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Chapter 1

Introduction

In recent years, the increasing importance of multimedia data, in particular
in the form of still pictures and video, has boosted demands for automatic
extraction, comparison, and processing of features from such data - and has
led to the new research domain of Multimedia Content Analysis (MMCA).
In the very near future, computerized access to the content of multimedia
data will be a problem of phenomenal proportions, as digital video may
produce data at extremely high rates, and multimedia archives steadily run
into petabytes of storage [4]. At the same time, applications in MMCA
must often run under strict time constraints, even under variable workloads,
data-dependent computation, and dynamic resource utilization. As individ-
ual computers cannot satisfy the high computational demands, distributed
supercomputing on large collections of compute clusters (Grids) is rapidly
becoming indispensable.

1.1 Multimedia Content Analysis and Grid Computing

The application and research area of MMCA considers all aspects of the
automated extraction of new knowledge from large multimedia data streams
and archives. In part, the MMCA domain is driven by the requirements
of emerging applications, ranging from the automatic comparison of forensic
video evidence, to searching publicly available digital television archives, and
real-time analysis of video data obtained from surveillance cameras in public
locations [89].

Due to the increasing storage of multimedia data, the challenge is to discover
and interpret tiny fractions of useful information in a whirlwind of mean-
ingless noise. The following two statistics can provide us with an intuition
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about its scale: there were about 121.4 million digital still cameras sold in
2010 [1], and video already accounts for more than half of the Internet traf-
fic, with YouTube along taking 10% [108]. As another example, the Aqua
instruments (the earth observing system) produce more than 750 gigabytes
of data per day for analysis and processing [5].

A complicating factor is that applications in MMCA often must run under
strict time constraints. For example, to avoid delays in queues of people
waiting, a biometric authentication system must identify a person’s identity
within several seconds. Large autonomous applications, such as the auto-
matic detection of suspect behavior in video data obtained from surveillance
cameras, may even need to work under real-time restrictions.

One way to deal with this complication is to apply approximate algorithms,
albeit at the expense of accuracy and the loss of useful access results. A
better solution is to exploit distribution of data and computation over com-
pute networks. Also, in many emerging MMCA problems, the generation,
processing, storage, indexing, querying, retrieval, and visualization of mul-
timedia data are integrated aspects, all taking place at the same time and
- potentially - at multiple administrative domains. This increasing need for
computing and storage resources can be satisfied only by adopting techniques
from Grid computing.

Grid computing [33] enables the sharing, selection, and aggregation of a wide
variety of geographically distributed computational resources (such as su-
percomputers, compute clusters, and storage systems) for solving large-scale
resource-intensive problems in science, engineering, and commerce. This ap-
proach to computing can be most simply thought of as a massively large
power “utility” grid, such as the electric power network where power gen-
erators are distributed. The users are able to access the compute power
without bothering about the source of resources and its location.

Grid computing is not only expected to satisfy the high computational de-
mands and the strict time constraints of MMCA applications, but also to
popularize a model of computational economy [18]. It creates a market for
service providers to provide computational resource rental services to con-
sumers who have this requirement. Whenever an MMCA application needs
to be processed by extensive computational resources, the consumers can
hire additional resources from service providers. The consumers are inter-
ested in minimizing the cost for what they use, whilst the service providers
aim to maximize the profit for what they supply. The balance point of the re-
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source price may vary from time to time and from one pair of consumers and
providers to another. This raises the need for generating optimal resource-
allocation policies for low-cost or high-profit access for computational service
consumers or providers.

1.2 Problem description

In a services-based execution scenario, a client program (typically a local
desktop computer) connects to one or more remote multimedia servers, each
running on a (different) compute cluster. At application run-time, the client
application sends video/audio frames (e.g., captured by a camera) to any
number of available servers, each performing the analysis in a data parallel
manner [83]. A highly complicating factor is the strong variability in the
availability of hardware and software resources. Therefore, a fundamental
problem of parallel computing in a Grid environment is to achieve high
execution efficiency in the presence of the dynamically changing hardware
and software availability.

In MMCA applications there are several sources of dynamic behavior. First,
the sources of computer power are often shared by numerous applications
that may make the available capacity scarce and varying over time. Although
technological improvements will increase the bandwidth of single wide-area
links beyond the Gbits/second range, the demands of emerging MMCA prob-
lems will increase - rather than reduce - competition for resources. Second,
in MMCA applications the amount of data that needs to be processed often
changes wildly over time. Two realistic examples of real-time multimedia
analysis are:

• Application type 1 (A1): the comparison of objects and individuals in
video streams obtained from multiple surveillance cameras.

• Application type 2 (A2): iris-scan based identification and automatic
fingerprint checks (e.g., to be performed at international airports).

In the former application type, the job-arrival process is fairly constant and
predictable, whereas in the latter one the arrival process has a random na-
ture, and the job-arrival epochs may be hard to predict at small time scales.
For both application types it is essential to optimize the use of the available
resources, which results in two classes of problems: (1) when to transfer
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a job to the resources, so as to obtain the highest service utilization pos-
sible while minimizing the buffering time for that job, and (2) how many
resources to assign to the job such that the utilization costs are minimized
whilst the QoS-constraint is met. In practice, these two problems are inter-
twined. Because of their dynamic behavior, MMCA applications must be
made variability-tolerant by means of controlled adaptive resource utiliza-
tion. This raises the need for new stochastic runtime performance-control
methods that properly react to changing circumstances.

1.3 Objective of the thesis

In this thesis, we focus on the development, analysis and optimization of
performance models and stochastic control schemes that can be used to
make time-constrained multimedia applications tolerant to the dynamics of
the environment. More specifically, we consider two classes of resource-
assignment problems: (1) the proper timing of job processing, and (2) the
cost-optimal assignment of processor capacity under QoS-constraints.

A key requirement to our models and methods is that they should be simple
and easily implementable, yet effective, and adaptive to system variations.
The solutions presented in this thesis form a step towards the realization
of the ultimate goal of the research on Grid computing: to provide inex-
pensive and easy-to-use “wall socket” computing over a distributed set of
resources [83].

1.4 Overview of the thesis

In Chapter 2 we brief discuss the basic concepts of prediction methods and
Markov Decision Processes (MDPs) that are important and needed for the
other chapters, and we provide a literature overview of these methods in the
context of Grid computing.

In Chapter 3 we discuss the so-called “resource utilization” (RU) problem
and the “just-in-time” (JIT) communication problem in MMCA applications
in which the amount of data that needs to be processed is enormous. The
RU problem focuses on determining the optimal number of compute nodes
used by each multimedia server, properly balancing the complex tradeoff be-
tween computation and communication. The JIT problem aims to tune the
transmission of newly generated data sent to remote servers, so as to obtain
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the highest service utilization, while minimizing the need for buffering. For
the RU problem, we develop a simple and easy-to-implement method to de-
termine the optimal number of nodes to be employed, which is based on the
classical binary-search method for non-linear optimization and is indepen-
dent of the specifics of the system. The JIT problem is addressed by a smart
adaptive control method that properly reacts to the continuously chang-
ing circumstances in large-scale Grid environment. Extensive experimental
validation shows that our optimization approaches are highly effective.

In Chapter 4 we study optimal resource allocation in time-reservation sys-
tems. In such systems, jobs arrive at a service facility and receive service in
two steps; in the first step information is gathered from the customer, which
is then sent to a pool of computing resources, and in the second step the
information is processed, after which the customer leaves the system. Here,
two decisions should be made: (1) when to reserve computing power from
the pool of resources, such that the job does not have to wait for the start
of the second service step and that the processing capacity is not wasted
due to the job still being serviced at the first step, and (2) how many pro-
cessors to allocate for the second processing step such that reservation and
holding costs are minimized. We decompose the problem into two parts.
First, we show that the near-optimal reservation moment is given by the
difference of the mean service time in the first step and the mean reservation
time. Then, we apply dynamic programming to show that the near-optimal
resource-allocation policy follows a step function with as extreme policy the
bang-bang control for given structures of the cost function and the service
rate function.

In Chapter 5, we extend the second part of the model in Chapter 4 to multi-
queue systems. In such systems, each service facility poses a constraint
on the maximum expected sojourn time of a job. The decision should be
made to dynamically allocate the servers over the different facilities such
that the sojourn-time constraints are met at minimal costs. We model this
problem as a Markov decision problem and derive the structural properties of
the relative value function via standard induction-based arguments. These
properties, which are hard to derive for multi-dimensional systems (together
with the properties described in Chapter 6), give a full characterization of
the optimal policy.

In Chapter 6 we study a special case of the model described in Chapter 5, in
which there is only a single queue. We show via dynamic programming that
(1) the optimal allocation policy is work-conserving, and (2) the optimal
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number of servers follows a step function with as extreme policy the bang-
bang control policy. Moreover, (3) we provide conditions under which the
bang-bang control policy is optimal. The derivation of these results is based
on a combination of direct arguments and induction, which are not general-
izable to multiple queues. Therefore, these characterizations of the optimal
policy are not directly applicable in the multi-queue setting. However, it
provides a good foundation of exploring the additional optimal allocation
properties in multi-queue systems.

In Chapter 7, we study the optimal allocation policy for multi-queue systems
with time-varying arrivals. We consider the problem under two different
cases. In the first case, the time-varying parameters are known beforehand,
and we show how the optimal policy can be obtained numerically. On the
contrary, the second case considers the optimal allocation problem without
full knowledge of the job arrival rates. For this case, we use both a prediction
method and a stochastic approximation method to track the time-varying
parameters to obtain near-optimal policies. Numerical results show that our
techniques are highly effective.

Finally, in Chapter 8 we validate our resource-allocation policies in an exper-
imental setting. The results show that our methods are extremely effective
in practical scenarios.

1.5 Publications

This scientific contents of this thesis have been or will be published in the
open literature. Chapter 3 is based on [116, 117, 113], Chapter 4 is based on
[112], Chapter 5 is based on [110], Chapter 6 is based on [111], Chapter 7 is
based on [115], and finally, the contents of Chapter 8 are based on [114].



Chapter 2

Preliminaries: Methods and Techniques

To run Multimedia Content Analysis (MMCA) applications under strict time
constraints, information regarding processing time of the available resources
must be incorporated. Since fluctuations in the available resources (e.g.,
computing power, bandwidth, workload) may have a great impact on the
processing time, it is crucial to have effective and efficient prediction methods
to achieve the right information and the important performance metrics on
the resources. Apart from satisfying the time constraint of MMCAs, Grid
computing is also expected to popularize a model of computational economy.
It gives rise to a class of stochastic models that aims to minimize the average
utilization costs by proper on-the-fly actions, while at the same time meeting
a time constraint. A framework to model such decision problems is provided
by Markov Decision Processes (MDPs). In this chapter we summarize the
basic concepts of forecasting methods and MDPs.

This chapter is organized as follows. In Section 2.1 we discuss the basic
concepts of prediction methods that are important and needed for the other
chapters, and provide an overview of these methods used in the context of
Grid computing. In Section 2.2 we discuss the basic concepts of MDPs and
provide an overview of MDPs in the context of Grid computing.

2.1 Prediction methods

2.1.1 Basic concepts

Among the existing predictive methods there is a huge difference in the way
previously obtained data is handled. In some cases one wants to adapt very

7
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quickly to observed changes in the data, while there are also cases in which
this behavior is not desired. The forecasting methods that we use in the
sequel can be classified into four categories:

• mean-based methods

• median-based methods

• exponential smoothing methods

• Robbins-Monro approximation method.

The simplest mean-based methods take the average of all observed data as
the forecast. Let Yt be the data available at time t. Then the forecasted
value at t + 1, Ft+1, is given by

Ft+1 =
1
t

t∑
i=1

Yi.

The adapted mean-based methods [105] use arithmetic averages over some
portion of the measurement history to predict the next measurement. In
particular, the extent of the history taken into account depends on the
sliding-window parameter K, specifying the number of previous measure-
ments for the arithmetic average, i.e.,

Ft+1 =
1
K

t∑
i=t−K+1

Yi.

The parameter K is changed by −1, 0, or +1 over time based on the predic-
tion error.

The median-based methods use a median as an estimator. Define SortK as
the sorted sequence of the K most recently observed values and SortK(j)
as the j-th value of the sorted sequence. Then the forecasted value at t + 1
with the choice of K is given by

Ft+1 =

{
SortK((K + 1)/2) if K is odd,[
SortK(K/2) + SortK(K/2 + 1)

]
/2 if K is even.

Adapted median-based methods [105] adapt the parameter K in the same
way as in the mean-based methods above. Note that the prediction of these
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methods are not influenced much by asymmetric outliers, since this does not
affect the median greatly.

The methods described above use an equal set of weights to past data.
However, these weights can decay in an exponential manner from the most
recent to the most distant data point. In this case, exponential smooth-
ing [16, 17, 47, 104] is suitable for the prediction. Denote α (0 < α < 1) as
the weight of the most recent observation Yt and 1 − α as the weight of the
most recent forecast Ft. Then the forecast for the next period is given by

Ft+1 = αYt + (1 − α)Ft.

Denote by w(i) the weight for the i-th previous measurement. Then, function
w(.) is defined by

w(i) = α(1 − α)i.

The Robbins-Monro approximation method [57] is a stochastic approximation
method. The estimation is updated according to the following relation

Ft+1 = Ft + εt(Yt − Ft),

where εt is a parameter (possibly) depending on t. The intuition behind the
update rule is the following. In case the observed processing time is higher
than estimated, the prediction for the next processing time is increased by
a small amount of the difference, and vice versa. When εt = 1 for all t, then
the prediction for the next processing time is equal to the last observation.

2.1.2 Applications in Grid computing

In the literature, prediction methods have been proven successful to forecast
the properties of a Grid. Prediction techniques can be classified into ana-
lytical, artificial intelligence (AI), and statistical methods [56]. Analytical
techniques construct models by hand or use automatic code instrumentation.
AI methods, such as neural network-based method, predict the future per-
formance of resources or applications by learning from historical data and
classifying the information. Statistical approaches analyze the successive
historical data using the statistical methods (e.g., time series analysis [87])
in an effort to predict the data in future. Experience has taught that even
some seemingly random or very noisy series can be modeled and predicted to



10

a usable error margin using statistical methods [31]. Therefore, we restrict
ourselves in this thesis only on the statistical prediction methods to forecast
the properties of a Grid.

To predict job runtimes in a Grid environment accurately, it is essential to
have a method that effectively reacts to the peaks and level switches in job
runtimes. For this purpose, Dobber et al. [28] develop the Dynamic Ex-
ponential Smoothing (DES) methods based on the traditional exponential
smoothing (ES) methods. Sonmez et al. [92] use the mean-based, median-
based and ES for predicting job runtimes and job queue waiting times, whilst
Berman et al. [13] choose the Network Weather Service (NWS) prediction
algorithm for the same purpose. To predict different properties of a Grid,
the NWS algorithm selects between the following three prediction meth-
ods: mean-based methods, median-based methods and Autoregressive (AR)
methods. For instance, Wolski et al. [106] take the NWS algorithm to pre-
dict resource availability. Furthermore, Smith et al. [88] and Guim et al. [42]
aim to predict the total running times of parallel applications. The former
one uses the mean-based and the Linear Regression (LR) method, while the
latter one uses mean-based and median-based methods. Moreover, AR is
applied by Zhang et al. [120] and Wu et al. [107] to predict CPU load and
by Qiao [75] to predict the network traffic. To improve the accuracy of the
prediction, the basic forecasting methods can be applied adaptively (e.g.,
adapted mean-based methods, adapted median-based methods and adap-
tive ES-based methods). These adapted prediction methods have shown to
be very accurate. Apart from the basic forecasting methods, some research
areas are interested in predictors that estimate the possibility of an event
from its likelihood and prior probability as its probability conditional to its
characteristics, such as Bayesian inference used in [66] to predict the resource
availability in a Grid.

Recall that in the context of MMCA, prediction methods should be simple
and easily implementable, yet effective because of the strict time require-
ment of the multimedia application. Therefore, in this thesis we only use
prediction methods that are simple and fast, yet fairly accurate.



11

2.2 Markov Decision Processes

2.2.1 Basic concepts

In this thesis, we split Markov decision problems up into two categories: un-
constrained and constrained Markov decision problems. The basic concepts
are outlined below. We refer to [73] and [10] for a more detailed description.

2.2.1.1 Unconstrained Markov decision problem

A Markov Decision Process (MDP) is defined by the quadruple (X , {Ax|x ∈
X}, p, c), where the set X denotes the state space, Ax is the set of actions
from which an action can be chosen at state x ∈ X , p(x, a, y) is the transition
probability function describing the probability of going from state x to y
when action a ∈ Ax is chosen, and c(x, a) is the cost function describing
the real-valued costs incurred by the system in state x and when action a is
chosen.

Let Xt and At be the random variables for the state at time t and the
corresponding action at that time epoch, respectively. The idea is that
depending on the state Xt an action At is selected, according to some policy
π : X → Ax. Thus At = π(Xt). Let V π

t (x) be the total expected cost in
0, . . . , t−1, when starting at 0 in x, under policy π. Then, the objective is to
find a policy π∗ such that limt→∞ V π∗

t (x)/t, the long-run expected average
cost (per time unit), is minimized. For the optimal policy π∗ it holds that

V π∗
(x) + gπ∗

= min
a∈Ax

[
c(x, a) +

∑
y∈X

p(x, a, y)V π∗
(y)

]
, x ∈ X . (2.1)

This equation is called the optimality equation or Bellman equation. Of-
ten the superscript is left out: g and V are simply the average cost and
value function of the optimal policy. By solving the optimality equation, π∗

can be obtained. However, the optimality equation is hard to solve analyt-
ically in practice. Alternatively, the optimal actions can also be obtained
by recursively defining Vl+1 = TVl for arbitrary V0, where T is the dynamic
programming operator acting on V . For l → ∞, the maximizing actions
converge to the optimal ones (for existence and convergence of solutions
and optimal policies we refer to Puterman [73]). The backward recursion
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Let n = 0 and Vn(x) = 0 for all x ∈ X, and let ε be some
small number.
repeat:

n := n + 1
for each x ∈ X do:

Vn(x) := mina∈Ax

{
c(x, a) +

∑
y∈X p(x, a, y)Vn−1(y)

}
end do.
max := −1010

min := 1010

for each x ∈ X do:
min := MIN

(
min, Vn(x) − Vn−1(x)

)
max := MAX

(
max, Vn(x) − Vn−1(x)

)
end do.

until (max−min < ε).
V (x) := Vn(x) − Vn(0) for all x ∈ X.
g := (min + max)/2.

Algorithm 2.1. Pseudo code for the value-iteration algorithm.

equation is given by

Vt+1(x) = min
a∈Ax

[
c(x, a) +

∑
y∈X

p(x, a, y)Vt(y)
]
. (2.2)

The pseudo code for value iteration is shown in Algorithm 2.1. The value
iteration algorithm stops when for all states x ∈ X , the difference Vn(x) −
Vn−1(x) is less than ε away from the average costs g. Therefore, the average
costs are obtained by g = (min + max)/2 in the method that is also the
optimal average costs g∗.

2.2.1.2 Constrained Markov decision problem

In this section we describe the so-called constrained Markov decision prob-
lem, i.e., where we aim to determine the optimal policies that minimize the
average costs with subject to meet a constraint on the mean sojourn time
of a customer or a job in the whole system. Denote the time constraint by
α and let W be the sojourn time of an arbitrary customer in the system.



13

Then, the constrained Markov decision problem is

min
π

g(π) subject to �W ≤ α.

Note that due to Little’s Law the number of jobs L in the system can be
related to the sojourn time W by �L = λ�W . Using this formula, the
constrained Markov decision problem can be rewritten as an unconstrained
Markov decision problem using Lagrange multipliers (see Altman [10]). De-
note Lagrange multipliers by L. Now, the optimality equation and the back-
ward recursion equation for constrained MDP can be given as follows: for
x ∈ X

V π∗
(x) + gπ∗

= min
a∈Ax

[
Lx

λ
+ c(x, a) +

∑
y∈X

p(x, a, y)V π∗
(y)

]
, (2.3)

Vt+1(x) = min
a∈Ax

[
Lx

λ
+ c(x, a) +

∑
y∈X

p(x, a, y)Vt(y)
]
. (2.4)

For each value of L, the optimal policy is a non-decreasing curve, and as L
increases, the value of �W decreases (see Section 4.3.2 for a proof). There is
a difference in the optimal policy between the one in the unconstrained case
and in the constrained case. Note that there is a L∗ for which �WL∗ ≥ α
and �WL∗+ε < α for a small ε > 0. In the constrained case, the optimal
policy is to randomize between the associated policies π(L∗) and π(L∗ + ε)
so that exactly �W = α is achieved. The optimal policy thus randomizes
between two threshold policies.

2.2.2 Applications in Grid computing

Markov Decision Processes (MDPs) [98] have been proven to be effective for
modeling decision problems. The idea of MDPs is to make decisions not only
based on the immediate rewards or costs, but to take into account the future
dynamics of the system as well. As Grid computing has a strongly stochastic
nature [28], MDPs have received a lot of attention in recent papers. Yu et
al. [119] use an MDP approach to schedule sequential workflow task execu-
tion. The scheduling algorithm aims to minimizes the execution cost while
meeting the overall deadline. Lee et al. [60] propose a grid policy adminis-
trator with an MDP-based resource management scheme that considers the
management cost and QoS guarantee. In sensor-grid computing, there are
many cases in which some response is needed from the sensor-grid system,
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but the best action to take in different situations is not known in advance. In
this context, Tham [99] advocates to use MDPs or a reinforcement learning
approach [98] to realize optimal distributed autonomous decision making.

To make optimal decisions, one needs to solve the optimality equations.
However, the optimality equation is hard to solve analytically in practice.
In 1957, Bellman showed that iterative algorithms to solve the optimality
equations converge to the correct value function, which is the solution to
the optimality equations. In 1978, Puterman and Shin [74] came up with
a modified value iteration and policy iteration algorithm to speed up the
process.

The prediction methods and MDPs discussed above will be used in the re-
maining chapters.



Chapter 3

Resource Optimization in Distributed Real-Time

Multimedia Applications

Multimedia applications running in real-time environments often must run
under strict time constraints, e.g., to analyze video frames at the same rate as
a camera produces them. Commonly, such applications run under a services-
based scenario, in which video content analysis is being performed by a set
of remote multimedia servers — each running independently on a different
compute cluster.

For optimized use of the available resources it is first essential to deter-
mine the optimal number of compute nodes used by each multimedia server,
properly balancing the complex tradeoff between computation and commu-
nication. In this chapter we refer to this issue as the “resource utilization”
(RU) problem. Next, it is important to tune the transmission of newly gen-
erated data (e.g., a video frame) to the occupation of the remote servers,
so as to obtain the highest service utilization possible, while minimizing the
buffering time for individual video frames at the server side. We refer to this
latter issue as the problem of “just-in-time” (JIT) communication.

Motivated by these observations, we first develop a simple and easy-to-
implement method to determine the optimal number of nodes to be em-
ployed by each multimedia server. Our method is based on the classical
binary search method for non-linear optimization and is independent of the
(usually unknown) specifics of the system. Second, we address the JIT prob-
lem by introducing a smart adaptive control method that properly reacts to
the continuously changing circumstances in distributed systems. Extensive
experimental validation of the two approaches on a real distributed system
shows that our optimization approaches are indeed highly effective.

15
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3.1 Introduction

Multimedia content analysis (MMCA) operated in a realtime environment
pose very strict requirements on the obtained processing times, while off-line
applications have to perform within “tolerable” time frames. To adhere to
strict time constraints, large-scale multimedia applications typically are be-
ing executed on distributed systems consisting of large collections of compute
clusters.

In an execution scenario in which a number of multimedia servers are being
executed on a distributed set of compute clusters, the resource optimiza-
tion problem can be separated into two main parts. First, it is essential to
determine the optimal number of compute nodes used by each individual
multimedia server. This part of the optimization problem generally depends
on a priori system information, including the multimedia server application
itself, and the specifics of the computing environment (e.g., network char-
acteristics, CPU power, memory, etcetera). In this context, it is essential
to properly balance the following trade-off: if the number of compute nodes
employed by a multimedia server is too low, the processing power is insuf-
ficient to meet the strict time constraints of real-time applications; if the
number of compute nodes is too high, the parallelization overhead will cause
a degradation of the computational performance. This problem is referred to
as the resource utilization (RU) problem throughout this chapter. Clearly,
as researchers in the MMCA domain generally are not usually experts in par-
allel computing, there is an urgent need for simple and easily implementable,
yet effective methods (in terms of the number of evaluation steps) for deter-
mining the optimal level of parallelism. Also, the method should be easily
adaptable to inherently dynamic changes in the distributed environment.

Second, based on the result achieved from the RU problem, it is essential
to employ the allocated resources efficiently by sending data (e.g., video
frames) to each multimedia server at carefully determined moments in time,
in order to obtain the highest service utilization possible, and to minimize
the service response time. Clearly, if an available multimedia server is cur-
rently unoccupied, analysis results for a video frame can be obtained in the
fastest possible way. Unfortunately, keeping a multimedia server mostly idle
is a waste of compute resources. Alternatively, sending video frames to a
multimedia server as soon as possible may cause a need for queuing of video
frames at the server side. Having to wait for the processing of previously
queued data may result in an unacceptably long delay between the moment
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of data generation and result calculation. Hence, to optimally balance server
utilization and response time, it is essential to tune the transmission of video
frames to the occupation of the remote multimedia servers. Due to variations
in transmission latencies and other variabilities in the computing environ-
ment, however, it is difficult to accurately tune the sending of video frames
to the variable response time of a multimedia server. In this chapter we refer
to this issue as the just-in-time (JIT) communication problem.

To solve the JIT problem, we need effective prediction methods that re-
act to the continuously changing circumstances in distributed systems. An
immediate consequence of a JIT approach is that a multimedia server al-
ways analyzes the most recently generated (or, “up-to-date”) video frames;
no server response delays are introduced due to frame buffering at either
the client side or at the server. Clearly, this is an important, even critical
requirement in real-time applications.

The main contributions of this chapter are as follows: (1) we provide an
innovative solution to the RU problem, which - in contrast to existing meth-
ods - is a fully dynamic, runtime approach, and (2) we provide a solution
to the JIT problem which is entirely new, as - to our knowledge - it has not
been addressed in the literature before. Our solution requires only limited
(runtime) benchmarking, which is performed in a transparent and portable
manner. Also, our solution is independent of the specific implementation
of the applications at hand, making our solution highly sustainable (as it is
immediately applicable, even after the application is altered).

The chapter is organized as follows. In Section 3.2 we present related work,
and address the pros and cons of existing methods. Section 3.3 presents the
experimental setup, and describes example applications. Section 3.4 presents
our proposed approaches, which are further formulated in Section 3.5. Sec-
tion 3.6 discusses our experimental results. Finally, in Section 3.7 we present
our conclusions and address topics for further research.

3.2 Related work

Previous work in this field can be categorized into two groups. The first
group, relevant to our RU problem, incorporates the general performance
optimization problem of computer systems. The second group, relevant to
our JIT problem, relies on statistical predictions of system behavior.

Roughly speaking, techniques to general performance estimation can be clas-
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sified into one of three main categories: (1) measurement, (2) modeling and
(3) hybrid methods. Estimation techniques that belong to the second cat-
egory can be further divided into the subcategories of (2a) mathematical
analysis and (2b) simulation [50].

Performance estimation by measurement is generally performed on a real
system under conditions that reflect typical workload and behavior. Execu-
tion times of real problems are then inferred from measured results [101, 59].
Application of this approach has several drawbacks. First, in many cases the
complete system to be evaluated has yet to be developed, and may change
over time. Second, even if a complete system is available it is often not clear
what workload is realistic or typical. Finally, if the measurement process is
biased towards certain aspects of the underlying hardware, the measurement
technique may not be applicable to other platforms.

Benchmarking is an alternative technique within the category of measure-
ment, which is often used for comparison of multiple computer systems (e.g.,
see [24, 46, 103, 30, 20]). Rather than reflecting typical behavior, bench-
marks often represent non-typical, artificial workloads. In comparison with
direct measurement, benchmarking has the advantage that the system to be
evaluated does not have to be available. The use of non-typical workloads,
however, often has a negative effect on the accuracy of the performance es-
timations. A solution — albeit complex — is to capture results for small
instruction mixes and a variety of workloads, and to interpret the measure-
ment results with utmost care [29, 94].

Performance modeling can be applied in cases where direct measurement is
too costly, or where the computer system to be evaluated is not available.
In the category of mathematical analysis, models range from simple (linear)
algebraic expressions to complex formalisms such as queueing networks [50,
81]. In general, such models have a high response time due to their ease of
evaluation. An additional advantage is that parameter values may be varied
to observe their relative impact on performance. However, to obtain high
estimation accuracy, the large number of model parameters may violate the
simplicity and applicability constraints.

In simulation models behavior and workloads are described (imitated) in
a special computer program — usually an annotated or otherwise adapted
version of a “real” program [50, 72]. Performance predictions are obtained
by monitoring the execution of the adapted program. The main advantage of
simulation models is that dynamic system behavior is easily captured. Also,
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simulation makes it easy to “zoom in” on interesting or expensive parts of a
system. A disadvantage is that the system to be evaluated must be available,
at least in some rudimentary form. Another drawback is that it is a costly
method for obtaining even moderately accurate performance estimates.

In hybrid estimation techniques a combination of measurement and modeling
is applied [64, 109]. Such techniques have the advantage that the complexity
of using either measurement or modeling in isolation can be avoided, while
a high level of estimation accuracy can still be obtained. As an example
of approaches in this direction, Saavedra-Barrera et al. [79] have measured
system performance for sequential Fortran programs in terms of an Abstract
Fortran Machine (AFM), an approach referred to as narrow spectrum bench-
marking. The AFM-based approach provides a solution to the problem of
the high complexity of complete analytical study of computer systems. The
drawback of the approach, however, is that system variance is almost com-
pletely ignored. For applications working on extensive dense data fields
(e.g., image data structures) this is a too crude restriction as variations in
the hit ratio of caches and system interrupts often have a significant impact
on performance [41, 82].

Other performance estimation techniques that incorporate more detailed
behavioral abstractions relating to the major components of a computer
system [50, 62] need tens - if not hundreds - of platform-specific machine ab-
stractions to obtain truly accurate estimations. Consequently, the require-
ments of simplicity and applicability to the MMCA domain are not satisfied.
To overcome this problem, Seinstra et al. [84] have designed a new model for
performance estimation of parallel image and video processing applications
running on clusters, based on the Abstract Parallel Image Processing Ma-
chine (APIPM). The APIPM model has been used in a large set of realistic
image and video processing applications to find the optimal number of com-
pute nodes. The main advantage of this model is that predictions are based
on the analysis of a small number of rather high level system abstractions
(i.e., represented by the APIPM instruction set). The main limitation of
this model, however, is that the instruction set and its related performance
values are parameterized with a very large number of instruction behavior
and workload indicators. As such, the model does not meet our require-
ments, as obtaining accurate performance values for all possible parameter
combinations is both costly and complex.

For our JIT problem, we argue that existing prediction methods (i.e., the
adapted mean-based methods [105], the adapted median-based methods [105],
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exponential smoothing methods [16, 17, 47, 104], and the Robbins-Monro
Stochastic Approximation method [57] discussed in Chapter 2) are not ca-
pable of adhering to the specific requirements of JIT communication. One
important problem with existing methods is that random peaks can be ob-
served in the processing time of each multimedia server. These delays cause
accumulative errors in predicting the exact moments of video frame transmis-
sion, resulting in significant deviations from the optimal strategy. Similarly,
existing methods cannot deal with periodic peaks very well either. These
observations have raised a need for additional policies to amend these par-
ticular problems.

3.3 Grid testbeds

In a Grid environment, resources have different capacities and many fluctua-
tions exist in load and performance of geographically distributed nodes [27].
As the availability of resources and their load continuously varies over time,
the repeatability of the experimental results is hard to guarantee under differ-
ent scenarios in a real Grid environment. Also, the experimental results are
very hard to collect and to observe. Hence, it is wise to perform experiments
on a testbed that contains the key characteristics of a Grid environment on
the one hand, and that can be managed easily on the other hand. To meet
these requirements, we perform all of our experiments on the DAS-3 Grid
test bed [2], described in Section 3.3.1 below.

3.3.1 DAS-3

DAS-3 (The Distributed ASCI Supercomputer 3), see Table 3.1 and Fig-
ure 3.1, is a five-cluster wide-area distributed system, with individual clus-
ters located at four different universities in The Netherlands: VU University
Amsterdam (VU), Leiden University (LU), University of Amsterdam (UvA),
and Delft University of Technology (TUD). The MultimediaN Consortium
(UvA-MN) [6] also participates with one cluster, located at UvA. As one of
its distinguishing features, DAS-3 employs a novel internal wide-area inter-
connect based on optical 10G links (StarPlane [7]).

DAS-3 is heterogeneous in design. The research specifically planned for
DAS-3 includes topics like Grid computing, performance analysis, Virtual
Laboratory design, and distributed image and video content analysis and
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Figure 3.1. The Distributed ASCI Supercomputer 3.

visualization.

Cluster Nodes Type Speed Memory Storage Node HDDs Network
VU 85 dual dual-core 2.4 GHz 4 GB 10 TB 85 × 250 GB Myri-10G and GbE
LU 32 dual single-core 2.6 GHz 4 GB 10 TB 32 × 400 GB Myri-10G and GbE
UvA 41 dual dual-core 2.2 GHz 4 GB 5 TB 41 × 250 GB Myri-10G and GbE
TUD 68 dual single-core 2.4 GHz 4 GB 5 TB 68 × 250 GB GbE (no Myri-10G)
UvA-MN 46 dual single-core 2.4 GHz 4 GB 3 TB 46 × 1.5 TB Myri-10G and GbE

Table 3.1. Overview of the DAS-3 cluster sites.

3.3.2 Example applications

In our experiments, we use DAS-3 to run a real-time multimedia application
(referred to as “Aibo”), as well as an off-line application (referred to as
“TRECVID”).

The Aibo application demonstrates real-time object recognition performed
by a Sony Aibo robot dog [83] (see Figure 3.2). Irrespective of the application
of a robot, the general problem of object recognition is to determine which,
if any, of a given repository of objects, appears in an image or video stream.
It is a computationally demanding problem that involves a non-trivial trade-
off between specificity of recognition (e.g., discrimination between different
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faces) and invariance (e.g., to shadows, or to differently colored light sources).
Due to the rapid increase in the size of multimedia repositories of “known”
objects [37], state-of-the-art sequential computers no longer can live up to the
computational demands, making high-performance computing (potentially
at a world-wide scale, see also Figure 3.2) indispensable. The TRECVID

Figure 3.2. Our example real-time (left) and off-line (right) distributed multimedia
applications, which are capable of being executed on a world-wide scale. The real-
time application constitutes a visual object recognition task performed by a robot
dog (Aibo). The off-line application constitutes our TRECVID system.

application represents a multimedia computing system that has been ap-
plied successfully in recent editions of the international NIST TRECVID
benchmark evaluation for content-based video retrieval [45, 90]. The aim
of the TRECVID application is to find semantic concepts (e.g., vegetation,
cars, people, etc.) in hundreds of hours of news broadcasts, amongst others
from ABC and CNN. The TRECVID concept detection task is, in general
terms, defined as follows: Given the standardized TRECVID video data set,
a common shot boundary reference for this data set, and a list of feature defi-
nitions, participants must return for each concept a list of at most 2000 shots
from the data set, ranked according to the highest possibility of detecting
the presence of that semantic concept. TRECVID is computationally inten-
sive; for thorough analysis it easily requires about 16 seconds of processing
per video frame on the fastest sequential machine at our disposal [85]. Con-
sequently, the required time for participating in the TRECVID evaluation
using a single computer easily can take over one year of processing.

Both applications have been implemented using the so-called Parallel-Horus
software architecture, that allows programmers to write parallel and dis-
tributed multimedia applications in a fully sequential manner [83]. The
automatic parallelization and distribution of both applications results in
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services-based execution: a client program (typically a local desktop ma-
chine) connects to one or more multimedia servers, each running on a (dif-
ferent) compute cluster. Each multimedia server is executing in a fully data
parallel manner, thus resulting in transparent task parallel execution of data
parallel services.

More specifically, in both applications, before any processing takes place, a
connection is established between the client application and a multimedia
server. As long as the connection is available, the client can send video
frames to this server. Each received video frame is scattered by this server
into many pieces over the available compute nodes. Normally, each compute
node receives one partial video frame for processing. The computations
at all compute nodes take place in parallel. When the computations are
completed, the partial results are gathered by the communication again and
the final result is returned to the client.

