rather small model instances, with six sub–
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services, whereas in practice, services chains may be of considerably larger size.
This raises the need to address the scalability of the solution approaches presented
(in terms of computational complexity), and about the cost reductions that can be
obtained in those cases. In this context, also notice that for large number of tasks
in the considered workflow the classical Central Limit Theorem suggests that the
optimal policy becomes less sensitive to the response–time performance of the indi-
vidual sub–services, which opens up the way for CSPs to negotiate much less strict,
and hence much cheaper, SLAs with respect to the response times.
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CHAPTER 6

Optimal Service Selection Policies with
Response–Time Constraints

In this chapter we extend the problem considered in Chapter 5 and investigate more
sophisticated decision mechanisms for composite web services. In particular, the
actions that can be taken by the orchestrator include the service selection among
a number of alternatives instead of just stop/continue. In this setting, a composite
web service is represented by a (sequential) workflow, and for each of the tasks
within this workflow, a number of service alternatives may be available, offering
the same functionality at different price/quality levels. We present a fully dynamic
service composition approach, where for each individual request at each task in
the workflow it is decided at runtime which alternative of the corresponding sub–
service is invoked. The decisions are based on observed response times, costs and
response–time characteristics of the alternatives as well as end–to–end response–time
objectives and corresponding rewards and penalties.

We derive the service selection policy maximizing expected revenue by exploitation
of dynamic programming. The corresponding decision rules can be computed offline
and stored in the form of a simple lookup table. Extensive numerical examples
demonstrate huge potential gain in expected revenues using the dynamic approach
compared to other, non–dynamic, approaches. We explore the impact of reward,
penalty and service execution cost parameters, in relation to the services’ response
time characteristics (PDF, mean, variance). In addition, the impact of the number
of available concrete services (alternatives) and their position in the workflow is
investigated. Overall, the numerical results show huge potential for the run time
service selection approach.

In contrast to most of the state–of–the–art solutions discussed in Chapter 2 the
response times of the services are not assumed to be just a fixed value (e.g. the
empirically found mean value), but are represented by a PDF. One of the chal-
lenges is to take these uncertainties regarding the response times of the sub–services
appropriately into account in the decisions.

The main contributions of this chapter are as follows:

• Modeling dynamic service composition as a dynamic programming problem.
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Using this approach an optimal service selection policy is derived which can be
expressed in terms of response–time thresholds that are calculated before the
service is deployed. In such a way, fast service selection at runtime is possible
since service selection can be implemented as a simple lookup function, e.g.
lookup table or database query.

• Numerical investigation of our full dynamic approach as well as a comparison
to the optimal a–priori static selection, which shows significant potential gain
in expected revenue.

• Analysis of the impact of the number of available alternatives (and their QoS
properties) for each task within the sequential workflow. The results show nice
monotonicity properties of the expected revenue and combination of the posi-
tion of the task within the workflow and the number of alternatives available
for the given task.

The rest of this chapter is organized as follows. After further motivation and illus-
tration of our work in Section 6.1 and related work in Section 6.2, we describe the
model of the system under consideration in Section 6.3. In Section 6.4 we formu-
late the run–time service composition problem as a DP problem and provide the
corresponding backward recursion solution method used to determine the optimal
decision policy. Next, in Section 6.5, the results of extensive numerical experiments
are presented and discussed in order to show the performance of our run–time ser-
vice composition approach and provide insight into the impact of different system
parameters. We conclude the chapter in Section 6.6, and give directions for further
research.

This chapter is based on papers [116] and [117].

6.1 Motivating example

In order to illustrate our dynamic service selection approach, we observe the case
of sequential workflows. Fig. 6.1 depicts a sequential workflow consisting of four
abstract services, and each abstract service maps to a number of concrete services
(alternatives). Per position, the number of alternatives is three, four, one and two,
respectively. The response time of concrete web services are modelled by probability
distributions and the execution costs per concrete service are known in advance as
well. In case when the workflow is not sequential, it could be reduced/aggregated to
the sequential one. This can be done by the calculations of the aggregated services
for the most frequently used workflow patterns in which the probabilistic models are
used as explained in [12, 115]. In case of arbitrary workflow patterns, an efficient
numerical method could be used, as presented in [28]. After the execution of a single
task within the workflow, the orchestrator decides on the next concrete service to
be executed. The decision taken is based upon comparison among (1) the remaining
time to meet the end–to–end deadline, and (2) the pre–calculated response–time
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request 
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Figure 6.1: Composite web service depicted by a sequential workflow. Dynamic ser-
vice composition is based on pre–calculated response–time thresholds using dynamic
programming.

thresholds for each service. In the most extreme example, after the execution of, e.g.
the first task within the workflow, the promised end–to–end deadline may already
been violated. In such a case, the dynamic selection algorithm should choose the
cheapest alternatives for all remaining tasks in the workflow. Similarly, when there is
just the last task to be executed, and the promised deadline is jeopardized, it may be
sensible to select the more expensive service with better deadline–meeting promise
than the cheaper service with the much smaller chance of meeting the deadline.

When the client’s request meets the agreed end–to–end deadline, the composite
service provider is rewarded by the client. Otherwise, when the deadline is not
met (i.e. an event of an SLA violation) the provider pays a penalty to the client.
The exact relation between the metric of percentile conformance and the monetary
penalties charged on the provider due to non–conformance (hereafter referred to as
the“penalty function”) is an important parameter of the SLA [17]. There are multiple
ways in relating the two and thus a variety of penalty functions can be chosen. We
have adopted the step–wise penalty function in this case with the desired conforming
percentile of 100% [17].
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The response–time thresholds are calculated before the first request is admitted to
the system, where the dynamic programming takes the penalty, the reward, the
concrete SLO and the execution costs as input. These thresholds are represented by
e.g. a lookup table. Depending upon the actual response times and the thresholds, it
is possible that every client request may be served by a different chain of alternatives.

6.2 Related work

A lot of attention in the literature has been paid to the problem of optimal, QoS–
aware service composition of SOA services [21,111,113]. The main problem addressed
in these papers is how to select one concrete service per abstract service for a given
workflow. This selection is made with the goal to guarantee the end–to–end quality
of the composite service, while at the same time achieving certain objectives like
cost minimization. For the same QoS parameter, different SLAs are considered in
literature, ranging from those based on a single value (e.g. expected response time)
to SLAs specifying probabilistic guarantees [115] and [12].

In static service composition solutions, the composition would remain unchanged
during the entire life–cycle of the composite web service. Due to the high variability
of the service environment and due to the fact the variability is not well–reflected in
static service composition solutions, the SLA violations could occur relatively often,
leading to providers’ losses and customer dissatisfaction. One way to address the
problem of SLA violations is the request replication approach, as presented in [110].
Although showing relative potential, the request replication may not work for any
set of alternatives given, and may be cost–inefficient. It is suggested in [23, 61, 114]
that, based on observations of the actually realised performance, re–composition
of the service may be triggered, in order to mitigate the issue of SLA violations.
These “reactive” solutions may select new concrete service(s) for the given workflow
during the re–composition phase. Once the re–composition phase is over, the (new)
composition is used as long as there are no further SLA violations. In particular, the
authors of [23, 61, 114] describe when to trigger such (re-composition) events, and
which adaptation actions may be used to improve overall performance.

A highly promising means for further improvement of service quality and efficiency,
which is also addressed in this chapter, is to adapt the service composition dynami-
cally at run time by taking advantage of this enhanced flexibility [1,25,44,99]. In [44],
the authors analyse a problem of dynamic web service composition for different com-
position patterns, e.g. sequential, loop, conditional and parallel. QoS parameters
considered include reliability, availability, as well as cost and expected value of the
response time of individual web services. The authors propose a solution based on
MDPs to minimize the expected response time, taking into account the availability
and reliability of the respective services and the invocation costs. In [99], a similar
dynamic service composition problem is studied. Besides deriving an MDP–based
solution, the authors of [99] also develop and investigate a reinforcement learning
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approach for the case that not all of the used system state information is avail-
able. Cardellini et al. [25] consider dynamic service composition in the context of
admission control with various service classes. The (different) composite service con-
figurations for the service classes can be dynamically adapted according to variations
in the operating environment due to the admission or departure of users generating
requests for the composite service. The authors derive an optimal admission and re–
composition policy (by formulating the problem as a linear optimization problem)
that maximizes the profit while guaranteeing QoS for the admitted users. In [1],
for a somewhat different setting, a forward looking MDP–based control policy is
derived.

Different from the presented works, we focus on per–request, per–task QoS–aware
service composition, taking into account different price/quality levels, as well as
reward/penalty functions. We perform the optimal service selection with long–term
objectives such as profit maximization of the CSP. By doing this, we take into
account the cost of control (adaptation of service composition) as well.

6.3 Model description

A composite service consists of N of abstract services, denoted AS1, . . . , ASN , that
are executed in sequential order. For each abstract service i there are Mi alternative
implementations available, which are called concrete services, denoted CSij , for j =
1, . . . ,Mi. The composite service handles incoming composite service requests. To
this end, each request is assigned a unique service alternative for each abstract
service in the workflow. In other words, each composite service request is served by
a composition

CS1
w1
→ · · · → CSNwN (6.1)

that maps each abstract service ASi to a service alternative CSiwi . Each composition
is represented by a workflow vector W that is defined as:

W := (w1, . . . , wN ). (6.2)

The position of wi in the vector corresponds to the position in the workflow and the
values wi = 1, . . . ,Mi correspond to the concrete service alternative at position i.

Remark [non sequential workflows] Our solution is applicable to any workflow
that could be aggregated and mapped into a sequential one. It is shown in [116]
how to aggregate an example workflow into a sequential one. The aggregation is
illustrated for some of basic workflow patterns in case of stochastic (probabilistic)
models of services’ QoS parameters. The end result is a sequential workflow pattern,
in which each service (aggregated or not) has a number of alternatives. However,
the aggregation leads to coarser control, since decisions could not be taken for a
single service within the aggregated workflow, but rather for the aggregated workflow
patterns themselves.
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request 

response 

Figure 6.2: Model with example composition CS1
2 → CS2

2 → CS3
1 → CS4

1.

Figure 6.2 illustrates an example for the case N = 4, M1 = 3, M2 = 4, M3 = 1,
M4 = 2 and W = (2, 2, 1, 1). Per single composite service request, the orchestrator
(illustrated in Figure 6.1) executes services one–by–one as indicated by the workflow.
Before abstract service ASi is executed, the orchestrator makes a decision which one
of the Mi service alternatives to choose. Decisions from the orchestrator are based
on information about response times from the concrete services. The response–time
SLOs of the concrete services are specified as “soft” ones, and in general, “soft” SLOs
are expressed as a response–time PDF [83], or alternatively, as CDF.

Remark [probability density functions] In practice, probability density func-
tions may either be estimated from the measurements carried out by the composite
service provider, or the third–party domains may publish, or otherwise make avail-
able, such information. Since we investigate the potential of our approach, we assume
time–invariant SLAs and the PDFs (which are part of the SLAs) do not change ei-
ther. In case of time–variant PDFs, a recalculation of the response–time thresholds
may be occasionally necessary. The recalculation may be triggered when there is
a long–term SLA violation, i.e. when the observed PDF differs “significantly” from
the initial one. This is not discussed further in this chapter.

Each service CSij (the j–th alternative for abstract service i) has a response time

distribution Di
j ≥ 0 for i = 1, . . . , N and j = 1, . . . ,Mi. From the perspective of

the response time, we model each concrete service as a black box, which means that
Di
j is a random variable for which respective PDF (or CDF) is given. The PDFs

and CDFs for concrete services are denoted by f ij(t) and F ij (t), respectively. If a

service CSij is invoked a response time realisation dij (i = 1, . . . , N, j = 1, . . . ,Mi)

is generated. Because response time of CSij has distribution f ij , d
i
j is a sample from

this distribution. We assume that response times of concrete service alternatives

72



6.3. Model description

are mutually independent. Using the mutual independence, for a given composition
CS1

w1
→ · · · → CSNwN the response time distribution can be determined by taking

the convolution of the respective distributions:

DW = D1
w1
? D2

w2
? . . . ? DN

wN . (6.3)

The realisation of a end–to–end response time, resulting from composition repre-
sented by W , is denoted DW . The overall deadline for a request handled by the
orchestrator is denoted by δp. For each workflow W the probability for a successful
response within δp is defined by:

pW := P(DW ≤ δp). (6.4)

The workflow invocation cost cW for workflow W = (w1, . . . , wN ) is defined by:

cW :=

N∑
i=1

ciwi . (6.5)

As for a fixed workflow W the composition is exactly known, an explicit expression
for the expected revenue per request can be formulated. We define R∗W as the
expected revenue per request for workflow W :

R∗W := RpW − V (1− pW )− cW . (6.6)

When dynamic decisions are made, concrete service workflow W is not fixed but
depends on the response time realisations of concrete services. Our approach is
solving the optimization problem using dynamic programming. The key idea behind
dynamic programming is that the optimization problem can be separated into smaller
subsets that are easier to solve. Solving the subsets will lead to the solution of
the optimization problem that optimized expected revenue. Dynamic programming
consists of the following components:

• State space S, in our case the state space is defined by S = {1, · · · , N}×R+.
Each state is a tuple (i,∆) ∈ S, (i ∈ {1, · · · , N}, ∆ ∈ R+) combining position
i in the workflow and remaining time until deadline violation ∆.

• Decision epochs, before execution of the next task we have to select a con-
crete service alternative based on ∆.

• Action space, the set of possible actions for given state (i,∆). At each
decision moment at abstract service ASi we have a set of concrete service
alternatives {CSi1, . . . , CSiMi

} i = 1, . . . , N .

• Cost function, the cost function defines cost for each action or state that is
reached. For concrete service CSij the invocation cost cij has to be paid. At
the end of the workflow a reward R is obtained by the CSP when the deadline
is not violated. Otherwise a penalty V has to be paid.
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• Value function F (s). The value function represents the expected revenue for
state s ∈ S. We have a value function F (i,∆) where i ∈ {1, · · · , N}, ∆ ∈ R+.

• Policy A represents the set of decisions or actions over all states (i,∆). The
policy can be implemented as a lookup table where for given (i,∆) the optimal
pre–calculated decision is selected. An example is depicted in Figure 6.3. We
refer to Section 6.4 for more details.

The combination of state space, decision epochs, action space, cost function and
value function defines a dynamic programming problem where the solution results
in a optimal policy. An optimal policy can be determined by defining a backward
recursion on value function F (s). The recursion is defined and implemented in
Section 6.4. We denote the dynamic workflow that implements lookup table A as
W d(A).

Due to the dynamic policy there is no tractable explicit expression for the end–to–end
response time distribution when the orchestrator chooses compositions dynamically
like for the static workflow. End–to–end response time distribution is denoted by D
and has corresponding realisation d. The fraction of requests within the deadline is

p := P(D ≤ δp). (6.7)

There are two types of SLAs that we consider:

First, the SLA agreed between the ISP that provides CSij and the CSP. This SLA
consist of the following elements:

• The response–time probability distribution function, f ij .

• The cost cij [money unit] that the CSP pays to ISP for the execution of a
single request. No penalties are imposed. From the ISP viewpoint, this value
represents reward.

