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The ultimate moral test of any government is the way it treats three groups of its cit-
izens. First, those in the dawn of life — our children. Second, those in the shadows of
life — our needy, our sick, our disabled. Third, those in the twilight of life — our aged.

Hubert Humphrey
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1
Introduction

The global population is aging rapidly. The proportion of individuals aged 65 and older
worldwide increased from 7 percent in 2000 to 10 percent in 2022 and is projected to
reach 16 percent by 2050 [169]. In countries such as Italy, Portugal, Greece, Japan, and
Korea, the share of this age group is expected to exceed one-third by 2050 [134]. This
demographic shift results from declining fertility rates and improved mortality rates due
to advancements in healthcare, particularly among older adults [169]. As the number
of people living beyond 65 grows, ensuring adequate health and care for older adults
becomes increasingly crucial.
A similar demographic transformation is occurring in the Netherlands. The ratio of
individuals aged 65 and older to those aged 20 to 65 (the working-age population),
known as grey pressure, is illustrated in Figure 1.1. This ratio has risen to approximately
34 percent and is anticipated to reach 45 percent by 2040. This shift underscores the
growing challenge of maintaining the healthcare system as the proportion of older adults
increases relative to the working-age population.

1950 1970 1990 2010 2030 2050 2070
10
15
20
25
30
35
40
45
50

Year

%

Observed
Forecast

Figure 1.1: Grey pressure in the Netherlands (data source: SN).
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CHAPTER 1. INTRODUCTION

Moreover, the country is experiencing a phenomenon known as ‘double aging’, charac-
terized by both an increasing proportion of older adults and a rising average age. This
phenomenon is marked by a growing proportion of individuals aged 80 and above, as
shown in Figure 1.2. This age group typically exhibits the highest per capita healthcare
utilization [47]. As a result, the increasing share of older adults and their healthcare
needs impose a significant burden on the working-age population.

1950 1960 1970 1980 1990 2000 2010 2020
0
2
4
6
8

10
12
14
16
18
20

Year

%

Aged 65-80
Aged 80+

Figure 1.2: Double aging population (data source: SN).

The escalating grey pressure brings about several challenges. Firstly, there is a substantial
increase in healthcare costs due to rising demand [113]. In the Netherlands, 45 percent of
the healthcare budget in 2019 was allocated to individuals aged 65 and over, with nearly
a quarter of this expenditure dedicated to dementia care [149]. Some countries have
already opted to ‘freeze’ healthcare budgets to maintain affordability [37]. Additionally,
there is a growing shortage of healthcare professionals, exacerbated by the increasing
number of older individuals requiring care [55]. According to a study commissioned by
the Dutch Ministry of Health, Welfare and Sports, the healthcare sector will need 135,000
workers by 2031, with a projected shortfall of 51,900 in nursing homes alone [133]. This
shortage leads to capacity constraints across the healthcare system.
Furthermore, capacity limitations in one form of healthcare can have cascading effects
on other forms due to difficulties in discharging patients when there is insufficient capa-
city in subsequent care settings. Therefore, capacity issues must be addressed from a
system’s perspective. In this thesis, we examine healthcare for older adults from a sys-
tem’s perspective. We analyze the routes taken by older adults through the healthcare
system and focus on optimizing the decision-making process for older adults along their
routes, here referred to as routing. Through our quantitative analysis and mathematical
optimization, we aim to contribute to addressing the urgent and substantial challenges
posed by the aging population.
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1.1. DOLCE VITA Project

1.1 DOLCE VITA Project

This thesis was developed within the framework of the NWO project named Data-Driven
Optimization for a Vital Elderly Care System in the Netherlands (in short DOLCE VITA).
This project represented a collaborative effort between mathematicians and geriatricians
to model the healthcare system for older adults. The collaboration included Centrum
Wiskunde & Informatica (CWI), Amsterdam UMC (the academic hospital of Amster-
dam), Vrije Universiteit Amsterdam, and SIGRA [160], the umbrella organization for
healthcare providers in Amsterdam. Furthermore, as end users, 23 healthcare organiza-
tions were actively involved, including the five major care organizations in Amsterdam,
general practitioner organizations, and healthcare insurers. The consortium convened
every six months to review progress and discuss developments.
The initial motivation for the project arose from a SIGRA report titled “Krakende Ketens”
[159]. This report involved a detailed qualitative study of the healthcare system in
Amsterdam, identifying critical bottlenecks within the system. Figure 1.3 illustrates
the current state of the healthcare system in Amsterdam, highlighting various bottleneck
transitions. The report [159] drew several key conclusions: (1) bottlenecks predominantly
occur at points of care transition, (2) there is a misalignment between supply and demand,
(3) insufficient coordination exists for integrated planning among care providers, and (4)
the selection of care providers is primarily based on available capacity rather than patient
preferences.

Figure 1.3: Overview healthcare system in Amsterdam, from [159]. Green line: no noteworthy
bottleneck. Red dotted line: point of attention. Red dashed line: large bottleneck.

The consequences of bottlenecks in the healthcare system were illustrated by a use case
[159]; for a schematic representation, see Figure 1.4. This example involves an older
woman with mild cognitive impairment who lives alone, receiving informal support from
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Chapter 1.

Incident ED overload Surgery (14 days) Nursing home

Figure 1.4: Example use case.

her children and regular home care. After falling down the stairs, her son takes her to the
nearest emergency department, which is overcrowded. Consequently, she has to wait six
hours before a broken hip is finally diagnosed. She is then transferred to another hospital
for surgery. Due to her cognitive impairment, she develops delirium, leading to a 14-day
hospital stay with a significant decline in her functional abilities. As a result, she requires
geriatric rehabilitation. However, due to her cognitive decline, she is unable to recover
sufficiently and cannot return home, necessitating a wait for permanent admission to a
nursing home.
This use case clearly illustrates how bottlenecks within the system can adversely affect
patient outcomes, and how a malfunctioning care system can even generate additional
demand. The report [159] only provided qualitative insights, lacking quantitative data.
The objective of the DOLCE VITA project was to expand this analysis by quantitatively
mapping the healthcare system using mathematical modeling and searching for system
improvements through stochastic optimization.

1.2 The Healthcare System for Old Age

In the care system for older adults, we can distinguish between short-term care and
long-term care forms. There are a few key differences in terms of the goal, duration,
and age range of those who benefit from it. Short-Term Care (STC) is goal-oriented
and needed after a condition in which the person is expected to make a full recovery
back to their former relatively healthy and independent state. Long-Term Care (LTC) is
necessary to help a person remain comfortable through the course of long-term illness,
and is mostly useful for the elderly and those with progressive, degenerative diseases.
LTC offers comprehensive treatment and a variety of amenities to maintain the quality
of life for seniors.
The set-up of these care forms depends on the laws under which they are established.
In the Netherlands, the care system for older adults is governed by three major laws,
each addressing different aspects of healthcare and social services. These laws are the
Health Insurance Act (HIA), the Long-Term Care Act (LTCA), and the Social Support
Act (SSA). We briefly elaborate on each of these laws.
The HIA is the cornerstone of the Dutch healthcare insurance system. Introduced in
2006, it mandates that all residents of the Netherlands must have basic health insurance,
which covers essential medical care including visits to general practitioners, hospital

4



1.2. The Healthcare System for Old Age

care, and prescription medication. The HIA is designed to ensure universal access to
healthcare services and is funded through a combination of premiums paid by individuals
and contributions from employers [147].
The LTCA was implemented in 2015 to provide care for individuals who require permanent
and intensive care due to chronic illness or disability. It covers long-term institutional care
and severe cases of home care, ensuring that individuals who cannot manage daily activ-
ities independently receive appropriate support. The LTCA is primarily funded through
contributions from residents and covers costs associated with nursing homes and similar
facilities [145].
The SSA focuses on improving the quality of life for individuals with disabilities and the
elderly by providing support services that help them live independently and participate in
society. Introduced in 2007, the SSA covers services such as home assistance, adaptations
to homes for accessibility, and support for social activities. Municipalities are responsible
for the implementation and local administration of SSA services [146].
Although these laws coordinate all care forms for older adults in the Netherlands, these
care forms also differ in facility type, as can be seen in Figure 1.5. The figure illustrates
the three primary locations where care can be provided: at home, in the hospital, or in
a nursing home.

Figure 1.5: Schematic representation of the care system for old age in the Netherlands.

First, home care can be provided and financed under one of the three laws, depending
on the care’s intensity and objectives. Second, all hospital care is funded by the HIA. If
a patient requires hospital admission to a specialist ward, this is classified as bed-based
STC. Third, nursing home facilities offer only bed-based care, which includes both STC
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and LTC, financed by the HIA and LTCA, respectively. It is important to note that
the figure presented is a schematic representation; there are numerous exceptions across
different regions of the Netherlands. Additionally, this analysis excludes care types that
are beyond the scope of this research, such as care for older adults living in psychiatric
institutions or care provided in prisons.
Figure 1.5 illustrates the fact that different locations provide distinct types of care, each
regulated by different financial laws. As a result, modeling the entire care system is
challenging due to the complex transitions between these various forms of care. In the
following sections of this thesis, we provide a detailed analysis of Short-Term Care (part
I) and Long-Term Care (part II).

1.3 Part I: Short-Term Care

For the Short-Term Care (STC) types, we focus exclusively on the primary categories
of bed-based care: Geriatric Rehabilitation (GR), Short-Term Residential Care (STRC),
and Hospitalization (HOS). Other forms of temporary care, such as LTCA crisis, which
serves individuals with an LTCA designation who urgently require placement outside their
homes, respite care, which offers short-term relief for primary caregivers, and bed-based
care provided by the General Practitioner (GP), are not included in this analysis due to
their relatively limited capacity. A brief overview of the GR, STRC, and HOS care types
is provided below.

1.3.1 Geriatric Rehabilitation

Geriatric Rehabilitation (GR) care is a specialized field of geriatric medicine in which a
geriatrician is responsible for the treatment. This care is multidisciplinary and includes
services such as physical therapy, occupational therapy, and psychological care. It is
primarily provided to frail older adults with the goal to eventually return home. Usually,
GR care is needed after a hospitalization, e.g., after surgery for a fracture.
The GR care is financed by the HIA and is documented using a Diagnostics-Treatment
Combination (DTC) healthcare trajectory. The DTC serves as a framework to determine
the necessary type and amount of care for a treatment and its associated costs. For GR,
the DTC trajectories provide an estimated Length-of-Stay (LoS) for each rehabilitation
period, such as after surgery. The duration of a DTC is limited to a maximum of 120
days, whilst the average LoS of GR is 43 days [182]. In 2019, 53,000 persons received
GR care, of which the majority had to recover after a fracture (30%), and second most
after a stroke [182].

1.3.2 Short-Term Residential Care

Short-Term Residential Care (STRC) refers to a temporary stay in a nursing home for
individuals who are unable to care for themselves at home at that time, with the goal of
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1.4. Part II: Long-Term Care

eventually returning home. Unlike medical specialist care provided during hospitalizations
or GR, STRC involves short-term medical care aimed at helping vulnerable individuals
recover and return to their homes. STRC can be classified into different levels of intensity:
high-complex care, low-complex care, and palliative care. The distinction between high-
and low-complex care lies in the complexity of the care required, while palliative care is
provided at the end of life.
STRC is a relatively new type of care that was introduced in 2017. In its first year, 33,100
people received STRC, with the largest proportion being individuals aged 85 and older
[179]. Of these, about 50% received high-complexity care, approximately 30% received
low-complexity care, and around 20% received palliative care [179]. The number of
people receiving STRC has increased over time, reaching 37,170 users in 2022 [199].
Note that the term STRC refers directly to the Dutch implementation of the more general
Intermediate Care (IC) concept. IC is defined as care for individuals who require care more
than room and board but below medical specialist care in hospitals, hence ‘intermediate’
[118]. Therefore, the terms STRC and IC are used in this thesis to describe this type of
care services respectively specifically for the Netherlands or in general.

1.3.3 Hospital

Hospitalizations provide necessary care following an acute event, such as a severe injury or
sudden illness. In addition to unplanned admissions due to emergencies, hospitalizations
can also be planned for specific treatments or surgeries. After discharge, older adults
often require additional care services, such as GR, to aid in their recovery and facilitate
a return to their normal daily activities.
Hospital departments that commonly provide care to older adults include surgery, cardi-
ology, and orthopedics, where patients receive specialized medical interventions tailored
to their acute or chronic health conditions. For example, older adults may require surgical
procedures due to fractures, cardiology interventions for heart conditions, or orthopedic
care for joint replacements. On average, approximately 300,000 individuals aged 65 and
older, accounting for about 9% of this population group, experience unplanned hospit-
alizations each year between 2017 and 2021 [178].

1.4 Part II: Long-Term Care

Long-Term Care (LTC) can be provided at home (home care) or at a nursing home
location (nursing home care). The current policy is to stimulate persons to live longer
at home, since this is considered less expensive. However, some recent research shows
that if persons live longer at home, more costly hospital admissions will be needed [17].
To illustrate our LTC system, we will now further elaborate on the main long-term care
forms.
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1.4.1 Home Care

Home Care (HC) encompasses personal care and nursing services provided at home. This
type of care may be required following hospitalization or due to chronic illness. Typically,
HC is temporary, with the necessity for care being periodically reassessed. The primary
goal is to enable individuals to live at home for as long as possible.
In 2017, approximately 550,000 individuals in the Netherlands received HC, with the
majority of recipients being between the ages of 75 and 84 years [180]. Notably, within
the 85+ age group, around 40% utilized HC, and approximately 56% of these individuals
required somatic care for more than three months. On average, individuals aged 85
and older received 5.8 hours of care per week, with an average duration of six months
[180]. According to the Dutch Healthcare Authority (DHA), there was an increase in
the number of HC recipients from 2018 to 2022, with 570,000 to 590,000 individuals
receiving care during this period [125].

1.4.2 Nursing Home Care

Nursing Home Care (NHC) is defined by the ongoing need for support and services
throughout an individual’s life due to aging-related conditions or disabilities. Within
NHC, various care profiles are established based on the type and intensity of care required.
This includes care specifically tailored for both older individuals facing aging-related issues
and as well as those with disabilities; the focus here is on the former.
To access NHC services, an official assessment and indication from the Center for Indic-
ation of Care Needs (CICN) is mandatory. Once an indication is granted, the healthcare
insurance office coordinates the allocation of care, arranging placements either in a nurs-
ing home or through home-based care services provided by various organizations.
The NHC profiles related to ‘nursing and personal care’ are classified under various “VV”
profiles, each tailored to meet the specific needs of the recipients based on the intensity
and type of care required. Generally, lower VV profiles correspond to less intensive care
needs.
Firstly, we have VV 4, VV 6, and VV 8. These profiles are primarily for individuals
requiring Somatic (SOM) care. VV 4 is designed for individuals with less severe somatic
issues and can often be provided at home. In contrast, VV 8 is intended for individuals
with severe somatic problems that necessitate admission to a nursing home. Secondly,
we have VV 5 and VV 7. These profiles focus on Psychogeriatric (PG) care, typically for
individuals with dementia. VV 5 is intended for general PG care, while VV 7 is specifically
designed for those with dementia who also exhibit significant behavioral issues. Lastly,
the VV 9b profile is specific to rehabilitation within a nursing home setting. It applies
to individuals who either already have an existing NHC indication or will require one
following their rehabilitation.
In 2017, approximately 223,000 older adults in the Netherlands received NHC, with about
92% of this care being provided under one of the VV profiles, primarily at nursing home
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facilities. Most nursing home residents required care for dementia, categorized under
profile VV 5 [180].

1.5 Overview of the Thesis

The thesis starts with Chapter 2, aiming to gain insight into the routes over the healthcare
system for older adults. This study investigates the longitudinal patterns of healthcare
utilization among older adults to enhance care coordination and optimize patient jour-
neys. We analyze comprehensive healthcare usage data for all residents aged 65 and older
in the Netherlands, covering the period from 2017 to 2019, obtained from microdata of
Statistics Netherlands (SN) [39]. The study focuses on uncovering the most common
patient journeys by categorizing patients based on age and medication use. We use
process mining techniques to generate visual representations of the connections between
different forms of care. By identifying these patterns, we provide valuable insights into
improving healthcare delivery for older adults, particularly in terms of reducing unneces-
sary transitions and enhancing the coordination of care across various healthcare settings.
This study is based on [59].
Thereafter, we focus on a part of the healthcare system in part I: Short-Term Care.
Chapter 3 aims to analyze the characteristics of older adults admitted to STRC, a recent
bed-based care concept in the Netherlands designed to prevent nursing home admission.
We will examine patient profiles using data from a national STRC database, covering
admissions from 2018 and 2019. In addition to patient characteristics, the study explores
organizational differences between STRC facilities across the country. To achieve this,
we conduct a cross-sectional email survey targeting all STRC facilities in the Netherlands.
The survey collected information on various aspects of care delivery, such as the location
of the wards, the number of beds, and the availability of medical services. By combin-
ing patient data with organizational insights, this study seeks to better understand the
structure and outcomes of STRC, ultimately contributing to the development of care
pathways that support older adults in need of reablement, observation, diagnostics, and
palliative care. This study is based on [171].
In Chapter 4, we address the prolonged waiting times for IC in the Netherlands, which
often lead to unnecessary and costly hospital admissions. We propose alternative policies
to improve IC and estimate their potential effects on waiting times, hospitalization rates,
and patient placement numbers. Using data from older adults who received IC in Ams-
terdam in 2019, we will analyze patient inflows, outflows, and characteristics. A process
map of the main pathways into and out of IC is created, and a Discrete Event Simu-
lation (DES) model is developed. This simulation allows us to evaluate various policy
changes and their impact on the efficiency of the IC system. By focusing on real-life
data from Amsterdam, our study seeks to provide actionable insights into optimizing IC
processes, ultimately reducing waiting times and preventing unnecessary hospitalizations
for older adults. This study is based on [12].
Then, we go on with Long-Term Care in part II. Chapter 5 addresses the challenge
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of excessive waiting times and patient abandonments in LTC systems, which are in-
creasingly strained by the rapid aging of the population. These issues partly arise from
inefficiencies in the allocation of patients to geographically dispersed care centers, each
with its own preferences and levels of flexibility. To tackle this, we propose a novel
and easy-to-implement method for optimally allocating patients to nursing homes. Our
approach balances the trade-off between minimizing waiting times and accommodating
individual patient preferences and flexibility. By focusing on optimizing patient place-
ment, our method aims to enhance the efficiency of LTC systems, ensuring that patients
are matched with suitable care facilities more quickly and in alignment with their needs.
This approach is intended to support the development of patient-centered and sustainable
LTC solutions. This chapter is based on [11].
Chapter 6 focuses on reducing long waiting times for nursing homes by implementing
an advanced, preference-based allocation model for older adults. The research evalu-
ates the performance of this model through simulations applied to three case studies in
the Netherlands, encompassing urban regions like Amsterdam and Rotterdam, as well
as a rural area in Twente. Data on nursing homes and their capacities were collected
for each case study, and a set of preference profiles was developed to capture waiting
time preferences and flexibility among older adults. The study also outlines guidelines
for implementing the model in practice, taking into account the roles of all stakeholders
involved. A simulation was conducted to compare the current practice with the proposed
allocation model, focusing on outcomes related to waiting times and preferences. The
goal is to demonstrate that this model can improve the efficiency of nursing home place-
ments while better aligning with individual preferences. This study is based on [10] and
[11].
Finally, in Chapter 7, we address the challenges in matching persons with severe mental
illness to suitable residential facilities, a process complicated by both restrictions and
client preferences. Traditional placement policies often prioritize easy-to-place clients,
resulting in longer waiting times for those who are harder to place. To tackle this issue,
we propose the Knapsack-Based Routing (KBR) model, designed to allocate clients to
server pools more effectively, while considering both resource constraints and individual
preferences. Our approach introduces a split-horizon method, which employs an integer
quadratic programming technique to factor in both immediate and long-term impacts of
scheduling decisions. The goal is to develop a robust scheduling policy that ensures a
fairer distribution of waiting times across different client classes. This model is intended
to enhance the placement process in residential facilities and can be applied to other
service operations that involve complex routing and resource requirements, such as in
healthcare and call centers. This chapter is based on [9].
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Pathways over the Healthcare System

Based on:
de Boer, T. R., Arntzen, R. J., Bekker, R., Buurman, B. M., Willems, H. C., & van
der Mei, R. D. (2025). Process mining on national healthcare data for the discovery of
patient journeys of older adults. Journal of the American Medical Directors Association,
26(1), 105333.
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CHAPTER 2. PATHWAYS OVER THE HEALTHCARE SYSTEM

Abstract

Objective: Understanding the longitudinal patterns of healthcare utilization among older
adults is crucial for designing effective patient journeys and enhancing care coordination
across settings. This study aims to uncover the most common patient journeys of older
adults.

Method: Data were sourced from Statistics Netherlands, encompassing all residents
aged 65 or older as of January 1, 2017. Healthcare usage declarations from various care
settings during 2017 to 2019 were included. Patient journeys were exclusively selected
if their initiation points were certain. Data underwent rigorous preprocessing, merging,
and filtering to create a single event log file suitable for Process Mining. Patients were
categorized by age and medication use, and differences in patient journeys were analyzed.
Process Mining techniques generated visualizations illustrating the connections between
care forms and the impact of changes in one form on others.

Results: The study included 3,177,203 individuals aged 65 and older, with 44% experien-
cing one or more patient journeys totaling 2,469,663 journeys in the period of 2017-2019.
Most care journeys for older adults were simple and short. The top ten most frequent
journeys had four or fewer care forms, with 95% of journeys for the 65+ population and
90% for the 85+ population having four or fewer care transitions. Long-term care forms,
such as home care, personalized care, and nursing home care, accounted for the majority
of time spent in the system.

Conclusion: This pioneering study shows that most older adults tend to have a straight-
forward healthcare need, often involving the emergency department and hospitalizations.
However, a smaller group among the population requires more complex and prolonged
care, especially in the 85+ population. Reducing the number of transitions for this popu-
lation, although impacting less people, might result in increased efficiency on the overall
system.
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2.1 Introduction

The demographic challenges posed by an aging population underscore the urgency of
gaining a deeper understanding of healthcare usage among older adults. Such insights
can be derived from Process Mining (PM), a method that employs advanced algorithms
to analyze large volumes of data. PM analyses are typically represented as visualizations
of patient journey patterns, illustrating the primary forms of healthcare utilized and
the sequence in which they are accessed. This approach helps us to understand how
patients navigate the healthcare system. For instance, PM can reveal a typical journey
where a patient initially visits the emergency department, is subsequently admitted to
the hospital, and finally receives home care.
To date, PM in healthcare has primarily been applied to smaller, more narrowly focused
datasets, such as those pertaining to individual hospitals [110, 195]. However, PM has
not yet been employed on a system-wide scale in healthcare. Achieving this broader ap-
plication requires a comprehensive dataset. Statistics Netherlands (SN) collects data on
healthcare claims from all residents of the Netherlands [39], enabling a holistic mapping
of the healthcare system.
In this chapter, we aim to address the following two research questions:

1. What are the most frequently occurring patient journeys within the healthcare
system among older adults?

2. Is there a difference in healthcare usage between various age groups and among
groups with different levels of cumulative drug use?

The hypothesis is that older adults have long and intricate patient journeys, since most
research often reports either long-term care pathways [87] or depicts the older adults as
a frail population with recurrent healthcare usage [46]. It is expected that the length
and complexity of these journeys will only increase as the age or medicine use of the sub-
populations increases, since age [14] and medicine use [150] are both shown to correlate
with an increase in healthcare usage and frailty.

2.2 Methods

This section covers the dataset and the methodology applied to analyze the data.
Throughout, we use the following definition of a patient journey : A sequence of trans-
itions between different forms of care, allowing for a maximum gap of four weeks without
professional healthcare. Healthcare usage is defined as older adults utilizing professional
healthcare, ranging from personal home care to hospital care. This four-week limit is
based on research indicating that healthcare events within this timeframe are often con-
nected [185].
The data contains healthcare usage from 2017 until 2019. Since it is possible that
journeys have already started before 2017, the choice was made to focus only on journeys
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of which we are certain that at least four weeks of no care predate the earliest healthcare
form, meaning only care journeys after February 1, 2017, are considered. It is certain that
these journeys are not continuations from journeys that have started before 2017 and,
therefore, we are certain to capture the beginning of the healthcare pathways. These
new journeys are characterized by their number of care transitions (change of care form
utilized by the patient), the used healthcare types and the time spent per journey.

2.2.1 Data

The dataset utilized in this study originates from multiple healthcare datasets provided
by SN [39]. Permission was obtained to access the microdata via a secured portal. This
study falls outside the scope of the Medical Research Subjects Act due to the complete
anonymity of the dataset, the retrospective nature of the study, and the public availability
of the data within SN.
The dataset includes the following forms of care: Home Care (HC), Personal Care (PC),
Long-Term Care (LTC) at home or in an institution (respectively Nursing Home at Home
(NHH) or Nursing Home (NH)), Geriatric Rehabilitation (GR), Short-Term Residential
Care (STRC) (a distinction is made between non-palliative and palliative, respectively
denoted by STRC and Palliative Short-Term Residential Care (STRC-pall)), Emergency
Department (ED) visits and Hospitalization (HOS). No Care at Home (HOME) is used
to define that a person used no declared care. As the different care forms are paid by
different laws, rigorous preprocessing of the datasets was necessary to create a single
event file suitable for PM [33].
The dataset comprises data from 3,177,203 individuals aged 65 or older on January 1,
2017. Data from 2017 to 2019 was selected to reflect the healthcare system, due to
anomalies related to COVID-19 in 2020 [120] and the healthcare reform in 2015 [190].
Each row contains: an activity, a start date and an end date. Rows combined are seen as
patient journeys; an example of such a patient journey could be the following: a patient
has an ED, a HOS and returns home with PC. This journey then counts three care
transitions and forms. The duration of this journey is then the length from start date
of ED until the end date of PC. In addition, persons could have multiple forms of care
at the same time. Periods with multiple care forms were handled by removing overlap
based on a ranking in which the most intense care form remains. The ranking is based
on intensity in the following order: Death, ED, HOS, GR, STRC, NH, NHH, PC and
HC.

2.2.2 Process Mining

The aim of PM [175] is what is called process discovery [174], i.e. discovery of processes
or paths in a system. This is done by analyzing log files using the R-library named bupaR
[33]. We first generate a table containing the number of persons and patient journeys of
each sub-population, after which we generate a table with the most frequently occurring
patient journeys of each subpopulation. The journeys are then examined further, as we
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take a closer look at the distribution of the complexity of these journeys using a histogram
and the time length using Lorenz curves. Finally, process maps are generated, which can
provide a picture of the complexity of the taken care journeys of each group. These
process maps are set to have a coverage of 0.8, meaning that 80% of the journeys are
visualized. Increasing the coverage to 1.0 often creates maps containing a superfluous
amount of flows, so-called ‘spaghetti maps’ [173], which are usually too detailed to be
informative.

2.2.3 Age and polypharmacy

Finally, the population can be split based on age and drugs use. Specifically, the age
ranges 65-74, 75-84 and 85+ are distinguished, where the age of the person on January
1, 2017, is used. Similarly, a distinction is made based on drugs use of a person in
2017, as drugs use can be seen as a proxy for frailty [150]. The population is split in
persons that use 0-4 distinct types of medicine, 5-9, or 10+. These sub-groups enable
comparisons between different demographic and medication profiles, with sample sizes of
100,000 persons per sub-population facilitating meaningful comparisons. Comparisons
will be done between the 65+ and the 85+ population, results for other sub-groups are
provided in the appendix.

2.3 Results

First, we give a general overview of the data, then we examine the care transitions and
time distribution, and finally, we present the process maps.

2.3.1 Population data

Table 2.1 provides an overview of the population used in this analysis. The majority
of the population is relatively young: 58% is aged between 65 and 74, and has little
drugs use, only 21% has ten or more drugs. The fraction of persons with a care journey
increases with age and drugs use, but quite surprisingly, the older sub-population of 85+
consists of fewer patients with a care journey (44% compared to 52% in the patient
group 75-84 years of age). This can be explained by the fact that many older adults
aged 85 or older were already in a care journey in January 2017. In this chapter, these
journeys are omitted, which can be seen in the last row of Table 2.1. We also see that in
terms of mean journey length the sub-population of 85+ differs most from the complete
population, with an average of 2.45 care transitions compared to 2.06 overall.
Figures 2.1 and 2.2 illustrate the ten most frequent patient journeys for the 65+ and the
85+ populations, respectively. In Appendix 2.A.1, the ten most frequent patient journeys
of all (sub-)populations are shown in Table 2.2. In both the figures and tables, many
of these journeys involve less than five care transitions. The most frequently occurring
journey for each (sub-)population is in all cases a journey containing only one healthcare

15



Chapter 2.

Age Medicin use

All 65-74 75-84 85+ 0-4 5-9 10+

Number of persons (%) 3,177,203
(100%)

1,816,172
(58%)

969,814
(31%)

357,172
(11%)

1,381,582
(44%)

1,122,587
(35%)

673,034
(21%)

Number of patient jour-
neys

2,469,663 1,241,416 936,401 273,261 605,638 948,280 915,745

Persons with a journey
(%)

44% 39% 52% 44% 30% 49% 64%

Mean number of journeys
per person

1.78 1.73 1.86 1.75 1.48 1.72 2.14

Mean journey length 2.06 1.89 2.18 2.45 1.81 1.96 2.33

Number of excluded pa-
tient journeys

612,470 150,243 236,985 223,212 160,857 189,503 262,110

Table 2.1: Population size (on January 1, 2017) and frequently occurring journeys.

form, often the journey consisting of an ED visit and afterwards returning HOME. This
can be seen in Figure 2.1, which shows that this specific journey occurs 24,350 times in
a sample of 100,000 persons. However, for the 85+ sub-population, the most frequently
occurring journey is patients having PC and returning to HOME, also seen in Figure 2.2,
which occurs 12,008 times in our sample of 100,000 persons. The importance of ED
and the HOS is evident in the top-three journeys of the complete 65+ population, as
they can be described by only the HOS and ED. This can also be seen in other top-ten
journeys of other sub-populations.

Figure 2.1: The ten most frequently occurring patient journeys for 65+ (taken from a sample
of 100,000 persons). It shows how often the specific journeys occur within the sample.
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Figure 2.2: The ten most frequently occurring patient journeys for 85+ (taken from a sample
of 100,000 persons). It shows how often the specific journeys occur within the sample.

2.3.2 Care transitions and time distribution

Figure 2.3: Histogram of the number of care transitions: a comparison between 65+ and
85+.

Now we zoom in on the care transitions and time durations. When looking at the
distribution of the number of care transitions per journey, we observe that by far most care
usage of older adults is simple and short, see Figure 2.3. Both the complete population
and the older subpopulation exhibit a right-tailed distribution, with 59% of journeys
for the 65+ population and 53% for the 85+ population involving only one care form.
Additionally, 95% of journeys for the 65+ population and 90% for the 85+ population
have four or fewer care transitions. Figure 2.4 visualizes the amount of time spent in the
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Figure 2.4: A Lorenz curve of patient journey time allocation between age groups 65+ and
85+. The curve illustrates the cumulative distribution of time spent across patient journeys,
highlighting differences in healthcare utilization patterns among older adults.

healthcare system using a Lorenz curve. In the 65+ group the 90% shortest journeys
account for only 27% of the total time. Hence, the 10% of the longest journeys account
for 73% of the total time spent in the system, these 10% longest journeys consist mostly
of LTC forms, such as HC, PC, LTC, nine of the ten most frequently occurring patient
journeys of this 10% consist solely of HC, PC, LTC. The 85+ population shows that the
time inequality is less severe.

2.3.3 Process maps

Figure 2.5 presents process maps for individuals aged 65 or older, while Figure 2.6 displays
maps for those aged 85 or older. These maps offer a complete view of healthcare usage
patterns within these age groups. They show that the majority of both groups have a
short and straightforward healthcare journey (in line with Figures 2.1 and 2.2). However,
by comparing 80% of population of 65+ and that of 85+, in respectively Figures 2.5
and 2.6, it can be seen that the older subpopulation has a more complex path. Notably,
the process map for the 85+ subgroup, with the same coverage (0.8), exhibits more
transitions and a less structured layout compared to the map for the 65+ population,
indicating that healthcare usage among the older age group is less predictable and cannot
be easily categorized into distinct pathways. This disparity is visually depicted by the
“lasagna process” appearance of the map for the 65+ population, contrasting with the
“spaghetti process” observed in the map for individuals aged 85 or older. Finally, in
Appendix 2.A.2, the process maps are given for the other subpopulations.
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Figure 2.5: Process map of 80% of the most frequently occurring journeys of the 65+
population (taken from a sample of 100,000 persons), the number above the lines show how
often that transition occurs in the sample, given an 80% coverage.