3.4 Proposed approaches

In practice, running CPU-intensive applications in large-scale distributed
computing environments typically consists of two phases: (1) an initializa-
tion phase to determine the optimal number of compute nodes L∗, and (2)
the main phase to actually run the application on the L∗ parallel nodes. In
this chapter, each of our proposed approaches is used in one of these phases.

3.4.1 Resource utilization problem

First, we propose a simple method for on-the-fly determination of the “opti-
mal” level of parallelism. Unlike analytical methods, our parallel multimedia
server together with the underlying execution platform is treated as a black
box from the resource allocator’s point of view. This is due to our need of
obtaining a general and robust approach to solve the optimization problem.

With our software and hardware assumed as black boxes, we are faced with
the problem of having to deal with a search space that is unlimited in theory
(and in practice limited only by the total number of available nodes in a
given cluster system). As a result, it is essential to apply heuristics that can
reduce our search space significantly. In this context, extensive experimen-
tal observations for realistic, large-scale problems in MMCA have revealed
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the following three important properties of optimal resource allocations (see
Sections 3.5.1.1 and 3.5.1.2 for details):

First, in many cases the optimal number of compute nodes is found to be
a power of 2, i.e., of the form 2m for some m = 0, 1, . . .. This observation
is important because it leads to a drastic reduction of the set of possible
solutions. For example, if the number of available compute nodes is Lmax,
the size of the solution space is reduced from Lmax (i.e., the number of
elements in the index set {1, . . . , Lmax}) to �log2(Lmax)� (i.e., the number
of elements of the set {20, 21, . . . , 2K} where K = �log2(Lmax)�). Here the
symbol �x� represents the largest integer ≤ x.

Second, on compute nodes consisting of multiple CPUs (and potentially
multiple cores), for a fixed number of compute elements, using more compute
nodes and less CPUs per node yields better performance.

Third, if the compute cluster processing time is denoted by S(L), with L the
number of compute nodes, then there exists a threshold value L∗ such that
S(L) decreases fast as a function of L for L < L∗, whereas S(L) flattens
out, and may even increase, for L > L∗. L∗ is commonly referred to as
the engineering knee. Moreover, in practice using too many compute nodes
may be very costly. L∗ should be the smallest number that matches the
conditions specified above.

It should be noted here that our first two observations above may not be (and
probably are not) true for all potential target systems. For such systems,
however, other heuristics will apply, which can then be used for our search
space reduction. Such other heuristics do not affect the manner in which
our search is applied.

Based on the above observations, our proposed method is aimed at deter-
mining L∗ as the optimal point of operation. The method takes the idea of
the well-known classical binary search method for non-linear optimization,
and converges if the relative improvement of S(L) with respect to L (on a
log scale) is close enough to 0 (say 5 − 10%). In Section 3.5 we will give a
complete formulation of our method.

3.4.2 JIT communication problem

A simple execution approach to solve the JIT communication problem, which
we refer to as the back-to-back method (BBM), is to perform the sending of
a newly generated video frame exactly after a result has been received from
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the same server (see Figure 3.3). Using the BBM method, any video frame
processed by a multimedia server is guaranteed to be most up-to-date. A
drawback of BBM, however, is that the server is idle when it has processed
a frame and is waiting for the next one. In a bottleneck situation, the video
frame transmission time from the client to the server (Tc1) and the time to
send a result back (Tc2) may be long. In practice, Tc1 is normally very close
to Tc2, thus we denote them by Tc. Then, the service utilization (SU) using
BBM is given by

SU =
Ts

Ts + 2 · Tc
,

where Ts is denoted as the service processing time of a video frame. Obvi-
ously, if the communication time increases, service utilization decreases.

client

server

PROBLEM:
server is idle!

get frame 1
from camera

send frame 1
to server

send frame 2
to server

get frame 2
from camera

start parallel
calculations

send result 1
to client

Figure 3.3. BBM approach for video frame transmission.

An alternative approach, referred to as the buffer storage method (BSM),
is to establish a buffer at the server side. As long as the buffer is not full,
the client is allowed to keep sending frames to the server. When the server
is busy, the frames will be stored in the buffer before being processed (see
Figure 3.4). Using BSM, service utilization can reach 100%. However, the
drawback is that the data in the buffer may have become outdated before
the actual video content analysis even takes place, due to the long waiting
time. A solution would be to simply remove outdated frames at the server
side. This, however, leads to (a lot of) unnecessary traffic between client
and server, which should be avoided as resources are scarce.
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Figure 3.4. BSM approach for video frame transmission.

Given the previous two methods, the optimal strategy would be to send
each (i+1)-st frame with a delay after sending the i-th frame. The delay
is exactly the processing time of the i-th frame. For instance, if the service
processing time of the current frame equals Tsi, sending the next frame
after a period of Tsi will give an optimal solution. With this strategy, the
server gets the most up-to-date frame and the service utilization is unity (see
Figure 3.5). Unfortunately, Tsi is unknown before the result of the current
frame is returned back to the client side. It is therefore essential to have an
accurate prediction of the processing time of video frame data.

client

server

t t+Tsi

Tc1 Tsi Tc2

Figure 3.5. An optimal solution for video frame transmission.

We have observed that existing predictive methods are all capable of gener-
ating an accurate trend line based on the processing time of previous frames.
However, for our JIT communication problem, these methods are not suffi-
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ciently optimized for particular cases. The first problem appears when the
processing time of certain frames suddenly become much longer (e.g., a peak)
than the expected Ts obtained from a trend line. The sudden change breaks
the rhythm of frame transmission and causes accumulative waiting times for
all subsequent frames, even when the processing time returns back to the
expected Ts (see Figure 3.6).

client

server

Tspeak

t+E[Ts]

E[Ts]

t t+2E[Ts]

buffering buffering

Figure 3.6. All frames are affected continuously by sudden long process times.

Apart from random peaks, a second complication is that one can observe
processing times to have periodic peaks. If the service processing time of
frame i is predicted as a peak, then the sending of frame (i + 1) should be
delayed to prevent a long buffering time. None of the prediction methods
mentioned above can effectively deal with random peaks very well, nor do
these pay attention to periodic characteristics.

We propose two policies to amend these problems. The first, referred to as
the one-before-last-measurement (BLM) policy, is to restore the rhythm of
transmission by removing the extra delay observed at an earlier moment.
The second, referred to as the peak-prediction (PP) policy, is to find the
periodic characteristics of the peaks in processing times and then to predict
occurrence of subsequent peaks. Our proposed prediction methods, including
the BLM and PP policies, provide good solutions for our JIT communication
problem.

3.5 Method formulation

This section describes the two proposed modeling approaches in detail. The
approaches are based on the results of extensive experimentation performed
on the DAS-3 distributed cluster system (described in Section 3.3).
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3.5.1 Resource utilization problem

In our example applications (described in Section 3.3.2 above), video frames
are being processed on a per-cluster basis, using a varying number of com-
pute nodes on each cluster, each consisting of multiple CPUs. The compute
cluster (or service) processing time is defined as a function S(L, n) of the
number of compute nodes L = 1, . . . ,mmax and the number of CPUs per
node n = 1, 2, . . .. Our goal is to minimize the cost function S(L, n) over the
set of possible values of (L, n); thus, we are searching for the point (L̂, n̂)
where the function S(L, n) attains its minimum. In this context, it is im-
portant to note that the set of possible combinations (L, n) may be very
large, and that in practice, finding the optimum (L̂, n̂) may be very time
consuming. Therefore, our goal is to develop a simple, but effective, heuris-
tic method to obtain a nearly-optimal solution within a short time frame.
To this end, we first discuss a number of observations that we collected dur-
ing our extensive experiments, leading to a dramatic reduction of the set of
possible value of (L, n). Subsequently, the method to approach the optimal
(L, n) is described in detail.

3.5.1.1 Reduction of the solution space

Many combinations (L, n) lead to the same total number T = L ·n of CPUs.
The following observations, made for our particular example applications,
rule out many possibilities:

Observation 1: The optimal number of CPUs often is a power of 2.

In our experiments, we consistently observed that the optimal number of
CPUs is found to be a power 2. For example, Figure 3.7 shows the aver-
age processing times for our two example applications: (a) Aibo, and (b)
TRECVID. The results show that both local and global minima are consis-
tently found when the total number of CPUs is a power of 2. This observa-
tion leads to a dramatic reduction of the set of possible solutions. Namely,
if the number of available compute nodes is Lmax, the number of available
CPUs in each compute node is nmax, then the solution set is reduced to
� := {(2p, 2q), p = 0, . . . , P, q = 0, . . . , Q}, where P := �log2(Lmax)�, and
Q := �log2(nmax)�.
Observation 2: Using more compute nodes, yet less CPUs per node, is
generally better.
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Figure 3.7. Average service processing time versus number of compute nodes.

Another important observation from our experimental results is that for
the same total number of CPUs T = L · n, using more compute nodes
L and fewer CPUs per node n provides better performance. That is, for
the same total number of CPUs T = 2m, where the solution set should be
� := {(2p, 2q), p + q = m}, among them, q should be as small as possible.
This observation is illustrated by Figure 3.8, where we consider the case
T = 64 for three combinations (L, n) ∈ {(64, 1), (32, 2), (16, 4)}; the results
show that the combination (64,1) has better performance than (32,2) and
(16,4). This is explained by the fact that the compute nodes in DAS-3
are linked by a fast local Myrinet interconnect, whereas the CPUs within a
single node communicate over a shared memory bus, which is less efficient.
Note that the ’burstiness’ of the perceived processing times is explained by
random operating system interference, and by automatic garbage collection
performed by the Java virtual machine.

Based on these observations, the solution set can be reduced drastically. For
instance, for a system having 85 nodes and 4 CPUs per node, the reduced
solution space is � = {(2p, 1), p = 0 . . . 6} ∪ {(64, 2), (64, 4)}.
In a general form, to determine the optimal number of compute nodes and
CPUs per node, the solution space is reduced to the combinations � =
{(2p, 1), p = 0 . . . P} ∪ {(2P , 2q), q = 1 . . . Q}, where P := �log2(Lmax)�, and
Q := �log2(nmax)�. For simplicity, we use (2(P+q), 1) instead of (2P , 2q) for
our notation, although (2(P+q), 1) does not exist.



30

0 20 40 60 80 100
200

220

240

260

280

300

320

340

360

380

400
Service processing time by using 64 CPUs measured at 15−May−2007 

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

 

 
64 compute nodes, 1 CPU per node
32 comupte nodes, 2 CPUs per node
16 comupte nodes, 4 CPUs per node

Figure 3.8. More compute nodes and less CPUs per node is better.

3.5.1.2 Steps to approach the optimal (L, n)

From the reduced solution space, we iteratively increase the total number of
CPUs to find the optimal (L, n). When the number of applied compute nodes
becomes larger, the parallelization overhead increases, and may even become
dominant. Our experimental results show that there exists a threshold value
m∗ such that S(2m, 1) decreases fast for m < m∗, whereas S(2m, 1) flattens
out, and may even increase, for m > m∗. As an illustration, Figure 3.9
shows the average service processing times for the Aibo- and TRECVID-
applications for different values of L = 2m. In both cases, we observe that
there exists some saturation point L∗ = 2m∗

such that increasing the number
of parallel nodes L beyond L∗ does not lead to a significant reduction of the
service processing times. Throughout, L∗ = 2m∗

will be referred to as the
engineering knee and is regarded as the (near-)optimal point of operation.

3.5.1.3 LDS method

To find the engineering knee L∗, we have developed an Logarithmic Di-
chotomy Search (LDS) method. The LDS method follows the idea of a
well-known conventional binary search (CBS) algorithm [53] which aims to
find a particular value in a sorted list. Compared to the CBS strategy,
the LDS method makes progressively better guesses, and proceeds closer to
the optimal value. Let the elements in the solution set � be denoted by
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Figure 3.9. Engineering knee of Aibo and TRECVID applications.

(e0, . . . , eK), with K = P +Q, where P and Q are defined in Section 3.5.1.1.
The LDS strategy selects the median element in the set �, denoted by eMid.
Define ε as the desired minimal improvement in the service processing time
by increasing the number of compute nodes. If S(eMid)−S(eMid+1)

S(eMid) > ε, then
we repeat this procedure with a smaller list, and we keep only the elements
(eMid+1, . . . , eK). If S(eMid)−S(eMid+1)

S(eMid) ≤ ε, then the list in which we search be-
comes (e1, . . . , eMid). Pursuing this strategy iteratively, it narrows the search
by a factor of two each time, and finds the minimum value that satisfies our
requirement after log2(K) iterations.

Note that the selection of ε is very important in finding the engineering knee.
A large ε means that we are easily satisfied with the improvement. However,
the result may not be close to the actual optimum. Setting ε to a very small
value or even zero certainly will let us find the engineering knee (which is
close to, or equal to, the optimal number of compute nodes), but this may
take an undesirably long time. Hence, in practice ε is always a small positive
number which is close to, but not equal to, zero. The pseudo code for our
LDS method for the solution space � is given in Algorithm 3.1.

It is worth noting that there is still room for improvement. In our imple-
mentation, we obtain the runtime information using individual number of
compute nodes by sequential measurements. Actually, if there are enough
processors, we can do several measurements simultaneously by parallel tech-
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Low := 0
High := K
While (Low < High) {

Mid :=
⌊

Low+High
2

⌋
if S (eMid) ≤ S(eMid+1)

1−ε {High = Mid;}
else {Low = Mid +1;}
end if;

}
Optimal number of compute nodes := High.

Algorithm 3.1. Pseudo code of LDS strategy.

nique. It is named as parallel LDS strategy. In this thesis, we will not give
further discussion on the possible improvement.

3.5.2 JIT communication problem

The following continues with a detailed formulation of the proposed solution
for the JIT problem. The notations used here are defined as follows:

• Tsi: the processing time of the i-th frame.

• Tci: the communication time of sending the i-th frame from the client
to the server.

• ti: the time point when the client sends the i-th frame to the server.

• ri: the time point when the client receives i-th result from the server.

Trend line
As shown in Figure 3.5, if we can predict the service processing time of
the current frame accurately, then sending the next frame after the pre-
dicted time unit should provide an optimal solution. Therefore, we inves-
tigated several conventional prediction methods (i.e., adapted mean-based
methods, adapted median-based methods, exponential smoothing methods,
and Robbins-Monro Stochastic Approximation method described in Chap-
ter 2) for predicting the service processing time. In the experiments using
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adapted mean-based methods, adapted median-based methods, and expo-
nential smoothing methods the initial value of K is set to 20. Note that
when using exponential smoothing methods, if K is larger than the amount
of the available measurements data, then we rescale the weights w(i) such
that

∑K
i=1 w(i) = 1. In addition, the initial value of α is set to 0.5. In the

experiments using Robbins-Monro approximation method we set εt = 0.5
for all t. We found that, based on the earlier service processing times, and
by using any of these prediction methods, an accurate trend line can be gen-
erated. Figure 3.10 gives an illustration of the predicted service processing
time versus the measured value of running an example application using one
compute node and a single CPU only.

Periodicity of the peaks
Another important observation from our experimental results is the occur-
rence of periodic peaks when using large numbers of compute nodes. Be-
cause our multimedia applications are partially implemented in Java, the
Java garbage collector [3] has an influence on the service processing time. In
case of large service processing times, the effect of garbage collection gener-
ally is insignificant and can be ignored. This is the situation as depicted in
Figure 3.10. In contrast, when the service processing time is small compared
to the garbage collection time, the periodic peaks are significant. We ran
an example application using 64 compute nodes (using one CPU per node)
during three different periods in time. From these data sets, we notice that
there is a deterministic period of the occurrences of certain specific peaks
(see Figure 3.11).

3.5.2.1 Method

Based on the experimental results, we conclude that an effective prediction
method for our application must have the following characteristics: (1) it
must be able to generate an accurate trend line of the service processing
time, (2) it should be able to deal with outliers in the observed processing
time as soon as possible, and (3) it must be able to predict when the next
peak occurs. In this section, we discuss our BLM and PP policies in detail.

BLM Policy
Our first policy to deal with peaks is called “one-before-last-measurement”
(BLM) policy. This policy determines the optimal sending time under the
following three cases.
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Figure 3.10. Trend line generated by different prediction methods.
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Figure 3.11. Service processing time taken at different times.
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Case 1: waiting for sending
The i-th job will not be sent until the result of the (i − k)-th job becomes
available to the client. Because we must take care that the server has enough
jobs to process, we cannot use the last measurement data as a predictor (also
indicated by Harchol-Balter and Downey [44]). Therefore k must be larger or
equal to 2. Throughout this chapter, we focus on the case that E[Tc] ≤ E[Ts]

2 .
Here E[Ts] and E[Tc] represent the expected service processing time and the
communication time respectively. In this case, we set k = 2. This implies
that at most one job is waiting in the buffer at the server side. As a result,
the occurrence of cumulative waiting times can be prevented. In the case
that E[Tc] > E[Ts]

2 , we only need to enlarge the value of k. Hence, for k = 2,
we have the following equation,

ti ≥ ri−2. (3.1)

This equation implies that the i-th video frame is sent after the result of the
(i − 2)-th frame is received by the client. Figure 3.12 gives an illustration.

Case 2: sending immediately
Obviously, if the result of the (i − 1)-th frame is received, the i-th frame
must be sent immediately. Therefore, we have

ti ≤ ri−1. (3.2)

Case 3: adjusting sending time
The sending time of the i-th frame is also decided by the relationship between
the expected service processing time and measured service processing time
of the (i − 2)-th frame Tsi−2. If Tsi−2 > E[Ts], then it is optimal to send
the i-th frame at ri−2 + E[Ts]− 2 ·E[Tc]. Figure 3.12(a) gives an example.
In case Tsi−2 ≤ E[Ts], the optimal sending moment is at ti−1 + E[Ts]. See
Figure 3.12(b). Hence, we get the following equation,

ti =

{
ri−2 + E[Ts] − 2 · E[Tc] if Tsi−2 > E[Ts],
ti−1 + E[Ts] otherwise.

(3.3)

Note that using the receiving time of the (i − 2)-th frame to determine
the sending time of i-th frame indirectly takes into account the variation
of the communication time between the client and the server. Therefore,
the assumption Tc1 = Tc2 is not necessary any longer. Combining Equa-
tions (3.1), (3.2), and (3.3), the optimal sending time of i-th frame is given
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by

ti = min(ri−1,max(ri−2, ti−1 + E[Ts], ri−2 + E[Ts] − 2E[Tc])). (3.4)

Peak Policy
Our second method, called peak-policy (PP), tries to predict the next out-
lier based on historical observations. We define an outlier (i.e., a peak)
as significantly different from the average processing time if the observa-
tion is much larger than the average (say 1.2 times larger). Based on the
occurrences of peaks in the previous observations, we try to predict when
the next peak will occur. Motivated by experiments, we observe that there
is a deterministic period of the occurrences of peaks; see Figure 3.11 for
the experimental results. Denote � = {i|Tsi is peak} as the set of peaks

client

server

ti-2 ti

Tsi-2 Tsi-1=E[Ts]

buffering

ti-1=ti-2+E[Ts] ri-1ri-2

(a) Optimal sending time in case of TSi−2 > E[Ts].

client

server

ti-2 ti

Tsi-2 Tsi-1=E[Ts]

ti-1=ti-2+E[Ts] ri-1ri-2

waiting

(b) Optimal sending time in case of TSi−2≤E[Ts].

Figure 3.12. Overview of the BLM Policy.
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and denote by p̃j the j-th element of �. Let k be an integer number. If
p̃j − p̃j−1 = · · · = p̃j−(k+1) − p̃j−k then we say that there is a deterministic
period of duration d = p̃j − p̃j−1, and we expect the next peak to occur at
job number j + d. Note that k defines the number of previous peaks that
should have occurred equidistantly with length d such that we consider the
peaks as periodical events. The optimal value of k is not known beforehand.
Therefore, we will start with an arbitrary value and adjust it as time evolves.
Suppose that k = 3, and we observe three peaks each having distance d, then
the method predicts that the next peak occurs after processing of d frames.
If it turns out that the prediction is wrong, then we increase k by 1, since
probably k = 3 was too low. In case the prediction is correct, then we
decrease k by 1, such as to try a smaller number. To prevent meaningless
values for k, we restrict k to be in [3,∞).

By combining the BLM and PP policies with one of the prediction methods
to predict service processing times, we obtain our final model to deal with
the JIT communication problem in real-time applications.

3.6 Experimental results

In this section we present the results of our experiments performed on the
DAS-3 system. Even though our methods have been applied successfully
on all DAS-3 clusters, results are shown here only for the largest cluster
(VU University Amsterdam) consisting of 85 compute nodes with 4 CPUs
per node. For application-specific performance results on DAS-3 as a whole,
and even on a world-wide set of compute clusters, we refer to [83].

3.6.1 Resource utilization problem

We start our discussion with the numerical results of the average service
processing times versus a varying total number of compute nodes. In addi-
tion, the simplicity of the LDS strategy to determine the optimal number of
compute nodes is validated.

First, denote the possible solution space of the compute nodes and the
number of CPUs per node as �, where � = {(L, n), L ∈ [1, . . . , 85] and
n ∈ [1, . . . , 4]}. To show that using more compute nodes and less CPUs per
node provides better performance in general, we ran our real-time “Aibo”
application on a varying numbers of CPUs (2, 4, 8, 16, 32, 64, and 128
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CPUs). We compared the obtained service processing times for a fixed total
number of CPUs, while varying the number of CPUs per nodes. The results
are shown in Figure 3.13 and Figure 3.14. These figures demonstrate that
for small numbers of CPUs (say, ≤ 16), the service processing time is largely
independent of the ratio between the total number of employed CPUs and
the number of employed CPUs per node. As the number of CPUs increases,
it becomes obvious that a wider distribution of the CPUs, that is, using less
CPUs per node and more compute nodes, provides better performance.
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Figure 3.13. Service processing time of the Aibo application using 2, 4, 8 and 16
CPUs, respectively.
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Figure 3.14. Service processing time of the Aibo application using 32, 64 and 128
CPUs, respectively.
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We also compared the service processing time for our off-line TRECVID
application, on a varying total number of CPUs (16, 64 and 128 CPUs).
The results are tabulated in Table 3.2. For this application we have a similar
conclusion: more compute nodes and less CPUs per node provides the best
performance results.

(L, n) (16, 1) (8, 2) (4, 4) (64, 1) (32, 2) (16, 4) (64, 2) (32, 4)
S(L, n) 669.28 682.44 736.56 241.62 244.90 263.01 190.70 218.27

Table 3.2. Average service processing time of the TRECVID application (in ms).

In Section 3.4, we mentioned that the optimal number of compute nodes
is consistently found to be a power of 2. Combining this result and the
observations above, we reduced the original space � with 85 × 4 = 340
possible solutions to the space � with 9 possible solutions, where � =
{(2i, 1), i ∈ [0, . . . , 6]} ∪ (64, 2) ∪ (64, 4). Based on �, we apply our LDS
method to find the minimum value after �log2 9� = 3 steps. We use Table 3.3
to explain the three steps taken in the Aibo application when ε = 0.1. We
continue to approach the optimal number of compute nodes L∗ by doubling
the total number of compute nodes, until the relative improvement is less
than 10%. Here the index of the elements of � is denoted as [0, 1, . . . , 8].
Then the LDS method is applied. In the first step, we have Low = 0 and
High = 8, and thus

Mid =
⌊

Low + High
2

⌋
= 4.

Step Low High Mid S(eMid) S(eMid+1) relative Action
improvement

1 0 8 4 (16, 1) (32, 1) 0.27 keep high half
152.26 110.64

2 5 8 6 (64, 1) (64, 2) -0.15 keep low half
93.58 108.55

3 5 6 5 (32, 1) (64, 1) 0.15 finish, return index 6
110.64 93.58

Table 3.3. Three steps to approach the optimal (L, n).

Therefore, we measure the service processing time using 24 = 16 and 25 =
32 compute nodes and 1 CPU per node. The measured average service
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processing times and the calculated relative improvement are shown in the
first row of Table 3.3. Because the relative improvement using 32 compute
nodes compared to 16 compute nodes is 0.27 (> ε), we conclude that 16
compute nodes is not optimal. Therefore, we continue searching for the
optimal. In the second step, the index value 5 (i.e., 32 compute nodes) is set
as the value of Low. The value of High remains the same. Therefore Mid = 6.
When calculating the relative improvement using 64 compute nodes and 2
CPUs per node compared to 26 compute nodes, we find that the improvement
(-0.15) is less than ε. Therefore, in the third step, the value of High is reset
to 6, and Low remains the same. In this case, Mid = 5. The improvement of
using 26 compute nodes compared to 25 is more than ε. Thus, Low is reset
to 6, such that Low is equal to High, and the whole procedure is finished.
The LDS method returns index 6 as the optimal solution. This means, for
ε = 0.1, the optimal number of CPUs is 26 = 64 compute nodes. Table 3.4
shows the value of S(L, n) for the Aibo application for different values of
(L, n), and where ε is varied as 0.1, 0.2 and 0.3. Table 3.5 shows the results
for the TRECVID application. The optimal L∗ that we found for both
applications for different values of ε are listed in Table 3.6. In this table, we
notice that with larger ε, the L∗ remains the same or decreases.

Note that our method is very simple to implement. Besides this, it is very
effective because of the small number of steps required to find the optimal
number of compute nodes. In addition, by varying ε, we are able to ob-
tain the optimal result related to the desired improvement in the service
processing time by increasing the number of compute nodes.

(L, n) (16, 1) (32, 1) (64, 1) (64, 2)
ε = 0.1 S(L, n) 152.26 110.64 93.58 108.55

(L, n) (16, 1) (32, 1) (64, 1) (64, 2)
ε = 0.2 S(L, n) 152.26 110.64 93.58 108.55

(L, n) (4, 1) (8, 1) (16, 1) (32, 1)
ε = 0.3 S(L, n) 448.57 247.72 152.26 110.64

Table 3.4. Average service processing time of the Aibo application (in ms).
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(L, n) (16, 1) (32, 1) (64, 1) (64, 2) (64, 4)
ε = 0.1 S(L,N) 669.28 395.79 241.62 190.70 222.61

(L, n) (16, 1) (32, 1) (64, 1) (64, 2) (64, 4)
ε = 0.2 S(L,N) 669.28 395.79 241.62 190.70 222.61

(L, n) (16, 1) (32, 1) (64, 1) (64, 2)
ε = 0.3 S(L,N) 669.28 395.79 241.62 190.70

Table 3.5. Average service processing time of the TRECVID application (in ms).

ε L∗

0.1 64 (64,1)
0.2 32 (32,1)
0.3 16 (16,1)

(a) Aibo

ε L∗

0.1 128 (64,2)
0.2 128 (64,2)
0.3 64 (64,1)

(b) TRECVID

Table 3.6. Value of the engineering knee.

3.6.2 JIT communication problem

The following presents the results of our experiments relating to the JIT
problem. The results are also used as input for a trace-driven simulation
in order to validate our final model for determining the exact transmission
moments of video frames. We limit our experiments to the Aibo application,
as this is the one that needs to run under strict real-time requirements. The
application is ran on 64 compute nodes using 1 CPU per node.

First, we apply the BBM method (see Figure 3.3). In our experiment, we
found that the average service processing time (i.e., E[Ts]) and the av-
erage communication time (i.e., E[Tc]) between client and server amount
to 143.629 ms and 11.694 ms, respectively. In this case, the server uti-
lization is about 85%, and the average waiting time per frame is 0 ms.
Consider that the service utilization using the BBM method is given by
E[Ts]/(E[Ts] + 2 · E[Tc]). This implies that when E[Tc] is negligible, the
BBM method approaches the optimal strategy. However, in a bottleneck
situation where E[Tc] is long relative to E[Ts], the BBM method performs
badly.
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Figure 3.15. Average waiting time using 64 compute nodes.

The server utilization can be increased by sending frames with smaller inter-
vals. However, if a sudden change (a peak) in service processing time takes
place, all incoming frames are affected. A particularly difficult situation oc-
curs when a series of long service times occurs, such that the waiting time of
frames increases rapidly due to the accumulation of perceived gaps. In our
experiments, we used simulation to evaluate the impact of changing the time
interval between sending subsequent frames. The time interval is reduced in
5 steps according to Table 3.7. E[Ts] and E[Tc] in Table 3.7 are adjusted by
one of the prediction methods. Recall that Figure 3.10 shows that all predic-

Simulation index Time interval
1 TsBBM

2 2E[Tc] + E[Ts]
3 1.5E[Tc] + E[Ts]
4 E[Tc] + E[Ts]
5 0.5E[Tc] + E[Ts]
6 0.375E[Tc] + E[Ts]
7 0.25E[Tc] + E[Ts]
8 E[Ts]

Table 3.7. Time interval between sending two sequential frames.
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tion methods are capable of generating accurate trend lines. Therefore, in
this chapter, we only consider one of these (namely the exponential smooth-
ing methods) as a representative prediction method. Figure 3.15 shows that
the average waiting time increases significantly as the service utilization ap-
proaches 100%. Hence, the prediction methods are not sufficient for our
just-in-time communication problem.

In our final model, in which one of the prediction methods is combined
with the BLM and PP policies, we can achieve high service utilization while
keeping the average waiting time low. By using the exponential smoothing
methods with our policies, we obtain service utilization of about 98%, and
an average waiting time per frame of around 7 ms. If we define the waiting
time percentage (WP) as

WP =
total waiting time

total waiting time+ total service processing time
,

then we obtain a WP of around 3.5%. Because of the lower value of WP,
we can compare the performance of our final model to the BBM method
by looking at the service utilization. Define the gain in service utilization
Gain(SU) as follows:

Gain(SU) =
service utilization with final model

service utilization with BBM method
. (3.5)

Figure 3.16 shows the gain of our final model related to the BBM method
for different values of E[Tc]/E[Ts]. In this figure, we notice that the gain
in utilization is almost linear in E[Tc]/E[Ts]. This can be explained by the
fact that the service utilization in the final model is very close to 1 and the
service utilization belonging to the simple strategy can be approximated by
E[Ts]/(E[Ts] + 2 · E[Tc]). Hence, based on Equation 3.5, we have

Gain(SU) ≈ 1
E[Ts]/(E[Ts] + 2 · E[Tc])

= 1 + 2
E[Tc]
E[Ts]

.

For this reason, the gain in the service utilization is increasing nearly linearly
with E[Tc]/E[Ts].

The last comparison is done to evaluate the benefit brought by our policies.
For the prediction method of exponential smoothing, we compare the perfor-
mance of our final model to the prediction method by looking at the average
waiting time. Define the gain in the average waiting time as follows:

Gain(w) =
average waiting time with prediction method

average waiting time with final model
.
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Figure 3.16. Gain in the service utilization.

0 0.2 0.4 0.6 0.8 1
1

50

100

150

200

250

Gain in the average waiting time

E[Tc]/E[Ts]

G
ai

n 
in

 th
e 

av
er

ag
e 

w
ai

tin
g 

tim
e

Figure 3.17. Gain in the average waiting time.
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The results of this comparison are shown in Figure 3.17. The observation
that the final model can gain so much in the average waiting time is ex-
plained by the following example. Assume that during processing, only one
peak takes place and that, after that peak, there are still 100 frames to be
processed. In this situation the use of prediction methods causes all follow-
ing 100 frames to be delayed by the peak. But using our final model, there
is only 1 following frame affected by the peak. Thereafter, the sending times
of the next 99 frames are corrected. Thus no error accumulation occurs.
Therefore, we conclude that our final model, incorporating BLM and PP,
are indispensable and effective for just-in-time communication.

3.7 Conclusion and further research

In this chapter we first explored the relation between the service processing
time of distributed multimedia applications and the number of compute
nodes for a varying number of CPUs. We observed that there exists an
engineering-knee threshold value L∗ such that the service processing time
decreases fast as a function of L for L < L∗, whereas the service processing
time flattens out, and may even increase, for L > L∗. To find L∗, we first
reduce the possible solution set, and then apply our LDS method to find L∗.
Extensive validation has shown that our method is fast and effective.

Specifically, we have found that our method can find optimal resource uti-
lization for an average-sized cluster system in no more than three evaluation
steps. As a result, we conclude that our method adheres to all requirements
as stated in the introduction: it is simple, easily implementable, and ef-
fective. In addition, our method takes into account system variation. Even
though our focus was on the MMCA domain, our approach is general enough
to be applicable in other domains as well.

Second, we have explored the JIT communication problem, that requires
high service utilization on the one hand, and short service response time on
the other. Using a BBM method, the waiting time is zero. However, service
utilization decreases when the communication time between client and server
increases. By applying existing prediction methods to this problem, service
utilization can be increased. However, at the same time, the average waiting
time of video frames increases even faster. This can be explained by the
fact that existing prediction methods do not pay attention to peaks in the
service processing time. For this reason, we have developed two innovative



48

policies, BLM and PP. Using the first policy, cumulative waiting times are
avoided by postponing transmission of a new job when a peak is detected.
The second policy is used to predict possible peaks. If we can predict the
moment when a peak occurs, then we can send new jobs at the right time.
Combining these two policies with any of the existing prediction methods
described in this chapter, we achieve our final model to solve the just-in-time
communication problem.

Our JIT model has been validated in our experiments. Moreover, we have
extensively investigated the gain of our final model related to the BBM
method, as well as the prediction methods without incorporating our newly
developed policies. From our experimental results we conclude that our fi-
nal model strongly outperforms the other methods. Specifically, we observed
that, in comparison to other methods, our final model improves server uti-
lization from 85% to 98%, and reduces the average waiting time per frame
by a factor of up to 250.

The work described in this chapter is part of a larger strive to bring the
benefits of high-performance computing to the multimedia community. One
important aim, in this respect, is to make large-scale distributed multimedia
applications variability tolerant by way of controlled adaptive resource uti-
lization. This raises the need for new stochastic control methodologies that
react to the continuously changing circumstances in large-scale Grid systems.
Whereas the current chapter focuses on optimization of resource utilization
under a rather static repetitive workload, whilst taking into account system
variations, further sources of variability exist.

First, in MMCA applications the amount of data that needs to be processed
often changes wildly over time. For one, this is because data compression
techniques cause video streams to have variable bit rates. Also, in certain
specific settings, cameras may only start producing data after motion has
been detected. In other cases, such as iris scans performed at airports, the
amount of data to be analyzed depends on external variations.

Second, MMCA algorithms themselves are a source of variability. While
many algorithms working on the pixel values in images and video streams
have predictable behavior, algorithms working on derived structures, such
as feature vectors describing part of the content of an image, often are data-
driven. A common example is support vector machine (SVM) based classifi-
cation, which tries to find an optimal separation in high-dimensional clouds
of labeled data points. The identification of all support vectors that fully
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describe the separation depends on the positioning of the labeled data points
in the high-dimensional space. Consequently, the time required to find all
support vectors is largely data dependent. In the near future we will incor-
porate such sources of variability in our current optimization method. In
addition, we will test our method on a much larger scale for a much larger
variety of state-of-the-art multimedia applications. The presented example
applications merely represent two of these.





Chapter 4

Optimal Resource Allocation for Time-Reservation

Systems

This chapter studies the optimal resource allocation in time-reservation sys-
tems. Jobs arrive at a service facility and receive service in two steps; in
the first step information is gathered from the job, which is then sent to
a pool of computing resources, and in the second step the information is
processed after which the job leaves the system. A central decision maker
has to decide when to reserve computing power from the pool of resources,
such that the job does not have to wait for the start of the second service
step and that the processing capacity is not wasted due to the job still being
serviced at the first step. The decision maker simultaneously has to de-
cide on how many processors to allocate for the second processing step such
that reservation and holding costs are minimized. Since an exact analysis
of the system is difficult, we decompose the system into two parts which
are solved sequentially, leading to nearly optimal solutions. We show via
dynamic programming that the near-optimal number of processors follows a
step function with as an extreme policy the bang-bang control. Moreover,
we provide new fundamental insights in the dependence of the near-optimal
policy on the distribution of the information gathering times. Numerical
experiments demonstrate that the near-optimal policy closely matches the
performance of the optimal policy of the original problem.

4.1 Introduction

Multimedia services such as iris-scan and fingerprint systems require pro-
cessing of the data to identify a person’s identity. To avoid delays in queues
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of people waiting, these services need to work under strict real-time restric-
tions. To meet such restrictions, these large-scale services on the client-side
send video frames captured by a scan machine to the server, which performs
the analysis in a data parallel manner. In large-scale systems, the applica-
tions can reserve a number of processing resources to process the data. This
gives rise to a new class of models in which the application has to decide
when to reserve the processing resources and how many. In this decision
making, there is a trade-off between the lead time on one hand and the
operating costs on the other hand. Making a reservation too early leads to
inefficiency, since the processing resources have to wait on the data gather-
ing/scanning process; a too late reservation leads to unnecessarily long job
waiting times. Allocating too many processing resources results in a short
lead time, but comes at high allocation costs; allocating too few resources
leads to long processing times and blocks computing resources for the next
job.