Second, the SLA agreed between the CSP and its clients, that contains the following
elements:

• The end–to–end response time penalty deadline δp [time unit].

• The fraction of response time realisations pe2e that should be within the dead-
line δp.

• The reward R [money unit] that the CSP gets for executing a single request
within penalty deadline δp.

• The penalty V [money unit] that the CSP pays to the end customer when the
agreed end–to–end deadline is not met.

The orchestrator selects services for composition such that it meets the required
fraction pe2e of requests within deadline δp:

P(D ≤ δp) ≥ pe2e. (6.8)
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6.4 Algorithm description

In this section we describe how to optimise expected CSP revenue by formulating
the dynamic service selection as a DP problem [15]. Before a request is executed
by the CSP a response time budget δp is available until response time deadline
δp is violated. Each execution of concrete service CSij in the CSP workflow will

result in a response time realisation dij and a remaining response time budget ∆.

After execution of CSij the remaining time budget ∆ will reduce with dij . Dynamic
refers to the fact that workflows are selected on–line based on ∆, the remaining
response time budget until the deadline δp is violated. In other words before the
execution of each abstract service, a concrete service must be selected, based on ∆.
The DP optimises CSP revenue by taking in account the effect of future (optimal)
decisions. Since the decisions within DP take in account (possible) effects subsequent
decisions, a “backward recursion” method is needed for finding the optimal solution.
The application of DP will result in a decision policy. The policy indicates, for given
response time realisations, which concrete service alternatives should be chosen in
order to optimize the CSP’s expected revenue per composite service request. The
policy is determined by the current position within the sequential workflow i and
the remaining time ∆ (“time budget”) till the overall deadline δp will be violated.

The recursion for a set of expected rewards E[Ri | ∆ = δ∗] is given by:

E[Ri | ∆ = δ∗] = max
j

{
− cij + E[Rij | ∆ = δ∗]− E[V ij | ∆ = δ∗]

}
,

where i = 1, . . . , N , j = 1, . . . ,Mi.

For j = 1, . . . ,Mi, we have

E[Rij | ∆ = δ∗] =


P(DN

j ≤ δ∗)R, i = N,
δ∗∫
0

f ij(t)E[Ri+1 | ∆ = δ∗ − t]dt, for i = 1, . . . , N − 1.

(6.9)

E[V ij | ∆ = δ∗] =

{
P(DN

j > δ∗)V, i = N,

P(Di
j > δ∗)E[Ri+1 | ∆ = 0], for i = 1, . . . , N − 1.

(6.10)

Here f ij(t) represents the response time PDF of service CSij , while the term E[Rij |
∆ = δ∗] represents the expected reward, when CSij is invoked for the given time

budget value δ∗. The term E[V ij | ∆ = δ∗] represents the expected penalty for

exceeding the overall deadline while executing CSij for the given time budget value
δ∗. The expected reward and penalty functions take into account the impact of
future decisions as represented by terms relating to Ri+1 in equations (6.9) and
(6.10). Once the end of the workflow is reached (i = N) we stop.
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The integrals in equation (6.9) can become rather complicated and will generally not
result in tractable expressions. By discretizing the distributions the problem can be
solved numerically. For the discretization we split the time interval over which
the response–time PDF is defined in segments of the same size h. The number of
segments is m∗ and the size of h corresponds to the accuracy of the discretization.
The discretized versions of the PDF (pij,k) and CDF (P ij,k) are therefore defined as
the following:

m∗ =
⌈δ∗
h

⌉
, pij,k = P

(
Di
j ≤ h[k + 0.5]

)
− P

(
Di
j ≤ h[k − 0.5]

)
, P ij,k =

k∑
l=0

pij,l,

where i = 1, . . . , N , j = 1, . . . ,Mi, k = 0, . . . ,m∗.

Using the discretization, the backward recursion can be transformed into a scheme
that can be evaluated numerically. For given number of segments m∗, let terms Rim∗ ,
Rij,m∗ , and V ij,m∗ represent discretized versions of E[Ri | ∆ = δ∗], E[Rij | ∆ = δ∗],

and E[V ij | ∆ = δ∗], respectively. The backward recursion formulae are then as
follows:

Rim∗ = max
j

{
− cij +Rij,m∗ − V ij,m∗

}
, (6.11)

where i = 1, . . . , N, j = 1, . . . ,Mi,

Rij,m∗ =


PNj,m∗R, i = N,
m∗∑
k=0

pij,kR
i+1
m∗−k, i = 1, . . . , N − 1,

(6.12)

and

V ij,m∗ =

{(
1− PNj,m∗

)
V, i = N,(

1− P ij,m∗
)
Ri+1

0 , i = 1, . . . , N − 1,
(6.13)

where j = 1, . . . ,Mi, k = 0, . . . ,m∗.

While applying formulae (6.11)–(6.13), the corresponding decisions (actions) A∗ can
be obtained by storing the maximum arguments evaluated as

Aim∗ = argmax
j=1,...,Mi

{
− cij +Rij,m∗ − V ij,m∗

}
, i = 1, . . . , N.

The optimal decisions could be represented by a lookup–table, and a graphical ex-
ample of a lookup–table for the sequential workflow with N = 4 tasks is shown in
Figure 6.3. The horizontal axis corresponds to the time budget left until the overall
deadline is breached, while the vertical axis corresponds to the position of the ab-
stract service within the chain. The colour corresponds to the decision that has to
be taken, e.g. proceed with the alternative j. We illustrate the lookup table with
the following examples:
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Policy

t (time budget)

{
{
{
{

 
δ

p
 Overall deadline

0 5 10 15

Task 1    

Task 2    

Task 3    

Task 4    Concrete service alternative 1

Concrete service alternative 2

Concrete service alternative 3

Concrete service alternative 4

Figure 6.3: Graphical example of a decision table. The vertical dashed line represents
the overall deadline δp. Symbols ∗ and × represent decisions for different values of
remaining time–to–deadline.

1. We start handling a new request and the overall deadline equals δp = 13.5.
The decision is marked by an asterisk ∗ at the lookup table shown in Figure
6.3, and alternative 1 is to be selected.

2. We have 4.9 time units remaining the decision is made for the abstract service
at position 3. The decision is marked by a cross ×, and points that concrete
service alternative 3 should be selected.

6.5 Numerical experiments

In this section we investigate the influence of the system parameters on the potential
gain that can be obtained by applying dynamic service composition as compared
to static service composition. To this end, we have performed a wide variety of
numerical experiments. The results of these experiments are outlined below.

The parameters of the models discussed in Sections 3 and 4, and their corresponding
value ranges, are listed in Table 6.1. The parameter space is large and prohibits an
exhaustive analysis of model instances. Therefore, we have defined a number of spe-
cific model instances that represent certain characteristics of service compositions.
First, we study the impact of the input parameters reward, penalty and cost on
the potential gain in expected revenue obtained by dynamic versus static service
composition. Second, we investigate the impact of the length of the service chain
on the potential gain. Third, we consider the impact of the number of available
alternatives for abstract services, and their corresponding positions in the service
chain, on the expected gain. For convenience, we assume that the response–time
distributions for the j–th alternative of abstract service i can be approximated by

a log–normal distribution with mean µij and variance σij
2
, see Table 6.1. We em-

phasize that this assumption is not restrictive, because our approach supports all
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Table 6.1: Overview of model parameters

Parameter Definition
N Number of abstract services
Mi Number of concrete alternatives for abstract service i
f ij PDF of response–time distribution CSij
µij Mean response time of CSij
σij

2
Variance of response time of CSij

cij Cost of invocation of CSij
δp End–to–end deadline
pe2e Required fraction of responses within the deadline
R Reward per successful request within deadline δp
V Penalty per request not completed within deadline
KR Scaled reward
KV Scaled penalty

non–negative probability distributions.

The gain G in expected revenue obtained by using optimal dynamic composition
compared to the optimal static composition is defined as follows:

G :=
R∗dynamic −R∗static

R∗static

× 100%, (6.14)

where R∗dynamic is the expected revenue per request under the optimal dynamic
policy, obtained by applying the algorithm described in 6.4. Moreover, R∗static is
the expected revenue per request under the optimal static policy, obtained by an
exhaustive search of all possible “paths” traversing the chain of abstract services (see
for example Figure 6.2, where there are 24 possible paths).

For our parameter study we need to choose a deadline δp. This has to be done such
that experiments generate sensible results. Therefore we introduce the reference
workflow W ref . Using the reference workflow we can relate a sensible deadline to
a given end–to–end objective pe2e. The reference workflow W ref is determined by
taking

W ref = argmax
W

[
RpW − V (1− pW )− cW

]
,

cW :=

N∑
i=1

ciwi , (6.15)

pW := P(DW ≤ δp).

For given pe2e, we denote by δp the deadline such that for the reference composition
W ref , consisting of CSi1, i = 1, . . . , N , holds that: P(Dref < δp) = pe2e.
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Table 6.2: Parameter settings for exploratory example

Abstract service i → Service 1 Service 2

Concrete service j ↓ cij µij σij
2

cij µij σij
2

Alternative 1 1 5 4 1 5 4
Alternative 2 N.A. N.A. N.A. 5 2.5 4

6.5.1 Impact of reward, penalty and cost parameters

In this subsection we study the impact of concrete service cost cij , the reward R and
the penalty V on the potential gain G, defined in (6.14). To this end, we define the
overall mean service cost by

c =

N∑
i=1

ci, where ci =
1

Mi

Mi∑
j=1

cij . (6.16)

Note that R, V and c are scale–invariant, in the sense that if these parameters are
scaled to αR, αV and αc for some α > 0, then the optimal dynamic and static
policies, and hence also the gain G, remain the same. Therefore, it is convenient
to define the following two scaled parameters, the scaled reward KR and the scaled
penalty KV parameters:

KR :=
R

c
, KV :=

V

c
. (6.17)

Consider the following exploratory example with N = 2, M1 = 1 and M2 = 2,
depicted in Figure 6.4, and where the cost parameters cij and the distribution pa-

rameters µij and σij
2

are listed in Table 6.2. Figure 6.5 shows the contour lines

CS1

request 1 

response 1 

response 2 

request 2 

1

CS1

2

CS2
2

Figure 6.4: Exploratory example.

of combinations (KR,KV ) that lead to the same expected revenue, subject to the
constraint that the reference static workflow (i.e., the workflow (1, 1)) leads to an
end–to–end response time less than the deadline with probability pe2e = 80%. The
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values plotted on the dotted lined indicate the expected revenue. The grey area is
the set of combinations for which the static workflow is (1, 1), indicated by the solid
line in Figure 6.4. The white area represents the combinations for which the static
workflow (1, 2) is optimal, indicated by the dashed line in Figure 6.4. Note that in
these cases pe2e > 80%, because one chooses a faster alternative while maintaining
the same deadline. Note that all iso–curves in Figure 6.5 are piecewise linear. More
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Figure 6.5: Expected revenue in static setup with pe2e = 80%. All contour lines
represent equal expected revenue for the static optimal composition. The grey and
white area correspond to the different optimal static compositions.

precisely, one may verify using (6.6) that for a given optimal static workflow the
iso–curves are of the form KV = aKR + b, with

a =
pW

1− pW
, and b =

R∗static + cW
c(pW − 1)

, (6.18)

where R∗static is defined in (6.14), and where cW is the cost for the optimal static
workflow W , pW is probability a request using W will be within deadline δp and
W is the optimal static workflow for which holds that W = (1, 1) in the grey area
and W = (1, 2) in the white area. It is readily verified from (6.6) that the switching
curve of the optimal workflow (i.e., the border separating the grey and the white
area) is given by the following equation

KV +KR =
c(1,1) − c(1,2)

c(p(1,1) − p(1,2))
, (6.19)
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where c(1,k) is the cost for workflow (1, k) (k = 1, 2) as defined in ((6.5)), c is defined
in (6.16) and p(1,k) is the probability that the response time meets the deadline if
the static workflow (1, k) is optimal. Figure 6.6 shows the results for the dynamic
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Figure 6.6: Expected revenue in dynamic setup with pe2e = 80%. All contour lines
represent equal expected revenue for the optimal dynamic composition.

counterpart of Figure 6.5, and Figure 6.7 shows the iso–curves for the relative gain
G, defined in (6.14). Most remarkably, the iso–curves depicted in Figure 6.7 are
wedge–shaped with a sharp angle at the switching curve (6.19). This suggests that
the relative gain G has the highest values at the switching curve. In other words,
the information about the response times at the first abstract service is particularly
crucial to decide about the optimal path.

The solid line is the contour line over the combinations (KV ,KR) where R∗dynamic =
0, and the dashed line show the combinations for which R∗static = 0. We observe that
the distance between these two lines is maximal on the switching curve, as expected.

Figures 6.8 to 6.10 show the same results as in Figures 6.5 to 6.7, but with pe2e =
90%. The results show similar behaviour to those in Figures 6.5 to 6.7.
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Table 6.3: Cost and distribution parameters

Abstract service i → Service i /∈ {2, N} Service i ∈ {2, N}
Concrete service j ↓ cij µij σij

2
cij µij σij

2

Alternative 1 1 5 16 1 5 16
Alternative 2 N.A. N.A. N.A. 3 2.5 4
Alternative 3 N.A. N.A. N.A. 9 1.25 1
Alternative 4 N.A. N.A. N.A. 27 0.675 0.25
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Figure 6.7: Relative gain G of expected revenue with pe2e = 80%. The contour lines
represent equal relative gain. The grey and white area correspond to the different
optimal static compositions. The solid contour line is where R∗dynamic = 0, the
dashed contour line is where R∗static = 0.

6.5.2 Impact of number of alternatives

We will now investigate the impact of the number of alternatives for each of the
executed tasks on the obtained gain G when using dynamic composition. To this
end, we consider a workflow of length N ≥ 3, with Mi = 1 for i 6= 2, N , and where
M2 and MN are varied as {1, 2, 3, 4}. The cost and distribution parameters are listed
in Table 6.3, and moreover, we take R = 26, and V = 130. Note that it is readily
verified from (6.16) that c = 26, and from (6.17) that KR = 1 and KV = 5.

82



6.5. Numerical experiments

−6

−4

−4

−2

−2

−2

2

2

2

4

4

4

6

6

6

8

8

8

10

10

10

12

12
14

0

0

0

1 2 3 4 5

2

4

6

8

10

12

14

16

S
ca

le
d 

pe
na

lty
 K

V

Scaled revenue K
R

Figure 6.8: Expected revenue in static setup with pe2e = 90%. All contour lines
represent equal expected revenue for the static optimal composition. The grey and
white area correspond to the different optimal static compositions.
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Figure 6.9: Expected revenue in dynamic setup with pe2e = 90%. All contour lines
represent equal expected revenue for the optimal dynamic composition.
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Figure 6.10: Relative gain G of expected revenue with pe2e = 90%. The contour lines
represent equal relative gain. The grey and white area correspond to the different
optimal static compositions. The solid contour line is where R∗dynamic = 0, the
dashed contour line is where R∗static = 0.