2.4 Discussion

This is the first study to identify patient journeys over a large-scale healthcare system,
using Process Mining. It was found that most frequently occurring patient journeys
of older adults contain either one or two and often not more than four care transitions.
Similar to the simplicity it was found that most journeys span a relatively short amount of
time, visible in our Lorenz curve. This confirms the previous observation that most older
adults have simple and short healthcare journeys. Only a small part of the population
covers more than half of the total time spent of all journeys, implying that this group
requires more coordination in the system. Noteworthy is that this inequality diminishes
for the 85+ population. This can be attributed to the fact that healthcare journeys
that have started before 1 February 2017 are not included, and this subpopulation often
utilizes long-term care, either at home or at an institution.
Another interesting observation is the consistent presence of ED visits or HOS in nearly all
frequently occurring journeys across all (sub)populations. This underscores the important
role of the ED and HOS as entry points into the healthcare system for older adults.
Therefore, proper healthcare at the ED is crucial and strategies to avoid ED visits should
be studied. Additionally, it was observed that HOS often followed ED visits, indicating
the acute nature of HOS. Streamlining this transition is crucial given its prevalence in
healthcare journeys, as inefficiencies in ED transfers can lead to inefficiencies in general
[23].
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Figure 2.6: Process map of 80% of the most frequently occurring journeys of the 85+
population (taken from a sample of 100,000 persons), the number above the lines show how
often that transition occurs in the sample, given an 80% coverage.

Notably, the process maps of the older subpopulation 85+ depicted a more complex map
than that of the population 65+, suggesting a greater diversity of healthcare journeys
among older adults aged 85 and above. As the population of the Netherlands is aging
more in the future [40], the strain on the system will rise further. More specifically, it is
expected that the number of older adults aged 80 or above also increases over the coming
years, for which we show that this group is harder to capture using a few transitions.
This makes it more difficult to predict, anticipate and coordinate what journey an older
adult aged 85 or older will embark on in the system. Simplifying these journeys could
minimize efficiency lost in possible transfers, as transfers can be the source of a higher
care demand, inefficiencies or dangers [154]. Integrated care for this population might
be essential to limit the number of transfers [84]. For this sub-population, four out of
the ten most frequently occurring journeys include PC, providing policy makers with a
clear entryway into how to target this part of the population.
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2.4.1 Strengths and limitations

This research distinguishes itself from previous research into patient journeys, by providing
a scope on the complete healthcare system for old age, while previous papers often focus
on either a small part of the healthcare system, e.g. the hospital, and only a small sample
of persons [73, 80, 170]. Previous research on patient journeys of healthcare usage is
often focused on designing the patient journey [20, 168], while this chapter focuses on
first understanding what the patient journeys of older adults are, since the system should
first be understood before adaptions can be made.

2.4.2 Future work

Some research opportunities fell beyond the scope of this chapter and could be topics
of future research. Previous research done by the Dutch Healthcare Authority (DHA)
[144] that focuses on the healthcare usage 100 days preceding death or nursing home
admittance shows that these journeys are often different and visualize a different part
of the population. This research approach is promising and could be examined further,
especially given the importance of ED visits and HOS. Another opportunity for follow-up
research is to include other groups of the population and a longer time window. Future
research could also zoom in into different geographical regions, where the comparison
between different regions with different types of healthcare is especially interesting, for
example how does the proximity of ED [22] affect the patient journeys from patients.

2.5 Conclusion and Implications

In conclusion, this study employs PM on a dataset from SN to unravel the complexity
of patient journeys of older adults in the Netherlands, addressing critical challenges in
healthcare of older adults. The research aims to provide insights that can inform policy
makers for more effective healthcare decisions, providing an overview into which and how
different forms of care are used by the older adult’s population of the Netherlands.
In summary, our study highlights how most older adults tend to have straightforward
healthcare needs, often involving short visits to the ED or brief hospital stays. However,
a smaller group among them requires more complex and prolonged care. This suggests
that when designing or adapting new healthcare policies, focusing solely on the complex
cases might overlook the majority who rely on simpler healthcare services. Therefore, it is
important for policymakers to consider the broader picture, including routine emergency
and hospital visits, to ensure that any changes made benefit the majority of older adults
accessing healthcare. However, the 85+ population has a longer and more complex
healthcare pathway. This implies that reducing the number of care transitions or journey
length for only this group, might result in a larger effect on the system, due to the
interconnectivity of various forms of healthcare that this group requires.
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2.A Appendix

2.A.1 Most frequently occurring patient journeys

The ten most frequently occurring journeys of each sub-group can be found in Table 2.2.

Activity

Journey 1st 2nd 3rd 4th Number of journeys
Group: all

1st ED HOME 24350
2nd ED HOS HOME 18343
3rd HOS HOME 16245
4th PC HOME 12818
5th HC 3245
6th PC 2618
7th HOS PC HOME 1769
8th ED HOS PC HOME 1759
9th ED HOS Death 1736
10th HC HOME 1690

Group: aged 65-74
1st ED HOME 17862
2nd HOS HOME 12460
3rd ED HOS HOME 9342
4th PC HOME 5202
5th HC 1539
6th ED ED HOME 1085
7th HOS PC HOME 1040
8th PC 869
9th HC HOME 830
10th ED HOS PC HOME 715

Group: aged 75-84
1st ED HOME 16805
2nd PC HOME 13543
3rd ED HOS HOME 10695
4th HC 3361
5th PC 2825
6th HC HOME 1512
7th HOS PC HOME 1482
8th ED HOS PC HOME 1446
9th ED HOS Death 1098
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Table continued from previous page
Activity

Journey 1st 2nd 3rd 4th Number of journeys
10th PC ED HOS HOME 939

Group: aged 85+
1st PC HOME 12008
2nd ED HOME 8518
3rd ED HOS HOME 6517
4th PC 3276
5th HOS HOME 2730
6th HC 2156
7th ED HOS Death 1561
8th HC HOME 1357
9th PC Death 1276
10th PC ED HOS HOME 1170

Group: medicine use 0-4
1st ED HOME 10870
2nd HOS HOME 6447
3rd PC HOME 5067
4th ED HOS HOME 4780
5th HC 1278
6th PC 1048
7th HOS PC HOME 577
8th HC HOME 567
9th ED HOS PC HOME 553
10th ED ED HOME 480

Group: medicine use 5-9
1st ED HOME 18315
2nd HOS HOME 11792
3rd PC HOME 10059
4th ED HOS HOME 9682
5th HC 2608
6th PC 2070
7th HOS PC HOME 1284
8th HC HOME 1197
9th ED ED HOME 1009
10th ED HOS PC HOME 994

Group: medicine use 10+
1st ED HOME 20436

23



Chapter 2.

Table continued from previous page
Activity

Journey 1st 2nd 3rd 4th Number of journeys
2nd HOS HOME 14387
3rd ED HOS HOME 11255
4th PC HOME 6668
5th HC 3452
6th ED 2112
7th HOS PC HOME 1894
8th ED HOS PC HOME 1645
9th HC HOME 1489
10th PC ED HOME 1374

Table 2.2: The ten most frequently occurring patient journeys for the population aged 65-74
(taken from a sample of 100,000 persons).

In order to get more insight into the system’s sub-groups, the distribution of care trans-
itions and Lorenz curve for the time spent in the system distinguished in sub-groups are
provided in Figures 2.7 and 2.8.

Figure 2.7: Exploring variations in care transition frequency distribution: a comparative
analysis between (sub-)populations.

2.A.2 Process maps

The remaining process maps of other sub-groups can be found in Figure 2.9 to Figure
2.13 below.
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Figure 2.8: Interpreting the Lorenz curve: a comparative analysis of patient journey time
allocation between (sub-)populations. The curve illustrates the cumulative distribution of
time spent across patient journeys, highlighting differences in healthcare utilization patterns
among older adults.

Figure 2.9: Process map of 80% of the most frequently occurring journeys of the 65-74
population (taken from a sample of 100,000 persons), the number above the lines show how
often that transition occurs in the sample, given an 80% coverage.
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Figure 2.10: Process map of 80% of the most frequently occurring journeys of the 75-84
population (taken from a sample of 100,000 persons), the number above the lines show how
often that transition occurs in the sample, given an 80% coverage.

Figure 2.11: Process map of 80% of the most frequently occurring journeys of the 65+
population with medicine use between 0 and 4 (taken from a sample of 100,000 persons), the
number above the lines show how often that transition occurs in the sample, given an 80%
coverage.
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Figure 2.12: Process map of 80% of the most frequently occurring journeys of the 65+
population with medicine use between 5 and 9 (taken from a sample of 100,000 persons), the
number above the lines show how often that transition occurs in the sample, given an 80%
coverage.

Figure 2.13: Process map of 80% of the most frequently occurring journeys of the 65+
population with medicine use higher than or equal to10 (taken from a sample of 100,000
persons), the number above the lines show how often that transition occurs in the sample,
given an 80% coverage.
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CHAPTER 3. SURVEY ON ORGANIZATIONAL FEATURES AND DATA
ANALYSIS OF INTERMEDIATE CARE

Abstract

Objective: Short-Term Residential Care (STRC) is a recent, bed-based care concept
for older adults aimed at avoiding nursing home admission in the Netherlands. We aim
to describe characteristics of patients admitted to STRC and the main organizational
differences between facilities in the Netherlands.

Method: Patient characteristics were identified using a national STRC database (2018
and 2019). Organizational comparisons of STRC facilities were collected through a cross-
sectional email survey sent to all facilities.

Results: Of the 68,682 older adults admitted to STRC, patients were mostly female
(65%), living alone (64%), with at least 10 medications prescribed (60%). Of the 36,660
patients admitted in 2018, 43.4% died within 24 months and 25.5% are living in a nursing
home. Of the 176 STRC facilities that responded to the email survey, 30.1% delivered
care at an independent ward, 27.3% were within a geriatric rehabilitation care ward, and
33.5% at a ward in long-term care. The median number of beds was 8, with a range
from 1 to 40. Most facilities admitted patients in evenings, nights, or weekends. Almost
all wards employed registered nurses and paramedics.

Conclusion: Patients admitted to STRC have multiple medical problems, suggested by
the high number of medications, and often have palliative care needs. Facilities providing
STRC differ by the location of the ward, the number of beds, and frequency of medical
rounds and multidisciplinary consultations. An important insight is the high mortality
rate of older adults in the year after admission to STRC. It is important to develop care
pathways to provide older adults with reablement, but also observation and diagnostics
for long-term care and palliative care. Future research should focus on the outcomes of
these care pathways and which older adults benefit from them.
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3.1 Introduction

Over the last decade, European countries have reformed Long-Term Care (LTC) with
a trend shifting from residential care towards home care and community care [164].
Residential care facilities have been reduced in number because of policies aiming for
deinstitutionalization. To enable older adults to live independently, several countries
implemented preventive and rehabilitation strategies [1, 88, 155, 164, 196].
In 2015, the Dutch government reorganized the health care system because of rising
health care expenses [108]: LTC in nursing homes is from then on indicated only for
patients who are in need of care 24 hours a day because of physical care needs and
problems with self-management. The government wanted older adults to live as long as
possible at home, with care close by. It was expected that older adults would need more
often short term admissions for medical problems, with the goal to return home [85].
To address this care gap, a new care concept was implemented: Short-Term Residential
Care (STRC). The target group consisted of older adults with general health problems
that do not require admission to hospital for specialist care but that also cannot be treated
at home. The goal was to enable older adults to return home and live independently in the
community [165]. However, no national guidelines were provided for STRC and it soon
appeared that the goal of STRC to support older adults in living longer independently
at home was not met: in 2019, less than 50% of patients admitted to STRC returned
home [181].
A previous qualitative study in three hospitals and eight nursing homes providing STRC in
Amsterdam showed that older adults admitted to STRC had multiple complex problems
in the medical, functional, psychological and social domains [172]. Advance care planning
in the home situation is often lacking and patients often have a longer existing functional
decline. This results in discharge to a nursing home instead of home, or even hospice
care. Because of the complex problems, staff experienced that the tariff for STRC was
inadequate to provide the right treatment and care. Further, that study found that the
participating STRC facilities showed multiple organizational differences [172], especially
in availability of qualified staff (nurses, paramedics and physicians), admission possibilities
during the evening, night and weekend, and in the frequency of medical rounds and
multidisciplinary consultations. As that study was only qualitative and focused on one
city, it is unclear how STRC is provided on a national level and if other facilities have
the same needs of a higher tariff, qualified personnel and advance care planning.
Therefore, the aim is to describe what the patient population of STRC looks like at a na-
tional level and whether the organizational differences between facilities also apply. If we
know the patient population using STRC and the different organizational characteristics
of facilities providing STRC at a national level, it is possible to compare outcomes such
as discharge destination and length of stay between facilities in future research. This will
enable the development of specific strategies to improve care. Using a national database
of patients admitted to STRC and by distributing an exploratory national online survey,
in this chapter, we address the following research questions:
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• What are the characteristics of patients admitted to STRC in the Netherlands?

• What are the main organizational differences between individual facilities providing
STRC in the Netherlands?

3.2 Methods

This was an observational, cross-sectional descriptive study. To describe the charac-
teristics of patients admitted to STRC, we used the national database of Statistics
Netherlands (SN). To describe the main organizational differences between individual
facilities providing STRC, we distributed an online survey. Below, first we will describe
the different tariffs of STRC, before elaborating on the study population, outcomes and
statistical analysis of these two study methods.

3.2.1 Classification of STRC

STRC is bed-based care for general health problems with the goal to enable (older)
adults to return home and live independently in the community. There are three different
tariffs for STRC: regular, high-complex and hospice care. In STRC-regular the medical
supervisor is the General Practitioner (GP) and only Activities of Daily Living (ADL)-care
is provided by the facility. Paramedic treatment is according to the payment structure
of the health insurer, as if the patient were at home. In the tariff for STRC-regular
no treatment is included. STRC-regular is for patients who are not in need of specific
paramedic treatment, but temporarily need more care than homecare can provide. For
STRC-high complex the elderly care physician is the medical supervisor and up to 90
minutes per week of (para)medic treatment is funded. The elderly care physician is a
medical practitioner who has specialized as a primary care expert in geriatric medicine
[101] and has the goal to maintain or improve quality of life for older adults and chronically
ill adults [167]. STRC-high complex is for patients who are not only in need of increased
care, but also need (multidisciplinary) treatment or rehabilitation at a slower pace than
in Geriatric Rehabilitation (GR). Third, STRC-hospice care is provided to patients in the
last three months of their lives, the medical supervisor can be the nursing home physician
or the GP. In STRC hospice care, 180 minutes of (para)medic treatment per week is
funded.

3.2.2 National database

For the description of characteristics of the patients using STRC, a cohort was construc-
ted through data linkage of multiple databases of SN [39]. We used a database of care
expenses of all adults (18 years and older) in the Netherlands to select adults who used
STRC in 2018 and 2019 to construct our study cohort.
The database of this study cohort was linked to databases with our main outcomes: age,
gender, income, medication use, care utilization from 2017 to 2019, and cause of death.
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The number of medications is registered as the total number of different drugs used in
a year, excluding drugs prescribed during a hospital or nursing home admission. The
database of care expenses contains the costs made in a whole year, but not the dates
when these costs are made. This makes it possible to describe care utilization, but not
the order in which care is used or the duration of the used care. Drugs are described
using the ATC-code [130]. The cause of death is registered with the ICD-10 coding
system [83].

3.2.3 National email survey

We developed a survey based on the different characteristics of STRC-facilities in Ams-
terdam [172]. We followed the STrengthening the Reporting of OBservational studies in
Epidemiology (STROBE) checklist for the reporting of this observational research and
the Checklist for Reporting of Survey Studies (CROSS) [157, 177]. The survey ques-
tions were composed with a physician elderly care with experience in STRC and GR and
a nurse practitioner working in STRC. Further, the Dutch association of elderly care
physicians (Verenso) [184], the National Health Care Institute (Zorginstituut) [200], the
Dutch federation for long term care organizations (Actiz) [4] and the Dutch Healthcare
Authority (DHA) provided feedback on the survey. The survey, consisting of 30 ques-
tions, was built in Limesurvey, an online survey program [107]. The questions were in
Dutch and varied in closed and open form.
The survey addressed the following main areas through multiple questions: character-
istics of the respondent; demographics of intermediate care facility; characteristics of
the facility; specialization in specific patient groups; possibilities for patient admission;
team organization and availability of paramedics; organization of care; use of guidelines
in delivery of STRC (open question); discharge procedure; vision about target group and
possible improvements for intermediate care (open question). The complete question-
naire is available upon request.

3.2.4 Participant recruitment for online survey

The survey was distributed between December 2019 and February 2020 amongst health-
care professionals working in STRC in the Netherlands. No national list of STRC providers
exists. To reach healthcare professionals working in STRC, the survey was shared online
on social media and newsletters of associations of health care organizations from nursing
home physicians, nurses and general practitioners. Secondly, email addresses of providers
of STRC were collected from www.zorgkaartnederland.nl, designed by the Dutch Patient
Federation [137].

3.2.5 Sample size calculation survey

In total, 390 health care organizations in the Netherlands provide STRC [3], but it is
unknown at how many locations this type of care is provided. For a representative sample
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of all organizations, we would need a sample size of 196 respondents working in different
STRC-facilities for the survey to be representative [166].

3.2.6 Analysis

Data of characteristics of adults admitted to STRC are reported as mean with standard
deviation (SD) and count with percentages as appropriate. Data was analyzed with R
(Version R-4.0.5). For survey data, any doubles would be manually excluded by checking
the timing of the respondents or if an incomplete response was present. Also surveys
with an unknown facility or surveys that were filled in for multiple facilities at once were
manually excluded. Results were presented in counts with percentages. Data from the
survey was analyzed in SPSS (IBM SPSS Statistics for Windows, Version 26.0 Armond,
NY: IBM Corp).

3.3 Results

First, we present the characteristics of older adults in STRC based on the national
healthcare data, and thereafter the characteristics of the STRC organizations based on
the national survey.

3.3.1 Characteristics of older adults in STRC

Table 3.1 shows the baseline characteristics of older adults admitted to STRC in 2018
and 2019. In total, 68,682 older adults were admitted to STRC in 2018 and 2019. Most
patients admitted were female (64.7% in 2018, 65.0% in 2019), lived alone (64.1% in
2018, 64.2% in 2019) and about half of the patients had a low income (50.4% in 2018,
49.2% in 2019). Almost all patients use more than five different types of medication.
In 2018 68.6% used ten or more different drugs and in 2019 60.8% used ten or more
different drugs. Over a third of the patients admitted uses psychotropic drugs (2018:
38.6%, 2019: 36.5%).
Table 3.2 describes the longitudinal care utilization and mortality of older adults admitted
to STRC in 2018. The table describes their care expenses in the year prior to admission
(2017), the year of admission (2018) and the year after admission (2019). Almost all
older adults visit the hospital in the year before and after the admission to STRC. 33.2%
of patients using STRC are admitted to a long-term care facility in the year of STRC and
29.7% die in the same year. The year after admission, from the older adults that are still
alive, 25.5% are living in a LTC facility, 11.3% receive LTC at home and another 19.4%

* Low income: ≤140% of social minimum income, middle income: 140%-200% of social minimum
income, high income: ≥200% of social minimum income.
** Based on ATC-code system, does not include medication provided in hospitals or under the Long-
Term Care Act (LTCA) in nursing homes.
‡ Based on ATC Codes N05A (antipsychotics), N05B (anxiolytics), N05CD (benzodiazepine), N06A
(antidepressants) and N06C (antidepressants in combination with psycholeptics).
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2018 2019
N 36,660 36,613
Male, N (%) 12,994 (35.3) 12,813 (35.0)
Age, mean (SD) 79.4 (10.8) 79.1 (10.9)

Income of household (N ,%)*
Low income 18,508 (50.4) 18,014 (49.2)
Middle income 11,048 (30.1) 11,098 (30.3)
High income 6,891 (18.7) 7,221 (19.7)
Living in institution 218 (0.6) 215 (0.6)
Unknown 76 (0.2) 65 (0.2)

Living situation, N (%)
Living alone 23,502 (64.1) 23,505 (64.2)
Living together 12,864 (35.9) 12,828 (35.0)
Living in institution 218 (0.6) 215 (0.6)
Unknown 76 (0.2) 65 (0.2)

Number of drugs, N (%)**
0 643 (1.7) 566 (1.4)
1-4 2,750 (7.5) 2,887 (7.9)
5-9 10,175 (27.8) 10,906 (29.8)
10-14 12,940 (35.3) 13,005 (35.5)
15-19 7,397 (20.1) 6,917 (18.9)
>20 2,755 (7.5) 2,332 (6.4)

Number of older adults using one or
more psychotropic drugs, N (%)‡

14,119 (38.5) 13,361 (36.5)

Table 3.1: Adults admitted to STRC in 2018 and 2019 in the Netherlands.

die. Of all patients admitted in 2018 to STRC, 15,887 (43.3%) died in the same or
following year. The two major causes of death were cancer (38.8%) and diseases of the
cardiovascular system (22.7%). In Appendix 3.A.1, Table 3.5 can be found describing
all causes of death.

3.3.2 National survey characteristics of organization of STRC

We included 176 surveys for analysis. Figure 3.1 shows the flowchart of inclusion. Par-
ticipants of the survey were mainly elderly care physicians (33.5%), managers (22.2%),
nurses (15.9%) and staff working in front office (11.4%). The front office is responsible
for the planning of new admissions. 78.4% of the participants were directly involved
in patient care at a STRC-ward. Full description on the profession of respondents is
described in Appendix 3.A.2 in Table 3.6.
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2017 2018 (year of
admission)

2019

N=36,660 N=36,660 N=25,758
GP consultation, N (%) 34,242 (93.4) 34,305 (93.5) 19,818 (76.9)
Home care, N (%) 19,835 (54.1) 27,805 (75.8) 11,516 (44.7)
Hospital admission, N (%)*** 34,564 (94.2) 35,331 (96.4) 22,631 (87.9)
Long term care at
nursing home, N (%) 28 (0.8) 12,181 (33.2) 6,560 (25.5)

Long term care at home, N (%) 28 (0.8) 758 (2.1) 4,146 (11.3)
Death, N (%) NA 10,902 (29.7) 4,985 (19.4)

Table 3.2: Longitudinal care utilization and mortality of older adults admitted to STRC in
2018 in the Netherlands.

Table 3.3 describes the organizational structure and the contractual arrangement of the
participating facilities. The participating facilities were distributed according to number
of inhabitants over the 12 provinces of the Netherlands. 141 (80.1%) of participating
wards provide STRC high complex, with a median number of beds of 8 (interquartile
range 3-12, minimum 1, maximum 40). 85 facilities (48.3%) provide STRC regular care
with a median number of beds of 3 (interquartile range 2-6, minimum 1, maximum 34).
83 (47.2%) facilities provide STRC hospice care, with a median number of beds of 3
(interquartile range 2-5, minimum 1, maximum 30). 153 (86.9%) of these facilities were
Nursing Home (NH), Assisted Living Facilities (ALF) or both. In general, NH employs
elderly care physicians who treat the residents, while in ALF the residents are treated by
their GP. In general, ALF do not employ their own physicians and in practice multiple
general practitioners treat residents. 92 (52.3%) of the facilities were smaller than 100
patients or residents. 79 (44.8%) also provided GR, 118 (67%) LTC for older adults with
dementia and 131 (74%) LTC for older adults with a somatic disorder. The location of the
STRC beds showed a large variation between organizations, but also within organizations:
to the question where the beds were located organizations indicated multiple locations
for one facility. Organizations have a combination of dedicated wards for STRC (30.1%),
a shared ward with LTC (33.5%), GR (27.3%) or the beds of STRC are spread over the
wards of the facility (19.3%).
In STRC high complex, the elderly care physician was in 87.2% the responsible physician,
while in STRC regular the GP was in 90.6% the responsible physician. For STRC hospice
care the elderly care physician is the responsible physician in 69.9% of the facilities, the
GP in 22.9% and in 4.8% both were involved. Most STRC high complex (86.3%)
and hospice care (89.2%) have the daily availability of a registered nurse. In STRC

* We included surveys which were completed until the 14th question to make sure we had enough
information of the facility. Questionnaires which were ended before the 14th question were excluded.
** If multiple respondents answered the questionnaire for the same facility we included the question-
naire which was answered most of the questions. If there were multiple questionnaires completed, we
included the first completed questionnaire.
*** Outpatient clinic, emergency department and admission.
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N = 176
Facility, N (%)
Nursing Home (NH) 100 (56.8)
Assisted Living Facility (ALF) 46 (26.1)
NH and ALF 7 (4.0)
Rehabilitation center 7 (4.0)
Hospital 10 (5.7)
Hospice 2 (1.1)
Care hotel 4 (2.3)

Number of residents or patients
<51 37 (21)
51-100 55 (31.3)
>100 82 (46.6)
Don’t know 2 (1.1)

Other types of care delivered at facility (multiple response)
Geriatric rehabilitation care 79 (44.9)
LTC | psychogeriatric 118 (67.0)
LTC | psychiatric gerontology 34 (19.3)
LTC | somatic care 131 (74.4)
Respite care 35 (19.9)
Sheltered home 36 (20.5)
Home care 50 (28.4)

Province
Noord-Holland 24 (13.6)
Zuid-Holland 37 (21.0)
Utrecht 9 (5.1)
Groningen 7 (4.0)
Friesland 10 (5.7)
Flevoland 5 (2.8)
Gelderland 23 (13.1)
Overijssel 15 (8.5)
Drenthe 5 (2.8)
Zeeland 6 (3.4)
Noord-Brabant 24 (13.6)
Limburg 11 (6.3)

Table 3.3: Organizational structure and contractual arrangement of facilities providing short-
term residential care in the Netherlands participating in survey.
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Figure 3.1: Flowchart of inclusion of surveys.

regular 59.0% of the facilities a nurse is available daily. 99.4% of STRC facilities have
the availability of a physical therapist, 94.8% of an occupational therapist, 90.8% of a
dietician, 82.1% of a speech therapist, 85.0% of a psychologist and 53.8% of a social
worker (see Appendix 3.A.3, Table 3.7).
Table 3.4 shows the operating practices of the participating STRC facilities. On all items
we saw a lot of variation: admission outside office hours, frequency of medical consulta-
tion and frequency of multidisciplinary team meetings. Specialization was uncommon for
STRC facilities. Only 12 facilities described a specialization, these were high complex
or hospice facilities. They specialized in patients with cognitive impairment, cognitive
impairment and alcohol abuse, psychiatric problems, or tracheal cannula or peripherally
inserted central catheters, or specialized in emergency admissions or as an observation
unit.

Operating practice High Complex Low Regular Hospice Care

N=141 N=85 N=83
Admission of patients outside office hours, N (%)
Yes, evening 98 (69.5) 44 (48.2) 43 (51.8)
Yes, night 63 (44.7) 23 (27.1) 25 (30.1)
Yes, weekend 97 (68.8) 46 (54.1) 45 (54.2)
No admission outside office hours 28 (19.9) 26 (30.6) 26 (31.3)
Don’t know 9 (6.4) 10 (11.8) 8 (9.6)

Frequency of physician’s visit, N (%)
Weekly 80 (58.0) 11 (13.4) 56 (69.1)
Every two weeks 15 (10.9) 8 (9.8) 2 (2.5)
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Table continued from previous page

Operating practice High Complex Low Regular Hospice Care

N=141 N=85 N=83
Every three weeks 0 1 (1.2) 0
Every month 1 (0.7) 1 (1.2) 0
When needed, regular moment 1 (0.7) 0 1 (1.2)
When needed, no regular moment 32 (23.2) 52 (63.4) 16 (19.8)
None 0 0 0
Other 3 (2.2) 9 (11.0) 6 (7.4)
Don’t know 6 (4.3) 0 0

Frequency patient chart review, N (%)
Weekly 98 (71.0) 14 (17.1) 49 (60.5)
Every two weeks 6 (4.3) 4 (4.9) 1 (1.2)
Every month 1 (0.7) 4 (4.9) 0
When needed, regular moment 2 (1.4) 2 (2.4) 4 (4.9)
When needed, no regular moment 16 (11.6) 38 (46.3) 12 (14.8)
None 1 (0.7) 2 (2.4) 1 (1.2)
Don’t know 14 (10.1) 18 (22.0) 14 (17.3)

Frequency of multidisciplinary team meetings, N (%)
Once per week 50 (36.0) 14 (16.9) 33 (40.7)
Once every 2 weeks 36 (25.9) 12 (14.5) 17 (21.0)
Once every 3 weeks 13 (9.4) 2 (2.4) 2 (2.5)
Once every month 9 (6.5) 4 (4.8) 5 (6.2)
Less than every month 7 (5.0) 7 (8.4) 7 (8.6)
When needed 8 (5.8) 1 (1.2) 1 (1.2)
None 0 32 (38.6) 0
Don’t know 5 (3.6) 11 (13.3) 5 (6.2)
Other 4 (2.8) 0 0

Goal setting with planned discharge date?, N (%)
Yes 120 (85.1) 60 (70.5) NA
No 10 (8.2) 13 (15.3) NA
Don’t know 4 (2.8) 5 (5.9) NA
Other 3 (2.1) 3 (3.5) NA
Missing 4 (2.8) 4 (4.7) NA

Table 3.4: Operating practices of facilities providing short-term residential care in the Neth-
erlands participating in survey.

STRC facilities used guidelines for the comprehensive geriatric assessment, multidiscip-
linary consultations, GR, oncologic care and palliative care. Staff is missing guidance
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in the difference between GR and STRC: both admit frail older adults, but the tariff
for GR is higher than for STRC. Some staff pointed out that STRC and GR should be
combined or show a lot of similarities. Almost all staff pointed out that the tariff is not
sufficient for reablement or observation and diagnostics in STRC. Also, a lot of the older
adults are in need of LTC. Staff wanted guidelines for how to triage, for reablement,
observation and for responsibilities and quality in STRC. Some staff pointed out they
wanted their STRC beds to be clustered on a dedicated ward, instead of scattered over
the facility.

3.4 Discussion

We aimed to describe the patient population using STRC in the Netherlands and describe
the organizational differences using a national database and an exploratory survey.
STRC is mainly used by females and older adults who live alone. Over 60% of patients
used more than ten different drugs in the year of admission, suggesting multimorbidity,
and a third used psychotropic drugs. Further, patients are very vulnerable, since 43%
of the patients died in the same year of admission or in the year after the admission to
STRC. STRC is mainly delivered in NH and ALF. Facilities locate their STRC beds
heterogeneously: there is almost an equal division of facilities that locate their STRC
beds on a dedicated STRC ward, a ward with GR or a ward with LTC. A fifth of
the participating organizations also indicated the beds for STRC are scattered over the
different wards of the facility. Staffing is similar over the participating facilities with good
availability of a registered nurse and paramedic care. The participating organizations
differed in how often they provide medical and multidisciplinary consultations.
This study confirmed the results of our previous qualitative study of patient cases in
Amsterdam. These also concerned mainly older adults living alone, with a lot of medical
problems and often psychiatric diseases. Patients admitted to STRC have a comparable
age and gender to patients admitted to community hospitals in the UK [64] and patients
admitted to post-acute care in skilled nursing facilities in the US [189]. Of the patients
in post-acute care in the US two third have eleven or more chronic conditions, which
might reflect the high medication use of the Dutch population. Death rates in STRC are
comparable to the one-year-mortality rate in community hospitals, however the number
of patients dying of cancer in STRC is higher than of the community hospitals in the
UK [64]. Death rates in intermediate care or community rehabilitation have been rising
in the UK the last years. It has been advocated to integrate palliative care services for
older people, as the complexity of cases being cared for in the community is increasing
[8].
The organization of STRC is heterogeneous, which makes it difficult to compare out-
comes between facilities. This is also the case for intermediate care facilities in the UK
[112, 122]. Two studies that tried to evaluate the effectiveness of different programs of
intermediate care in the UK failed, because they did not reach a sufficient sample size [21,
197]. Future research should focus on different care pathways of STRC and their out-
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comes. Staff indicated a higher tariff is needed and the development of care pathways for
STRC. Future guidelines should focus on two patient categories: (1) reablement and (2)
observation for cognitive problems. Reablement could be, as suggested by staff, located
near geriatric rehabilitation, while older adults admitted for cognitive observation could
profit from being located near LTC. The higher tariff in the reablement care pathway
could be used for more physical therapy, while in the observation care pathway this could
be used for psychological observation and support of social work. The description of
these pathways with quality indicators will make it easier to compare outcomes between
facilities. Further, palliative care should have an important role in these care pathways,
since the high mortality rate of older adults admitted to STRC.

3.4.1 Strengths and limitations

Our study is the first national overview of the patients admitted and organization of
care in short term residential care in the Netherlands. We objectified the differences and
similarities of facilities providing STRC in the Netherlands, further we gave insight in the
needs of staff in STRC. This study makes it possible to compare STRC to other types
of intermediate care in the world.
A limitation is that the dataset of care costs does not provide admission dates: we were
not able to calculate the exact one-year mortality, nor were we able to determine the
order in which care was used during the year. Because the costs did not describe if an
older adult was using STRC regular, high complex or hospice care we could not analyze
the mortality rate of patients of the separate types of STRC. However, we expect the
total amount of STRC hospice care to be small according to our survey results. Most
of the facilities provide STRC high complex and these wards are also larger than wards
of STRC low complex and hospice care. The high mortality rate is in this way not only
explained by the hospice care admissions. Also, it was not possible to determine different
patient characteristics between STRC regular, high and hospice care.
Because it is unclear how many facilities provide STRC in the Netherlands we do not
know if our sample size is representative. We made an estimation of approximately 400
different locations in the Netherlands, which would mean we needed a sample size of 196
locations. However, the distribution of the different locations is representative for the
number of inhabitants of the different provinces of the Netherlands. Also, we had a lot
of incomplete surveys of general practitioners who also treat patients in STRC, which
could reflect a selection bias of facilities.
This first national study on STRC confirmed a complex patient population and the large
differences in operating practices such as medical and multidisciplinary consultations. An
important insight is the high mortality rate of older adults in the year after admission to
STRC. It is important to develop care pathways and guidelines that make it possible to
provide older adults with reablement, but also provide observation and diagnostics for
LTC and palliative care. Future research should focus on the outcomes of these care
pathways and which older adults benefit from them.
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3.A Appendix

3.A.1 Causes of death

The causes of death in the STRC facilities were analyzed using the SN national database.
The results of this analysis are provided in Table 3.5.