In the literature, a lot of research has been devoted to resource-allocation
problems. In the context of protocol design, Daniel and Chronopoulos [26]
investigate the problem for resource allocation involving selfish agents, and
design a truthful mechanism for solving the load-balancing problem in het-
erogeneous distributed systems. Park [70] presents a scalable protocol for
fast co-allocation of Internet resources that ensures deadlock and livelock
freedom during the resource co-allocation process. Rana et al. [76] focus on
the modeling and detection of conflicts that arise during resource discovery
and application scheduling. They propose an approach that helps to resolve
conflicts and enables each resource and application to respond to changes in
the environment.

In a Grid computing environment, there are several papers that study archi-
tectures that enhance resources with online control, online monitoring, and
decision procedures. Czajkowski et al. [25] develop implementations of two
co-allocation strategies in the context of the Globus toolkit [8]. In one strat-
egy, all the required resources are specified at the time the request is made.
The request succeeds if all resources required are allocated, and otherwise,
the request fails and none of the resources is acquired. The other strategy
allows for application-level guidance of resource selection and failure han-
dling prior to commitment. Foster et al. [34] describe an implementation
of a mechanism that enables the coordinated use of reservation and adapta-
tion within the GARA resource management architecture [77]. Furthermore,
they develop three application-level adaptive control mechanisms: two that
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use loss-rate information to adapt reservations and one that uses reserva-
tion state information to adapt the transmission rate. Wang and Luo [102]
set up a layered structure of Grid QoS, which provides a reasonable essence
for mapping and converting QoS parameters in Grids so that it can imple-
ment the user’s QoS requirements in the process of Grid resource-allocation
management.

Other research has focused on economic models in a Grid computing envi-
ronment. Sandholm et al. [80] develop a suite of prediction models and tools
to aid the users in deciding how much funding their jobs would need to com-
plete within a certain deadline, or conversely, when a job would be expected
to complete given a budget. In this work, one tries to find the best bidding
strategy based on the so-called Best Response optimization algorithm (see
Feldman et al. [32]) that aims to maximize the utility of users across a set
of resources, under the constraint that the total budget of the user is given.
Buyya et al. [19] give an overview of different economic models for resource
trading and establishing pricing strategies, and discuss the resource trading
in Grid brokering and offer an infrastructure for resource management and
trading in the Grid environment (see, e.g., [21, 22, 58, 96] for more details).

The works on cost/reservation optimization in the context of resource alloca-
tion that are closest to our model are [12, 68, 67, 35]. Aziz et al. [12] present
a framework for resource allocation and task scheduling, where the objective
function is to minimize the job completion time and to minimize the number
of resources needed for the completion of the job. Nurmi et al. [68] propose a
statistical method, called VARQ [69], for job scheduling. Using QBETS [67]
to compute a time bound on the delay a specific user job will experience,
VARQ implements a reservation by determining when a job should be sub-
mitted to a batch queue to ensure that it will be running at a particular time
in the future. Fukuda et al. [35] study the relationship between the video
quality and the required number of CPUs and network resources to provide
a real-time video presentation. Based on this relationship, they propose a
resource-allocation scheme to share resources fairly among users by solving
the utility-maximization problem, where the utility is a function of the video
quality and the resource-allocation costs.

The main difference between the existing literature and our work is that
we aim to (1) optimize the resource-allocation costs and reservation mo-
ments simultaneously, and (2) satisfy a QoS constraint on the delay of a
job. This is in contrast to the aforementioned works which only have a focus
on optimizing either the resource-allocation costs [12, 35] or the reservation
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Figure 4.1. Service facility with two processing steps.

moments [67, 68]. Moreover, none of these works provides a QoS-guarantee
on the sojourn time of a job in the system.

More specifically, we study the optimal resource allocation in time-reservation
systems. Jobs arrive at a service facility and receive service in two steps: an
information gathering and an information processing step. The system has
to decide when and how much computing power to reserve for the second
step such that the allocation costs are minimized while satisfying a response-
time constraint. Since an exact analysis of the system is difficult, we decom-
pose the system into two parts which are solved sequentially leading to an
approximation of the original problem posed. We show via monotonicity
of the dynamic programming optimality operator that the optimal num-
ber of processors for the decomposed problem follows a step function with
as extreme policy the bang-bang control (see [95] for a discussion on the
bang-bang control). Furthermore, we show how the optimal policy in the
decomposed problem varies when the distributions of the reservation times
and information gathering times and the response-time constraint are varied.

The rest of the chapter is organized as follows. In Section 4.2 we formulate
the model. Next, we derive the structure of the optimal policy in the decom-
posed problem in Section 4.3. In Section 4.4 we illustrate these results by
numerical experiments and study the impact of variability under different
service distributions. Finally, in Section 4.5 we end with conclusions and
discuss topics for further research.

4.2 Model formulation

Consider a service facility at which jobs arrive according to a Poisson process
with rate λ. The service that the facility provides to its jobs consists of two
servicing steps (see Figure 4.1): first, a job receives service at service station
1 that gathers and pre-processes data to be used in the next service step.
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Then, the data is transferred to a pool of computing resources, service station
2, where the second service step takes place. After a job has received the
second service step, he leaves the system. The service facility is subject to
the service level constraint stating that �S ≤ α, where the sojourn time S
is defined as the time from the arrival of the job until the departure of the
job.

We model service station 1 as a single-server station with an infinite buffer
queue. A newly arriving job receives service immediately when upon arrival
the station is not occupied, and he waits in the queue otherwise. The sys-
tem incurs waiting costs c1(x) for having x jobs in the system, with c1(x) an
increasing function in x. The service duration at the first step is modeled by
the random variable R. The time to set up computing resources to process
the data is modeled by the random variable T (independent of R and inde-
pendent of the number of allocated computing resources [65]). We assume
that the first two moments of R and T are finite. The facility can choose
on the start of the service when to make a reservation for these computing
resources, i.e., it wants to select the moment s ≥ 0 at which to start the
reservation after starting the service. Note that if the facility reserves the
computing resources too early, then unnecessary computing resources are
blocked and remain idle. Figure 4.2 represents exactly this case from the
viewpoint of the job in iris-scan and fingerprint systems. The figure shows
the steps a job undergoes in the system; first, a job arrival occurs after which
there is a potential waiting time in the queue before he reaches the server
at step 1. Upon the start of his service at step 1, a decision s is made for
reserving the computing resources. This results in two competing processes;
the service process R and the reservation process s+T . When both processes
have completed, the job moves on to the service in step 2, while still blocking
the server in step 1 (there can only be at most one job in service in both
steps). After the service at step 2, the job departs the system and a new
job can be served at step 1. Recall that the sojourn time S is defined as the
time from the arrival of the job until the departure of the job. On the other
hand, if the resources are reserved too late, then the job has to wait before
the system can process his data leading to high waiting costs. This situa-
tion is reflected in Figure 4.3. The aim in this service step is to balance the
end of the service time and the moment that the resources are reserved and
available, e.g., the system tries to choose s such that C(s) := �(R− s− T )2

is minimized.

After having received service at service station 1, the job remains in front
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Figure 4.2. Computing resources are available before end of service at step 1.
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Figure 4.3. The service at step 1 is finished while computing resources are not
available.

of service station 1, but now receives service from service station 2. Service
station 2 is a pool of computing resources consisting of A identical parallel
processors (e.g., the DAS-3 environment [2]). When the reservation time
of the computing resources has finished, the job can be served at service
station 2. The service facility can choose how many processors to use for
the processing of the data. We assume that there are costs c2(a) for using
a processors per time unit, with c2(a) an increasing function in a. Clearly,
having too few processors leads to a violation of the service level, and having
too many processors leads to high reservation costs. We assume that the
service follows an exponential distribution with service rate µ(a) when a
processors are used, with µ(.) an increasing function in a. In the ideal case
one would have µ(a) = µa, with a fixed service rate µ, however, due to
communication overhead the function is sublinear in practice. Moreover, we
suppose that A is large enough so that for the optimal choice of s and a, say
(s∗, a∗), there is a policy that meets the service level α.

So far, we have not made any assumptions on the parameters of the system.
However, to ensure a stable system one needs to add conditions that take into
account both the arrival rate of jobs as well as the mean service time of a job
in the system. Note that the latter depends heavily on the policy (s∗, a∗)
in use for every state. Therefore, it is difficult to state general stability
conditions. One can note, though, that if (s∗, a∗) = (0, A) for all states,
then the mean service time is minimized; the mean service time is then
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given by �max{R,T} + 1/µ(A). Hence, if λ
[
�max{R,T} + 1/µ(A)

]
< 1,

then there exists at least one policy for which the system is stable.

Problem formulation
The objective is to find a policy that selects (s∗, a∗) based on the number
of jobs x in the system such that both C(s) and the long-term average costs
(i.e., waiting plus reservation costs) are minimized while at the same time the
service level constraint α is met. To formulate this objective in mathematical
terms, the following notation is useful. Let Xt and At denote the random
variables denoting the number of jobs in the system and the number of
reserved processors at time t, respectively. Let π denote a state-dependent
policy. Then the optimization problem can be stated as

min
π

[
C(s) +�π[c1(X∞) + c2(A∞)]

]
subject to �π[S] ≤ α,

(4.1)

where C(s) is given by �(R− s− T )2, X∞ and A∞ denote the steady-state
numbers of the variables Xt and At, and where S is the steady-state sojourn
time of an arbitrary job.

Solution approach
The service steps in the above mentioned problem have a mixture of contin-
uous and discrete decision variables with intricate dependencies such that
a classical decision theoretic approach is not computationally tractable in
general. Therefore, we approximate the optimal policy by following a two-
step approach: First, we solve for s∗ minimizing C(s) in the first service
step. Second, given s∗, we find a∗ that minimizes �(s∗,a)[c1(X∞)+ c2(A∞)]

]
subject to �(s∗,a)[S] ≤ α under assumptions provided in Section 4.3. In
Section 4.4 we show that the resulting approximate policy is nearly optimal
in the numerical experiments.

4.3 Structural properties of the decomposed model

In order to derive an optimal policy (s∗, a∗) we assume that the optimal
choice for s does not depend on the policy for the number of servers. Note
that this assumption allows us to decompose the problem into two parts,
whereby the optimal reservation moment s∗ can be studied independently
of the optimal allocation a∗. Then, given the optimal parameter s∗, one can
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study the optimal reservation policy at service station 2. Also note that this
assumption is not true in general in the original problem, e.g., when c1(x)
and c2(a) are really large relative to C(s), then one would choose s = 0 (in
order to minimize the holding costs c1(x)), whereas s > 0 in our decomposed
problem (since the decomposed model for station 1 does take into account
the holding costs). However, in Section 4.4 we numerically compare our
decomposition technique with the optimal policy in the original problem,
and show that for realistic parameter values the decomposition technique is
close to optimal.

We first start with the optimal reservation moment s∗.

Lemma 4.3.1. Let R and T have a general distribution with non-negative
supports. Then C(s) = �(R − s − T )2 is minimized by s∗ = [�R − �T ]+,
resulting in C(s∗) = �arR +�arT for �R ≥ �T , and in C(s∗) = �arR +
�arT + (�R −�T )2 for �R < �T .

Proof. Let R and T have a general distribution with non-negative supports.
Then,

�(R−s − T )2 = �(R2 + s2 + T 2 − 2sR − 2RT + 2sT )

= �R2 +�T 2 − 2�R�T + s2 − 2s�R + 2s�T

= �ar R + (�R)2 +�ar T + (�T )2 − 2�R�T + s2 − 2s(�R −�T )

= �ar R +�ar T + (�R −�T )2 + [s − (�R −�T )]2 − (�R −�T )2

= �ar R +�ar T + [s − (�R −�T )]2.

From this expression it follows that C(s) is minimized by taking s equal
to �R − �T . Since s is only allowed to be non-negative, s∗ = [�R −
�T ]+, with [z]+ = max{z, 0}. The value of C(s∗) then readily follows by
substitution.

In the special case that R and T follow an exponential distribution with
parameters δ and γ, respectively, we have that the optimal reservation time
is given by

s∗ = arg min
s
�(R − T − s)2 =

[γ − δ

δγ

]+
. (4.2)

In the case of γ > δ, i.e., the average reservation time is smaller than the
average service time, we have

C(s∗) = �(R − T − s∗)2 =
γ2 + δ2

δ2γ2
=

1
δ2

+
1
γ2

. (4.3)
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Otherwise, we have

C(s∗) = �(R−T )2 = �(R2)+�(T 2)−2�(R)�(T ) =
2
δ2

+
2
γ2

− 2
δγ

. (4.4)

Note that Equation (4.3) implies that if γ � δ or �[R] � �[T ], then the
�R dominates in the expression of C(s). Hence, relatively, the �T is not
important, thus approximately, it is as good as to reserve the computing
nodes directly after the scanning is completed. In this case, s∗ ≈ 1

δ . Equa-
tion (4.2) implies that if γ < δ or �[R] < �[T ], then it is optimal to reserve
the computing nodes directly after the scanning starts, thus s∗ = 0. Note
that the expected time between the start of a service at station 1 and station
2 defined by β := �max{R, s∗+T}, is given by β = s∗+ 1

γ +e−δs∗[1
δ − 1

δ+γ

]
.

Note also that action s∗ constitutes a stationary policy for all jobs. In
general, the arrival process to station 2 is not the original Poisson process
delayed by the constant β. However, for the purpose of model tractability,
we assume that this does hold. To meet the service level that was specified
as the requirement that the mean sojourn time of a job does not exceed α,
the mean sojourn time at station 2 is allowed to be at most α′ := α−β time
units. In Section 4.4 we will show that the error on the mean sojourn time
in the system by assuming a Poisson process is not too big.

The assumption that the output process of station 1 is a Poisson process
makes the derivation of the optimal resource-allocation policy for station
2 (i.e., how many processors should be assigned to a job) tractable. For
this purpose, we formulate the problem as a constrained Markov decision
problem. Thus, we try to minimize the holding and processing costs with
the additional constraint that the mean sojourn time is below α′. The con-
strained Markov decision problem is, in general, hard to solve. Therefore,
we first study the unconstrained problem in which we drop the sojourn time
constraint. For this system, we show that the optimal policy possesses a
threshold-type structure. We show that the constrained problem possesses a
similar structure as the unconstrained problem. Therefore, the structure of
the optimal policy of the unconstrained case carries over to the constrained
problem, noting that in the latter case the optimal policy is not deterministic
but randomized (see the first paragraph after Theorem 4.3.3 for details).
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4.3.1 Unconstrained Markov decision problem

Let X = �0 = {0, 1, 2, . . .} denote the state space, where x ∈ X denotes
the number of jobs present at station 2. For each job the set of actions is
given by A = {0, 1, . . . , A}, where a ∈ A denotes the number of processors
that is allocated to a job. When action a is chosen in state x, there are two
possible events in the system. First, an arrival of a job can occur with rate
λ. Second, since at any moment in time there can only be one job in service,
the job finishes his service with rate µ(a). Note that if multiple jobs are
allowed to be served simultaneously, then the allocation policy for each job
needs to be kept in the state description as well, since every job is served
with a different rate.

Next, we uniformize the system (see Section 11.5 of Puterman [73]). To this
end, we assume that the uniformization constant λ+µ(A) = 1; we can always
get this by scaling. Uniformizing is equivalent to adding dummy transitions
(from a state to itself) such that the rate out of each state is equal to 1; then
we can consider the rates to be transition probabilities. Thus, the transition
probabilities p, are given by p(x, a, x + 1) = λ and p

(
x, a, [x − 1]+

)
= µ(a).

Similarly, the system is subject to costs c consisting of holding costs c1(x)
and costs for the resource allocation c2(a), thus c(x, a) = c1(x) + c2(a). The
tuple (X ,A, p, c) defines the Markov decision problem.

Define a deterministic policy π as a function from X to A, i.e., π(x) ∈ A
for all x ∈ X . Let uπ

t (x) denote the total expected costs up to time t when
the system starts in state x under policy π. Note that for any stable and
work-conserving policy, the Markov chain satisfies the unichain condition, so
that the average expected costs g(π) = limt→∞ uπ

t (x)/t is independent of the
initial state x (see Proposition 8.2.1 of Puterman [73]). The goal is to find
a policy π∗ that minimizes the long-term average costs, thus g = minπ g(π).

Let V (x) be a real-valued function defined on the state space. This function
will play the role of the relative value function, i.e., the asymptotic difference
in total costs that results from starting the process in state x instead of some
reference state. The long-term average optimal actions are a solution of the
optimality equation (in vector notation) g+V = TV , where T is the dynamic
programming operator acting on V defined as follows:

TV (x) = λV (x + 1) + c1(x)
+ min

a∈A
{
µ(a)V

(
[x − 1]+

)
+

(
µ(A) − µ(a)

)
V (x) + c2(a)

}
.

(4.5)
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The first term in the expression TV (x) models the arrivals of customers to
station 2. The second term denotes the holding costs. The third term de-
notes the departure of a customer in case action a has been chosen. The
fourth term is the uniformization constant. The last term models the costs
for the resource allocation. The optimality equation g + V = TV is hard to
solve analytically in practice. Alternatively, the optimal actions can also be
obtained by recursively defining Vl+1 = TVl for arbitrary V0. For l → ∞,
the maximizing actions converge to the optimal ones (for existence and con-
vergence of solutions and optimal policies we refer to Chapter 8 of Puter-
man [73]). This procedure is also called value iteration.

Note that the costs c1(x) and c2(a) model the trade-off between the server
allocation and the holding costs. The first cost function drives the decision
maker to be liberal with the resources, since a too low resource allocation
leads to long queues and thus high holding costs. The second cost function
ensures that the decision maker is not too liberal since a too high resource
allocation leads to high processor costs. This is illustrated by the following
two cases.

No processing costs: First, we take c2(a) to be zero for all a ∈ A. From
Expression (4.5) we can see that the optimal policy evidently uses all pro-
cessors (also in the original system), since this maximizes the service rate
and minimizes the queue length (since c2(a) = 0). Therefore a∗ = A.

No holding costs: Next, we assume that c1(x) = 0 for all x ∈ X . In this
case, Expression (4.5) shows that the emphasis is on processor utilization.
Therefore, the optimal action would be to use no processors at all. In prac-
tice, this is not a permissible action, since no services would be provided at
all. If the constraint on the sojourn time is taken into account, then the
optimal action changes. This will be illustrated in Section 4.3.2.

We now proceed to the general solution of the unconstrained Markov decision
problem by deriving properties of the optimal dynamic policy. To this end,
consider the backward recursion operator Vn+1 given by

Vn+1(x) = λVn(x + 1) + c1(x)
+ min

a∈A
{
µ(a)Vn

(
[x − 1]+

)
+

(
µ(A) − µ(a)

)
Vn(x) + c2(a)

}
.

(4.6)

Using the backward recursion operator we can derive structural properties



62

of the optimal policy. The following result will play an important role for
the derivation of the structure of the optimal policy.

Lemma 4.3.2. Assume that c1(x) is a convex increasing function in x and
that c2(a) is an increasing function of a. Then V (x) is a convex increasing
function in x.

Proof. The proof is by induction on n. Let V0(x) = x2 for all x. Then clearly,
V0 is a convex increasing function in x. Now, assume that the statement
holds for k, then we prove that the statement also holds for k + 1. To this
end, define

T k
a (x) = µ(a)Vk([x − 1]+) +

[
µ(A) − µ(a)

]
Vk(x) + c2(a).

Then, for x ≥ 0, we have

Vk+1(x + 1) − Vk+1(x) = [λVk(x + 2) − λVk(x + 1)] + [c1(x + 1) − c1(x)]

+ [min
a

{T k
a (x + 1)} − min

a
{T k

a (x)}]
> min

a
{T k

a (x + 1)} − min
a

{T k
a (x)}.

The inequality holds because the first two terms are non-negative due to the
induction hypothesis, and the second two terms follow by the assumption on
the cost function c1. Let a∗ ∈ arg mina{T k

a (x+ 1)}, then, for x ≥ 0, we have

Vk+1(x + 1) − Vk+1(x) > T k
a∗(x + 1) − min{T k

a (x)}
≥ T k

a∗(x + 1) − T k
a∗(x)

= µ(a∗)Vk(x) +
[
µ(A) − µ(a∗)

]
Vk(x + 1)

+ c2(a∗) − µ(a∗)Vk([x − 1]+)
− [

µ(A) − µ(a∗)
]
Vk(x) − c2(a∗) > 0.

Therefore, by induction, we derive that V (x+1)−V (x) > 0. Now, we proceed
to prove convexity of the relative value function. Assume that convexity
holds for k, then we need to prove convexity for k + 1. Then, for x ≥ 0, we
have

Vk+1(x + 1) − 2Vk+1(x) + Vk+1([x − 1]+)
=

[
λVk(x + 2) − 2λVk(x + 1) + λVk(x)

]
+

[
c1(x + 1) − 2c1(x) + c1([x − 1]+)

]
+

[
min

a
{T k

a (x + 1)} − 2min
a

{T k
a (x)} + min

a
{T k

a ([x − 1]+)}]
> min

a
{T k

a (x + 1)} − 2min
a

{T k
a (x)} + min

a
{T k

a ([x − 1]+)}.
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The inequality holds because the first expression between the brackets is
non-negative due to the induction hypothesis, and the second from the as-
sumption on c1. Now assume that a∗1 ∈ arg mina{T k

a (x + 1)} and a∗2 ∈
arg mina{T k

a ([x − 1]+)}. Then, we have

min
a

{T k
a (x + 1)} − 2min

a
{T k

a (x)} + min
a

{T k
a ([x − 1]+)}

≥ [
c2(a∗1) − c2(a∗1) − c2(a∗2) + c2(a∗2)

]
+

[
µ(a∗1)Vk(x) − µ(a∗1)Vk

(
[x − 1]+

)− µ(a∗2)Vk

(
[x − 1]+

)
+ µ(a∗2)Vk

(
[x − 2]+

)]
+

[(
µ(A) − µ(a∗1)

)
Vk(x + 1) − (

µ(A) − µ(a∗1)
)
Vk(x)

− (
µ(A) − µ(a∗2)

)
Vk(x) +

(
µ(A) − µ(a∗2)

)
Vk

(
[x − 1]+

)]
=

(
µ(a∗1) − µ(a∗2)

)[
Vk(x) − Vk

(
[x − 1]+

)]
+ µ(a∗2)

[
Vk(x) − 2Vk

(
[x − 1]+

)
+ Vk

(
[x − 2]+

)]
+

(
µ(A) − µ(a∗1)

)[
Vk(x + 1) − Vk(x)

]
− [

µ(A) − µ(a∗1) +
(
µ(a∗1) − µ(a∗2)

)](
Vk(x) − Vk([x − 1]+)

)
= µ(a∗2)

[
Vk(x) − 2Vk

(
[x − 1]+

)
+ Vk

(
[x − 2]+

)]
+

(
µ(A) − µ(a∗1)

)[
Vk(x + 1) − 2Vk(x) + Vk

(
[x − 1]+

)]
> 0.

The first inequality follows from taking a potentially suboptimal action in the
second term of mina{T k

a (x+1)}−2mina{T k
a (x)}+mina{T k

a ([x−1]+)}. The
two equalities follow by rearranging the terms. The last inequality follows
by the induction hypothesis and by noting that µ(A) − µ(a∗1) is positive.
Hence, using mathematical induction we have proved that V (x) is a convex
increasing function in x.

The previous lemma shows that V is a convex increasing function in x. This
property of the relative value function will play a crucial role in the derivation
of the optimal policy. The next theorem shows how this lemma is used to
obtain the structure of the optimal policy.

Theorem 4.3.1. Assume c1(x) is a convex increasing function in x, c2(a)
and µ(a) are strictly increasing function in a. Then the optimal resource
allocation strategy is given by a non-decreasing curve, i.e., for each a ∈
arg mina∈Ax+1

{
Ta(x + 1)

}
and b ∈ arg mina∈Ax

{
Ta(x)

}
we have a ≥ b for

all x ≥ 0.
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Proof. Let a ∈ arg mina∈Ax+1

{
Ta(x + 1)

}
and b ∈ arg mina∈Ax

{
Ta(x)

}
be

an arbitrary optimal allocation in states x+1 and x, respectively. The proof
is by contradiction. Suppose that b and a such that a < b, then

Ta(x) − Tb(x) =
[
µ(b) − µ(a)

][
V (x) − V

(
[x − 1]+

)]− [
c2(b) − c2(a)

]
≥ 0.

By Property 4.3.2 we have that V is a convex increasing function in x.
Together with the fact that µ(·) is a strictly increasing function, and thus
µ(b) − µ(a) > 0, we have

Ta(x + 1) − Tb(x + 1) =
[
µ(b) − µ(a)

][
V (x + 1) − V

(
x)

]− [
c2(b) − c2(a)

]
>

[
µ(b) − µ(a)

][
V (x) − V

(
[x − 1]+

)]− [
c2(b) − c2(a)

]
≥ 0.

However, this implies that a is not optimal for state x + 1, since b has a a
smaller value. Hence, a ≥ b, and this establishes the non-decreasing curve
as stated in the theorem.

When additional assumptions are placed on the growth of processing costs
c2 and the service rate µ, one can specify the optimal policy in greater
detail. The following theorem shows that if the processing costs are taken
to be concave while the service rate is convex, then the optimal policy is a
threshold-based bang-bang control policy.

Theorem 4.3.2. Assume c1(x) is a convex increasing function in x, c2(a)
is a concave increasing function in a, and µ(a) is a convex function in a.
Then the optimal resource-allocation strategy is a threshold-based bang-bang
control policy, i.e., there exists a constant τ such that for x < τ the optimal
action is to allocate no processors, while for x ≥ τ the optimal action is to
allocate all processors.

Proof. Suppose that c1(x) is a convex increasing function in x and that c2(a)
is a concave increasing function in a. To obtain the structure of the policy,
consider Zi for i = 0, . . . , A − 1 given by

Zi(x) = Ti(x) − Ti+1(x) =
[
µ(i + 1) − µ(i)

][
V (x) − V

(
[x − 1]+

)]
− [

c2(i + 1) − c2(i)
]
.

Observe that for fixed x, the function Zi(x) is increasing in i since µ(i) is a
convex function and c2(i) is concave. When Zi(x) is non-negative for some
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i, this means that using one processor more is better. However, since Zi(x)
is increasing in i, this means that using all processors is optimal. Similarly,
when Zi−1(x) is non-positive, then using one processor less is better. But
since Zi(x) is an increasing function in i, using no processor at all is optimal.
To establish the threshold τ , consider state x + 1. If Zi(x) is non-negative,
then Zi(x + 1) is non-negative as well due to Lemma 4.3.2. Thus, when in
state x it is optimal to use all processors, then in all states greater than x it
is also optimal to use all processors. This establishes the bang-bang control
policy, i.e., there exists a τ ≥ 0 such that the optimal policy for x < τ is to
use no processors, and for x ≥ τ using all processors is optimal.

Theorem 4.3.2 shows that the optimal policy is either to use no processing
capacity at all or to use all processors. The convexity/concavity properties
of c2 and µ are essential to obtain this result. When c2(a) is convex and µ(a)
is concave in a, then this policy is not optimal anymore. In fact, the optimal
policy is still of threshold type, but with more threshold levels (as specified
by Theorem 4.3.1). However, the precise form heavily depends on the pa-
rameters used in the problem formulation. In the numerical experiments we
will show that for some parameter values the policy behaves as a bang-bang
policy, but for other parameter settings the multi-threshold control policy
appears to be optimal.

4.3.2 Constrained Markov decision problem

In this section we describe the constrained Markov decision problem so that
optimal policies can be determined that ensure that the total mean sojourn
time of a job in the whole system is less than α. Since the average time
spent in the first step is β, the mean sojourn time in the second step is not
allowed to exceed α′ = α − β. In the previous subsection, we studied the
unconstrained Markov decision problem in which we tried to find a policy
π∗ that minimized g(π), i.e., the long-term average costs. We did not take
into account the mean sojourn time constraint of a job. Let W denote the
sojourn time of an arbitrary job in step 2. Then, the constrained Markov
decision problem that we want to solve is:

min
π

g(π) subject to �W ≤ α′.

Before the discussion of the general constrained case, we first examine the
effect of the cost functions c1 and c2 on the optimal policy if one of them is
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set equal to zero.

No processing costs: When the processing costs are set to zero, i.e.,
c2(a) = 0, then we obtain a situation that is equal to the case of the uncon-
strained Markov decision problem. The optimal policy is a∗ = A, which (by
assumption) clearly satisfies the service level α′.

No holding costs: When we assume c1(x) = 0, then we cannot use the
optimal policy of the unconstrained Markov decision problem: a∗ = 0. In
the case of the constrained problem, this would violate the service level
constraint α′. For a given action a, the sojourn time in the system can be
given by the sojourn time in an M/M/1 queue with arrival rate λ and service
rate µ(a) (see Cooper [23]). Thus, let ρ(a) = λ/µ(a), then the expected
sojourn time �W is given by

�W =
ρ(a)

λ
(
1 − ρ(a)

) .

The optimal action a∗, under the assumption of Poisson arrivals at station 2,
is then obtained by solving the above equation for �W = α′. Note that in
general this will result in a fractional value of a∗. This leads in a natural way
to a randomized policy to obtain exactly α′. We will discuss the randomized
policy further in the sequel.

We now proceed to the general solution of the constrained Markov decision
problem. Note that the system basically resembles an M/M/1 queueing
system with state-dependent service rates. For this system, due to Little’s
Law, we can relate the number of jobs L in the system to the sojourn time in
the system W by �L = λ�W (see Little [61]). In order to get �L, one can
take x as cost function in the Markov decision problem. Hence, to obtain the
expected sojourn time �W it suffices to have as cost function c3(x) = x/λ.
To solve the constrained problem we use the Lagrange multiplier approach
described in Section 12.6 of Altman [10]. Let L be the Lagrange multiplier,
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then the dynamic programming operator T acting on VL is defined as follows:

TVL(x) = λVL(x + 1)
+ min

a∈A
{
µ(a)VL

(
[x − 1]+

)
+

(
µ(A) − µ(a)

)
VL(x) + c2(a)

}
+ c1(x) + Lc3(x)
= λVL(x + 1)
+ min

a∈A
{
µ(a)VL

(
[x − 1]+

)
+

(
µ(A) − µ(a)

)
VL(x) + c2(a)

}
+ cL1 (x),

(4.7)

with cL1 (x) = c1(x) + Lc3(x) a convex increasing function in x. Note that
the cost function is similar in structure to that of Equation (4.5). Hence,
Lemma 4.3.2, Theorem 4.3.1, and Theorem 4.3.2 apply to this case as well.
Thus, for every value of L the optimal policy is a non-decreasing curve.
Note that when for a given L an optimal policy has been derived by iter-
ating Equation (4.7), one can obtain the mean sojourn time �W by fixing
the policy in Equation (4.7) while setting c1 = c2 = 0 and L = 1. In
Theorem 4.3.3 below, we will show that the maximizing allocation actions
in Equation (4.7) increase with L, which will imply that the mean sojourn
time �W decreases in L since more processors are being allocated. In order
to obtain Theorem 4.3.3, we first need to prove the following two technical
lemmas.

Lemma 4.3.3. VL(x) is increasing in the Lagrange multiplier L for all x ∈
X .

Proof. To prove this lemma, we only need to prove that if L′ > L then
VL′(x) ≥ VL(x) for all x. This is proven by induction in n. Let V 0

L′(x) =
V 0
L (x) = 0 for all x. Note that V n

L (x) is defined similarly to Vn(x). Then, the
lemma holds for n = 0. Assume it holds for n = k. We prove it also holds for
n = k+1. Define T k

a(L)(x) = µ(a)VL,k([x−1]+)+
[
µ(A)−µ(a)

]
VL,k(x)+c2(a).

Then, for x ≥ 0, we have

VL′,k+1(x) − VL,k+1(x) = λ
[
VL′,k(x + 1) − VL,k(x + 1)

]
+ min

a
T k

a(L′)(x) − min
a

T k
a(L)(x) + (L′ − L)c3(x)

≥ min
a

T k
a(L′)(x) − min

a
T k

a(L)(x).

The inequality above holds because the term between the brackets is non-
negative due to the induction hypothesis and the last term follows by the
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assumption L′ > L. Let a∗ ∈ arg mina T k
a(L′)(x). Then for x ≥ 0, we have

VL′,k+1(x)−VL,k+1(x)

≥ T k
a∗(L′)(x) − min

a
T k

a(L)(x)

≥ T k
a∗(L′)(x) − T k

a∗(L)(x)

= µ(a∗)VL′,k([x − 1]+) +
[
µ(A) − µ(a∗)

]
VL′,k(x) + c2(a∗)

− µ(a∗)VL,k([x − 1]+) − [
µ(A) − µ(a∗)

]
VL,k(x) − c2(a∗)

= µ(a∗)
[
VL′,k([x − 1]+) − VL,k([x − 1]+)

]
+

[
µ(A) − µ(a∗)

][
VL′,k(x) − VL,k(x)

] ≥ 0.

Therefore, by induction we derive that VL′(x) ≥ VL(x).

Lemma 4.3.3 shows that the relative value function is increasing in the La-
grange multiplier. This result is needed to show that the relative value
function is also supermodular, as the following lemma shows.

Lemma 4.3.4. If L′ > L, then

VL′(x + 1) − VL′(x) − VL(x + 1) + VL(x) > 0, (4.8)

for all x ∈ X .

Proof. This lemma is proven by induction. Let VL′,0(x) = L′x, and VL,0(x) =
Lx for all x. Clearly, VL′,0(x+1)−VL′,0(x)−VL,0(x+1)+VL,0(x) = L′−L > 0.
Assume it holds for n = k. Now, we prove it holds for n = k + 1. Define
T k

a(L)(x) = µ(a)VL,k([x− 1]+) +
[
µ(A)− µ(a)

]
VL,k(x) + c2(a). For all x ≥ 0,

we have

V L′,k+1(x + 1) − VL′,k+1(x) − VL,k+1(x + 1) + VL,k+1(x)
= λ

[
VL′,k(x + 2) − VL′,k(x + 1) − VL,k(x + 2) + VL,k(x + 1)

]
+ min

a
T k

a(L′)(x + 1) − min
a

T k
a(L′)(x) − min

a
T k

a(L)(x + 1) + min
a

T k
a(L)(x)

+ L′c3(x + 1) − L′c3(x) − Lc3(x + 1) + Lc3(x)

> min
a

T k
a(L′)(x + 1) − min

a
T k

a(L′)(x) − min
a

T k
a(L)(x + 1) + min

a
T k

a(L)(x)

+
[L′ − L][c3(x + 1) − c3(x)

]
≥ min

a
T k

a(L′)(x + 1) − min
a

T k
a(L′)(x) − min

a
T k

a(L)(x + 1) + min
a

T k
a(L)(x).
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The first inequality holds due to the induction hypothesis. The second in-
equality holds because L′ > L and c3(x) is an increasing function in x. Let
a∗ ∈ arg mina T k

a(L′)(x + 1) and b∗ ∈ arg mina T k
a(L)(x). Then we have

V L′,k+1(x + 1) − VL′,k+1(x) − VL,k+1(x + 1) + VL,k+1(x)

> T k
a∗(L′)(x + 1) − min

a
T k

a(L′)(x) − min
a

T k
a(L)(x + 1) + T k

b∗(L)(x)

≥ T k
a∗(L′)(x + 1) − T k

b∗(L′)(x) − T k
a∗(L)(x + 1) + T k

b∗(L)(x)

= µ(a∗)
[
VL′,k(x) − VL,k(x)

]
+

[
µ(A) − µ(a∗)

][
VL′,k(x + 1) − VL,k(x + 1)

]
− µ(b∗)

[
VL′,k([x − 1]+) − VL,k([x − 1]+)

]− [
µ(A) − µ(b∗)

][
VL′,k(x) − VL,k(x)

]
= µ(a∗)

[
VL′,k(x) − VL,k(x) − VL′,k(x + 1) + VL,k(x + 1)

]
+ µ(b∗)

[
VL′,k(x) − VL,k(x) − VL′,k([x − 1]+) + VL,k([x − 1]+)

]
+ µ(A)

[
VL′,k(x + 1) − VL,k(x + 1) − VL′,k(x) + VL,k(x)

]
>

[
µ(A) − µ(a∗)

][
VL′,k(x + 1) − VL,k(x + 1) − VL′,k(x) + VL,k(x)

] ≥ 0.