Figure 6.11 illustrates an example with M2 = 2 and MN = 3. For each of the model

response … request 

Figure 6.11: Configuration for analysis on the impact of alternatives’ position for
the second and the last task in the workflow.

instances, we have calculated (1) the optimal static composition and its correspond-
ing expected revenue R∗static, (2) the optimal dynamic composition and its corre-
sponding expected revenue R∗dynamic, and (3) the relative gain G, defined in (6.14).
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In particular we expect that, due to increasing uncertainty when traversing a service
composition workflow, more alternatives are desired at the end of the workflow. For
our analyses we define a sequential workflow of length N where the number of service
alternatives is varied for the second and the last task in the workflow. Using this
setup we can compare the relative value of alternatives at the beginning and at the
end of the workflow. The values that have been chosen are presented in Table 6.3.

Table 6.4: Impact on availability of alternatives

Gain
N2

1 2 3 4

N8

1 0.0% 0.0% 0.4% 0.4%
2 16.6% 14.6% 14.8% 14.8%
3 37.1% 25.1% 25.3% 25.3%
4 42.1% 27.6% 27.8% 27.8%

dynamic N2

revenue 1 2 3 4

N8

1 2.44 5.43 5.45 5.45
2 6.33 8.21 8.23 8.23
3 7.44 8.97 8.98 8.98
4 7.71 9.15 9.16 9.16

Static N2

revenue 1 2 3 4

N8

1 2.44 5.43 5.43 5.43
2 5.43 7.17 7.17 7.17
3 5.43 7.17 7.17 7.17
4 5.43 7.17 7.17 7.17

Results of the case where N = 8 and pe2e = 90% for the reference composition are
represented in Table 6.4. Increasing the number of alternatives for the second task
in the workflow results in a negligible relative gain increase. However, increasing the
number of alternatives for the last task results in an increase of gain up to 42.1%.
If we take a closer look to static expected revenue in Table 6.4 we observe that the
third and fourth alternative are never used as the expected revenue does not increase
when these alternatives are available.

Furthermore we observe that the table is symmetric for the number of alternatives
at positions two and eight. This is caused by the fact that workflows in the static
scenario are fixed and therefore, if the alternatives at both positions are “similar”,
the position where the number alternatives is increased has no effect on expected
revenue. However, for the dynamic composition the position where the number of
alternatives is increases has a dramatic effect.
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For the case with dynamic service composition, we see from the results presented
in Table 6.4 that for the last task the availability of alternatives three and four has
a significant impact on revenue. For the second task the availability of mentioned
alternatives has hardly any effect as the advantage of optimal dynamic selection
is averaged out over the successive workflow response times. For the last task,
the dynamic service composition enables the orchestrator to take the advantage
of the third and the fourth alternative where the static service composition does
not optimally use the second alternative and never uses the third and the fourth
alternative.

6.5.3 Length of the composition

In subsection 6.5.2 we observed that the effect of alternatives at the start of the
workflow can vanish due to averaging of response times over the succeeding services.
In this subsection we investigate the effect of the composition length. The setup used
for the experiments is depicted in Figure 6.12 and the workflow has N sequential
tasks. There is one alternative for the first task (M1 = 1) while there are two
alternatives for tasks i ≥ 2 (Mi = 2 for i = 2, . . . , N). The parameter space is
large, therefore we limit us to compositions where orchestrator selects among two
alternatives for each task in the workflow. Concrete service alternative parameters
are defined in Table 6.5. Reward parameter R and penalty parameter V are related
to overall mean service cost c using scaled reward KR and scaled penalty KV as
defined in (6.17). Deadline δp is chosen using (6.15).

The set of service alternatives is identical for all tasks in the workflow. Therefore,
there are N different static compositions as for such composition the actual position
of alternatives does not matter. We define a workflow for a system with N tasks as
W k, k = 0, . . . , N−1 where k represents the number of faster alternatives used in the
composition. In our case reference composition becomes W ref = W 0 = (1, 1, . . . , 1),
i.e. a composition that consists of regular (slow) alternatives only. We choose to
vary parameters KR and KV in the ranges KR ∈ (0; 5] and KV ∈ (0; 50]. Figures

request response … 

Figure 6.12: Configuration for analysis of the impact of workflow length.

6.13–6.14 contain results for workflow lengths 3 and 20, respectively. The end–to–
end probability for the reference composition is pe2e = 90%. In these figures different
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Table 6.5: Cost and distribution parameters for impact of chain length.

Abstract service i → Service i /∈ {2, N} Service i ∈ {2, N}
Concrete service j ↓ cij µij σij

2
cij µij σij

2

Alternative 1 1 5 16 1 5 16
Alternative 2 N.A. N.A. N.A. 3 2.5 4
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Figure 6.13: Contour plot for relative gain G with N = 3 and pe2e = 90%. The
grey–scale areas correspond to a specific range of relative gain G as specified in the
colour bar. The arrows identify the (dashed) lines that separate different optimal
static policies, i.e. the number of faster alternatives used for the composition.

grey–scale levels of the contour areas identify different revenue gain G. We observe
wedge shapes at the edges of the grey–scale contour areas. These wedges correspond
to the switching curves where the static policy adds another faster alternative to
the workflow. Dashed lines identify the switching curves between different optimal
static workflows. Arrows identify what static optimal paths are separated. Switching
curves could be expressed as the following:

KV +KR =
cW k

− cW k+1

c(pW k
− pW k+1

)
, (6.20)

which is similar to (6.19). Probability pW k
is the probability that a static composi-

tion with k faster alternatives will generate a response within deadline δp. When the
workflow length N increases the grey–scale contour areas become wider. This im-
plies that longer workflows potentially have a higher revenue gain G when comparing
dynamic and static workflows.
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Figure 6.14: Contour plot for relative gain G with N = 20 and pe2e = 90%. The
grey–scale areas correspond to a specific range of relative gain G as specified in the
colour bar. The arrows identify the (dashed) lines that separate different optimal
static policies i.e. the number of faster alternatives used for the composition.

6.5.4 Arbitrary alternatives

We consider a service workflow illustrated at Figure 6.15 for our experiments. This
sequential workflow consists of N = 4 tasks. For each task i, there are Mi service al-
ternatives, where Mi could take one of the values {1, 2, 3, 4}, and Mi 6= Mj whenever
i 6= j. The notation (M1,M2,M3,M4) depicts the particular experiment setup, and
represents one of the possible permutations of the set {1, 2, 3, 4}. Therefore, there
are in total 24 different compositions (experimental setups) to be considered. Let
W SW = (w1, w2, w3, w4) represent the service composition for the Static Workflow
(SW) strategy, where 1 ≤ wj ≤Mj , j = 1, 2, 3, 4. We want to compare the SW and
Dynamic Programming (DP) strategies with fixed scaled parameters KV and KR.
We choose to dimension the deadline δp such that the optimal static composition has
exactly a fraction of requests served within the end–to–end deadline δp that equals
to pe2e. We can determine the optimal static composition “path” and so determine
the reward and penalty parameters such that the expected revenue for the static
composition equals a predefined value. The expected reward per request for the SW
strategy R∗SW is given by

R∗SW = R · pe2e − V · (1− pe2e)− cWSW
. (6.21)

This expression is similar to (6.6) with workflow cost cWSW
as defined in (6.5).

We use the SW strategy for the benchmarking and we set the value R∗SW = 0.01.
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request 

response 

Figure 6.15: Example workflow where the number of alternative services are repre-
sented by the permutation (M1,M2,M3,M4) = (3, 4, 1, 2).

Taking into account (6.21) the values for parameters R and V satisfy the following
equations:

R =
R∗SW + cWSW

+KV · (1− pe2e) · c
pe2e

, (6.22)

V =
R∗SW + cWSW

−KR · pe2e · c
pe2e − 1

. (6.23)

We have conducted simulations for two general scenarios, symmetric and asymmet-
ric. These scenarios are defined based on the selection of cost parameters, as well as
µ and σ2 for a concrete service.

The goal of symmetric scenario simulations is to illustrate the importance of the
position of, and number of, service alternatives within the workflow. The choice
of parameters for symmetric scenario is given in Table 6.6; here the parameters of
the concrete service alternatives are the same for all abstract services. When the
number of alternatives for abstract service is e.g. 2, we always consider alternative
1 and alternative 2 in our experiments.

In the asymmetric scenario which corresponds to parameter Table 6.7, the concrete
services have different mean response times for abstract services at different positions
in the service composition chain. For example, service CS2

1 has execution cost c2,1 =
5, mean µ2,1 = 10 and variance σ2

2,1 = 16 while alternative CS2
2 is cheaper, i.e.

c2,2 = 1, has a lower mean µ2,2 = 9.5 but higher variance σ2
2,2 = 64. Furthermore,

for the third task, an expensive service alternative with zero variance is added. The
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Table 6.6: Concrete service alternatives symmetric scenario

Abstract service i → Service 1, Ser-
vice 2, Service 3,
Service 4

Concrete service j ↓ cij µij σij
2

Alternative 1 1 5 4
Alternative 2 5 2.5 4
Alternative 3 10 1.25 16
Alternative 4 50 0.5 0.0009

Table 6.7: Concrete service alternatives asymmetric scenario

Abstract service i → Service 1 Service 2

Concrete service j ↓ cij µij σij
2

cij µij σij
2

Alternative 1 1 5 4 5 10 16
Alternative 2 5 2.5 4 1 9.5 64
Alternative 3 10 1.25 16 10 1.5 0.25
Alternative 4 50 0.5 0.0009 50 1 0.0025

Abstract service i → Service 3 Service 4

Concrete service j ↓ cij µij σij
2

cij µij σij
2

Alternative 1 1 0.5 0.04 1 2.5 1
Alternative 2 5 0.4 0.04 5 2.45 2.25
Alternative 3 10 0.3 0.0025 10 1 4
Alternative 4 100 0.05 0 50 0.25 0.0004

goal of the asymmetric scenario is to illustrate the importance of the variance in
addition to mean and cost for the service selection, which is usually neglected in
state–of–the–art service composition solutions.

The calculated values for reward and penalty parameters (and given pe2e = 90%) are
then used for the simulations of the DP strategy, for both symmetric and asymmetric
scenarios.

6.5.5 Results

For all possible permutations of number of concrete service alternatives (see Ta-
ble 6.8) the expected revenue E[R] is calculated for both symmetric and asymmetric
scenarios and DP and SW strategies. The results are summarized in Figure 6.16
(symmetric scenario) and Figure 6.17 (asymmetric scenario). For both figures, the
alternative configurations are ranked upon the expected revenue for the DP strat-
egy. In Figure 6.16 we observe that the DP solution achieves the lowest revenue
for the permutation (M1,M2,M3,M4) = (4, 3, 2, 1). In this case there are many
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Table 6.8: Indices of alternative configurations

label a b c d e f g h i j k l
position 1 4 3 4 2 3 2 4 3 4 1 3 1
position 2 3 4 2 4 2 3 3 4 1 4 1 3
position 3 2 2 3 3 4 4 1 1 3 3 4 4
position 4 1 1 1 1 1 1 2 2 2 2 2 2

label m n o p q r s t u v w x
position 1 4 2 4 1 2 1 3 2 3 1 2 1
position 2 2 4 1 4 1 2 2 3 1 3 1 2
position 3 1 1 2 2 4 4 1 1 2 2 3 3
position 4 3 3 3 3 3 3 4 4 4 4 4 4

alternatives for the first task and no alternatives for the last task which results in
no possibility to recover from (possible) large service response time accumulated at
the beginning of the workflow. Further, DP–based solution makes always the same
service selection for the first task in the workflow, not taking any advantage of avail-
able alternatives for this service. On the other hand, the highest revenue for the DP
solution is achieved for the permutation (M1,M2,M3,M4) = (1, 2, 3, 4). The most
alternatives are then available for the last workflow task, thus increasing the possi-
bility to recover from (possible) large response times accumulated at the beginning
of the workflow.

From Figure 6.16 seven regions can be identified labelled by capital letters
A,B,C,D,E, F,G. Each region is separated by line where the configuration change
resulted in a significant increase in expected revenue. The changes that correspond
to the most significant increase in revenue are listed in Table 6.9. In this Table
labels M3 and M4 correspond to the number of alternatives available for the last
two workflow tasks. We observe from Figure 6.16 that six configurations in regions
F and G with the highest revenue are those where the number of alternatives is the
highest for the last, fourth workflow task. The number of alternatives is in given
example four.

Configurations in region G perform better than configurations in region F as the
number of alternatives for the third task is three in region G, and either one or two
in region F . Additionally, the revenue “jump” between regions E and F is due to
the number of alternatives (3 and 4, respectively) for the fourth task. The “jump”
between regions D and E is caused by the fact that in region D for there are only
alternatives 1 and 2 available for the third task, while for region E four service
alternatives are available for the same, third task.

The largest revenue improvement for DP strategy is achieved when for the last
task, service alternative four is considered, see Table 6.6. When this alternative
with low mean and variance is considered, enough certainty to proceed with the
workflow execution exists and the high price of this service will be compensated
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by the increase in expected revenue. Another (smaller) revenue increase can be
observed when service alternative 3 becomes available for the third task. This can
be explained by the fact that the 90–th percentile for alternative 3 is still lower than
for alternatives 1 and 2, despite its higher variance, see Table 6.10. In Figure 6.17
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Figure 6.16: Expected revenues per request in case of the symmetric scenario. The
results are presented for both static (SW) and dynamic (DP) strategies. See Table 6.9
for the characteristics of the regions D,E, F,G.

Table 6.9: Symmetric scenario regions from Figure 6.16.

Region D E F G
M3 < 3 4 < 3 3
M4 3 3 4 4

Table 6.10: The 90th percentile of service alternatives.

Alternative 1 2 3 4
Percentile 7.61 4.81 2.74 0.54

µ 5 2.5 1.25 0.5
σ 2 2 4 0.03

the results are given for the asymmetric scenario. For the asymmetric scenario it
is harder to observe any structure, because the different alternatives have different
impact on the response time and the DP takes advantage of the properties of all
service alternatives. The lowest expected revenue is achieved for the configuration
(M1,M2,M3,M4) = (4, 3, 2, 1) while the highest expected revenue is achieved for
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Figure 6.17: Expected revenues per request in case of the asymmetric scenario. The
results are presented for both static (SW) and dynamic (DP) strategies.

the configuration (M1,M2,M3,M4) = (1, 2, 3, 4). The largest revenue increase is
achieved when the near–zero variance service alternative is considered for the last
task and when the cheaper second alternative for the second task is considered for
selection despite its higher variance. In Figure 6.18 we show the comparison of the
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Figure 6.18: Revenue comparison between symmetric and asymmetric scenarios.

rewards for the symmetric and asymmetric scenarios. The comparison is done when
the same service configuration is used for both scenarios. The indices of service
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configuration are shown in Table 6.8.

The main conclusions and some “rules of a thumb” that could be drawn from the
Figures 6.16 – 6.18 are as the following:

• Dynamic, on–the–fly service composition results in higher revenues for the
CSP, compared to optimal “static” service composition (Figures 6.16, 6.17).
While the expected reward per request for the SW strategy is 0.01, for the
symmetric and asymmetric DP scenarios, the expected rewards per request,
depending of the configuration, may be greater than 40 or greater than 60,
respectively.

