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INTRODUCTION

This dissertation forms part of the North/South-line Impact Study, a four-year research
project on the effects of the opening of a new metro line in Amsterdam connecting the
north with the south of the city. Our main research question focuses on mobility and
accessibility: "What are the effects of the opening of the North/South metro line for the en-
tire transportation system in the Greater Amsterdam Metropolitan region?" In particular
we examine how the new metro line affects: (1) changes in multi-modal travel behavior,
(2) changes in the number of trips and travel distance per transportation mode, and (3)
travel times and congestion for car and bicycle. We examine each of these three dimen-
sions in turn, in the three parts of this thesis.

PART I: ACCESS TO THE AMSTERDAM METROPOLITAN REGION
In Part I, we examine the role of public transit in multi-modal travel behavior in the
Greater Amsterdam Metropolitan region. We first consider changes in public transit ac-
cess to the region while explicitly addressing changes in walk mode behavior to/from
public transit. Subsequently we will consider changes in car access to the region and
changes in parking behavior at garages near public transit hubs. In particular, chapters
1 and 2 consider how accessibility can be framed in terms of door-to-door travel time
using public transport and study how this door-to-door travel time was affected by the
new metro line. Additionally, we consider the impact of the frequency of public tran-
sit schedules. Chapter 3 forecasts off-street parking occupancy of garages in Amsterdam
and studies changes in car parking before and after the opening of the North/South-line.

DOOR-TO-DOOR TRANSIT ACCESSIBILITY USING PARETO OPTIMAL RANGE

QUERIES
To determine the changes in travel time door-to-door by public transport, before and
after the Noord/Zuidlijn we looked at routing algorithms to calculate all travel options
within a time range. This way, we could study the effect of frequencies on the average in-
vehicle time combined with the average waiting time between services for time periods
such as the morning rush hour. To calculate the travel time that was perceived if we
include average wait time between each service, we used the rooftop method.

To determine how door-to-door travel time changed on public transport due to the
Noord/Zuidlijn, we used routing algorithms to compute the travel time door-to-door.
Specifically we look at all the travel options with in time range of two hours, to study
the effect of frequency. In chapter 1 we look how travel times are distributed within the
CBS neighborhood (buurt) as origin and destination. We show that in many cases the
total travel time is not normally distributed but rather has a bi-modal or even tri-modal
distribution. We also show how this originates from accessibility properties of public
transit stops. A series of experiments show that the distribution for the travel time can

xiii



xiv INTRODUCTION

be accurately estimated using on the order of ten or a few dozens of locations sampled
in each zone.

THE IMPACT OF PUBLIC TRANSIT FREQUENCIES ON DOOR-TO-DOOR TRAVEL

TIMES

In chapter 2, we build on this study to estimate travel times between the 799 CBS neigh-
borhood zones, by sampling 6693 addresses total. We sample for spatial diversity by
adding the constraint that no sampled address can be located within 200 meters of an
address that was already sampled within that zone. Subsequently, we add the weight of
each address to the nearest addresses, with a weight function, allotting unit weight per
residential address and weighting other buildings based on their surface area. Using the
weighted average we build an interactive tool to determine the differences in travel time
between periods before and after the Noord-Zuidlijn and various timetables along the
COVID-19 pandemic.

SHORT-TERM FORECASTING OF OFF-STREET PARKING OCCUPANCY

In chapter 3, we look at the changes in occupancy in off-street parking locations and park
and ride locations. We conduct an effect analysis into the influence of weather, events,
parking tariffs and public transport attributes on the parking occupancy. The most in-
fluential factors are the event variables, presence of thunderstorms, average wind speed,
temperature, precipitation, sunshine, and the addition of a public transport line. Park-
ing tariffs do not significantly contribute to the model performance, which may be due
to the lack of temporal variability in the parking tariffs of the examined parking locations.

PART II: TRIPS AND TRAVEL DISTANCE
In Part II we first forecast public transport ridership in the Greater Amsterdam Metropoli-
tan region by applying neural networks using public transit smart card data collected by
the fare system. We complete this part with a study on using neural nets to study trans-
portation mode choice behavior across transportation modes using GPS electronic trace
data collected by a mobile phone app within the Impact Study project.

FORECASTING PUBLIC TRANSIT RIDERSHIP USING NEURAL NETWORKS

In chapter 4 we use ridership data provided by public transit smart card (OV-chipkaart)
data to build a framework for the efficient representation and analysis of both spatial and
temporal dimensions of panel data, representing this data as a series of image-matrices.
The relative performance of a set of machine learning techniques is examined, focus-
ing on Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM)
neural networks. Furthermore Sequential CNN-LSTM, Parallel CNN-LSTM, Augmented
Sequential CNN-LSTM are explored. All models are benchmarked against a Fixed Ef-
fects Ordinary Least Squares regression. Results showed that the forecasts produced by
the Sequential CNN-LSTM model performed best and suggest that the proposed frame-
work could be utilized in applications requiring accurate modeling of demand for public
transport. The described augmentation process of Sequential CNN-LSTM could be used
to introduce exogenous variables into the model, potentially making the model more
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explainable and robust in real-life settings.