Hence, using mathematical induction we have proved the lemma. Addition-
ally, at the boundaries of the state space, one also needs that the value
function is increasing in L as shown in Lemma 4.3.3.

We are now ready to prove the monotonicity result of the relative value
function, i.e., when the Lagrange multiplier increases, and thus places more
emphasis on the holding costs, the number of allocated processors also in-
creases. The following theorem formalizes this statement.

Theorem 4.3.3. Let Ta(L)(x) = µ(a)VL([x − 1]+) +
[
µ(A) − µ(a)

]
VL(x) +

c2(a). If L′ > L, then for all a′ ∈ arg mina Ta(L′)(x) and a ∈ arg mina Ta(L)(x)
we have a′ ≥ a for all x ∈ X .

Proof. The proof is by contradiction. Let x > 0 and suppose that an ar-
bitrary optimal allocation a′ ∈ arg mina Ta(L′)(x) < a ∈ arg mina Ta(L)(x).
Then, since Ta(L′)(x) ≥ Ta′(L′)(x), we have

Ta(L′)(x) − Ta′(L′)(x) =
[
µ(a′) − µ(a)

][
VL′(x) − VL′

(
[x − 1]+

)]
− [

c2(a′) − c2(a)
]

≥ 0.
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Together with relation (4.8) and using the fact that µ is an increasing func-
tion, we have

Ta(L)(x) − Ta′(L)(x) =
[
µ(a′) − µ(a)

][
VL(x) − VL

(
[x − 1]+

)]− [
c2(a′) − c2(a)

]
>

[
µ(a′) − µ(a)

][
VL′(x) − VL′

(
[x − 1]+

)]− [
c2(a′) − c2(a)

]
≥ 0,

which implies that a /∈ arg mina Ta(L)(x), which is in contradiction with the
assumption. The case x = 0 results in Ta(L)(0) − Ta′(L′)(0) being indepen-
dent of L and L′. Since there are no customers to serve in state x = 0,
arg mina Ta(L′)(x) = arg mina Ta(L)(x) = {0}.

There is a difference in the optimal policy between the one in the uncon-
strained case and in the constrained case. Note that due to Theorem 4.3.3 a
higher value of the Lagrange multiplier L implies that the mean sojourn time
�W decreases because more processors are allocated. Therefore, there is a
L∗ for which �WL∗ ≥ α′ and �WL∗+ε < α′ for a small ε > 0, where �WL is
the mean sojourn time under Lagrange parameter L. Observe that �WL is
not a continuous function of L, because the optimal policy does not change
continuously with L, but changes at specific values. In the constrained case,
the optimal policy is to randomize between the associated policies π(L∗) and
π(L∗ + ε) so that exactly �W = α′ is achieved. The optimal policy thus
randomizes between two step-function policies (see [10] for the proof).

Note that we analyzed the optimal actions for station 1 independently of
the state at station 2. However, in our formulation we can see that the first
station has influence on the policy in station 2. The higher the time β is
spent at station 1, the tighter the constraint in station 2 becomes through
α′ = α−β. In the next section we shall illustrate how the optimal policy for
the constrained problem is derived and how this tighter constraint affects
the optimal policy.

4.4 Numerical experiments

In the previous sections we dealt with station 1 and station 2 separately. Al-
though the analysis has been done separately, the performance of the system
of both stations, in reality, are dependent, as was shown in Section 4.3.2. In
this section we will validate the performance of the decomposed model in
which we split up the real system with the simulated performance of the real
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system and perform a numerical comparison of the optimality. In addition,
we will illustrate how the variability in the service duration R and the set-up
time T affects the policy at station 2.

4.4.1 Accuracy of the approximation

In Section 4.2 we described the model as a system in which jobs get service
in two steps. First, the job receives service in step 1 in which a controller
has to decide on the reservation time. Then, the job, while still blocking the
service facilities in step 1, receives service in step 2 in which a controller has
to decide on the number of allocated computing resources. We have split up
this system into two parts and added the sojourn times of each part to each
other. In doing so we make an error in the performance as compared to the
real system as described in the end of Section 4.2.

First, we study how big the error is in the performance when we split up the
system as compared to the real system. To this end, we derive the policy used
in both cases by using s∗ from Lemma 4.3.1 and π∗ from the decomposed
model as discussed in Section 4.3.2. Then, let wreal = C(s∗)+�s∗,π∗ [c3(X∞)]
denote the mean sojourn time of the real system (that we obtain by simu-
lation), and wmodel = C(s∗) + �π∗ [c3(X∞)] denote the mean sojourn time
that a customer spends in step 1 and 2 together as obtained from the decom-
posed model. Note that the simulations have been run sufficiently long to
ensure that the results shown in the following tables are significant. Table 4.1
depicts the relative error

∆w :=
wreal − wmodel

wreal
× 100%,

when we split up the system, for various values of λ, µ, δ, and γ (assuming
exponential distributions for R, T ) using the policy that achieves wmodel = α
under minimal costs obtained in the decomposed model, with the cost func-
tions specified in Experiment 1 of Table 4.3 below. The results of Table 4.1
show that the approximation works particularly well for high values of (δ, γ),
but tends to degrade for smaller values. This is due to the fact that the two-
step approach neglects the potential waiting time for availability of the ser-
vice in the first step upon arrival epochs. This effect becomes more apparent
for smaller values of (δ, γ) and for a higher utilization of the system. Note
that the higher values of (δ, γ) (i.e., the service times in step 1 are relatively
short in comparison) reflect realistic values of system parameters that are
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used in real applications (e.g., iris scan and fingerprint applications). This
underlines the applicability of the decomposed model in practice.

Second, we assess the accuracy of the approximation for our cost function
defined in (4.1). To this end, let creal = �s∗,π∗ [c1(X∞)+ c2(A∞)] denote the
mean cost of the real system (that we obtain by simulation), and cmodel =
�π∗ [c1(X∞) + c2(A∞)] denote the mean cost that a customer encounters in
step 1 and 2 together as obtained from the decomposed model, where s∗ and
π∗ are obtained similarly as in the comparison of w above. Table 4.2 depicts
the relative error, defined as

∆c :=
creal − cmodel

creal
× 100%,

under the same parameter scenarios and policies as used in Table 4.1, and
with the cost functions defined as in Table 4.3. Table 4.2 shows similar
results as those in Table 4.1, namely, that the approximation works well for
high values of (δ, γ) and degrades for smaller values. The different signs in
the table indicate that the cost curves for the real system and the model
do not completely coincide, but are slightly shifted relative to each other.
The insight obtained from Table 4.1 and 4.2 is that for our problem (4.1),
both the cost and the sojourn time show similar behavior, in particular for
high values of (δ, γ). This insight suggests that the optimal policy in the
decomposed model is a good approximation to the optimal policy in the real
system. In order to validate this, we compare the performance under the
optimal policy in the real system with the performance in the decomposed
model when this same policy would be applied here. The derivation of the
optimal policy in the real system is computationally intractable for large
values of A. Therefore, we construct a small-sized problem with A = 5 such
that enumerating over all relevant values of s and all monotone increasing
step functions for the processor allocation becomes tractable.

The results of this experiment are in agreement with the results of Tables 4.1
and 4.2. To explain in greater detail where differences in the performance
occur, we discuss the extreme scenarios in more detail below. We focus on
λ = 0.5, µ = 1.2, and the two scenarios (δ, γ) = (8, 12) and (δ, γ) = (44, 64).
In the case with (δ, γ) = (8, 12), the unconstrained optimization leads to
a relative difference of 2.6% in cost (∆c) and 7.7% in mean sojourn time
(∆w). When we add a constraint with α = 1.2, the differences are 8.0%
and 7.7% for the cost and mean sojourn time, respectively. In the case
with (δ, γ) = (44, 64), the unconstrained optimization has relative differ-
ences 0.58% and 1.85% for the cost and sojourn time, respectively. For the
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λ = 0.5 (δ, γ)
µ (8, 12) (12, 20) (16, 24) (20, 32) (24, 40) (28, 48) (32, 56) (36, 64) (40, 64) (44, 64)

0.4 13.0% 8.5% 6.3% 4.9% 4.1% 3.5% 2.9% 2.5% 2.1% 2.1%
1.2 7.6% 4.8% 3.6% 2.7% 2.3% 1.9% 1.6% 1.4% 1.2% 1.1%
2.0 8.6% 5.7% 4.2% 3.2% 2.6% 2.3% 2.0% 1.7% 1.5% 1.4%
4.0 8.2% 5.5% 4.4% 3.5% 2.9% 2.6% 2.3% 2.0% 1.9% 1.7%

λ = 0.7 (δ, γ)
µ (8, 12) (12, 20) (16, 24) (20, 32) (24, 40) (28, 48) (32, 56) (36, 64) (40, 64) (44, 64)

0.4 22.8% 15.1% 11.3% 8.8% 7.2% 6.3% 5.3% 4.9% 4.3% 4.1%
1.2 12.0% 7.5% 5.6% 4.3% 3.5% 2.9% 2.5% 2.2% 2.0% 2.0%
2.0 10.5% 6.5% 4.9% 3.7% 3.0% 2.5% 2.2% 1.9% 1.7% 1.6%
4.0 11.6% 7.8% 6.0% 4.8% 4.1% 3.6% 3.2% 2.8% 2.5% 2.4%

λ = 1.0 (δ, γ)
µ (8, 12) (12, 20) (16, 24) (20, 32) (24, 40) (28, 48) (32, 56) (36, 64) (40, 64) (44, 64)

0.4 38.0% 25.9% 19.4% 15.5% 12.6% 10.9% 9.5% 8.5% 7.6% 7.1%
1.2 20.0% 12.7% 9.4% 7.5% 6.0% 5.0% 4.4% 3.8% 3.5% 3.2%
2.0 17.8% 11.4% 8.3% 6.5% 5.3% 4.5% 3.9% 3.4% 3.1% 2.8%
4.0 17.1% 11.3% 8.6% 6.8% 5.7% 4.7% 4.1% 3.6% 3.2% 2.9%

Table 4.1. The relative error ∆w for different parameter values with µ(a) = µa.

constrained problem with α = 1.06, the relative differences are 0.02% and
0.93%. In conclusion, the approximate two-step approach has a reasonable
performance, and works particularly well for realistic parameter values.

4.4.2 The effect of variability in R and T

In this section, we illustrate the effect of the variability in R and T on the
time spent at station 1. By Lemma 4.3.1 we know that s∗ only depends
on these variables through their mean, but the time spent at the station
also takes into consideration the second moment of R and T . Therefore, we
take for R and T distributions that increase in the coefficient of variation
c2. More specifically, we take for R and T a deterministic (c2 = 0), expo-
nential (c2 = 1), and hyper-exponential distribution (with two phases and
balanced means [100]) with c2 = 2, and 4, respectively, while keeping the
mean constant. Figure 4.4 shows β := �max{R, s∗+T}, as a function of c2

T ,
the squared coefficient of variation of T (with mean 2/3). The four curves
correspond to the different values of c2

R, the squared coefficient of variation
of R (with fixed mean 1). We also did experiments with distributions for T
with means 1 and 6/5, and they gave similar curves. The graph shows that
the increase in the coefficient of variation for R and/or T results in a larger
mean sojourn time β that grows in a non-linear concave manner.

Now that we know how the distributions affect the β and thus the constraint
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λ = 0.5 (δ, γ)
µ (8, 12) (12, 20) (16, 24) (20, 32) (24, 40) (28, 48) (32, 56) (36, 64) (40, 64) (44, 64)

0.4 10.24% 6.44% 4.36% 3.18% 2.81% 2.20% 1.69% 1.23% 1.16% 1.20%
1.2 3.21% 1.45% 0.79% 0.35% 0.23% 0.09% 0.01% 0.21% 0.20% -0.03%
2.0 1.89% 0.17% -0.18% -0.23% -0.51% -0.26% -0.38% -0.36% -0.41% -0.20%
4.0 3.79% 1.24% 0.30% 0.12% -0.23% -0.21% -0.27% -0.33% -0.24% -0.39%

λ = 0.7 (δ, γ)
µ (8, 12) (12, 20) (16, 24) (20, 32) (24, 40) (28, 48) (32, 56) (36, 64) (40, 64) (44, 64)

0.4 19.23% 11.98% 8.58% 6.78% 5.34% 4.48% 3.99% 3.61% 3.15% 2.75%
1.2 7.66% 3.77% 2.36% 1.70% 1.48% 0.80% 0.79% 0.69% 0.63% 0.63%
2.0 5.73% 2.25% 1.25% 0.58% 0.12% 0.29% 0.21% 0.25% 0.04% 0.06%
4.0 6.11% 2.00% 0.77% 0.26% 0.01% -0.22% -0.26% -0.19% -0.28% -0.32%

λ = 1.0 (δ, γ)
µ (8, 12) (12, 20) (16, 24) (20, 32) (24, 40) (28, 48) (32, 56) (36, 64) (40, 64) (44, 64)

0.4 35.41% 22.69% 16.37% 13.38% 10.36% 8.58% 7.57% 6.58% 6.00% 5.02%
1.2 17.26% 9.15% 6.08% 4.63% 3.66% 2.95% 2.56% 1.93% 1.71% 1.77%
2.0 13.07% 6.14% 3.64% 2.15% 1.71% 1.26% 1.12% 1.01% 0.79% 0.59%
4.0 11.81% 4.32% 2.01% 1.05% 0.22% -0.04% -0.15% -0.33% -0.43% -0.25%

Table 4.2. The relative error ∆c for different parameter values with µ(a) = µa.
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Figure 4.4. The time spent at station 1 for different distributions of R and T .

Experiment 1 c1(x) = 10x2 c2(a) = 10a2 µ(a) =
√

aµ
Experiment 2 c1(x) = 1

100x2 c2(a) = 100
√

a µ(a) = a2µ

Table 4.3. Functions for c1, c2, and µ.

level α′ = α−β, we focus our attention to station 2 to gain further insight into
the optimal resource-allocation policy in the decomposed problem. Consider
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(a) Illustration of Theorem 4.3.1.
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Figure 4.5. Numerical experiments to illustrate the structure of the optimal policy.

the following parameters for this station: λ = 0.5, µ = 0.7, and A = 85 (this
represents the number of processors in the DAS-3 cluster that we have used,
see [2]). To illustrate the structure of the policies, we vary the structure
of the functions for c1, c2, and µ as given in Table 4.3. Experiments 1
and 2 satisfy the conditions of Theorem 4.3.1 and 4.3.2, respectively. The
corresponding optimal resource policies in the decomposed problem, that are
obtained through value iteration as described in Section 4.3.1, are illustrated
in Figure 4.5(a) and (b). Figure 4.5(a) shows that the optimal resource
strategy a∗ is a non-decreasing function in x, while Figure 4.5(b) illustrates
the bang-bang control policy.

Figure 4.5 illustrates the optimal policy in case of the unconstrained Markov
decision problem, and the service level constraint is thus not taken into
account. When the service level constraint is added, the policy changes to a
more conservative strategy in which more processors are used to provide the
guarantee on the sojourn time. To get insight into how the optimal policy
changes, we vary L to study this effect for Experiment 1 in Table 4.3. For L =
0 we get the unconstrained policy that is already depicted in Figure 4.5(a)
with g = 43.655 and �W = 1.987. As L increases, the policy changes at L =
0.94 with corresponding values g = 43.690 and �W = 1.949. Figure 4.6(a)
shows how the policy differs from the previous policy; the dotted line is the
policy for L = 0 and the solid line depicts the policy for L = 0.94. The policy
differs in state 4 by using an additional server to serve the jobs. Hence,
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Figure 4.6. Numerical experiments to illustrate the effect of changing values of L.

to achieve 1.949 < �W < 1.987, one has to randomize between the two
policies. As L increases, the policy becomes more conservative, in the sense
that more computing resources are used in an earlier stage. Figure 4.6(b)
depicts exactly this situation where L = 5.00 is used.

To better understand the trade-off in the reduction in the average costs g
and the improvement in the mean sojourn time, we depict both quantities as
a function of L in Figure 4.7. The figure shows that in the initial increment
of L the improvement in the mean sojourn time is the biggest, whereas
the biggest increase in the average costs occurs for even bigger values of L.
Hence, one can balance both quantities by choosing an appropriate value of
L such that the biggest improvements in the mean sojourn time are obtained
while the increment in costs is relatively small. Moreover, the figure can also
be used to determine the right value of L for a given α′. In combination with
Figure 4.4 this provides a complete picture of how the variability in R and
T affects the approximation with respect to the allocation of processors in
station 2.

4.5 Conclusion and further research

In this chapter we have explored the optimal resource-allocation problem
in time-reservation systems. In such systems one needs to optimize the
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resource-allocation costs and reservation moments simultaneously on one
hand while satisfying a QoS-constraint on the sojourn time of a job on the
other hand. We decomposed the problem into two parts and derive an opti-
mal policy. This optimal policy serves as an approximation for the optimal
policy in the original problem posed. For the decomposed problem, we first
showed that the optimal reservation moment is given by the difference of
the mean service time and the mean reservation time. However, the sojourn
time at the first station does take into account the second moment as well.
Then, we applied dynamic programming to show that the optimal resource-
allocation policy in the decomposed problem follows a step function with as
extreme policy the bang-bang control for given structures of the cost func-
tion and the service rate. Extensive numerical experiments showed that the
optimal policy in the decomposed problem has nearly optimal performance
as compared to the performance of the optimal policy in the real system.

Next, we mention several interesting avenues for further research. The work
described in this chapter is part of a much larger realistic problem that
exists in practice. In our current work, we focus on only one facility that
uses a number of computing resources to provide a service under a QoS-
constraint to its jobs, whereas in practice more than one facility may exist
sharing the same computing resources. This creates dependence between
the different facilities and the decision maker may not observe the state of
all facilities. This warrants new stochastic control methodologies that deal
with this dependence and partial information in which the insights obtained
in this chapter can be very useful. Moreover, the decisions can be taken in
a centralized or a decentralized manner.
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In addition to having multiple facilities, the number of computing nodes may
not be sufficient in all situations. In view of the limited processing capacity,
new interesting problems from the server’s point of view emergence. First,
one could dynamically add computing nodes to the system. However, this
may take a significant setup time which needs to be taken into account.
The question arises “When does the system need to add/remove processing
capacity? And how much?”. Second, in practice system parameters may be
time varying (for example the arrival rates, see also Chapter 7). This raises
the need to develop algorithms that are robust against these variations.
Third, the limited processing capacity also comes with a scheduling problem
when many facilities share the same resource. Optimal scheduling in such
situations is another challenging topic for follow-up research.



Chapter 5

Optimal Resource Allocation for Multi-queue

Systems

This chapter studies optimal allocation of servers for a system with mul-
tiple service facilities and with a shared pool of servers. Each service fa-
cility poses a constraint on the maximum expected sojourn time of a job.
A central decision maker can dynamically allocate servers to each facility,
where adding more servers results in faster processing speeds, but against
higher utilization costs. The objective is to dynamically allocate the servers
over the different facilities such that the sojourn-time constraints are met
at minimal costs. This situation occurs frequently in practice, e.g., in Grid
systems for real-time image processing (iris scans, fingerprints). We model
this problem as a Markov decision problem and derive structural properties
of the relative value function. These properties, which are hard to derive for
multi-dimensional systems, together with the properties derived in Chap-
ter 6, give a full characterization of the optimal policy. We demonstrate the
effectiveness of these policies by extensive numerical experiments.

5.1 Introduction

In recent years new real-time multimedia services have triggered a tremen-
dous growth in data volumes and computational demand. Typical services
include iris-scan and fingerprint systems that make high-resolution scans and
require processing of the data to identify a person; these services operate in
a real-time environment and run under very strict time constraints. To ad-
here to such constraints, these large-scale services typically use centralized
computing clusters to execute on. In these service-based scenarios, a central

79
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decision maker then allocates a number of processing resources to different
service facilities to process the data. This gives rise to a class of models in
which the central decision maker has to allocate the number of resources to
ensure that all Quality of Service (QoS) constraints of the different facilities
can be met.

In this decision making problem there is a trade-off between the processing
time on the one hand and the utilization costs (lease costs, operating costs,
etc.) on the other hand. Having too many resources at the server side leads
to high costs and also to inefficiency, since only a part of the resources are
needed to ensure that the QoS-constraint is satisfied. However, having too
few resources leads to a long processing time so that the QoS-constraint of
jobs can be violated. Hence, the objective is to find the allocation of the
number of resources for the different facilities such that all QoS-constraints
are met against minimal costs.

A few papers have been devoted to resource allocation problems closely re-
lated to our setting. Perry and Nilson [71] have studied a system in which
two types of jobs are served by a single pool of resources. They associate pri-
orities, based on an aging factor that grows proportionally with the waiting
time, to these jobs and give an analytical model for computing the expected
waiting. This heuristic, was first analyzed by Kleinrock [51, 52]. Borst and
Seri [15] apply more complex heuristics in a multi-skilled queueing system
with as performance metric the tail probabilities of the waiting time. They
compare the number of jobs in each facility that actually has been served
to the number that, nominally, should have been served under a long-run
average allocation scheme. The “further behind” the actual number of ser-
vices, the higher the resulting priority. Bhulai and Koole [14] and Gans
and Zhou [36] study a variant with fully cross-trained servers in which only
one queue has a QoS-constraint. They use Markov decision processes and
Linear Programming to obtain (nearly) optimal control strategies. Stanford
and Grassmann [93] simplify the problem by using fixed, static priority poli-
cies using matrix-geometric methods. Shumsky [86] divides the state space
into regions, and uses an approximate analysis for the conditional system
performance within each region.

In this chapter, we investigate and compare the optimal server allocation for
the following three related models: (1) each service facility is viewed in iso-
lation having its dedicated servers, (2) a system in which a chosen allocation
cannot be changed during a service of a job, and (3) a fully flexible system in
which it is allowed to change the allocation during the service of a job. The
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main difference between the existing literature and our work is that we show
by studying monotonicity properties of the dynamic programming relative
value function that the optimal strategy has appealing structural properties;
it is the multi-dimensional analog of a non-decreasing step function. This
structure enables one to find optimal policies relatively easily as compared to
solving the dynamic program which suffers from computational tractability.
These methods will be illustrated in extensive numerical experiments.

The contribution of this work is two-fold. First, on the methodological side
we provide an essential characterization of the optimal policy of a high-
dimensional system, which is numerically intractable. This is quite excep-
tional, since there is no standard approach to derive monotonicity proper-
ties for multi-dimensional systems other than componentwise / directional
monotonicity. This is the reason why the literature overview mainly deals
with models having only two service facilities [71, 14, 36], or use heuris-
tics [51, 52, 15, 93, 86] (sometimes even without constraints). Second, on
the application side we have readily available policies that are easy to im-
plement in systems that are highly relevant in practice. The comparison
of the different models provides fundamental insights into the operational
flexibility that is needed in the design of these systems.

The chapter is organized as follows. In Section 5.2 we formulate the models
for the different cases. Next, we derive the structure of the optimal policy
in Section 5.3. In Section 5.4 we illustrate these results by numerical ex-
periments. Finally, in Section 5.5 we conclude with addressing a number of
challenging topics for further research.

5.2 Model formulation

Consider N parallel service facilities at which jobs arrive according to a
Poisson process with rate λi for facility i, i = 1, . . . , N . There is a common
pool of A ≥ 1 resources to serve the jobs in the system. When upon arrival
of a job at facility i there are no other jobs present, the arriving job is taken
into service. However, if there are other jobs present, then the arriving
job joins an infinite-capacity queue at facility i and awaits its service in an
FCFS manner. When facility i has been allocated ai resources, the job that
is in service has a service duration that is exponentially distributed with
parameter µ(ai), where µ(.) is an increasing function. In the ideal case one
would have µ(ai) = µai for some fixed service rate µ. However, in practice,
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there is communication overhead between multiple resources, and therefore
the function µ is typically sublinear. In some cases, resources can cache
results so that its effect is that the function µ is superlinear. After a job has
received its service, it leaves the system.

Each facility provides a QoS-guarantee on the mean delay to the jobs served
at that facility. Although, in practice, the QoS-constraints are usually ex-
pressed in terms of tail probabilities, we choose to express the constraints
in terms of the mean sojourn time. This choice keeps the already complex
model tractable for analysis and serves as a first step towards the analysis
with tail probabilities as QoS-constraints. For this purpose, let Si denote
the steady state sojourn time of an arbitrary job at facility i. Then facility
i is constrained by �Si ≤ αi for a preset value of αi. There is a central
decision maker that needs to allocate the resources to the different facilities
such that the QoS-constraints are met. This gives rise to a problem in which
the optimal allocation strategy needs to be determined. However, when fa-
cility i uses ai resources a cost of ci(ai) is incurred by the system with ci

an increasing function in ai. Therefore, we are simultaneously interested in
meeting the N constraints against lowest average costs. The optimal solution
provides the value of A for which the optimal allocation strategy meets all
the constraints, but fails to meet them when the optimal allocation strategy
under A − 1 resources is used.

We study the optimal number of resources A∗ from three different view-
points. First, we consider the case in which all service facilities operate in-
dependently of each other. In this case, the resources are not shared among
the different facilities but are dedicated to each facility. Second, we study
the case in which the resource pool is shared among different facilities. How-
ever, we make the assumption that the resource allocation cannot be changed
when a job is served; only upon the start of the service of the next job the
resource allocation can be changed. This is typically the case in systems
where resources need to be reserved in advance. The third case deals with
the fully flexible case in which the system can take full advantage of the
economies of scale by allowing the resource allocation to change even during
the service of a job. Since we can directly observe that going from case 1 to
case 3 increases the flexibility, we can expect that A∗

1 ≥ A∗
2 ≥ A∗

3, with A∗
i

the optimal number of resources needed in case i for i = 1, 2, 3. However, it
is of interest to determine how big the gap between the three cases is and to
study how the policy changes from case to case.
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5.2.1 Service facilities with dedicated resources

In this section we assume that the service facilities do not share the resources
among each other and thus have their own dedicated resources. This makes
service facility i independent of the other facilities and turns the facility into
a regular M/M/1 queue with arrival rate λi and service rate µ(Ai) when Ai

servers have been allocated. In that case it is well-known that the expected
sojourn time is given by 1/

(
µ(Ai) − λi

)
. Hence,

A∗
1 =

N∑
i=1

A∗
i =

N∑
i=1

⌈
µ−1

(
λi + 1/αi

)⌉
,

with x� the smallest integer greater than or equal to x.

5.2.2 Service facilities with limited resource sharing

In this subsection we focus on the case in which service facilities are allowed
to share resources among each other. However, resources become free to be
reassigned only at service completion instants. Hence, we make the assump-
tion that the resource allocation for a service facility can only be changed
upon the start of the service of a new job. Hence adding or removing re-
sources during a service is not allowed. To study this case, we cast the
problem as a Markov decision problem. Define the state space

X = {(x1, . . . , xN , a1, . . . , aN ) ∈ �N
0 ×�N

0

∣∣ N∑
i=1

ai ≤ A},

where (x, a) ∈ X denotes that there are xi customers at facility i with ai

resources allocated to it for i = 1, . . . , N , where ai > 0 also means that a
service is ongoing and ai = 0 means that no job is in service at facility i.
When the system is in state (x, a) ∈ X the decision maker can choose actions
from the action space

A(x,a) = {(b1, . . . , bN ) ∈ �N
0

∣∣ N∑
i=1

(ai+bi) ≤ A and aibi = 0 for i = 1, . . . , N},

where action b ∈ A(x,a) denotes the number of resources that one can allo-
cate. Here, the restriction aibi = 0 models the fact that when a service is
ongoing (i.e., ai > 0), the service allocation cannot be changed (i.e., bi = 0).
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However, after a service completion at facility i, we have that ai = 0 and
hence an allocation bi > 0 is allowed. The transition rates when the system
is in state (x, a) ∈ X and action b ∈ A(x,a) is chosen are given by

p
(
(x, a), b, (x′, b′)

)
=

⎧⎪⎨⎪⎩
λi, x′ = x + ei, b

′ = a + b,

µ(ai + bi), x′ = [x − ei]+, b′ = a + b − aiei − biei,

0, otherwise,

for i = 1, . . . , N , with ei the zero vector with a one at the i-th entry, and [x]+

the componentwise maximum (i.e., (max{x1, 0}, . . . ,max{xN , 0})). The first
line in the expression above models arrivals, the second line models service
completions, and the third line prohibits any other state transitions. Note
that when a service completion takes place, the resource allocation for that
facility is set to zero. Finally, when the system is in state (x, a) ∈ X and
action b ∈ A(x,a) has been chosen, the direct costs are

c
(
(x, a), b

)
=

N∑
i=1

ci(ai + bi).

The quadruple (X ,A, p, c) completely describes the Markov decision process.
Define a decision rule π(x,a) as a probability distribution on A(x,a), i.e., when
the system is in state (x, a) ∈ X , the decision maker chooses action b ∈ A(x,a)

with probability π(x,a)(b). Let the policy π denote the collection of decision
rules for all states. Let uπ

t (x, a) denote the total expected costs up to time
t when the system starts in state (x, a) under policy π. Note that for any
stable and work-conserving policy, the Markov chain satisfies the unichain
condition, so that the average expected costs g(π) = limt→∞ uπ

t (x, a)/t is in-
dependent of the initial state (x, a) (see Proposition 8.2.1 of Puterman [73]).
The goal is to find a policy π∗ that minimizes the long-term average costs
per time unit under the constraints, thus

min
π

g(π) subject to �Si ≤ αi for i = 1, . . . , N.

Note that due to Little’s Law the number of jobs Li in facility i can be
related to the sojourn time Si in facility i by �Li = λi�Si. Using this
formula, the constrained Markov decision problem can be rewritten as an
unconstrained Markov decision problem using Lagrange multipliers (see Sec-
tion 12.6 of Altman [10]). To this end, we uniformize the system (see Sec-
tion 11.5 of Puterman [73]). Therefore, assume that the uniformization con-
stant

∑N
i=1 λi +Nµ(A) = 1; we can always get this by scaling. Uniformizing
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is equivalent to adding dummy transitions (from a state to itself) such that
the rate out of each state is equal to 1; then we can consider the rates to be
transition probabilities. Now, let V (x, a) be a real-valued function defined
on the state space. This function will play the role of the relative value func-
tion, i.e., the asymptotic difference in total costs that results from starting
the process in state (x, a) instead of some reference state. The long-term
average optimal actions are a solution of the optimality equation (in vector
notation) g+V = TV , where T is the dynamic programming operator acting
on V defined as follows:

TV (x, a) =
N∑

i=1

τi
xi

λi
+

N∑
i=1

ci(ai) +
N∑

i=1

λiH(x + ei, a)

+
N∑

i=1

µ(ai)H([x − ei]+, a − aiei)

+
(
1 −

N∑
i=1

λi −
N∑

i=1

µ(ai)
)
V (x, a)

=
N∑

i=1

τi
xi

λi
+

N∑
i=1

ci(ai) +
N∑

i=1

λiH(x + ei, a)

+
N∑

i=1

µ(ai)H([x − ei]+, a − aiei)

+
(
Nµ(A) −

N∑
i=1

µ(ai)
)
V (x, a),

(5.1)

where τi are Lagrange multipliers, and the function H is given by

H(x, a) = min
b∈A(x,a)

{V (x, a + b)}.

The first term in the dynamic programming operator corresponds to the
QoS-constraints of the several facilities. The second term represents the cost
of using a resources. The third term is involved with the decision making
upon arrival of a job. The fourth term deals with the decision making when
a job has finished its service. The final term is the dummy term due to
uniformization. Note that the decision making is modeled uniformly through
the function H.

Note that when facility i has no holding costs xi/λi, then no resources will
be allocated to facility i, since it does not incur any costs from the buildup
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in jobs. Therefore, when τ = ei, i.e., τi = 1 and τj = 0 for j �= i, the
optimal strategy will not allocate any resources to service facility j �= i.
Hence, one can find a value zi such that the QoS-constraint for facility i
with τ = ziei is met under the assumption that there are infinitely many
resources. By repeating this procedure for all facilities, one finds a box∏n

i=1[0, zi] in which the value of τ should lie under the optimal allocation
that satisfies all constraints. Now, we can divide this box into a grid G which
serve as our search space for τ . Then the following approach will find A∗

2.

1. Set A := A∗
1.

2. Solve the Markov decision process for all values of τ ∈ G until all
QoS-constraints are met or all grid points have been searched.

3. If for the value of τ all constraints are met, set A := A− 1 and return
to step 2.

4. Return A∗
2 := A + 1.

Note that in Step 2 of the algorithm, one needs to solve an infinite-dimensional
Markov decision problem. In our numerical experiments, we truncate the
state space such that we get a finite-dimensional problem that is numeri-
cally tractable. In doing so, the truncation is done such that the difference
in the outcomes do not differ significantly when the state space is some-
what enlarged by shifting the truncation boundary. We will illustrate this
algorithm in Section 4.4.

The algorithm to find A∗
2 relies on evaluating the Markov decision prob-

lem for all τ ∈ G. One might formulate an unconstrained Markov decision
problem, in which costs are associated with the queue length, in order to
circumvent these evaluations. However, this would lead to formulation (6.1)
with τi = λi for all i. Since the alternative unconstrained model is a special
case of (6.1), the structural results that are obtained in the next section for
the constrained Markov decision problem also hold for the unconstrained
problem.

5.2.3 Service facilities with full flexibility in resource sharing

In this subsection we study the case in which service facilities have full
flexibility in the resource-allocation policies. Thus, the resource facilities
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can change the resource allocation during a service of a job, and do not
have to wait for the job to finish. Since our system has Poisson arrivals and
exponential service times, such a situation need only occur at moments an
event occurs. Therefore, the only difference with the previous case is that
this system allows to change the allocation at arrival instants.

In this case, the state space is given by X = �N
0 , where x ∈ X denotes that

there are xi customers at facility i for i = 1, . . . , N . The action space is
given by Ax = {a ∈ �N

0

∣∣ ∑N
i=1 ai ≤ A}, where action a ∈ Ax denotes the

number of resources that one can allocate in state x ∈ X . The transition
rates when the system is in state x ∈ X and action a ∈ Ax is chosen are
given by

p(x, a, x′) =

⎧⎪⎨⎪⎩
λi, x′ = x + ei for i = 1, . . . , N,

µ(ai), x′ = [x − ei]+ for i = 1, . . . , N,

0, otherwise.

Finally, when the system is in state x ∈ X and action a ∈ Ax has been
chosen, the direct costs are c(x, a) =

∑N
i=1 ci(ai). The quadruple (X ,A, p, c)

completely describes the Markov decision process for this problem.

Let V (x) denote the relative value function in this case. Then, the dynamic
programming operator acting on V is defined as follows:

TV (x)

=
N∑

i=1

τi
xi

λi
+

N∑
i=1

λiV (x + ei) min
a∈Ax

[ N∑
i=1

µ(ai)V ([x − ei]+)

+
(
1 −

N∑
i=1

λi −
N∑

i=1

µ(ai)
)
V (x) +

N∑
i=1

ci(ai)
]

=
N∑

i=1

τi
xi

λi
+

N∑
i=1

λiV (x + ei) min
a∈Ax

[ N∑
i=1

µ(ai)V ([x − ei]+)

+
(
Nµ(A) −

N∑
i=1

µ(ai)
)
V (x) +

N∑
i=1

ci(ai)
]
.

(5.2)

Note that the algorithm described in the previous subsection also applies to
this case to obtain A∗

3. In fact, in step 1 one can choose A := A∗
2 for faster

convergence.
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5.3 Structural properties of the optimal policy

In the previous section, we described the three models and a solution tech-
nique to obtain the optimal policy. However, the optimal policy also pos-
sesses structural properties that can speed up the solution technique. Instead
of searching a full grid for the optimal solution, the structural properties can
reduce the search space considerably. Therefore, in this section, we focus on
the structural properties of the described systems.

5.3.1 Allocation strategy for service facilities with dedicated re-
sources

In case the service facilities have their own dedicated servers, each facility
i should be equipped with A∗

i servers (as defined in Section 5.2.1) to meet
the QoS-constraint. Since the servers are not shared, the optimal resource-
allocation strategy is quite simple. When there are x > 0 customers at
the facility, then A∗

i servers are allocated, and when x = 0 then no servers
are allocated. This policy is also known as a bang-bang control policy (i.e.,
everything or nothing).