Causes of death 2018,
N=10,902

2019,
N=4,985

Cause of death top 10 in 2018, N (%)
Lung cancer 1,165 (10.6) 218 (4.5)
Heart failure 624 (5.7) 305 (6.1)
Breast cancer 322 (2.9) 100 (2.0)
Prostate cancer 310 (2.8) 103 (2.1)
Family history of stroke 299 (2.7) 138 (2.8)
Colon cancer 293 (2.7) 86 (1.7)
Dementia 287 (2.6) 355 (7.1)
Pneumonia 260 (2.4) 167 (3.4)
COPD 237 (2.2) 145 (2.9)
Fall 188 (1.7) 116 (2.3)

Top 5 cause of death 2018, major groups ICD
C - Neoplasms 4,940 (45.3) NA
I - Disease of circulatory system 2,335 (21.4) 1,239 (24.9)
J - Disease of respiratory system 845 (7.8) 1,279 (25.7)
F - Mental, behavioural and neurodevelopmental disorders 366 (3.4) 446 (8.9)
K - Diseases of the digestive system 321 (2.9) 276 (5.5)

Top 5 cause of death 2019, major groups ICD
C - Neoplasms NA 1,239 (24.9)
I - Diseases of circulatory system NA 1,279 (25.7)
J - Diseases of the respiratory system NA 525 (10.5)
F - Mental, behavioural and neurodevelopmental disorders NA 446 (8.9)
G - Diseases of the nervous system NA 276 (5.5)

Cause of death, major groups ICD, N (%)
A - Certain infectious and parasitic diseases 208 (1.35) NA
C - Neoplasms 6,179 (40.2) 1,239 (24.9)
D - Diseases of the blood and blood-forming organs 338 (2.2) 1,279 (25.7)
E - Endocrine, nutritional and metabolic diseases 305 (2.0) 525 (10.5)
F - Mental, behavioural and neurodevelopmental disorders 812 (5.3) 446 (8.9)
G - Diseases of the nervous system 565 (3.7) 276 (5.5)
I - Diseases of the circulatory system 3,614 (23.5) 1,370 (8.9)
J - Diseases of the respiratory system 1,370 (8.9) 477 (3.1)
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Table continued from previous page

Causes of death 2018,
N=10,902

2019,
N=4,985

K - Diseases of the digestive system 477 (3.1) 163 (1.1)
M - Diseases of the musculoskeletal and connective tissue 487 (3.2) 441 (2.9)
N - Diseases of the genitourinary system 389 (2.5) NA
R - Symptoms, signs, and abnormal findings 441 (2.9) NA
W - External causes of morbidity NA NA

Table 3.5: Causes of death.

3.A.2 Profession of respondents

In the survey study, the profession of the respondents were obtained. The results are
provided in Table 3.6.

N=176
Profession N (%)
Elderly care physician 59 (33.5)
General practitioner 4 (2.3)
Resident elderly care 2 (1.1)
Physician assistant 5 (2.8)
Nurse 28 (15.9)
Health care assistant 4 (2.3)
Physical or occupational therapist 2 (1.1)
Social worker 1 (0.6)
Manager 39 (22.2)
Front-office 20 (11.4)
Account manager 5 (2.8)
Board member health care organization 3 (1.7)
Team coach 3 (1.7)
Advisor quality and care 1 (0.6)
Involved in direct patient care at ward 138 (78.4)

Table 3.6: Professions of respondents.

3.A.3 Staffing and skill mix

In the survey study, the staffing and skill mix of the STRC facilities were obtained. The
results are provided in Table 3.7.
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Profession/Question High Complex Regular Hospice Care

N=141 N=85 N=83
Responsible/supervising physician, N (%)
Elderly care physician 123 (87.2) 8 (9.4) 58 (69.9)
General practitioner 15 (10.6) 77 (90.6) 19 (22.9)
Specialist elderly care or GP 1 (0.7) 4 (4.8)
Specialist elderly care or physician assistant 2 (1.4) 1 (1.2)
Don’t know 1 (1.2)
Other 1 (1.2)

In charge of daily care (multiple response), N (%)
Elderly care physician 96 (68.1) 5 (5.9) 50 (60.2)
General practitioner 13 (9.2) 41 (48.2) 17 (20.5)
Resident 20 (14.2) 12 (14.5)
Intern 21 (14.9) 1 (1.2) 6 (7.2)
Physician assistant 41 (29.1) 8 (9.4) 17 (20.5)
Nurse 60 (42.6) 48 (56.5) 40 (48.2)
Health care assistant 55 (39.0) 56 (65.9) 34 (41.0)
Don’t know 2 (1.4) 2 (2.4) 1 (1.2)
Other 1 (0.7) 2 (2.4) 1 (1.2)

Availability physician assistant, N (%)
Daily 14 (9.9) 7 (8.4)
Weekly 40 (28.4) 7 (8.2) 20 (24.1)
Monthly 5 (3.5) 2 (2.4) 1 (1.2)
Consult 21 (14.9) 16 (18.8) 16 (19.3)
Never 54 (38.3) 51 (60.0) 32 (38.6)
Don’t know 5 (3.5) 7 (8.2) 5 (6.0)
Missing 2 (1.4) 2 (2.4) 2 (2.4)

Availability skilled nurse level 5*, N (%)
Daily 38 (27.0) 9 (10.6) 28 (33.7)
Weekly 31 (22.0) 21 (23.5) 16 (19.3)
Monthly 2 (1.4) 3 (3.5) 2 (2.4)
Consult 23 (16.3) 10 (11.8) 13 (15.7)
Never 37 (26.3) 33 (38.8) 20 (24.1)
Don’t know 8 (5.7) 8 (9.4) 2 (2.4)
Missing 2 (1.4) 2 (2.4) 2 (2.4)

Availability skilled nurse level 4*, N (%)
Daily 119 (84.4) 49 (57.6) 71 (85.5)
Weekly 15 (10.6) 16 (18.8) 7 (8.4)
Monthly 0 3 (3.5) 1 (1.2)
Consult 1 (0.7) 3 (3.5) 0
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Table continued from previous page

Profession/Question High Complex Regular Hospice Care

N=141 N=85 N=83
Never 1 (0.7) 3 (3.5) 0
Don’t know 3 (2.1) 9 (10.6) 2 (2.4)
Missing 2 (1.4) 2 (2.4) 2 (2.4)

Availability community nurse, N (%)
Daily NA 4 (4.7) NA
Weekly NA 5 (5.9) NA
Monthly NA 3 (3.5) NA
Consult NA 16 (18.8) NA
Never NA 45 (52.9) NA
Don’t know NA 10 (11.8) NA
Missing NA 2 (2.4) NA

Who is mainly providing ADL-care?, N (%)
All levels 50 (35.5) 19 (22.4) 30 (36.1)
Skilled nurse level 5* 2 (1.4) 0 0
Skilled nurse level 4* 20 (14.2) 5 (5.9) 22 (26.5)
Registered level 3* 61 (43.4) 50 (58.8) 26 (31.3)
Health assistant level 2* 0 1 (1.2) 0
Other 2 (1.4) 2 (2.4) 2 (2.4)
Don’t know 4 (2.8) 6 (7.1) 1 (1.2)
Missing 2 (1.4) 2 (2.4) 2 (2.4)

Availability of paramedics, N (%) All levels together, total N=173
Physical therapist 172 (99.4)
Occupational therapist 164 (94.8)
Dietician 157 (90.8)
Speech therapist 142 (82.1)
Psychologist 147 (85.0)
Social worker 93 (53.8)
Pharmacist 92 (53.2)
Activity support 89 (51.4)

Table 3.7: Staffing and skill mix in facilities providing short term residential care in the
Netherlands.

* In the Netherlands, skilled nurses and registered nurse assistants can be trained according to different
levels with different responsibilities.
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CHAPTER 4. MODELLING AND SIMULATION OF WAITING TIMES IN
INTERMEDIATE CARE

Abstract

Objective: The current waiting times for Intermediate Care in the Netherlands prohibit
timely access, leading to unwanted and costly hospital admissions. We propose alternative
policies for improvement of Intermediate Care and estimate the effects on the waiting
times, hospitalization, and the number of patient replacements.

Method: For our case study, data was used of older adults who received Intermediate
Care in Amsterdam, The Netherlands, in 2019. For this target group, in- and outflows
and patient characteristics were identified. A process map of the main pathways into and
out of the Intermediate Care was obtained and a Discrete Event Simulation was built. We
demonstrate the use of our Discrete Event Simulation for Intermediate Care by evaluating
possible policy changes for the real-life case study Amsterdam.

Results: By means of a sensitivity analysis with the Discrete Event Simulation, we show
that in Amsterdam the waiting times are not a result of a lack in bed capacity, but are
due to an inefficient triage and application process. Older adults have to wait a median
of 1.8 days for admission, leading to hospitalization. If the application process becomes
more efficient and evening and weekend admissions are allowed, we find that unwanted
hospitalization can be reduced substantially.

Conclusion: In this chapter, a simulation model is developed for Intermediate Care that
can serve as a basis for policy decisions. Our case study shows that the waiting times for
healthcare facilities are not always solved by increasing bed capacity. This underlines the
necessity for a data-driven approach to identify logistic bottlenecks and finding the best
ways to solve them.
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4.1 Introduction

Older adults admitted to the hospital are at risk of adverse health outcomes, such as
infections, delirium, falls and even death [30, 35, 49]. Moreover, prolonged hospital
stays caused by delayed transfers of care often lead to adverse events [106, 140] and high
costs [82]. In response to this, during the last decade many governments implemented
Intermediate Care (IC) with the aim to avoid hospital admissions and to support older
adults in their recovery after hospital admission. Currently, inadequate access to IC
hinders the potential benefits of the facilities to the care system [163]. If we know what
IC capacity is needed and which policies perform best, we can prevent hospital admissions
and the consequent high costs.
It is, however, not trivial to determine which policies are the most effective for the
improvement of IC. A solid method that can be used to predict outcomes of policy
changes is Discrete Event Simulation (DES)). With this approach, process characteristics
are identified and modeled as a sequence of events in time. DES is applied to many
healthcare settings, e.g., emergency departments [48] or intensive care [79]. However,
little research has been conducted on simulation of IC facilities. To the best of our
knowledge, no study models IC as a mid-chain care form in which avoidable hospital
admissions are considered as well, which is a necessity for determining the system-wide
policy effects.
In this study, we develop a DES model that can be used to evaluate which policy change
is likely to be the most effective in the prevention of bed-blocking in hospitals and
intermediate care. Using the model, we run a case study for the city of Amsterdam, The
Netherlands. In this study, we address the following research question:

• How can the organization of IC be adjusted such that the number of hospital
admissions, delayed transfers of care and patient transitions are reduced?

4.2 Method

4.2.1 Background

IC is defined by an international panel as a broad range of time-limited services, from
crisis response to support for several weeks or months, that aims to ensure continuity and
quality of care and promote recovery at the interface between hospital and home, care
home, primary care and community services [155]. In the Netherlands, the government
implemented Short-Term Residential Care (STRC) in 2015 as part of major health care
reforms because of rising expenses [108]. STRC is bed-based care for general health
problems that do not require admission to the hospital, but also cannot be treated
at home [171]. The goal of STRC is to enable older adults to return home and live
independently in the community.
In the Netherlands, three types of STRC are provided: low-complex, high-complex and
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hospice care [123]. Low-complex care only provides care in Activities of Daily Living
(ADL) and the general practitioner is the responsible physician. In addition to ADL care,
STRC high-complex provides 1.5 hours of treatment per week such as physical therapy,
medical diagnostics or occupational therapy. STRC hospice care provides care in the last
three months of life.

4.2.2 Flow diagram

The admission control for all STRC locations in The Netherlands is regionally centralized.
For that reason, we use one model at the aggregated level of a complete region. Figure
4.1 shows a flow diagram of the patient journeys through STRC.

Figure 4.1: Current practice flow diagram STRC

In Figure 4.1, we see that admission to STRC occurs via two waiting lists. The first
waiting list (W1) is for admissions from the home situation. The patient is referred by
the General Practitioner (GP) or Emergency Department (ED) and is not in need of
hospital-level care. The second waiting list (W2) is for patients residing in the hospital
(HA) needing extra time to recover in intermediate care. The patients at W1 have
priority over the patients at W2, since W1-patients often have a pressing need for care
that cannot be provided at home. Moreover, patients from the ED need to be admitted to
STRC within the same day, because otherwise a hospital admission is required. After the
stay in STRC, the patient is discharged to home, is discharged to another care provider,
or has died.
Furthermore, because of staff shortages, STRC admissions in the evenings or weekends
are often not possible. For the weekends we have admission data that confirms this, see
Figure 4.2. Finally, a transfer time is needed to do the administration and transfer of an
older adult to the STRC location. By expert discussion, this transfer time was estimated
to be on average 1.5 days.
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Figure 4.2: Number of STRC admissions in 2019 showing a decrease during weekend days.

4.2.3 Data collection

Various data sources containing STRC admissions were collected. In Amsterdam, almost
all STRC care is high-complex, which is therefore the focus of this research. Henceforth,
the term STRC will be used for our focus care type: high-complex STRC. We only used
data from 2019, such that COVID-19 did not affect the patient flows. The following
data sources were used:

• Non-public microdata of Statistics Netherlands (SN) [39]. This data source con-
tained health care expenses at the individual level from which bed occupation,
admissions, Length-of-Stay (LoS) and discharge destinations could be determined.

• Hospital STRC. This data was from an STRC that is located in a hospital. This
STRC functions as a real-life case study for what happens if the admission to
STRC is not hindered by logistic inefficiencies.

• Data from the centralized admission portal. This data source provided us with the
number of STRC beds in Amsterdam and the GP waiting times for STRC.

We needed to receive formal permission to make use of the microdata database, and this
data could only be accessed via a secured portal. Both other datasets were anonymized
and did not contain sensitive patient data. Concerning the ethics: this study does not
fall under the scope of the Medical Research Subjects Act [41].

4.2.4 Alternative policy scenarios

Current organizational problems of the STRC were collected in the study of the previous
chapter [171]. In addition, we consulted employees of the centralized admission portal
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and healthcare organizations facilitating STRC. The problems that were deemed most
urgent were: lack of possibilities to admit patients during the evening and weekends,
missing information during the admission process, shortage of time and money during
an admission to treat patients and lacking adjustments at the home of the older adult
admitted to STRC. These problems were translated into possible process improvements,
which are evaluated in the simulation as scenarios. We distinguish the alternatives (1) in
front, (2) during admission, and (3) at the back. The following scenarios were obtained.

Alternatives in front

Admission Turns (AT). The proposed alternative is to compensate STRC locations for
keeping beds available in the evening for admission by turn. This means that every other
evening/night/weekend day a specific location is responsible for admissions from the GP,
ED or hospital. We model this by allowing 24/7 STRC admissions and a transfer time
of four hours.
Triage Ward (TW). Another scenario is to set up a triage ward, as illustrated in Figure 2.
The triage ward is intended for older patients for which it is unclear what type of care is
needed. The maximum LoS in the triage ward is fourteen days, after which patients are
discharged to STRC or another destination. We model the TW by allowing 24/7 STRC
admissions and a transfer time from the hospital to the TW of four hours. The average
transfer time from the TW to the STRC remains 1.5 days. For a flow diagram of this
scenario, see Figure 4.3. Note here that the inflow refers to the same inflow process as
in Figure 4.1, but now the inflow is first accessing the TW prior to possibly entering IC.

Figure 4.3: Scenario Triage Ward.

Alternative during admission

Higher Tariff (HT). The current tariff that STRC organizations receive from health
insurers is to provide up to 1.5 hours of diagnostics and treatment per week, which is
rather low compared to the high intensity of needed care [171]. The proposed alternative
is to increase the tariff, such that more hours of diagnostics and treatment are possible
and multiple treatment types can be provided in parallel. As a result, the LoS becomes
shorter.
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Alternative at the back

Reduced Bed-Blocking (RBB). Patient discharges can be delayed due to the lack of
timely home adjustments required for the patient to return home. Such home adjust-
ments are for example a stairlift or supporting handles in the shower. In addition, waiting
lines for Long-Term Care (LTC) can be shortened by increased facility capacity or by im-
proved waiting-line management [10]. We model the effect of this policy by a reduced
LoS for the patients that require home adjustments or need LTC.

4.2.5 Simulation

After the process map was obtained and the data was collected, the DES model was
developed. DES is a mathematical technique in which process characteristics are iden-
tified and modeled as a sequence of events in time. Examples of events are the arrival
of a new patient and a patient’s discharge. Using the DES, the impact of alternative
policies can be evaluated. The method DES was the preferred method for this study as
it is a stochastic method capturing individual variability, and thus suitable for estimating
waiting times - which is a key aspect of interest here. More information about the DES
method can be found in the literature [162].
The simulation was built from scratch in Python following the batch mean method. The
warming-up period consisted of 5000 client departures. This number was found to be
sufficient by observing that the mean waiting times were not consistently increasing after
the warming-up period. The batch length consisted of 1000 client departures and the
number of subruns was set to 100 for each scenario.
Using the data, we checked which probability distributions could be used best for model-
ing the arrivals and LoS. The arrival process is modeled as a Poisson process in which we
included some time restrictions. For the ED arrivals, we use evidence from the literature
that most ED patients arrive between 8AM and 12PM [115]. To perform the simulation,
we need to identify the probability distributions underlying the arrival processes and LoS.

Arrivals

For the distribution of the arrivals, we plotted the weekly number of arrivals to IC and
the Poisson distribution that was fit on the data, see Figure 4.4.
Moreover, a chi-square test indicated that the number of arrivals per week can be ac-
cording to a Poisson distribution χ2(df = 15, N = 52) = 11.0, p > .05.

Length-of-Stay

The LoS was identified per outflow type and plotted together with the best fitted prob-
ability distribution, see Figure 4.5.
We tested statistically whether the data could be the realization of the underlying prob-

55



Chapter 4.

Figure 4.4: Density plot with weekly arrivals (bars) and fitted Poisson distribution (line).
Note that the Poisson distribution is only defined at integer values.

(a) Long-term care (gamma) (b) Hospice care (exponential)

(c) Death (exponential) (d) GR (exponential)

(e) Home with adjustments (gamma) (f) Home (exponential)

Figure 4.5: Density plot per outflow type with lengths-of-stay (bars) and best fitted distribu-
tion (line).
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ability distributions. For this, we used the Kolmogorov-Smirnov tests, with as null-
hypothesis that the empirical distributions are sample realizations of the proposed distri-
butions. For all distributions, the null-hypotheses were not rejected at a 95% confidence
level (p > .05).

Model validation

To validate our model, i.e., to check if our current practice simulation represents the
real situation, we compared the distribution of occupied beds resulting from our sim-
ulation with real data based on non-public data from SN. Figure 4.6 shows that the
simulated occupied bed distribution is quite similar to the real data. The mean occu-
pancy is 84% (simulated) versus 85% (real data). The figure also showed that the real
data is slightly more concentrated around the mean than the simulated data. Figure 4.7
shows boxplots of the simulated waiting times until placement in STRC next to the real
waiting times data. The results show that the boxplots are rather similar except for the
lowest quarter. An explanation for this is that the waiting times in the real data are only
on day-basis and not per hour, which leads to 25% of the waiting times to be exactly
zero.

Figure 4.6: Occupied bed distribution Figure 4.7: Waiting times from GP

The outcome measures that we aim to evaluate in the DES are presented and elucidated
in Table 4.1.

4.3 Results

Now, the results are discussed of both the data analysis and the simulation.

4.3.1 Flow data

It should be noted that with the data only realized care journeys could be determined
that might differ from the intended ones because of logistic bottlenecks. For STRC,
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Outcome measure Description
Waiting time hospital The average time between a planned hospital discharge and place-

ment in STRC
Waiting time GP The average time between STRC application by the GP and

placement in STRC
Percentage of non-urgent
(N-U) patients placed within
3 days

The percentage of older adults that are non-urgent, ie patients re-
ferred by the GP or from the hospital, for which the time between
application and placement in STRC is less than 3 days

Percentage of patients
presented at the ED that
need a hospital admission

Percentage of older adults at the ED for which no STRC ad-
mission was possible within the same day, for which a hospital
admission was necessary

Number of patient replace-
ments

The average number of older adult replacements, where we count
admission to STRC, hospital admission from the ED, admission
to the Triage Ward, and STRC discharge as replacements

Number of patients delayed
per day

The average number of older adults per day that are waiting in
a hospital bed for an STRC bed

Table 4.1: Description of outcome measures.

the inflows might be affected by hospital admissions of patients for which timely STRC
admission was not possible. We find in the data of the Hospital STRC in 2019 that 117
patients were transferred from the ED, and 131 patients were admitted after a hospital
admission. This implies that out of the patients who arrived via a care form, the inflow
of older adults from the ED was 47% and from a hospital admission was 53%. Moreover,
from the microdata of SN we also obtain inflow percentages for Amsterdam, of which
25% of the older adults transfer from the ED and 75% from a hospital admission. This
large deviation of inflow percentages from the Hospital STRC might indicate that circa
half of the current ED visits leads to a redundant hospital admission.
The inflow values of the ED and Hospital Admission were identified by the microdata
source, which led to a total of 12.4 older adults’ admissions per week. These were
distributed according to the 47:53 ratio as found in the data, which led to 5.8 and 6.6
admissions per week. The results of the data analysis are provided in Table 4.2. It can
be seen that the LoS for Home Care (HC) with adjustments and LTC is the longest. The
expected reason for this is that patients have to wait before these services are available
before they can be transferred. However, it can also be the case that these patients have
more complex problems, which results in a longer reablement.

4.3.2 Number of beds

Now that we have validated the current practice model in section 4.2.5, we can evaluate
the results of other scenarios. First, we check if the waiting times are the result of a
lack in number of beds. For that purpose, we run the current practice simulation with
varying number of beds. The results are shown in Figure 4.8.
Figure 4.8 shows that, most surprisingly, the current number of beds (128) is not the
cause of the waiting times, since increasing the number of beds does not lead to a
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Parameter Mean value
Inflow requests
General Practitioner 9.4 older adults/week
Emergency Department 5.8 older adults/week
Hospital Admission 6.6 older adults/week

Outflow fraction
Home 57.8%
Home with adjustments 10.7%
Long-Term Care 19.8%
Geriatric Rehabilitation 3.4%
Hospice Care 2.3%
Death 6.0%

Average length-of-stay
STRC Home 31.1 days
STRC Home with adjustments 43.9 days
STRC Long-Term Care 47.8 days
STRC Geriatric Rehabilitation 29.8 days
STRC Hospice Care 22.9 days
STRC Death 22.9 days
Hospital Admission 5.2 days
Number of beds STRC 128

Table 4.2: Flow data describing the inflow, outflow and average length-of-stay of the STRC
facilities.

Figure 4.8: Expected waiting time in days for STRC for varying numbers of beds.
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Current practice 128 2.4 d 1.8 d 79% 51% 2.1 3.3
Admission Turns

128 0.2 d 0.1 d 100% 3% 2.0 0.2
115 3.8 d 0.3 d 88% 33% 2.1 4.6

Triage Ward
TW = 48 80 0.2 d 0.1 d 100% 3% 2.7 0.2
TW = 40 80 3.8 d 0.6 d 85% 30% 2.8 8.1

Higher Tariff
LoS reduction of 30% 128 1.8 d 1.8 d 82% 46% 2.1 2.4
LoS reduction of 30% 100 1.9 d 1.8 d 82% 48% 2.1 2.5
LoS reduction of 30% 100 3.3 d 1.9 d 75% 58% 2.2 4.7

Reduce Bed-Blocking
HWA LoS reduction of 30% 128 1.9 d 1.8 d 82% 48% 2.1 2.6
LTC LoS reduction of 30% 128 1.8 d 1.8 d 82% 47% 2.1 2.4
LTC LoS reduction of 30% 110 8.0 d 2.0 d 66% 67% 2.2 12.0

Combinations
AT + HT (LoS reduction of
30%)

100 0.1 d 0.1 d 100% 0% 2.0 0.1

AT + HT (LoS reduction of
30%)

80 6.3 d 0.4 d 83% 45% 2.1 8.2

Table 4.3: Simulation results: comparison between current practice and alternative scenarios.

significant reduction. Moreover, it becomes clear that the patients from the GP have
priority over patients from the hospital. The average waiting time of 1.8 days is thus the
result of the transfer time (which is on average 1.5 days) and the result of the lack of
admission possibilities outside office hours. Alternative policies might reduce the waiting
times, which we explore in the next step.

4.3.3 Alternative policies

The current practice and alternative policies were simulated for varying numbers of beds,
which resulted in the output provided in Table 4.3. Confidence intervals of simulation
outputs provide the statistical bounds on the means [98]. Our simulations were run until
the width of the 95% confidence intervals on the waiting time for the hospital was less
than 0.1 days. Therefore, the results were presented as point estimates without the
intervals. The descriptions of the outcome measures can be found in Table 4.1.
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We see that in the current practice scenario the fraction of ED visits leading to a hospital
admission is 51%, which is in line with the expectation of the current process. We also
see that only with a policy aiming at the admission access (i.e. AT and TW) the waiting
times can be reduced. This is in line with our earlier observation that the waiting times
are a result of an inefficient admission process. Moreover, for these policies, the hospital
admissions from the emergency department are reduced. We see that the TW performs
equally to all outcome measures compared to the AT policy, except for the number of
patient replacements which increases from 2.0 to 2.7.
With the HT scenario, we have that if the LoS can be reduced by 30%, the number of
beds can be reduced from 128 to 100 without an increase in waiting time. The bed-
blocking scenario also leads to possible reductions in number of beds. The gain is the
largest when reducing the LTC for the patients that transfer to LTC, since these current
LTC are longer and the fraction of patients is the highest.
Finally, some combinations of alternative policies were run. We see that if both the AT
and HT policies are implemented, the number of STRC beds can be reduced to 100,
while also the waiting times are reduced, the number of hospital admissions is reduced
and the number of patients in the wrong beds are almost zero.

4.4 Discussion

In this research, a simulation study was performed to evaluate the effects of alternative
policies to improve intermediate care. For a case study of the city of Amsterdam, The
Netherlands, it was found that the current waiting times for the intermediate care facilities
are not due to a shortage in the number of beds, but are the result of an inefficient
admission process. We show that if the organizations make the application process more
efficient and extend the office hours’ time frame with an evening and weekend admission
policy, the number of unwanted hospital admissions prior to intermediate care can be
decreased from approximately 51% to 3%.
In addition, if a higher tariff is introduced that reduces the LoS by 30%, the number
of beds can be decreased by 22% without an increase in waiting times. A reduced LoS
can also be obtained by cutting down waiting times for follow-up care, but since this
concerns only a fraction of the patient outflow, the effects are smaller. The TW policy
leads to the unwanted consequence that a high number of patient replacements need
to be performed. This policy should therefore only be implemented if it supports the
care process in other aspects such as succeeding in allocating patients directly to the
right care form. Finally, combining the right policies leads to the largest gain in reduced
waiting times and bed capacity.
To the best of our knowledge, our approach to model the IC facilities as a mid-chain care
form in the healthcare system in which we also consider the admission policies is unique.
In an earlier IC simulation study, no admission policy is mentioned and it is assumed that
the older adults wait until their best-fitted care form is available, which might be less
realistic in acute situations [38]. In addition, a literature review of modeling studies for

61



Chapter 4.

IC showed that little modeling studies focus on outflow to community health services,
comparable to IC, and do not often focus on the connection to the use of acute care
[78]. Finally, one study did construct the care pathway of IC, but the researchers were
not able to test alternative scenarios [92].
Besides the possible improvements in patient satisfaction and health outcomes, we also
might save costs if the process flow is improved. In particular, the average tariff for three
days hospital admission due to older adults’ problems is €900 per day [124]. Multiplied
by the number of hospital days saved per day for the AT policy (3.2 days saved), an
estimated €2880 per day can be saved due to hospital avoidance. The IC literature is
primarily focused on the cost-effectiveness of the supported discharge goal of IC and not
on admission avoidance [36]. This paper thus also contributes in that aspect. Moreover,
it was found that especially admission avoidance leads to cost-savings [36], which is in
line with this study as well.
Our study has several strengths and limitations. A valuable contribution is that we
consider the whole chain of admission and discharge in which IC is involved. Furthermore,
our study focuses on cost-effectiveness as well as on patient relevant outcomes such as
number of transfers. A limitation of our study is that we could not include process
features in our simulation for which we lacked data. Firstly, a small fraction of the IC
beds is dedicated to observation of older adults who had a delirium and are recovering
from this delirium. However, we do not have data about the patient arrivals for these
specific beds, which are therefore not considered. Secondly, acute patients from the ED
can be surpassed by (not acute) hospital patients, since the hospital patients already
claimed a bed in the IC facility. As we do not have information about the number of
cases in which this happens, this feature was also left out.

4.5 Conclusions and Implications

In this study, we found that simulation is an effective tool for modelling IC facilities
and determining policies for improvement. In our case study, we show that with the
right policies, fewer beds (and hence personnel) are needed for IC in Amsterdam. The
improved access to these facilities implies that more hospital admissions can be avoided
and bed-blocking in the hospital can be reduced. Moreover, the newly available beds can
be dedicated to other care forms for which a shortage exists, such as LTC. Hence, an
efficiency improvement of one pivotal care facility leads to an improvement of the older
adults’ care system as a whole.
Currently, decisions on healthcare interventions and capacities are often made without
sound quantitative insights into the effects of the decisions. This research shows the
importance of a simulation approach for improvement of the care domain of older adults.
This novel strategy can prevent high costs and effort put into multiple pilot studies of
which it is unclear whether the intended outcomes will be obtained. For example, in
Amsterdam a pilot study could have been set up to reduce the LoS of the IC facilities
which would not have led to a decrease in waiting times. Therefore, a data-driven
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approach is essential to identify problems’ true causes and appropriate solutions, which
results in increased cost-effectiveness and patient satisfaction.
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CHAPTER 5. ALLOCATION OF OLDER PERSONS TO NURSING
HOMES: THEORY

Abstract

Objective: In many countries, the rapidly aging of the population leads to an additional
burden on already stretched long-term care systems. This often manifests itself in excess-
ive waiting times for long-term care centers, and in abandonments (i.e., patients passing
away while they are waiting). Interestingly, in practice, long waiting times are not solely
caused by a lack of available total capacity in the system, but also by systematic inefficien-
cies in the allocation of patients, each with their personal preferences and (in)flexibility,
to geographically distributed care centers.

Method: Motivated by this, we propose a new and easy-to-implement method for the
optimal allocation of patients-in-need to nursing homes, balancing the trade-off between
the waiting time performance and the individual patients’ preferences and levels of flex-
ibility.

Results: The optimal placement policy found by solving a Markov Decision Process
demonstrates that for small instances, the mean optimality gap of the allocation model
is equal to 1.3%.

Conclusion: With the allocation model, individual preferences can be served better,
which thus provides a powerful means to face the increasing need for patient-centered
and sustainable long-term care solutions.
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5.1 Introduction

Today, deficits in local nursing home capacity often lead to overcrowded waiting lists
[63, 132], and the aging population causes longer waiting times in prospect. Lack of
timely access to Long-Term Care (LTC) is a crucial issue due to the resulting confusion,
distress, and anxiety of patients [102]. In addition, during the delay in admission, informal
caregivers experience depressive symptoms and feelings of burden [117]. In addition, high
costs are involved for the healthcare system because waiting patients occupy hospital beds
[111], and patients may suffer injuries due to omission of proper care [16].
In addition to the costly solution of increasing facility capacity, waiting list management
can be used to get patients to the right place more quickly. However, little research has
been done on how long-term care waiting lists should be managed or organized [42, 138].
Even with this limited amount of research, almost all studies focus on improving available
capacity (e.g., implementing the use of transitional care facilities [52]) and not on the
organization of the waiting list itself. The Operational Research community is explicitly
called upon to develop models for effective healthcare waiting lists [27]. Nevertheless,
hardly any mathematical models have yet been developed that can be used to study this
highly socially relevant issue.
A core characteristic that distinguishes LTC from other domains in terms of waiting list
management is that patients have individual preferences for nursing homes. The possib-
ility of including preferences appropriately in designing a waiting-list policy is currently
lacking in relevant research fields such as the queueing literature on routing and admis-
sion control. The contribution of this chapter is two-fold. First, we propose a waiting-list
management method that incorporates routing preferences to parallel facilities. Second,
we provide a solution to the currently existing waiting list problem in nursing home care.
More specifically, our research objective is to design an allocation model for waiting list
management policies that is (i) easy to implement and understandable for healthcare
employees, (ii) scalable as the number of patients and nursing home beds can be large,
and (iii) able to combine the goals of retaining preferences best and keeping waiting
times low.