USING NEURAL NETWORKS TO PREDICT TRANSPORTATION MODE CHOICE

BEHAVIOR
In chapter 5 we assess changes in traveler behavior that occurred after the opening of
the Noord/Zuid-lijn we explored mode choice substitution patterns using panel data
collected within the framework of the Impact Study. As it is known that artificial neural
nets excel at complex classification problems, this paper aims to investigate an approach
where the traveler’s transportation mode is predicted through a neural net, trained on
choice sets and user specific attributes inferred from the data. The method shows promis-
ing results. It is shown that such models perform better when it is asked to predict the
choice of mode for trips which take place on the same underlying transportation net-
work as the data with which the model is trained. This difference in performance is ob-
served to be especially high for trips from and to certain areas that were impacted by the
introduction of the North South line, indicating possible changes in behavioral patterns.

PART III: TRAVEL TIME AND CONGESTION
In Part III we look at various aspects of travel time and congestion. We start of with a
study on finding the optimal points to place car/bicycle counters for traffic studies. Next
we look at a comparison of approaches for time series forecasting of traffic flow rates
around Amsterdam using car traffic counters. Finally we look at bicycle route choice.
First we look how path complexity can help in understanding bicycle route choice and
we conclude with a final study estimating bicycle route choice models.

THE OPTIMIZATION OF TRAFFIC COUNTER LOCATIONS IN MULTI-MODAL

TRANSPORTATION NETWORKS
In chapter 6 we we investigated ways to optimize the placement and number of traf-
fic counters used in multi-modal transportation analysis studies for motorized vehicles,
bicycles and pedestrians. The goal is to strike a balance between using as few as possi-
ble traffic counters for economical efficiency and deploying more counters which could
collect more data. By using shortest path algorithms to determine the paths between
the centroids of statistical divisions, we derive from origin-destination matrices which
traffic is flowing from where to where over which links in a multi-modal network. Using
centrality measures such as betweenness, we determine the links in the transportation
networks that capture the most useful traffic in terms of as much unique traffic as possi-
ble.

A COMPARISON OF APPROACHES FOR THE TIME SERIES FORECASTING OF

MOTORWAY TRAFFIC FLOW RATE
In chapter 7 we looked at time series forecasting of the traffic flow rate for 41 different lo-
cations in and around Amsterdam, The Netherlands. Using TBATS, SARIMAX and LSTM
models, among others, the traffic flow rate of these locations has successfully been mod-
elled. These models may provide accurate predictions for the future flow rate, which
may be useful for the identification of infrastructure bottlenecks and the scheduling of
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maintenance. Considering the dramatic effects of the COVID-19 pandemic on the traffic
flow rate, the inclusion of 2020 data with a number of external factors, could lead to an
improvement of the results and the ability to model the future effects of the pandemic.

PATH COMPLEXITY AND BICYCLE ROUTE CHOICE SET ASSESSMENT
In chapter 8 we look at bicycle route choice and route complexity. Everyday route choices
made by bicyclists are known to be more difficult to explain than vehicle routes, yet pre-
diction of these choices is essential for guiding infrastructural investment in safe cycling.
Building route choice sets to study bicycle route choice is a difficult task. Even includ-
ing detailed attributes such as the number of left turns, the number of speed bumps,
distance and other route choice properties we still see that choice set quality measures
suggest poor replication of observed paths.

In this study we looked at how the concept of route complexity can help generate
and analyze plausible choice sets in the demand modeling process. The complexity of a
given path in a graph is the minimum number of shortest paths that is required to spec-
ify that path. Complexity is a path attribute which could potentially be considered to be
important for route choice in a similar way. The complexity was determined for a large
set of observed routes and for routes in the generated choice sets for the corresponding
origin-destination pairs. The respective distributions are shown to be significantly dif-
ferent so that the choice sets do not reflect the traveler preferences, this is in line with
classical choice set quality indicators. Secondly, we investigate often used choice set
quality methods and formulate measures that are less sensitive to small differences be-
tween routes that can be argued to be insignificant or irrelevant. Such difference may
be partially due to inaccuracy in map-matching observations to dense urban road net-
works.

LIMITATIONS OF RECURSIVE LOGIT FOR INVERSE REINFORCEMENT LEARN-
ING OF BICYCLE ROUTE CHOICE BEHAVIOR IN AMSTERDAM
In chapter 8 we take a look at another method to understand bicycle route choice. Used
for route choice modelling by the transportation research community, recursive logit
is a form of inverse reinforcement learning, which avoids the necessity to create route
choice sets. By solving a large-scale system of linear equations recursive logit allows
estimation of an optimal (negative) reward function in a computationally efficient way
that performs for large networks and a large number of observations. In this paper we
review examples of recursive logit and inverse reinforcement learning models applied to
real world GPS travel trajectories and explore some of the challenges in modeling bicy-
cle route choice in the city of Amsterdam using recursive logit as compared to a simple
baseline multinomial logit model with environmental variables.