• It is more beneficial to have higher number of concrete service alternatives
closer to the end of the sequential workflow (Figures 6.16, 6.17).

• The variability of the response times may have significant impact to the rev-
enues achieved. When the end–to–end deadline is in jeopardy, it may be bet-
ter to have more expensive service with small response–time variability (and
smaller mean) than less expensive one with large response–time variability
(Figure 6.17).

• It is in general better to have more response–time versatility with respect to
mean and variance, (Figure 6.18). However, this needs to be investigated
further.

6.6 Conclusions

In this chapter we have developed a model to maximize revenue for composite services
by on–the–fly dynamic service selection. The selection decision for a specific task in
the workflow is based on the response–time characteristics of the service alternatives
for the current and subsequent tasks, the remaining time to end–to–end deadline,
services’ execution costs, and the reward and penalty parameters. The results do not
only indicate that there is enormous potential gain compared to other, non–dynamic
approaches, but also show how one can realize such gain. In particular, we have
shown that the optimal service selection policy can be implemented as a lookup
table, which also means negligible decision–making time. We believe that the work
presented in this chapter is a significant step in realizing cost–efficient provisioning
of complex composite services.

An interesting and practically useful extension of the model is to include the pos-
sibility of reattempts when the response time of a given individual service exceeds
some threshold value. Such reattempts may be particularly beneficial when the
response–time distribution has a decreasing hazard rate of failure. Investigation of
the potential for cost reduction and the cost/benefit trade–off of reattempts has been
addressed in this thesis in Chapter 8.
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CHAPTER 7

Optimal Selection Policies under Partial Service
Availability

In this chapter quality assurance of composite services within SOA is addressed in
the same context as in the previous chapter, i.e. run–time service composition and
revenue maximization by the composite service provider. The quality assurance
is defined as the probability that end–to–end deadline will be met. Motivated by
practical applications, the important feature of the model considered in this chapter,
compared to the model considered in Chapter 6, is that it takes into account the
partial availability of services, next to the response time performance and service
costs. In order to derive the selection policy that will be used at runtime, we extend
the DP approach from Chapter 6 by the inclusion of the services’ availability.

The main contributions of this chapter are as follows:

• We analyse the relation between the selection policy and quality assurance, and
explain in particular how to derive the optimal selection policy for given target
assurance. The developed service selection policy is optimal with respect to
profit maximization of the composite service provider.

• We analyse the resulting end–to–end response–time distribution of the compos-
ite service when the optimal service selection policy is used. We further explain
why our method results in a system, the response time of which has reduced
variance with respect to the commitments of composite service provider.

The chapter is organized as follows: after overview of related work in Section 7.1,
we briefly describe in Section 7.2 the model of the system under consideration. In
Section 7.3 we formulate the run–time service composition problem as a dynamic
programming problem and provide the corresponding backward recursion solution
method used to determine the optimal decision policy. Next, in Section 7.4, we ex-
plain how to determine the end–to–end assurance and show strategies to increase it.
In Section 7.5 we give the formulae for calculation of the response time distributions
taking the partial availability of the services into account as well. In Section 7.6, the
results of extensive numerical experiments are presented and discussed. We conclude
the chapter and give directions for further research in Section 7.7.

This chapter is based on paper [106].
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7.1 Related work

A number of solutions have been proposed for the problem of dynamic, run–time
QoS–aware service selection and composition within SOA [25, 33, 44, 116]. These
(proactive) solutions aim to adapt the service composition dynamically at run time.
In [44] the authors analyse a problem of dynamic web service composition for differ-
ent composition patterns. QoS parameters considered include reliability, availability,
as well as cost and expected value of the response time of individual web services.
The authors propose a solution based on Markov Decision Processes to minimize
the expected response time, taking into account the availability and reliability of the
respective services and the invocation costs. However, the authors do not consider
the stochastic nature of response time, but the expected value of it. Besides, they do
not consider the cost structure, revenue and penalty model assumed in this chapter.

Doshi et al. [33] present a policy–based approach for dynamically choreographing
web services. The goal of the decision policy is to minimize the execution cost,
while the impact of the reward and penalty on per request base are not analysed.
Besides, the impact of the service availability on the revenue of the composite service
provider is not addressed in this paper. Cardellini et al. [25] consider dynamic service
composition in the context of admission control with various service classes. The
(different) composite service configurations for the service classes can be dynamically
adapted according to variations in the operating environment due to the admission
or departure of users generating requests for the composite service. The authors
derive an optimal admission and re–composition policy (by formulating the problem
as a linear optimization problem) that maximizes the profit while guaranteeing QoS
for the admitted users.

Despite the fact that each of these papers provide useful results on improving the
response time performance, neither [25] nor the solution described at Chapter 6 take
into account the availability of services. This observation is the main motivation for
this study, as we take into account both availability and response time performance
aspects. The service (un)availability may have significant impact for the end–to–end
service composition and response–time commitments made by the composite service
providers, as illustrated further in the chapter.

7.2 Sequential workflow decision model

In this section we briefly describe our model based on a composite web service rep-
resented by a sequential workflow with a simple illustration of an example workflow
shown in Figure 7.1. The workflow in Figure 7.1 consists of four abstract services,
and each abstract service maps to a number of concrete services (alternatives), which
a deployed by (independent) third–party service providers. After the execution of a
single task within the workflow, the orchestrator decides on the next concrete service
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request 1 composition:  

request 2 composition: 

request 1 

response 1 

response 2 

request 2 

A B C D 

Figure 7.1: Orchestrated composite web service depicted by a sequential workflow.
Dynamic run–time service composition is based on pre–calculated policy. Decisions
are taken at points A, B, C and D, and e.g. it is known to the orchestrator at B
which services implementing task 2 are available at the decision instance.

to be executed. The decision points for given tasks are illustrated at Figure 7.1 by
A, B, C and D, respectively.

Our solution is applicable to any workflow that could be aggregated and mapped
into a sequential one. Some basic rules for aggregation of a non–sequential into the
sequential workflow have been illustrated in [28,115,116]. However, the aggregation
leads to coarser control, since decisions could not be taken for a single service within
the aggregated workflow, but rather for the aggregated workflow patterns themselves.
Per single composite service request, the orchestrator executes tasks one–by–one as
indicated by the sequential workflow. There are in total N tasks in the workflow
and the task position within workflow is indexed by i, i = 1, 2, . . . , N . Each task
i maps onto Mi ≥ 1 concrete services (alternatives), where service j implementing
task i is denoted by CSij , see also Figure 7.1.

We denote by cij the cost that the composite provider pays for the single invocation

of service CSij . To stochastic nature of response time for service CSij is modelled by

PDF or respective CDF. The PDF and CDF for service CSij are denoted by f ij(t)

and F ij (t), respectively.
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We define the composite service assurance T as the probability that a single request
will be executed within end–to–end penalty deadline δp. Composite service provider
is rewarded by R when single request is completed within the deadline, otherwise,
composite service provider pays penalty V to the end customer when this deadline is
not met. This penalty is also enforced when none of the concrete services is available
for task i and therefore the composite service provider cannot generate the response
at all.

We assume that the orchestrator knows (due to constant monitoring of the services)
which of the service alternatives are available for task i, as some of the alternatives
may not be available at the decision moment. The availability of services is expressed
by the probability pij that the concrete service CSij is operational and accessible
when required for use, [73]. The orchestrator does not know at service selection
moment for task i which of the concrete services (for tasks i + 1 and onwards) are
available, but it does know the availability probabilities of these. In absence of
constant service availability monitoring, the orchestrator could, due to the lack of
knowledge, submit the request to the service that is temporarily unavailable. This
issue may be overcome by establishing the response–time thresholds that indicate
when certain service may be considered unavailable. This approach would further
require an implementation of “watchdog timer” policy, i.e. determination of the
optimal moments to terminate the current request, and perform the retry, using
the same or a functionally equivalent service implementing the same task. This is
considered in Chapter 8.

7.3 Algorithm for optimising expected revenue

In this section we describe how to optimise expected revenue in the setting described
in the previous section, by formulating the dynamic service selection as a DP problem
[15]. Although formulae deduced here may appear “similar” to those developed
in Chapter 6, the inclusion of the services’ availability within these formulae is a
challenging task. The given formulae result in different (and more accurate) service
composition policies, which, consequently, leads to significant revenue improvements,
as illustrated in Section 7.6. This also stresses the need to at jointly investigate
impact of availability and response–time parameters for the service composition.

Due to the fact that we take into account the actual availability of services, different
from “classical” DP approach, we store a permutation (ordering) of concrete services
implementing task i. This permutation is denoted by j1, . . . , jMi

. When the or-
chestrator makes service selection decision, it will use these orderings to choose the
’best’ concrete services among the ones that are available. Besides, if the deadline
expires during the execution of the composite service request, with some tasks still
not executed, the decision rule is to use the cheapest services available for each of
the remaining tasks.

The decision policy is determined by the current position within the sequential work-
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flow i, the available services at this position, and the remaining time ∆ till the overall
deadline δp will be violated. When the remaining time to deadline has the value of
δ a set of expected rewards E[Ri | ∆ = δ] is defined by the DP recursion:

E[Ri | ∆ = δ] = pij1

(
− cij1 + E[Rij1 | ∆ = δ]− E[V ij1 | ∆ = δ]

)
+

+ (1− pij1)pij2

(
− cij2 + E[Rij2 | ∆ = δ]− E[V ij2 | ∆ = δ]

)
+

+ · · ·+ (1− pij1) · · · (1− pijMi−1
)pijMi

· (7.1)

·
(
− ciMi

+ E[RiMi
| ∆ = δ]− E[V iMi

| ∆ = δ]
)

+

+ (1− pij1) · · · (1− pijMi )V,

where i = 1, 2, . . . , N .

For given task i, and without loss of generality, there is an order j1, . . . , jMi of
concrete services such that choosing j1 would lead to the highest expected CSP
revenue, choosing j2 to the second highest expected CSP revenue, etc. This is
specified as

−cij1 + E[Rij1 | ∆ = δ]− E[V ij1 | ∆ = δ] ≥
≥ −cij2 + E[Rij2 | ∆ = δ]− E[V ij2 | ∆ = δ] ≥ (7.2)

≥ · · · ≥ −cijMi + E[RijMi
| ∆ = δ]− E[V ijMi

| ∆ = δ].

The selection strategy by the orchestrator for given task i is based on choosing service
CSij1 if available; if not, choosing CSij2 if available, and so on. The term E[Rij | ∆ = δ]

represents the expected reward, when concrete service CSij is executed for the given

remaining time value δ. The term E[V ij | ∆ = δ] represents the expected penalty

for exceeding the overall deadline while executing service CSij . The expected reward
and penalty functions take into account the impact of future decisions. This leads
to the optimal solution of the problem [15].

However, the evaluation of E[Rij | ∆ = δ] and E[V ij | ∆ = δ] requires the usage
of PDF (CDF), which usually results in rather complicated integral equations 6,
Section 6.4. To resolve this issue, the discretization of distributions is required. The
response time of interest (end–to–end deadline) is therefore split into segments of the
same size h. For the total number of segments m∗, this leads to discretized versions
of the PDF (pij,k) and CDF (P ij,k):

pij,k = P
(
Di
j ≤ h[k + 0.5]

)
− P

(
Di
j ≤ h[k − 0.5]

)
, P ij,k =

k∑
l=0

pij,l, (7.3)

where i = 1, . . . , N, j = 1, . . . ,Mi, k = 0, . . . ,m∗.

Let terms Rim∗ , R
i
j,m∗ , and V ij,m∗ represent discretized versions of E[Ri | ∆ = δ],

E[Rij | ∆ = δ], and E[V ij | ∆ = δ], respectively. The backward recursion formulae

99



Chapter 7. Optimal Selection Policies under Partial Service Availability

are then as follows:

Rim∗ = pij1

(
− cij1 +Rij1,m∗ − V

i
j1,m∗

)
+ (1− pij1)pij2

(
− cij2 +Rij2,m∗ − V

i
j2,m∗

)
+

+ · · ·+ (1− pij1)(1− pij2) · · · (1− pijMi−1
)pijMi

· (7.4)

·
(
− cijMi +RijMi ,m∗

− V ijMi ,m∗
)

+ (1− pij1)(1− pij2) · · · (1− pijMi )V,

where i = 1, . . . , N , and, without loss of generality, j1, . . . , jMi
is a permutation of

(1, 2, . . . ,Mi), such that

−cij1 +Rij1,m∗ − V
i
j1,m∗ ≥ −c

i
j2 +Rij2,m∗ − V

i
j2,m∗ ≥ · · · ≥ (7.5)

≥ −cjni +RijMi ,m∗
− V ijMi ,m∗ ,

Rij,m∗ =


PNj,m∗R, i = N,
m∗∑
k=0

pij,kR
i+1
m∗−k, i = 1, . . . , N − 1,

(7.6)

and

V ij,m∗ =

{(
1− PNj,m∗

)
V, i = N,(

1− P ij,m∗
)
Ri+1
m∗=0, i = 1, . . . , N − 1,

(7.7)

where j = 1, . . . ,Mi, k = 0, . . . ,m∗.

While applying formulae (7.4)–(7.7), the corresponding decisions (actions) can be
obtained by storing (j1, . . . , jMi

) for every task i = 1, . . . , N and every possible time
interval m∗, where (j1, . . . , jMi

) is a permutation of (1, 2, . . . ,Mi).

We define a (deterministic) decision strategy S for every i = 1, . . . , N and every
time interval m∗, as a permutation S(i,m∗) := (j1, . . . , jMi

) of (1, 2, . . . ,Mi). The
choice to be made for task i and given time interval m∗ is then preferably to choose
concrete service CSij1 . If this service is not available, then choose CSij2 and so on. We
denote by S∗ the decision strategy that gives the optimal expected revenue, i.e. this
is decision strategy such that (7.5) is satisfied. In the next section we address the
relation between the optimal revenue decision strategy S∗ and end–to–end quality
assurance T .

7.4 Relation between optimal revenue strategy and
quality assurance

In general, the optimal decision strategy S∗ may not necessarily guarantee the high-
est quality assurance Tmax. In this section we will first develop the algorithm to
calculate the end–to–end assurance and show strategies to increase end–to–end as-
surance, while sacrificing expected revenue.
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7.4.1 Calculation of end–to–end assurance

In order to calculate the end–to–end assurance we use the (discretized) setting as
described in Section 7.3, equations (7.3)–(7.7). The deadline δp can be expressed
as mp = dδp/he, i.e. it is expressed as the number of discretization segments. For
a given decision strategy S, we define the end–to–end assurance T = T (S) of the
(discretized) decision strategy S to be the probability that the deadline mp will
be kept. The end–to–end assurance can be calculated using the following recursive
relations:

T ij,m∗ =


PNj,m∗ , i = N,
m∗∑
k=0

pij,kT
i+1
m∗−k, i = 1, . . . , N − 1,

(7.8)

and

T im∗ = pij1T
i
j1,m∗ + (1− pij1)pij2T

i
j2,m∗ + · · ·+ (7.9)

+ (1− pij1)(1− pij2) · · · (1− pijMi−1
)pijMi

T ijMi ,m∗
,

where S(i,m∗) = (j1, . . . , jMi). The end–to–end assurance T (S) equals T 1
mp . Clearly

0 ≤ T (S) ≤ 1 for any given strategy S.