5.3.2 Allocation strategy for service facilities with limited re-
source sharing

The structure of the optimal policy for a service facility with limited resource
sharing is more intricate than the case with dedicated resources. In order to
study the structure, in principle, one needs to solve the optimality equation
g + V = TV with TV given by Equation (5.1). As stated in Chapter 2, the
optimality equation is hard to solve analytically in practice. Therefore, we
consider the backward recursion equation that is given by

Vn+1(x, a) =
N∑

i=1

τi
xi

λi
+

N∑
i=1

ci(ai) +
N∑

i=1

λiHn(x + ei, a)

+
N∑

i=1

µ(ai)Hn([x − ei]+, a − aiei)

+
(
Nµ(A) −

N∑
i=1

µ(ai)
)
Vn(x, a),

(5.3)
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where the function Hn is given by

Hn(x, a) = min
b∈A(x,a)

{Vn(x, a + b)}.

For ease of notation in the proofs in the sequel, we also define argHn(x, a)
by

argHn(x, a) = arg minb∈A(x,a)
{Vn(x, a + b)}.

The backward recursion equation allows us to prove structural properties of
the relative value function V through induction on n in Vn. It is clear that
the objective of the system is to strive for the fewest number of customers
in the system as more customers mean higher waiting costs. Therefore, it is
intuitive that V is increasing in each component of x, i.e., adding customers
to facility i results in higher costs for the system. The following lemma
makes this statement more precise.

Lemma 5.3.1 (Increasingness). The relative value function V is strictly
increasing in the number of customers, i.e.,

V (x + ej , a) − V (x, a) > 0,

for all x ∈ X for some a with
∑N

i=1 ai ≤ A, and for j = 1, . . . , N .

Proof. The proof is by induction in n in Vn. Define V0(x, a) =
∑N

i=1 xi for
all actions a. Then, clearly, V0(x, a) is strictly increasing in all components
of x. Now, assume that Vn(x + ej, a) − Vn(x, a) > 0 for some n ∈ �, and
for j = 1, . . . , N . Now, we prove that Vn+1(x, a) satisfies the increasingness
property as well. Therefore, fix j ∈ {1, . . . , N}, then

V n+1(x + ej , a) − Vn+1(x, a)

=
τj

λj
+

N∑
i=1

λi

[
Hn(x + ej + ei, a) − Hn(x + ei, a)

]

+
N∑

i=1

µ(ai)
[
Hn([x + ej − ei]+, a − aiei) − Hn([x − ei]+, a − aiei)

]

+
[
Nµ(A) −

N∑
i=1

µ(ai)
][

Vn(x + ej , a) − Vn(x, a)
]
.

(5.4)
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Note that the first term (i.e., τj/λj) and the last term with Vn(x + ej , a) −
Vn(x, a) are positive. Hence, based on the induction hypothesis, we have

V n+1(x + ej, a) − Vn+1(x, a)

>
N∑

i=1

λi

[
Hn(x + ej + ei, a) − Hn(x + ei, a)

]

+
N∑

i=1

µ(ai)
[
Hn([x + ej − ei]+, a − aiei) − Hn([x − ei]+, a − aiei)

]
.

(5.5)

Let b ∈ argHn(x + ej + ei, a) and c ∈ argHn([x + ej − ei]+, a − aiei). Then,

V n+1(x + ej , a) − Vn+1(x, a)

>

N∑
i=1

λi

[
Vn(x + ej + ei, a + b) − Vn(x + ei, a + b)

]

+
N∑

i=1

µ(ai)
[
Vn([x + ej − ei]+, a − aiei + c)

− Vn([x − ei]+, a − aiei + c)
]
≥ 0.

(5.6)

Clearly, the inequality above holds because of the induction hypothesis.
Hence, we conclude, by taking the limit as n → ∞, that V (x, a) is increasing
in xj for all j = 1, . . . , N .

Lemma 5.3.1 shows that the costs incurred by the system increases as the
number of customers in the system increases. In fact, more can be said about
the rate at which the costs increase; the increase in costs is higher when more
customers are in the system. Hence, this implies that the relative value
function is a convex function. In the sequel we will show that this is indeed
true. We do this by studying the case with one-dimensional case (i.e., N = 1)
first. Note that we will adjust the notation for N = 1 straightforwardly by
omitting the indices of all variables. However, before doing so, we need two
preparative lemma’s.

Lemma 5.3.2. The value function satisfies the following property:

H(x + 1, 0) − H(x, 0) − V (x, 0) + V (x − 1, 0) < 0,

for all x ≥ 1.
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Proof. Let x ≥ 1. Then

V (x, 0) − V (x − 1, 0)

=
τ

λ
+ λ

[
H(x + 1, 0) − H(x, 0)

]
+ µ(A)

[
V (x, 0) − V (x − 1, 0)

]
.

Since λ + µ(A) = 1, the equation above implies

λ
[
V (x, 0) − V (x − 1, 0)

]
=

τ

λ
+ λ

[
H(x + 1, 0) − H(x, 0)

]
.

Therefore,

λ
[
H(x + 1, 0) − H(x, 0) − V (x, 0) + V (x − 1, 0)

]
= −τ

λ
.

Thus, H(x+1, 0)−H(x, 0)−V (x, 0)+V (x− 1, 0) < 0, since −τ/λ < 0.

Lemma 5.3.2 is almost the inequality that represents convexity of the value
function. This would be the case if H were to be replaced by V . However,
for the proof of convexity, we need three additional properties to hold as
well. The following lemma makes these properties explicit.

Lemma 5.3.3 (Convexity). For N = 1, the following properties hold:

(i) V (x + 1, a) − 2V (x, a) + V (x − 1, a) ≥ 0 for all x ≥ 1 and a ≥ 0,

(ii) V (x, a) − V ([x − 1]+, a) − H([x − 1]+, 0) + H([x − 2]+, 0) > 0 for all
x ≥ 0 and a > 0,

(iii) The minimal element of argH(x, 0) is strictly positive for all x ≥ 2,

(iv) H(x + 1, 0) − 2H(x, 0) + H(x − 1, 0) ≥ 0 for all x ≥ 1.

Proof. The proof is by induction on n in Vn. Define V0(x, a) = 0 for all
states x and actions a > 0 and V0(x, 0) = ε > 0 for all x. Then, clearly,
V0(x, a) satisfies all properties. Now suppose that the properties hold for
some n ∈ �. We prove that the properties also hold for n + 1. Therefore,
we start with convexity first.

Property (i). Let x ≥ 1 and suppose that a = 0. Then,

Vn+1(x + 1, 0) − 2Vn+1(x, 0) + Vn+1(x − 1, 0)
= λ

[
Hn(x + 2, 0) − 2Hn(x + 1, 0) + Hn(x, 0)

]
+ µ(A)

[
Vn(x + 1, 0) − 2Vn(x, 0) + Vn(x − 1, 0)

]
≥ λ

[
Hn(x + 2, 0) − 2Hn(x + 1, 0) + Hn(x, 0)

] ≥ 0.

(5.7)
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The equality following by expanding Vn+1 into Vn. The first inequality fol-
lows by using Property (i) of the induction hypothesis. The second inequality
follows by using Property (iv) of the induction hypothesis.

Now let x ≥ 1 and suppose that a > 0. Then

Vn+1(x + 1, a) − 2Vn+1(x, a) + Vn+1(x − 1, a)
= λ

[
Vn(x + 2, a) − 2Vn(x + 1, a) + Vn(x, a)

]
+ µ(a)

[
Hn(x, 0) − 2Hn([x − 1]+, 0) + Hn([x − 2]+, 0)

]
+

[
µ(A) − µ(a)

][
V (x + 1, a) − 2V (x, a) + V (x − 1, a)

]
≥ µ(a)

[
Hn(x, 0) − 2Hn([x − 1]+, 0) + Hn([x − 2]+, 0)

] ≥ 0.

(5.8)

The equality follows by expanding Vn+1 into Vn. The first inequality follows
by using Property (i) of the induction hypothesis. The second inequality
follows by using Property (iv) of the induction hypothesis. Thus, for all
x ≥ 1 and a ≥ 0, Vn+1(x + 1, a) − 2Vn+1(x, a) + Vn+1(x − 1, a) ≥ 0.

Property (ii). Let x ≥ 0 and suppose a > 0. Then, based on the optimality
equation, we have

Vn+1(x, a) − Vn+1([x − 1]+, a) =
τ

λ
+ λ

[
Vn+1(x + 1, a) − Vn+1(x, a)

]
+ µ(a)

[
Hn+1([x − 1]+, 0) − Hn+1([x − 2]+, 0)

]
+

[
µ(A) − µ(a)

][
Vn+1(x, a) − Vn+1([x − 1]+, a)

]
.

Recall that the uniformization constant λ + µ(A) = 1. Thus, the equation
above is equivalent to

λ
[
Vn+1(x, a) − Vn+1([x − 1]+, a)

]
=

τ

λ
+ λ

[
Vn+1(x + 1, a) − Vn+1(x, a)

]
+ µ(a)

[
Hn+1([x − 1]+, 0) − Hn+1([x − 2]+, 0)

]
− µ(a)

[
Vn+1(x, a) − Vn+1([x − 1]+, a)

]
.

The equation above implies that

µ(a)
[
Vn+1(x, a) − Vn+1([x − 1]+, a) − Hn+1([x − 1]+, 0) + Hn+1([x − 2]+, 0)

]
=

τ

λ
+ λ

[
Vn+1(x + 1, a) − 2Vn+1(x, a) + Vn+1([x − 1]+, a)

]
.

Hence, by using Property (i) of the induction hypothesis, the righthand side
of the equation is positive. Hence,

Vn+1(x, a)−Vn+1([x−1]+, a)−Hn+1([x−1]+, 0)+Hn+1([x−2]+, 0) > 0.
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Property (iii). We prove the property by means of contradiction. Assume
that there exists a x ≥ 2 such that the minimal element of argH(x, 0) is
0, i.e., min{argH(x, 0)} = 0. This, by definition, implies that Vn+1(x, 0) =
Hn+1(x, 0). Therefore,

Hn+1(x, 0) − Hn+1(x − 1, 0) − Vn+1(x − 1, 0) + Vn+1(x − 2, 0)
≥ Vn+1(x, 0) − 2Vn+1(x − 1, 0) + Vn+1(x − 2, 0) ≥ 0.

The first inequality follows by taking action a = 0 in the second term
Hn+1(x − 1, 0). The second inequality follows by Property (i) of the induc-
tion hypothesis. However, based on Lemma 5.3.2 we know that Hn+1(x, 0)−
Hn+1(x− 1, 0)−Vn+1(x− 1, 0)+ Vn+1(x− 2, 0) < 0. Therefore, we conclude
that min{argH(x, 0)} > 0 for x ≥ 2.

Property (iv). Let x ≥ 1. Since x − 1 ≥ 0, we have x + 1 ≥ 2.
Thus by using Property (iii) of the induction hypothesis, we have a∗(x) :=
min{argH(x, 0)} > 0. Therefore,

Hn+1(x + 1, 0) − 2Hn+1(x, 0) + Hn+1(x − 1, 0)
≥ Vn+1(x + 1, a∗(x + 1)) − Vn+1(x, a∗(x + 1)) − Hn+1(x, 0)

+ Hn+1(x − 1, 0) ≥ 0.

The first inequality follows by taking action a∗(x + 1) in Hn+1(x, 0). The
second inequality follows by Property (ii) of the induction hypothesis. We
conclude the proof by taking the limit as n → ∞.

Lemma 5.3.3 shows that the relative value function is convex. However, in
proving this one needed three additional properties simultaneously in the
proof by induction (Property (i) depends on (iv), which depends on (ii) and
(iii)). Now, we are ready to study monotonicity properties of the optimal
policy. The convexity of the relative value function is crucial in this step.
Due to the convexity, we have that the optimal policy is a step function.
The following theorem formalizes this statement.

Theorem 5.3.1 (Monotonicity). For N = 1, if the service rate µ(a) and
cost function c(a) are strictly increasing functions in a, then for all a ∈
argH(x + k, 0) and b ∈ argH(x, 0), we have a ≥ b for all k ≥ 0.

Proof. For x = 0, the only feasible action in argH(0, 0) is a0 = 0, since
there are no customers to serve. For x = 1, if a1 = 0 ∈ argH(1, 0), then all
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a2 ∈ argH(2, 0), we have a2 > a1 [property (iii) of Property 6.3.2]. Hence,
a2 > a1 ≥ a0. Now, for x ≥ 1 and a1 > 0 it suffices to show that the relative
value function satisfies an extension of submodularity, namely

[V (x, a + k) − V (x, a)] − [V (x + 1, a + k) − V (x + 1, a)] > 0, (5.9)

for all k > 0. If this property holds, then since V (x + 1, ax+1 + k) − V (x +
1, ax+1) ≥ 0, we have that V (x, ax+1 + k) − V (x, ax+1) > V (x + 1, ax+1 +
k) − V (x + 1, ax+1) ≥ 0 with ax+1 the minimal element of argH(x + 1, 0).
Hence, this implies that all minimizing actions ax ∈ argH(x, 0) in state x
satisfy ax ≤ ax+1.

We prove the submodularity property by induction on n in Vn. Let V0(x, a) =
0. Clearly, the submodularity property holds. Now assume that the property
holds for for some n ∈ � and for all x ≥ 0. We proceed to prove that
Vn+1(x, a) satisfies the property as well. Therefore, fix x ≥ 1 and a > 0,
then

V n+1(x, a + k) − Vn+1(x, a) − Vn+1(x + 1, a + k) + Vn+1(x + 1, a)
= λ

[
Vn(x + 1, a + k) − Vn(x + 1, a) − Vn(x + 2, a + k) + Vn(x + 2, a)

]
+

[
µ(a + k) − µ(a)

][
Hn(x − 1, 0) − Hn(x, 0)

]
+ µ(A)

[
Vn(x, a + k) − Vn(x, a) − Vn(x + 1, a + k) + Vn(x + 1, a)

]
− µ(a + k)Vn(x, a + k) + µ(a)Vn(x, a)
+ µ(a + k)Vn(x + 1, a + k) − µ(a)Vn(x + 1, a)

= λ
[
Vn(x + 1, a + k) − Vn(x + 1, a) − Vn(x + 2, a + k) + Vn(x + 2, a)

]
+

[
µ(a + k) − µ(a)

][
Hn(x − 1, 0) − Hn(x, 0)

]
+ µ(A)

[
Vn(x, a + k) − Vn(x, a) − Vn(x + 1, a + k) + Vn(x + 1, a)

]
− [

µ(a + k) − µ(a)
]
Vn(x, a + k) − µ(a)Vn(x, a + k) + µ(a)Vn(x, a)

+
[
µ(a + k) − µ(a)

]
Vn(x + 1, a + k)

+ µ(a)Vn(x + 1, a + k) − µ(a)Vn(x + 1, a)
= λ

[
Vn(x + 1, a + k) − Vn(x + 1, a) − Vn(x + 2, a + k) + Vn(x + 2, a)

]
+

[
µ(A) − µ(a)

][
Vn(x, a + k) − Vn(x, a)

− Vn(x + 1, a + k) + Vn(x + 1, a)
]

+
[
µ(a + k) − µ(a)

][
Vn(x + 1, a + k) − Vn(x, a + k)

− Hn(x, 0) + Hn(x − 1, 0)
]
.

(5.10)
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The first equality follows from expanding Vn+1 into Vn. The second equality
follows from adding and subtracting µ(a)Vn(x, a+k) and µ(a)Vn(x+1, a+k).
The third equality follow from standard algebraic manipulations. Based on
the induction hypothesis, we have

V n+1(x, a + k) − Vn+1(x, a) − Vn+1(x + 1, a + k) + Vn+1(x + 1, a)
≥ [

µ(a + k) − µ(a)
]

× [
Vn(x + 1, a + k) − Vn(x, a + k) − Hn(x, 0) + Hn(x − 1, 0)

]
.

(5.11)

By using Property (ii) of Lemma 5.3.3, we obtain

Vn(x + 1, a + k) − Vn(x, a + k) − Hn(x, 0) + Hn(x − 1, 0) > 0. (5.12)

Thus, we have shown that [V (x, a + k)− V (x, a)]− [V (x + 1, a + k)− V (x +
1, a)] > 0. Consequently, this completes the proof as this property implies
that ax is an increasing function in x.

Theorem 5.3.1 shows that in the one-dimensional case (i.e., N = 1), the opti-
mal policy ax is a step function in the variable x. The multi-dimensional case
with arbitrary N has the same structure. The proof of this statement fun-
damentally boils down to the one-dimensional case. The following theorem
shows the argument.

Theorem 5.3.2 (Step function). Consider an arbitrary number N ∈ � of
queues, and let a∗i (x, a) ∈ [argH(x, a)]i = [arg minb∈A(x,a)

{Vn(x, a + b)}]i. If
the service rate µ(a) and cost function c(a) are strictly increasing functions
in a, then a∗i (x, a) ≤ a∗i (x + ei, a).

Proof. Fix (x, a) ∈ X and suppose that (x + ei, a) ∈ X as well. If a∗(x, a) is
such that

∑N
n=1

(
an + a∗n(x, a)

)
< A, then there is spare capacity to assign.

Hence, in state (x + ei, a) all queues except queue i need no more capacity,
since the number of customers in their system did not increase. Hence,
queue i can be viewed in isolation due to the spare capacity. Therefore,
Theorem 5.3.1 applies and a∗i (x, a) ≤ a∗i (x + ei, a). In case

∑N
n=1

(
an +

a∗n(x, a)
)

= A, there is no spare capacity left. Now, there are two cases.
Either the performance of queue i becomes so stringent that capacity is taken
away from a different queue, or the capacity allocation does not change at
all. In both cases we have a∗i (x, a) ≤ a∗i (x + ei, a).
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5.3.3 Allocation strategy for service facilities with full flexibility
in resource sharing

In this subsection we focus our attention to optimal allocation strategies
for service facilities with fully flexible resource sharing capabilities. The
difference with the previous section is that the allocation of the number of
servers is allowed to change when a job is already in service. We shall adopt
the same techniques in deriving the structure of the optimal policy as in the
previous section. Therefore, we focus on the main theorems that characterize
the structure of the policy, and move the lengthiest proof to Appendix A.

We start by rewriting Equation (5.2) for the fully flexible system as a set of
backward recursion equations. This set of equations is given by

Vn+1(x) =
N∑

i=1

τi
xi

λi
+

N∑
i=1

λiVn(x + ei) + min
a∈Ax

T n
a (x), (5.13)

where T n
a (x) is given by

T n
a (x) =

N∑
i=1

µ(ai)Vn([x − ei]+) +
[
Nµ(A) −

N∑
i=1

µ(ai)
]
Vn(x)

+
N∑

i=1

ci(ai).

Rewriting the optimality equations in this way has its advantage in showing
structural properties of the relative value function V . We start by showing
that the relative value function is increasing in all components of the state.
The following lemma makes this statement more precise.

Lemma 5.3.4 (Increasingness). The relative value function V (x) is in-
creasing in all components of the state x, i.e., V (x + ej) − V (x) > 0 for
j = 1, . . . , N .

Proof. The proof is by induction on n in Vn(x). Let V0(x) =
∑N

i=1 xi for
all states x ∈ X . Then, clearly, V0(x) satisfies the increasingness property.
Now, assume that Vn(x) is an increasing function in x. We proceed to prove
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that Vn+1(x) is also increasing in x. First, we have

Vn+1(x + ej) − Vn+1(x) =
τj

λj
+

N∑
i=1

λi

[
Vn(x + ei + ej) − Vn(x + ei)

]
+ min

a∈Ax

{
T n

a (x + ej)
}
− min

a∈Ax

{
T n

a (x)
}

> min
a∈Ax

{
T n

a (x + ej)
}
− min

a∈Ax

{
T n

a (x)
}

.

The inequality holds because the first term is positive, and the second expres-
sion between the brackets is also positive due to the induction hypothesis.
Let a∗ ∈ arg mina∈Ax{T n

a (x + ej)}. Then we have

Vn+1(x + ej)−Vn+1(x) > T n
a∗(x + ej) − min

a∈Ax

{
T n

a (x)
}

≥ T n
a∗(x + ej) − T n

a∗(x)

=
N∑

i=1

µ(a∗i )
[
Vn(x − ei + ej) − Vn(x − ei)

]

+
[
Nµ(A) −

N∑
i=1

µ(a∗i )
][

Vn(x + ei) − Vn(x)
]
≥ 0.

Therefore, by induction, we have shown that Vn+1(x + ej) − Vn+1(x) > 0.
Hence, by taking the limit as n to infinity, we get that V (x) is increasing in
xj for j = 1, . . . , N .

We are now ready to pose our main theorem for the model with full flexibility.
The theorem characterizes the structure of the optimal policy to be a non-
decreasing function in the components of the state, i.e., if the number of
customers in queue i increases, then the allocation of the number of servers
to queue i is non-decreasing. The following theorem provides a rigorous
proof to this statement.

Theorem 5.3.3. Consider an arbitrary number N ∈ � of queues, and let

a∗i (x) ∈
[
arg min

a∈Ax

{
Ta(x)

}]
i

=
[
arg min

a∈Ax

{ N∑
i=1

µ(ai)V ([x − ei]+)

+
[
Nµ(A) −

N∑
i=1

µ(ai)
]
V (x) +

N∑
i=1

ci(ai)
}]

i
.
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If the service rate µ(a) and cost function c(a) are increasing functions in a,
then a∗i (x + ei) ≥ a∗i (x) and a∗j (x + ei) ≤ a∗j (x) for j �= i.

Proof. Fix x ∈ X and suppose that x + ei ∈ X as well. If a∗(x) is such that∑N
i=1 a∗i (x) < A, then there is sufficient spare capacity to assign. Hence,

in state x + ei all queues except queue i need no more capacity, since the
number of customers in their system did not increase. Hence, queue i can be
viewed in isolation due to the spare capacity. The queue in isolation satisfies
that conditions of Theorem 1 of [112]. From this theorem it follows that
a∗i (x + ei) ≥ a∗i (x) and a∗j (x + ei) = a∗j (x) for j �= i.

Now suppose that
∑N

i=1 a∗i (x) = A, i.e., all servers have been allocated.
Denote a = a∗(x + ei) and b = a∗(x). Note that Ta(x) − Tb(x) ≥ 0 and
Ta(x + ei) − Tb(x + ei) ≤ 0. Therefore, Z = Ta(x) − Tb(x) − Ta(x + ei) +
Tb(x + ei) ≥ 0. Since

Ta(x) − Tb(x) =
[ N∑

j=1

cj(aj) −
N∑

j=1

cj(bj)
]

+
[
µ(bi) − µ(ai)

][
V (x) − V (x − ei)

]
+

N∑
j �=i

[
µ(bj) − µ(aj)

][
V (x) − V (x − ej)

]
,

(5.14)

and

Ta(x + ei) − Tb(x + ei) =
[ N∑

j=1

cj(aj) −
N∑

j=1

cj(bj)
]

+
[
µ(bi) − µ(ai)

][
V (x + ei) − V (x)

]
+

N∑
j �=i

[
µ(bj) − µ(aj)

][
V (x + ei) − V (x + ei − ej)

]
,

(5.15)
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we have

Z = Ta(x) − Tb(x) − Ta(x + ei) + Tb(x + ei)

=
[
µ(ai) − µ(bi)

][
V (x − ei) − 2V (x) + V (x + ei)

]
+

N∑
j �=i

[
µ(aj) − µ(bj)

]
×

[
V (x + ei) − V (x + ei − ej) − V (x) + V (x − ej)

]
.

(5.16)

Now, we proceed to prove the structure of the policy. We distinguish be-
tween four cases:

1. aj > bj for j = 1, . . . , N ,

2. ai < bi and aj > bj for j �= i,

3. aj < bj for j = 1, . . . , N , and

4. ai ≥ bi and aj ≤ bj for j �= i.

Note that case 1 cannot occur, since we assumed that our starting point was
a state in which all capacity was assigned already. Hence, one cannot assign
even more capacity. Cases 2 and 3 do not occur either. Intuitively, assigning
fewer servers to queue i while increasing the number of jobs in queue i leads
to degraded performance. To improve readability, the rigorous proofs are
given by Lemma’s A.1 and A.2 in the Appendix. The proofs are based on
the method of contradiction: assuming that the statement of case 2 or 3 are
true, we derive that Z < 0. However, above we have shown that Z ≥ 0.
Hence, we are left with case 4, which completes the proof.

5.4 Numerical experiments

In this section, we will illustrate the monotonicity results of the previous
sections. First, we will show how variability in the time constraints affects
the processor allocation for the three different models: I) service facilities
with dedicated resources, II) service facilities with limited resource sharing,
and III) service facilities with full flexibility in resource sharing. Then, we
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will study the differences between the optimal policies for the three different
models, in particular, we will study the effect of having more flexibility in
the system versus the reduction in the number of allocated processors. We
will run our experiments under two systems that consist of two and three
facilities, respectively. The parameters used in the experiment are defined
as follows:

• λi: the arrival rate at facility i;

• µ(ai): the service rate of using ai processors at facility i;

• ci(ai): the costs of using ai processors at facility i;

• αi: the time constraint of facility i.

First, we show the experimental results of the system consisting of two fa-
cilities. The parameter values are set as follows:

• λ1 = λ2 = 0.5;

• µ(ai) =
√

aiµ and µ(ai) = a2
i µ/5 with µ = 1.2;

• ci(ai) = ai, ci(ai) = a2
i , and ci(ai) =

√
ai;

• α1 = 0.5 and α2 ∈ {0.25, 0.35, 0.5, 0.75, 1, 1.25, 1.5}.

Based on these values, the minimum number of processors required by the
system to meet all time constraints of the different facilities are illustrated
in Tables 5.1(a) and 5.1(b). From these tables, we observe that 1) when the
time constraint is less strict, the minimum number of processors required is
non-increasing, and 2) as the system is more flexible, the number of proces-
sors needed decreases.

The properties stated above also hold for the experiment with three facilities,
and its results are shown in Tables 5.1(c) and 5.1(d). The results of the
systems with three facilities are based on the parameter values below.

• λ1 = λ2 = λ3 = 0.5;

• µ(ai) =
√

aiµ and µ(ai) = a2
i µ/5 with µ = 1.2;

• ci(ai) = ai, ci(ai) = a2
i , ci(ai) =

√
ai;
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α2 0.25 0.35 0.5 0.75 1 1.25 1.5
dedicated resources 20 13 10 8 7 7 6
limited resource sharing 16 10 6 6 6 6 5
full resource sharing 15 9 6 5 5 5 5

(a) System with two facilities and µ(ai) =
√

aiµ with µ = 1.2.

α2 0.25 0.35 0.5 0.75 1 1.25 1.5
dedicated resources 9 8 8 7 7 7 7
limited resource sharing 5 4 4 4 4 4 4
full resource sharing 5 4 4 4 4 4 4

(b) System with two facilities and µ(ai) = a2
i µ/5 with µ = 1.2.

α3 0.25 0.35 0.5 0.75 1 1.25 1.5
dedicated resources 25 18 15 13 12 12 11
limited resource sharing 17 11 8 7 7 7 7
full resource sharing 15 9 6 6 6 6 6

(c) System with three facilities and µ(ai) =
√

aiµ with µ = 1.2.

α3 0.25 0.35 0.5 0.75 1 1.25 1.5
dedicated resources 13 12 12 11 11 11 11
limited resource sharing 5 5 4 4 4 4 4
full resource sharing 5 5 4 4 4 4 4

(d) System with three facilities and µ(ai) = a2
i µ/5 with µ = 1.2.

Table 5.1. Minimum number of processors required to meet service level con-
straints.

• α1 = α2 = 0.5, and α3 ∈ {0.25, 0.35, 0.5, 0.75, 1, 1.25, 1.5}.

From Table 5.1 we observe that the difference in the required number of
processors between the system with dedicated servers and the system with
limited resource sharing is quite large (model I versus model II). However, the
system with limited and full resource sharing have quite similar performance
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experiment 1 ci(ai) = ai µ(ai) =
√

aiµ

experiment 2 ci(ai) = a2
i µ(ai) =

√
aiµ

experiment 3 ci(ai) =
√

ai µ(ai) = a2
i µ/5

Table 5.2. Parameter choices for ci(·) and µ(·) with µ = 1.2.

(model II versus model III). Note that we did not specify the cost functions
that have been used in these experiments. This is due to the fact that the
calculation of the minimum required number of processors A∗

i , such that the
time constraints are satisfied, is independent of the cost functions.

Now we focus our attention to the structure of the optimal resource-allocation
policy for a system consisting of two and three facilities, respectively. To il-
lustrate the structure of the policies, we vary the structure of the functions
for ci(·), and µi(·) as given in Table 5.2. We start by showing the experi-
mental results of the system with two facilities. The parameter values used
in the three experiments are set as follows.

• λ1 = λ2 = 0.5;

• α1 = 0.5 and α2 = 0.25.

In model I of service facilities with dedicated resources, the number of
resources A∗

i allocated to facility i in the system is a constant, given by
A∗

i =
⌈
µ−1

(
λi + 1/αi

)⌉
. For example, for experiment 1, the expression gives

that five processors should be used for facility 1 and fifteen for facility 2.

We now turn our attention to model II of service facilities with limited
resource sharing. Based on Theorem 5.3.3, if both µ(ai) and ci(ai) are
increasing functions in the number of allocated resources ai, then the optimal
allocation policy to any facility j is a non-decreasing function in the number
of customers at that facility, given that the number of customers at all other
facilities and the number of resources allocated to all other facilities are fixed.
Given that the number of customers at facility 2 is two and the number of
resources assigned to facility 2 is one, Figure 5.1 illustrates the structure of
the optimal policy for facility 1. These three figures correspond to the three
experiments shown in Table 5.2.

Finally, we discuss model III with full flexibility in resource sharing. The
structure of the optimal policy is quite similar to that of the previous model
(with limited resource sharing). Consider again the optimal policy for fa-
cility 1. The corresponding experimental results are shown in Figure 5.2.
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(a) Optimal action a as a function of
x1 for experiment 1.
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x1 for experiment 2.
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(c) Optimal action a as a function of
x1 for experiment 3.

Figure 5.1. Experiments of the system with two facilities: optimal policy of facility
1 for the limited resource sharing model, given (x2, a2) = (2, 1).

All figures illustrate that the optimal policy is a non-decreasing function in
number of customers at the facility, given that the number of customers at
facility 2 is x2 = 2.

Figures 5.1 and 5.2 show that the structure of the optimal policy for the
system with two facilities. The experiments with three (and more) facilities
show similar structure. Combining the experimental results of the system
with two and three facilities, we conclude that the optimal policy for an
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(a) Optimal action a as a function of
x1 for experiment 1.
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(c) Optimal action a as a function of
x1 for experiment 3.

Figure 5.2. Experiments of the system with two facilities: optimal policy to facility
1 in case of service facility with full flexibility in resource sharing, given x2 = 2.

arbitrary facility in model I with dedicated resources is a constant; in case
of model II with limited resource sharing and model III with full flexibility
in resource sharing, the optimal policy for each facility is a non-decreasing
function in the number of customers at that facility.
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5.5 Conclusion and further research

In this chapter, we have derived an essential characterization of the optimal
policy in three different models. We have shown that directional monotonic-
ity is not sufficient to derive the structure of the optimal policy. In addition
to directional convexity, the structure of the problem also requires submod-
ularity of the relative value function. In general, this is hard to derive for
multi-dimensional systems, since one needs to compare different states that
differ in multiple components simultaneously. The extensive numerical ex-
periments reveal several fundamental insights of the relative effectiveness the
optimal policies.

There are several interesting avenues for further research. First, one may
suspect that the Poisson assumption of the arrival process can be relaxed.
The proof of submodularity shows that the service rates are the dominant
factor for the properties of the relative value function. This suggests that
there is room for more generality in the arrival process for which the structure
of the policies remain valid. Second, from an application point of view,
generalization to non-exponential service times is practically relevant. It
is an open question to what extent the policies are still optimal for, e.g.,
phase-type service distributions. Finally, user-perceived service quality often
requires more detailed information than the mean processing time only. The
level of quality can be highly dependent on, e.g., the variance and/or the tail
probabilities in the processing times. This requires a new approach to handle
such service requirements, opening up new challenging areas for research.





Chapter 6

Full Structural Properties of Optimal Allocation

Policies for Single-queue Systems

In previous chapters, we have studied resource-allocation problems in differ-
ent settings. In Chapter 4, we studied a resource-allocation problem in which
resources need to be reserved in advance before they are available. In Chap-
ter 5, we studied a resource-allocation problem in a multi-queue setting in
which multiple queues compete for the same pool of shared resources. In this
model, the optimal resource-allocation policy partitions the resource pool in
subsets each of which is dynamically allocated to the different queues. The
model studied in this chapter is a special case of the model in Chapter 5 in
which there is only a single queue. We show via dynamic programming that
(1) the optimal allocation policy has a work-conservation property, and (2)
the optimal number of servers follows a step function with as extreme policy
the bang-bang control policy. Moreover, (3) we provide conditions under
which the bang-bang control policy takes place. These characterizations of
the optimal policy are not directly applicable in the multi-queue setting be-
cause of techniques used to prove the results which are not generalizable to
multiple queues.

6.1 Introduction

In this chapter, we focus on a model with a single FCFS queue with a com-
mon pool of computing resources in which for each job a number of comput-
ing resources has to be allocated dynamically such that a mean sojourn time
requirement is met against minimal allocation costs. In this model, one has
to deal with the following trade-off: if the number of computing resources
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allocated to a facility is too low, then the processing power is insufficient to
meet strict processing time requirements; if the number of computing nodes
allocated is too high, then it brings forth high resource-allocation costs.

In the literature, a lot of research has been devoted to resource-allocation
problems. In [26, 70, 76], the authors investigate resource-allocation prob-
lems in the context of protocol design. The problem from an architectural
point of view is studied in [25, 34, 102]. Security assurance in Grid/Cluster
job scheduling is studied in [91, 108]. Other research is focused on eco-
nomic models in a Grid computing environment, e.g., [80, 19, 43]. Several
papers are focused on optimization problems in the context of resource al-
location. In [12], a framework for resource allocation and task scheduling is
presented, where the objective function is to minimize the job completion
time. Nurmi and co-authors [68, 67] propose a statistical method determin-
ing when a job should be submitted to a batch queue to ensure that it will
be running at a particular time in the future. Fukuda et al. [35] propose a
resource-allocation scheme to share resources fairly among users by solving
the utilization-maximization problem where the utilization ratio is a function
of the video quality and the resource-allocation costs.

In this chapter, we study structural properties of the optimal resource-
allocation policy for single-queue systems. In this context, we study the
two models described in Section 5.2: (1) a system in which a chosen alloca-
tion cannot be changed during a service of a job, and (2) a system in which
it is allowed to change the allocation during the service of a job. For both
models, we show via dynamic programming that (i) the optimal allocation
policy has a work-conservation property that implies when the system is not
empty, the optimal policy is not allowed to keep all computing resources
idle, (ii) the optimal number of servers follows a step function with as ex-
treme policy the bang-bang control policy, which means a facility receives
all computing resources or none at all, and moreover (iii) we also provide
the conditions under which the bang-bang control policy is optimal. The
techniques to prove such results are based on monotonicity properties of the
dynamic programming relative value function (see, e.g., [55, 54, 78]).

The contribution of this chapter is two-fold. First, on the methodological
side we provide a full characterization of the optimal policy for a single-
queue system. Interestingly, the derivation of these results is not obtained via
standard induction-based arguments, but is based on a combination of direct
arguments and induction. The results provide new and valuable insight into
optimal resource-allocation problems with time constraints. Second, on the
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Figure 6.1. Arrival and departure of the jobs.

application side we have structured policies that are easy to be implemented
in systems that are highly relevant in practice.

This chapter is organized as follows. In Section 6.2 we formulate the models
for the different cases. Next, we derive the special properties of the optimal
policy in Section 6.3. In Section 6.4 we illustrate these results by numerical
experiments. Finally, in Section 6.5 we make some concluding remarks and
address a number of challenging topics for further research.

6.2 Model formulation

Consider a service facility at which jobs arrive according to a Poisson process
with arrival rate λ and have exponentially distributed service requirements.
The facility has a single infinite-sized FCFS queue and a pool of A ≥ 1
parallel and identical servers that can work together to process a single job.
There is a central decision maker that can assign a number of servers to a
job. The service rate of a job depends on the number of servers assigned
to that job. More precisely, when a job has been allocated a servers, the
service duration of that job is exponentially distributed with parameter µ(a),
which is strictly increasing in a. Without loss of generality, we assume
that µ(0) = 0. After a job has completed its service, it leaves the system.
Throughout the chapter, it is assumed that the stability condition λ < µ(A)
is met, and that the system is in steady state. Figure 6.1 gives an illustration
of the system.