We discuss conceptual, computational, numerical and statistical issues that we en-
countered and conclude with recommendation for further research. Finally we compare
this work to a conventional choice model, estimating models using multi-nominal logit,
mixed logit and mixed path size logit specifications. Our results show that cyclists have
a highly stochastic behavior that are likely to prefer detours to drive over cycle-way in-
frastructure, near greener land-use and near water, and on less busy roads. Models such
as mixed logit that can estimate the stochasticity of cyclists perform best to capture this
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1
DOOR-TO-DOOR TRANSIT

ACCESSIBILITY USING

PARETO-OPTIMAL RANGE QUERIES

Public transit is a backbone for well-functioning cities, forming a complicated system of
interconnecting lines each with their own frequency. Defining accessibility for public tran-
sit is just as complicated, as travel times can change every minute depending on location
and departure time. With Pareto-optimal journeys it is possible to look beyond the ear-
liest arrival times and also optimize for the shortest travel time, as travelers base their
departure time on the start time given by their smartphone app, especially when service
frequencies are low. By querying for all Pareto-optimal journeys in a time range, it be-
comes possible to get a grasp of what passengers see as their choice set when it comes to
transit route choice. Based on the averages of the Pareto-optimal journeys it should be-
come possible to calculate more realistic skim matrices for traffic analysis zones, includ-
ing reliability factors such as frequencies and the number of transfers. In this chapter, we
calculate Pareto-optimal journeys in the area in and around Amsterdam, looking at how
travel times are distributed and what factors impact them.

Koch, T., Knapen, L., & Dugundji, E. (2020). Door-to-door transit accessibility using Pareto-optimal range
queries. Procedia Computer Science, 170, 107-114.
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1.1. INTRODUCTION
Public transportation is an important travel mode that keeps cities liveable. Determining
travel times for public transport alternatives is a more difficult task than for pedestrians,
bicyclists and even cars. This has multiple reasons, starting with the fact that public
transportation always involves another modality such as walking or cycling, meaning
that public transportation accessibility is heavily dependent on the distance from the
origin to the nearest location to board a transit vehicle and the distance between the
destination and the nearest location to disembark transit. A main reason that analysis of
public transportation is difficult is that we are dealing with a time-dependent network, as
transit is an intricate system of buses, trains, trams, metros that drive in frequencies that
change depending on the time-of-day and are affected by external factors such as traffic
and weather. To compensate for these external factors, timetables often include extra
time in the travel time and transfer times, so passengers will still be able to make trans-
fers in case of minor delays and the vehicle will just wait in locations where possible and
convenient. Finally, there are situations where there is a trade-off between the access
and egress distance and the total travel time. For example, a bus stop next to the actual
point of origin of a journey might be serviced by a bus every hour while a metro station a
kilometer away might bring you to your destination every five minutes, in half the time;
in extreme cases the nearest transit facilities may not even take your destination at all.
All-in-all this means that public transportation users take into account a lot more vari-
ables that affect mode choice for public transportation including departure time, num-
ber of transfers Raveau et al. (2014), aspects such as reliability Cats and Gkioulou (2017),
transfers to high or low frequency services Bovy and Hoogendoorn-Lanser (2005). In this
chapter we consider the following factors:

• total travel time from door to door.

• access time to first transit stop, which can be bicycling, walk or a car ride to a
Park+Ride location.

• egress time to the last transit stop, which can be bicycling, walk or car, and is not
necessarily the same modality used to access the public transit network.

• number of transfers required.

• average adaption time: the average time a passenger needs to wait to catch the
next shortest journey to the destination.

• perceived service frequency.

Specific to the Dutch context we also include:

• total distance traveled on the transit network, as the fare is based on distance.

• fraction of distance traveled on the train network, due to a lack of fare integration.

The results of this research are aimed to be fed into an activity based travel demand
model. Such models predict the number of trips by generating a daily plan for a set of
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synthetic individuals. They include underlying choice models for activity type and dura-
tion, activity location, travel departure time, transportation mode and sometimes other
choices, such as coordination with other persons for activities or travel. In the prediction
stage, travel times need to be estimated for several options for the daily schedule being
constructed: this is often based traffic analysis zones (TAZ) in order to limit the compu-
tational effort. In many cases a skim matrix is computed. Such a matrix provides point
estimates for the inter-zonal travel time. We propose a method that is still TAZ based, but
takes travel time variability into account. This provides more information for each skim
matrix cell.