In general, not any value of end–to–end assurance may be reached. The highest
possible end–to–end assurance can be calculated as described with the ordering
(j1, . . . , jMi) of concrete services at each task i and time interval m∗ on the assurance
factors T jm∗,i. The highest assurance is achieved for permutation (j1, . . . , jMi

) such
that

T ij1,m∗ ≥ T
i
j2,m∗ ≥ · · · ≥ T

i
jMi ,m

∗ .

Remark: The optimal revenue strategy S∗ defined in section 7.3 need not be unique,
because there might be different permutations (j1, . . . , jMi) of (1, . . . ,Mi) such that
(7.5) is satisfied, namely when there are equalities. However, each revenue policy S
has accompanied assurance T ij,m∗ , calculated using (7.8)–(7.9). In case when there
are two or more revenue policies that yield the same revenue, these policies can be
ordered according to their respective assurance. In case when two or more policies
S yield the same revenue, and have the same assurance, we further order them
according to the lexicographic ordering of permutations. This is how the uniqueness
of the selection strategy is achieved.

7.4.2 Optimal revenue strategy with target assurance

We denote by S∗V the unique optimal revenue decision strategy for given penalty
V , by E[RV (S)] we denote the expected revenue for strategy S and given penalty
V . It holds that E[RV (S∗V )] ≥ E[RV (S)] for all selection strategies S. However, the
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optimal revenue strategy S∗V need not have the highest end–to–end assurance, for
instance due to expensive but high assurance individual services in the chain. As
explained in the remark, the assurance T (S∗V ) is maximal among all strategies S
under condition that E[RV (S)] = E[RV (S∗V )]. The composite service provider may
need to guarantee a certain minimal end–to–end assurance T for given penalty V .
This assurance might not be attained by the optimal revenue selection strategy S∗V .
This establishes the need to determine a different strategy S 6= S∗V that has maximal
expected revenue under the condition that it has end–to–end assurance greater than
or equal to T . The strategy S could be determined by usage of the following theorem.

Theorem 7.4.1. Let penalties W and V satisfy 0 ≤ V < W . For given end–to–end
deadline, let SW be the optimal revenue strategy for penalty W with assurance T =
T (SW ). Then E[RV (SW )] ≥ E[RV (S)] for all selection strategies S with T (S) ≥ T .

Proof. Let C11 be the expected cost paid when strategy SW is used under the con-
dition that the end–to–end deadline is met, and C12 be the expected cost paid when
strategy SW is used, under the condition that the end–to–end deadline is not met.
Given the assurance T = T (SW ), the expected revenue is

E[RW (SW )] = T · (−C11 +R) + (1− T ) · (−C12 −W ).

Let S be any selection strategy under condition T (S) ≥ T . Let C21 be the expected
cost when strategy S is used, under the condition that the end–to–end deadline
is met, and let C22 be the expected cost paid when strategy S is used, under the
condition that the end–to–end deadline is not met. Then

E[RW (S)] = T (S) · (−C21 +R) + (1− T (S)) · (−C22 −W ).

Since SW is optimal revenue strategy for given penalty W , it holds that
E[RW (SW )] ≥ E[RW (S)], i.e.

T ·(−C11 +R)+(1−T ) ·(−C12−W ) ≥ T (S) ·(−C21 +R)+(1−T (S)) ·(−C22−W ).

Now, adding (1−T )(W−V ) on both sides, and given the fact that (1−T )(W−V ) ≥
(1− T (S))(W − V ), we obtain:

E[RV (SW )] = T · (−C11 +R) + (1− T ) · (−C12 − V )

= T · (−C11 +R) + (1− T ) · (−C12 −W ) + (1− T )(W − V )

≥ T (S) · (−C21 +R) + (1− T (S)) · (−C22 −W ) + (1− T )(W − V )

≥ T (S) · (−C21 +R) + (1− T (S)) · (−C22 −W ) + (1− T (S))(W − V )

= T (S) · (−C21 +R) + (1− T (S)) · (−C22 − V ) = E[RV (S)],

which completes the proof.

The following conclusions could be made from the given theorem:

• The end–to–end assurance increases with the increase of the penalty value.
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• The optimal expected revenue decreases with the increase of the penalty value.

• When optimal revenue strategy S∗V for given penalty V does not meet target
assurance, a new strategy SW needs to be calculated. This is done by finding
the smallest penalty value W (W > V ), for which the optimal revenue strategy
SW meets the target assurance T . The revenue strategy SW is then optimal
under condition that target assurance is met.

7.5 Calculation of end–to–end response time dis-
tribution

The end–to–end assurance only describes the probability to complete the request
before the deadline. The assurance corresponding to a selection strategy S could
be readily calculated from the end–to–end response time distribution. However, the
determination of the end–to–end response time distribution allows to identify, e.g.
strategies that have response time close to the deadline with relatively high proba-
bility. Therefore, we describe here how the end–to–end response time distribution
r∗ of a strategy S can be computed. In section 7.6 we will demonstrate the usage of
such distributions.

Suppose we have a selection strategy S, that will give, for each task i and time t,
a permutation (j1, . . . , jMi

) of (1, . . . ,Mi), i.e. S(i, t) = (j1, · · · , jMi
), such that, if

available, concrete service j1 will be selected, else concrete service j2 if available,
etc. Let rij,s be the response time distribution when CSij is available and selected,

and the remaining time to deadline equals to s. Further, let ris be the response time
distribution for task i and remaining time to deadline s, i.e. no concrete service for
task i is selected yet. When no concrete services are available for given task, the
composite request will not be completed, and, for such a scenario, we assume the
response time to be infinite. Then, with remaining time to deadline s, we have

ris = pij1r
i
j1,s + (1− pij1)pij2r

i
j2,s + · · ·+ (7.10)

+ (1− pij1)(1− pij2) · · · (1− pijMi−1
)pijMi

rijMi ,s
+

+ (1− pij1) · · · (1− pijMi )

where i = 1, 2, . . . N .

The response–time distribution for CSij , with remaining time to deadline s is

rij,s(t) =


fNj (t), i = N, t ≤ s∫∞

0
f ij (y)(R+(y)ri+1

s−y)(t) dy,

for i = 1, . . . , N − 1,

(7.11)
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where j = 1, 2, . . .Mi and (R+(y)g)(t), is given by

(R+(y)g)(t) =

{
g(t− y), t ≥ y,
0, t < y.

(7.12)

7.6 Numerical experiments

In this section we will give some numerical experiments of the theory described in pre-
vious sections, and state some observations coming from these experiments. Unless
otherwise specified, we illustrate the results for the case of the sequential workflow
that consists of N = 4 tasks (abstract services), and each task is implemented by
four different concrete services (alternatives).

7.6.1 A static algorithm for comparison

We need first to determine a (static) reference to compare our results to. One ap-
proach may be [116], to determine an optimal path W = (W1, · · · ,WN ) in advance,
such that for task i, a concrete service Wi is selected. This approach is not ap-
plicable for the problem we consider here because any of the individual services in
the optimal path may be unavailable, which implies that the probability that the
composite service never generates a reply can become quite large. As an illustration,
let us analyse a sequential workflow with N tasks, where each concrete service has
availability that is same and equals to a value p < 1. In case when an optimal path
is determined, i.e. a single concrete alternative has been chosen for each task, and
that choice is not changed, the probability that composite service request would not
be served is 1− pN , which goes to 1 quickly as N becomes large.

As this would mean an unfair assessment of the static approach, we adjust it as
follows: For each task i, i = 1, . . . N , a specific permutation w1

i , . . . , w
Mi
i of concrete

services (1, . . . ,Mi) is chosen, such that

(1) of all possible compositions, (w1
1, · · · , w1

N ) gives the optimal expected revenue,
under the condition that these concrete services do not fail,

(2) for i ∈ {1, · · · , N}, and k ∈ {1, · · · ,Mi}, denote E[rki ] := the expected revenue
for the composition (w1

1, · · · , w1
i−1, w

k
i , w

1
i+1, · · · , w1

N ). Then E[r1
i ] ≥ E[r2

i ] ≥
· · · ≥ E[rMi

i ].

This means that, in our reference case, the optimal (static) composition
(w1

1, · · · , w1
N ) is executed. However, whenever a concrete service w1

i at task i is
unavailable, the concrete service w2

i is selected instead when available, otherwise w3
i

if available, etc.
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7.6.2 Revenue and assurance improvements with identical
availability of services

In this subsection we illustrate the revenue and assurance improvements when our
solution is applied, compared to the reference. For each abstract service we assume

Table 7.1: Parameters of concrete services implementing a single task i.

c µ σ
Alternative 1 1 5 2
Alternative 2 2 3 2
Alternative 3 5 2.5 2
Alternative 4 10 1.25 3

we have four concrete services with parameters as in Table 7.1, i.e. with cost c,
and parameters µ and σ of the log–normal distribution of the response time. The
end–to–end penalty deadline is δp = 18, reward R = 20 and penalty value is V =
50. We also assume that concrete services for all tasks have the same availability
probabilities, and these probabilities vary from 0.6 to 1. The results for expected
revenue and end–to–end assurance are shown in Figure 7.2. The dynamic run–
time selection strategy significantly outperforms the static reference strategy, with
respect to both revenue and end–to–end assurance. The absolute difference among
expected revenue for the dynamic and static strategy remains more or less constant,
independent of availability. However, the end–to–end assurance comes farther apart
as the availability probabilities approach one.

When availability probabilities differ from one, our dynamic strategy takes future
availability uncertainties into account, while the static strategy does not. As we see
in Figure 7.2 that the difference in expected revenue stays more or less constant,
while the availability probabilities decrease, we conjecture that in this case the main
contribution to the advantage of the dynamic strategy versus the static strategy lies
in the fact that the dynamic strategy takes realised response times into account, and
not that it takes future availability probabilities into account. When the availability
of concrete services equals one, the difference between expected revenue for the
dynamic and static strategies results from the fact that the dynamic strategy takes
into account realised response times of the subservices when selecting the concrete
services for the next task. The dynamic strategy can therefore take advantage of a
low realised response time, even if the probability for this realisation is small.

7.6.3 Expected revenue and quality assurance

In this section we illustrate an application of Theorem 7.4.1. Again, the setting
consists of a sequential workflow with four tasks, of which each has four alternatives
with parameters specified in Table 7.1. Furthermore, we assume that reward R = 20,
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Figure 7.2: Comparison between the static and dynamic strategies for service pa-
rameters given in Table 7.1.

the penalty V = 50, the penalty deadline δp = 18, and the concrete services all
have an availability of 1. The dynamic strategy in this case realises an end–to–end
assurance of 0.9537, see also Figure 7.2. Let us now suppose that the minimal target
end–to–end assurance is Tt = 0.97, and let us determine the strategy that yields
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Figure 7.3: Expected revenues and end–to–end assurance for different penalty values.

optimal expected revenue under this additional requirement. We first check whether
target assurance is achievable at all. To do so, we determine maximum assurance
Tmax, as described at subsection 7.4.1. We obtain the value of Tmax = 0.98, with an
(negative!) expected revenue of −5.862. The target assurance of 0.97 is therefore
possible.
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Applying the Theorem 7.4.1 we develop the following steps to determine the strategy:

1. Increase the initial penalty V = 50 by increments ∆V , say ∆V = 10.

2. In n–th iteration, determine the strategy Sn that gives the optimal expected
revenue for penalty V + n∆V . Calculate the resulting end–to–end assurance
under strategy Sn, i.e. T (Sn).

3. For the first iteration n which results in assurance T (Sn) ≥ Tt compute the
expected revenue for strategy Sn using the initial penalty V = 50.

The approach is illustrated in Figure 7.3 for the initial penalty value V = 50, ∆V =
10 and Tt = 0.97. The target assurance Tt is reached for iteration n = 44, i.e. the
penalty value of 490. This results in strategy Sn which yields expected revenue of
6.37 for V = 50. By Theorem 7.4.1 this is the highest expected revenue that can be
achieved under the condition that the end–to–end assurance is greater than or equal
to 0.97.

7.6.4 Impact of availability

In this set of experiments we investigated the alternating individual service avail-
ability, and the impact it has to expected revenue and end–to–end assurance. The
parameters of the concrete services are specified in Table 7.1. However, not all
services have the same availability; we set the availability of all concrete services
implementing task 1 to 0.55, while concrete services implementing tasks 2, 3 and 4
have availability of 0.65, 0.75 and 0.85, respectively.

In the Table 7.2 all 24 possible compositions are shown. For example, configuration
with label a uses alternative 4 at position (i.e. task) 1, alternative 3 at position 2, and
so on. For respective configurations the resulting revenues and end–to–end assurance
are illustrated in Figures 7.4 and 7.5, respectively. Both Figure 7.4 and Figure 7.5
show “gaps” of dramatic revenue increase (respectively assurance increase), noted
by A, B and C in the figure. Careful examination of permutations from Table 7.2
indicates that gap A in Figure 7.4 results from the fact that the alternatives for the
last two tasks change from 2 and 1 (with availabilities 0.65 and 0.55 respectively)
to alternatives 3(4) and 1 for the same tasks. Similarly, gap B results from the fact
that the alternative for the last task is not 1 any more, but 2.

This leads to the following observations:

• The highest optimal revenue is achieved when the services with highest avail-
ability probabilities are placed at or near the end, and services with lowest
availability probabilities are placed at or near the beginning of the service
chain. One logical explanation for this is as follows: when optimal concrete
services are unavailable at the beginning of the service chain, there is still
enough “room” (in the time budget) to compensate this with a different strat-
egy. When they are unavailable near the end, this “room” to manoeuvre is
much smaller.
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Table 7.2: Indices of alternative assurance configurations

label → a b c d e f g h i j k l
position 1 4 4 4 4 4 4 3 3 3 3 3 3
position 2 3 3 2 2 1 1 4 4 2 2 1 1
position 3 2 1 3 1 2 3 2 1 4 1 2 4
position 4 1 2 1 3 3 2 1 2 1 4 4 2

label → m n o p q r s t u v w x
position 1 2 2 2 2 2 2 1 1 1 1 1 1
position 2 3 3 4 4 1 1 3 3 2 2 4 4
position 3 4 1 3 1 4 3 2 4 3 4 2 3
position 4 1 4 1 3 3 4 4 2 4 3 3 2

Figure 7.4: Expected revenues for different availabilities, sorted by permutation
indices.

• The above observation indicates that when considering which service alterna-
tives could play a role in constructing a composite service, extra care must be
taken to ensure that the service alternatives near the end of the chain have
sufficient availability probabilities.

7.6.5 Response time distribution

We showed in Section 7.5 how the response time PDF can be determined, and we
illustrate the results in Figure 7.6. The same setting and parameters as in subsec-
tion 7.6.3 are taken. From the respective PDFs we notice that dynamic response
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Figure 7.5: End–to–end assurance for different availabilities, sorted by permutation
indices.

time PDFs shift more towards the deadline compared to the reference strategy. The
dynamic strategy focuses on optimal expected revenue, and when more time is avail-
able, the strategy uses this time and select cheaper but slower services. It is also
clear from Figure 7.6 that dynamic strategy results in higher assurance than the
reference strategy.