5.2 Literature

LTC is provided for patients who have physical and/or mental deficits that prevent them
from performing the usual daily tasks. The majority of LTC is utilized by the elderly
(65+), and therefore most LTC facilities are designed for this sub-population. LTC
can be divided into three categories: (1) informal care, (2) community care, and (3)
institutional care [161]. Informal care is provided by the patient’s family, friends, and
neighbors and consists mainly of basic activities such as cooking a meal or walking
outside. It has been found that 92% of patients who live at home receive voluntary help
[93]. Community care involves paid services targeted at patients who live at home and
consists of a broad range of services from nursing care at home to day care at an external
location. If home is not an appropriate living environment for the patient’s condition,

69



Chapter 5.

institutional care is required. Institutional facilities in which specialized care is provided
by nurses are referred to as typical ‘nursing homes’.
Proper access to nursing homes cannot always be guaranteed due to excessive waiting
times. The European Commission reports high proportions of older people in need of
institutional care who are currently on waiting lists in the EU [63]. For example, these
fractions of older people on the waiting list are 16% in the Netherlands, 33% in Bulgaria,
and 53% in Hungary. The problem exists in countries all over the world; see, for example,
[15, 68, 70] for some reports in Australia, Canada, and South Africa. The lack of regional
nursing home capacity can further exacerbate the problem. For example, in Copenhagen,
the waiting time for a bed in a nursing home, which is not necessarily a preferred one, is
over 3.5 years. Even in countries where waiting lists for nursing homes are not (yet) an
issue, we observe regional and popularity issues with certain nursing homes. In the USA,
only 29% of all residential care communities reported having a waiting list, but among
those, the average waiting time for admission was around five months [95].
In the following, we address the literature regarding the management of waiting lists for
nursing homes from different angles: waiting for nursing homes and waiting for healthcare
in general. Thereafter, we elaborate on the relation of our research with the literature
on routing and conclude with our contribution.

5.2.1 Waiting-list management in long-term care

The LTC waiting process starts with the selection of the right nursing home to apply for,
based mainly on patient preferences, such as location [158] and cultural factors [156].
Specific preferences, such as cultural background, significantly influence waiting times
[156, p. 1348]. If a patient’s application to a nursing home is not immediately accepted,
the waiting period begins. To better manage the waiting period, interventions such as
transition care settings and adjustment of home care levels are explored. For example,
Crotty, Whitehead, Wundke, Giles, D. Ben-Tovim and Phillips [52] found that off-site
transitional care units can be utilized during the waiting period without adversely affecting
patients’ conditions. However, some patients may prefer not to use such units, suggesting
a voluntary approach. Furthermore, research by Pedlar and Walker [139] highlights the
preference for increased home care over nursing home admission by 90% of patients on
waiting lists. This preference can significantly reduce nursing home demand and lead
to substantial cost savings, given the higher expense of nursing home care compared to
home care.
Limited research exists on the management of waiting lists themselves. In a meta-
analysis by Chafe, Coyte and Sears [42], only two papers on this topic were identified.
The first paper by Burkell, Wright, Hoffmaster and Webb [34] examined the change
from a First-Come-First-Served (FCFS) policy to one that prioritizes patients based on
urgency. They observed significant variability in patient care needs, suggesting that a
needs-based criterion would drastically alter priority. Similarly, in a study by Meiland,
Danse, Wendte, Gunning-Schepers and Klazinga [116], priority was based on urgency,
revealing that non-urgent patients experienced longer waits without deterioration of their
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condition. Moreover, their satisfaction levels remained consistent while waiting at home,
indicating that prioritizing urgent patients had minimal negative consequences for non-
urgent ones.
In [138], waiting-list management is discussed in a more general setting, including patients
discharged from hospitals who need residential care. A Markov Decision Process (MDP)
was developed to determine when patients in hospitals should receive priority for nursing
home placement over those waiting at home. However, lowering the threshold simply
shifts the waiting time problem to patients at home. Furthermore, a simulation tool
estimated that nursing home stays must decrease by two to three years to meet service
level targets.

5.2.2 Waiting-list management in healthcare

The impact of priority settings is also studied in other health contexts. Bowers [29]
aimed to simulate the waiting lists of the UK’s National Health Service. By studying
empirical waiting-time distributions, it was found that a FCFS policy did not correctly
describe the behavior of the waiting lists. Motivated by this, a model was developed
that includes priority parameters to differentiate between urgent and routine patients
and to include specified target waits for those different groups of patients. Although
the goodness-of-fit test revealed that the developed model could not adequately describe
empirical data, the model can be used to predict waiting times when such alternative
policies are implemented.
The priority setting can depend on more factors than just urgency. However, determining
the right priority instruments is complex. In 1996, the International Society for Priorities
in Health was founded to investigate health priorities for both theoretical and practical
purposes [89]. Priority settings may even be more complicated when demand is het-
erogeneous, such as in the case of surgical procedures for which the expected outcome
depends on the characteristics of the patient. There are even settings in which both
demand and supply are heterogeneous, such as in the allocation of kidneys to patients
where each kidney-patient combination determines the expected lifetime of the patient,
as seen in Zenios, Chertow and Wein [198]. In those cases, a regular waiting list will not
suffice, and an allocation model is needed.

5.2.3 Routing models

The issue of waiting-list management can also be examined from a queueing-theoretic
perspective. There is now a substantial body of literature on routing customers to parallel
queues. For our purposes, it is most intriguing to consider queues with both heterogen-
eous customers and heterogeneous server pools. Such systems have traditionally been
studied in the call center domain [67, 187], where the assignment of customers to server
pools is known as Skill-Based Routing (SBR). As indicated in [44], the analysis of SBR
is typically intractable. Therefore, optimal routing decisions often rely on asymptotic
approximations (see, e.g., [74, 75, 109]) and special cases, such as the V, inverted V,
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N, and X designs. For additional background and references, we refer the reader to
the recent survey in [44]. This survey also discusses the complexities of SBR models
in healthcare applications, focusing on in-hospital patient flow from emergency depart-
ments to hospital wards. It should be noted that [44] also explores an MDP formulation
for optimal routing. Due to the explosion of the state (and action) space, the authors
only considered small-scale examples. For a recent study using approximate dynamic
programming techniques for somewhat larger instances, see [54].
In computer-communication applications, the number of server pools N is generally
considerably larger than in our nursing home setting. To avoid excessive communication
overhead, power-of-d routing policies have been suggested. For such a policy, 1 ≤
d(N) ≤ N of the N server pools are randomly selected, and the customer is routed to the
shortest of those queues. Even in the case of sampling two queues (d(N) = 2), waiting
times are drastically reduced (see, e.g. [119]). In fact, [121], among others, demonstrate
that for relatively small d(N), asymptotically optimal behavior can be preserved. We
note that these models fundamentally differ from our setting, as customers are routed to
a single queue upon arrival, and there are no preferences (server pools are homogeneous).
Nonetheless, the power-of-d results indicate the enormous potential to add some flexibility
in the allocation of patients to nursing homes.

5.2.4 Our contribution

Long waiting lists for nursing homes are a significant societal problem, yet existing re-
search often overlooks a crucial aspect: incorporating patient preferences into nursing
home assignments. To fill this gap, we propose a method that integrates patient prefer-
ences into waiting-list management policies. Our aim is to develop a system that is easy
for healthcare employees to implement and understand, that is scalable to accommodate
varying numbers of patients and nursing homes, and that effectively balances patient
preference retention with minimizing waiting times.
In addition to individual nursing home preferences, we also consider patients’ prefer-
ences regarding willingness to wait. Drawing from the concept of utilities, as studied
by Nomura, Yamori, Takahashi, Miyoshi and Tanaka [128] in content delivery networks,
we formalize this aspect. Using utilities as a measure of patient preferences, our model
offers a practical and comprehensible approach for healthcare managers. This patient-
centered allocation method not only aligns with the individuality of patients but also
allows efficient bed allocation by leveraging explicit preferences.

5.3 Context and Problem Description

In this section, we define the scope of the problem, which involves the system that
incorporates the placement of patients in nursing homes.
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5.3.1 Background and terminology

For the sake of clarity, we elucidate the terms used throughout the chapter.
Patients: We consider patients on a waiting list for nursing home placement, excluding
high-emergency cases. All patients require the same type of care, allowing nursing home
beds to be used interchangeably. Patients enter the system upon expressing readiness
for placement, but remain at home while waiting.
Nursing home capacity: According to Ribbe [143], nursing homes are institutions that
provide nursing, psycho-social, and personal care, as well as room and board. The
capacity of a nursing home location is expressed in terms of the number of beds available
at the location. The available number of beds may either be determined by the physical
beds present at the nursing home or may depend on the availability of other resources
such as personnel and services.
Preferences: In practice, certain nursing homes may be more appealing to patients due
to factors such as proximity to their home, familiarity with the coordinating care organiz-
ation, and specialization in specific subpopulations (e.g., LGBTQ+ patients or patients
with the same ethnic background [156]). We assume that each patient has at least one
preferred nursing home where they would ideally like to reside permanently. If a patient
is placed in a nursing home other than one of their preferred choices, the placement may
be temporary.

5.3.2 Problem outline

The conventional procedure involves patients enrolling in the waiting list(s) of their
preferred nursing home(s) upon arrival. However, we propose an alternative that allocates
patients to nursing homes to satisfy as many individual preferences as possible. Let
N = 0, 1, . . . , nmax denote the set of nursing homes, where we define nursing home 0
as the location of the patient’s home. We denote by bn the number of beds available in
the nursing home n, and let b =

∑
n∈N\0 bn be the total number of beds. Moreover,

let P be the set of patients who need a bed in a nursing home. Each patient p ∈ P
has a set of preferred nursing homes, Lp ⊆ N \ 0, in which they would like to reside
permanently. If a patient is placed in a nursing home in the set Mp := N \ Lp, the
placement is temporary and the patient still waits for a bed in a preferred nursing home.
Patients are assumed to arrive according to a Poisson process with rate λ. The service
times in nursing homes are assumed to be exponentially distributed with mean 1/µ.
Finally, the time until abandonment from the queue, resulting from patients dying or
moving to another region, is exponentially distributed with mean 1/θ.
The patient placement process unfolds over time and space, as shown in Figure 5.1.
Initially, the patient joins the waiting list for their preferred nursing home while remaining
at home. As time elapses and the patient’s condition worsens, a preference for temporary
placement in a nursing home may arise. If a bed is available in a temporary facility, the
patient can be relocated there while still awaiting placement at their preferred home.
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Upon availability, the patient moves to the preferred nursing home, staying until they
leave the system, often due to death or transfer. Each patient’s journey is unique, with
factors like disease affecting progression.

Figure 5.1: Example patient journey.

Objective and performance measures

The goal is to efficiently allocate patients to nursing homes while incorporating their
preferences. This involves optimizing the aggregate utility of patients based on prefer-
ences for nursing homes and willingness-to-wait. We evaluated the trade-off between
adhering to preferences and efficiency using the key metrics detailed in Table 5.1. Each
patient p is assigned a preference, expressed in terms of gpn, for each nursing home
n, the preferred nursing homes being those with the highest values. Negative values
(gpn < 0) indicate a patient’s unwillingness to be placed in a specific nursing home. We
also account for patients’ willingness to wait, formalizing this trade-off through utility
functions; see Subsection 5.4.1 for a further discussion with an emphasis on the waiting
aspect.

Performance measure Description
Waiting time Time between arrival to waiting list and first and/or final placement
Abandonments Fraction of patients that abandon the system
% preferred NH Fraction of patients that end up in their preferred nursing home
Replacements Average number of replacements per patient

Table 5.1: Performance measures.
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We allow each patient to have unique utility structures, offering customization appreci-
ated by healthcare professionals. However, in practice, employing a limited set of patient
profiles can streamline operations. These profiles capture common utility structures,
simplifying the acquisition of patient preferences. Our model presents individual utility
structures, while practical examples in Section 5.5 illustrate the use of patient profiles.

5.4 Method

We first formalize the preference profiles and willingness-to-wait using utility functions
in Section 5.4.1. These utility functions are used in our allocation model for assigning
patients to nursing homes in Section 5.4.2. In Section 5.4.3, we evaluate the allocation
model using simulation. We discuss some benchmark policies in Section 5.4.4.

5.4.1 Utility functions

We established the utility functions in collaboration with and with approval of experts
in the elderly care domain. Specifically, the application of utility functions is an intuitive
and attractive way for health professionals to reflect the impact of preferences for nursing
homes and waiting on the choices of individual patients. In this setting, the utility for
each nursing home n ∈ N represents the ‘level of happiness’ to reside there.
The utility depends on the initial preferences of the patient p, the current location lp
and the elapsed waiting time wp, ∀ p ∈ P . We denote the utility function for patient p
toward nursing home n as upn(lp, wp),∀ p ∈ P, n ∈ N . In particular, it should comprise
the following four elements (with corresponding notation):

(i) Each patient p ∈ P can indicate initial preferences for each nursing home n ∈ N .
These preferences are denoted by gpn.

(ii) The patient’s p ∈ P willingness to be placed in a temporary nursing home n ∈
Mp \ 0 increases with the waiting time wp. This is described by the function
vU

pn(wp), which is strictly increasing in wp.

(iii) The patient’s p ∈ P willingness to be placed in preferred nursing home n ∈ Lp

increases with the waiting time wp. This is described by the function vF
pn(wp),

which is strictly increasing in wp.

(iv) Patient’s p ∈ P relocation between two temporary nursing homes results in a utility
loss. This utility loss is modeled by the replacement penalty K.

The preferences (i) remain constant over time, but if a patient’s preferences change
during the waiting period due to new information about nursing home features, they can
update their preferences. The impact of waiting time is captured by elements (ii) and
(iii). Specifically, vU

pn(wp) reflects the flexibility of a patient in waiting time. Patients
who prefer a quicker placement in a temporary nursing home will see their utility increase
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more rapidly with waiting, ensuring that they are placed sooner. However, this faster
placement comes at the expense of their opportunity for rapid placement in a preferred
nursing home, as reflected in a less steep increase in vF

pn(wp) for preferred nursing homes.
The waiting time utility function vU

pn(wp) is added to the utility of temporary nursing
homes if a patient resides at home. Thus, a patient may initially have a negative utility
for a temporary nursing home, but as the waiting time increases, their utility may become
positive, leading them to prefer the temporary nursing home over staying at home.
Regarding element (iv), patient relocations between temporary nursing homes are only
considered if the increase in utility outweighs a replacement penalty K. Patients typically
only relocate between temporary nursing homes if the utility gain exceeds this penalty.
However, if a patient’s preference is a preferred nursing home, the replacement penalty
is not included.

Waiting-time utility

The waiting-time utility functions can be chosen so that the preferences of individual
patients are best represented. In the following, we discuss two different forms of utility
functions. First, a simple choice for waiting-time utility is a linear function of the elapsed
waiting time wp of the form vU

pn(wp) = αpwp − βp, with αp > 0, βp ≥ 0, p ∈ P . In
this case, the increase in waiting-time utility always grows at the same speed. However,
according to elderly care experts, the increase in waiting-time utility is not constant. They
describe the willingness to be placed in a nursing home as follows: Initially, the waiting
time utility increases slowly, whereas after some ‘breaking point’ (e.g. an abrupt loss
in functionality) the utility increases drastically, after which the utility increases slowly
again. For that reason, a second more natural choice for the waiting time utility function
is to use a sigmoidal function, thus of the form

vU
pn(wp) = αp

1 + e−(εpwp−γp) − βp ∀ p ∈ P.

The parameter values of the utility functions determine the speed with which a person
is willing to be placed in a nursing home. Patient p ∈ P wants to be placed in nursing
home n ∈ N if upn(lp, wp) > 0, thus in the linear case if gpn + αpwp − βp > 0. If
βp > 0, only if wp is large enough we have gpn + αpwp − βp > 0. An example of this
for both waiting time utility functions is provided in Figure 5.2 below.

Now, the utility function of patient p ∈ P at location lp ∈ Mp towards location n ∈ N

* In Figure 5.2, we assume that gpn = 20 for patient p ∈ P and nursing home n ∈ N . Then, only if
vU

pn(wp) > −20 we have u(lp, wp) > 0, after which the patient prefers to be placed in nursing home
n ∈ N over staying at home. In the linear case this holds if wp > 100 and in the sigmoidal case if
wp > 125.
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(a) Linear: vU
pn(wp) = 0.3wp − 50 (b) Sigmoidal: vU

pn(wp) = 120
1+e−(0.17wp−22) −60

Figure 5.2: Example waiting time utility functions.*

with elapsed waiting time wp is defined as follows:

upn(lp, wp) =



0 if n := lp,

gpn + vU
pn(wp) if lp = 0, n ∈ Mp \ {0},

gpn − gplp + vF
pn(wp) if n ∈ Lp,

gpn − gplp
−K if lp 6= 0, n ∈ Mp \ {lp},

−∞ if n = 0, lp ∈ Mp \ {0}.

(5.1)

In words, the utility is 0 if patient p ∈ P stays at the same location. The utility is
gpn + vU

pn(wp) if the patient lives at home and goes to a temporary nursing home.
The utility is gpn − gplp

+ vF
pn(wp) if the patient goes to a preferred nursing home.

Furthermore, the utility is gpn − gplp − K if a patient resides in a temporary nursing
home and goes to another temporary nursing home. Finally, if the patient no longer lives
at home, i.e., lp ∈ Mp \ 0, the utility for home is set to −∞, which prohibits a return
placement. Adding the waiting-time utilities in this way ensures that if there are two
patients p′, p′′ ∈ P with the same utility functions and where lp′ = lp′′ , but wp′ > wp′′ ,
then patient p′ is given priority over patient p′′ for nursing home n. This fosters fairness
in the system.

5.4.2 Allocation model

We propose a Binary Integer Program (BIP) model to allocate patients to nursing homes.
The allocation model is based on a static setting (snapshot) of the dynamic process. The
model solves the optimal allocation for the static setting so that the utility sum of all
patients is maximized. For our allocation model, we are not interested in the patients
who are already residing in a preferred nursing home, since these patients do not have
to be re-allocated to another nursing home. Thus, we have that for each patient p ∈ P ,
the current location is lp ∈ Mp. Note that the set Mp also includes the home location
0.
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Similarly, we define the capacity cn of nursing home n ∈ N as the number of beds not
assigned to patients p ∈ P for whom n ∈ Lp. This is based on the reasoning that
these patients already have a bed allocated. The capacity cn thus includes beds that
could be occupied by patients who temporarily reside there. Utility functions ensure that
temporary patients are primarily allocated to the nursing home where they already reside,
allowing them to stay in the same bed.
For the allocation problem, we define the decision variable xpn, which equals 1 if patient
p ∈ P is placed at location n ∈ N , and 0 else. An overview of the notation is provided
in Table 5.2.

Sets
P Patients
N Nursing homes, with n = 0 as the home location
Lp ⊆ N \ 0 Preferred nursing homes of patient p ∈ P

Mp Non-preferred nursing homes, i.e., N \ Lp

Parameters
upn(lp, wp) The utility of patient p ∈ P at location lp towards location n ∈ N , after

waiting time wp

lp The current location of patient p ∈ P , where lp ∈ Mp

gpn The fixed utility of patient p ∈ P for location n ∈ N

vU
pn(wp) The waiting time utility of patient p ∈ P until placed in nursing home

after waiting time wp

vF
pn(wp) The waiting time utility of patient p ∈ P until placed in permanent

nursing home after waiting time wp

K The replacement penalty
bn The capacity of nursing home n ∈ N , where b0 = ∞
cn The remaining capacity of nursing home n ∈ N , i.e., the number of beds

not occupied by patients p ∈ P

Decision variables
xpn Binary variable to indicate if patient p ∈ P is placed at location n ∈ N

Table 5.2: Notation for the allocation model.

Now, the allocation problem can be formulated as follows:

max
∑
p∈P

∑
n∈N

upn(lp, wp)xpn (5.2)

s.t.
∑
p∈P

xpn ≤ cn ∀n ∈ N, (5.3)

∑
n∈N

xpn = 1 ∀p ∈ P, (5.4)

xpn ∈ {0, 1} ∀p ∈ P, n ∈ N. (5.5)
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The objective of the allocation problem (5.2) is to maximize the total utility of all patients
p ∈ P . This must be done under the constraints that (5.3) no more patients can be
allocated to a nursing home than the capacity allows and that (5.4) each patient can
only be allocated to one location. Constraints (5.5) are binary constraints.
Since the constraint matrix is totally unimodular and the elements on the right-hand side
of the constraints are integral, the solution of the linear problem is integral. Therefore,
the allocation model can be solved using a linear solver, which makes it fast and scal-
able. Furthermore, the (binary) allocation problem is a special case of the Generalized
Assignment Problem, in which the capacity needed for each job is equal to 1 [62].
Moreover, our waiting-time utility structure not only caters to patient preferences but
also promotes efficiency. If a patient faces prolonged waiting times for a specific nursing
home, their utility for alternative options may increase, causing placement in another
facility. This design ensures optimal bed utilization, balancing patient preferences with
efficient resource allocation.

5.4.3 Simulation model

In this section, we describe how the allocation model performs in a dynamic setting
and can be evaluated using simulation. First, in line with the current procedure, we
assume that patients can only be admitted to a nursing home at fixed regular moments
(e.g. every morning). We define ∆ as the time between two consecutive allocation
moments. Then, the (deterministic) sequence of allocation moments can be described
as tn = tn−1 + ∆, for n = 1, 2, . . .. For example, if patients can enter once a day, ∆
equals one day. The set of all allocation moments is denoted by T = {tn}∞

n=1.
The time interval between the decision moments, ∆, determines the speed with which
entry takes place. If ∆ → 0, then entering a nursing home can be done instantaneously,
such that the nursing home n behaves as an M/M/bn+M queue. If ∆ is chosen to be
rather large, a bed might remain empty for some time, resulting in inefficiency in capacity
use. On the other hand, a larger ∆ implies that during a time interval more arrivals and
departures take place, which increases the allocation possibilities.
More specifically, the model above with entering possibilities can be related to a queueing
model with discharges at inspection instances [43]. In case of a single nursing home n
and infinite patience (i.e., the M/M/bn variant), the stability condition is

bn

(
1 − e−µ∆) > λ∆,

where the term on the left-hand side corresponds to the maximum number of departures
per ∆ time units, which follows a Binomial(bn, (1 − e−µ∆)) distribution. Intuitively,
1 − e−µ∆ can be interpreted as the effective service rate. Observe that 1 − e−µ∆ ≈ µ∆
for µ∆ small, such that the capacity lost due to entering possibilities is small.
Now, in order to evaluate the allocation model in the dynamic setting, we implemented a
simulation model, where the allocation model of Subsection 5.4.2 is executed based on a
rolling horizon, i.e., at all instants tn after updating arrivals, departures, and utilities. The
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procedure consists, after the initialization, of two steps: (1) incorporating the dynamic
features of the simulation, and (2) running the allocation model. The two-step procedure
is iteratively run until a stopping criterion is met. We refer to Appendix 5.A.1 for a more
detailed description of the simulation procedure.

5.4.4 Benchmark policies

As mentioned, the aim of the allocation model is to have the ‘best of both worlds’,
i.e., short waiting times, few abandonments, and placement in a preferred nursing home.
Clearly, there are extreme policies that are best for one of such performance measures.
Such policies provide insight into the best value that can be achieved, i.e., serve as a
lower or upper bound. Ideally, the allocation model yields a performance close to those
bounds.

Shared queue. This refers to the situation in which there is a single waiting list for all
nursing homes (and preferences are completely neglected). The system is similar to the
Erlang-C or Erlang-A model, with the capacity equal to the total number of beds of
all nursing homes. This corresponds to the most efficient system design. Hence, the
corresponding mean waiting times and fraction of abandonments provide lower bounds
for the actual performance.

Separate queues. This corresponds to the other extreme, namely dedicated waiting lists
for each individual nursing home. The queue of a single nursing home is similar to the
Erlang-C or Erlang-A model, with capacity equal to the number of beds of the corres-
ponding nursing home. Clearly, the number of preferred placements is now maximized
(provides an upper bound), at the cost of waiting times and abandonments.

Optimal policy. An optimal policy can be formulated using an MDP that considers both
direct and future costs in terms of preferred placements, abandonments, and waiting. For
any reasonably sized instance, solving such an MDP is computationally prohibitive due
to the curse of dimensionality. The goal of the optimal policy is to verify the optimality
gap of the allocation model for very small instances. The precise MDP formulation and
the size of the state space can be found in Appendix 5.A.2.

5.5 Results

In this section, we present numerical results from applying the Allocation Model (AM) to
a small-scale setting. The aim is to gain insights into the model’s performance and be-
havior under various parameter settings. Since our model facilitates in serving individual
needs, we want to show the benefits of the allocation model for individual patients. For
that purpose, selecting the same utility function for all patients will not suffice. There-
fore, we created two characteristic groups of patients with similar utilities. The two

80



5.5. Results

utility groups are “Fast placement” (Fast Placement (FP)) and “Preferred placement”
(Preferred Placement (PP)). FP patients prefer quick placement in a (temporary) nurs-
ing home, while PP patients opt to wait for availability at their preferred nursing home.
We denote the FP group as elements of the set PF P ⊆ P and the PP group as elements
and of the set PP P ⊆ P .

5.5.1 Instance specification

The small setting contains four nursing homes with 20 beds each. First, we elucidate
the patients’ utilities and then the dynamic parameters.
For all patients p ∈ P and nursing homes n ∈ Mp \ 0, we set the fixed utility to
gpn = 30, and for n ∈ Lp, gpn = M , where M denotes a large number, e.g. 1,000. The
FP and PP utility groups can be identified by their unique waiting-time utilities. For the
FP group, the waiting time utilities equal vU

pn(wp) = 0.1wp + 100 for p ∈ PF P . This
implies that in combination with gpn > 0 for p ∈ P, n ∈ N \ 0, if a bed is available
in a nursing home, a patient of the FP group will always be placed there. For the FP
group, this results in a fast placement in a nursing home. For the PP group, the waiting
time utilities are vU

pn(wp) = 0.1wp − 500 for p ∈ PP P . In this case, patients have to
wait extremely long before the utility for temporary nursing homes becomes positive,
which means that patients only receive a placement in their preferred nursing home. The
probabilities of arrival of a patient from the FP and PP groups are indicated by pF P and
pP P , respectively. Thus, the arrival rates for the groups are λpF P and λpP P .
The waiting time utilities for the preferred nursing homes are set to differ between the two
groups. Namely, vF

pn(wp) = 0.1wp for p ∈ PF P , and vF
pn(wp) = 0.15wp for p ∈ PP P .

This implies that the utilities for the preferred nursing homes of PP increase slightly
faster than those of FP. In this way, at some moments, a PP group patient might
surpass the waiting FP patients, although the waiting time is shorter. The utilities are
chosen in this way to place PP patients faster in their preferred nursing home. Finally,
the replacement penalty K is set to 1,000, which prohibits replacements to be performed
between temporary nursing homes.
Dynamic parameters are set with realistic values, where available. The mean length-
of-stay in nursing homes is approximately three years, reflecting real-world data [180].
Estimating the abandonment rate at home, θ, is challenging due to data scarcity. The
abandonment rate at home is assumed to be higher than the service rate in nursing
homes, given care limitations and the potential for patients to seek alternatives outside
the region. Thus, θ−1 is set to two years. In the absence of abandonments, we set θ = 0.
This adjustment prompts a modification in the waiting-time utility function, specifically
for patients who prioritize placement in preferred nursing homes. Here, vF

pn(wp) =
0.25wp ∀ p ∈ PP P , accommodating the altered dynamics in waiting times characteristic
of abandonment-free scenarios.
We define the offered load per server as ρ = λ

cµ . In case there are no abandonments
(θ = 0), we need at least that ρ < 1 to attain stability of the system. However, the
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assumption only applies to parts of our small-scale setting. For the allocation model,
we allow ρ ≥ 1 as long as θ > 0. In our experiments, when studying the impact of the
offered load, we will only vary the arrival rate λ and keep the service rate µ fixed. An
overview of the parameter settings is given in Table 5.3.

Parameter Value Parameter Value
|N | 4 K 1,000
|Lp| 1 ∀ p ∈ P vU

pn(wp) 0.1wp + 100 ∀ p ∈ P F P

θ−1 {∞, 730} vU
pn(wp) 0.1wp − 500 ∀ p ∈ P P P

µ−1 1,095 vF
pn(wp) 0.1wp ∀ p ∈ P F P

M 1,000 vF
pn(wp) {0.25wp, 0.15wp} ∀ p ∈ P P P

cn Initial value: 20 ∀ n ∈ N pF P 0.5
∆ 1 day pP P 0.5
gpn 30 ∀ p ∈ P, n ∈ N

Table 5.3: Parameter values for the small setting.

5.5.2 Results for the small setting

First, we investigate the situation without abandonments, i.e., θ = 0 and vF
pn(wp) =

0.25wp ∀ p ∈ PP P . The performance of the allocation model can be compared with
respect to the two extreme policies separate and shared queues (see Section 5.4.4), which
is shown in Figure 5.3. It can be seen that the mean waiting time of the allocation model
is much shorter than the mean waiting time of the separate queues, whereas it is only
slightly longer compared to the shared queue (i.e., the lower bound). This observation
is in line with the principle that “a little flexibility goes a long way”; see, e.g. [187] for
SBR examples in which some flexibility in resource pooling suffices to obtain most of the
efficiency gain.

Figure 5.3: Comparison of allocation model
to extremes (θ = 0).

Figure 5.4: Comparison of patient groups
within allocation model (θ = 0).

To get more insight into the performance measures of the two groups of patients, we
split the waiting times of the allocation model into groups, as shown in Figure 5.4. We
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see that for all different loads, the mean waiting time until the placement of the FP
group is the lowest. In addition, the time until a patient of this group is placed in their
preferred nursing home is longer than for the PP group. In that respect, the needs of
both groups are indeed served: FP is placed quickly, whereas PP is placed slightly faster
in their preferred nursing home.
The next experiment is conducted on the effect of the replacement penalty K. Note
that in our parameter setting, K only influences the replacement potential of the FP
group, as the PP group is not temporarily placed. In addition, for this experiment, we
diversify our gpn-values into gpn ∈ {10, 20, 30, 40}, where each value is selected with
probability 0.25. The results of the different replacement penalties are shown in Figure
5.5. Clearly, an increase in K-penalty is observed to lead to fewer replacements of the
FP group. In addition, we see that the number of replacements between two temporary
nursing homes increases as the system is more congested. This seems in line with the
fact that congestion leads to longer waiting times and consequently to more potential
benefits of temporary replacements.

Figure 5.5: Effect of increasing K on the number of replacements of FP.

The results of the simulation model, including abandonments, are detailed in Table 5.4.
Across various load levels, the allocation model exhibits slightly higher abandonment
rates compared to the shared queue but significantly lower rates than separate queues,
indicating efficient capacity utilization. The mean occupancy levels for AM are only
marginally lower than those for the shared queue. The efficiency is also apparent from
the mean waiting times until placement, which is only slightly higher for AM compared
to the shared queue. In addition, the waiting times for the preferred AM placement
are only slightly longer than those of separate queues. AM is the only model using
temporary nursing home placements. However, the fraction of patients who end up in
their preferred nursing home is similar to both separate and shared queue strategies. For
the shared queue policy, patients are treated as having no preferences (all nursing homes
are preferred), providing a clear upper bound. Naturally, the shared queue policy does
not facilitate patient preferences.
Based on these results, the allocation model is found to have ‘the best of both worlds’:
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both short waiting times are obtained next to preferences being retained well (both are
relatively close to their lower and upper bound, respectively). However, these achieved
gains are at the cost of the number of replacements, which increases by more than 20%
for all offered loads. Hence, the allocation model yields promising results only if more
patient replacements are allowed.
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Offered load: 0.9
Shared 1.5% 0.0% 98.5% 10.3 10.3 0.98 0.89
AM: tot 2.8% 2.5% 94.6% 18.4 44.2 1.14 0.87
AM: FP 0.6% 5.1% 94.3% 4.3 55.5 1.35 -
AM: PP 5.1% 0.0% 94.9% 33.1 33.1 0.95 -
Separate 5.8% 0.0% 94.2% 38.4 38.4 0.94 0.85

Offered load: 1
Shared 5.2% 0.0% 94.8% 37.7 37.7 0.95 0.95
AM: tot 6.3% 3.5% 90.2% 41.2 78.3 1.18 0.94
AM: FP 2.5% 7.0% 90.5% 17.4 89.6 1.47 -
AM: PP 10.0% 0.0% 90.0% 67.0 67.0 0.90 -
Separate 9.7% 0.0% 90.3% 65.6 65.6 0.90 0.90

Offered load: 1.1
Shared 10.2% 0.0% 89.8% 75.8 75.8 0.90 0.98
AM: tot 11.5% 3.3% 85.1% 76.3 115.4 1.14 0.97
AM: FP 6.7% 6.7% 86.6% 46.4 121.0 1.44 -
AM: PP 16.3% 0.0% 83.7% 109.7 109.7 0.84 -
Separate 14.6% 0.0% 85.4% 101.6 101.6 0.85 0.94

Table 5.4: Results for the small setting.*

5.5.3 Comparison to optimal solution

To compare the performance of the allocation model with the optimal solution, we
developed an MDP that gives us the optimal policy for small instances. More information
on the MDP setup can be found in Appendix 5.A.2. We ran an experiment with 50
randomly generated small instances, where we have two nursing homes with two beds
each. We chose the parameters as much as possible in line with previous experiments.