1.2. BACKGROUND
Computing a skim matrix for many traffic zone pairs is computationally very heavy, as
for each sampled point in each zone a complete "shortest path" tree has to be con-
structed from that point to all other points. Due to this computational complexity, ini-
tially this problem has been addressed by creating static models of the transportation
network, simplifying the network from a complex time-dependent network to a simple
network with static costs between each transit stop. Studies such as Blanchard and Wad-
dell (2017), who published their work as an open source Python library, transform the
timetable at a specific time-of-day and day-of-week into a simplified graph. Each vertex
is a transit stop and each edge is the in-vehicle time derived from the timetable. Mod-
eling the transit network does not model dwell times, boarding and alighting times and
traffic congestion nor transfers. The pedestrian network consists of three components:
pedestrian access to and egress from the transit network and pedestrian-pedestrian for
uni-modal pedestrian trips. To model the access to transit and egress from transit, each
transit stop is connected to the nearest pedestrian node. As not every transit stop is ser-
viced every minute, waiting time is modeled with the assumption that passengers arrive
at transit stops randomly, this way, the average waiting time can be formulated as the av-
erage interval between each departure. Other studies using similar representations are
O’Sullivan et al. (2000), Curtis and Scheurer (2010), Delmelle and Casas (2012), Tribby
and Zandbergen (2012). This static representation is limited as it does not model the
concept of transfers. The number of transfers is important in two ways, it affects the
travel time and the reliability of the journey and is an important characteristic that influ-
ences mode choice. Hadas and Ranjitkar (2012) propose an extension where the num-
ber of required transfers is modeled along with the nature of each transfer: e.g. transfers
that do not involve walking, street crossing transfers, same sidewalk transfers and direct
trips. In their variants, the timetable is still statically defined but in a more detailed man-
ner than just between pairs of stops.

With the increasing availability of data, computational power and improved algo-
rithms, the focus has shifted to even more detailed representations of transit accessibil-
ity. Work by Benenson et al. (2011), Salonen and Toivonen (2013), Tenkanen et al. (2016)
use transit timetables to give better approximations of total journey duration at a given
moment of time and day based on earliest arrival. However, these methods are still lim-
ited and do not capture two other aspects important to transit users: the frequency of
connections and the wait times involved. In their study Tenkanen et al. (2016) calcu-



1

6 1. DOOR-TO-DOOR TRANSIT ACCESSIBILITY USING PARETO-OPTIMAL RANGE QUERIES

late all optimal journeys from all transit stops to all other transit stops in the Helsinki
study area. Kujala et al. (2018) uses the transit routing algorithms by Delling et al. (2014)
to perform a range query of Pareto-optimal journeys. This list of Pareto-optimal jour-
neys describe all journeys departing from a given time period. The simplest version just
optimizes on travel time with the tuple (Tdepar tur e , Tar r i val ), where for each advice ap-
plies that for each advice 1 and 2 in the list applies that (T 1ar r i val < T 2ar r i val or that
T 2depar tur e > T 1depar tur e allowing for a later departure. A range query will look at all
possible departure possibilities within the given time range, excluding departure possi-
bilities where passengers will just have to unnecessarily wait at transfer locations. Typ-
ically the number of transfers is also included as a property, allowing for longer travel
time as long as it reduces the number of transfers, as an additional transfer might only
reduce the travel time by a couple of minutes. For most public transit passengers in
the Netherlands this list forms their choice set for transit route choice, as many will use
the route suggestions from their favorite public transport app. Kujala et al. (2018) use
the Connection Scan Algorithm (CSA) by Dibbelt et al. (2018), a very simple algorithm
that puts all possible connections between transit stops in an ascending departure time
order in a single array, to optimize cache locality. This might be counter intuitive as it in-
creases the number of operations, however due to faster access to data stored in the CPU
cache the algorithm performs very well or better than algorithms that access the mem-
ory locations randomly. Another algorithm that performs well for computing a range of
Pareto-optimal journeys is the Round-Based Public Transit Optimized Router (RAPTOR)
algorithm by Delling et al. (2014). RAPTOR is a dynamic programming algorithm that
is organized into rounds, where in each round n the algorithm finds the earliest arrival
time for stops reachable in n transfers. By using the transit lines reachable from a trans-
fer in round n −1 or those accessible from the origin, the algorithm runs until no better
arrival time is found at any stop. At that point a shortest path tree is complete, with the
additional bonus of journeys with a longer travel time but a lower number of transfers.

With this full list of Pareto-optimal journeys it is possible to define accessibility be-
yond just travel times. It is also possible to compute variables such as the service fre-
quency by the number of Pareto-optimal journeys within the time range and the average
adaption time metric, using the rooftop method defined in Guis and Nijënstein (2015).
We take all the Pareto-optimal connections between Origin and Destination found using
the range query, calculate for each minute in the time range the required adaption time
that a passenger has to wait for the next best connection and average the adaption time
per minute. This forms a better metric for the travel time that a passenger has to experi-
ence including waiting time before and after the journey. The higher the frequency, the
higher the probability a journey will fit well to their schedule and thus reduce the time it
will take between origin and destination.

1.3. CASE STUDY
To calculate Pareto-optimal journeys, we used an existing extension to MATSimHorni
et al. (2016) developed by the Swiss railwaysBundesbahnen (2020). This library uses the
RAPTOR Delling et al. (2014) algorithm and the MATSim framework for transit sched-
ules to calculate all Pareto-optimal journeys departing in a given time range from and
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to zones. The library samples origin and destination locations from each zone, to get a
realistic view of each zone, as the travel time within each zone has a variance depend-
ing on the proximity of the origin/destination to the nearest public transport stop. In
this case study, we opted for the zoning system defined by Statistics Netherlands (CBS)
at the smallest level of buurt or neighborhood level CBS (2019). This is the highest res-
olution level of detail with a significant number of (openly) available statistics such as
demographics and income. Descriptive statistics on the size of these zones are listed in
Table 1.1, both for the zones exclusively in the municipality of Amsterdam and all se-
lected zones for this chapter. We limited the study area to the area of the ’Vervoerregio
Amsterdam’, the transportation authority in Amsterdam and surrounding municipalities
in the greater metropolitan region. For the transit schedules, we used the open data Gen-
eral Transit Feed Specification feed published for the NetherlandsOVapi (n.d.). To reduce
computational time we removed all services not relevant for our study area; specifically
we removed all services not traversing the metropolitan region of Amsterdam. We se-
lected the day with the most services as our study day, a Friday with night bus and train
services and we selected a 2 hour time range in the morning rush hour between 07:30
and 09:30 for our range queries. We selected this time period specifically to capture more
than one hour to capture hourly frequencies and the specific time period to capture ad-
ditional bus services in the morning rush hour.