We consider the following cost structure in the facility. When the facility
uses a resources a cost of c(a) is incurred by the system per unit time. Here
c(·) is an strictly increasing function of a. Without loss of generality, we
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assume that c(0) = 0. Let S denote the sojourn time of an arbitrary job
at the facility. The problem in the system is to find a server assignment
policy that minimizes that long-run average costs subject to �S ≤ α for
some α > 0.

When the system works at full speed, all A computing resources are allocated
at each moment in time. In this case, the average sojourn time is given by
the mean sojourn in an M |M |1 queue with arrival rate λ and service rate
µ(A). Therefore, by using all A computing resources the average sojourn
time is equal to 1

µ(A)−λ . Hence, to ensure that there exists at least one
allocation strategy that meets the time constraint α, the total number of
compute resources A should satisfy the following condition:

A ≥ ⌈
µ−1(λ + 1/α)

⌉
,

where µ−1(·) is the inverse function of µ(·). Throughout the chapter, it is
assumed that this condition is met.

The objective of the decision maker is to derive an optimal policy based on
the number of jobs in the system. More precisely, when the decision maker
observes x jobs in the system, he can decide to allocate 0 ≤ i(x) ≤ A servers
to the first job in the queue. We emphasize that at any moment in time,
there is at most one job in service.

We study two models. First, we study the case in which the resource-
allocation policy cannot be changed when a job is being served; only upon
the start of the service of the next job the resource-allocation policy can be
modified. The second case deals with the fully flexible case in which the
system can change the resource-allocation policy at any moment in time,
thus also during the service of a job.

6.2.1 Limited resource allocation policy

In this subsection we focus on the case in which the resource allocation for
a service facility can only be changed upon the start of the service of a new
job. Hence, adding or removing resources during a service is not allowed. To
study this case, we cast the resource-allocation problem as a Markov decision
problem.

Define the state space X = �0 × {0, . . . , A}, where (x, a) ∈ X denotes the
state in which there are x jobs at the facility with a resources allocated to
the first job. When the system is in state (x, a) ∈ X the decision maker can
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choose actions from the action space A(x,a) = {b ∈ �0

∣∣ a + b ≤ A and ab =
0}, where action b ∈ A(x,a) denotes the available number of resources for
allocation. Here, the restriction ab = 0 models the fact that when a service
is ongoing (i.e., a > 0), the service allocation cannot be changed (i.e., b = 0).
The transition rates when the system is in state (x, a) ∈ X and action
b ∈ A(x,a) is chosen are given by

p
(
(x, a), b, (x′, b′)

)
=

⎧⎪⎨⎪⎩
λ, x′ = x + 1 and b′ = a + b,

µ(a + b), x′ = [x − 1]+ and b′ = 0,
0, otherwise,

with [x]+ = max{x, 0}. The first line in the expression above models arrivals,
the second line models service completions, and the third line prohibits any
other state transitions. Note that when a service completes, the resource
allocated for that facility is released completely. Finally, when the system is
in state (x, a) ∈ X and action b ∈ A(x,a) has been chosen, the direct cost is
r
(
(x, a), b

)
= c(a + b) per time unit. The quadruple (X ,A, p, r) completely

describes the Markov decision process. The goal is to find a policy π∗ that
minimizes the long-term average costs under the time constraint, thus

min
π

g(π) subject to �S ≤ α.

As stated in the previous chapters, the constrained Markov decision problem
can be rewritten as an unconstrained Markov decision problem using La-
grange multipliers. Assume that the uniformization constant λ + µ(A) = 1.
Then we can consider the rates to be transition probabilities. Let V (x, a)
be a real-valued function defined on the state space. The long-term average
optimal actions are a solution of the optimality equation (in vector notation)
g + V = TV , where T is the dynamic programming operator acting on V ,
defined as follows

TV (x, a) = τ
x

λ
+ c(a) + λH(x + 1, a) + µ(a)H([x − 1]+, 0)

+
(
1 − λ − µ(a)

)
V (x, a)

= τ
x

λ
+ c(a) + λH(x + 1, a) + µ(a)H([x − 1]+, 0)

+
(
µ(A) − µ(a)

)
V (x, a),

(6.1)

where τ is the Lagrange multiplier, and where the function H(·, ·) is given
by

H(x, a) = min
b∈A(x,a)

{V (x, a + b)}.
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The first term in the dynamic programming operator (6.1) corresponds to the
service requirement �S ≤ α. When τ increases, the value of �S decreases.
Therefore, there exists a value of τ∗ such that �Sτ∗

> α for the facility
and there exists another τ ′ such that �Sτ ′

< α, where τ ′ = τ∗ + ε for a
small ε ≥ 0. Note that we can obtain the expected sojourn time at the
facility for a given policy by setting r

(
(x, a), b

)
= 0 for all states (x, a) in

the optimality equation. The optimal policy is to randomize between the
associated policies πτ∗

and πτ ′
so that the equality �S = α is achieved for

the facility. This is consistent with the fact that the optimal policy will
be randomized in exactly one state (see Section 12.6 of Altman [10]). The
second term represents the cost of using a resources. The third term is
involved with the decision making upon arrival of a job. The fourth term
deals with the decision making when a job has completed its service. The
final term is the dummy term due to uniformization. Note that the decision
making is modeled uniformly through the function H(·, ·).

6.2.2 Fully flexible resource allocation policy

In this section we study the case in which the service facility has full flexibil-
ity in the resource-allocation policies. The resource facility can change the
resource allocation during a service of a job, and it does not have to wait
for the job to be finished. Since our system has Poisson arrivals and expo-
nential service times, it suffices to consider only the moments that an event
occurs. Therefore, the only difference with the previous case, discussed in
Section 6.2.1, is that this system allows to change the allocation at arrival
instants.

In the fully flexible case, the state space is given by X = �0, where x ∈ X
denotes that there are x jobs at the facility. The action space is given by
Ax = {0, . . . , A}, where action a ∈ Ax denotes the number of resources that
one has allocated in state x ∈ X . The transition rates when the system is
in state x ∈ X and action a ∈ Ax is chosen are given by

p(x, a, x′) =

⎧⎪⎨⎪⎩
λ, x′ = x + 1,
µ(a), x′ = [x − 1]+,

0, otherwise.

Finally, when the system is in state x ∈ X and action a ∈ Ax has been
chosen, the direct cost is r(x, a) = c(a) per time unit. The tuple (X ,A, p, r)
completely describes the Markov decision process for this problem.
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Let V (x) denote the relative value function in this case. Then, the dynamic
programming operator acting on V , defined as follows:

TV (x) = τ
x

λ
+ λV (x + 1) + min

a∈Ax

Ta(x), (6.2)

where

Ta(x) = µ(a)V ([x − 1]+) +
(
1 − λ − µ(a)

)
V (x) + c(a)

= µ(a)V ([x − 1]+) +
(
µ(A) − µ(a)

)
V (x) + c(a).

The first term in the expression TV (x) corresponds to the constraint �S ≤ α
of the facility, similar to the limited resource-allocation model, see Equa-
tion (6.1). The second term models the arrivals of jobs to the facility. The
first term in the expression Ta(x) denotes the departure of a job in case
action a has been chosen. The second term in Ta(x) is the uniformization
constant. The last term in Ta(x) models the direct cost.

6.3 Structural properties of the optimal policy

In the previous section, we described two models and a solution technique
to obtain the optimal policy. However, the optimal policy also possesses
structural properties that provide fundamental insight. Moreover, this also
enables one to determine the optimal policy with less computational effort
due to a reduction of the solution search space. Therefore, in this section,
we derive a full characterization of the optimal policy for both models.

6.3.1 Limited resource allocation policy

The structure of the optimal policy for a service facility with the limited
resource-allocation policy is more intricate than the case with dedicated
resources. As mentioned in previous chapter the optimal actions can be ob-
tained by recursively defining Vl+1 = TVl for arbitrary V0. For l → ∞, the
maximizing actions converge to the optimal ones (for existence and conver-
gence of solutions and optimal policies we refer to Puterman [73] and Aviv
and Federgruen [11]). The backward recursion equation is given by

Vn+1(x, a) = τ
x

λ
+ c(a) + Hn(x + 1, a) + µ(a)Hn([x − 1]+, 0)

+
(
µ(A) − µ(a)

)
Vn(x, a),

(6.3)
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where the function Hn(·, ·) is given by

Hn(x, a) = min
b∈A(x,a)

{Vn(x, a + b)}.

For ease of notation, we also define argHn(x, a) by

argHn(x, a) = arg minb∈A(x,a)
{Vn(x, a + b)}.

The backward recursion equation (6.3) allows us to prove structural prop-
erties of the relative value function V through induction on n in Vn. By
using this, we can show that the optimal allocation policy has the following
properties:

(i) monotonicity: this implies that the optimal policy is a step function.
Thus for all a ∈ argH(x + k, 0) and b ∈ argH(x, 0), we have a ≥ b for
all k ≥ 0.

(ii) work-conservation: this implies that if the system is not empty, then
the optimal policy is not keeping all computing resources idle. Thus
the minimal element of argH(x, 0) is strictly positive for all x > 0.

(iii) bang-bang control: if the condition c(a)µ(a + 1)− µ(a)c(a + 1) ≥ 0
holds for all a ∈ A(x,b), then the optimal policy is a bang-bang control
policy, which means using all servers or no server at all.

Monotonicity property (i) has been studied in [110] in a multi-queue setting.
For our model, this property follows as a special case for a single server queue.
The following properties of the relative value function (proven in [110]) that
we need to prove Properties (ii) and (iii) are listed below for completeness
of the chapter.

Property 6.3.1 (non-decreasingness). The relative value function V is in-
creasing in the number of jobs, i.e.,

V (x + 1, a) − V (x, a) ≥ 0,

for all x ∈ X and 0 ≤ a ≤ A.

Property 6.3.2 (convexity-related properties). For a single-queue system,
the following properties hold
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(i) V (x + 1, a) − 2V (x, a) + V (x − 1, a) ≥ 0 for all x ≥ 1 and a ≥ 0,

(ii) V (x, a) − V ([x − 1]+, a) − H([x − 1]+, 0) + H([x − 2]+, 0) > 0 for all
x ≥ 0 and a > 0,

(iii) The minimal element of argH(x, 0) is strictly positive for all x ≥ 2,

(iv) H(x + 1, 0) − 2H(x, 0) + H(x − 1, 0) ≥ 0 for all x ≥ 1.

Property 6.3.3 (submodularity). The relative value function satisfies a
version of submodularity, namely,

V (x, a + k) − V (x, a) − V (x + 1, a + k) + V (x + 1, a) > 0,

for all x ≥ 1, a > 0, and k > 0.

Property 6.3.4 (monotonicity). If the service rate µ(a) and cost function
c(a) are strictly increasing functions in a, then for all a ∈ argH(x + k, 0)
and b ∈ argH(x, 0), we have a ≥ b for all k ≥ 0.

Now, we proceed to prove the work-conservation property (ii) and the bang-
bang control property (iii) of the optimal policy. Recall that we assumed
c(0) = µ(0) = 0. First, we start with the proof of the work-conservation
property.

Theorem 6.3.1 (work-conservation). If the service rate function µ(·) and
cost function c(·) are strictly increasing functions, then the minimal element
of argH(x, 0) is strictly positive for all x > 0.

Proof. Based on part (iii) of Property 6.3.2, we have that the minimal ele-
ment of argH(x, 0) is strictly positive for all x ≥ 2. Therefore, we only need
to prove that each element of argH(1, 0) is strictly positive. This can be
proven by the contradiction method. Assume that 0 ∈ argH(1, 0). Then it
follows that H(1, 0) = V (1, 0). Based on the optimality equation and the
assumption that c(0) = µ(0) = 0, we have

V (1, 0)− V (0, 0) =
τ

λ
+ λ

[
H(2, 0)−H(1, 0)

]
+ µ(A)

[
V (1, 0)− V (0, 0)

]
.

Since µ(A) + λ = 1, it follows

λ
[
V (1, 0) − V (0, 0) − H(2, 0) + H(1, 0)

]
=

τ

λ
.
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Because we have τ > 0, it holds that

V (1, 0) − V (0, 0) − H(2, 0) + H(1, 0) > 0. (6.4)

However, based on our assumption H(1, 0) = V (1, 0) and the fact that
V (0, 0) ≥ H(0, 0), it holds that

V (1, 0) − V (0, 0) − H(2, 0) + H(1, 0) ≤ 2H(1, 0) − H(0, 0) − H(2, 0).

Based on part (iv) of Property 6.3.2, it follows that V (1, 0) − V (0, 0) −
H(2, 0) + H(1, 0) is negative. This is in contradiction with Equation (6.4).
Therefore, we conclude that each element of argH(1, 0) is strictly positive,
which completes the proof.

Next, we prove that the optimal allocation policy has the bang-bang control
property. To this end, the following result is needed.

Lemma 6.3.1. The following inequality holds:

V (x, a) − H(x − 1, 0) >
c(a)
µ(a)

,

for all x ≥ 1 and a > 0.

Proof. Since a > 0, it holds that V (x, a) = H(x, a) for all x. Therefore,
based on the optimality equation, we have

V (x, a)−V (0, 0) = τ
x

λ
+ c(a) + λ

[
V (x + 1, a) − H(1, 0)

]
+ µ(a)H([x − 1]+, 0) +

[
µ(A) − µ(a)

]
V (x, a) − µ(A)V (0, 0).

Since λ + µ(A) = 1, the equation above implies that

λ
[
H(1, 0)−V (0, 0) + V (x, a) − V (x + 1, a)

]
= τ

x

λ
+ c(a)

+ µ(a)
[
H([x − 1]+, 0) − V (x, a)

]
.

(6.5)

Because of the definition of the value function, it holds that V (0, 0) ≥
H(0, 0). This implies that

H(1, 0) − V (0, 0) + V (x, a) − V (x + 1, a)
≤ H(1, 0) − H(0, 0) + V (x, a) − V (x + 1, a).

(6.6)
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Based on parts (i) and (ii) of Property 6.3.2, we obtain that

V (x + 1, a) − V (x, a) ≥ V (2, a) − V (1, a) ≥ H(1, 0) − H(0, 0). (6.7)

Combining Equations (6.6) and (6.7), we conclude that

H(1, 0) − V (0, 0) + V (x, a) − V (x + 1, a) ≤ 0.

Because τ > 0, Equation (6.5) implies that

c(a) + µ(a)
[
H(x − 1, 0) − V (x, a)] < 0,

and hence V (x, a) − H(x − 1, 0) > c(a)
µ(a) .

We are now ready to prove the optimality of the bang-bang control policy.

Theorem 6.3.2 (bang-bang control). For a single-queue system, the fol-
lowing properties hold

(i) argH(0, 0) = {0}.
(ii) if c(a)µ(a + 1)− µ(a)c(a + 1) ≥ 0 for all a ∈ A(x,b), then argH(x, 0) =

{0, A} for all x > 0.

Proof. We use the contradiction method to prove this theorem. To start,
let a ∈ argH(0, 0). Then H(0, 0) = V (0, a). Now assume that a > 0, then
based on the definition of the value function, we have

V (0, 0) − V (0, a) = − c(a) + λ
[
H(1, 0) − H(1, a)

] − µ(a)H(0, 0)
+ µ(A)

[
V (0, 0) − V (0, a)

]
+ µ(a)V (0, a)

= − c(a) + λ
[
H(1, 0) − H(1, a)

]
+ µ(A)

[
V (0, 0) − V (0, a)

]
.

Since λ + µ(A) = 1, we have that

λ
[
V (0, 0) − V (0, a)

]
= −c(a) + λ

[
H(1, 0) − H(1, a)

]
.

Because H(1, 0) − H(1, a) ≤ 0 and c(a) > 0 for a > 0, we have V (0, 0) −
V (0, a) < 0, which is in contradiction with the assumption that 0 < a ∈
argH(0, 0). Therefore, we conclude that argH(0, 0) = {0}, which proves
part (i).
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To prove part (ii), we assume that there exists x ≥ 1 and a ∈ argH(x, 0)
such that 0 < a < A. Then we have V (x, a) = H(x, 0) for all 0 < a < A.
Because of the definition of the value function, V (x, a) = H(x, a) for all x.
Based on the optimality equation, we have

V (x, a + 1) − V (x, a) = c(a + 1) − c(a) + λ
[
V (x + 1, a + 1) − V (x + 1, a)

]
+

[
µ(a + 1) − µ(a)

]
H(x − 1, 0) + µ(A)

[
V (x, a + 1) − V (x, a)

]
− µ(a + 1)V (x, a + 1) + µ(a)V (x, a).

This implies that

λ
[
V (x,a + 1) − V (x, a) − V (x + 1, a + 1) + V (x + 1, a)

]
= c(a + 1) − c(a) +

[
µ(a + 1) − µ(a)

]
H(x − 1, 0)

− µ(a + 1)V (x, a + 1) + µ(a)V (x, a).

Since V (x, a) = H(x, 0), we have V (x, a + 1) ≥ V (x, a), and hence

λ
[
V (x,a + 1) − V (x, a) − V (x + 1, a + 1) + V (x + 1, a)

]
≤ c(a + 1) − c(a) +

[
µ(a + 1) − µ(a)

]
H(x − 1, 0)

− µ(a + 1)V (x, a) + µ(a)V (x, a)
= c(a + 1) − c(a) +

[
µ(a + 1) − µ(a)

][
H(x − 1, 0) − V (x, a)

]
.

(6.8)

Based on Property 6.3.3, it holds that V (x, a + 1) − V (x, a) − V (x + 1, a +
1) + V (x + 1, a) ≥ 0. Therefore, Inequality (6.8) implies that

c(a + 1) − c(a) +
[
µ(a + 1) − µ(a)

][
H(x − 1, 0) − V (x, a)

] ≥ 0,

which is equivalent to

V (x, a) − H(x − 1, 0) ≤ c(a + 1) − c(a)
µ(a + 1) − µ(a)

. (6.9)

Based on the condition c(a)µ(a + 1)− µ(a)c(a + 1) ≥ 0 of part (ii), we have

c(a)µ(a + 1) − c(a)µ(a) + c(a)µ(a) − µ(a)c(a + 1)
= c(a)

[
µ(a + 1) − µ(a)

]− µ(a)
[
c(a + 1) − c(a)

] ≥ 0,

which implies that

c(a + 1) − c(a)
µ(a + 1) − µ(a)

≤ c(a)
µ(a)

, and hence V (x, a) − H(x − 1, 0) ≤ c(a)
µ(a)

,

which is in contradiction with Lemma 6.3.1. This proves part (ii).
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The following result follows from combining Theorems 6.3.1 and 6.3.2.

Corollary 6.3.1. Under the assumption c(a)µ(a + 1) − µ(a)c(a + 1) ≥ 0 it
holds that argH(x, 0) = {A} for all x > 0 and a ∈ A(x,b).

6.3.2 Fully flexible resource allocation policy

In this section we focus our attention to optimal allocation strategies for the
system in which the allocation of the number of servers is allowed to change
when a job is already in service. We shall adopt the same techniques in
deriving the structure of the optimal policy as in the previous section.

We start by rewriting Equation (6.2) for the fully flexible system as a set of
backward recursion equations. This set of equations is given by

Vn+1(x) = τ
x

λ
+ λVn(x + 1) + min

a∈Ax

T n
a (x), (6.10)

where T n
a (x) is given by

T n
a (x) = µ(a)Vn([x − 1]+) +

[
µ(A) − µ(a)

]
Vn(x) + c(a).

By performing backward recursion, the optimal allocation policy can be
obtained, which has the following properties:

(i) monotonicity: this implies that the optimal policy is a step function.
Thus for all a ∈ arg mina∈Ax+1

{
Ta(x+1)

}
and b ∈ arg mina∈Ax

{
Ta(x)

}
we have a ≥ b for all x ≥ 0.

(ii) work-conservation: this implies that if the system is not empty, then
the optimal policy is not keeping all compute resources idle. Thus,
the minimal element of arg mina∈Ax

{
Ta(x)

}
is strictly positive for all

x > 0.

(iii) bang-bang control: if c(a)µ(a + 1) − µ(a)c(a + 1) ≥ 0 holds for all
a ∈ Ax, then the optimal policy is a bang-bang control policy, which
means using all servers or no server at all.

Monotonicity property (i) has been proven in [112]. Additionally, we need
the following properties of the relative value function from the same chapter
to prove Properties (ii) and (iii).
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Property 6.3.5 (convexity). Assume that the functions µ(·) and c(·) are
strictly increasing functions, then V (x) is a convex increasing function in x,
i.e., V (x) > V (x − 1) and V (x + 1) − 2V (x) + V (x − 1) > 0 for all x ≥ 1.

Property 6.3.6 (monotonicity). Assume that the functions µ(·) and c(·) are
strictly increasing functions. Then the optimal resource allocation strategy is
given by a non-decreasing curve, i.e., for each a ∈ arg mina∈Ax+1

{
Ta(x+1)

}
and b ∈ arg mina∈Ax

{
Ta(x)

}
we have a ≥ b for all x ≥ 0.

We proceed to derive parts (ii) and (iii). We start with the work-conservation
property. Recall that without loss of generality, it is assumed that c(0) =
µ(0) = 0. The following result shows that if the system is not empty, then
the optimal policy will not keep all computing resources idle.

Theorem 6.3.3 (work-conservation). If the system is not empty, then the
optimal policy is not keeping all compute resources idle. Thus, the minimal
element of arg mina∈Ax

{
Ta(x)

}
is strictly positive for all x > 0.

Proof. We use the contradiction method to prove this theorem. Assume
there exists x > 0 such that the minimal element of arg mina∈Ax

{
Ta(x)

}
is

0. Then, Property 6.3.6 implies that arg mina∈Ax

{
Ta(0)

}
= {0}. Therefore,

by applying the optimality equation, we obtain

V (x) − V (0) = τ
x

λ
+ λ

[
V (x + 1) − V (1)

]
+ µ(A)

[
V (x) − V (0)

]
.

Since λ + µ(A) = 1, this is equivalent to

λ
[
V (1) − V (0) + V (x) − V (x + 1)

]
= τ

x

λ
.

Because the time constraint of the facility is finite, we have τ > 0. Hence,
it holds that V (1) − V (0) + V (x) − V (x + 1) > 0. However, Property 6.3.5
directly implies that V (1) − V (0) + V (x)− V (x + 1) ≤ 0, which contradicts
the convexity of Property 6.3.5. This completes the proof.

To prove that the optimal allocation policy has the bang-bang control prop-
erty, we need the following lemma.

Lemma 6.3.2. If b ∈ arg mina∈Ax

{
Ta(x)

}
for all x ≥ 1, then the following

inequality holds:

V (x) − V (x − 1) ≥ c(b)
µ(b)

.
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Proof. From the definition of the value function, we have

Ta(0) = µ(a)V (0) +
[
µ(A) − µ(a)]V (0) + c(a) = µ(A)V (0) + c(a),

which implies that arg mina∈Ax

{
Ta(0)

}
= {0}. For x > 0, let us define

b ∈ arg mina∈Ax

{
Ta(x)

}
. Then Theorem 6.3.3 implies that b > 0. Moreover,

based on the optimality equation, it holds that

V (x) − V (0) = τ
x

λ
+ λ

[
V (x + 1) − V (1)

]
+ µ(b)V (x − 1)

+ µ(A)
[
V (x) − V (0)

]− µ(b)V (x) + c(b).

Since λ + µ(A) = 1, this is equivalent to

λ
[
V (1)−V (0)+V (x)−V (x+1)

]
= τ

x

λ
+ c(b)+µ(b)

[
V (x− 1)−V (x)

]
.

Based on τ > 0 and Property 6.3.5, it holds that

V (1) − V (0) + V (x) − V (x + 1) ≤ 0,

and hence

c(b) + µ(b)
[
V (x − 1) − V (x)

]
< 0,

which is equivalent to V (x)−V (x−1) > c(b)
µ(b) . This completes the proof.

We are now ready to prove the optimality of the bang-bang control policy.

Theorem 6.3.4 (Optimality of bang-bang control). For a single-queue sys-
tem, the following properties hold:

(i) arg mina∈A0

{
Ta(0)

}
= {0}.

(ii) If c(a)µ(a + 1) − µ(a)c(a + 1) ≥ 0 holds for all a ∈ Ax,
then arg mina∈Ax

{
Ta(x)

}
= {0, A} for all x > 0.

Proof. First, we prove that arg mina∈A0

{
Ta(0)

}
= {0}. To this end, the

definition of the value function implies

Ta(0) = µ(a)V (0) +
[
µ(A) − µ(a)]V (0) + c(a) = µ(A)V (0) + c(a),

which immediately shows that arg mina∈A0

{
Ta(0)

}
= 0. This concludes the

proof of part (i).
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To prove part (ii), we use the contradiction method. Assume that there
exists x > 0 and b = arg mina∈Ax

{
Ta(x)

}
such that 0 < b < A. Then

0 < b < A, which implies that Tb+1(x) − Tb(x) ≥ 0. Since

Tb+1(x) − Tb(x) ≥ 0.

Since

Tb+1(x)− Tb(x) = c(b + 1)− c(b) +
[
µ(b + 1)− µ(b)

][
V (x− 1)− V (x)

]
,

we have

V (x) − V (x − 1) ≤ c(b + 1) − c(b)
µ(b + 1) − µ(b)

.

Based on the condition of the lemma, we have c(a)µ(a+1)−µ(a)c(a+1) ≥ 0
for all a ∈ Ax. Therefore, it holds that c(b+1)−c(b)

µ(b+1)−µ(b) ≤ c(b)
µ(b) . Thus

V (x) − V (x − 1) ≤ c(b)
µ(b)

.

However, based on Lemma 6.3.2 it holds that V (x)− V (x− 1) > c(b)
µ(b) for all

x > 0, which is in contradiction. This completes part (ii) of the proof.

By combining Theorems 6.3.3 and 6.3.4 we obtain the following result.

Corollary 6.3.2. arg mina∈Ax

{
Ta(x)

}
= {A} for all x > 0.

6.4 Numerical results

In this section, we illustrate the structural properties of the optimal alloca-
tion policies. To this end, we have conducted numerical experiments for a
variety of cost functions c(·) and service rates µ(·) having different character-
istics. These parameter choices are given in Table 6.1 for seven experiments.
The other parameters in our experiments are set as follows: A = 85 (this
represents the number of servers in the DAS-3 cluster that we used, see [2]),
λ = 2, µ = 0.7, and τ = 1. Note that µ is defined as µ(1), the service rate
of using a single server (used for normalization of the server speed). More-
over, we fixed the value of τ , since we are only interested in the structural
properties of the optimal allocation policy. In Experiments 1–4, the func-
tions c(·) and µ(·) satisfy the conditions of the bang-bang control property
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Experiment 1 c(a) = a µ(a) = aµ

Experiment 2 c(a) =
√

a µ(a) = a2µ

Experiment 3 c(a) = 3
√

a µ(a) =
√

aµ

Experiment 4 c(a) = a1.5 µ(a) = a2µ

Experiment 5 c(a) = a2 µ(a) =
√

aµ

Experiment 6 c(a) =
√

a µ(a) = 3
√

aµ

Experiment 7 c(a) = a2 µ(a) = a1.5µ

Table 6.1. Parameter choices for c(·) and µ(·).
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Figure 6.2. Optimal action a as a function of x for Experiment 1 to 4.

(see Theorems 6.3.2 and 6.3.4). For these experiments, the results for both
models are shown in Figure 6.2. In this figure, we see that the results are
in agreement with Corollaries 6.3.1 and 6.3.2. In Experiments 5–7, the
conditions of the bang-bang control property are not satisfied. Since c(·)
and µ(·) are increasing functions, the optimal allocation policy satisfies the
monotonicity property, which implies that the optimal policy follows a step
function. The experimental results of Experiments 5–7 for the limited re-
source allocation model and the fully flexible resource allocation model are
shown in Figures 6.3 and 6.4, respectively.

Note that in the experiments we did not consider the service time require-
ment that is imposed in the system. However, the optimal policy under min-
imal costs when meeting the service requirement still has the same structural
properties. The only difference with the results presented here is that this
policy will be randomized in exactly one state (see Altman [10]).
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Figure 6.3. Optimal action a as a function of x for the limited resource allocation
model.
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Figure 6.4. Optimal action a as a function of x for the fully flexible resource
allocation model.

6.5 Conclusion and further research

In this chapter we have explored the structural properties of the optimal al-
location policy in two different systems. Both systems are capable to change
the number of computing resources dynamically. However, one system deals
with updating the number of computing resources only upon the start of
the service of a new job whilst in the other system that can be done during
the service of a job. In both systems, one needs to optimize the resource-
allocation costs on the one hand while satisfying a service requirement on the
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sojourn time of a job on the other hand. We applied dynamic programming
to show that the optimal resource-allocation policy has a work-conservation
property. It follows a step function with as extreme policy the bang-bang
control policy. Also, we provide the conditions under which the bang-bang
control policy is optimal. The techniques to show these results are not ob-
tained by standard induction arguments, and thus provide a foundation for
studying generalized systems in which these techniques can be applied.

There are several possible trends of the research in the future. First, one may
suspect that the optimal policy in the multi-queue setting may also have kind
of work-conservation property and bang-bang control policy under certain
circumstances. This suggests that there is space for extending the structural
properties of the optimal allocation policy for multi-queue systems described
in Chapter 5. Second, the work described in this chapter is part of a larger
strive to bring the benefits of high-performance computing to the multimedia
community. In the near future, we will test our method by implementing
them in state-of-the-art multimedia applications.



Chapter 7

Dynamic Resource Allocation for Systems with
Time-varying Arrivals

In Chapter 5, we studied a resource-allocation problem for multi-queue sys-
tems with homogeneous Poisson arrivals. In this chapter, we extend the
problem to the situation with time-varying arrival rates. Determining the
optimal policy in this case is complicated for the following reasons: (1) each
application imposes different QoS-constraints, (2) each application has its
specific parameters that may vary over time, and (3) the allocation should
be adjusted in real-time to properly respond to changing environments. This
raises the need for dynamic policies such that the strict response-time re-
quirements are met with a limited number of compute processors in the
server pool.

We solve the problem by casting it as Markov decision problem, as we did
in the previous chapters. In the case that the time-varying arrival rates
are known beforehand, the optimal policy is numerically obtained. In the
other case, we use both a prediction method and a stochastic approximation
method to track the time-varying parameters to obtain near-optimal policies.
Extensive experimental validation on a simulated distributed system shows
that our techniques are highly effective.

7.1 Introduction

As stated in Chapter 1, the methods for multimedia data applications, such
as iris and fingerprint recognition systems, need high-resolution scans and
data processing to identify individuals in groups that are under surveillance.
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This kind of applications normally has very strict response-time require-
ments, and hence, require real-time control of the system. To meet the strict
time requirements, a good solution is to distribute the data and computation
over compute nodes that are interconnected over a network.

At the server side the number of compute nodes is limited and all of these
nodes are shared by multiple applications. For different applications, the
operating costs may not be the same, the service-time constraints (i.e., a
maximum to the average time that a job spends in the system) may be dif-
ferent, and the job arrival rates for the applications may vary over time.
Therefore, there is an urgent need for methods that provide an optimal al-
location policy such that the time constraints of all applications can be met
whilst the utilization costs are minimized. Also, the method should be easily
adaptable to the dynamic changes in the time-varying arrival rates in the
distributed environment and be effective in terms of time duration for gener-
ating the optimal allocation policy because the allocation of resources should
be adjusted in real-time. Besides that, researchers in the multimedia con-
tent analysis (MMCA) domain generally require that the optimal allocation
method should also be simple and easily implementable.

There are various ways to extend the resource allocation models that have
been studied in the literature to deal with time-varying arrivals. One way is
to solve the Chapman-Kolmogorov forward equations (see [49, 118]). This
is done by approximating the varying parameters by small, discrete inter-
vals and use the randomization method (see [38]) to explicitly calculate the
change in system occupancy from one interval to the next. Another way
is the point-wise stationary approximation (PSA) of [39] that reduces the
interval of changes over which a stationary measure is applied. The PSA,
however, does not explicitly consider non-stationary behavior that may be
induced by abrupt changes in the arrival rate, and it appears to perform
less well in these cases. In [48] the accuracy and computational require-
ments of a number of approaches, including the exact calculation of the
Chapman-Kolmogorov forward equations and the method of randomization
have been evaluated. The results show that the method of randomization
generally produces results that are close to exact, however the computation
is quite burdensome. The PSA method is quicker but more approximate.
The computational complexity increases and accuracy diminishes when the
approximation methods to control the system are combined with methods
to deal with time-varying parameters making the problem numerically in-
tractable.
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In this chapter, we study two different cases of the problem. The first case
considers the optimal allocation problem with full knowledge of the job ar-
rival rates to the applications. Therefore, there is no need to estimate the
arrival rate. This is the simplest situation, in which we cast the problem
as a Markov Decision Problem (MDP). The optimal policy can be derived
numerically from the optimality equations. That policy satisfies all time
constraints of the applications and minimizes the average costs. The second
case considers the optimal allocation problem without full knowledge of the
job arrival rates, they are unknown beforehand. The simplest approach is
then to allocate a fixed number of processors to the applications irrespective
of the job arrival rates. This approach is quite simple to implement in real
systems. However, the average operating costs may be too high in order to
meet the QoS or time-constraints as compared to smarter dynamic methods.
A smarter way to solve the problem with unknown arrival rates is a method
that consists of two steps. First, we use a prediction method to estimate the
value of the arrival rate based on historical information. Then, we derive and
apply the optimal allocation policy corresponding to the estimated arrival
rate using the MDP formulation. However, a drawback of this approach is
that a sudden increase or decrease in the arrival rate can only be perceived
afterwards even when a very accurate prediction method is applied. This
becomes worse if the arrival rate fluctuates significantly and quickly over
time, which would result in constant underestimation or overestimation of
the arrival rate. By applying the policy based on the underestimated arrival
rate means that jobs are getting a longer waiting time, while for the over-
estimation of the arrival rate this means that too many compute nodes are
allocated, which comes at high allocation costs. To alleviate this problem,
we provide a stochastic approximation algorithm that keeps adjusting the
deviation between the time constraint and the (weighted) average sojourn
time (i.e., the total time spend in the system for an arbitrary job) observed
from previous time periods caused by the prediction model from time to
time. In this way, large deviations can be prevented yielding policies that
are nearly optimal.

The main added value of this work comparing to that in the previous chapters
is that we propose and validate readily available algorithms that are highly
relevant for practical applications fed by inherently time-varying job-arrival
processes.

The chapter is organized as follows. The formulation of the resource-allocation
problem is presented in Section 7.2. The solution of the problem in case
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Figure 7.1. Arrivals and departures of the model.

of homogeneous arrival rates and time-varying arrival rates is presented in
Section 7.3 and Section 7.4, respectively. In Section 7.5 we validate the allo-
cation methods by numerical experiments. Finally, in Section 7.6 we make
concluding remarks and address a number of challenging topics for further
research.

7.2 Model formulation

To model the shared server pool with different applications running on it,
we interpret each application as a facility to which jobs arrive requesting,
e.g., an iris or fingerprint scan. Therefore, let the system with N facilities
(applications) be depicted as in Figure 7.1 and assume that jobs arrive there
according to a non-homogeneous Poisson process. The arrival rate to facility
i = 1, . . . , N is denoted by λi(t). Figure 7.2 gives an example of the pattern
of the arrival rate function. This pattern of the arrival rate function reflects
the pattern observed in practical systems, in which the highest load to the
system is observed during working hours.

Upon serving a job, the image of the iris or fingerprint of a job is collected.
Thereafter, it is processed by a cluster of compute nodes in parallel, pro-
vided by a pool of A ≥ 1 compute resources. The total number of compute
nodes that can be allocated among all N facilities is thus limited by the
number A. If a job arrives to an empty facility, the job is taken into service
immediately. Otherwise, the job waits in a buffer of infinite size. Upon a
service completion at a facility, the longest waiting job is taken out of the
buffer and starts its service. A decision maker decides on how to allocate
the compute resources among the facilities. If ai resources have been allo-
cated to facility i, the service rate is a function of the number of compute
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Figure 7.2. Arrival rate varies over time.

resources, represented by µ(ai), where µ(·) is an increasing function. After
processing the images, the job leaves the system. Using ai resources for fa-
cility i costs ci(ai), and we assume that ci(ai) is increasing in ai for all i.
Furthermore, each facility provides a QoS-guarantee on the expected delay
of the jobs served at that facility. This is referred to as the time constraint.
Let Si denote the sojourn time (i.e., the sum of the waiting time and the
processing time) of an arbitrary job at facility i. Then, facility i should
satisfy the constraint that �Si ≤ αi for some predefined value of the delay
criteria αi. The goal is to find a method that can adjust the allocation pol-
icy dynamically according to changes in the arrival rates so as to satisfy all
delay criteria for the N facilities whilst minimizing the average costs. We
make the assumption that the total number of the compute resources A is
large enough to obtain at least one policy that satisfies all time constraints.