7.7 Conclusions

In this chapter we presented a dynamic programming based solution for run–time
web service composition with two potentially conflicting goals: revenue maximization
and quality assurance (specified as the probability that a request made would meet
a given deadline). An important feature of the considered model compared to the
one used in Chapter 6 is that we take into account partial service availability, next
to the stochastic model of services’ response time and service costs. We apply the
dynamic programming approach to derive the optimal service selection policy for the
problem at hand. The highest optimal revenue is achieved when services with high
availability probabilities are used at the end of the workflow. It may happen that
optimal service selections for the tasks at the beginning of the workflow are low–
cost, “slow” services, which more often than other choices may be unavailable. When
these services at the beginning of the workflow are unavailable, there is still enough
“room” (in the time budget and costs) to compensate for this when executing the
remaining tasks. However, the choice narrows down to just a few (or none) options
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Figure 7.6: Comparison of response–time PDFs for dynamic and reference (static)
strategy when end–to–end deadline is 18.

in case when optimal service selections are not available at the end of the workflow.
We have shown how to determine the policy that would result in maximum revenue
for a given target quality assurance.

Using our model, we also determined the end–to–end response–time PDF under the
optimal selection policy. We have shown that the probability mass in the PDF and
the mean shift to the higher values when deadline increases. The dynamic strategy
has a goal of maximizing the expected revenue, and not to minimize the end–to–
end response time. For example, it may happen that more time budget remains
to meet the deadline due to the relatively fast execution of tasks at the beginning
of the workflow. In such a case, the strategy exploits this and selects cheaper and
slower services for the last tasks. This results in shift of the probability mass and
the mean of end–to–end PDF. Naturally, in case the optimization goal emphasises
quality assurance, the response–time distributions have their weight closer to zero,
and further away from the deadline.

We also compared end–to–end response–time distributions resulting from the devel-
oped service selection policy and static benchmark service selection. As the deadline
increases, the mean in case of static service selection strategy remains almost con-
stant, while in the case of dynamic run–time service selection mean increases, thus
it is closer to the deadline. The model discussed in this chapter assumes that the
orchestrator has ideal knowledge whether services implementing the next task to be
executed are available at the moment (optimal) selection is made. In Chapter 8 we
will use actual requests to derive conclusions whether particular service is available
or not.
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CHAPTER 8

Optimal Service Selection with Conditional
Request Retries

In the Chapters 4–7 we considered the dynamic, run–time service selection as end–
to–end QoS–control mechanism for composite web services. This chapter addresses
an additional QoS–control mechanism based on conditional retries. The conditional
retry may be issued when the execution of a concrete service within a composition
lasts too long. The retry can then either invoke a functionally equivalent web service
that implements the same task, or possibly, the same concrete service. The goal of
such adaptation is to maximize the revenues of the composite service provider (CSP),
while meeting the end–to–end deadline specified in the SLA that the CSP has with its
clients, even when some of the services used for the composition becomes transiently
less responsive (its performability worsens).

Note that in Chapter 7 the assumption used is that the orchestrator “knows” (e.g.
due to constant monitoring of the services) which of the service alternatives are
available for given task at the decision moment. However, this requires constant
monitoring of the services by probes. Probes are service requests that are not part
of the composite service execution. Taking into account that each single service
invocation involves costs, this approach is not desirable. Moreover, in case when
services are transiently unavailable, a service may cease to function while serving
actual requests.

In this chapter we derive the optimal runtime service selection policy for the setting
described above. In contrast to the selection policies considered in Chapter 6 and
Chapter 7, the policy derived in this chapter also specifies the (optimal) moments
when retry should be attempted, and which service should be used for a retry. The
derived policy is optimal with respect to the expected revenue of the CSP.

The main contributions of this chapter are as follows:

• Development and design of a performance model for the system with the con-
ditional retry mechanism.

• Using a dynamic programming approach the optimal decision policy with re-
spect to profit maximization of the composite service provider is derived. A
step–by–step procedure that leads to the optimal decision policy is specified.
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• The revenue improvements of the proposed solution are quantified and com-
pared to orchestrated composition strategies that do not apply conditional
retries. These alternative strategies range from (optimal) static service com-
position to the dynamic service composition strategy without the conditional
retry mechanism developed in Chapter 6.

• As the simulations for the given scenarios indicate that only a few retry options
may be enough for significant revenue improvements we also present the anal-
ysis of the scheme with a single retry possibility for the whole workflow. This
special case leads to insightful special formulae for the optimal retry moment.

The chapter is organized as follows: in the next section we provide an overview of
the related work. In Section 8.2 we describe the system model and the assumptions
taken. Besides, we specify a step–by–step procedure that leads to the decision policy.
Based on the given solution, we describe the simulation results for a number of sce-
narios in Section 8.3. The analysis of the single retry case is presented in Section 8.4
and we conclude the chapter in Section 8.5.

This chapter is based on papers [119] and [120].

8.1 Related work

Retry mechanisms as a solution for QoS control of temporarily unavailable services,
have been identified and classified, among others, in [7, 13]. The performance of
the retry mechanisms has been analysed in detail by van Moorsel, Wolter, et al.
[97,98,103]. Their work has focused on optimal retry mechanisms for a single service
in order to minimize the completion time. The number of retries could either be finite
or infinite, and the authors determine optimal retry moments, i.e. minimization of
completion time. Okamura et al. [74] analyse the optimal restart policies when
deadline is given and develop on–line adaptive algorithms for estimating the optimal
restart time interval via reinforcement learning. None of these solutions analyse the
problem using the penalty or reward of any kind. The cost of the retries are defined
as additional time to re–issue the service request. Besides, as in [97, 98, 103], the
retry mechanism is analysed from the single service point of view.

Yousefi et al. [110] describe a strategy for QoS aware service selection which takes
advantage of the existing variability in QoS data to provide higher quality services
with less cost compared to the conventional QoS aware service selection methods.
In their method, each request is replicated over multiple independent services imple-
menting the same task to achieve the required QoS, i.e. limit the response time by
certain pre–assigned value. Although the execution costs are taken into account for
the analysis, no penalties are considered and the replication mechanism is analysed
for a single task only. In this chapter we optimize request replication from the point
of increasing the profit of composite service provider, with the aim to issue request
replication only when it really may be useful. Besides, our analysis is performed for
service compositions described by a workflow that may have more than one task.
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8.2 System model and dynamic programming ap-
proach

In this section we describe the system model of a composite web service represented
by a sequential workflow with conditional retries and dynamic programming ap-
proach to determine the optimal retry moments for such a system. The dynamic
programming [15] optimizes composite service provider’s revenue by taking into ac-
count the effect of future (optimal) decisions. Since the decisions within DP take in
account effects of subsequent decisions, a “backward recursion” method is needed for
finding the optimal solution. The application of DP will result in a decision policy.
The decision policy indicates which service is selected for given deadline and given
task, and indicates, when applicable, what is the optimal moment for a retry. It
may happen, that for given deadline, and selected service, retry is not possible at
all, as specified by the policy.

An optimal decision policy with respect to the expected revenue for the CSP is
determined using dynamic programming. According to the principle of optimality,
[15], an optimal policy determined using dynamic programming leads to optimal
revenue for all stages of the model.

The given model is applicable to any workflow that could be aggregated and mapped
into a sequential one. Some basic rules for aggregation of a non–sequential into the
sequential workflow have been illustrated in, e.g. [115, 116]. The aggregation natu-
rally leads to coarser control, since decisions could not be taken for a single service
within the aggregated workflow, but rather for the aggregated workflow patterns
themselves.

8.2.1 Notation and assumptions

The orchestrator executes tasks one–by–one as indicated by the sequential workflow.
There are in total N tasks in the workflow and the task position within workflow
(stage) is indexed by i, i = 1, 2, . . . , N . Each task i maps onto Mi ≥ 1 concrete
services, where service j implementing task i is denoted by CSij , see also Figure 8.1.

The cost that the composite provider pays for the single invocation of service CSij is

denoted by cij . The probabilistic nature of response time for service CSij is modelled

by PDF or respective CDF. The PDF and CDF for service CSij are denoted by f ij(t)

and F ij (t), respectively. The composite service provider guarantees that a single
request will be executed within end–to–end penalty deadline δp. CSP is rewarded
by R when single request is completed within the deadline, otherwise, the composite
service provider pays a penalty V to the end customer when this deadline is not
met. For a given stage i, θij→k represents the moment of the substitution of service

CSij by service CSik, where j, k = 1, 2, . . . ,Mi. This substitution takes place only

when service CSij does not provide a response before θij→k. Note that it is possible
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request 1 

response 1  

retry  

A B C D 

retry  

request 2 

response 2  

Figure 8.1: Conditional retry adaptation of orchestrated service composition. Run–
time service composition and adaptation is based on pre–calculated policy. Decisions
are taken at points A–D, and e.g. it is known to the orchestrator at C how long to
wait before retry is made.

to issue the retry to the same service. Once the end–to–end deadline expires and
there are still tasks to be executed, the retries are not performed any more, and only
the cheapest alternative for each of the remaining tasks is invoked.

We denote by W i
j (δ) = W i

j (Di = δ) the revenue when CSij is selected, no retry

is issued, and remaining time–to–deadline Di has the value of δ. The expected
value of the revenue W i

j (δ) is E[W i
j (δ)]. Similarly, we denote by W i

j→k(δ, θij→k) the

revenue when, CSij is initially selected with Di = δ, and then substituted by CSik
after θij→k. The expected revenue of this case with retry is E[W i

j→k(δ, θij→k)], where
i = 1, 2, . . . , N , and j, k = 1, 2, . . .Mi.

The optimal expected revenue for given stage i and given deadline δ is denoted as
W i∗(δ), and represents maximum among all expected revenues (with and without
retry) for that stage, i.e.

W i∗(δ)
def
= max

j,k=1,2,...,Mi

θij→k∈[0,δ]

{E[W i
j (δ)],E[W i

j→k(δ, θij→k)]}. (8.1)

The model could be specified when the number of retries for a single task is arbitrary.
In order to simplify the notation we would discuss the model when a single retry
is possible within a single task execution. In practice, multiple retries are not that
likely for a single service. Therefore, the maximum total number of retries in our
model equals the number of tasks in the sequential workflow.

The notation is summarized in Table 8.1.
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Table 8.1: Overview of model parameters

Parameter Definition
CSij Concrete service j implementing task i
f ij Response–time distribution of CSij
F ij Cumulative distribution of response time for CSij
Di Time–to–deadline for task i
δp End–to–end deadline
θij→k Time instant when CSij is substituted by CSik
cij Cost of invocation of CSij
R Reward per request completed within δp
V Penalty per request not completed within δp

W i
j (δ) Revenue without request replication when CSij is se-

lected; time–to–deadline is δ
W i
j→k(δ, θij→k) Revenue with request replication when CSij is sub-

stituted by CSik at θij→k
W i∗(δ) Optimal revenue for task i and given deadline δ
πi(δ) Policy for task i and given deadline δ

8.2.2 Dynamic programming

We will describe now the dynamic programming formulae taking into account
the well–known backward recursion procedure. This means that DP is first de-
fined/solved for the last task N , and then iteratively for tasks N − 1, N − 2, . . . , 1.
When solving DP for task i and given δ, it is already known what is the value of
W (i+1)∗(δ). For given task i, given end–to–end deadline δp, the procedure calcu-
lates E[W i

j (δ)], and E[W i
j (δ, θ

i
j→k)] where j, k = 1, 2, . . .Mi for all δ ∈ [0, δp] and

0 ≤ θij→k ≤ δ, as retries made after the deadline expires make no sense. The
maximum revenue is then determined based on Equation 8.1. We present now the
formulae that allows evaluation of the maximum revenue per stage, i.e. W i∗(δ).

The last stage: for the last stage, i.e. when i = N , we need to determine whether
it would be optimal to select a single service CSNj , and wait till it generates response,

or it would be better to select service CSNj , and, at given moment 0 ≤ θNj→k perform

a retry, and wait for service CSNk to complete. The expected reward without retry
is

E[WN
j (δ)] = −cNj +R ·FNj (δ)−V ·(1−FNj (δ)) = −cNj −V +(R+V )FNj (δ). (8.2)

The expected reward when a retry is made after θNj→k is given as:

E[WN
j→k(δ, θNj→k)] = −cNj︸︷︷︸

term 1

+R · FNj (θNj→k)︸ ︷︷ ︸
term 2

+ (8.3)

+(1−FNj (θNj→k))︸ ︷︷ ︸
term 3

·
{
−cNk−V+(R+ V )FNk (δ − θNj→k)

}︸ ︷︷ ︸
term 4

.
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Term 1 represents the costs of executing the service CSNj . Term 2 represents the

reward R that CSP incurs when service CSNj responses before the retry moment

θNj→k, with probability FNj (θNj→k). Term 3 represents the probability there is a retry

at the moment θNj→k, and term 4 represents the expected reward when retry is made

at moment θNj→k. The retry implies that service costs cNk are paid, and the remaining

time to deadline is δ − θNj→k.

Stages i = N−1, . . . , 1: The expected reward when service CSij is selected, no retry
is made, and with remaining time–to–deadline δ, is given as

E[W i
j (δ)] = −cij +

δ∫
0

f ij(τ)W (i+1)∗(δ − τ)dτ +
(
1− F ij (δ)

)
·W (i+1)∗(0). (8.4)

The second term at the right hand side models the situation when service CSij
delivers response within time τ ≤ δ, in which case the expected reward is given
by the convolution of f ij(·) and the (optimal) expected reward of the next stage,

i.e. W (i+1)∗(·), already defined in Equation 8.1. The third term at the right hand
side of the given formula represents the probability that the service CSij will not
generate response within given deadline δ, and therefore the expected reward for the
remaining stages should be calculated with the deadline that equals to zero, which
reduces to the selection of the cheapest service(s).

The expected reward E[W i
j→k(δ, θij→k)] when service CSij is selected and, after time

interval θij→k substituted by CSik, is as follows:

E[W i
j→k (δ, θij→k)] = −cij︸︷︷︸

term 1

+

θij→k∫
0

f ij(τ)W (i+1)∗(θij→k− τ)dτ

︸ ︷︷ ︸
term 2

+(1− F ij (θij→k)) · E[W i
k(δ − θij→k)]︸ ︷︷ ︸

term 3

. (8.5)

The first term represents the costs of CSij execution and are paid, regardless of retry.