Table 1.1: Descriptive statistics of area size in used zones: Statistics Netherlands Buurt level. In this chapter
we used the zones of the Amsterdam Transportation authority.

Area size (km2)
N Min Average Median Max

City of Amsterdam 478 0.015 0.411 0.215 10.121
Amsterdam Transportation authority 802 0.015 1.004 0.340 26.078

In this case study we made a number of modifications to the MATSim library. Firstly,
to get a realistic distribution of origin and destinations, we extended the library to load a
list of addresses from the Dutch building registry in order to sample buildings weighted
based on their function and usable surface. This way, we get a good sample of both resi-
dential locations and prominent locations such as hospitals, schools and retail locations.
Secondly, we modified the library to write all results between each sampled origin and
destination point to disk, so we can build up a high number of observations for each
zone pair.

To get a sufficiently high number of samples we ran the computation on the Dutch
research compute cluster LISA, where running the query with 20 sample points in 802
zones took approximately 3.5 hours on a 16 core CPU node, including the time to write
1 gigabyte of gzip compressed CSV with the intermediate results to disk. Running the
query with five sampled points in each zone took 25 minutes for each run and with ten
sampled points took 67 minutes.
With these computational times in mind, we conducted 100 runs with five points in each
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zone and hundred runs with ten points in each zone, to get a good number of runs. To
look at the effects of a very high number of points per zone, we conducted hundred runs
of 500 points per zone. Due to the quadratic growth of computational complexity and
data output, we limited the 500 points per zone run to a group of 16 zones. Additionally
to look at the difference between public transport accessibility and car accessibility we
used the same library to calculate skim matrices to provide us with comparable data on
car accessibility. Finally we calculated a single run to produce a skim matrix based on 75
points sampled in each zone. This took approximately 44 hours to produce on a machine
with two Intel Xeon(R) CPU E5-2620 (32 threads in total).

1.4. RESULTS
Figure 1.1 visualizes the travel times from a single origin zone, calculated in a single run
with 75 nodes sampled in each zone. As we are more interested in the travel times to
popular places such as hospitals and schools we applied sampling with replacement
weighted based on surface and building function, dividing the surface of residential ad-
dresses by a factor of eight. This way, when selecting 75 points, only 58 unique coordi-
nates function as the origin location in Figure 1.1. With the stored intermediate results

Figure 1.1: Travel times originating from KNSM-eiland neighborhood (indicated on map) based on sample
size of 75 points per zone. Travel times for each destination are based on the average travel time from 58

origin points on KNSM-eiland.

for each single origin-destination pair between zones, we analyzed the data that forms
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the average travel times in the skim matrices. This is a large collection of travel times as
we have run the same query 100 times each and for each run we calculate N ∗N travel
times for the N points per zone. For an initial data exploration we looked at the his-
tograms of travel times of a series with random origin-destination pairs, of which some
are included in Figure 1.2. In this chapter we only included the histograms for the 100
runs with ten sampled points in each zone, as the hundred runs with five sample points
in each zone had identical shapes.

What we discovered in the histograms is that the travel times for a large number of
origin-destination pairs are bi-modally distributed and that only a very small number of
origin-destination pairs are normally distributed. For our smaller focus group of sixteen
selected zones, we did not spot any differences with regard to distribution when com-
paring the 100 runs of five, ten and 500 points per zone, beyond missing a few outliers in
the runs with the smaller number of points. We included one example in Figure 1.3.

1.5. DISCUSSION

We see three main factors that reduce the number of normally distributed travel times,
which play a role in both car and public transit but in different ways and intensity, uni-
formity of travel speed, weighting of points per zone and number of points per zone. We
discuss each of these in turn below.