In the sequel we consider two distinct situations of the allocation problem
stated in Chapter 5. In the first situation, the decision maker can only decide
on how to allocate the resources upon taking the job into service. It is called
as the “limited resource sharing” case. This is typically the case in systems
where resources need to be reserved in advance. The second case is more
flexible, in which the system can obtain full benefits of the economies of scale
by adjusting the resource allocation even during the service time of a job.
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This is referred to as the “flexible resource sharing” case. For both cases,
we model the resource-allocation problem as a Markov decision problem in
which the problem with a constant arrival rate (a homogeneous Poisson
process) is already studied in Chapter 5 that would be used as preparation
for the more complex problem dealing with time-varying arrival rates (a
non-homogeneous Poisson process).

7.3 Optimal allocation policy for homogeneous Poisson arrival
processes

In this section, we recall the model described in Section 5.2 for the resource-
allocation problem under the limited resource sharing case and the flexible
resource sharing case, assuming that the arrivals in both cases are according
to homogeneous Poisson processes. Note that λi(t) denotes the arrival rate
to facility i at time t. Since we now deal with a constant arrival rate, we have
that λi(t) = λi. We start with short description of the model formulation
for the case of limited resource sharing.

7.3.1 Service facilities with limited resource sharing

Define the state space X = {(x1, . . . , xN , a1, . . . , aN ) ∈ �N
0 × �N

0

∣∣ 0 ≤∑N
i=1 ai ≤ A}, where (x, a) ∈ X denotes that there are xi jobs at facil-

ity i with ai resources allocated to it for i = 1, . . . , N . When the system is
in state (x, a) ∈ X the decision maker can choose actions from the action
space A(x,a) = {(b1, . . . , bn) ∈ �N

0

∣∣ ∑N
i=1(ai + bi) ≤ A and aibi = 0 for i =

1, . . . , N}, where action b ∈ A(x,a) denotes the number of resources that one
can allocate. The transition rates when the system is in state (x, a) ∈ X and
action b ∈ A(x,a) is chosen are given by

p
(
(x, a), b, (x′, b′)

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λi, x′ = x + ei, b

′ = a + b

µ(ai + bi), x′ = [x − ei]+,

b′ = a + b − ai − bi

0, otherwise,

for i = 1, . . . , N , with ei the zero vector with a one at the i-th entry, and [x]+

the componentwise maximum (max{x1, 0}, . . . ,max{xN , 0}). Finally, when
the system is in state (x, a) ∈ X and action b ∈ A(x,a) has been chosen,
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the direct costs c
(
(x, a), b

)
=

∑N
i=1 ci(ai + bi). The quadruple (X ,A, p, c)

completely describes the Markov decision problem.

Define a decision rule π(x,a) as a probability distribution on A(x,a). The
objective is to find a policy π∗ that minimizes the long-term average costs
while meeting the time constraints, thus

min
π

g(π) subject to �Si ≤ αi for i = 1, . . . , N.

Due to Little’s Law, the constrained Markov decision problem can be rewrit-
ten as an unconstrained Markov decision problem. To this end, we uni-
formize the system. Therefore, assume that the uniformization constant∑N

i=1 λi + Nµ(A) = 1. Let V (x, a) be a real-valued function defined on the
state space. The long-term average optimal actions are a solution of the op-
timality equation (in vector notation) g + V = TV , where T is the dynamic
programming operator acting on V defined as follows

TV (x, a) =
N∑

i=1

τi
xi

λi
+

N∑
i=1

ci(ai) +
N∑

i=1

λiH(x + ei, a)

+
N∑

i=1

µ(ai)H([x − ei]+, a − aiei)

+
(
1 −

N∑
i=1

λi −
N∑

i=1

µ(ai)
)
V (x, a),

(7.1)

where τi are Lagrange multipliers, and the function H is given by

H(x, a) = min
b∈A(x,a)

{V (x, a + b)}.

Alternatively, the optimality equation can be solved recursively. The back-
ward recursion equation is given by

Vn+1(x, a) =
N∑

i=1

τi
xi

λi
+

N∑
i=1

ci(ai) +
N∑

i=1

λiHn(x + ei, a)

+
N∑

i=1

µ(ai)Hn([x − ei]+, a − aiei)

+
(
Nµ(A) −

N∑
i=1

µ(ai)
)
Vn(x, a),

(7.2)
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where the function Hn is given by

Hn(x, a) = min
b∈A(x,a)

{Vn(x, a + b)}.

The algorithm to solve the optimality equation through recursion on Vn is
known as value iteration (see [73]).

7.3.2 Service facilities with flexible resource sharing

In the case of service facilities with flexible resource sharing, the state space
is given by X = �N

0 , where x ∈ X denotes that there are xi jobs at facility
i for i = 1, . . . , N . The action space is given by Ax = {a ∈ �N

0

∣∣ 0 ≤∑N
i=1 ai ≤ A}, where action a ∈ Ax denotes the number of resources that

one can allocate in state x ∈ X . The transition rates when the system is in
state x ∈ X when action a ∈ Ax is chosen are given by

p(x, a, x′) =

⎧⎪⎨⎪⎩
λi, x′ = x + ei for i = 1, . . . , N,

µ(ai), x′ = [x − ei]+ for i = 1, . . . , N,

0, otherwise.

Finally, when the system is in state x ∈ X and action a ∈ Ax has been
chosen, the direct costs are given by c(x, a) =

∑N
i=1 ci(ai). The quadruple

(X ,A, p, c) completely describes the Markov decision problem for this case.
As in the previous case, the goal is to find a policy π∗ that minimizes the long-
term average costs under the time constraints. Let V (x) denote the relative
value function in this case. Then, the dynamic programming operator acting
on V is defined as follows:

TV (x) =
N∑

i=1

τi
xi

λi
+

N∑
i=1

λiV (x + ei) + min
a∈Ax

Ta(x), (7.3)

where Ta(x) is given by

Ta(x) =
N∑

i=1

µ(ai)V ([x − ei]+)

+
[
Nµ(A) −

N∑
i=1

µ(ai)
]
V (x) +

N∑
i=1

ci(ai),
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and where τi is the corresponding Lagrange multiplier. The backward re-
cursion to obtain the optimal actions is given by

Vn+1(x) =
N∑

i=1

τi
xi

λi
+

N∑
i=1

λiVn(x + ei) + min
a∈Ax

T n
a (x), (7.4)

where T n
a (x) is given by

T n
a (x) =

N∑
i=1

µ(ai)Vn([x − ei]+)

+
[
Nµ(A) −

N∑
i=1

µ(ai)
]
Vn(x) +

N∑
i=1

ci(ai).

Note that the action space for the flexible resource sharing problem is an ex-
tension of the action space for the limited resource sharing problem. Instead
of formulating a new MDP, we also could have used the previous formula-
tion with a larger action space. However, our specific formulation for the
flexible resource sharing problem reduces the state space significantly, and
is therefore faster to solve for the optimal allocation policy.

7.3.3 Randomized policy for a constant arrival rate

In the case of limited resource sharing and flexible resource sharing, by solv-
ing the corresponding optimality equations recursively, the optimal policy
that minimizes the costs can be obtained for a fixed vector τ . When the i-th
component of τ increases, the value of �Si decreases. Therefore, there exists
a vector τ∗ such that �Sτ∗

i > αi for all facilities and there exists another τ ′

such that �Sτ ′
i < αi, where τ ′

i = τ∗
i + εi for all i and εi > 0 and small. Note

that we can obtain the expected sojourn time at facility i for a given policy
by setting c(a) = 0 (or c(x, a) = 0) for all actions a in the optimality equa-
tions and τj = 0 for all j �= i and τi = 1. The optimal policy is to randomize
between the associated policies πτ∗

and πτ ′
such that the equality �Si = αi

is achieved for each facility.

To randomize between two policies πτ∗
and πτ ′

, for which ESτ∗ > α and
ESτ ′ < α, we introduce the randomization factor p, i.e., with probability p
one chooses policy πτ∗

and with probability 1 − p one chooses policy πτ ′
.

The probability p is chosen such that �S approaches α. The algorithm to
determine p is described below.
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Step 1. Let step size := 0.01.
Step 2. Let p := 1.
Step 3. If p ≥ 0, then calculate the average

sojourn time for all facilities.
Step 4. If ∃i such that �Si > αi, then let

p := p − step size and goto Step 3.
Step 5. Return p and stop.

Algorithm 7.1. Pseudo code for generating randomization factor p.

For a fixed value of p, the average sojourn time at facility i in case of a
service facility with limited resource sharing can be derived by the following
equation:

TV (x, a) = τi
xi

λi
+ p

N∑
i=1

λiH
∗(x + ei, a)

+ (1 − p)
N∑

i=1

λiH
′(x + ei, a)

+ p

N∑
i=1

µ(ai)H∗([x − ei]+, a − aiei)

+ (1 − p)
N∑

i=1

µ(ai)H ′([x − ei]+, a − aiei)

+
(
1 −

N∑
i=1

λi −
N∑

i=1

µ(ai)
)
V (x, a),

(7.5)

where

H∗(x, a) = V
(
x, a + πτ∗

(x, a)
)
,

H ′(x, a) = V
(
x, a + πτ ′

(x, a)
)
.

The average sojourn time in case of a service facility with flexible resource
sharing by a given p can be calculated by the following equation:

TV (x) =
N∑

i=1

τi
xi

λi
+

N∑
i=1

λiV (x + ei) + pT ∗(x) + (1 − p)T ′(x), (7.6)
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where

T ∗(x) =
N∑

i=1

µ
(
πτ∗

(x) · ei

)
V ([x − ei]+)

+
[
1 −

N∑
i=1

λi −
N∑

i=1

µ
(
πτ∗

(x) · ei

)]
V (x),

and

T ′(x) =
N∑

i=1

µ
(
πτ ′

(x) · ei

)
V ([x − ei]+)

+
[
1 −

N∑
i=1

λi −
N∑

i=1

µ
(
πτ ′

(x) · ei

)]
V (x).

Note that the algorithm described above is usable for a constant arrival
rate. In the next section we extend this algorithm to the situation with
time-varying arrival rates.

7.4 Extension to time-varying arrival rates

The method described in the previous section generates an optimal allocation
policy for the problem in which the arrival rates to all facilities are constant
over time. In this section, we show how to extend the method to the case
of time-varying arrival rates. We study the problem of time-varying arrival
rates from two different points of view. In the first case, full information
on the time-varying arrival rates is known beforehand. On the contrary,
in the second case we have no information on the arrival rates. Therefore,
it should be estimated over time. We study for both points of view how
to derive optimal allocation policies that are suitable for both the service
facilities with limited resource sharing and flexible resource sharing.

7.4.1 The case of full information on the time-varying arrival
rates

First, we focus on the optimal allocation policy for the situation in which we
have full information on the time-varying arrival rates. In this case, it is not
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necessary to predict (or keep track of) the actual arrival rate. Algorithm 7.1
described in Section 7.3.3 provides an optimal allocation policy for a homo-
geneous Poisson arrival process. In this section, we extend this algorithm so
that it is suitable to generate an optimal policy in case that the arrival rate
varies over time.

The idea is to generate optimal randomized policies for a set of different
values for the arrival rates. Based upon the current arrival rate, we control
the system according to the optimal policy belonging to the corresponding
constant arrival rate. In order to control the system online, the decisions
on how to allocate the compute processors should be as fast as possible.
Since generating the optimal policy for a constant arrival rate by solving
the optimality equations is time consuming, we do not want this to happen
online, but offline, and store the policies into memory. Upon a change of
the current arrival rate, we take the corresponding optimal policy out of
the memory, and apply the corresponding action upon a decision moment.
The algorithm to determine the optimal policies for a constant arrival rate
is already mentioned in the previous section, but in Algorithm 7.2 we recall
the different steps.

For each arrival rate combination λ do
Step 1. Solve the optimality equations and obtain

the optimal policy for τ∗ and τ∗ + ε such
that �Sτ∗ > α and �Sτ∗+ε < α for a small
ε > 0.
Denote the two policies by πλ(τ∗) and πλ(τ ′),
respectively.

Step 2. Calculate the randomization factor p
using Algorithm 7.1.

Step 3. Store the randomization factor p and
the policies into memory.

end do.
Step 4. Upon a decision moment, apply policy πλ(τ∗)

with probability p and policy πλ(τ ′)
with probability 1 − p.

Algorithm 7.2. Pseudo code for randomization between two policies.

To apply our algorithm, a day of 24 hours is divided into 48 intervals of 30
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minutes as shown in Figure 7.2. Note that the solution to the optimality
equations is for the steady-state situation. By dividing the day into 48
intervals, with each having a possibly different λ, we assume that the system
behaves as in the steady-state situation in each interval. However, this is
normally not the case in practice since for the first minutes in each interval
the system does not behave as in steady-state. However the steady state is
reached very quickly due to the structure of the policy and the small changes
in the arrival rate from interval to interval. Thus, applying the optimal
policy for a fixed λ yields very good results. This approach is also used in
the field of call centers, where the SIPP (stationary, independent, period
by period) approach assumes that each period of the day is independent of
other periods, and the arrival process is considered to be stationary in that
period (see, e.g., [40]).

7.4.2 The case of no information on the time-varying arrival rates

In this section, we focus on how to find an optimal way to allocate resources
in the case that information about the time-varying arrival rate is not known
beforehand. A simple way to deal with this problem is to use a prediction
algorithm. Once we have an estimate for the current arrival rate, we can
take the corresponding policy and apply actions upon a decision moment.
The way to derive the optimal policies is the same as in Section 7.4.1. The
only difference here is that we do not have the actual arrival rate, but an
estimate. This method is referred to as the (traditional) “predictive method”
in the sequel.

Applying the policy corresponding to the predicted arrival rate has several
difficulties. First of all, one wants to update the prediction of the arrival rate
regularly to be able to track rapid increases or decreases in the arrival rates,
but this is time consuming. Second, an underestimate or overestimate of
the arrival rate will lead to a different policy that cannot guarantee the time
constraints or that yields very small sojourn times that comes with additional
costs. We shall give an example in Section 7.5 that illustrates this. To cope
with both issues, we need an allocation algorithm that is not only able to
work efficiently (in terms of computation time), but is also capable to react
quickly to underestimates or overestimates of the arrival rate. We do this by
combining a prediction algorithm with a stochastic approximation approach,
as described in Algorithm 7.3 below, and this is referred to as the “adapted
prediction method”.
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Step 1. Let λmin and λmax be the minimum and maximum arrival rate, respec-
tively. We set λmin = 0, and discretize the possible values between
λmin and λmax by steps of size λu, i.e., we obtain a vector λ with
λi = λmin + (i− 1) ·λu as the i-th entry (i ≥ 1). For every λi compute
the optimal policy using the algorithm described in Section 7.4.1 and
keep the results in the background.

Step 2. Upon arrival of a job, we predict the arrival rate by taking the average
of the observed interarrival times, and denote it by λ̂.

Step 3. Upon departure of a job we calculate the average sojourn times �Si(j)
for each facility in time period j. Recall that we divide a day into 48
periods of length 30 minutes. We then take the observed weighted
average sojourn time �S̄i for each facility i = 1, . . . , N , with the
weighting factors given by the number of jobs arrived within each
period of 30 minutes for each facility, denoted by N(i, j). Thus
�S̄i = (

∑
j N(i, j)�Si(j))/(

∑
j N(i, j)).

Step 4. We periodically check if �S̄i < αi − εi or �S̄i > αi, for small εi. If so,
then let ai = 1 + (�S̄i − αi)/αi, else let ai = 1.

Step 5. We apply the optimal policy corresponding to λi+1 if a · λ̂i is in the
interval [λi, λi+1].

Algorithm 7.3. Adapted prediction model: stepwise approach.
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In the algorithm, Step 1 is used to store a set of optimal policies in memory.
Step 2 uses an arrival event to update the estimate of the arrival rate; here
we use the exponential smoothing method. Steps 3 and 4 are concerned with
the stochastic approximation approach, in which the expected sojourn times
are compared to the time constraints α. A positive difference between �S̄i

and αi implies that the time constraint is not satisfied, and hence the system
should be controlled using a policy corresponding to a higher arrival rate.
If the difference is negative, this means that there are too many compute
processors allocated so that it is better to control the system according to
a policy that belongs to a lower value of the arrival rate. Step 5 describes
which policy to choose.

7.5 Numerical results

In this section, we first validate Algorithm 7.2 that is used for generating
the optimal allocation policy in case of time-varying arrival rates with full
information. Thereafter, we validate the allocation methods for the case that
full information is not available. We compare the fixed allocation method,
the traditional prediction method, and our adapted prediction method with
each other. To this end, we simulate a scenario of the flexible resource
sharing problem for two different systems; one system with only one facility,
and one system with two facilities. In both systems, the arrival rate to a
facility changes every 30 minutes according to the graph shown in Figure 7.2.
The other parameter values are set as follows:

• A: total number of resources, set to 35;

• µ: service rate per unit, set to 25;

• µ(a): service rate function, set to
√

aµ;

• c(a): cost function, varied over {a, a3/2, a2};
• α: time constraint for each facility, set to 0.04 minutes.

7.5.1 Experimental results for a system with one facility

In this section, we show the experimental results for a system with one
facility. To compare the results of the implementable techniques of assigning
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Assigned number Average Average
of resources sojourn time costs

15 0.031 4.13
c(a) = a 14 0.035 3.99

13 0.042 3.84

15 0.031 16.00
c(a) = a3/2 14 0.035 14.91

13 0.042 13.84

15 0.031 61.95
c(a) = a2 14 0.035 55.81

13 0.042 49.93

Table 7.1. Performance for the fixed allocation policy.

resources to a job, first we are going to observe the average costs and the
average sojourn time in the case of allocating a fixed number of resources.
Table 7.1 shows the results for the fixed allocation policy.

Note that the time constraint is set to α = 0.04. In order to satisfy the
constraint, we should use at least 14 resources. If we allow to randomize
between two policies, then we obtain slightly better results. The experienced
average sojourn time under the fixed policy with 13.23 resources happens to
be approximately 0.04 (actually it was 0.0399). The average costs for the
three cost functions are 3.87, 14.12, and 51.23, respectively. These results
are used to compare the performance derived by the prediction method and
our adapted prediction method.

7.5.1.1 Validation of the allocation method for time-varying ar-
rival rates with full information

Algorithm 7.2 provides a solution for obtaining the optimal allocation policy
for time-varying arrival rates with full information. By using the policy in
our simulation, we obtain the optimal average costs for three different cost
functions. The results are shown in Table 7.2. The corresponding average
sojourn time equals 0.04, which is found by simulation. The MDP formula-
tion for the problem gives the same results, and therefore we conclude that
the simulation and the MDP formulation correspond to each other. Fur-
thermore, for a fixed value of λ the derived policy is also the optimal policy.
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c(a) = a c(a) = a3/2 c(a) = a2

Algorithm �S �U �S �U �S �U

real optimum 0.040 3.25 0.040 10.83 0.040 38.14
prediction 0.041 3.27 0.042 10.90 0.043 38.19
adapted prediction 0.0398 3.26 0.0396 10.98 0.0396 39.28

Table 7.2. Performance for the one-dimensional system.

Compared to the performance obtained by using the fixed allocation policy,
the relative improvements in the costs are 16%, 23%, and 26%, respectively.

7.5.1.2 Validation of the allocation method for time-varying ar-
rival rates with no information

In case of time-varying arrival rates with no information, first we apply the
optimal strategy based on the predicted arrival rate. Since it is not known
if there is a trend or seasonal influence in the arrival rates, the adaptive
exponential smoothing method is chosen to estimate the arrival rate. In the
best case, we act as if we know that the arrival rate changes per half hour
and the time of generating the optimal policy can be omitted. Then, by
applying the optimal policy corresponding to the estimated arrival rate, we
get that the optimal average costs for the three different cost functions are
equal to 3.27, 10.90, and 38.19, respectively, as shown in Table 7.2. The
corresponding average sojourn times are slightly above the time constraints
(> 0.040), and the average costs in the three cases are close to the opti-
mal case. Although the average sojourn times of the entire day are larger
than the time constraints, they still do not deviate too much from the time
constraints. This is related to the fact that the performance by underesti-
mating the arrival rate compensates for the situations in which the arrival
rate is overestimated, which results in a good average result for the entire
day. However, if we look at the average sojourn time per half an hour as
shown in Figure 7.3, we notice that the average sojourn time can be two
times higher than the time constraint by underestimating and 40% lower
than the time constraint by overestimating the arrival rate. By applying our
model, the optimal average costs for the three different cost functions are
equal to 3, 26, 10.98, and 39.28, respectively, as shown in Table 7.2. The
corresponding average sojourn time of the entire day are slightly below the
time constraints (< 0.040). This shows that by applying our model, the time
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(a) c(a) = a (b) c(a) = a3/2

(c) c(a) = a2

Figure 7.3. Experiments of the system with one facility.

constraints are met, whilst the average costs is not more than 3% higher than
the optimal case. Besides that, Figure 7.3 shows that using our model, the
average sojourn time of every half hour is very close to the time constraint as
compared to the average sojourn time for the traditional prediction model.
Therefore, we conclude that our model yields more stable results.

7.5.2 Experimental results for a system with two facilities

Now, we show the experimental results for a system with two facilities. The
parameters for both facilities are set as in the beginning of this section. The
arrival rate to each facility follows the same pattern as shown in Figure 7.2.
Since the parameter values of both facilities are identical, the average sojourn
time at both facilities by applying the prediction method and the adapted
prediction method are close to each other. Therefore, in this section only the
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numerical results of the average sojourn time at facility 1 are shown. First,
we apply the fixed allocation policy. This policy allocates the same number
of resources to both facilities. Therefore, the two facilities can be seen as
two independent systems. Thus to meet the time constraint, c = 13.23
compute resources should be allocated to each facility as was found earlier
in Section 7.5.1 (using a randomized policy). The average costs for the
entire system for the three different cost functions are twice the average
costs for the system with one facility. They are equal to 7.74, 28.24, and
102.46, respectively. These results are used to compare the performance of
the prediction method and our adapted prediction method.

7.5.2.1 Validation of the allocation method for time-varying ar-
rival rates with full information

In case the time-varying arrival rates are known beforehand, we get that the
optimal average costs (�U) for the three different cost functions are equal
to 6.30, 20.74, and 71.10, respectively, as can be seen in Table 7.3. The
corresponding average sojourn time (�S) is 0.04. Note that the allocation
method also guarantees that the average sojourn time in every time interval
is equal to 0.04, and that the allocation policy derived here is also optimal.
Comparing its performance to the performance by using the fixed alloca-
tion policy, the relative improvements in the costs are 22%, 36%, and 44%,
respectively.

7.5.2.2 Validation of the allocation method for time-varying ar-
rival rates with no information

In case of time-varying arrival rates with no information, first we apply the
optimal strategy based on the predicted arrival rate. Then, by applying
the optimal policy of the estimated arrival rate, we get that the optimal
average costs for the three different cost functions are equal to 6.32, 20.73,
and 70.87, respectively (see Table 7.3). The corresponding average sojourn
times of the entire day are 0.040, 0.041, and 0.042, respectively. This shows
that the average costs in the three cases are close to the optimal case or
even slightly better than the average costs of the optimal case. However, in
case of the lower average costs, the average sojourn times of the entire day
are higher than the time constraint. If we look at the average sojourn time
per half hour as shown in Figure 7.4, we notice that the average sojourn
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c(a) = a c(a) = a3/2 c(a) = a2

Algorithm �S �U �S �U �S �U

real optimum 0.040 6.30 0.040 20.74 0.040 71.10
prediction 0.040 6.32 0.041 20.73 0.042 70.87
adapted prediction 0.0398 6.32 0.0398 20.96 0.0398 72.26

Table 7.3. Performance for the two-dimensional system.

time can be much higher than the time constraint by underestimating the
arrival rate and much lower than the time constraint by overestimating the
arrival rate. By applying our model, the optimal average costs for the three
different cost functions are equal to 6.32, 20.96, and 72.26, respectively (see
Table 7.3). The corresponding average sojourn time of the entire day are
all around 0.0398. This shows that by applying our model, the average
constraints are met, whilst the average costs is no more than 2% higher than
the optimal case. Besides that, Figure 7.4 shows that using our model, the
average sojourn time of every half hour is very close to the time constraint.
Hence, we conclude by comparing our model to the prediction model, that
the variation of our model in the average sojourn time per half hour is much
smaller whilst the related average costs is very close to the optimal one.

7.5.3 Experimental results of system with two facilities using
other time-varying arrival rates

Now, we are interested in the difference between the performance by applying
the prediction model and our method to another pattern of the time-varying
arrival rates. Therefore, we take the pattern of the time-varying arrival rates
according to Figure 7.5. The cost function is set to c(a) = a3/2. The other
parameter values remain the same. In the first case, we assume that the
arrival rate is known. Then we obtain that the real optimal costs for λ2(t)
and λ3(t) are 8.80 and 13.00, respectively, as shown in Table 7.4. By using
the prediction model, the average sojourn times for both cases are 0.0405
and 0.042, and the corresponding costs are 8.85 and 12.73, respectively.
The average sojourn times per half hour are shown in Figure 7.5(a) and
Figure 7.5(b). By applying our adapted model, we achieve 0.040 and 0.0398
as the average sojourn times for the two cases and the corresponding costs
are 8.77 and 13.14, respectively. Based on the figure we see that by applying
our adapted prediction model the variation in the average sojourn time per
half hour is very small and the time constraint (average sojourn time of the
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(a) c(a) = a (b) c(a) = a3/2

(c) c(a) = a2

Figure 7.4. Experiments of the system with two facilities.

λ2 λ3

Algorithm �S �U �S �U

real optimum 0.040 8.77 0.040 13.00
prediction 0.0405 8.85 0.042 12.73
adapted prediction 0.040 8.77 0.0398 13.14

Table 7.4. Performance for the two-dimensional system with c(a) = a3/2.

entire day) is met.

So far, we have shown that the performance of our model for the system
with time-varying arrival rates and fully flexible resource sharing. For the
case of a system with limited resource sharing, we suffice to mention that
we obtain similar results.
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(a) λ2 (b) λ3

Figure 7.5. Experiments of the system with two facilities and with different arrival
rates.

7.6 Conclusion and further research

In this chapter we have studied the optimal allocation problem in case of
time-varying arrival rates. We discussed two cases: a system with lim-
ited resource sharing and a system with flexible resource sharing. For both
cases, we derived the optimal allocation policy under two situations; one with
enough prior knowledge of the time-varying arrival rates and one without
the prior knowledge.

We have compared the results of our adapted prediction method to a fixed
allocation method and traditional prediction methods. We observed that
the adapted prediction method can save 16% in the average cost compared
to the fixed allocation method while satisfying the same time constraint in
a system with one facility with a linear cost functions, and 44% in a system
with two facilities with a square-law increasing cost function.

Although the average costs for the adapted prediction method are quite
similar to the costs for the traditional prediction methods, we notice that
traditional methods fail to satisfy the time constraints, while the adapted
prediction method does meet the time constraints. Furthermore, for dif-
ferent arrival rate patterns, the variation in average sojourn time of the
adapted prediction method is much smaller than the variation of the tradi-
tional methods.

Finally, we conclude that the adaptive prediction method is very effective
and outperforms traditional methods, and moreover, this method is simple
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and easy to implement.

Based on the results presented in this chapter, a number of possible directions
for further research can be considered. First, the evaluation of the methods
in this study are based on the results obtained by computer simulations.
The study can be extended by performing extensive experiments in a real
Grid environment by implementing the methods described in this chapter in
state-of-the-art multimedia applications. Second, in this chapter we focus on
the fluctuations in the arrival rate, however, in a real Grid environment the
fluctuations in processor speed may also be important. Hence, the condition
of the problem can be generalized to non-exponential service times, which is
practically relevant.





Chapter 8

Experimental Validation of Optimal Allocation
Policies

In previous chapters, we have studied resource-allocation problems and struc-
tural properties of optimal allocation methods in different settings. In this
chapter, we validate the optimal resource-allocation methods for single-queue
systems in the following two models: (1) service facilities with dedicated re-
sources, and (2) service facilities with limited resource sharing, which are
discussed extensively in Chapters 5 and 6. In the first model, the number
of resources allocated to each job is fixed for the duration of the applica-
tion. In the second model, the number of allocated resources is allowed to
change upon the start of the processing of each new job. The validation
of the optimal allocation methods for both models is performed by exten-
sive experiments on a real-world cluster system. The experimental results
show that: (i) the results for the average sojourn time and the average cost
measured in the application indeed converge to the results predicted by the
theoretical models, (ii) the method proposed for the second model, which is
adaptive to system variations, is much more effective than the method for
the first model, and (iii) the optimal allocation methods for both models
are simple and easily implementable, which demonstrates the practicality of
these methods.

8.1 Introduction

The number of compute resources that can be applied concurrently by each
separate compute service is limited, amongst others because of utilization
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cost and occupation efficiency. In Chapter 5 we developed three simple, eas-
ily implementable and efficient methods to determine the optimal resource-
allocation policy for three models: a model with service facilities with dedi-
cated resources, a model with service facilities with limited resource sharing,
and a model with service facilities with full flexibility in resource sharing,
respectively. In the decision making, there is a trade-off between the service
processing time and resource utilization costs (e.g., lease costs, operation
costs, etcetera). Occupying too many resources at the server side may lead
to high costs and low efficiency, in particular when the use of a low number
of resources is sufficient to meet the set time constraints. Using insufficient
resources, however, may cause the time constraints of the application to be
violated. Hence the goal of the allocation methods is to minimizes resource
utilization costs while satisfying the time constraint at the same time.

In this chapter, we validate and compare the optimal resource-allocation
methods for the first two models. We assume that the resources are available
for the entire duration of the application at hand and are ready for use
immediately after a reservation has been made [63, 97]. In both models
homogeneous sets of resources are either statically or dynamically allocated
to a single compute service. Adding or removing resources in these models
during a service is not allowed. In the first model, the number of resources
that allocated to each job is fixed for the duration of the application. In
the second model, the number of allocated resources is allowed to change
upon the start of the processing of each new job. To prevent long-term
overprovisioning of resources and to further reduce costs, the second model
incorporates a randomization factor in determining the allocated number
of nodes. Depending on the number of jobs queued, a different number of
resources may be allocated. The allocation methods for both models are
equally suited for application in clusters and cloud systems where resources
need to be reserved in advance. The effectiveness of the allocation policies
proposed for the two models is validated by extensive experiments on a
state-of-the-art cluster system.

The remainder of this chapter is organized as follows. In Section 8.2 we
recall briefly the allocation models in case of service facilities with dedicated
resources and service facilities with limited resource sharing (see Chapters 5
and 6 for more details). The optimal allocation methods for both models
are also presented shortly in this section. Section 8.3 presents and discusses
the validation results. Finally, in Section 8.4 we present our conclusions and
address topics for future research.
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8.2 Model formulation

Consider a service facility at which jobs arrive according to a Poisson process
with rate λ. There is a common pool of A ≥ 1 resources to serve the jobs in
the system. When upon arrival of a job at the facility there are no other jobs
present, the arriving job is taken into service directly. However, if there are
other jobs present, the arriving job joins an infinite-sized queue at the facility
and awaits its service in a First-Come First-Served (FCFS) manner. When
the facility has been allocated a resources, a job that is being serviced has a
service duration that is exponentially distributed with parameter µ(a), where
µ(.) is an increasing function. In the ideal case one would have µ(a) = µa
for some fixed service rate µ. However, in practice, there is communication
between the resources, to the effect that the function µ is typically sublinear.
In some cases, caching effects may cause the function µ to be superlinear.
After a job has been serviced, it leaves the system. See also Figure 8.1.

Pool of computing resourcesArrival
Facility

Departure 

A

Figure 8.1. Arrival and departure of jobs.

The facility provides a QoS-guarantee on the delay of the jobs served at that
facility. Let S denote the sojourn time of an arbitrary job at the facility.
Then the facility is constrained by �S ≤ α for a preset value of α. There is
a central decision maker that needs to determine how many resources should
be allocated to the facility such that the QoS-constraints are met. However,
when using a resources a cost of c(a) is incurred by the system with c(.) an
increasing function. The objective is to find an optimal policy that selects
a∗ resources to allocate based on the number of jobs x in the system such
that the long-term average costs (i.e., utilization costs) are minimized while
at the same time the service constraint is met.

8.2.1 Service facilities with dedicated resources

The model in which the resource allocation is decided upon beforehand and
remains unchanged for the duration of the application turns the facility into
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a regular M/M/1 queue with arrival rate λ and service rate µ(a) when a
resources have been allocated. In this case it is well-known that the mean
sojourn time is given by 1/

(
µ(a)− λ

)
. Hence, to ensure that there exists at

least one allocation policy that meets the time constraint �S ≤ α, the total
number of compute resources A should satisfy the following condition,

A ≥ ⌈
µ−1

(
λ + 1/α

)⌉
, (8.1)

with x� the smallest integer greater than or equal to x. For the M/M/1
queue, the average service duration by using a compute resources in par-
allel is given by 1/µ(a), which implies that the long-run average cost is
λc(a)/µ(a). Therefore, the optimal number of processors to allocation A∗ is
given by

A∗ = arg min
a∈N

{ c(a)
µ(a)

∣∣∣⌈µ−1
(
λ + 1/α

)⌉ ≤ a ≤ A
}

. (8.2)

8.2.2 Service facilities with limited resource sharing

The single-queue model in which the decision maker is allowed to change
the allocation whenever a new job is to be served is described extensively in
Sections 6.2.1 and 6.3.1. In those sections, we cast the problem as a con-
strained Markov decision problem that can be rewritten as an unconstrained
Markov decision problem using Lagrange multipliers, denoted τ . Then for a
fix value of τ the optimal actions can be obtained by solving the backward
recursion equation (6.3). As the Lagrange multiplier τ increases, the value
of EW decreases. Therefore, there exists a τ∗ such that �Sτ∗

> α for the
facility and there exists another τ ′ such that �Sτ ′

< α, where τ ′ = τ∗+ ε for
a small ε > 0. The optimal policy is to randomize between the associated
policies πτ∗

and πτ ′
such that �S = α for that facility.

8.3 Experimental results

In this section we validate and compare the optimal allocation methods for
the two resource-allocation models described in Section 8.2. All experiments
are performed on the DAS-4 cluster, located at the VU University in Ams-
terdam [9].

In our experiments we use a simple sleep application to validate the alloca-
tion methods. The jobs in the application do not perform any processing,
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but simply wait for a predetermined amount of time. Jobs arrive accord-
ing to a Poisson process. The required sleep time for each arriving job is
randomly assigned and has an exponential distribution. When a job is exe-
cuted in parallel, the service rate determines the required sleep time based
on the number of processors used, and a user defined speedup function.
This approach allows us to experiment with different speedup characteris-
tics. Similarly, different cost functions can be selected to reflect the cost of
the processors used. The parameters used in the experiments are defined as
follows:

• A: the maximum number of processors available,

• a: the number of processors in use,

• λ: the arrival rate,

• µ: the service rate of using one processor,

• µ(a): the service rate of using a processors,

• c(a): the costs of using a processors,

• α: the time constraint requirement.

The parameter values used in the models are set as follows:

• A = 8,

• µ = 0.75,

• α = 1.

The cost function c(a) and service-rate function µ(a) are varying according
to Table 8.1 for a ≥ 1. Without loss of generality, we set c(0) = µ(0) = 0.
In Experiment 1, both the cost function and the service-rate function are
linear. In Experiment 2, both of these two functions are concave (i.e., sub-
linear speedup and cost). Experiment 3 represents the situation with a
concave cost function and convex service-rate function (i.e., sub-linear cost,
and super linear speedup), whereas Experiment 4 represents the opposite
case. For all these experiments, we vary the arrival rate as given in Table 8.1
to achieve results in low, medium and high load scenarios.
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c(a) u(a) λ for low load λ for medium load λ for high load
Experiment 1 0.9a + 0.1 aµ 0.1 2.5 4
Experiment 2

√
a

√
aµ 0.1 0.5 1

Experiment 3
√

a a
3
2 µ 0.1 8 15.5

Experiment 4 a2 √
aµ 0.1 0.5 1

Table 8.1. Parameter values for the different experiments.