*The values in Table 5.4 are the results of the simulation model that incorporates uncertainty. Since
the model ran for a sufficient duration, the uncertainty around the results is negligible and therefore
omitted.
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For example, we choose µ such that the maximum total departure rate is equal to that
of the small-scale example, i.e., we let µ = 80

4 · 1
1095 = 0.018, where the first ratio is the

number of beds in the small-scale example divided by the number of beds in the current
experiment. To create diversity in the numerical experiments, we added randomization
and let µ ∼ Unif(0.01, 0.03). All parameter values are realizations of the values provided
in Table 5.5. Note that the notation in the table is intuitively clear, but the formal
definitions can be found in Appendix 5.A.2.

Parameter Value from distribution
µ Unif(0.01, 0.03)
λ = pλµ

∑
n∈N\{0} bn with pλ ∼ Unif(0.5, 0.99)

gin i ∈ {F P1, F P2}, n ∈ Mi Unif(20, 40)
gin n ∈ Li Unif(50, 70)
Ki i ∈ {F P1, F P2}, n ∈ N \ {0} Unif(1, 10)
wi i ∈ {F P1, F P2} Unif(0.5, 1.5)
wi i ∈ {P P1, P P2} Unif(1.5, 3)

Table 5.5: Parameter values for randomly generated instances.

To align the allocation model with the optimal solution, we use the same classes, gin

values, and similar waiting utility, that is, vU
in(w) = vF

in(w) = wiw, ∀ i ∈ I, n ∈ N
for the generated wi in the instances. This ensures that the waiting costs for the MDP
correspond to the increase in waiting utility in the allocation model. The resulting long-
term average rewards for the allocation model are determined through simulation, using
the parameter values described in Table 5.5, to ensure consistency with the optimal
solution found by the MDP. The optimality gap between the long-term average reward
of the allocation model (denoted gAM ) and the optimal solution (denoted g∗) can now
be defined as

gAM − g∗

g∗ .

For the 50 instances, we observe a mean optimality gap of 1.6%, which is rather small.
Figure 5.6a illustrates the distribution of this gap. Furthermore, Figure 5.6b shows the
percentages of patients who died in preferred nursing homes, while Figure 5.6c presents
the waiting time distributions. Although the allocation model slightly lags behind in
“accurate placement” (with an average of 92.7% compared to 94.2% for the MDP
solution), it compensates with shorter waiting times. The mean waiting time for the
allocation model is marginally lower at 17.6 days, attributed to its immediate placement
policy once a suitable bed is available.
We conducted 50 instances of a slightly larger MDP, maintaining the parameter values
from Table 5.5 but with three beds per nursing home instead of two. The mean optimality
gap for this setting was 1.0%, suggesting a potential decrease in the gap as the problem
scale increases (from 1.6% to 1.0%). These additional results are detailed in Appendix
5.A.3.
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(a) Optimality gap in % (b) % died in pref. NH (c) Waiting time (d)

Figure 5.6: Results of the small instances.

Overall, the allocation model shows close-to-optimal performance with a mean optimality
gap of 1.3%. Several factors contribute to its excellence. First, the ability to relocate
patients post-placement allows for rectification of undesirable placements, which benefits
static or greedy policies (cf. [94]). Second, the structure of waiting-time utilities exhibits
similarities to threshold policies, known for their optimality in dynamic systems [19, 100].
Third, uniformity in length of stay and abandonment rate between patient types creates
a more homogeneous system. Lastly, it is worth noting that static policies have been
proven optimal in various multi-class queue scenarios, such as the well-known cµ or cµ/θ
rule [13].

5.5.4 Effect of multiple preferred nursing homes

In the small setting, the number of nursing homes preferred by all patients is set to one.
However, patients may be amenable to selecting multiple nursing homes as their preferred
option. For that reason, we show the effect of choosing multiple nursing homes as their
preferred ones. The results for the small setting without abandonments are presented in
Figure 5.7.
It becomes clear that if patients select two preference homes, the waiting times for various
offered loads are nearly as short as the (minimal) waiting times of the shared queue. In
this setting, increasing the number of preferred nursing homes to two is a very effective
intervention, which is in line with the principle that adding a little flexibility provides
most of the benefits of complete flexibility [91, 187].

5.5.5 Effect of popular nursing homes

Although the preceding results are obtained for nursing homes with equal demand, in
practice some nursing homes are more popular than others. Therefore, we define a
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Figure 5.7: Mean waiting time AM
multiple preferences (θ = 0).

Figure 5.8: Percentage abandonments
scenario popular nursing homes.

scenario in which demand is not equally distributed. In this scenario, a nursing home
j∗ ∈ N is selected with probability 0.5 as the preferred nursing home for each patient
p ∈ P , hence P (lp := j∗) = 0.5. The comparison between the number of abandonments
under the allocation model and the extremes is shown in Figure 5.8.
First, note that the policy for the shared queue does not change, since in this policy we
do not take into account individual preferences. In contrast, we see in Figure 5.8 that
the percentage of abandonments for the separate queue policy and the allocation model
has increased significantly. Compared to the results without popular nursing homes, the
abandonment fraction ρ = 1 has increased for the separate queues from 9.7% to 37.7%
and for the allocation model from 6.3% to 18.0%. We thus see that the allocation model
is far better in retaining the waiting times, and therefore fraction of abandonments, at
an acceptable level.

5.6 Conclusion and Discussion

The allocation model proposed in this chapter offers an alternative to conventional wait-
ing lines for nursing home placements, boasting a patient-centered approach. By prior-
itizing individual preferences and allowing flexibility in waiting times, the model achieves
a balance between minimizing waiting times, similar to shared queues, and enabling
patients to choose their preferred nursing home, as if separate queues were employed.
Moreover, the optimal placement policy found by solving an MDP shows that, for small
instances, the mean optimality gap of the allocation model equals 1.3%. Hence, the
model is found to have ‘the best of both worlds’, resulting in a quicker placement of
patients into the nursing home of their preference.
Future research avenues include incorporating predictive information about bed avail-
ability to enhance allocation accuracy and expanding the model’s scope to encompass
broader elderly care contexts, such as addressing bed-blocking in hospitals or exploring
the impact of transitional care units. Furthermore, the promising outcomes of the alloca-
tion model underscore the importance of centralized monitoring of nursing home waiting
lists. In privatized care settings such as the Netherlands, where nursing homes operate
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independently, information sharing and collaborative strategies in the elderly care sector
can significantly enhance efficiency for both patients and nursing homes. A potential
direction towards practical implementation is to investigate the set-up of a regional care
center that manages the available beds, waiting list, and placement of patients, using
a scientifically-based allocation model. In addition, refinement of the utility functions
warrants further investigation to ensure that they align with the diverse needs of patients.
These steps seem to be important prerequisites for a successful practical implementation.
Although our research focuses primarily on the elderly care domain, the allocation policy
framework is relevant for various other domains facing bed scarcity and trade-offs between
preferences and waiting times. From long-term care for mentally disabled people to
psychiatric patient care, applying logistic perspectives to address excessive waiting times
is imperative.

5.A Appendix

In this appendix, more details can be found about the simulation model, Markov Decision
Process, and some additional results.

5.A.1 Simulation model

In this section, we discuss the simulation procedure of the allocation heuristic in more
detail. First, denote It as the set of patients arrived and not yet left before time t ∈ T ,
where we see that the pth arrival is denoted as patient p ∈ It. We define the patient
sets that reside at time t ∈ T at a certain location:

F t
n = {p | p ∈ It, lp ∈ Lp} ∀t ∈ T, n ∈ N, (5.6)

Gt
n = {p | p ∈ It, lp ∈ Mp} ∀t ∈ T, n ∈ N. (5.7)

Thus, at time t ∈ T , F t
n denotes patients who reside permanently in (final) nursing home

n ∈ N. Gt
n is the set with temporary patients at nursing home n ∈ N . Note that Gt

0 is
the set of patients at home.
The simulation procedure can be described as follows; see Figure 5.9 for a schematic
representation. First, the initialization takes place, which includes a warming-up period
for the model. The warming period begins with adding patients to nursing homes until
an occupancy of 90%; this is to speed up the process of reaching steady state. To
determine if and when the steady state was reached, we used a graph with confidence
intervals of the waiting times until placement. For the small instances, the warming
period was ended after 1,000 clients had left the system, and for the full-size instances
that were used for the results in Chapter 6, this was reached after 10,000 clients had
left.
Then, in the dynamic setting, the time is set to the next time moment (5.8) and the
system is updated according to all events that occurred during the interval of length
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Step 0: Initialization
Set t = 0
Initialize the system

Step 1: Dynamic setting

Set t := t+ ∆ (5.8)
New patients arrive with rate λ (5.9)
Patients at home abandon with rate θ (5.10)

Update output values (5.11)
Patients in nursing homes depart with rate µ (5.12)

Update output values (5.13)
Define It, Gt

n and F t
n ∀ n ∈ N (5.14)

Patients update P :=
⋃

n∈N

Gt
n (5.15)

Capacity update cn := bn − |F t
n| ∀ n ∈ N (5.16)

Utility update unp(lp, wp) := unp(lp, t− ap) ∀ p ∈ P, n ∈ N (5.17)

Step 2: Static setting

Run allocation model (5.18)
Replace patients following the outcome and update lp ∀ p ∈ P (5.19)

Stopping criterion is
met?

Stop

no

yes

Figure 5.9: Overview of the simulation procedure.
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∆. The corresponding output values are updated. Then, for the current t ∈ T the sets
It, Gt

n and F t
n ∀ n ∈ N are defined in (5.14). The set of patients P is updated in a way

that includes new arrivals and excludes departures (5.15). The capacity of all nursing
homes is updated so that it includes only empty beds and beds occupied by temporary
patients (5.16). At the end of the dynamic setting, the utilities are updated according
to the new waiting times (5.17).
In the next step, the allocation model is run (5.18). Finally, the resulting replacements
are carried out, including an update of the locations lp of all patients p ∈ P (5.19).
Finally, two stopping criteria were defined on the basis of the instance size. For the toy
examples, the simulations were run until the width of the confidence interval for waiting
times was less than 1% of the mean waiting time for placement. For realistic full-size
instances, this was not achievable, and therefore we ran the simulations for at least twelve
hours and presented the results accompanied by their confidence intervals.

5.A.2 MDP for optimal allocation

Let Xt denote the state of the system at times t ≥ 0, defined in the following, such that
{Xt}t∈T represents the stochastic process. Moreover, let Π denote the set of allocation
policies. Then, policy π ∈ Π has a long-term average reward

rπ = lim
T →∞

1
T

T∑
t=1

rπ(Xt).

The optimal policy is a policy π for which we have maxπrπ.

Problem formulation

Now we discuss all components of the MDP: the state space, action space, transition
probabilities, and rewards. All notation used in this section can be found in Table 5.6.
State space

In the allocation model, we have that each patient is unique. In an MDP framework,
this leads to an excessive state space for realistic model instances. Therefore, we define
a set of patient classes I for the MDP. The patients of class i ∈ I arrive according to a
Poisson process with rate λi, have sets of preferred nursing homes Li and non-preferred
nursing homes Mi.
For the state space, we introduce the variable Xin ∈ N defined as the number of patients
of class i ∈ I residing in nursing home n ∈ N . Let X ∈ N|I|×|N | be the matrix with the
entries Xin. In addition, we only need to keep track of the classes of patients that are
not yet in their preferred nursing home, since only those are candidates to be replaced.
For the preferred placed patients (that is, patient classes i for which n ∈ Li), only the
number of patients yn ∈ N satisfies. We store those elements in a vector y ∈ N|N |, with
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Sets
I Patient classes
N Nursing homes, with n = 0 the home location
Li ⊆ N Preferred nursing homes of class i ∈ I

Mi ⊆ N Non-preferred nursing homes of class i ∈ I, i.e. N \ Li

Parameters
λi Arrival rate of class i ∈ I

µ Service rate
rinm Lumpsum reward of class i ∈ I residing at location n moving to location

m

Xin The number of (temporary) patients of class i ∈ I at location n ∈ N

yn The number of preferred persons at location n ∈ N

wi Waiting penalty of class i ∈ I

crej Rejection costs
bn Number of beds available at location n ∈ N

Aimn Number of patients of class i ∈ I allocated from location m to location
n ∈ N

gin (Initial) willingness of class i ∈ I to be placed in nursing home n ∈ N

Ki Replacement penalty of class i ∈ I

Table 5.6: MDP notation.

yn as the nth entry. Note that we truncate the total number of patients on the waiting
list at b0, such that the state space remains finite. This implies that patients arriving
who find b0 patients on the waiting list are rejected.
Hence, a state can be described as {X,y}, where the state space is given by

S =

{
{X,y} |

∑
i∈I

Xin + yn ≤ bn ∀n ∈ N

}
.

Action space

As actions we define the number of temporarily placed patients of a certain class i ∈ I
that are replaced from nursing home m to n ∈ N , denoted by Aimn. We define the ac-
tion matrix A ∈ N|I|×|N |×|N | with elements Aimn. Note that we allocate all temporary
patients, which can also be in their current location. Now, let Y ({X,y}) denote the set
of all possible actions for state {X,y}. Then, we have

Y ({X,y}) =

{
A | Xin =

∑
m∈N

Ainm,
∑
i∈I

∑
m∈N

Aimn + yn ≤ bn ∀n ∈ N

}
.

Transition probabilities

The transition probabilities consist of two ‘consecutive’ parts. First, based on the actions
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to allocate patients to other locations, we move from state s → s∗. Then, based on
probabilities induced by the stochastic process, we arrive at our final state s′.
For the first part, we have the following state transitions from {X,y} to {X∗,y∗}:

X∗
in =

∑
m∈N

Aimn, for n ∈ Mi,

y∗
n = yn +

∑
m∈N

Aimn, for n ∈ Li.

Now consider the second part, that is, the transition probabilities out of the state s∗.
Without loss of generality, we rescale the time such that

∑
i∈I λi +

∑
n∈N\{0} bnµ = 1,

in which case the rates can be interpreted as transition probabilities. Moreover, for
notation purposes, we define the single-entry matrix Eij as a matrix with zeroes and a
1-entry in the ith row and the jth column, and the unit vector ej as a vector with zeroes
and a 1 as the jth element. The final transition probabilities are

P({X,y}),({X′,y′})(A) =

∑
i∈I

λi if X′ = X∗, y′ = y∗,∑
i∈I

X∗
i0 = b0

λj if X′ = X∗ + Ej0, y′ = y∗,∑
i∈I

X∗
i0 < b0, j ∈ I

µX∗
jm if X′ = X∗ − Ejm, y′ = y∗,

j ∈ I, m ∈ N \ {0}
µy∗

m if X′ = X∗, y′ = y∗ − em,

m ∈ N \ {0}

1 − µ

(∑
i∈I

∑
n∈N\{0}

X∗
in + y∗

n

)
−
∑
i∈I

λi if X′ = X∗, y′ = y∗.

Rewards

The reward at each decision epoch depends on the action reward rimn (defined below),
waiting costs wi and rejection costs crej . The formula for this is the following:

r({X,y},A) =
∑
i∈I

∑
m∈N

∑
n∈N

rimnAimn −
∑
i∈I

wiXi0 − crej

∑
i∈I

λi1{
∑

i∈I
X∗

i0=b0}.

The action rewards are based on the utilities for placement in nursing homes, as provided
in (5.1), without the waiting times utilities. For notational convenience, we set gpn := gin

for the patients p that belong to class i. The precise relation between the utilities and
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the action rewards rimn is given by

rimn =


gin if m = 0, n ∈ N \ {0},
gin − gim −Ki if m ∈ Mi, n ∈ Li,

0 if m = n,

−∞ otherwise.

(5.20)

Value iteration

In order to solve the MDP and find the optimal long-term average reward g∗, we use
value iteration. Hence, we need to find the value function V (s) for all states s ∈ S.
This is done by iteratively computing the value function Vn(s) until convergence occurs.
For this purpose, we initialize V0(s) = 0 ∀s ∈ S and then iteratively solve the Bellman
equations for i ∈ S,

Vn+1(i) = max
a∈A(i)

r(i, a) +
∑
j∈S

Pij(a)Vn(j).

After each iteration, we compute hn = infi |Vn(i) − Vn−1(i)| and Hn = supi |Vn(i) −
Vn−1(i)|. The value functions are converged if Hn −hn < εhn, where ε is a prespecified
accuracy. As the value function has converged, we have ∀ s ∈ S, V (s) = Vn(s) and
g∗ = Vn(s) − Vn−1(s).

State space size

To illustrate the impact on the state space, we define the following instances to compare
the allocation model with the optimal solution. We take two nursing homes, N =
{0, 1, 2} with 0 the home location, and four classes, I = {FP1,FP2,
PP1,PP2}. The class subscripts correspond to the preferred nursing home. For this
example, the number of possible states for X and y provides an upper bound for the size
of the state space:

|X| =
(
b0 + 4
b0

)(
b1 + 2
b1

)(
b2 + 2
b2

)
,

and |y| = (b1 + 1)(b2 + 1).

As can be seen, the size of the state space grows quickly. Moreover, we see that the
number of possible actions is also large, since the empty beds can be filled by all possible
combinations of waiting patients. For these reasons, we are only able to solve small
instances.

5.A.3 Additional results MDP instances

In this appendix, we present the results for the instances defined in Section 5.5.3, with
3 beds per nursing home. As can be seen in Figure 5.10a, the optimality gap is lower
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for these instances than for the instances with 2 beds per nursing home. For the other
output measures, the results for the instances with 3 beds show a similar behavior to the
instances with 2 beds per nursing home; see Figures 5.10b and 5.10c.

(a) Optimality gap in % (b) % died in pref. nursing home (c) Waiting time (d)

Figure 5.10: Results additonal instances
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CHAPTER 6. ALLOCATION OF OLDER PERSONS TO NURSING
HOMES: PRACTICE

Abstract

Objective: The long waiting times for nursing homes can be reduced by applying advanced
waiting-line management. In this chapter, we discuss the preference-based allocation
model for older adults to nursing homes, evaluate the performance in a simulation setting
for three case studies, from two urban regions (Amsterdam and Rotterdam) and one rural
region (Twente), and elaborate on the implementation in practice.

Method: Data about somatic nursing homes and capacities for the three case studies
were identified. A set of preference profiles was defined with aims regarding waiting time
preferences and flexibility. Guidelines for implementation of the model in practice were
obtained by addressing the tasks of all stakeholders. Thereafter, the simulation was run
to compare the current practice with the allocation model based on specified outcome
measures about waiting times and preferences. First, for Amsterdam, the current policy
was validated using waiting times data, and a sensitivity analysis was run. Second, for
Rotterdam and Twente, more elaborate preference profiles were tested.

Results: We found that the allocation model decreased the waiting times for the three
case studies. Compared with the current practice policy, the allocation model reduced
the waiting times until placement by at least a factor of two (from 313 to 85 days in
Amsterdam, from 166 to 80 days in Rotterdam, and from 178 to 82 days in Twente).
Moreover, more of the older adults ended up in their preferred nursing home and the aims
of the distinct preference profiles were satisfied.

Conclusion: The results show that the allocation model outperforms commonly used
waiting-line policies for nursing homes, while meeting individual preferences to a larger
extent. Moreover, the model is easy to implement and of a generic nature and can,
therefore, be extended to other settings as well (e.g., to allocate older adults to home
care or daycare). Finally, this research shows the potential of mathematical models in the
care domain for older adults to face the increasing need for cost-effective solutions.
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6.1 Introduction

In the previous chapter, an allocation model for patients to nursing homes was introduced.
It was found that by applying the allocation model, the older adults’ waiting times were
significantly reduced, whereas at the same time their personal preferences were served
better. In this chapter, we aim to extend the research by addressing the allocation model
from a practical perspective. The allocation model is preference-centered and therefore
a crucial aspect is to make sure the individual preferences are correctly obtained. We
evaluate the allocation model using newly developed preference profiles on three real-life
case studies. Hence, the following research questions are answered in this chapter:

1. How can the allocation model be implemented in practice?

2. How does the allocation model perform for the different preference profiles?

6.2 Method

We first sketch the background of the study, then describe the allocation model and
discuss aspects of the implementation in practice. For more information about the
(mathematical) set-up of the model, we refer to the previous chapter.
The preference profiles were defined in the following way. We first specified the flexibility
of the older adults: more specifically, we defined that older adults may select one or
two preferred nursing homes. The more preferred nursing homes, the more flexibility the
older adult offers, which leads to a shorter (average) waiting time. Moreover, for the
waiting time preference, recall that we formulated two options as well: the type of older
adults who want a fast placement and the type of older adults who want a preferred
placement. The type Fast Placement (FP) wants to be placed as fast as possible in a
(temporary) nursing home, since the older adult’s situation at home is unlivable (e.g.,
acute care patients). On the other hand, the type Preferred Placement (PP) only wants
to be placed in a nursing home that is one of the preferred nursing homes, and otherwise
prefers to stay at home. After selecting both the flexibility number of preferred nursing
homes and the waiting time preferences, the four preference profiles were obtained, as
provided in Table 6.1.
In order to evaluate the allocation model and the current practice model in terms of
the outcome measures, a simulation study was performed. This was done for the three
regions Amsterdam, Rotterdam, and Twente. Results are given in total days, calculated
in means accompanied by confidence intervals. The 95%-confidence intervals indicate the
probabilistic bounds on the statistics, i.e., if two values show non-overlapping confidence
intervals, the statistics are significantly different [98].
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Abbreviation Preference Profile Explanation
FP1 Fast Placement 1 Older adult wants to be placed fast in a nursing home

and has one preferred nursing home
PP1 Preferred Placement 1 Older adult wants to be placed in a preferred nursing

home and has one preferred nursing home
FP2 Fast Placement 2 Older adult wants to be placed fast in a nursing home

and has two preferred nursing homes
PP2 Preferred Placement 2 Older adult wants to be placed in a preferred nursing

home and has two preferred nursing homes

Table 6.1: Abbreviations and preference profiles.

6.2.1 Implementation in practice

Besides evaluating the allocation model by simulation, we also formulate guidelines for
the implementation of the allocation model in practice. For this purpose, we identified
the three stakeholders that are involved, namely a placement office, older adults, and
the nursing homes’ logistic managers. We describe here the needs and requirements of
all stakeholders in order to sketch the use of the allocation model in practice.
First, a placement office needs to be set up or an existing institution must be appointed
to take on this role. This office should organize the placement of older adults in nursing
homes for the surrounding region. The placement office must have a digital infrastructure
that stores older adults’ applications and nursing home capacities, and uses this as input
for the allocation model. The placement office runs the allocation model at structural
time moments, for example, every morning. Then, the placement office needs to inform
the older adults and the logistic managers about the relocations that are the outcomes
of the allocation model.
The next stakeholders are the logistic managers that are currently involved with mon-
itoring the waiting lists of their nursing homes. After implementation of the allocation
model, this task is transferred to the placement office. The new task of the logistic man-
agers is to provide the placement office with real-time data about the capacities (i.e.,
free beds and temporarily placed older adults), such that the allocation input remains
up-to-date.
Finally, the older adults need to express their preferences for nursing homes to the place-
ment office. For that purpose, the older adults need to fill in a, preferably digital,
preferences form, as provided in Figure 6.1. As one can see, an older adult can choose
whether he/she wants to be placed as fast as possible in a temporary nursing home,
which is in expected two days in the example, or wants to wait at home. Moreover, the
older adult can select how many - and which - nursing homes are chosen as preferred
ones, and subsequently the expected waiting times are displayed automatically. When
these projected waiting times are too long, the older adult may reconsider his/her pref-
erences (i.e., be more flexible) to obtain lower waiting times. This way, the older adult
can interact with the system until the older adult is satisfied with the outcome.
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Figure 6.1: Example of the digital preferences form.

6.2.2 Current policy

The current allocation policy in the Netherlands allows patients to sign up for one pre-
ferred nursing home and wait at home until placement [86]. However, if the waiting
time becomes excessive, patients may opt for immediate placement due to impatience.
As bed availability is not centrally managed and information is limited [86], a regional
office manager contacts nursing homes individually to inquire about temporary residency
options, ceasing calls in order to find a suitable bed. Under this policy, patients are
initially placed on a waiting list for their preferred nursing home and later added to a
secondary waiting list shared among all regional nursing homes, where beds are allocated
if the primary list is empty. This policy framework is depicted in Figure 6.2.

Figure 6.2: Illustration of the current policy model.*

* Note that all patients initially enter one queue. Then, after waiting > 15 months, the patient
additionally takes place in the common queue with second priority, which is displayed for patient A
and B.
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We stress that the policy introduced here is the current policy, which may differ from
the current practice. Namely, no centralized administration system exists that prohibits
patients to register for multiple nursing homes, although this is against the rules. This
phenomenon is recognized by experts as the ‘grey waiting list’.

6.3 Case study: Amsterdam

To show the results of the model in a realistic parameter setting, we applied the model
to the situation in Amsterdam, the capital of the Netherlands. First, we describe the
obtained data, after which we validate our model by validating the assumptions and using
information on current waiting times. Thereafter, the results of our proposed alternative
- the allocation model - are discussed.

6.3.1 Data

For our case study, we focus on Amsterdam and a specific patient group: those with
severe somatic conditions, categorized as ZZP 6 and ZZP 8 in the Dutch healthcare
system [148]. These patients exhibit physical symptoms and require intensive care. In
Amsterdam, there are 39 nursing homes with dedicated somatic departments, accom-
modating these patients, see Figure 6.3. Utilizing non-public microdata from Statistics
Netherlands, we derive essential parameters. The arrival rate (λ = 1.24/day) is determ-
ined from nursing home allowance requests, while the capacity (c = 775) reflects the
maximum number of simultaneous residents. Considering a balanced distribution of ca-
pacity across nursing homes, each is assumed to have 20 beds, resulting in 780 beds. The
average length-of-stay ( 1

µ = 666 days) is obtained from patient declaration data. With
the offered load calculated at ρ = 1.07, we adjusted the arrival rate to 1.25 accordingly
so that the offered load remained the same.

Figure 6.3: Locations of somatic nursing homes in the Amsterdam region.
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For the simulations, patient arrivals are generated using demographic data from data.am-
sterdam.nl. The total number of people in Amsterdam older than 65 is circa 110,000.
Moreover, we identify the number of people older than 65 on neighborhood level. Then,
for each neighborhood we calculate the fraction fr of the total number of elderly people
who live in the specific neighborhood r ∈ R. We generate patients for neighborhood
r ∈ R with rate λfr. The fractions of each neighborhood are shown in Figure 6.4.

Figure 6.4: Fractions for each neighborhood in the Amsterdam region.

The preference groups correspond to the Dutch ‘waiting classification’ of patients: the
group FP corresponds to the ‘Active Placement’ group and PP corresponds to ‘Wait for
Preference’ group [2]. From this report, we know that in October 2022, 20.1% of the
patients on a waiting list were of the FP category. However, as we do not know the
waiting times of the different subgroups, we cannot calculate their arrival probabilities.
Due to the lack of this information, we roughly set the arriving patient probabilities to
pP P = 0.5 and pF P = 0.5.

6.3.2 Model validation

We aim to validate our model in two ways. First, we use the real-life data to verify
the assumptions that we provided in the dynamic model. Thereafter, we show that our
model of the current policy is a decent representation of reality, by comparing the res-
ulting waiting times of our model by existing data on waiting times.

Assumptions validation

We validate the assumptions of our dynamic model using real-world data. Firstly, we
assess the assumption that the length-of-stay in nursing homes follows an exponential
distribution. Survival analysis is employed on data comprising length-of-stay, account-
ing for censored data where patients remain alive beyond the observation period. The
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resulting Kaplan-Meier curve, depicted in Figure 6.5, reveals that after three years, ap-
proximately 15% of patients are still present. A two-sample Kolmogorov-Smirnov test
compares this curve with an exponential distribution fitted to the lowest 85% of values.
With a p-value exceeding .01, we cannot reject the null hypothesis, indicating similarity
between the distributions. Thus, we conclude that the length-of-stay for this patient
group conforms to an exponential distribution.

Figure 6.5: Kaplan-Meier curve: survival
probability.

Figure 6.6: Histogram of arrival data per
week in 2016.

The second assumption that we aim to validate is that the arrival process is Poisson.
As data source for the arrival process, we use acceptance data for ZZP 6 and 8 indica-
tions, i.e. after acceptance patients can apply for a nursing home. A histogram with the
number of arrivals per week is displayed in Figure 6.6. Moreover, a chi-square test indic-
ated that the number of arrivals per week could be according to a Poisson distribution
χ2(df = 12, N = 52) = 24.8, p > .01.

Current policy validation

To validate the results of the current policy model, data about waiting lines for long-
term care are used. The best data source found contains information on the waiting time
distribution of all patients to receive long-term care in the Netherlands [201], and thus
not specified for our somatic patient population, although it is noted that “the individual
indications show a similar distribution” [201, p. 1348]. The data used is from April 1,
2020 and thus pre-COVID-19. We use this information to compare to our current policy
model, as displayed in Figure 6.7.
From Figure 6.7, we conclude that the waiting times resulting from the current policy
model are similar to the real-life data. However, it was found that the occupancy level
resulting from the current policy model is 0.76, which is unrealistically low. Therefore,
we also run a scenario that represents the current practice better, which is the scenario
in which (against the rules) 10% of the patients register for three nursing homes instead
of one. In this case, the waiting times can also be approximated fairly well, as can be
seen in Figure 6.8. Next to that, the occupancy level is found to be the realistic value of
0.93. Hence, we validated the current policy by introducing a more realistic scenario for
the current practice. In the following, we will use the current policy model as reference,
since this model contains the least assumptions and is the official protocol.
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Figure 6.7: Fraction of patients waiting
for some amount of time.

Figure 6.8: Fraction of patients waiting,
with P (3 preferred NHs) = 0.1.

6.3.3 Parameter setting for the allocation model

For the allocation model, we have defined the utilities for the patients in close collab-
oration with experts from the elderly care domain. To obtain the initial utilities gpn for
the patients to the nursing homes, we assume that preferences for certain nursing homes
mainly depend on the travel distance between the home location of the patient and the
nursing home, distpn, where the distance is defined as travel distance by car. This was
motivated by research on nursing home selection where location was the “single most
frequently cited factor” [158]. The home locations of the patients are chosen as the
midpoints of the neighborhood from which they were generated. The midpoints of the
neighborhoods are calculated in the following way:

Midpoint latitude = 1
2 (maximum latitude - minimum latitude),

Midpoint longitude = 1
2(maximum longitude - minimum longitude).

Next, we used the following utility scheme for the region of Amsterdam for patient p ∈ P
towards nursing home n ∈ N :

gpn =


100 if distpn ≤ 5 minutes,
50 if 5 < distpn ≤ 15 minutes,
10 otherwise.

If distpn ≤ 5 minutes, the nursing home is in the same neighborhood, which is preferred
by most patients. A drive between 5 and 15 minutes can still be seen as close by,
whereas more than 15 minutes driving is rather far. We also developed corresponding
waiting-time utilities based on the presumed preferences of patients in Amsterdam. We
use the same groups FP and PP as for the small setting, i.e. the same interpretation
but different parameter values. For the FP group, we have for both placement and
preferred placement a linear waiting time utility, namely vU

pn(wp) = 0.1wp ∀ p ∈ PF P

and vF
pn(wp) = 0.1wp ∀ p ∈ PF P . For the PP group, we have that the waiting time
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utility to be placed in a preferred nursing home increases slightly faster, thus vF
pn(wp) =

0.15wp ∀ p ∈ PP P .
For the placement waiting time utility, we developed a sigmoidal function such that
the preferences of this group are best described according to elderly care experts. This
function equals vU

pn(wp) = 100
1+e−(0.09wp−13) − 101 ∀ p ∈ PP P , such that in combination

with gpn ∀ p ∈ P, n ∈ N we have at wp = 0, all resulting utilities are negative except
those of the preferred nursing homes. Then, after approximately three months, the utility
becomes positive for the nursing homes with distpn ≤ 5 minutes, after approximately 4.5
months, the utility becomes positive for the nursing homes with distpn ≤ 15 minutes as
well, and after approximately 6 months, the utility becomes positive for all (resulting)
nursing homes.
Preferred nursing homes for patients are selected based on the highest utilities, with
priority given to those with the highest scores. In cases where multiple nursing homes
have equal utility, a random selection is made. To ensure fairness in comparing the model
to the current situation, we selected preferred nursing homes for the current policy using
the same utility scheme. The parameter values for the case study can be found in Table
6.2.

Parameter Value Parameter Value
|N | 39 vU

pn(wp) 0.1wp ∀ p ∈ P F P

λ 1.25/day vF
pn(wp) 0.1wp ∀ p ∈ P F P

θ−1 666 days (≈ 2 years) vU
pn(wp) 100

1+e
−(0.09wp−13) − 101 ∀ p ∈ P P P

µ−1 666 days (≈ 2 years) vF
pn(wp) 0.15wp ∀ p ∈ P P P

M 1000 cn Initial value: 20 ∀ n ∈ N

∆ 1 day

gpn

{
100 if distpn ≤ 5 min
50 if 5 < distpn ≤ 15 min
10 else

Table 6.2: Parameter values for case study Amsterdam.