1.5.1. UNIFORMITY OF TRAVEL SPEED

Travel speed with car across the neighborhood will be uniform as long as all roads are
accessible by car and one can drive directly from door-to-door and park there. If both
origin and destination zone are structured in this way, then the distance would theoreti-
cally be ranged between Leng thshor testPath and Leng thshor testPath+Di ameteror i g i n+
Di ameterdesti nati on , where Leng thshor testPath is the length of the path with the short-
est distance between any two points in the respective zones. Thus the total distance can-
not be lower than the shortest path between any point in each zone and cannot be higher
than the sum of the shortest path with the diameter of the origin zone and destination
zone. Assuming a single modality with a low variance in speed, this means that travel
times are bounded by the same range. On the other hand public transit is by definition
multi-modal with walk, bicycle or car as access and egress modes. And even if the origin
and destination are the transit stop itself, there will be a high variability in travel speed,
depending on mode, dwell times and the number of transfers; furthermore, depending
on how well connecting services are timed there will be waiting involved as well. Tran-
sit times in the worst case would involve traversing the diameter of the zone with walk
speed and in the best case there could be a high-speed train directly between origin and
destination.
This effect has consequences however for studies focusing on infrastructure changes
such as new metro stations, comparing the accessibility before and after; looking only at
the average travel duration (i.e. a single number estimate) may give the wrong picture.
An example of this effect is given in Figure 1.4, where a 700 meters distance between two
origin points can increase the travel time to the destination zone by a factor of 2 in some
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1.2: Histograms of travel times door-to-door using public transit between eight pairs of origin and
destination zones in and around Amsterdam. Travel times were calculated 100 times between ten sampled

points in the origin zone and ten sampled points in the the destination zone.
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Figure 1.3: Histograms of travel times door to door using public transit for (a) five (b) ten (c) 500 points in both
origin and destination zone.

Figure 1.4: Illustrating the effect of shifting the origin position in a neighborhood 700 meter. The left figure
originates from the east of the KNSM-eiland neighborhood with a tram service directly to the indicated tram
stops. The right figure originates 700 meters further away. The bus line connecting with the metro networks

passes both points.

parts of that zone. This is because one point has a direct tram service with limited walk-
ing whereas the other point is 700 meter from that tram stop. However the difference
near the metro stations is smaller as the metro is connected by a bus that passes both
points. We see this as the cause of the bi-modality in Figure 1.2f, which describes this
zone pair.
Additionally important to note is that in this chapter we used straight line distances to
model the access and egress to transit stops; we expect that when using actual distances
instead the variability of transit travel times would further increase.

1.5.2. WEIGHING OF POINTS PER ZONE
What we saw with both transit and car accessibility is that heavily weighted points in-
fluence the distributions of the travel time. Since we aim to sample plausible origin and
destination choices and not just addresses, we applied weights to addresses based on
their function and surface. Namely, certain single addresses such as a hospital will func-
tion as the destination for thousands of trips per day whereas a single home is likely only
the destination for a handful of people. Hence for the points we selected a single address
will occur multiple times. This has an effect on the distributions as well, as the repeti-
tion of the same destination will increase the number of duplicate travel times. However
with transit we see an additional interaction effect as those popular destinations will be
made more accessible in well designed transit systems. For example in Figure 1.4 there is
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a university building in the south of that neighborhood that is very well accessible and is
selected multiple times in our sampling and forms a portion of that peak of 700 seconds.

1.5.3. NUMBER OF POINTS PER ZONE
What we noticed is that the number of points per zone has little influence on the distri-
bution of the travel times. It might be better to repeat a lower amount of points per zone
multiple times instead of running a higher amount of points.

1.6. CONCLUSION
Travel time level of service matrices for public transit containing a single value for each
TAZ pair are commonly used. They represent point estimates applying to uni-modal
travel.
In this chapter, we introduced real multi-modal trips by accounting for first and last mile
legs of journeys as well as for mode change and transfers. TAZ to TAZ travel times were
computed by sampling locations in the origin and destination zone and by computing
sets of Pareto-optimal travel options. We showed that in many cases the total travel
time is not normally distributed but rather has a bi-modal or even tri-modal distribu-
tion. We also showed how this originates from accessibility properties of public transit
stops. Elaborated experiments showed that the distribution for the travel time can be
accurately estimated using ten or a few dozens of locations sampled in each TAZ. Care-
ful sampling based on an address database specifying location types (residence, school,
shop, hospital, etc) is required.

Extension of this research aims to replace the point estimates used in classical skim
matrices by a specification of the travel time distribution. A possible research path is to
discover typical kinds of distributions, classify them and estimate parameters to describe
them. Each cell in the skim matrix will then consist of the distribution type identification
and its parameters.
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THE IMPACT OF PUBLIC TRANSIT

FREQUENCIES ON DOOR-TO-DOOR

TRAVEL TIMES

Using modern transit routing algorithms it became feasible to compute all fastest travel
options between all traffic zones in larger cities, allowing for an in-depth analysis of how
frequencies affect journeys between different origins, destinations and departure times.

We use the rooftop method to calculate a realistic model of how a public transit user may
perceive travel time, taking into account waiting time and/or adaption time to fit appoint-
ments in someone’s schedule. The higher the frequencies, the lower those waiting times
will be, and vice versa. The rooftop method calculates a travel impedance for any given
moment in the travel time. Furthermore, as few journeys will start and end at a tran-
sit stop, some walk component is often also involved. We sample 6693 addresses for 799
zones to compute travel times door-to-door in Amsterdam and surrounding area, explic-
itly including walk access and egress time to and from transit.

In this chapter, we focus on the transit timetables before, during, and in the current phase
of the COVID-19 pandemic in order to investigate the effect of changed schedules on acces-
sibility and mobility by public transit. This is particularly relevant for services that have
been reduced and may remain reduced for the near future moving ahead. We expect this
application of methods outlined in this chapter to be of interest to public authorities and
transit providers in making difficult decisions during COVID-19.