For Experiments 1 to 4, the optimal allocation methods derived by the first
resource-allocation model are shown in Table 8.2. By applying these policies,
the related average cost per time unit and the average sojourn time of a job
can be calculated and are presented in Table 8.3.

A∗ for low load A∗for medium load A∗for high load
Experiment 1 8 8 8
Experiment 2 8 8 8
Experiment 3 8 8 8
Experiment 4 3 5 8

Table 8.2. Optimal allocation policy derived by the fixed model.

low load medium load high load
cost sojourn cost sojourn cost sojourn

Experiment 1 0.12 0.17 3.04 0.29 4.87 0.50
Experiment 2 0.13 0.495 0.67 0.62 1.3 0.89
Experiment 3 0.0167 0.059 1.33 0.11 2.58 0.68
Experiment 4 0.69 0.834 7.45 0.85 30.17 0.892

Table 8.3. The average costs and sojourn time when using the fixed model.

The optimal allocation methods for the second model provide strategies that
randomize between two policies πτ∗

and πτ ′
. The policies for Experiments 1

to 4 are shown in Table 8.4. This table presents the number of processors
to allocate when a job is started, given the queue length at that time. For
brevity, the table only shows the policies up to a queue length of 10. Each
strategy randomizes between two policies. The randomization factor p for
each of the experiments is shown in Table 8.5.

For the first three experiments, only a single strategy is provided, albeit with
a different randomization factor for each experiment. For these experiments,
the strategy randomizes between the first policy given by πτ∗

(x, a) = 0 for
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Queue Experiment 1, 2, 3 Experiment 4
length all loads low load medium load high load

πτ∗
πτ ′

πτ∗
πτ ′

πτ∗
πτ ′

πτ∗
πτ ′

0 0 0 0 0 0 0 0 0
1 0 8 2 3 3 4 6 7
2 0 8 3 4 4 5 8 8
3 0 8 4 5 5 5 8 8
4 0 8 4 6 6 6 8 8
5 0 8 4 6 6 7 8 8
6 0 8 5 7 7 7 8 8
7 0 8 5 7 7 8 8 8
8 0 8 6 8 8 8 8 8
9 0 8 6 8 8 8 8 8
10 0 8 8 8 8 8 8 8

Table 8.4. The adaptive allocation policies.

for all (x, a) and the second policy given by πτ∗
(x, a) = 8 for x > 0 and

a = 0. The first policy implies that no resources are allocated for any states.
The second policy implies that all A = 8 resources would be allocated upon
the start of the processing of every new job. When the first policy is selected,
no processors will be used and the current job will re-inserted into the queue,
only to be de-queued again when a new job arrives. When this happens, a
policy will again be chosen at random.

For the fourth experiment three different strategies are shown for low, medium
and high load, respectively. As Table 8.4 shows, each strategy will apply an
increasing number of processors as the queue length increases. The maxi-
mum number of processors (in this case 8) is applied sooner if the arrival
rate of the jobs (e.g., the load of the system) is higher. The average costs

p for low load p for medium load p for high load
Experiment 1 0.9300 0.7500 0.8700
Experiment 2 0.9600 0.9000 0.9700
Experiment 3 0.9220 0.6950 0.9750
Experiment 4 0.1900 0.8300 0.5700

Table 8.5. Randomization factor of the adaptive allocation model.

based on these randomized policies can be calculated by the second model
and are shown in Table 8.6. Note that the sojourn time is not shown, as it
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approaches the time constraint (�S = α = 1) for all experiments applying
the adaptive policies.

low load medium load high load
Experiment 1 0.12 3.04 4.87
Experiment 2 0.13 0.67 1.3
Experiment 3 0.0167 1.33 2.58
Experiment 4 0.44 5.29 24.44

Table 8.6. The average costs by using the adapted allocation model.

Comparing the average costs stated in Tables 8.3 and 8.6, we observe that
the cost by using the optimal resource-allocation methods derived by the
first and the second model for the first three experiments is the same irre-
spective of the load. However, for the last experiment, the optimal allocation
method of the second model significantly outperforms that of the first model.
Specifically, in comparison to the first allocation method, the second one re-
duces the average costs by 36% in case of low load, and 19% for high load.
This observation can be explained by the fact that the first model pays no
attention to system variations whilst the second one makes an allocation
decision based on the system information. As the number of jobs in the
system grows, or if the load of the system increases, the number of resources
to allocate based on the second model would remain the same or increase.
In the opposite case, it would be reduced.

Next, we proceed to validate two models by applying their policies to the
sleep application described above. Figures 8.2 to 8.5 illustrate the experi-
mental results of the four experiments with the low, medium and high loads,
respectively. The first column of the figures (on the left) shows the average
sojourn time as a function of the time. The red and blue solid lines show the
application results when applying the allocation methods of the first model
(red) and the second method (blue) to the sleep application. The read and
blue dotted lines show the average sojourn time derived by the theoretical
models. Similarly, the second column shows the average cost as a function
of the time for the fixed and adaptive methods, both as measured in the
application and as predicted by the theoretical models. Note that for the
first three experiments, the costs are the same for both models. In all cases,
the time unit is 1000 seconds.

These figures demonstrate that the simulation results of the average sojourn
time and the average cost are approaching the results derived by the models
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in steady state. For all experiments, both sojourn time and costs converge
to the results provided by the model.

For the first three experiments, the resource cost is the same for both
resource-allocation methods. This is explained by Tables 8.2 and 8.4. As
these tables show, both the fixed and adaptive strategies always use 8 pro-
cessors, regardless of the number of queued jobs. As a result, the resource-
utilization cost is the same for both policies. The first allocation method
provides a lower average sojourn time for each of these experiments. The
second allocation method occasionally decides to postpone a job when policy
πτ∗

is chosen (which is always 0). As a result, the sojourn time of this job
(and all other jobs queued at that time) will increase, thereby also increasing
the average sojourn time. In spite of that, Figures 8.2 and 8.3 demonstrate
clearly that in the first two experiments the optimal allocation methods for
the second model meet the time constraint. In Figure 8.4, we notice that in
Experiment 3 in case of high and medium load the averages sojourn times by
applying the optimal allocation methods of the second model seem slightly
above the time constraint. This is due to the fact that the application has
not been run long enough to reach steady state. Since the time to reach
steady state is quite long and the patterns of both trend lines of the aver-
age sojourn time converge to the time constraint, we conclude that also in
Experiment 3 the average sojourn time under optimal allocation methods of
the second model indeed converges to the time constraint.

As expected, the optimal allocation method of the second model used in the
fourth experiment does provide an advantage compared to the fixed strategy.
As Figure 8.5 shows, the average cost is reduced by 19% for the high-load
scenario, to 36% for the low-load scenario. Although the average sojourn
time increases in all scenarios, leading to a slightly higher queue utilization,
it still meets the sojourn-time constraint.

8.4 Conclusion and further research

In this chapter, we validated and compared the optimal allocation meth-
ods for two resource-allocation problems in distributed systems that require
to meet the QoS time constraint on one hand, and minimize the average
utilization costs on the other hand. Our validation experiments show that
the average sojourn time and the average cost measured in the application
are in good agreement with the prediction results obtained by the theoret-
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Figure 8.2. Validation results for Experiment 1.
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Figure 8.3. Validation results for Experiment 2.
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Figure 8.4. Validation results for Experiment 3.
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Figure 8.5. Validation results for Experiment 4.
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ical models. We observed as well that the method proposed for the second
model, which is adaptive to system variations, is much more effective than
the method for the first model. Moreover, the optimal allocation methods for
both models are simple and can be easily implemented, which demonstrates
the practicality of these methods.

Based on the results presented in this chapter, a number of directions for
further research can be considered. First, the model validation in this study
is performed by running a sleep application on the DAS-4 cluster. The study
can be extended by implementing the methods in more complex multimedia
applications, and by validating the methods in a real large-scale Grid envi-
ronment. Second, the models validated do not take the reservation time of
compute resources into account (as discussed in Chapter 4). Therefore, it is
interesting to know how accurate the results would be in case the reservation
time is significant.



Appendix

A Proofs of Section 5.3.3

In this section we provide proofs of statements made on two cases that appear
in Theorem 5.3.3. The first case deals with the situation in which ai < bi

and aj > bj for j �= i, i.e., the case in which the queue with one additional
customer is allocated strictly fewer processors, whereas the other queues are
potentially allocated more processors. The other case concerns aj < bj for
j = 1, . . . , N , i.e., all queues, including the one with an additional customer,
are allocated strictly fewer processors. In Theorem 5.3.3 the claim is that
both cases cannot occur (which is intuitively plausible). In Lemma’s A.1
and A.2 we show that this claim indeed holds.

Lemma A.1. Let a = a∗(x + ei) and b = a∗(x). If ai < bi and aj > bj for
j �= i then the following properties hold:

1. V (x) is convex in i: V (x + ei) − 2V (x) + V (x − ei) > 0,

2. V (x) is submodular in (xi, xj):
V (x) − V (x − ej) − V (x + ei −

∑N
p=1,p �=j,p �=i dp · ep) + V (x + ei − ej −∑N

p=1,p �=j,p �=i dp · ep) ≥ 0 for j ∈ {1, 2, . . . , N} \ {i} and dp ≥ 0.

Proof. The proof is by induction on Vn. First, for n = 0, define V0(x) =∑n
i=1 x2

i . Clearly, the function V0(x) is convex in xi and submodular in
(xi, xj). Second, assume that the two properties hold for n = k. Then, we
proceed to prove that Vn+1(x) is also convex in xi and submodular in (xi, xj)
under the conditions stated in the theorem. Let c = a∗(x − ei) and recall
that a = a∗(x + ei) and b = a∗(x). By the conditions of the theorem, we
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have that ai < bi < ci and aj > bj > cj for all j �= i. Now, the convexity
follows from the following set of inequalities:

Vn+1(x + ei) − 2Vn+1(x) + Vn+1(x − ei)

=
[ N∑

l=1

λlVn(x + el + ei) − 2
N∑

l=1

λlVn(x + el) +
N∑

l=1

λlVn(x + el − ei)
]

+
[

min
a∈Ax

{T k
a (x + ei)} − 2 min

a∈Ax

{T k
a (x)} + min

a∈Ax

{T k
a (x − ei)}

]
=

N∑
l=1

λl

[
Vn(x + el + ei) − 2Vn(x + el) + Vn(x + el − ei)

]
+

[
min
a∈Ax

{T k
a (x + ei)} − 2 min

a∈Ax

{T k
a (x)} + min

a∈Ax

{T k
a (x − ei)}

]
> min

a∈Ax

{T k
a (x + ei)} − 2 min

a∈Ax

{T k
a (x)} + min

a∈Ax

{T k
a (x − ei)}.

The inequality holds because the first expression between the brackets is non-
negative due to the induction hypothesis. Now, by expanding the operator
T , we derive

Vn+1(x + ei) − 2Vn+1(x) + Vn+1(x − ei)

> T k
a (x + ei) − T k

a (x) − T k
c (x) + T k

c (x − ei)

≥
[ N∑

l=1

cl(al) −
N∑

l=1

cl(al) −
N∑

l=1

cl(cl) +
N∑

l=1

cl(cl)
]

+
[ N∑

l=1

µ(al)Vn(x − el + ei) −
N∑

l=1

µ(al)Vn(x − el)

−
N∑

l=1

µ(cl)Vn(x − el) +
N∑

l=1

µ(cl)Vn(x − el − ei)
]

+
[(

Nµ(A) −
N∑

l=1

µ(al)
)
Vn(x + ei) −

(
Nµ(A) −

N∑
l=1

µ(al)
)
Vn(x)

−
(
Nµ(A) −

N∑
l=1

µ(cl)
)
Vn(x) +

(
Nµ(A) −

N∑
l=1

µ(cl)
)
Vn

(
x − ei)

)]
.

Note that the first expression between the brackets is equal to 0 (with a
slight abuse of notation, where we use cl(·) for the cost function, and cl as
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variable for the optimal allocation). Now, we rearrange the terms and put
all terms together. Then we get,

Vn+1(x + ei) − 2Vn+1(x) + Vn+1(x − ei) > Si +
N∑

l=1,l �=i

Sl,

where

Sl :=
[
µ(al)Vn(x − el + ei) − µ(al)Vn(x − el) − µ(cl)Vn(x − el)

+ µ(cl)Vn(x − el − ei)
]

+
(
µ(A) − µ(al)

)
Vn(x + ei)

− (
µ(A) − µ(al)

)
Vn(x) − (

µ(A) − µ(cl)
)
Vn(x)

+
(
µ(A) − µ(cl)

)
Vn(x − ei),

for l = 1, . . . , N . Clearly, if all Sl ≥ 0, then

Vn+1(x + ei) − 2Vn+1(x) + Vn+1(x − ei) > 0.

Thus, as the next step we prove that this statement holds. We discuss
this for Si first, and then we deal with the case Sl for l �= i. We first
add −µ(ci)

[
Vn(x)− Vn(x − ei)

]
+ µ(ci)

[
Vn(x)− Vn(x − ei)

]
and

[− µ(ai) +
µ(ai)

][
Vn(x) − Vn(x − ei)

]
to Si. Then, we get

Si =
[
µ(ai) − µ(ci)

][
Vn(x) − Vn(x − ei)

]
+ µ(ci)Vn(x) − 2µ(ci)Vn(x − ei) + µ(ci)Vn(x − 2ei)
+

[
µ(A) − µ(ai)

][
Vn(x + ei) − Vn(x)

]
− [

µ(A) − µ(ai) + µ(ai) − µ(ci)
][

Vn(x) − Vn(x − ei)
]

=
[
µ(ai) − µ(ci)

][
Vn(x) − Vn(x − ei)

]
+ µ(ci)Vn(x) − 2µ(ci)Vn(x − ei) + µ(ci)Vn(x − 2ei)
+

[
µ(A) − µ(ai)

][
Vn(x + ei) − Vn(x)

]
− [

µ(A) − µ(ai)
][

Vn(x) − Vn(x − ei)
]

− [
µ(ai) − µ(ci)

][
Vn(x) − Vn(x − ei)

]
= µ(ci)

[
Vn(x) − 2Vn(x − ei) + Vn(x − 2ei)

]
+

[
µ(A) − µ(ai)

][
Vn(x + ei) − 2Vn(x) + Vn(x − ei)

] ≥ 0.

The second and third equalities above follow from the standard calculus.
The last inequality holds because of the induction hypothesis. Next, we
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proof that Sl ≥ 0 for l �= i. By rearranging the terms of Sl, we derive

Sl = µ(al)
[
Vn(x) + Vn(x − el + ei) − Vn(x + ei) − Vn(x − el)

]
+ µ(cl)

[
Vn(x) + Vn(x − el − ei) − Vn(x − ei) − Vn(x − el)

]
+ µ(A)

[
Vn(x + ei) − 2Vn(x) + Vn(x − ei)

]
.

Recall that al > cl for l �= i. In addition, due to the induction hypothesis,
Vn(x) is submodular in (xi, xl) for all dp ≥ 0 and for l �= i. This implies that

Vn(x) − Vn(x − el) − Vn(x + ei −
N∑

p=1,p �=i,p �=l

dp · ep)

+ Vn(x + ei − el −
N∑

p=1,p �=i,p �=l

dp · ep) ≥ 0.

Set dp = 0 for all p ∈ {1, . . . , N} \ {i, l}. Then it follows: Vn(x) + Vn(x −
el + ei) − Vn(x + ei) − Vn(x − el) ≥ 0 for l �= i. Therefore, using al > cl we
derive that

Sl ≥ µ(cl)
[
Vn(x) + Vn(x − el + ei) − Vn(x + ei) − Vn(x − el)

+ Vn(x) + Vn(x − el − ei) − Vn(x − ei) − Vn(x − el)
]

+ µ(A)
[
Vn(x + ei) − 2Vn(x) + Vn(x − ei)

]
≥ µ(cl)

[
Vn(x − el + ei) − 2Vn(x − el) + Vn(x − el − ei)

]
+

[
µ(A) − µ(cl)

][
Vn(x + ei) − 2Vn(x) + Vn(x − ei)

] ≥ 0.

Hence, we conclude that Vn+1(x + ei) − 2Vn+1(x) + Vn+1(x − ei) > 0. Now,
we proceed to prove that Vn+1(x) is submodular in (xi, xj). To this purpose,
define P = {1, . . . , N} \ {i, j}.
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Next, to prove submodularity, let dp ≥ 0 for all p ∈ P . Then,

Vn+1(x) − Vn+1(x − ej) − Vn+1(x + ei −
∑
p∈P

dp · ep)

+ Vn+1(x + ei − ej −
∑
p∈P

dp · ep)

=
N∑

l=1

λl

[
Vn(x + el) − Vn(x − ej + el) − Vn(x + ei −

∑
p∈P

dp · ep + el)

+ Vn(x + ei − ej −
∑
p∈P

dp · ep + el)
]

+
[

min
a′∈Ax

{T k
a′(x)} − min

a′∈Ax

{T k
a′(x − ej)} − min

a′∈Ax

{T k
a′(x + ei −

∑
p∈P

dp · ep)}

+ min
a′∈Ax

{T k
a′(x + ei − ej −

∑
p∈P

dp · ep)}
]

≥ min
a′∈Ax

{T k
a′(x)} − min

a′∈Ax

{T k
a′(x − ej)} − min

a′∈Ax

{T k
a′(x + ei −

∑
p∈P

dp · ep)}

+ min
a′∈Ax

{T k
a′(x + ei − ej −

∑
p∈P

dp · ep)}.

The inequality holds because the first expression between the brackets is non-
negative due to the induction hypothesis. Let ã = a∗(x+ei−ej−

∑
p∈P dp·ep)

and recall that b = a∗(x). Then it follows that
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Vn+1(x) − Vn+1(x − ej) − Vn+1(x + ei −
∑
p∈P

dp · ep)

+ Vn+1(x + ei − ej −
∑
p∈P

dp · ep)

≥ T k
b (x) − T k

b (x − ej) − T k
ã (x + ei −

∑
p∈P

dp · ep)}

+ T k
ã (x + ei − ej −

∑
p∈P

dp · ep)

=
[ N∑

l=1

µ(bl)Vn(x − el) +
(
Nµ(A) −

N∑
l=1

µ(bl)
)
Vn(x)

]

−
[ N∑

l=1

µ(bl)Vn(x − ej − el) +
(
Nµ(A) −

N∑
l=1

µ(bl)
)
Vn(x − ej)

]

−
[ N∑

l=1

µ(ãl)Vn(x + ei −
∑
p∈P

dp · ep − el)

+
(
Nµ(A) −

N∑
l=1

µ(ãl)
)
Vn(x + ei −

∑
p∈P

dp · ep)
]

+
[ N∑

l=1

µ(ãl)Vn(x + ei − ej −
∑
p∈P

dp · ep − el)

+
(
Nµ(A) −

N∑
l=1

µ(ãl)
)
Vn(x + ei − ej −

∑
p∈P

dp · ep)
]
.

Now we rearrange the terms to simplify the inequality. Then,
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Vn+1(x) − Vn+1(x − ej) − Vn+1(x + ei −
∑
p∈P

dp · ep)

+ Vn+1(x + ei − ej −
∑
p∈P

dp · ep)

≥
N∑

l=1

µ(bl)
[
Vn(x − el) − Vn(x) − Vn(x − ej − el) + Vn(x − ej)

]

−
N∑

l=1

µ(ãl)
[
Vn(x + ei −

∑
p∈P

dp · ep − el) − Vn(x + ei −
∑
p∈P

dp · ep)

− Vn(x + ei − ej −
∑
p∈P

dp · ep − el) + Vn(x + ei − ej −
∑
p∈P

dp · ep)
]

+ Nµ(A)
[
Vn(x) − Vn(x − ej) − Vn(x + ei −

∑
p∈P

dp · ep)

+ Vn(x + ei − ej −
∑
p∈P

dp · ep)
]
.

Subsequently, we write the final expression above by Si+Sj+
∑N

l=1, l �=i, l �=j Sl,
where

Sk = µ(bk)
[
Vn(x − ek) − Vn(x) − Vn(x − ej − ek) + Vn(x − ej)

]
− µ(ãk)

[
Vn(x + ei −

∑
p∈P

dp · ep − ek) − Vn(x + ei −
∑
p∈P

dp · ep)

− Vn(x + ei − ej −
∑
p∈P

dp · ep − ek) + Vn(x + ei − ej −
∑
p∈P

dp · ep)
]

+ µ(A)
[
Vn(x) − Vn(x − ej) − Vn(x + ei −

∑
p∈P

dp · ep)

+ Vn(x + ei − ej −
∑
p∈P

dp · ep)
]
,

for k = 1, . . . , N . In the remainder of the proof we will show that all Sk ≥ 0.
First, we focus on Si. Consider the first term between brackets in Si. By
setting x′ = x − ei, we see that this term is equal to Vn(x′) − Vn(x′ − ej) −
Vn(x′ + ei) + Vn(x′ + ei − ej) ≥ 0, since Vn(x) is submodular. In addition,
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because of the conditions of the theorem, we have bi ≥ ãi. Therefore,

Si ≥ µ(ãi)
[
Vn(x − ei) − Vn(x) − Vn(x − ej − ei) + Vn(x − ej)

]
− µ(ãi)

[
Vn(x −

∑
p∈P

dp · ep) − Vn(x + ei −
∑
p∈P

dp · ep)

− Vn(x − ej −
∑
p∈P

dp · ep) + Vn(x + ei − ej −
∑
p∈P

dp · ep)
]

+ µ(A)
[
Vn(x) − Vn(x − ej) − Vn(x + ei −

∑
p∈P

dp · ep)

+ Vn(x + ei − ej −
∑
p∈P

dp · ep)
]

= µ(ãi)
[
Vn(x − ei) − V (x − ej − ei) − Vn(x −

N∑
p∈P

dp · ep)

+ Vn(x − ej −
N∑

p∈P

dp · ep)
]

+
[
µ(A) − µ(ãi)

][
Vn(x) − Vn(x − ej) − Vn(x + ei −

N∑
p∈P

dp · ep)

+ Vn(x + ei − ej −
N∑

p∈P

dp · ep)
]]

≥ 0.

The second equality above follows from standard calculus and the last in-
equality follows from submodularity of the induction hypothesis. Now, we
proceed to study Sj . Since Vn(x) is convex, the first expression between the
brackets of Sj is non-positive. Combining this result with the condition of
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the theorem, ãj ≥ bj (which is equivalent to −bj ≥ −ãj), we get

Sj ≥ µ(ãj)
[
Vn(x − ej) − Vn(x) − Vn(x − 2ej) + Vn(x − ej)

]
− µ(ãj)

[
Vn(x + ei −

∑
p∈P

dp · ep − ej) − Vn(x + ei −
∑
p∈P

dp · ep)

− Vn(x + ei − 2ej −
∑
p∈P

dp · ep) + Vn(x + ei − ej −
∑
p∈P

dp · ep)
]

+ µ(A)
[
Vn(x) − Vn(x − ej) − Vn(x + ei −

∑
p∈P

dp · ep)

+ Vn(x + ei − ej −
∑
p∈P

dp · ep)
]

≥ µ(ãj)
[
Vn(x − ej) − Vn(x − 2ej) − Vn(x + ei − ej −

N∑
p∈P

dp · ep)

+ Vn(x + ei − 2ej −
N∑

p∈P

dp · ep)
]

+
[
µ(A) − µ(ãj)

][
Vn(x) − Vn(x − ej) − Vn(x + ei −

N∑
p∈P

dp · ep)

+ Vn(x + ei − ej −
N∑

p∈P

dp · ep)
]
≥ 0.

Finally, we prove that Sl for l �= i and l �= j is also non-negative. Let
x′ = x − ej . Then the first term of Sl is equal to Vn(x′) − Vn(x′ − el) −
Vn(x′ + ej) + Vn(x′ + ej − el). Since Vn(x) is submodular in all (xi, xj) with
j �= i, Vn(x′) is submodular in (xj, xl). Therefore, using µ(A) ≥ µ(ãl), we
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derive that

Sl ≥ µ(bl)
[
Vn(x − ej) − Vn(x − ej − el) − Vn(x) + Vn(x − el)

]
− µ(ãl)

[
Vn(x + ei −

∑
p∈P

dp · ep − el) − Vn(x + ei −
∑
p∈P

dp · ep)

− Vn(x + ei − ej −
∑
p∈P

dp · ep − el) + Vn(x + ei − ej −
∑
p∈P

dp · ep)
]

+ µ(ãl)
[
Vn(x) − Vn(x − ej) − Vn(x + ei −

∑
p∈P

dp · ep)

+ Vn(x + ei − ej −
∑
p∈P

dp · ep)
]

≥ µ(ãl)
[
Vn(x) − Vn(x − ej) − Vn(x + ei −

N∑
p∈P

dp · ep − el)

+ Vn(x + ei − ej −
N∑

p∈P

dp · ep − el)
]
.

Now, let d′ = d + el. Then

Sl ≥ µ(ãl)
[
Vn(x) − Vn(x − ej) − Vn(x + ei −

N∑
p∈P

d′p · ep)

+ Vn(x + ei − ej −
N∑

p∈P

d′p · ep)
]
≥ 0.

Hence, Vn+1(x) is submodular in (xi, xj). Thus, by taking the limit as n →
∞, we conclude that V (x) is convex and submodular under the conditions
given in the theorem.

Lemma A.1 shows that the relative value function V satisfies convexity and
submodularity in case ai < bi and aj > bj for j �= i. Note that this leads
to a contradiction in Theorem 5.3.3, since this implies that Z = Ta(x) −
Tb(x) − Ta(x + ei) + Tb(x + ei) < 0. However, it was shown in the theorem
that Z ≥ 0. Hence, this case cannot occur. Similarly, when aj < bj for all j
cannot occur. The next lemma provides a rigorous statement for this.

Lemma A.2. Let a = a∗(x + ei) and b = a∗(x). If aj < bj for j = 1, . . . , N
then the following properties hold:
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1. V (x) is convex in i: V (x + ei) − 2V (x) + V (x − ei) ≥ 0,

2. V (x) is supermodular in (xi, xj):
V (x+ ei −

∑N
p=1,p �=j,p �=i dp · ep)−V (x+ ei − ej −

∑N
p=1,p �=j,p �=i dp · ep)−

V (x) + V (x − ej) ≥ 0 for j ∈ {1, 2, . . . , N} \ {i} and dp ≥ 0.

Proof. The proof of the lemma is by induction on Vn. Note that the proof
of convexity and supermodularity is completely analogous to the proof of
convexity and submodularity in Lemma A.1. The only difference is that in
Lemma A.1 we have al > cl for l �= i, whereas in this case al < cl. However,
with supermodularity (instead of submodularity) the signs of the inequalities
turn out to be correct for proving convexity and supermodularity.
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Samenvatting

Adaptieve toewijzing van processoren in gedistribueerde compu-
tersystemen voor multimediale toepassingen

Vandaag de dag bestaat digitale informatie in toenemende mate uit multime-
diale elementen, een combinatie van audiovisuele en lingüıstische gegevens.
Het maatschappelijke belang van dit soort informatie is de laatste jaren sterk
toegenomen door de opkomst van publiek toegankelijke televisie-archieven,
videobeelden van bewakingscamera’s in openbare ruimten en het automa-
tisch vergelijken van forensisch bewijsmateriaal in biomedische identificatie-
systemen (zoals iris-scans en vingerafdrukken). In de nabije toekomst zal
geautomatiseerde toegang tot multimediale gegevens een probleem zijn van
fenomenale omvang. Immers, digitale video kan data produceren op een zeer
hoge snelheid en de opslag van multimediale gegevens loopt dan al gauw in de
Petabytes (1015 bytes). Omdat de rekencapaciteit van een enkele computer
bij lange na niet kan voldoen aan de eisen die veel multimediale applicaties
stellen, is het nodig om de processor- en opslagcapaciteit van grootschalige
gedistribueerde computersystemen aan te wenden.

Een probleem bij het analyseren van de multimediale gegevens is dat er
vaak strikte tijdsbeperkingen gelden. Bijvoorbeeld, om lange wachttijden
van klanten te voorkomen bij de iris-scanners op een internationaal vlieg-
veld zal het systeem de passagier moeten kunnen identificeren binnen enkele
seconden. Een groot deel van de autonome toepassingen, zoals het auto-
matisch herkennen en volgen van verdachte individuen in videobeelden van
bewakingscamera’s, moet zelfs in real-time plaatsvinden. Daarom is het in
steeds meer industriële toepassingen noodzakelijk uit een kolossale hoeveel-
heid van dergelijke gegevens automatisch binnen een beperkte tijd de juiste
informatie te extraheren die voor mensen van betekenis is. Om dat te reali-
seren is de processing-capaciteit voor het analyseren van multimediale data
van essentieel belang.
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In ons onderzoek beperken we ons tot de beeldbewerking van de multimediale
elementen. In dit soort service-gebaseerde scenario’s sluit een klantapplica-
tie zich aan bij een of meerdere multimediale servers op afstand. Elke server
voert de opdracht uit bij een (mogelijk verschillend) computercluster. Tij-
dens de uitvoering stuurt de applicatie van een klant videobeelden naar de
beschikbare servers om te analyseren, waarbij een job kan worden uitgevoerd
op meerdere parallelle servers.

Een van de fundamentele uitdagingen bij de parallelle berekening in gedis-
tribueerde computersystemen is het bereiken van een hoge efficiëntie in het
bewerken van de data, ongeacht de variabiliteit in de beschikbare hardware-
en software-resources. Er zijn een aantal oorzaken voor de variabiliteit in
gedistribueerde computersystemen. Ten eerste, de computerkracht in gedis-
tribueerde computersystemen wordt gedeeld door diverse applicaties. Dat
maakt de beschikbare capaciteit vaak schaars en onderhevig aan veranderin-
gen van tijd tot tijd. Ten tweede, de hoeveelheid data van de multimediale
applicaties die geanalyseerd moet worden verschillen ook van elkaar. Bij-
voorbeeld een applicatie waarin objecten die in een videostroom verkregen
zijn door bewakingscamera’s moeten worden herkend bevat een gigantische
hoeveelheid data om te analyseren. Echter, bij de iris-scan applicatie is
het aankomstproces van de data die geanalyseerd moet worden veel minder
voorspelbaar. Deze variabiliteit verhoogt de behoefte aan stochastische me-
thoden die de multimediale applicaties minder gevoelig maken voor de fluctu-
aties van beschikbare resources in gedistribueerde computersystemen. Naast
de tijdsbeperkende eis die de applicaties hebben, is het ook van belang om
de gemiddelde gebruikskosten zo klein mogelijk te houden vanwege het feit
dat de rekencapaciteit van gedistribueerde computersystemen vaak schaars
en kostbaar is. Daarom moeten de stochastische methoden zorgen voor op-
timale balans tussen de beschikbare rekencapaciteit en de gebruikskosten,
en tegelijkertijd voldoen aan strikte tijdsbeperkingen. In dit proefschrift
staan het ontwikkelen, analyseren en optimaliseren van dit soort methoden
centraal.

Na een uitgebreide introductie in hoofdstuk 1 en een formele beschrijving
van de methoden in hoofdstuk 2 bestuderen we in hoofdstuk 3 de optima-
le inzet van beschikbare resources voor multimediale applicaties waarbij de
beeldbewerking sequentieel wordt uitgevoerd. Om dit probleem op te lossen
is het eerst van belang om het optimale aantal processoren gebruikt bij el-
ke multimediale server te bepalen door de juiste afweging te maken tussen
de rekentijd van en de communicatietijd tussen de processoren. Dit pro-
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bleem noemen we het “resource utilisatie” (RU) probleem. Vervolgens is
het van belang om het beste tijdsmoment te bepalen voor het versturen van
nieuwe data naar de servers, zodanig dat het gebruik van de processoren
wordt gemaximaliseerd en tegelijkertijd de (kostbare) tijd dat de data in de
buffer staat te wachten wordt geminimaliseerd. Dit wordt ook wel het “just-
in-time” (JIT) communicatie probleem genoemd. Voor het RU probleem
ontwikkelen we een simpele en eenvoudig implementeerbare methode om
het optimale aantal processoren te gebruiken bij een multimediale server te
bepalen. Deze methode is gebaseerd op de klassieke binary-search methode
voor niet-lineaire optimalisering en het is onafhankelijk van de specificaties
van een systeem. Bij het JIT-probleem ontwikkelen we een slimme adaptie-
ve controlemethode die snel en adequaat kan reageren op veranderingen in
gedistribueerde computersystemen.

In hoofdstuk 4 bestuderen we allocatieproblemen in systemen met tijdsreser-
vering. In deze systemen komen klanten aan bij een service-faciliteit volgens
een Poisson-proces en ontvangen service in twee stappen. In de eerste stap
wordt de klantinformatie verzameld, die vervolgens wordt verzonden naar de
servers voor het analyseren. In de tweede stap wordt de informatie verwerkt,
waarna de klant het systeem verlaat. Hier moeten twee beslissingen worden
genomen: Ten eerste, wanneer moeten de processoren worden gereserveerd,
zodanig dat (1) de klant niet hoeft te wachten voor de start van de service
van de tweede stap, en (2) de gereserveerde processoren niet wordt verspild
als gevolg van het wachten op de informatie bij de eerste stap. Ten tweede,
hoeveel processoren moeten er worden toegewezen voor de tweede proces-
stap zodat de gemiddelde utilisatie- en de holdingkosten per tijdseenheid
zijn geminimaliseerd onder de gegeven tijdsbeperking. Aangezien de exacte
analyse van het systeem moeilijk is, splitsen we het probleem op in twee de-
len die sequentieel worden opgelost en leiden tot bijna-optimale oplossingen.
In het eerste deel tonen we aan dat het optimale reserveringsmoment wordt
bepaald door het verschil van de gemiddelde servicetijd van de eerste stap
en de gemiddelde reserveringstijd. Daarna passen we dynamisch program-
meren toe om de beste allocatie-strategie op de tweede stap van het systeem
te bepalen, en tegelijkertijd tonen we aan dat de optimale allocatie-strategie
een stapfunctie is en met als extreem geval een bang-bang controle policy
(dat wil zeggen: alle of geen van de processoren toewijzen).

In hoofdstuk 5 leggen we het accent op de tweede stap van het system be-
schreven in hoofdstuk 4. We breiden het model uit tot systemen met meer-
dere wachtrijen waarin elke service-faciliteit een eigen tijdsbeperking heeft
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van de gemiddelde verblijfsduur van een job in het systeem. De beslissing
moet worden gemaakt voor het dynamisch toewijzen van processoren over
de verschillende faciliteiten, zodanig dat aan alle tijdsbeperkingen wordt vol-
daan tegen de minimale kosten. Structurele eigenschappen van de optimale
strategie, die moeilijk te bewijzen zijn voor multi-dimensionale systemen,
worden bewezen in dit hoofdstuk. Deze eigenschappen samen met die in
hoofdstuk 6 geven volledige karakterisering van de optimale strategie voor
dit type systeem.

Het model in hoofdstuk 6 is een speciaal geval van het model beschreven
in hoofdstuk 5, waarin sprake is van slechts één enkele wachtrij. We laten
zien met gebruik van dynamisch programmeren dat de optimale allocatie-
strategie (1) work-conserving is, en (2) een stapfunctie volgt met als extreem
geval de bang-bang controle strategie. Bovendien, (3) leiden we een conditie
af waaronder de bang-bang controle strategie optimaal is. Deze karakterise-
ringen van de optimale strategie zijn niet rechtstreeks van toepassing in de
multi-wachtrij systemen vanwege het feit dat de technieken die hier worden
gebruikt om de resultaten te tonen niet generaliseerbaar zijn naar meerdere
wachtrijen.

In hoofdstuk 7 bestuderen we de optimale allocatie-strategie voor multi-
wachtrij systemen met een tijdsvariërend Poisson-aankomstproces. We be-
studeren twee gevallen. In het eerste geval zijn de tijdsafhankelijke parame-
ters van te voren bekend. In dit geval laten we zien hoe de optimale strategie
numeriek kan worden bepaald. In het tweede geval bekijken we het optimale
allocatie probleem zonder volledige kennis van de aankomstintensiteit van
jobs. Daartoe gebruiken we zowel een voorspellingsmethode als een stochas-
tische benaderingsmethode om de tijdsvariërende parameters op te sporen
en vervolgens een strategie te bepalen die bijna-optimaal is.

Ten slotte wordt in hoofdstuk 8 de optimale allocatiemethode gevalideerd
voor een eenvoudige applicatie in een experimentele testomgeving. De resul-
taten laten zien dat onze modellen inderdaad effectief, simpel en eenvoudig
implementeerbaar zijn.
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