6.3.4 Results

We analyzed various policies to assess their impact on performance measures. The results
comparing the allocation model to the two extremes, as defined in Chapter 5, and the
current policy are summarized in Table 6.3. Abandonment rates range from 6.0% for the
shared queue to 36.9% for separate queues, indicating significant differences. Notably,
under the separate queue policy, only 63.1% of individuals end up in their preferred
nursing home, highlighting diverse bed demand across facilities in Amsterdam.
Table 6.3 illustrates the overall favorable performance of the allocation model. Com-
pared to the current policy, abandonment rates decrease significantly from 32.2% to
7.4%, with the allocation model showing only slightly higher abandonment rates than
the shared queue (which sets a lower bound). In addition, mean waiting times until
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Shared
queue

6.0%
(5.3%-
6.7%)

0.0%
(0.0%-
0.0%)

91.3%
(87.4%-
95.2%)

40 (36-
43)

40 (36-
43)

0.91
(0.87-
0.95)

91 (82-
100)

1.0
(1.0-
1.0)

AM:
tot

7.4%
(7.2%-
7.7%)

25.1%
(24.8%-
25.3%)

67.5%
(67.2%-
67.8%)

47 (46-
48)

191
(189-
193)

1.34
(1.33-
1.34)

85 (83-
87)

0.99
(0.99-
0.99)

AM:
FP

0.4%
(0.4%-
0.5%)

33.1%
(32.8%-
33.4%)

66.4%
(66.1%-
66.7%)

3 (2-3) 196
(192-
199)

1.58
(1.58-
1.58)

AM:
PP

14.5%
(14.0%-
14.9%)

16.9%
(16.6%-
17.2%)

68.6%
(68.2%-
69.0%)

99 (97-
101)

186
(184-
188)

1.09
(1.09-
1.1)

CP 32.2%
(32.0%-
32.4%)

4.5%
(4.3%-
4.6%)

63.3%
(63.1%-
63.6%)

234
(232-
235)

257
(255-
259)

0.86
(0.86-
0.87)

313
(311-
315)

0.72
(0.72-
0.73)

Sep-
arate
queues

36.9%
(36.6%-
37.1%)

0.0%
(0.0%-
0.0%)

63.1%
(62.9%-
63.4%)

256
(254-
258)

256
(254-
258)

0.63
(0.63-
0.63)

350
(348-
353)

0.67
(0.67-
0.68)

Table 6.3: Results for the allocation model Amsterdam.
(Note: The values in parentheses are the 95% confidence intervals.)

placement and preferred placement are significantly reduced. However, the number of
replacements increases in the allocation model compared to the current policy. Observe
that the performance of the FP and PP groups is well in line with their goals in terms
of time to placement and preference.

Scenario of multiple preferred nursing homes

The results of the allocation model, applied to Amsterdam, when patients have two
or three preferences are presented in Table 6.4. As anticipated, allowing two preferences
leads to notable improvements, such as a considerable reduction in mean waiting time
until placement in a preferred nursing home (from 177 to 105 days). In addition, the per-
centage of patients who end up in their preferred nursing home increases from 71.2% to
82.5%, albeit with an increase in the mean number of replacements. When the number
of preferred nursing homes is increased to three, overall performance improves further, al-
though not as dramatically as observed between one and two preferences. Therefore, the
decision to adopt multiple preferences depends on balancing these improvements against
the loss of specific nursing home preferences, particularly given that bed efficiency ap-
proaches its maximum level with two preferences (mean occupancy of 0.99). Healthcare
managers must carefully consider these factors to determine the optimal strategy.
The impact of multiple preferred nursing homes within the current policy setting is
explored in Table 6.5. These results reveal significant reductions in abandonment rates
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AM(2):
tot

6.6%
(5.7%-
7.5%)

8.5%
(8.0%-
9.1%)

84.8%
(84.0%-
85.6%)

40 (37-
44)

98 (93-
102)

1.35
(1.33-
1.36)

75 (66-
84)

0.99
(0.99-
1.0)

AM(2):
FP

1.1%
(0.5%-
1.6%)

14.6%
(13.7%-
15.4%)

84.3%
(83.6%-
85.1%)

6 (4-9) 102 (98-
105)

1.69
(1.67-
1.7)

AM(2):
PP

12.2%
(10.9%-
13.5%)

2.5%
(2.1%-
3.0%)

85.3%
(84.1%-
86.5%)

79 (73-
85)

94 (88-
100)

1.0
(0.98-
1.03)

AM(3):
tot

6.3%
(5.3%-
7.3%)

2.5%
(2.1%-
2.9%)

91.2%
(90.3%-
92.1%)

43 (39-
47)

61 (58-
64)

1.27
(1.25-
1.3)

86 (75-
97)

1.0
(1.0-
1.0)

AM(3):
FP

4.2%
(2.9%-
5.4%)

5.0%
(4.2%-
5.9%)

90.8%
(89.7%-
91.9%)

26 (21-
31)

61 (58-
64)

1.63
(1.59-
1.67)

AM(3):
PP

8.5%
(7.6%-
9.4%)

0.0%
(0.0%-
0.0%)

91.5%
(90.6%-
92.4%)

60 (57-
64)

60 (57-
64)

0.92
(0.91-
0.93)

Table 6.4: Results for the allocation model with multiple preferences in Amsterdam.
(Note: The values in parentheses are the 95% confidence intervals.)
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CP(1) 32.2%
(32.0%-
32.4%)

4.5%
(4.3%-
4.6%)

63.3%
(63.1%-
63.6%)

234
(232-
235)

257
(255-
259)

0.86
(0.86-
0.87)

313
(311-
315)

0.72
(0.72-
0.73)

CP(2) 14.7%
(14.4%-
15.0%)

0.0%
(0.0%-
0.0%)

85.3%
(85.0%-
85.6%)

100 (98-
102)

100 (98-
102)

0.85
(0.85-
0.86)

164
(161-
166)

0.91
(0.91-
0.91)

CP(3) 7.5%
(6.6%-
8.4%)

0.0%
(0.0%-
0.0%)

92.5%
(91.6%-
93.4%)

51 (47-
56)

51 (47-
56)

0.92
(0.92-
0.93)

100 (89-
111)

0.98
(0.98-
0.99)

CP(4) 6.8%
(5.8%-
7.7%)

0.0%
(0.0%-
0.0%)

93.2%
(92.3%-
94.2%)

46 (41-
51)

46 (41-
51)

0.93
(0.92-
0.94)

94 (83-
106)

0.99
(0.99-
0.99)

CP(5) 6.7%
(6.4%-
7.0%)

0.0%
(0.0%-
0.0%)

93.3%
(93.0%-
93.6%)

45 (44-
47)

45 (44-
47)

0.93
(0.93-
0.94)

97 (93-
101)

0.99
(0.99-
1.0)

Table 6.5: Current policy multiple preferences Amsterdam
Note: The values in parentheses are the 95% confidence intervals.
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and mean waiting times when the current policy allows for more preferred nursing homes.
However, compared to the allocation model, the current policy’s performance is inferior
even when allowing the same number of preferred nursing homes. For example, with two
nursing homes, the abandonment fraction is 14.7% for the current policy (CP(2)) and
only 6.6% for the allocation model (AM(2)). Thus, the allocation model significantly
outperforms the simple alternative of allowing patients to choose more than one preferred
nursing home.
In summary, we find that if the system allows more patient replacements, the allocation
model outperforms the current policy, significantly reducing waiting times in Amsterdam
while also accommodating individual patient preferences.
Applied to a population of somatic patients in Amsterdam, the allocation model signi-
ficantly reduced the abandonment fraction from 32.2% to 7.4% and decreased the mean
time until placement by five months. However, these improvements required a higher
rate of patient replacements, increasing from 0.86 to 1.34 on average. Furthermore,
allowing patients to choose two preferred nursing homes further improved the model’s
performance, reducing the abandonment fraction to 6.6%. These findings underscore
the relevance of the model in addressing the pressing need for efficient and sustainable
long-term care solutions.

Scenario with popular nursing homes

For the region of Amsterdam, we also consider a scenario with more popular nurs-
ing homes. More specifically, in each of the eight parts of the city (called ‘stadsdelen’),
we randomly select a really popular nursing home. That is, with probability ppop = 0.25,
this nursing home is selected to be the preferred nursing home of a patient who belongs
to that part of the city. The parts of the city and the popular nursing homes chosen are
provided in Figure 6.9.

Figure 6.9: Selected popular nursing homes in city parts of Amsterdam.
(Note: In the city part in the north-west, Westpoort, no popular nursing home is selected,

since no nursing home is located in this part.)
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Table 6.6 shows the results for both the current policy and the allocation model. The
table illustrates that in a scenario with popular nursing homes, the number of abandon-
ments increases for both policies (recall that the abandonment fractions were 7.4% and
32.2% for the allocation model and the current policy, respectively). However, we see
that compared to the situation without popular nursing homes, the percentage of aban-
donments under the allocation model only increases by 1.3%, while the percentage of
abandonments under the current policy increases by 7.2%. This implies that the current
policy is considerably more sensitive to a change in the popularity of nursing homes than
the allocation model.

Policy % Abandonments % Died at temp. NH % Died at pref. NH
AM: tot 8.6% (7.7%-9.4%) 72.5% (71.5%-73.5%) 18.7% (18.4%-19.2%)
AM: FP 0.7% (0.4%-0.9%) 79.2% (78.3%-80.1%) 20.1% (19.3%-21.1%)
AM: PP 16.3% (14.7%-17.7%) 66.3% (64.4%-68.0%) 17.5% (16.6%-18.5%)
CP 37.4% (36.7%-38.1%) 42.0% (41.0%-43.2%) 20.5% (19.4%-21.6%)

Table 6.6: Results scenario popular in Amsterdam.
(Note: The values in parentheses are the 95% confidence interval.)

6.4 Case Study: Rotterdam and Twente

6.4.1 Context and Data

In this section, we focus on two other different regions in the Netherlands: Rotterdam,
a densely populated city region, and Twente, a rural area. The locations of the nursing
homes were obtained from the website www.zorgkaartnederland.nl, which is an open
database containing all nursing homes in the Netherlands. An extra check for address
and care provided was done by inspection of the nursing homes’ websites. Data on
access requests for nursing homes and length-of-stays were obtained by non-public mi-
crodata from Statistics Netherlands. The data that were used as input for the model are
summarized in Tables 6.7 and 6.8.

Parameter Value Parameter Value
|N |
λ

θ−1

µ−1

39
1.11/day
666 days(≈ 2 years)
666 days(≈ 2 years)

vU
p (wp)


0.1wp ∀ p ∈ P F P 1

0.1wp − 11000 ∀ p ∈ P P P 1

wp ∀ p ∈ P F P 2

wp − 11000 ∀ p ∈ P P P 2

M
∆

1000
1 day vF

p (wp)
{

0.1wp ∀ p ∈ P F P 1 ∪ P F P 2

wp ∀ p ∈ P P P 1 ∪ P P P 2

gpn

{
100 if distpn ≤ 10
50 if 10 < distpn ≤ 20
10 else

cn
Initial values:
50% 23 and 50% 24∗

Table 6.7: Parameter values for case study of Rotterdam.
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Parameter Value Parameter Value
|N |
λ

θ−1

µ−1

62
1.46/day
666 days(≈ 2 years)
666 days(≈ 2 years)

vU
p (wp)


0.1wp ∀ p ∈ P F P 1

0.1wp − 11000 ∀ p ∈ P P P 1

5wp ∀ p ∈ P F P 2

5wp − 11000 ∀ p ∈ P P P 2

M
∆

1000
1 day vF

p (wp)
{

0.1wp ∀ p ∈ P F P 1 ∪ P F P 2

5wp ∀ p ∈ P P P 1 ∪ P P P 2

gpn

{
100 if distpn ≤ 20
50 if 20 < distpn ≤ 30
10 else

cn
Initial values:
50% 15 and 50% 16∗

Table 6.8: Parameter values case study Twente

For both Rotterdam and Twente, a map is presented in Figure 6.10, where each triangle
represents a nursing home in which older adults in need of somatic care reside. As can
be seen, Rotterdam is an urban area with many nursing homes (39 in total) over a
small area. In contrast, Twente is a rural region, with the nursing homes (62 in total)
spread out over the geographical area. Public data by Statistics Netherlands indicate that
both regions have approximately 600,000 inhabitants, whereas the surface of Twente is
approximately five times larger.

Figure 6.10: Focus regions with nursing homes and density of older adults (60+).

6.4.2 Results

The outcomes of the simulation studies are displayed in Table 6.9, where each output
column corresponds to one of the selected outcome measures. We only report differences
between values for which the 95%-confidence intervals are non-overlapping.
In Table 6.9, we see that the allocation model outperforms the current practice policy
for all output measures. First, the average waiting times show improvements: e.g., for
Twente both the waiting time until placement and until preferred placement halve when
the allocation model is used (from 178 and 637 days to 82 and 256 days, respectively).
Next to that, more older adults eventually enter their preferred nursing home; for example,
in Rotterdam this is 33.5% for the current practice policy and 49.3% for the allocation
model. Hence, the results show that for both a rural region and an urban region, the

109



Chapter 6.

Metric Rotterdam:
Current prac-
tice

Rotterdam: Al-
location model

Twente: Cur-
rent practice

Twente: Alloca-
tion model

Mean waiting time (days)
until placement

166 (162-169) 80 (75-85) 178 (175-181) 82 (66-98)

Mean waiting time (days)
until pref. placement

544 (431-657) 315 (285-345) 637 (435-840) 265 (189-341)

Fraction of older adults that
depart system from home

22.7% (20.5%-
24.9%)

11.9% (10.8%-
13.1%)

26.6% (22.0%-
31.2%)

19.3% (17.4%-
21.2%)

Fraction of older adults that
depart system from temp.
nursing home

43.8% (40.7%-
46.9%)

38.8% (37.9%-
39.6%)

51.3% (46.1%-
56.5%)

42.3% (40.9%-
43.6%)

Fraction of older adults that
depart system from pref.
nursing home

33.5% (30.8%-
36.1%)

49.3% (47.4%-
51.3%)

22.1% (19.9%-
24.3%)

38.3% (35.3%-
41.3%)

Table 6.9: Mean waiting times and departure fractions by policy and region.

allocation model is able to increase the efficiency in the system compared to the current
practice.
Now consider the waiting times of the different preference profiles, as elaborated in Table
6.1. In Table 6.10, it can be seen that the Fast Placement preference profiles are placed
within one day in a nursing home, which is in line with their preferences. Moreover,
the quick placement is at the cost of obtaining a bed in a preferred nursing home, since
the waiting time for a preferred placement is rather long. In contrast, the Preferred
Placement profiles wait on average at least four months for a placement in a nursing
home, but are placed faster into the nursing home of their preference. If an older adult
chooses a Preferred Placement profile, the chance that this older adult ends up in a
preferred nursing home is over 70% in Rotterdam and over 50% in Twente, which is
above the current practice fractions of 33.5% and 22.1%, respectively (as provided in
Table 6.9).
Furthermore, the profiles with two preference nursing homes are placed faster in preferred
nursing homes than the profiles that selected one preferred nursing home. For example,
for Twente, PP1 is placed in nine months (270 days) in a preferred nursing home, which
reduces to six months (177 days) for PP2.

6.5 Discussion

In this chapter, it was discussed how an allocation model can be implemented in practice
using preference profiles. The performance of the allocation model was evaluated using
simulation in three real-life case studies in the Netherlands: two urban areas (Amsterdam
and Rotterdam) and a rural area (Twente). In comparison to the current practice policy,
the allocation model reduced the waiting times until placement by at least a factor of
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Metric Rotterdam:
FP1

Rotterdam:
PP1

Rotterdam:
FP2

Rotterdam:
PP2

Mean waiting time (days)
until placement

0 (0-1) 179 (167-191) 1 (0-1) 140 (132-148)

Mean waiting time (days)
until pref. placement

515 (458-572) 179 (167-191) 425 (382-469) 140 (132-148)

Fraction of older adults
that depart system from
home

0% (0%-0%) 26.6% (24.7%-
28.7%)

0% (0%-0%) 20.9% (18.6%-
23.3%)

Fraction of older adults
that depart system from
temp. nursing home

80.7% (79.0%-
82.5%)

0% (0%-0%) 74.5% (72.5%-
76.5%)

0% (0%-0%)

Fraction of older adults
that depart system from
pref. nursing home

19.2% (17.4%-
21.0%)

73.4% (71.3%-
75.5%)

25.5% (24.2%-
26.8%)

79.1% (76.7%-
81.4%)

Metric Twente: FP1 Twente: PP1 Twente: FP2 Twente: PP2
Mean waiting time (days)
until placement

0 (0-1) 270 (208-332) 1 (0-1) 177 (136-218)

Mean waiting time (days)
until pref. placement

418 (244-592) 270 (208-332) 386 (243-529) 177 (136-218)

Fraction of older adults
that depart system from
home

0% (0%-0%) 46.2% (42.1%-
50.3%)

0% (0%-0%) 30.8% (28.1%-
33.5%)

Fraction of older adults
that depart system from
temp. nursing home

88.5% (85.6%-
91.4%)

0% (0%-0%) 80.9% (78.2%-
83.6%)

0% (0%-0%)

Fraction of older adults
that depart system from
pref. nursing home

11.5% (9.4%-
13.6%)

53.8% (50.7%-
56.9%)

18.9% (15.7%-
22.1%)

69.2% (65.3%-
73.1%)

Table 6.10: Mean waiting times and departure fractions by preference profile and region.

two: from 313 to 85 days in Amsterdam, from 166 to 80 days in Rotterdam, and from
178 to 82 days in Twente. Moreover, the preferences of the older adults were also better
retained: more older adults ended up in the nursing home of their desire and older adults
that wanted to be placed fast were able to be placed within one day. Hence, these
results show that the allocation model improved the waiting process in both efficiency
and individual preferences.
Despite the promising results, with the implementation of the allocation model there are
also organizational challenges and costs involved. As discussed in this chapter, regional
collaboration is needed between a newly set-up placement office and the nursing homes.
Moreover, the digital infrastructure for the database containing the available capacities
and preferences must be developed, which is likely to be costly. Thus, due to the
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innovative nature of the allocation model, for the implementation an investment in both
time and costs is required.
Besides the practical potential of the model, the allocation model presented in this
chapter adds greater depth to the currently existing research on long-term care waiting-
list management. A meta-review of waiting-list management specifically for the long-term
care by Chafe, Coyte and Sears [42] showed that the majority of research on waiting-list
management is focused on the organization of the waiting process, i.e., how waiting older
adults can be taken care of. Little research has been performed on the organization of the
waiting list, i.e., which older adult should be placed where, as a meta-analysis only reports
two studies on that topic. Both those studies are about changing the priority setting
from first-come-first-served to a needs-based criterion, so no mathematical model was
involved [34, 116]. In view of that background, the allocation model based on preference
profiles is a new concept in the geriatrics domain.
The care domain for older adults offers a wide spectrum of problems that can be im-
proved or optimized by mathematical models. For example, studies have been conducted
on optimal staffing strategies in nursing homes, shortest routes for staff members in home
care services, and treatment scheduling for rehabilitation patients [18, 60, 153]. How-
ever, compared to mathematical research applied to other healthcare areas, such as the
emergency departments or surgery planning, an unbalanced small fraction of research is
devoted to long-term care [138]. Therefore, this research also contributes by broadening
the scope of mathematics in the care for older adults setting.

6.6 Conclusions and Implications

The simulations for all case studies showed that the allocation model is a useful tool
for reducing waiting times in care for older adults. These reduced waiting times without
access to appropriate care can lead to reduced incidents [16]. Especially when an incident
leads to hospitalization, high costs and hospitalization-associated disabilities are involved
[141]. Therefore, the allocation model not only provides a solution for a reduction of
waiting times directly (and the direct consequences such as reduced anxiety of older
adults) [82], the allocation model might indirectly reduce demand for care in a broader
sense as well.
The allocation model also offers opportunities other than allocating older adults to nurs-
ing homes. Namely, also other areas in which a scarcity of supply exists may benefit from
the model, such as assigning older adults to home care or daycare. This is, however,
slightly more complicated, since then ‘capacity’ is not defined as the number of beds,
but as available hours per day. Hence, if the allocation model is extended to include
this type of capacity as well, the allocation model can be used in other contexts within
the care domain for older adults. Finally, the allocation model can also be extended and
adapted in order to fit other healthcare contexts. We develop an allocation model for
the psychiatric care domain in the next chapter.
Finally, this research reveals the potential of mathematical models in the care domain for
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older adults. We have shown that mathematical models can be preference-centered and
thus not solely focused on efficiency at the expense of customization. As far as we are
concerned, correctly developed mathematical models increase the cost-effectiveness of
care and are indispensable in retaining the care for older adults’ expenses at acceptable
level. Therefore, we suggest that future research focuses on developing logistically effi-
cient solutions that are easy to implement, in order to contribute to solving the complex
puzzle regarding the aging of the population.
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7
Allocation of Persons with Resources:

Knapsack-Based Routing

Based on:
Arntzen, R. J., Bekker, R., & van der Mei, R. D. (2024a). Knapsack-based routing for
mental health placements: A split-horizon approach. In review.
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CHAPTER 7. ALLOCATION OF PERSONS WITH RESOURCES:
KNAPSACK-BASED ROUTING

Abstract

Objective: Persons with severe mental illness who cannot live independently can make
use of residential facilities. The process of matching patients with suitable facilities is
intricate, as both restrictions and client preferences play an important role. Regular
placement policies inadvertently prioritize easy-to-place clients over hard-to-place ones,
resulting in disproportionately long waiting times for the latter.

Method: To address this issue, we propose the Knapsack-Based Routing (KBR) model,
which aims to allocate clients to server pools efficiently, considering both resource con-
straints and preferences. For this problem, we develop the so-called split-horizon method,
utilizing an integer quadratic programming approach that incorporates the immediate and
long-term consequences of scheduling decisions.

Results: Extensive simulation experiments demonstrate that the split-horizon method
outperforms benchmark instances in two special cases of KBR: (i) Skill-Based Routing
(SBR) with overflow, and (ii) queues with resource constraints where strategic idleness is
crucial. Additionally, we present a benchmark instance for KBR with an optimality gap
of 2.3%. Applying our method to the allocation process for mental health facilities in
Amsterdam, the Netherlands, we observe a significant improvement over current policies,
resulting in more equitable waiting times for both easy-to-place and hard-to-place clients.

Conclusion: Robust placement strategies in queueing systems with resource constraints
must incorporate strategic idleness. Our split-horizon method provides a robust scheduling
policy that ensures balanced waiting times between different client classes. This method
is widely applicable to service operations that involve routing with resource requirements,
such as in call centers and healthcare settings.
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7.1 Introduction

The World Health Organization estimates that globally more than one in ten people
live with a mental disorder, and 25-35% of the population will require mental health
services at some point in their lives [194]. Common mental disorders include anxiety
disorder (3.8%), depression (3.4%), bipolar disorder (0.6%), schizophrenia (0.3%), and
eating disorders (0.2%) [56]. Substance use disorders, often associated with mental
health issues, have a prevalence of 1.4% for alcohol use disorder, and 0.9% for drug use
disorder [56]. The severity of these disorders significantly impacts individuals’ daily lives.
Approximately 1.2% of the global population suffers from severe mental illness, which
impairs their ability to work, live independently, and maintain relationships [194].
Individuals unable to live independently due to severe mental illness can benefit from
community residential facilities [152]. These facilities assist residents with daily activities
such as cooking, medication management, finances, and social interaction, aiming to
improve their overall functioning [96]. Group homes, a specific type of residential set-
ting for psychiatric patients, foster communal living among residents who share common
facilities like kitchens and living rooms [25, 97]. Studies have shown that group homes
reduce (re)hospitalization rates, enhance employment prospects [61, 65], and promote
independent living, self-esteem, and social functioning [114, 183]. Compared to support-
ive apartments where residents live independently, group home residents report higher
levels of social support and less social isolation [126].
Achieving a suitable match between clients and housing facilities is crucial for effective
living arrangements [66]. First, preferences play a significant role in client placement
decisions. A home serves as an extension of a person’s identity, offering security and fos-
tering a sense of belonging and attachment. Consequently, it must align with the client’s
wishes to ensure positive health outcomes [31, 51]. Second, a suitable match involves
meeting clients’ specific resource needs within the facility and ensuring compatibility with
current residents for maintaining a functional social environment [32]. Stringent require-
ments can pose challenges for clients in finding suitable accommodations quickly [26]. A
standard placement policy often prioritizes easy-to-place clients over hard-to-place ones,
resulting in disproportionately long waiting times for the latter [104]. The challenge lies
in developing a placement policy that distributes waiting times more equitably among all
client types.
Thus, the matching process between clients and facilities involves balancing preferences
and constraints [69]. This process can be likened to a queueing model with multiple
resource-constrained server pools, where efficient routing and packing of clients are
essential. We introduce the Knapsack-Based Routing (KBR) model to address the chal-
lenge of efficiently allocating clients to facilities based on their resource requirements and
preferences. This model finds broad applicability in contexts involving routing decisions
with resource constraints, such as customer contact centers with multiskilled agents or
hospital wards with limited capacity due to staffing and equipment constraints [7, 105].
The main contributions of this chapter are:
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• Modeling. We define the KBR model, in which customer classes are allocated to
server pools under resource constraints and preferences. The KBR model is an ex-
tension of both routing models and queueing systems with resource requirements.
Firstly, the model extends Skill-Based Routing (SBR) models with overflow by in-
corporating additional resource requirements. Secondly, it extends queueing mod-
els with Heterogeneous Service Requirements (HSR), as well as models involving
Resource Collaboration and Multitasking (RCM), by incorporating a network of
resources and complex routing decisions. To determine the optimal policy for the
KBR model, we solve a Markov Decision Process (MDP) and discuss the critical
policy elements. In essence, a good-performing policy must be parameter-sensitive
and state-dependent, addressing customer prioritization, strategic idleness, and
overflow, while effectively managing the complex interactions among these com-
ponents.

• Design of split-horizon method. Due to the curse of dimensionality, designing a
heuristic method capable of solving real-life problems is imperative. To address this
challenge, we develop the split-horizon method. This procedure divides the looka-
head horizon into two segments: the finite horizon, which uses a novel scheduling
technique, and the subsequent infinite horizon, which employs a value function
approach based on a class-load approximation tailored to the resource framework.
We evaluate our split-horizon method against benchmark policies for both SBR
with overflow and HSR. Our findings demonstrate that, first, our method out-
performs state-of-the-art policies for SBR with overflow. Second, it surpasses the
best-known policies for HSR in scenarios where strategic idleness is critical. Ad-
ditionally, we design a benchmark instance for the KBR model and find that the
split-horizon method achieves an optimality gap of 2.3%.

• Application to the mental health domain. Our model contributes to the operations
research literature in mental healthcare, an underexplored area [129]. We enhance
existing knowledge by incorporating critical elements in mental health modeling,
such as the categorization of individuals based on their resource needs and a focus
on reducing waiting times. Furthermore, we apply our split-horizon method to a
case study in Amsterdam, the Netherlands. Our findings demonstrate that this
method can significantly improve upon current placement policies for group homes
by reducing both overall waiting times and achieving more balanced waiting times
between easy-to-place and hard-to-place customers. Thus, our approach holds
considerable promise for enhancing mental health services.

7.2 Literature

The Operations Research literature applied to psychiatric care is sparse, as highlighted
by a recent review titled “Mind the Gap”, which identified only 13 papers on this subject
[129]. We discuss three relevant papers on admission control for mental healthcare ser-
vices. In their work, Heiner, Wallace and Young [81] explore admission control strategies
for mentally ill individuals within service delivery systems. They propose a heuristic for
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resource allocation and program evaluation, emphasizing efficiency, effectiveness, and
equity considerations. Equity is particularly critical due to variations in individual re-
source needs, adding complexity to decision-making. J. Wolpert and E. R. Wolpert
[193] investigate the assignment of psychiatric patients to a network of community men-
tal healthcare services, classifying patients by diagnosis and symptoms and identifying
preferred treatment locations. They formulate a linear programming model to maximize
patient treatment outcomes under a budget constraint. Another model developed by Leff,
Dada and Graves [103] allocates clustered patient groups to community mental health
services, allowing patients to change clusters based on their condition’s improvement or
deterioration. The objective is to assign “service package options” to maximize social
welfare while adhering to resource constraints. These studies underscore the importance
of categorizing individuals based on their resource needs as a fundamental aspect of
allocating mental health services efficiently.
While the literature on Operations Research applied to psychiatric care remains limited,
there has been a recent resurgence in interest, with half of the research published within
the last decade. Noorain, Paola Scaparra and Kotiadis [129] emphasize the urgent need
for models that address timely access to mental healthcare services, a significant practical
challenge. They argue that new models must incorporate uncertainty and stochasticity,
crucial features in mental healthcare settings characterized by issues such as long waiting
times [136] and appointment no-shows [192]. In this study, we develop a stochastic
model for mental healthcare, focusing on waiting times as a critical outcome measure.
In addition to the existing Operations Research literature in mental health, our research
connects to technical literature in queueing theory. Specifically, the KBR model extends
three types of queueing models: SBR with overflow, HSR, and RCM. Figure 7.1 provides
an overview of these models, which we discuss in detail in the following paragraphs.

SBR HSR RCM KBR

Figure 7.1: Schematic representation of related queuing models.

Due to the stochastic nature of our model and its allocation decisions, the KBR model
can be seen as an extension of SBR models in queueing theory. SBR models involve
matching customers of different classes to servers with specific skill sets [187]. Given the
complexity of state and policy spaces in SBR models, exact analysis is often impractical.
Therefore, researchers typically employ methods like heavy-traffic asymptotic analysis
and heuristic policies. An important routing policy is the generalized cµ−rule, which
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is defined as maximizing the instantaneous cost reduction rate. We define the queue
length for customer class i as Qi and a function for the waiting costs as wi(Qi). Now,
according to the generalized cµ−rule, customer class i∗ must be selected for queue j if
w′

i∗(Qi∗)µi∗j ≥ w′
i(Qi)µij ∀i. In a multi-class M/G/1 queue with linear holding cost,

i.e. wi(Qi) = wiQi, the cµ-rule was found to be optimal [50]. Another class of policies
is maximum pressure policies, in which the customer class i∗ must be selected for queue
j if wi∗Xi∗µi∗j ≥ wiXiµij ∀i, where Xi denote the number of class i customers in the
system. It was found that the maximum pressure policy is throughput optimal [53].
In our model, routing decisions consider not only capacity constraints and holding costs
but also client preferences, akin to recent developments in SBR models discussed by Chen,
Dong and Shi [44]. Their model features a parallel service system where each customer
class is assigned to a dedicated server pool. When a customer is routed to a non-
dedicated server pool, overflow costs incur. The authors propose a ‘look-ahead’ policy
that balances holding costs against overflow costs to optimize routing decisions. This
policy performs best in scenarios with small-sized server pools, while a modified maximum
pressure policy is more effective for larger server pools. SBR models with overflow have
found application in hospital ward allocation, where decisions involve balancing the wait
for a dedicated ward against placing patients in alternative wards [45, 54, 151].
In addition to the SBR literature, the KBR model also extends to queueing models
incorporating HSR. One of the pioneering studies involving resource requirements is
conducted by Green [72], where a queueing system is analyzed with customers requiring
varying numbers of servers. They propose a policy prioritizing customers with the fewest
server requirements. Reiman [142] later provides approximations for blocking probabilities
in such systems. More recently, Altman, Jiménez and Koole [6] examine admission control
in telecommunications systems where customers have specific resource demands, akin to
the stochastic knapsack problem. For large-scale scenarios, they derive a fluid model
and identify trunk reservation policies as optimal. Similarly, Koeleman, Bhulai and van
Meersbergen [99] address resource-constrained queueing in home care settings, proposing
a heuristic based on trunk reservation that demonstrates strong performance compared
to optimal policies. Such resource-constrained queues find applications across diverse
service domains, including firefighting and emergency surgery [71].
A recent contribution to this field is provided by Zychlinski, Chan and Dong [202],
who investigate a HSR queueing model. Customer class i may require multiple servers
mi simultaneously during service. The researchers develop the idle-avoid ciµi

mi
-rule, for

which they show optimality for the preemptive case. For the non-preemptive case, the
researchers develop the idle-aware policy. This rule is an optimization program to balance
filling servers with class i customers with the highest instantaneous cost reduction rate
and to reduce idleness by a Γ term, where the selection of Γ determines the index-based
priority rule. Finally, the researchers note that for future research it would be “interesting
to study a network of resources instead of a single type of resource. (...) The challenge
then is to develop good scheduling policies that balance multiple resource constraints”
(p. 35). This research answers the need for a non-preemptive scheduling policy for a
system with multiple resource types.
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Another relevant area of research pertains to models involving RCM. A typical example
includes patient discharge processes, where the involvement of both a doctor and a nurse
illustrates resource collaboration, and the doctor’s multitasking requirement to be avail-
able at both patient diagnosis and discharge phases. Gurvich and Van Mieghem [76]
highlight that such RCM networks inevitably experience idleness, indicating that even
under maximum capacity, bottleneck resources cannot achieve full utilization. In determ-
inistic settings, Bo, Dawande, Huh, Janakiraman and Nagarajan [28] explore methods
to determine process capacities, while Dawande, Feng and Janakiraman [57] propose
approaches to identify bottleneck resources through graph-theoretic analysis of process
structures.
The study by Gurvich and Van Mieghem [77] investigates an RCM system akin to ours,
specifically parallel M/M/1 queues with diverse resource requirements across different
queues, similar to the model in Figure 7.1. They focus on prioritizing tasks that re-
quire extensive resource collaboration to optimize the system capacity. A hierarchical
threshold priority policy is proposed to achieve more balanced queue sizes. Building on
this, Özkan [135] extends the model by incorporating holding costs. The researcher de-
vises a heuristic policy for the preemptive case that maximizes capacity utilization while
minimizing holding costs. The adaptation to the non-preemptive case remains a chal-
lenge, as noted by the author who suggests that “deriving nonpreemptive control policies
that perform well is not trivial and requires further research” (p. 301). Our KBR model
can be conceptualized as an RCM model by setting resource coefficients as integers and
limiting maximum capacity to one for each resource. Therefore, our allocation policy
also provides a non-preemptive control policy applicable to RCM scenarios.