The second term represents the expected reward when service CSij responses within

time interval [0, θij→k] and in such a case no retry is made. The third term represents

expected reward in case of retry, i.e. substitution of CSij by CSik. The retry occurs

with probability (1 − F ij (θij→k)) and the remaining time–to–deadline after retry is

δ−θij→k. The term E[W i
k(δ−θij→k)], needs to be further defined, taking into account

that the remaining time–to–deadline is Di = δ − θij→k, and that, for given stage i,
there are no further retries possible, since our model allows only one retry per stage.
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Then, E[W i
k(δ − θij→k)] becomes

E[W i
k (δ − θij→k)] = −cik +

δ−θij→k∫
0

f ik(τ)W (i+1)∗(δ − θij→k− τ)dτ

+
(
1− F ik(δ − θij→k)

)
·W (i+1)∗(0). (8.6)

Equation 8.6 is almost the same as Equation 8.4 since no more than one retry is
possible. The only difference is the remaining deadline; therefore, second term at the
right hand side of Equation 8.6 models the case when service CSik delivers response
within time τ ≤ δ − θij→k. The third term at the right hand side of Equation 8.6

represents the probability that the service CSik will not generate response within
given deadline δ − θij→k.

Remark: In case when multiple retries would be possible, e.g. substitution CSi
j → CSi

k →
CSi

l, equation 8.6 would be modified in such a way that convolution would be calculated

given upper limit θik→l and D would have the value of δ − θij→k − θik→l, and so on.

The end–to–end policy π(δp) for given end–to–end deadline δp comprises of policies
πi(δ), δ ∈ [0, δp] for stages i = 1, 2, . . . N . Policy πi(δ) is determined either from

πi(δ) = argmax
j=1,2,...,Mi

{E[W i
j (δ)]}, (8.7)

or from

πi(δ) = argmax
j,k=1,2,...,Mi

θij→k∈[0,δ]

{E[W i
j→k(δ, θij→k)]}. (8.8)

The former, Equation 8.7 is used for those values of deadline δ when expected reward
without retry is bigger than expected reward with retry, i.e. when E[W i

j (δ)] >

E[W i
j→k(δ, θij→k)],∀j, k, θij→k ∈ [0, δ]. In such a case the policy represents indices of

services resulting in maximum revenue for given deadline δ. The latter, Equation 8.8
is used for those values of deadline δ when retries are useful. It contains indices of
services selected for deadline δ, indices of services to be used for retry, as well as the
optimal retry moment.

8.2.3 Discretization

In order to numerically evaluate E[W i
j (δ)] and E[W i

j→k(δ, θij→k)] as given in Equa-
tions 8.2 to 8.6, a discretization of both time–to–deadline δ ∈ [0, δp] and retry mo-
ment θ ∈ [0, δ] is necessary. The discretization steps are denoted by ∆τ for the
deadline, and by ∆θ for the retry moment. The equal number m of discretization
steps for both δ and θ within any given stage is a natural and convenient choice. In
such a case, the discretization steps are ∆τ = ∆θ = δp/m.
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C 

Figure 8.2: Evaluation grid for expected revenue in case of conditional retry for a
single stage.

As E[W i
j (δ)] depends on δ only, the number of points in which it is evaluated is m.

On the other hand, as E[W i
j→k(δ, θij→k)] depends on both δ and θij→k, it is evaluated

within a grid. The evaluation grid of E[W i
j→k(δ, θij→k)] is illustrated in Figure 8.2.

For each point within such a grid, the value of the function is calculated based on
Equations 8.4 to 8.6. The number of evaluation points is therefore m · (m+ 1)/2.
The grid points where function E[W i

j→k(δ, θij→k)] reaches maximum are represented
by symbol ? at Figure 8.2. Therefore, these points also specify optimal retry moments
for given deadline value δ.

Besides, the integrals in equations 8.5 and 8.6 are convolution integrals of respec-
tive (continuous) functions and numerical evaluation of these integrals is done by
discretization of the continuous functions. The numerical evaluation of convolution
integrals has been described e.g. in [75].

8.2.4 Policy aggregation

The optimal decision policy derived from the model, formulae and procedure pre-
sented above may be very efficiently numerically calculated. However, for each (dis-
cretized) value of δ, different (discretized) value of θij→k may give maximum of
expected rewards when retries are made. This is further illustrated in Figure 8.2 –
we see that, for each value of δ ∈ [δL, δH ], different retry moment is optimal. In the
worst case (and general) scenario, when the number of discretization steps is m (as
defined previously), as many as m entries may exist for optimal retry moments, for
a single stage.
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Figure 8.2 illustrates contour C representing area in which expected rewards with
retry are larger than expected rewards without retry. We can therefore identify three
areas in this figure. First, the area where δ < θ is not considered, as retries cannot
occur after the deadline expires. Second, the area bordered by contour C is the
one where retry leads to revenue improvements. The rest of Figure 8.2 represents
area where retries do not lead to revenue improvements, hence, these should not be
attempted. This means that optimal retry moments depicted by ? in this area are
not considered when determining policy πi(δ).

The goal of policy aggregation is to reduce the number of policy entries that refer to
the area bounded by contour C in Figure 8.2. Using the notation from this figure,
the simplest approach would be to define a single retry moment θr as θL + θH/2,
where θL and θH are the lowest and highest value of the retry moments for contour
C, respectively. This means that for δ ∈ [δL, δH ] single retry moment θr is specified
within the policy, thus reducing policy’s size. Naturally, this is not the only possible
solution for the policy aggregation, and some other, more complex solutions are
discussed in [120].

The “penalty” for the aggregation is that expected revenue is reduced compared to
the optimum. However, the revenue resulting from aggregated policy is still larger
than expected revenue when retries are not applied.

8.2.5 The procedure to determine policy with conditional re-
tries

We conclude this section with the procedure that should be followed in order to
calculate policy that leads to revenue improvements when applied to service com-
positions using conditional request retries. It is important to realise this policy is
pre–determined, i.e. developed before composite service is deployed. Therefore, we
do not re–compute the policy once the service is deployed, and the decision proce-
dure (i.e. which service is selected for the next task in the workflow and when to
perform a retry) is reduced to a simple lookup. The only required parameter at
runtime in order to make optimal decision is remaining time–to–deadline, δ.

The inputs to the procedure are:

• The end–to–end deadline δp

• The execution costs cij per request, and

• The response–time distributions for each service CSij ,

where i = 1, 2, . . . , N (workflow tasks) and j = 1, 2, ...,Mi (services that implement
task i).
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The procedure to calculate the policy using a pseudo code description is as follows:

A. Perform discretization of δp, which results in discretized values of δ ∈ [0, δp].

B. Perform discretization of θ, which results in discretized values of θ ∈ [0, δp].

C. Determine maxima of expected rewards without retry, i.e. W i∗
j (δ) =

max{E[W i
j (δ)]}, ∀i, j, δ, as given in Equations 8.2 and 8.4.

D. For every task i

D1. For every substitution of service CSij by service CSik determine

E[W i
j→k(δ, θij→k)], ∀δ, θij→k as specified in Equations 8.4, 8.5 and 8.6.

D2. For each discrete value of δ determine θ∗ that maximizes
E[W i

j→k(δ, θij→k)], i.e. W i∗
j→k(δ, θ∗).

end for

E. For each task i and ∀δ

if(W i∗
j (δ) > W i∗

j→k(δ, θ∗)) then

πi(δ) = j

else

πi(δ) = j and after θ∗ substitute CSij by service CSik.

end if

end for

F. (Optional) Aggregate policy for entries where retries are beneficial.

8.3 Numerical experiments

In this section we will give some numerical experiments that illustrate the theory
described in Section 8.2 and state some observations coming from these experiments.
We show the benefits of the proposed conditional request replication by presenting
simulation results in the case of four sequential workflows that consist of one, two,
three, or four tasks, respectively. Each task is implemented by two different concrete
services, as shown in Figure 8.3 for the workflow that consists of four tasks. This
figure illustrates all possible retry attempts, but, as already emphasized, a single
(best) retry is allowed for a given task. Hence, the maximum total number of re-
tries in this particular composition is four. These example workflows are presented
in order to illustrate the influence of different parameters to the potential gain in
expected revenue obtained by our solution versus service compositions without the
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Figure 8.3: The example of a sequential workflow with four tasks used for the nu-
merical experiments.

conditional retry mechanism. To this end, we have performed a wide variety of nu-
merical experiments. The most illustrative results of these experiments are outlined
below.

8.3.1 The algorithms for comparison

Two reference service composition algorithms are used to compare our results to.

Reference 1 – static composition (SC): this reference composition determines an
optimal path P = (CS1

j1 , . . . ,CSNjN ) for given end–to–end deadline δp in advance.
The optimality criteria for paths considered is maximum expected revenue for given
deadline. For the small scale experiment that we consider, we have used the exhaus-
tive search among all possible service compositions to identify the optimal SC for
each considered end–to–end deadline δp. In order to determine the expected revenue
for given composition, we have first calculated the probability that the deadline is
met, using convolution of services’ response–time distributions, and then applied
Equation 8.2, with the costs being the execution costs of whole composition.

Reference 2 – dynamic composition (DC) based on dynamic programming approach
without conditional retries: this run–time, dynamic reference composition is in detail
explained in Chapter 6.

8.3.2 Parameter settings

The parameter space for our experiments is large, even when we consider only two
different concrete services for every task. Therefore, we assume that services CSi1
for any task i have the same execution cost ci1 = c1 = 1, and similarly, the execution
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costs for services CSi2 are ci2 = c2 = 5. The reward when the deadline is met has
been set to R = 12.5, and the penalty is set to V = 10.

The works of [86] and [49] indicate that services’ response times measured in practice
show heavy–tailed properties. The services with heavy–tailed response–time distri-
butions are “ideal candidates” to apply the retries. This is because heavy–tailed
distributions experience what is often referred to as the expectation paradox [31].
The expectation paradox indicates that when we make observations of heavy–tailed
distributions representing the web service’s response time, then the longer we have
waited, the longer we should expect to wait.

We have modelled the response–time distribution for all services using the Weibull
distribution [101]. The (two parameter) Weibull PDF is expressed as

f(t) =
β

η

(
t

η

)β−1

e−( tη )
β

, t ≥ 0.

Depending on parameters β > 0 (shape) and η (scale) characteristics of Weibull
distribution may be very versatile, and this has been the main reason to choose this
particular distribution for the experiments, as wide range of response time distri-
butions could be easily simulated. For example, Weibull distributions with β < 1
are heavy–tailed, while Weibull distributions with β > 1 are not. Besides, Weibull
distribution is defined for non–negative random variables, which reflects the nature
of the response time(s) as well.

We modelled response times of CSi1 for any task i by the same Weibull distribution,
f i1 = f1 where β = 1.2 and η = 14 sec. The response–time distribution of CSi2 for any
task i is modelled by f i2 = f2 where β = 5.5 and η = 5 sec. The distribution f1 has a
right tail that is “much longer” than the tail of the distribution f2. The probability
density functions f1 and f2 and the corresponding cumulative distribution functions
of service times for services CSi1 and CSi2 are illustrated in Figure 8.4. Looking at
this figure we see, that on average CSi2 responses faster than CSi1, and we say that
CSi2 is faster and more expensive than CSi1. The orchestrator therefore could achieve
faster service at higher expense, which is often the case in reality.

8.3.3 Revenue improvements

We first discuss revenue improvements when the composition with conditional retries
is compared to the SC and DC reference scenarios, see Figure 8.5. The revenues are
shown for the sequential workflow that consist of four tasks. We see that our (pro-
posed) scenario is never worse than neither DC nor SC reference. Besides, Figure 8.5
illustrates that the expected revenue when our solution is applied remains positive
over much wider interval of deadlines. The positive revenue with our scenario is
achieved for the end–to–end deadlines larger than approximately 30 seconds, com-
pared to respective deadlines of approximately 40 and 50 seconds for DC and SC
scenarios. This is due to the fact that retries in case of relatively smaller deadlines
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Figure 8.4: Services’ response time distributions used for the experiments.

are beneficial, allowing the request to be processed within the overall deadline. As
this is rewarded, the positive revenues are achieved. We see that DC (faster) and
SC (slower) scenarios approach retries scenario when the value of given deadline is
large, as the probability that selected service would complete execution before dead-
line approaches one. In such a case, no retry is necessary, and we see that from the
graph.

The relative expected revenue improvements are presented in Figure 8.6, which illus-
trates revenue gain for the workflow that consists of four tasks. The relative gain G
in expected revenue obtained by using dynamic composition with conditional retries
Wretries compared to the revenue obtained using DC reference WDC is defined as
follows:

G :=
Wretries −WDC

Wretries
× 100%.

The relative gain G in case when Wretries is compared to the revenue obtained using
SC reference WSC is defined similarly.

As the range of relative revenue improvements for both comparisons is wide, we
have decided to present relative improvements using logarithmic scale. The range of
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Figure 8.5: Comparison of revenues achieved with our scenario to revenues achieved
with DC and SC scenarios. The comparison is shown for the sequential workflow
with four tasks.

relative revenue improvements in case of comparison with DC scenario is from 5%
(deadline δ = 100 seconds) to over 200% (δ = 55 seconds). The range of relative
revenue improvements in case of comparison with SC scenario varies from around
8% ( δ = 100 seconds) to over 50000% (δ = 55 seconds). The latter value comes
to no surprise taking into account that for δ = 55 seconds revenue achieved with
SC scenario is very small. From Figures 8.5 and 8.6 we see that SC scenario is
inferior to other two scenarios, and therefore, we will focus on comparisons between
DC scenario and our scenario with retries from now on.

Therefore, in Figure 8.7 we present the revenues achieved by both considered sce-
narios for workflows that consist of one, two, three and four tasks, respectively.
The revenues for these workflows are represented as a function of time–to–deadline
δ. These revenues have non–decreasing trend, as expected, since more run–time dy-
namic compositions are possible for larger end–to–end deadline value δp. We see that
scenario with retries is never worse than DC reference. For small values of deadline,
no retries are attempted, and considered scenarios are identical. Elsewhere is our
method with retries clearly above the expected revenue of the corresponding DC
reference. However, the larger the deadline δp, the smaller is the revenue difference
between the two approaches. This is explained by the fact that for large values of
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Figure 8.6: Relative gain of our approach with retries compared to DC and SC
scenarios. Comparison is shown for the sequential workflow with four tasks. Note
that for the smallest value of deadline shown, the revenue of SC scenario is positive,
but close to zero.

deadline, the optimal policy (without retries) is to choose at each stage the cheapest
service.

8.3.4 Comparison to DC scenario when number of retries is
smaller than number of tasks

So far we have compared our solution to reference scenarios when a single retry is
possible for each task in the workflow. We call this scenario the optimal scenario
from now on. The model, formulae and procedure described in Section 8.2 result in
optimal policy with respect to expected revenue. However, we want to analyze the
case when retries are not performed for each task in the workflow. The question that
needs to be addressed is whether for some tasks retries could be omitted without
too much revenue loss compared to the optimal scenario.

We will therefore first analyze the revenues achieved by the optimal scenario and
dynamic composition scenario with conditional retries possible for all stages except
the first one. The results are shown in Figure 8.8, for the workflows that consist
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of a single task, two, three and four tasks, respectively. The case of a single task
workflow is already shown, as it reduces to comparison of optimal scenario and DC
scenario and it is shown only for completeness. Points A and B in each sub–graph
of Figure 8.8 specify the deadline interval (A,B) in which the optimal scenario is
superior to the scenario in which conditional retries are possible for each task in the
workflow, except for the first one.