Koch, T., & Dugundji, E. R. (2021). Determining the effect of lower public transit frequencies in COVID-19
timetables on perceived door-to-door travel times using Pareto-optimal range queries. Proceedings of the
100th Annual meeting of the Transportation Research Board
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2.1. INTRODUCTION
As the COVID-19 pandemic caused abrupt and drastic changes in mobility demand and
as some surveys indicate may result in lasting changes as working from home becomes
more common. ANWB, a Dutch travelers association in the Netherlands, supporting all
modes of travel including car, public transport, motor scooter, bicycle and e-bikes, found
in a survey among a representative panel of 2000 members that around 60% would like to
work from home two days or more. If such sentiment would become reality that would
mean a drastic shift in mobility policy and reduce pressure especially on the peaks of
traffic intensity. A drastic shift in mobility patterns would also mean that transit timeta-
bles have to be reworked to meet a new pattern of demands. For example, this could lead
to a decrease of the frequencies in what are now the peak hours and perhaps increasing
frequencies at different moments.

Various methods exist to measure the effect by changes on the timetable on accessi-
bility of people to access jobs, hospitals or retail. The methods to calculate travel-times
have become more and more sophisticated as better algorithms and increased compu-
tational capacity became available. Whereas initially transit accessibility was calculated
using simple static networks delivered based on travel time between different stops, by
2012 it was possible using open source applications such as OpenTripPlanner (Byrd and
Emory (2012)) to calculate all travel duration from a given location to any other location
in the city based on a timetable based network.

However, these methods are still limited as they do not fully capture the time depen-
dent nature of transit accessibility, as the transit schedule will never fully fit towards the
schedules of the users. That means that people have to adapt their schedules to transit,
departing slightly earlier from home to still arrive on time for your work appointment,
or waiting at the train station to catch the first train home. To the users, this means that
this wait time is part of how they perceive the travel time from door-to-door using pub-
lic transport. In this chapter we will investigate how to compute this perceived travel
time by calculating all possible optimal public transit journeys in a two hour time range,
where optimal is the lowest duration between leaving from home and arriving at work or
vice versa. Using this set of travel options we compute the perceived travel time based
on the duration from door to door and the time in between each travel option. We first
review the relevant literature on the computation of transit accessibility and perceived
transit travel times. Next we will describe a case study based on the impact of COVID-19
and subsequent reduction of frequencies in the transit schedules, including a short time-
line of how these changes arose. Subsequently we will show results using our methods
on how the perceived transit travel times changed by the reduction in services.

2.2. BACKGROUND
In chapter 1 we calculated the average travel times for a single date. The main point of
focus in that chapter was to study the effect of the sampling process to determine the
points per zone that function as origin and destination, by running the calculation 100
times and storing the travel times between all sampled points in the statistical zones. In
chapter 1 we noticed that travel time can vary depending on the exact point of origin
and destination even within small zones of median 0.215 km2 (0.39 square miles). De-
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pending on the exact structure of the network, travel-times can differ in different ways
depending on the interaction between the origin and destination. In comparison with
travel time via bicycle and car we saw the effect of the heterogeneity of travel speed in
transit, caused by three reasons. The first reason is that travel speed can differ for differ-
ent modalities and can be stationary during transfers when waiting for the next vehicle.
Secondly transit will almost always contain a walk segment towards and onwards from
the transit network, the further away from a transit stop the higher the total travel time.
Finally, since a sample of destination choices will include more popular destinations
more than once and well designed transit service will prioritize more popular destina-
tions, we saw an interaction effect of both selecting the same point multiple times and a
lower travel time.

We hypothesized that these three ideas were the cause for the distributions we saw in
the travel times, as many of the distributions were almost never normally distributed but
often bi-modal. We concluded that when performing studies on the effect of something
such as a new metro line, it would not be a valid comparison to make this comparison
using skim matrices based on the travel-time averaged per origin-destination zones. In
the present chapter we use the lessons from chapter 1 to make valid comparisons of
accessibility in different timetables.

2.3. METHODS
To learn more about the comparisons in accessibility, we will review various methods on
the aspect of calculating accessibility for a origin-destination skim matrix, look at exist-
ing methods to calculate continuously defined accessibility as time cubes. Furthermore,
we look at routing algorithms that allow us to compute all shortest paths in a time range
efficiently and a method from the literature to calculate a perceived travel time based on
a series of departure/arrival times. We conclude with a survey of literature on differences
in accessibility as a consequence of timetables changes or infrastructure changes.

2.3.1. SKIM MATRICES

Computing a skim matrix is computationally very heavy, as for each sampled point in
each zone a complete "shortest path" tree has to be constructed from that point to all
other points. Due to this computational complexity, initially this problem has been ad-
dressed by creating static models of the transportation network, simplifying the network
from a complex time-dependent network to a very simple network with static costs be-
tween each transit stop.