7.3 Model Formulation

The problem addressed in this chapter is how to route customers with heterogeneous
service requirements to protected living facilities that we denote as server pools. We
define I classes of customers and J server pools. The arrival process of a class i, i =
1, . . . , I, customer entering the system is Poisson with rate λi. Moreover, the service
time distribution of class i customers depends on server pool j, j = 1, . . . , J , and
is assumed to be exponential with rate µi = (µi1, . . . , µiJ ). Each server pool j has
capacity restrictions based on the availability of the N resources. We define the vector
of available resources at server pool j as bj = (bj1, . . . , bjN ). Typically, the first resource
(n = 1) will denote the number of servers, such that bj1 represents the number of servers
available in server pool j. Each customer class i has an associated demand for resources,
denoted ψi = (ψi1, . . . , ψiN ). For a customer to enter service, it is required that all
resource requirements are met. The problem can be interpreted as involving multiple
knapsacks, each filled with various types of items, determined by routing decisions. A
schematic representation of the model is depicted in Figure 7.2.
The performance of the allocation mechanism is assessed using two metrics: waiting
time and adherence to customer preferences. First, if customer class i has to wait before
entering service, holding costs hi are incurred. Second, if a customer is routed to a server
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Figure 7.2: The KBR problem. Customer classes with demand for multiple resources need
to be routed to one of the server pools with resource restrictions and class-dependent service
times.

pool that is not preferred, it represents a missed opportunity, which results in opportunity
costs. The opportunity costs for class i are defined by fi = (fi1, . . . , fiJ ).
Each class i customer is thus characterized by the tuple (λi,µi,ψi, hi,fi). In some
situations, it is useful to aggregate over customer classes that only differ in terms of
their preferences, while they have identical parameters µi, ψi, and hi. Let K be the
number of such aggregate classes and let γik be equal to 1 if customer class i belongs
to aggregate class k, and 0 otherwise. More precisely, the map i → k is defined by
(λi,µi,ψi, hi,fi) → (λ̄k,µk,ψk, hk), where λ̄k =

∑I
i=1 γikλi, µi = µk, ψi = ψk,

and hi = hk. Hence, class k can be interpreted as an aggregation over the classes i,
ignoring their preferences.
We now describe the dynamics of the stochastic process. For the customers in the
queue, their preferences are important, whereas preferences are no longer needed once
the customer is taken into service. Denote the number of class i ∈ {1, . . . , I} customers
in the queue at time τ with Qi(τ), and the number of class k ∈ {1, . . . ,K} customers
being served in service pool j with Pkj(τ). These processes depend on the routing
decisions. Let Aij(τ) denote the total number of class i customers routed to service
pool j by time τ . Moreover, let Ai and Bkj be unit rate Poisson processes modeling
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the arrival processes and service completion processes, respectively. Then, the system
dynamics can be described as

Qi(τ) = Qi(0) +Ai(λiτ) −
J∑

j=1
Aij(τ), i = 1, . . . , I,

Pkj(τ) = Pkj(0) +
I∑

i=1
γikAij(τ) −Bkj

(
µkj

∫ τ

0
Pkj(t)dt

)
,

k = 1, . . . ,K, j = 1, . . . , J.

The system state is a (I +KJ)-dimensional vector

S(τ) =

(
Q1(τ), . . . , QI(τ), (7.1)

P11(τ), . . . , P1J (τ), . . . , PK1(τ), . . . , PKJ (τ)

)
.

We denote a given state by s = (q1, . . . , qI , p11, . . . , p1J , . . . , pK1, . . . , pKJ ) = S(τ),
and let A(s) be the set of feasible actions, that is,

A(s) =

{
a ∈ NI×J : aij ≥ 0,

J∑
j=1

aij ≤ qi,

I∑
i=1

ψniaij +
K∑

k=1

ψnkpkj ≤ bnj , (7.2)

i = 1, . . . , I, n = 1, . . . , N, j = 1, . . . , J

}
.

The objective is to find a non-preemptive routing policy to control the allocation of
customers to server pools, aiming to minimize the long-run average sum of holding and
opportunity costs, defined as

lim
τ→∞

1
τ
E

[
I∑

i=1

∫ τ

0
hiQi(t)dt+

I∑
i=1

J∑
j=1

fijAij(τ)

]
. (7.3)

System stability

Due to the heterogeneity of the resource requirements, a condition for stability of the
system cannot be expressed in terms of expected total demand and available capacity. In
line with [202], we define a necessary condition for the vector of maximum arrival rates
that can be processed under some allocation policy. To this end, we list all possible service
configurations x1, . . . , xSj in server pool j. In service configuration xsj , let xs

ij ∈ N0
denote the number of class-i customers served in server pool j. The service configurations
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are constrained by resource availability, such that the set of feasible configurations for
server pool j is defined by

Xj =

{
xsj ∈ NI

0 :
I∑

i=1
ψinx

s
ij ≤ bjn, n = 1, . . . , N

}
. (7.4)

The maximum stability region can be characterized as

S =

{
λ ∈ RI

+ : λi ≤
J∑

j=1

∑
s∈Xj

πjsx
s
ijµij , ∃ πjs ≥ 0,

∑
s∈Xj

πjs ≤ 1, (7.5)

i = 1, . . . , I, j = 1, . . . , J

}
.

In the definition above, πjs can be interpreted as the fraction of time that service con-
figuration xsj is used in server pool j; the maximum service rate per time unit for class-i
customers in server pool j available then reads

∑
s πjsx

s
ijµij .

7.4 Method

In this section, we start by considering small problem instances and find the optimal policy
by numerically solving an MDP; see Appendix 7.A.1 for details on the MDP formulation.
Our aim is to gain insight into, firstly, the optimal packing decisions and, secondly, the
optimal routing decisions. Thereafter, we will illuminate our heuristic for the KBR model
based on these insights.

7.4.1 Optimal packing strategy

For the packing problem, we seek to address questions such as: ‘Is it optimal to develop
a strict priority setting between the customer classes?’ and ‘Should we directly place a
customer if there is capacity available?’. To answer these questions, we create an instance
with one server pool, J = 1, one resource, N = 1, and two classes, I = 2. Classes 1 and
2 have resource coefficients ψ11 = 1 and ψ21 = 2, respectively. The availability of the
resource is b11 = 4. This implies that we can place a maximum of four class 1 customers,
two class 2 customers, or two class 1 customers and one class 2 customer. To visualize
the policy, we consider an empty server pool, implying that the state is (q1, q2, 0, 0).
The occurrence of a particular state depends on the allocation policy; however, this is
excluded from our current analysis. The actions (a11, a21) are defined by the number of
customers of the two classes that are placed in the empty pool. We provide the action
tables in Figure 7.3 for two different holding costs.
We find that for the case with holding costs h = (1, 3), we give strict priority to class
2, as a21 = q2. This aligns with the hiµi1

mi
rule from [202], shown to be optimal for

the preemptive case. According to this rule, customer classes are prioritized by their
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h = (1, 3)

2 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2)

q2 1 (0,1) (1,1) (2,1) (2,1) (2,1) (2,1)

0 (1,0) (2,0) (3,0) (4,0) (4,0)

0 1 2 3 4 5

q1

h = (1, 1)

2 (0,2) (0,2) (2,1) (2,1) (4,0) (4,0)

q2 1 (0,1) (1,1) (2,1) (2,1) (4,0) (4,0)

0 (1,0) (2,0) (3,0) (4,0) (4,0)

0 1 2 3 4 5

q1

Figure 7.3: Action tables (a11, a21) for I = 2, J = 1, N = 1, b1 = (4),ψ1 = (1),ψ2 =
(2), µij = 1, λi = 1, fij = 0, s = (q1, q2, 0, 0).

highest instantaneous cost reduction rate, hiµi1
mi

, withmi denoting the number of required
servers. In our example, this rate is 1 for class 1 and 1.5 for class 2, favoring the placement
of a class 2 customer over a class 1 customer.
For h = (1, 1), the instantaneous cost reduction rate for class 2 drops to 0.5, favoring
class 1 over class 2. This is observed in Figure 7.3, where, e.g., state (4, 2) results in
action (4, 0). However, placing a class 2 customer is prioritized over one class 1 customer
in states like (3, 2) with action (2, 1) (instead of (3, 0)). Although the aggregate instant-
aneous cost reduction rate is 1 in both cases, the selected action minimizes idleness.
Finally, note that the hiµi1

mi
-rule does not easily translate to our model with multiple re-

source requirements, lacking a clear ‘mi’ calculation, and the rule is not optimal for the
non-preemptive case [202]. Nevertheless, it provides valuable intuition on the trade-off
between holding cost, service rate, and resource usage.
We now examine the impact of unbalanced holding costs, where one customer class
becomes relatively more important. Setting the holding costs to h = (1, 5) and the
arrival rates to λi = 1.1 and λi = 1.3, we present the corresponding action tables in
Figure 7.4.
In Figure 7.4, for state (1, 1), we observe action (0, 1), indicating that the class 1 customer
is not placed despite available resources. It appears optimal to keep two resource units
idle for a future class 2 customer. This phenomenon is referred to as strategic idleness,
where there is a deliberate decision not to place customers immediately, allowing for the
placement of more challenging customers in the future. This concept is similar to the
switching idleness discussed by Gurvich and Van Mieghem [77], where service capacity
is intentionally kept idle to switch the class being served. However, strategic idleness
is a more comprehensive approach, as it encompasses not only the switching of classes
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λi = 1.1

2 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2)

q2 1 (0,1) (0,1) (2,1) (2,1) (2,1) (2,1)

0 (1,0) (2,0) (3,0) (4,0) (4,0)

0 1 2 3 4 5

q1

λi = 1.3

2 (0,2) (0,2) (0,2) (0,2) (0,2) (0,2)

q2 1 (0,1) (0,1) (0,1) (0,1) (0,1) (2,1)

0 (1,0) (2,0) (2,0) (4,0) (4,0)

0 1 2 3 4 5

q1

Figure 7.4: Action tables (a11, a21) for I = 2, J = 1, N = 1, b1 = (4),ψ1 = (1),ψ2 =
(2), µij = 1,h = (1, 5), fij = 0, s = (q1, q2, 0, 0). The colored boxes contain actions in which
there is strategic idleness.

but also the adjustment of entire service configurations and the anticipation of future
customer arrivals.
Moreover, increasing the arrival rates λi reduces the expected interarrival time of class
2 customers, leading to more states where strategic idleness is optimal. This happens
according to a threshold structure in terms of the number of customers in the queue.
For λi = 1.1, observe that strategic idleness is applied only in states like (1, 1) but not
in (3, 0). This decision hinges on the time required for a class 2 customer to find an
available place if all customers in the queue join the server pool, which is 1

2µi1
= 1

2 and
1

3µi1
= 1

3 time units, respectively. The former is deemed too long, yielding the preference
for not placing the class 1 customer. Thus, actions are influenced by the types of classes
occupying the server pool. For λi = 1.3, in state (3, 0), the action becomes (2, 0).

7.4.2 Optimal routing strategy

We now investigate the routing part. For this, we maintain the resource structure as
introduced above but with two server pools (J = 2). Both class 1 and 2 prefer server
pool 1, implying that fi1 = 0. If they are placed in server pool 2, the opportunity costs
are fi2 = 0.5 or fi2 = 2. To evaluate the routing strategy, we fill server pool 1 with the
maximum number of class 1 customers and leave server pool 2 empty, resulting in state
s = (q1, q2, 4, 0, 0, 0). The actions are now provided in Figure 7.5.
For the situation in Figure 7.5, it holds that a11 = a21 = 0 for all cases as server pool
1 is at full capacity. Moreover, overflowing is primarily determined by comparing the
waiting time and corresponding holding costs in the preferred server pool against the
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fi2 = 2

2 (0,0) (0,0) (0,1) (0,1) (0,1) (0,2)

q2 1 (0,0) (0,0) (0,0) (0,0) (0,1) (0,1)

0 (0,0) (0,0) (0,0) (0,0) (0,0)

0 1 2 3 4 5

q1

fi2 = 0.5

2 (0,2) (0,2) (0,2) (0,2) (2,1) (2,1)

q2 1 (0,1) (0,1) (0,1) (2,1) (2,1) (2,1)

0 (0,0) (1,0) (2,0) (3,0) (4,0)

0 1 2 3 4 5

q1

Figure 7.5: Action tables with actions (a11, a21, a12, a22) denoted by (a12, a22) as a11 =
a21 = 0, for I = 2, J = 2, N = 1, bjn = 4,ψ1 = (1),ψ2 = (2), µij = 1, λi = 1, hi = 1, fi =
(0, fi2), s = (q1, q2, 4, 0, 0, 0).

opportunity costs. With holding costs set at h = (1, 1), we prioritize class 1 customers,
resulting in longer wait times for class 2 customers, who are consequently placed in server
pool 2 sooner. When fi2 = 2, only class 2 customers overflow. Here, we observe that
the overflow decision depends on the interaction between parameter values and resource
requirements. For fi2 = 0.5, we overflow both customer types, depending on the number
of customers of each class in the queue. When q2 = 0, a threshold structure applies
to class 1. For instance, in state (2, 0), the second class 1 customer in the queue is
overflowed due to holding costs exceeding the overflow costs, with action (0, 0, 1, 0).
Adding another class 1 customer results in an increase of a12 by one; i.e., in state (3, 0)
the optimal action is (0, 0, 2, 0).

7.4.3 Policy features

After evaluating the optimal policy for the KBR model, we have identified pivotal ele-
ments for an effective allocation policy. Typically, for multiclass queueing networks,
index-based priority rules are employed [127]. However, due to the resource require-
ments, the KBR model necessitates deliberate idleness, as an index-based priority rule
inadvertently allocates empty capacity to easy-to-place customers. Therefore, a robust
policy requires scheduling to plan which customers to place immediately and which to
defer, potentially integrating them into efficient service configurations.
As inferred from the optimal policy, the scheduling policy must be parameter-sensitive,
considering the values for arrival rate, service rate, holding costs, opportunity costs, and
resource requirements. Additionally, it must facilitate state-dependent decision-making.
Specifically, the policy must determine (i) which customers to prioritize in the available

127



Chapter 7.

capacity, (ii) which customers to defer to accommodate hard-to-place customers later,
thereby applying strategic idleness, and (iii) which customers to overflow. Moreover,
the policy must effectively navigate the complex interactions among these components
(i)-(iii), particularly in a stochastic environment, to arrive at a good-performing decision.
Finally, the policy should employ a monotone structure, resulting in a threshold policy
for decision-making.

7.4.4 Split-horizon method

We have designed a method, formulated in Section 7.4.7, that meets our aims for a
good-performing placement policy for the KBR model. The general idea is to use a
rolling-horizon approach that is evoked at the time of an event. At time 0, we make a
rough allocation plan by looking ahead. Although the plan looks ahead, we only perform
allocations at time 0; the rest of the plan considers future costs. Upon the next event,
we reset the time at t = 0 and make a new future plan, but only carry out the new
allocation for t = 0.
The allocation planning is created by splitting the look-ahead horizon into two parts:
the finite horizon {0, 1, . . . , T} and the infinite horizon beyond time T , as illustrated in
Figure 7.6. The goal of the short-term planning in segment I is to accommodate for
the complex decision process that results from the heterogeneous resource requirements.
The purpose of the long-term planning in segment II is to appropriately balance between
carrying out sub-optimal allocations and the burden on the system for postponing such
allocations.

Time

t = 0 T

Segment I:
finite horizon until T

Segment II:
infinite horizon beyond T

Figure 7.6: Split of the look-ahead horizon.

This composite approach is inspired by multi-step look-ahead strategies [24]. More
specifically, for a given state s0 ∈ S(0) at time 0, the aim is to achieve

min
a0,ã1,...,ãT

E

{
c(s0, a0) +

T∑
k=1

c(sk, ãk(sk)) + V (s∗
T )

}
, (7.6)

where a0 is the allocation at time 0, ãk is the allocation policy at time k, c(s, a) is
the direct cost for allocation a in state s, and s∗

T is the post-action state at time T .
Here, V (·) is the terminal cost, which we approximate using the relative value function
of a base policy. If we set T = 0, the second term in Equation (7.6) vanishes, and
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the minimization involves only the direct cost of the action at t = 0 and the resulting
future costs V (s∗

0). In this case, the method can be interpreted as a one-step policy
improvement.
The approximate cost of the first T steps (segment I) is addressed in Section 7.4.5,
whereas the terminal cost (segment II) is discussed in Section 7.4.6. The minimization
problem culminates in an Integer Quadratic Program presented in Section 7.4.7.

7.4.5 Segment I: finite horizon up to T

For the finite horizon up to time T , we develop a rough allocation plan. As this plan
needs to be scalable, which is challenging due to the stochasticity combined with the
large state and action spaces, it is based on the expected resource utilization. More
specifically, let ∆ be the time between decision epochs such that the sequence of time
epochs can be described as tn = tn−1 + ∆, for n = 1, 2, . . .. Denote the service time of
a class i customer in server pool j by the random variable Bij and the residual service
time of class k in server pool j by Br

kj . Consider the amount of resource n used at time
t in server pool j, defined by Rjn(t). Let the planned allocation be given by xijt ∈ N
which denotes the number of class i clients allocated to j at time t. Then, the random
variable Rjn(t) can be described by the identity

Rjn(t) =
K∑

k=1

ψknpkj1{Br
kj

≥t} +
I∑

i=1

t∑
s=0

ψinxijs1{Bij≥t−s}. (7.7)

For the rough planning procedure, we assume that the expected amount of resources
should be sufficient, that is, E[Rjn(t)] ≤ bjn. Since we assume exponential service times,
it holds that P(Br

kj ≥ t) = e−∆µkjt and P(Bij ≥ t − s) = e−∆µij(t−s). Clearly, the
assumption of exponential service times is not essential, and the planning can be easily
adapted to a non-exponential setting. Using Equation (7.7), we find

E[Rjn(t)] =
K∑

k=1

ψknpkje
−∆µkjt +

I∑
i=1

t∑
s=0

ψinxijse
−∆µij(t−s). (7.8)

We also consider costs in the allocation planning. Firstly, if a class i customer is placed
in server pool j, we incur an opportunity cost of fij . Additionally, we account for holding
costs if a customer is placed in a server pool at a later time; at time t for class i, this
results in a cost of t∆hi. If a customer cannot be placed within the time horizon, we
incur holding costs over this period, amounting to T∆hi. These ‘leftover’ customers still
impact the system beyond time T . Consequently, we also incur costs for these customers
over the infinite horizon after time T , as further explained in the next section.

7.4.6 Segment II: infinite horizon beyond T

For the infinite horizon beyond T , we approximate the value function term V (·) in
Equation (7.6), following the intuition of multi-step look-ahead strategies. As a base
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policy, we assign a dedicated capacity to each class, an approximation that is also used
in the look-ahead policy of [44]. This is based on the premise that if a class i customer
is not served during t = 0, . . . , T , the customer will wait to be served in a server pool j
where fij = 0. Consequently, we need to determine the load of class i on the system,
which is not directly derived from conventional equations due to the heterogeneous
resource requirements. To characterize the class load for each class i customer, we first
employ a notion of utilization similar to that used in, for example, [90].

Class load approximation

The load is typically a key ingredient in many performance measures in classical queueing
systems. We fix ci = λi/λ̄, with λ̄ =

∑
i λi, as the fraction of arrivals of class i. Our

approach is to increase the aggregate arrival rate λ̄ until the boundary of the stability
region is reached, using dedicated capacity only, from which we derive the corresponding
utilization. By dedicated capacity, we mean that class i can only utilize server pool j
under the condition that fij = 0. Let ωij be 1 if fij = 0 and ∞ otherwise. We are
interested in the service configurations in server pool j that include only the dedicated
classes, denoted by Xj(ω), which are given by

Xj(ω) =

{
xsj ∈ NI

0 :
I∑

i=1
ψinx

s
ijωij ≤ bjn, n = 1, . . . , N

}
. (7.9)

Moreover, we are interested in the set of efficient service configurations for server pool j,
which is a subset of Xj(ω). Our interest is in the Pareto efficient set X E

j(ω), in which it is
not possible to serve an additional customer, i.e., no obvious service capacity is wasted.
More specifically, this set is given by

X E
j(ω) =

{
xsj ∈ Xj(ω) | @ xs′

j ∈ Xj(ω) such that ∀i,

xs′

ij ≥ xs
ij and ∃i, xs′

ij > xs
ij

}
. (7.10)

In line with the maximum stability region, we need to find the fraction of time πjs in
which the efficient service configuration xsj ∈ X E

j(ω) is employed. Thus, our goal is to
maximize the aggregate arrival rate λ̄, retaining the proportions of arrivals per class, and
to find the corresponding vector of time fractions π∗

js for each server pool j. This leads
to the following optimization problem

π∗
js = arg max

πjs

{
λ̄ : λi ≤

J∑
j=1

∑
s∈X E

j(ω)

πjsx
s
ijµij , λi = ciλ̄, (7.11)

∑
s∈X E

j(ω)

πjs = 1, i = 1, . . . , I, j = 1, . . . , J

}
.
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Using the solution of (7.11), we determine the maximum average service rate per time
unit for class i, denoted as s∗

i , and approximate the corresponding class-i utilization as
follows:

ρi = λi

s∗
i

, with s∗
i =

J∑
j=1

∑
s∈X E

j(ω)

π∗
jsx

s
ijµij . (7.12)

We illustrate the procedure with a small healthcare example. A nurse can handle up
to four class 1 patients, two class 2 patients, or two class 1 and one class 2 patients.
Additionally, since class 2 patients require a physician, only one class 2 patient can be
managed at a time. We find the corresponding efficient service configurations X E

1(ω) =
{(2, 1), (4, 0)} as shown in Figure 7.7. Via the optimization problem in (7.11), we find
potential maximum λi’s equal to λ1 = 1.5 and λ2 = 1, and the efficient time fractions
π∗

1s = (0.8, 0.2). Finally, the maximum service rates per time unit are now calculated as
in (7.12) and are equal to s∗

1 = 2 and s∗
2 = 1.

2 2

1

1 22

1 1

1 1 1

1 1 22

1 1 1 1
X E

1(ω) = {(2, 1), (4, 0)}

Figure 7.7: Example procedure for obtaining s∗
i for I = 2, J = 1, N = 2, b1 = (4, 1),ψ1 =

(1, 0),ψ2 = (2, 1),λ = (1.2, 0.8), µij = 1, fij = 0. We depict X1(ω) in the left plot and
find X E

1(ω) = {(2, 1), (4, 0)}. Presented in the right picture is the stability region (2, 1)π∗
11 +

(4, 0)π∗
12, where π∗

11, π
∗
12 ∈ [0, 1] and π∗

11 + π∗
12 ≤ 1. It can be seen that class 2 is binding as

the class ratios yields a maximum of λ1 = 1.5, while s∗
1 = 2.

The class-load description introduced above is typically appropriate when customer classes
have only a single preferred server pool. However, when customers have multiple pre-
ferred server pools, it is a widely shared phenomenon that, in queueing situations where
some customer classes prefer multiple service pools, the system tends to behave ap-
proximately as if all classes can be routed to all service pools [11, 121, 187]. In other
words, with a limited amount of flexibility, nearly all economies of scale can be achieved.
This means that customer waiting times are better approximated by aggregating capacity
across the service pools and disregarding the specific preferences of the customer classes,
implying that ωij = 1 for all i, j. Consequently, in this case, it is better to base the value
function, which will be discussed in the next section, on the aggregate classes defined in
Section 7.3.
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Value function approximation

We now quantify the burden on the system for every waiting customer at time T using
the value function V (·) in Equation (7.6). As a base policy, each class is assigned a
dedicated capacity. We choose the capacity of class i by taking s∗

i , as given by (7.12),
which represents the maximum service rate per time unit assuming the fractions of
arrivals per class remain the same. For a tractable functional form of the value function,
we use the value function of an M/M/1 queue, which is V (x) = x(x + 1)/(2(µ − λ)),
where λ denotes the arrival rate and µ the service rate. Hence, with yi customers of
class i waiting, we approximate the incurred holding costs by hiy

2
i /(2(s∗

i − λi)). The
quadratic term in yi is both convenient for the optimization model and also accounts for
the phenomenon of “waiting on waiting”.
To provide some intuition, we note that the value function leads to a threshold-type
overflow policy. Taking the derivative of hiy

2
i /(2(s∗

i − λi)) with respect to yi, we find
that the ȳi-th waiting class i customer incurs an additional waiting cost of hiȳi/(s∗

i −λi),
which is a linear increasing function in ȳi ∈ N. From Section 7.4.2 it follows that overflow
occurs if the expected waiting cost for a customer exceeds the opportunity costs φ. Thus,
the threshold for preferring overflow over waiting will approximately be

arg min
{
ȳi | hiȳi

s∗
i − λi

> φ

}
. (7.13)

7.4.7 Integer Quadratic Program

Combining Sections 7.4.5 and 7.4.6, we propose a first heuristic that is based on the
customers currently in the system. At time 0, the action is to allocate xij0 class i
customers to j, which follows from the following Integer Quadratic Program (IQP) model:

min
I∑

i=1

J∑
j=1

T∑
t=0

(fij + t∆hi)xijt +
I∑

i=1
hiT∆

(
qi −

J∑
j=1

T∑
t=0

xijt

)
︸ ︷︷ ︸

Segment I: finite horizon

+
I∑

i=1

hi

(
qi −

∑J
j=1
∑T

t=0 xijt

)2

2(s∗
i − λi)︸ ︷︷ ︸

Segment II: infinite horizon

(7.14)

s.t. E[Rjn(t)] ≤ bjn j = 1, . . . , J, n = 1, . . . , N, t = 0, . . . , T, (7.15)
J∑

j=1

T∑
t=0

xijt ≤ qi i = 1, . . . , I, (7.16)

xijt ∈ N i = 1, . . . , I, j = 1, . . . , J, t = 0, . . . , T. (7.17)

where E[Rjn(t)] and s∗
i are given by (7.8) and (7.12), respectively.
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The objective (7.14) consists of three parts. The first part corresponds to the opportunity
and holding costs for customers allocated during {0, 1, . . . , T}. The second part depicts
the holding cost during the time horizon for customers who are not scheduled yet. The
third part represents the terminal cost of those customers, given by the value function.
We refer to Remark 7.1 below in case aggregation of classes is appropriate. Constraint
(7.15) ensures that the expected resource usage from (7.8) does not exceed resource
availability at any time t. The number of class i customers that can be allocated to a
server pool is restricted by the number of customers waiting in the corresponding queue,
qi, see (7.16). Finally, the integer constraints are given by (7.17).
Remark 7.1. In case customers have multiple preferred server pools, aggregating classes
for the value function approximation seems desirable, see Section 7.4.6. The only modi-
fication required concerns the third term of the objective function, which represents
segment II. Specifically, (7.14) should be replaced by

K∑
k=1

hk

{∑I
i=1 γik

(
qi −

∑J
j=1
∑T

t=0 xijt

)}2

2(s∗
k − λk) .

Remark 7.2. Equation (7.8) shows that the expected resource use of a customer in
service decreases over time but never entirely vanishes, as the service time has infinite
support. This can complicate allocation plans, especially in systems with limited server
capacity. To address this, we use a bound ξ: if P(Br

kj ≥ t) < ξ, we set P(Br
kj ≥ t) = 0.

IQP including future arrivals

Next, we aim to develop a second heuristic that incorporates the impact of future arrivals.
Given the considerable variability in the future arrival process and the presence of multiple
customer types, an exact approach is infeasible. Therefore, we employ a heuristic method.
Specifically, we propose reserving slots in server pools for customer allocation. Let ãijt ∈
N be the number of class i slots reserved at server pool j at time t, which will typically
be 0 or occasionally 1. Define Ãjn(t) as the amount of resource n used in server pool j
at time t by these reserved slots, assuming that they are utilized. We then obtain

E[Ãjn(t)] =
I∑

i=1

t∑
s=0

ψinãijse
−∆µij(t−s). (7.18)

For the rough scheduling, we require that the expected resource utilization due to both
current customers and reserved slots be within the available capacity. This implies the
constraint E[Rjn(t)] + E[Ãjn(t)] ≤ bjn. Additionally, we need to estimate the cost
associated with new customers, focusing exclusively on holding costs, which we refer to
as backlog costs. Let zi(t) be the class i backlog at time t. Clearly, the class i backlog
follows the recursion relation

zi(t) = max

{
zi(t− 1) + Ãi(t− 1, t) −

J∑
j=1

ãijt, 0

}
,
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with Ãi(t0, t1) the number of class i arrivals between epochs t0 and t1. In the heuristic,
we use the expected value λi∆ as an approximation for Ãi(t − 1, t). Moreover, the
recursion can be made linear using standard arguments. Combining the above, we use
the following Mixed Integer Quadratic Program (MIQP) for the rough planning at time
0:

min
I∑

i=1

J∑
j=1

T∑
t=0

(fij + t∆hi)xijt +
I∑

i=1

T∑
t=0

hi∆zi(t) +
K∑

i=1
hiT∆yi︸ ︷︷ ︸

Segment I: finite horizon

+
K∑

i=1

hiy
2
i

2(s∗
i − λi)︸ ︷︷ ︸

Segment II: infinite horizon

(7.19)

s.t. E[Rjn(t)] + E[Ãjn(t)] ≤ bjn j = 1, . . . , J, n = 1, . . . , N, t = 1, . . . , T, (7.20)
J∑

j=1

T∑
t=0

xijt ≤ qi i = 1, . . . , I, (7.21)

zi(t) ≥ zi(t− 1) + λi∆ −
J∑

j=1
ãijt i = 1, . . . , I, t = 0, . . . , T, (7.22)

yi ≥ qi −
J∑

j=1

T∑
t=0

xijt + zi(T ) − 1 i = 1, . . . , I, (7.23)

zi(t) ≥ 0 i = 1, . . . , I, t = 0, . . . , T, (7.24)
xijt ∈ N i = 1, . . . , I, j = 1, . . . , J, t = 0, . . . , T, (7.25)
ãijt ∈ N i = 1, . . . , I, j = 1, . . . , J, t = 0, . . . , T. (7.26)

In this second heuristic, we have that the objective is extended by the term containing
the holding costs for the residual future arrivals in (7.19). Moreover, we have in (7.20)
that the expected resource used also contains the potential placement of future arrivals.
Constraint (7.21) ensures that the number of placed customers does not exceed the
queue length. In (7.22), the backlog recursion of the future arrivals is modeled. In
(7.23), we find that the residual class i customers yi include the residual future arrivals
zi(T ). As zi(T ) is a float and yi is an integer, we subtract one from the right-hand side
and use a greater or equal sign. Finally, the variables are defined in (7.24), (7.25), and
(7.26).
In the following, if we denote the term ‘split-horizon method’, we refer to the method
without taking into account future arrivals, thus the IQP model in (7.14)-(7.17). The
IQP including future arrivals, presented in (7.19)-(7.26), will be denoted as split-horizon+
method.
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7.5 Results

First, we compare the heuristic results to benchmark instances of SBR with overflow and
HSR. Thereafter, we obtain for our benchmark instance the optimality gap. Lastly, the
heuristic is applied to a real-life case study.

7.5.1 Comparison to SBR benchmark

The KBR model, with N = 1, simplifies to an SBR model with overflow. We evaluate
the split-horizon method using the benchmark instance from Chen, Dong and Shi [44],
adapted for discrete time. This instance involves three classes (I = 3) and three server
pools (J = 3), with opportunity costs φ ∈ {0.2, 2, 10} penalizing non-dedicated assign-
ments. Since φ = 0.2 and φ = 2 yield similar overflow strategies, we focus on φ = 2
and φ = 10, also varying arrival rates. The study examines several allocation policies,
presenting results for the top three: the modified cµ-rule, the modified maximum pres-
sure policy, and the look-ahead policy. For the set-up of these policies, we refer to Chen,
Dong and Shi [44]. For the split-horizon method, we set T = 0, as there are no resource
requirements, eliminating the need for scheduling. The results are provided in Figure 7.8.
In Figure 7.8, the split-horizon method consistently outperforms all other policies across
the entire range of λ̄. No other allocation policy demonstrates such robust results.
Specifically, the look-ahead policy excels in small-sized instances for most parameter val-
ues, while the modified maximum pressure policy performs best in large-sized instances.
Thus, the split-horizon method effectively captures the key factors influencing overflow
decisions, maintaining superior performance regardless of parameter settings.