The larger the number of tasks in the workflow, the smaller the interval (A,B). We
see that for the four–tasks workflow this interval does not exist. In other words,
the retry for the first task in the workflow does not play any role when it comes to
revenue improvements, and revenues for two considered scenarios are overlapping.
Therefore, for given scenario and given service parameters, the retry for the first
task may be omitted.

Further, in Figure 8.9 we have analyzed the revenues achieved by dynamic compo-
sition for the four–task workflow with conditional (single) retry possible for all four,
the last three, the last two stages, the last stage, and no stage at all (this comes
down to DC scenario). We see, that for given services’ parameters, the retries at
the first two stages yield no extra revenue. Therefore, the policy that yields revenue
that is very close to optimal could be deduced for the case when retries are per-
formed for the last two–stages only. Naturally, the execution costs c2 and c1 play
a significant role here, as the ratio considered is c2/c1 = 5. We also analyzed the
cases when c2/c1 = 2, shown in Figure 8.10 and c2/c1 = 8 (not shown). The former
case (with cost ratio 2) shows that at most three retries need to be considered. It
is also clear that revenues achieved when three retries are performed do not differ
much from revenues achieved when only retries at the last two stages are made. The
latter case (with cost ratio 8) shows that only retry at the last stage leads to revenue
improvements.

8.4 Single retry analysis

In this section we present the analysis of the request replication for a single task in
the workflow. This case of a single retry in the workflow is the only case for which,
in general, it is possible to derive exact formula for calculation of optimal (single)
retry moment. We first define the formulae that could be used to find the optimal
retry moment when replication is possible for the last task in the workflow. Then we
analyze the optimal choice of a single request replication, i.e. at which stage should
there be a possibility for a retry in order to maximize the expected revenue.

Analysis of single retry for the last workflow task

Let us observe the sequential workflow with N tasks in which the first N − 1 tasks
have been executed with the elapsed time τ , see Figure 8.11. The remaining time–
to–deadline for the last task is thus δ = δp − τ . In order to simplify the notation
used hereafter, let us write cNi = ci, f

N
i = fi, F

N
i = Fi, i = 1, 2. Let us further
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Figure 8.7: Revenues achieved by dynamic composition with and without conditional
retries. The revenues are shown for sequential workflows that consist of a single task
(top left), two tasks (top right), three tasks (bottom left) and four tasks (bottom
right).

denote the execution costs of tasks already executed by CE . The expected revenue
without request replication when CSN1 is selected is given as

E[WN
1 (δ)] = −CE − c1 − V + (R+ V ) · F1(δ).

The expected revenue consists of costs incurred for the workflow tasks already exe-
cuted, CE , the cost of the service execution, the reward R obtained when the task
is executed within given deadline δ with probability F1(δ), and the penalty V paid
when deadline is not met, with probability 1−F1(δ). Naturally, when δ ≤ 0, it holds
that F1(δ) = 0. When conditional retry mechanism is applied, the expected revenue
for given deadline δ and retry moment θ = θN1→2 when service CSN1 is substituted
by CSN2 is as follows:

E[WN
1→2(δ, θ)] = −CE−c1 +R ·F1(θ)+(1−F1(θ)) ·{−c2−V +(R+V ) ·F2(δ−θ)}.
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Figure 8.8: Revenues achieved by dynamic composition with conditional retries pos-
sible for all stages except the first one, and dynamic composition with conditional
retries possible for all stages (original optimal scenario). The revenues are shown for
sequential workflows that consist of a single task (top left), two tasks (top right),
three tasks (bottom left) and four tasks (bottom right).

We see that the reward is obtained in two cases: the first case is when service CSN1
completes the execution before timeout θ expires, which happens with probability
F1(θ). With probability 1− F1(θ) we make a conditional retry. In case the retry is
made, the deadline for service CSN2 is δ−θ and this deadline is met with probability
F2(δ − θ). This also means that, when retry is made, CSP obtains reward R with
probability (1− F1(θ)) · F2(δ − θ).

The optimal value θ = θ∗ represents retry moment for which E[WN
1→2(δ, θ)] reaches

maximum at interval [0, δ]. We consider the case when E[WN
1→2(δ, θ)] is continuous

in θ, so the optimal value θ∗ satisfies the following condition

∂E[WN
1→2(δ, θ)]

∂θ
|θ=θ∗ = 0.
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Figure 8.9: Revenues achieved by dynamic composition for the four–task workflow
with conditional retries possible for the last four, three, two stages, only the last
stage, and not possible at all (DC scenario), with retry execution cost c2 = 5. The
graphs when retries are possible for all four tasks, the last three and the last two
tasks are practically identical

Elementary transformations give the following expression

f1(θ∗)

1− F1(θ∗)
+

c2
R+ V

· f1(θ∗)

1− F1(θ∗)
· 1

1− F2(δ − θ∗)
=

f2(δ − θ∗)
1− F2(δ − θ∗)

.

Solving this equation for given response time distributions allow us to determine the
optimal retry moments for the last task in the workflow. This equation could also
be expressed by its equivalent form, namely

h1(θ∗) ·
{

1 +
c2

R+ V
· 1

1− F2(δ − θ∗)

}
= h2(δ − θ∗),

where h1(t) and h2(t) are hazard–rate functions, defined by

h1(t) =
f1(t)

1− F1(t)
, and h2(t) =

f2(t)

1− F2(t)
.

Other than results from [74, 97, 98, 103] the cost structure plays important role in
determining the optimal timeout value θ∗. Besides the optimal value does not depend
from the costs of the first attempt, c1. It is trivial to determine the θ∗ when the
same service is considered for the conditional retry.
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Figure 8.10: Revenues achieved by dynamic composition for the four–task workflow
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stage, and not possible at all (DC scenario), with retry execution cost c2 = 2.
The graphs when retries are possible for all four task and the last three tasks are
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Figure 8.11: The execution of the last task with the conditional request replication.
Remaining time to deadline is δ, and the retry moment is θ.

Optimal task choice for a single retry

Suppose we have a sequential workflow with N tasks, implemented by services CSi1,
i = 1, 2, . . . N . The corresponding response times Xi of all services are random
variables which are i.i.d. and the execution costs are the same and equal c1. There
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is a single service used for substitution, CSi2, which corresponding response time is
random variable Y that dominates Xi. The question we briefly address here is: if
there is an opportunity to perform a single retry within the workflow, which task
i = i∗ should be chosen for conditional retry in order to maximize the expected
reward of the composite service provider?

If we choose to consider the substitution for the last task N , the orchestrator has the
full information of the actual service times of the other, already executed services.
The optimal retry moment is then θ∗. If the orchestrator performs retry for task
i 6= N , the orchestrator has less information. Another way to explain this is: when
the orchestrator performs the retry for the last task, it may ignore all the informa-
tion that is revealed between stages i and N . However, the orchestrator uses the
information gathered during the execution of the last task N as it unfolds. When
the optimal retry moment θ is solely based on the information gathered within the
last task, it would not be better than the optimal choice based on all information up
till stage N , i.e. θ∗. This retry moment θ is the same as when the “stage with reply”
is placed e.g. in between stages i and (i + 1). Thus for any realization of random
variables X1, . . . , XN−1, the composition where the retry is made at the last stage
does not result in a lower expected revenue.

The conclusion is that the optimal task choice for a single retry is the last task in
the sequential workflow. This holds for the case when initial composition comprises
of services with identical costs and the same response time distributions.

8.5 Conclusions

In this chapter we have investigated a run–time service adaptation mechanism for
service compositions that is based on conditional retries. When the execution of a
concrete service within composition lasts too long a retry to an alternative service
(or, possibly, the same service) may be issued. We have developed an approach
based on dynamic programming to calculate the optimal time instances when request
replication should be done, and the service that should be invoked in case of a retry.

Depending on the actual model parameters, the calculated policy may become com-
plex, which leads to a large lookup table. The retry moments are calculated for
discretized values of deadline, and theoretically, each value of deadline may have a
unique value of retry moment. One sub–optimal yet practical approach to calculate
policy in such case may be to aggregate the retry moments, as discussed in this
chapter. We quantified the revenue improvements of our conditional retry scheme
compared to orchestrated compositions that do not apply retries as studied in Chap-
ter 6. Further, we investigated how much is gained by our mechanism when retry
is possible for a limited set of tasks in a workflow. We showed for the analyzed
scenarios that the majority of revenue improvements result from the retries that are
only possible for the last couple of tasks within the workflow.
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CHAPTER 9

Concluding remarks and directions for future
research

The focus of this thesis is on end–to–end QoS control mechanisms and revenue opti-
mization in SOA. One of the most important features of the SOA paradigm is the op-
portunity to develop so–called composite services. However, as the services used for
composition are usually deployed in a volatile execution environment, performance–
related problems could occur relatively often during services’ execution processes.
For example, a concrete service used for service composition that performs poorly
has a potentially big impact to the end–to–end QoS of a composite service. This
leads to client’s dissatisfaction and loss of revenue for the CSP.

The main issue we faced is that, although available QoS–control concepts are pow-
erful, little is known about how to cost–efficiently exploit the possibilities for end–
to–end QoS–control in SOA. A complicating factor in controlling QoS in service–
oriented applications is that the ownership of the services used for the composition
is decentralized, i.e. these services are offered by third parties, each with their own
business incentives. In this thesis, we considered in particular admission control,
and dynamic service selection for QoS–aware service composition as the end–to–end
QoS–control mechanisms. These mechanisms allow for per–request state–dependent
control decisions, i.e. per–request, per–task QoS–control.

In light of this, the main research questions that we investigated in this thesis are:

1. How to model the effect of the parameter settings of the QoS–control mech-
anisms on the end–to–end QoS? The models should capture the dominant
factors that influence QoS yet allow for (mathematical) analysis and optimiza-
tion.

2. How to analyse and use these models to derive optimal settings of the pa-
rameters of the control mechanisms? The optimal settings should maximize
(long–term) expected revenue subject to pre–set QoS requirements and related
costs and rewards/penalties.

The models designed in the chapters 3 to 8 respectively, address the first research
question posted. The results of the analysis and optimal parameter settings of the
models that address the second research question posted, are presented in each of
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the respective chapters. Therefore, we shed a light on the main results relevant for
the answer to the second question in what follows.

In Chapter 3 we used queueing–theory based models to derive practical admission
control rules. The main objective of these rules is to keep both end–to–end response
time and availability at agreed QoS levels. As the rules are designed to be aware of
the execution state within the composition, they also accommodate for per–request,
per–task QoS–control. This results in dramatic improvements of end–to–end perfor-
mance metrics, in particular the average number of successfully served requests per
second.

In Chapter 4 the performance potential of run–time Web service selection is inves-
tigated for a single task implemented by a number of alternative concrete services.
The queueing–theory based models are used for performance comparison of different
service selection strategies in realistic scenarios that include the presence of back-
ground traffic and stale system state information. We demonstrate the effectiveness
of certain service selection strategies, and illustrate the spectacular response–time
improvements that can be obtained. In fact, the observed performance improve-
ments result from exploiting workload fluctuations that occur at relatively small
time scales mainly caused by the random behaviour of potential clients.

In Chapter 5 we designed models to identify optimal stopping policies that maximize
the profit of the CSP given the end–to–end QoS constraints. Depending on the
actual response times of executed services, taking into account the execution costs
as well as revenue and penalty functions, a dynamic programming based algorithm
and a heuristic solution are compared. For both solutions the huge revenue gains
are quantified when compared to the baseline case of static service composition.

In Chapters 6 to 8 we develop models for the analysis of various QoS–aware per–
request per–task service composition approaches. Using these models, we formulate
algorithms to identify optimal policies for service compositions. The derived policies
are optimal with respect to the profit of the CSP.

First, in Chapter 6 we consider the case when for each of the tasks within a given
workflow, a number of service alternatives may be available. The results do not
only indicate that there is enormous potential gain compared to other, non–dynamic
approaches, but also show how one can realize such gain. In particular, we have
shown that the optimal service selection policy can be implemented as a lookup
table, which also means negligible decision–making time.

Further, in Chapter 7 we extend the model derived in chapter 6 such that certain
assurance could be stated that end–to–end response time would be met in presence
of partially available services used for the composition. We have shown how to
determine the policy that would result in maximum revenue for a given target quality
assurance. Finally, in Chapter 8 we develop models of conditional retry mechanisms
for service composition. These mechanisms are used to control end–to–end response
time in presence of temporarily unresponsive services. Based on the model we derive
the optimal moments to decide a particular service is unresponsive, which leads to
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decisions to perform a retry using an alternative service that implements the same
task.

Overall, this thesis puts a spotlight on the use of the possibilities for efficient end–to–
end QoS control within SOC. We developed and analysed the quantitative models
that describe the effect of QoS–control actions. Based on these models, we presented
a number of solutions that dramatically improve perceived QoS by the clients and
expected revenue of the CSP. This is possible due to our per–request, per–task,
dynamic, QoS–aware service selection, that takes into account the associated costs
of QoS–control actions as well. The proposed solutions in form of policies have a very
small footprint, i.e. the algorithms and rules presented require nothing more than
simple implementation in the form of, e.g. lookup table. Naturally, the realisation of
our algorithms and policies for actual web services requires attention in the future.

Directions for future research

There are a couple of opportunities to extend the work presented in this thesis.
The first step would be to fine–tune the models, and to implement and validate
proposed algorithms using commercial composite services. For such a validation
in practical environment, the development of a QoS–control architecture framework
that supports run–time service orchestration is necessary, and our first steps towards
this direction are presented in [34].

Next to this, in Chapters 5 to 8 we have considered the case when response–time
SLOs are time–invariant, i.e. these SLOs, represented by respective PDFs, do not
change. In practice however, the response–time characteristics may be subject to
change over time (e.g. day/night usage patterns or “flash crowds”). Besides, in
the models we described and analysed within this thesis, we have neglected the
dependencies between response times of subsequent requests to the same service. In
reality such dependence often exists and may have a main impact on the response–
time performance of subsequent requests. This may mean that the actual response
times deviate from the SLO specifications, and that QoS–control policies derived
using our models are therefore not any more optimal. In this context, an important
next step is to devise and implement models and methods to support closed–loop
control, where the QoS–control policies are recalculated in an optimal way (e.g., with
respect to the frequency of response–time updates). The results presented in this
thesis form an excellent basis for extension towards closed–loop controlled system.

We have mainly conducted our analyses for the case of a sequential workflow, under
the assumption that other workflow patterns could be aggregated into a sequential
one. The workflow aggregation naturally leads to an issue of a coarser (i.e. sub–
optimal) decision–making process. Another issue with the workflow aggregation is
whether developed models should be accommodated for different workflow patterns
and complex workflows. Besides, the dynamic programming solution considered may
tend to slow down when the number of services is extremely large. Therefore, to
provide good service quality for complex compositions of many services, there is a
need for the development of fast yet efficient heuristic solutions.
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[118] M. Zivković, J. W. Bosman, J. L. van den Berg, R. D. van der Mei, H. B. Meeuwissen,
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[120] M. Zivković and H. van den Berg. Revenue optimization of service compositions using
conditional request retries. In Proceedings of the IEEE International Conference on
Web Services, (ICWS 2013), June 27-July 2, 2013, Santa Clara, CA, USA, 2013.
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