7.5.2 Comparison to HSR benchmark

First, we compare the split-horizon method to the best-known policy for HSR by Zych-
linski, Chan and Dong [202]. This study involves a single queue with customers having
different service requirements, leading to J = 1 and N = 1. For the non-preemptive
case, the researchers propose the idle-aware rule, an optimization program balancing
server occupancy with class i customers for the highest instantaneous cost reduction and
reducing idleness using a Γ term. However, Γ lacks a robust value due to its dependency
on specific parameters. Therefore, three priority rules were defined for the two-server,
two-class setting, i.e. I = 2, ψ11 = 2, ψ21 = 1, and b11 = 2. The priority rules are (1)
P1: prioritize class 1, (2) P2: prioritize class 2, and (3) P 1

2 : prioritize class 2 if two class
2 customers can be placed. We evaluate the split-horizon method against these priority
rules using a benchmark instance from Zychlinski, Chan and Dong [202], as shown in
Figure 7.9.
In the left graph of Figure 7.9, it can be seen that for different µ21, different priority
settings perform well. We find that the split-horizon performs robustly for the complete
range of µ21-values. We see that the split-horizon is able to capture the priority switch
based on the µ21-value. For µ21 < 0.3, the split-horizon prioritizes class 1. However, as
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Figure 7.8: The split-horizon method compared to different routing policies on the SBR
benchmark instances defined in Chen, Dong and Shi [44]. We have I = 3, J = 3, N =
1, ψij = 1, µij = 0.25, λi = ciλ̄i, c1 = 0.29, c2 = 0.33, c3 = 0.38, hi = 1, fij = 0 if i == j, φ
else. For the split-horizon, we set ∆ = 1 and T = 0.

the queue for class 2 becomes large, the split-horizon starts placing class 2 customers,
which explains the small increase in costs value compared to always prioritizing class 1.
Moreover, at µ21 = 0.3, the split-horizon captures the P 1

2 -rule, and for µ21 > 0.4, the
split-horizon prioritizes class 2.
In the priority settings based on the idle-aware rule, customers in the queue are always
placed if feasible. However, there are instances where it is optimal to wait for a more
important incoming customer, applying strategic idleness. In such cases, as shown in the
right plot of Figure 7.9, the split-horizon method outperforms all priority settings. Only
P1 is displayed as it is the next best option. Additionally, when the system is busier (i.e.,
µ21 is low), strategic idleness becomes more critical, resulting in larger cost differences
compared to scenarios where µ21 is higher.
To further illustrate the importance of strategic idleness, consider Figure 7.10, which
shows a potential sample path. Despite class 1 being prioritized by P1, resource con-
straints lead to an excessively long queue for class 1. This underscores the need for a
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Figure 7.9: Split-horizon+ method compared to different idle-aware policies on the HSR
benchmark instance defined in Zychlinski, Chan and Dong [202]. We have I = 2, J = 1, N =
1, b1 = (2),ψ1 = (2),ψ2 = (1),λ = (0.05, 0.15), fi = (0),h = (5, 1). For the split-
horizon+, we set ∆ = 1, T = 9, and ξ = 0.1.

scheduling policy with strategic idleness to achieve robust scheduling. The split-horizon
method balances queue lengths across customer classes, optimizing waiting times.

Figure 7.10: Sample paths of P1 and the split-horizon+ method for the same trace for
the HSR instance I = 2, J = 1, N = 1, b1 = (2),ψ1 = (2),ψ2 = (1),µ1 = (0.7),µ2 =
(0.2),λ = (0.3, 0.2), fi = (0),h = (5, 1). For the split-horizon+, we set ∆ = 1, T = 9, and
ξ = 0.1.
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7.5.3 Optimality gaps for the KBR benchmark

To evaluate the performance of the split-horizon method for a KBR model, we conducted
an experiment with instances generated as follows: There are four classes (I = 4) and two
server pools (J = 2). Classes 1 and 2 have fixed resource requirements ψ11 = ψ21 = 1,
while classes 3 and 4 have resource requirements ψ31 = ψ41 = {2, 3, 4}. Classes 1 and
3 prefer server pool 1, and classes 2 and 4 prefer server pool 2, requiring simultaneous
packing and routing decisions. We defined varying load settings ρi = {0.7, 0.8, 0.9},
implemented by calculating s∗

i via (7.12) and selecting λi = ρis
∗
i . This resulted in 27

small instances.
All scenarios were run in a Discrete Event Simulation (DES) using the batch mean
method. After a warming-up period of 105 evaluated clients, 100 batches of 105 clients
each were run, resulting in a maximum standard error of 0.005 for the mean long-term
average costs for all runs. Four allocation policies were evaluated: (i) greedy, which
equals the split-horizon method for only the finite horizon and T = 0, (ii) split-horizon,
(iii) split-horizon+, and (iv) the adjusted look-ahead, which is the look-ahead method
given in Chen, Dong and Shi [44] including resource constraints. The optimality gaps
for the different policies are given in Figure 7.11.

Figure 7.11: Optimality gaps (left) and waiting times (right) for different allocation
policies. The policies were evaluated on 27 KBR instances with fixed I = 4, J = 2, N =
1, bj = (4),ψ1 = ψ2 = (1, 1), h1 = h2 = 1,µi = (1, 1), ci = 0.25, f1 = f3 =
(0, 2), f2 = f4 = (2, 0). Other parameters vary: ρi = {0.7, 0.8, 0.9}∀i ∈ I,ψ3 ∈
{(2, 2), (3, 3), (4, 4)},ψ4 = ψ3, h3 ∈ {2, 3, 4}, h4 = h3. We set Qmax = 5 and crej = 2.
Finally, ∆ = 1∑I

i=1
(λi+

∑J

j=1
bj1µij )

, T = d 1.5
mini λi∆ e, and ξ = 0.1.

We find that the split-horizon and split-horizon+ methods exhibit optimality gaps of
2.5% and 2.3%, respectively, thereby outperforming the greedy policy, which has an
optimality gap of 32.6%, and the adjusted look-ahead policy, which has an optimality
gap of 10.4%. The poor performance of the greedy policy highlights the importance
of considering future events. Additionally, the split-horizon+ method shows a slight
improvement over the split-horizon method, indicating a marginal benefit of accounting
for future arrivals. We also evaluated the aggregated versions of the split-horizon and
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split-horizon+ methods, which resulted in optimality gaps of 2.6% and 3.4%, respectively,
demonstrating strong performance as well. For further insight into the optimal placement
policy compared to the split-horizon+ method, we provide several policy tables for various
states in Appendix 7.A.2.
Furthermore, we compare the class-specific waiting times between the split-horizon+
and adjusted look-ahead policies. The results, provided in the right graph in Figure 7.11,
demonstrate that the split-horizon+ method not only minimizes long-term costs more
effectively but also achieves more balanced waiting times across different classes. Given
that balanced waiting times are a crucial criterion for evaluating the efficacy of a policy
in the mental health context, these findings underscore the superior performance of our
method in this regard.

7.5.4 Case study

For our case study, we identified all group homes in Amsterdam, comprising 32 homes
with a total of 143 beds. These homes are distributed across ten locations, as shown
in Figure 7.12. Additionally, we accessed health data from Statistics Netherlands on
individuals with severe mental illness living in community care in Amsterdam [39]. The
average age in this type of housing is 49.8 years, with 35% identifying as female. Prior
to their admission, 40.4% received therapy for schizophrenia, 21.3% for addiction, 8.5%
for mood disorders, and 6.4% for personality disorders. We found no seasonal trends
in the arrival patterns, allowing us to assume Poisson arrivals. Analysis of service dura-
tion data indicates an average length-of-stay of approximately ten years. Due to privacy
constraints, we could not obtain specific client characteristics, necessitating assump-
tions about the potential patient population. Furthermore, five healthcare organizations
provide these facilities, for which we assume that centralizing the waiting list is feasible.
Therefore, we selected a fraction of the homes for the case study.

Figure 7.12: Locations of group homes in Amsterdam.

The current placement procedure is as follows. A potential client, assisted by an employee
of a care organization or the municipality, evaluates the available homes. During this
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process, the client’s restrictions and preferences are thoroughly discussed. Together, they
identify a few best-suited homes, typically two, and the client is placed on the waiting
list of the home with the shortest queue. This approach can be viewed as a d-policy with
d = 2 [121]. When a bed becomes available, the first person in the queue who meets
the group compatibility requirements is admitted, following a ‘First-Come-First-Feasible-
Served’ policy. We denote this as the Current Policy (CP).
Our proposed alternative to CP is the split-horizon method, where we select the two
best-suited homes as preferred options. If a client is placed in a home other than these
preferred options, they incur an off-placement penalty φ. As we have five houses, for
the overflow costs we denote σi(φ, φ, φ, 0, 0) as the ith permutation consisting of three
overflow penalties φ and two preferred values 0. Given the multiple preferred house
choices, we employ the version of the IQP with class aggregation. The comparison
between the CP and the split-horizon method is provided in Figure 7.13.

Figure 7.13: Results of the case study. The instance is I = 30, J = 5, N = 2, ψi1 = 1, ψi2 =
1 and fi = σi if i ∈ {1, ..., 10}, ψi2 = 2 and fi = σi−10 if i ∈ {11, ..., 20}, ψi2 = 3 and fi =
σi−20 if i ∈ {21, ..., 30}, bj = (5, 8), µij = 0.1,h = (1, 2, 3),λ = (1.4, 0.4, 0.2). We set
∆ = 0.22 and T = 10.

In Figure 7.13, the heuristic places a higher fraction of individuals in their preferred houses
as opportunity costs increase. Classes with lower resource requirements are placed more
frequently in preferred houses, ensuring all individuals are accommodated in a preferred
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house when opportunity costs φ ≥ 50. However, this prioritization leads to longer
waiting times, as shown in the bottom figure, which worsens for the split-horizon method
as opportunity costs rise. Furthermore, waiting times under the current policy can be
excessively long, with hard-to-place individuals experiencing delays of up to two years,
consistent with estimates from mental healthcare organizations.
In the same figure, we observe a significant imbalance in waiting times among the three
classes under the current policy, where higher resource requirements result in longer
waits. It is evident that hard-to-place clients are prioritized less effectively compared
to easy-to-place clients when no scheduling policy is used. In contrast, the split-horizon
method employs an advanced scheduling policy that significantly improves the balance of
waiting times across classes, achieving much shorter waits than the current policy. Thus,
these findings underscore the inefficiency and inequity of the current policy, highlighting
the potential enhancements offered by the split-horizon method.

7.6 Discussion

In this chapter, we address the problem of allocating individuals to mental healthcare
residential facilities. We formulate this problem as a KBR model, where customer classes
are routed to server pools with resource constraints and preferences. Designing an ef-
fective policy for this problem is complex and requires a scheduling approach, as we show
that index-based priority settings can lead to opposite outcomes due to varying resource
demands. We propose the split-horizon method, which divides the look-ahead horizon
into short-term and long-term planning. The goal is to balance favorable scheduling
decisions in the short-term and the effects of these decisions on the long-term. We
find that the split-horizon method performs well, with an optimality gap of 2.3%, and
outperforms state-of-the-art policies on benchmark instances for skill-based routing with
overflow and queues with heterogeneous service requirements.
We applied our split-horizon method to a real-life case study involving the allocation of
individuals with severe mental illness to group homes in Amsterdam, the Netherlands. We
found that the method demonstrated superior performance over the existing placement
policy by achieving shorter waiting times. Moreover, due to its threshold-based actions,
the split-horizon method yields more balanced waiting times between easy-to-place and
hard-to-place customer classes. With our methodology, we enhance the operations re-
search literature in the mental health domain by incorporating domain-specific elements
such as clustering customers based on resource utilization and prioritizing acceptable
waiting times [129]. Given the significant logistical challenges in mental healthcare, we
advocate for increased application of operations research methodologies in this highly
pertinent, yet underexplored, domain.
We suggest several directions for future research. First, gaining theoretical insights into
the model would be valuable. For instance, can we explicitly determine which customer
class has priority? In what specific cases is it optimal to apply strategic idleness or to
overflow? Currently, these insights are lacking due to the complexity of the problem,
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but obtaining them would pave the way for more efficient policies. Second, the model
could be extended by incorporating elements such as abandonments or customers chan-
ging resource requirements during waiting or service. Finally, exploring other solution
approaches, such as applying reinforcement learning to the KBR model, would be in-
teresting and challenging due to the nonpreemptive nature and large state and action
spaces. In conclusion, we consider the KBR model to be a general model with practical
utility in various healthcare settings and call centers, making it worthwhile to investigate
further.

7.A Appendix

7.A.1 MDP formulation

We now formulate the MDP for the KBR model. Recall that the state s is defined in
(7.1). Let q = (q1, . . . , qI) be a vector of queue lengths and p be the matrix with entries
pkj denoting the number of class k customers in server pool j. Using (7.1), the state
s can be described as s = {q,p}. For numerical purposes, we truncate the state space
and set Qmax as the maximum queue length, giving the state space

S =
{
s ∈ NI × NK×J |

I∑
i=1

qi ≤ Qmax,

K∑
k=1

φknpkj ≤ bjn,

j = 1, . . . , J, n = 1, . . . , N
}
.

The set of feasible actions for state s is given by A(s), as defined in (7.2). Let Nj be
the maximum number of customers at server pool j, which is assumed to be finite. As
the first resource is associated with the number of servers, we typically have φi1 = 1,
for all i = 1, . . . , I, in which case Nj ≤ b1j < ∞. Without loss of generality, we rescale
time such that

∑I
i=1 λi +

∑J
j=1 Nj max{µij} = 1.

To define the transition probabilities, let s be the preaction state and s∗ = {q∗,p∗} the
postaction state. In particular, using action a ∈ A(s) in state s, the postaction state
s∗ has entries q∗

i = qi −
∑

j aij and p∗
kj = pkj +

∑
i γikaij . Let ei denote the i-th

unit vector and ekj be a matrix with zeroes and a 1-entry in the i-th row and the j-th
column. The transition probabilities to state s′ = {q′,p′}, using the postaction states
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s∗ = {q∗,p∗}, are given by

P (s′ | s, a) =



I∑
i=1

λi if s′ = s∗,
I∑

i=1
q∗

i = Qmax,

λi if q′ = q∗ + ei,
I∑

i=1
q∗

i < Qmax,

p′ = p∗,

µkjp
∗
kj if q′ = q∗,p′ = p∗ − ekj ,

1 −
K∑

k=1

J∑
j=1

µkjp
∗
kj −

I∑
i=1

λi if s′ = s∗,

0 otherwise.

The one-epoch cost associated with action a and preaction state s are

c(s, a) =
I∑

i=1

J∑
j=1

fijaij +
I∑

i=1
hi

(
qi −

J∑
j=1

aij

)
+ crejλ̄1{

∑
i

qi−
∑

i,j
aij=Qmax},

with crej the cost for rejecting a customer due to the upper bound on the queue length.
Note that the holding and rejection costs apply to the postaction state.
For the long-run average cost, we need to solve the Bellman equations

g∗ + V ∗(s) = min
a∈A(s)

{
c(s, a) +

∑
s′∈S

P (s′ | s, a)V ∗(s′)

}
, s ∈ S .

Here, g∗ is the optimal long-run average cost and V ∗(·) is the optimal relative value
function. For small instances, we numerically solve the Bellman equations using value
iteration. Clearly, given the (I +KJ)-dimensional state space, solving such an MDP is
computationally prohibitive for any reasonably sized instance.

7.A.2 Policy tables for KBR benchmark instance

To gain deeper insights into the policy structure of the split-horizon+ method, we analyze
the policy tables comparing the optimal policy with the split-horizon+ method, as shown
in Figure 7.14. We focus on a specific instance from the KBR benchmark set, featuring
four customer classes (I = 4) allocated to two server pools (J = 2). Initially, we select
three ‘base’ states where server pool 1 is partially filled while server pool 2 remains empty.
We vary the queue lengths for customer classes 1 and 3, which are dedicated to server
pool 1 and potentially overflow into the vacant server pool 2.
For states where server pool 1 is empty, specifically s = (q1, 0, q3, 0, 0, 0, 0, 0), the
split-horizon+ method accurately determines the optimal policy for q1 and q3, where
q1 + q3 ≤ 5. Notably, the method prioritizes customer class 3 appropriately in server
pool 1, maintaining strict precedence in scenarios without overflow. Additionally, an
overflow threshold is identified at q3 = 3, beyond which overflow becomes necessary if

143



Chapter 7.

q1 ≥ 3. The split-horizon+ method precisely identifies this threshold and the optimal
placement and overflow strategy, exemplified in state s = (3, 0, 1, 0, 0, 0, 0, 0), where the
action matches the optimal action a = (2, 0, 1, 0, 0, 0, 1, 0).
For states s = (q1, 0, q3, 0, 2, 0, 0, 0) and s = (q1, 0, q3, 0, 4, 0, 0, 0), representing busier
system conditions, overflow decisions occur more frequently. Here, the split-horizon+
method consistently makes accurate placement and overflow decisions. The policy tables
in Figure 7.14 highlight instances (colored cells) where the split-horizon method exhibits
a slightly more conservative approach, overshooting the optimal overflow threshold. For
instance, in states s = (0, 0, 1, 0, 4, 0, 0, 0), overflow should have commenced, whereas
the split-horizon+ method initiates overflow at s = (0, 0, 2, 0, 4, 0, 0, 0) and
s = (1, 0, 1, 0, 4, 0, 0, 0).
In conclusion, the split-horizon+ method performs accurately in determining customer
prioritization and overflow decisions. It avoids strategic idleness by maximizing utilization
of dedicated server pool 1, aligning well with the optimal policy for this parameter
configuration.
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Optimal policy
s = (q1, 0, q3, 0, 0, 0, 0, 0)

2 (0,0,2,0,0,0,0,0) (0,0,2,0,0,0,0,0) (0,0,2,0,0,0,0,0) (2,0,1,0,0,0,1,0)
q3 1 (0,0,1,0,0,0,0,0) (1,0,1,0,0,0,0,0) (2,0,1,0,0,0,0,0) (2,0,1,0,0,0,0,0) (2,0,1,0,0,0,0,0)

0 (1,0,0,0,0,0,0,0) (2,0,0,0,0,0,0,0) (3,0,0,0,0,0,0,0) (4,0,0,0,0,0,0,0) (4,0,0,0,0,0,0,0)
0 1 2 3 4 5

q1

s = (q1, 0, q3, 0, 2, 0, 0, 0)
2 (0,0,1,0,0,0,1,0) (0,0,1,0,0,0,1,0) (0,0,1,0,0,0,1,0) (2,0,0,0,0,0,2,0)

q3 1 (0,0,1,0,0,0,0,0) (0,0,1,0,0,0,0,0) (0,0,1,0,0,0,0,0) (2,0,0,0,0,0,1,0) (2,0,0,0,0,0,1,0)
0 (1,0,0,0,0,0,0,0) (2,0,0,0,0,0,0,0) (2,0,0,0,0,0,0,0) (2,0,0,0,0,0,0,0) (2,0,0,0,0,0,0,0)

0 1 2 3 4 5
q1

s = (q1, 0, q3, 0, 4, 0, 0, 0)
2 (0,0,0,0,0,0,1,0) (0,0,0,0,0,0,2,0) (0,0,0,0,0,0,2,0) (0,0,0,0,0,0,2,0)

q3 1 (0,0,0,0,0,0,1,0) (0,0,0,0,0,0,1,0) (0,0,0,0,0,0,1,0) (0,0,0,0,0,0,1,0) (0,0,0,0,0,0,1,0)
0 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) (0,0,0,0,1,0,0,0)

0 1 2 3 4 5
q1

Split-horizon+
s = (q1, 0, q3, 0, 0, 0, 0, 0)

2 (0,0,2,0,0,0,0,0) (0,0,2,0,0,0,0,0) (0,0,2,0,0,0,0,0) (2,0,1,0,0,0,1,0)
q3 1 (0,0,1,0,0,0,0,0) (1,0,1,0,0,0,0,0) (2,0,1,0,0,0,0,0) (2,0,1,0,0,0,0,0) (2,0,1,0,0,0,0,0)

0 (1,0,0,0,0,0,0,0) (2,0,0,0,0,0,0,0) (3,0,0,0,0,0,0,0) (4,0,0,0,0,0,0,0) (4,0,0,0,0,0,0,0)
0 1 2 3 4 5

q1

s = (q1, 0, q3, 0, 2, 0, 0, 0)
2 (0,0,1,0,0,0,0,0) (0,0,1,0,0,0,1,0) (0,0,1,0,0,0,1,0) (2,0,0,0,0,0,2,0)

q3 1 (0,0,1,0,0,0,0,0) (0,0,1,0,0,0,0,0) (0,0,1,0,0,0,0,0) (2,0,0,0,0,0,1,0) (2,0,0,0,0,0,1,0)
0 (1,0,0,0,0,0,0,0) (2,0,0,0,0,0,0,0) (2,0,0,0,0,0,0,0) (2,0,0,0,0,0,0,0) (2,0,0,0,0,0,0,0)

0 1 2 3 4 5
q1

s = (q1, 0, q3, 0, 4, 0, 0, 0)
2 (0,0,0,0,0,0,1,0) (0,0,0,0,0,0,2,0) (0,0,0,0,0,0,2,0) (0,0,0,0,0,0,2,0)

q3 1 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,1,0) (0,0,0,0,0,0,1,0) (0,0,0,0,0,0,1,0) (0,0,0,0,0,0,1,0)
0 (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0)

0 1 2 3 4 5
q1

Figure 7.14: Action tables for I = 4,K = 2, J = 2, N = 1, bj = 4,ψ1 = ψ2 = (1, 1),ψ3 =
ψ4 = (2, 2),µi = (1, 1), ρi = 0.7,h = (1, 1, 2, 2), f1 = f3 = (0, 2), f2 = f4 = (2, 0). For
other parameters, see Figure 7.11. States are denoted by (q1, q2, q3, q4, p11, p21, p12, p22) and
actions by (a11, a21, a31, a41, a12, a22, a32, a42). Actions in which the heuristic differs from the
optimal policy are colored.
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8
Implications and Outlook

This thesis is based on an interdisciplinary collaboration between two heretofore separate
domains: mathematical modelling and stochastic optimization on the one hand, and the
elderly care domain on the other hand [191]. With a focus on patient flows, capacity,
and efficient allocation, various critical aspects of the current healthcare system have
been identified that require an interdisciplinary approach. As the aging population puts
increasing pressure on the healthcare system, the need for a logistical perspective will
become even more crucial in the next decades.

8.1 Policy Implications

This thesis focuses on two key areas: short-term care and long-term care. An investiga-
tion of both components of the healthcare system for old age yielded possible directions
for policy:

• Ensure 24/7 admission capabilities in Intermediate Care: It is essential to improve
round-the-clock admission options in regions where these services are currently
insufficient. This will reduce unnecessary hospitalizations, which are costly and
may lead to adverse events.

• Develop a regional approach to Long-Term Care waiting lists: A regional approach
to managing waiting lists in nursing homes (or home care) should be developed,
so that waiting times can be reduced and efficient allocation can be leveraged.

For short-term care, particularly Intermediate Care (IC), this thesis explored strategies to
reduce waiting times and minimize unnecessary hospital admissions. A simulation study
conducted in the Amsterdam region revealed that the waiting times were not due to a lack
of beds but rather due to insufficient admission capacity during evenings and weekends
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[12]. A survey study showed that some IC facilities have only a few beds in nursing
homes, complicating acute admissions [171]. For regions where this is still inadequately
addressed, we recommend investing in a more efficient 24/7 admission process. This
approach ensures that older adults can be cared for outside of the hospital, receiving the
right care at the right place.
For long-term care, we advocate for a regional registration system for the waiting lists.
At some regions, successful pilot programs have already implemented for this issue [5].
A regional system can create the necessary economies of scale to reduce waiting times.
Additionally, we recommend adopting an allocation model to optimize the matching of
older individuals to available spaces, taking into account their preferences and flexibility.
A points-based system, similar to that used in social housing allocation, could also be
beneficial for this purpose.

8.2 Potential for a Macro Model

Our research examined how reducing waiting times across various care providers, such
as nursing homes and IC, could be achieved. Reducing these waiting times not only
impacts the providers themselves but also affects system-wide capacity, as bed-blocking
in upstream providers occurs when transitions are delayed. By maintaining optimal
capacity at the next care level, patient flow throughout the system can be maximized.
To determine this ‘optimal’ capacity, it is necessary to understand how older adults move
through the healthcare landscape, considering both transition probabilities and Length-
of-Stay (LoS). In Chapter 2, we mapped the patient journeys of older persons, revealing
that those aged 85+ experience multiple care transitions within a single pathway. A
model based on factors like age or frailty status [188] would be useful in this context.
We also developed a method to estimate the distribution of LoS, with a focus on longer
durations using uncensored data [176]. Together, these elements could form a model for
determining the optimal (regional) capacity for each type of care.
How this ‘macro model’ should be structured is a question for future research. Initial
attempts, such as system dynamics [58] and Jackson networks [176], were too high-
level to capture the necessary and complex dynamics. An alternative approach could be
to combine the models developed in this thesis for short-term care [12] and long-term
care [11] into a single framework. The short-term care model focuses on urgency and
timeframes of hours/days, while the long-term care model emphasizes preferences and
timeframes of months/years. Future work should explore if and how these models can
be integrated.

8.3 Generalization to Other Care Domains

The models developed in this thesis are generic in nature and can be applied to other
healthcare domains beyond care for old age. A good example is the allocation model
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developed for residential psychiatric care in this thesis, which emerged as an extension
of the nursing home allocation model. The new constraints added in this extension
could also be directly applied to healthcare for older adults, for instance, in the context
of multimorbidity. Although the model is general, the data and parameter values will
ultimately make sure that the model is tailored to the application setting.
Potential applications in other care sectors include youth care, maternity care, psychiatric
care, and disability care. The allocation model for psychiatric residential care could be
adapted to residential facilities in disability care. Many of these sectors currently face
long waiting lists. In psychiatric care, waiting lists have become so extensive that patients
are now taking legal action against the State and insurers [131]. Prolonged waiting times
often result in the deterioration of conditions, reducing the likelihood of timely recovery
and reintegration into society, such as returning to work or securing employment [186].
Hence, insights into optimizing capacity utilization in this domain are crucial as well.

8.4 Final Thoughts

Several recommendations emerged indirectly from this thesis. One key suggestion is to
improve the registration of desired care pathways at the national level, rather than just
the realized pathways. It is possible that demand for certain types of care is higher than
recorded, but due to capacity limitations, faster alternatives are often chosen instead.
Additionally, in hospitals, incorrect bed days are currently registered, which is helpful to
understand the issue of bed-blocking. Similar initiatives could be useful in other care
settings.
Finally, several promising initiatives are currently underway in elderly care that align
with logistical efficiency, such as the development of Integral Capacity Management
departments in hospitals and the emerging Care Coordination Centers (ZCCs in Dutch).
These centers, much like the National Coordination Center for Patient Distribution during
the COVID-19 pandemic, can make decisions about patient distribution at the regional
level. We hope that ZCCs will continue to play a similar role, with a focus on the
efficient assignment of older adults to care locations. Furthermore, attention should
be given to the organization of care forms themselves. For example, IC is organized
differently across the country, sometimes as a separate ward and other times as a single
bed within a nursing home [171]. Care models that are too small in scale may hinder
an efficient admission process and limit opportunities for economies of scale, indicating
significant potential for improvement in logistics.
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Summary

This thesis is about the healthcare system for older adults from a mathematical and
analytical perspective. Below we give a brief summary of each of the chapters.
In Chapter 2 we examine healthcare utilization patterns by Process Mining among
3,177,203 older adults in the Netherlands from 2017 to 2019, aiming to uncover com-
mon patient journeys. We found that 44% of these individuals experienced one or more
patient journeys, resulting in a total of 2,469,663 journeys. Most journeys were simple
and short, with 95% involving four or fewer care transitions. For the 85+ population,
90% of journeys also had four or fewer transitions. Long-term care forms, such as home
care, primary care, and long-term care, dominated the time spent within the healthcare
system. The study reveals that while the majority of older adults have straightforward
healthcare needs, a smaller subset requires more complex and prolonged care, particu-
larly among those aged 85 and older. Reducing the number of transitions in this group,
though affecting fewer individuals, could have a significant impact on the overall health-
care system.
Chapter 3 examines the characteristics of older adults admitted to Short-Term Residential
Care (STRC) in the Netherlands and compared organizational differences between STRC
facilities. Patient profiles were analyzed using a national STRC database from 2018 to
2019, revealing that 68,682 older adults were admitted, with a significant proportion
being female, living alone, and prescribed multiple medications. Additionally, an email
survey of 176 STRC facilities provided insights into organizational variations, such as
ward locations, bed numbers, and care delivery practices. Results showed that 30.1% of
facilities offered care in independent wards, while others were integrated within geriatric
or long-term care wards. The study found that most facilities admitted patients during
evenings, nights, or weekends and employed registered nurses and paramedics. The high
mortality rate observed within 24 months of STRC admission underscores the importance
of developing care pathways that address reablement, diagnostics, and palliative care for
older adults.
Chapter 4 investigates the prolonged waiting times for Intermediate Care (IC) in the
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Netherlands, which often lead to unnecessary hospital admissions. Using data from older
adults who received IC in Amsterdam in 2019, we analyzed patient inflows, outflows,
and characteristics to understand the system’s bottlenecks. A process map of the main
pathways into and out of IC was created, followed by the development of a Discrete Event
Simulation (DES) model. Our analysis revealed that waiting times are primarily due to
inefficient triage and application processes, rather than a lack of bed capacity. The me-
dian waiting time of 1.8 days often leads to hospitalization. Through sensitivity analysis,
we found that streamlining the application process and allowing evening and weekend
admissions could significantly reduce unwanted hospitalizations. This study highlights
the need for data-driven approaches to optimize IC logistics, providing a foundation for
effective policy decisions aimed at improving patient care.
Chapter 5 addresses the inefficiencies in Long-Term Care (LTC) systems that lead to
excessive waiting times and patient abandonments, particularly in the context of an
aging population. These delays are not due to a lack of total capacity, but result from
systematic inefficiencies in matching patients to geographically dispersed care centers.
To solve this, we propose a novel allocation method that optimally balances waiting times
with individual patient preferences and flexibility. Using an MDP model, we developed an
optimal placement policy for patients-in-need. Our results show that for small instances,
the mean optimality gap of the allocation model is just 1.3%, indicating a highly efficient
placement process. Moreover, our allocation model better serves individual preferences,
offering a promising approach to creating patient-centered and sustainable LTC solutions
that can effectively meet the increasing demand for care in aging populations.
Chapter 6 addresses the challenge of long waiting times for nursing homes by imple-
menting a preference-based allocation model for older adults. The model’s performance
was evaluated through simulations across three case studies in the Netherlands, covering
urban areas like Amsterdam and Rotterdam, as well as the rural region of Twente. Data
on nursing homes and capacities were collected, and preference profiles were developed
to capture waiting time preferences and flexibility. The simulation compared the current
allocation practices with the proposed model, focusing on outcomes like waiting times
and alignment with preferences. Results showed that the allocation model significantly
reduced waiting times — by at least a factor of two in Rotterdam and Twente — and
more older adults were placed in their preferred nursing homes. The study concludes that
the model outperforms existing waiting-line policies, is easy to implement, and has the
potential to be extended to other care settings, demonstrating the value of mathematical
models in optimizing care for older adults.
Chapter 7 tackles the issue of matching persons with severe mental illness to appropriate
residential facilities, where current placement policies often disadvantage harder-to-place
clients by giving priority to easier placements. To address this imbalance, we propose
the so-called Knapsack-Based Routing (KBR) model, which aims to efficiently allocate
clients to server pools while considering both resource constraints and individual prefer-
ences. Our approach utilizes a split-horizon method that incorporates integer quadratic
programming to account for both immediate and long-term scheduling impacts. Through
extensive simulation experiments, the split-horizon method demonstrated superior per-
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formance over benchmark instances in specific cases of KBR, including scenarios involving
overflow and strategic idleness. The method achieved a mean optimality gap of 2.3% in
the developed benchmark instances. When applied to the allocation process for mental
health facilities in Amsterdam, the method significantly improved waiting times, creating
a more equitable distribution for both easy-to-place and hard-to-place clients.
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Conference presentations

Conference Location Date
INFORMS Annual Meeting Anaheim (virtual) September 2021
Beta Conference Soesterberg November 2021
LNMB Lunteren (virtual) January 2022
Geriatrics Days Breda (virtual) February 2022
INFORMS Annual Meeting Indianapolis October 2022
Science Days on Geriatrics* Utrecht November 2022
Workshop on Queueing Theory Obergurgl December 2022
International Conference on Integrated Care Antwerp May 2023
INFORMS Healthcare Toronto July 2023
Workshop on Queueing Theory Obergurgl December 2023
StochMod Milan June 2024

* Won the prize for best scientific presentation.

Teaching and supervision

Supervision of master thesis Computational Science of Herman Aadamsoo (2022)
Supervision of master thesis Business Analytics of Tim de Boer (2022)
Supervision of master thesis Business Analytics of Jimmy Gijssel (2022)
Teaching Project OBP for the master Business Analytics (2022)
Supervision of master thesis Business Analytics of Katja van der Perk (2023)
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