Studies such as Blanchard and Waddell (2017) transform the timetable at a specific
time-of-day and day-of-week into a simplified graph. Each vertex is a transit stop and
each edge is the in-vehicle time derived from the timetable. This model does not in-
clude dwell times, boarding and alighting times and traffic congestion nor transfers.The
pedestrian network consists out of three components: pedestrian access to and egress
from the transit network and pedestrian-pedestrian for uni-modal pedestrian trips. To
model the access to transit and egress from transit, each transit stop is connected to the
nearest pedestrian node. As not every transit stop is serviced every minute, waiting time
is modeled with the assumption that passengers arrive at transit stops randomly, this
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way the average waiting time can be formulated as the average interval between each
departure.

Other studies using similar representations are O’Sullivan et al. (2000), Curtis and
Scheurer (2010), Delmelle and Casas (2012), Tribby and Zandbergen (2012). This static
representation is limited as it does not model the concept of transfers. The number of
transfers is important in two ways: it affects the travel time and the reliability of the jour-
ney and is an important characteristic that influences mode choice. Hadas and Ranjitkar
(2012) proposes an extension where the number of required transfers is modelled along
with the nature of each transfer: e.g. transfers that do not involve walking, street crossing
transfers, same sidewalk transfers and direct trips.

Nassir et al. (2016) developed a utility-based travel impedance measure capable of
capturing passenger behavior and their subjective perception of impedance when using
public transport. Nassir et al. (2016) propose a measure that is time-dependent and es-
timates the realization of travel impedance for an origin-destination pair. They propose
a nested logit ’logsum’ over a generated set of plausible path options where a systematic
utility is evaluated based on a discrete choice model that was previously developed and
calibrated for transit passengers in the greater Brisbane, Australia area. Transit travel
times are calculated from a fixed departure time at 7 am. They conclude that their mea-
sure incorporates all reasonable paths and mode alternatives and thus is able to correct
for possible unobserved heterogeneity in their utility model and is able to capture the
diversity benefit that a transit service can offer to a community of passengers.

2.3.2. CONTINUOUSLY-DEFINED ACCESSIBILITY

With the increasing availability of data, computational power and improved algorithms,
the focus has shifted to even more detailed representations of transit accessibility. Work
by Benenson et al. (2011), Salonen and Toivonen (2013), Tenkanen et al. (2016) use tran-
sit timetables to give better approximations of total journey duration at a given moment
of time and day based on earliest arrival. However, these methods are still limited and
do not capture two other aspects important to transit users: wait times and the fre-
quency of connections as travel times vary over the day. A study with more focus on
the temporal variability has been conducted in Anderson et al. (2013), in this study new
methods are proposed to represent accessibility of a scheduled based transit system as
a continuously-defined accessibility function (CDAF) of desired departure time, defined
for all time points for each origin. They developed a CDAF function for four stops in
the transit system in Minneapolis selected to show an example of a Urban Local, Major
Transfer Point, Suburban Local and Suburban Express stop. Construction of the CDAF
for each stop begins with identifying all trip departures in the time range of interest. For
each selected departure the departure time and a vector T representing the travel times
provided by that trip to all reachable destinations are kept. To store the number of op-
portunities at each reachable destination, a vector O is also established. With both these
vectors it is possible to implement a wide range of different accessibility metrics.

In the study by Anderson et al. (2013) accessibility is calculated as for maximum
travel time and the result defined as the number of destinations reachable within that
threshold. This dramatically simplifies the calculation but does mean that every value
of accessibility has to be reported separately for each different threshold and that their
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model cannot be finely calibrated for varying user preferences and value of time. With
this function, accessibility is calculated at each departure time for each possible trip. A
time sampling interval is then selected and the calculation moves backwards through
time from each trip departure time, applying the same function to the next trip’s travel
time vector subtracting the current time offset from each element. When the departure
time for the previous trip is reached, the process is restarted using the travel time vector
for that trip if the accessibility provided by the previous trip is greater than the accessibil-
ity provided by waiting for the next trip. This makes it possible to calculate accessibility
A at each time point t , given by the CDAF in the following equation:

AT1 +∆t1,O if t ≤ d1

AT2 +∆t2,O if d1 < t ≤ d2

. . .

ATn +∆tn ,O if dn−1 < t ≤ dn

Owen and Levinson (2015) use the work by Anderson et al. (2013) on continuous
transit accessibility to look at departures at each minute to calculate the accessibility
to jobs by transit. Owen and Levinson (2015) presents an accessibility-based model of
aggregate commute mode share and focuses on the share of transit relative to auto.

2.3.3. GENERAL TRANSIT FEED SPECIFICATION
To compute the measure of travel time, schedules were used from publicly available
schedule data in General Transit Feed Specification (GTFS) format. The calculation method
used by Anderson et al. (2013) follows the method by Krizek et al. (2007) that uses propri-
etary software to calculate transit travel times. The results from this study confirm that
accessibility is significantly overestimated by measuring a single point of time and show
that trip frequency is more valuable for sustained accessibility than high accessibility on
individual trips.

The study by Owen and Levinson (2015) is a study building on the CDAF function
to provide an accessibility-based model of aggregate commute mode share focusing on
transit relative to auto. Furthermore, they provide an estimation of a binomial logit
model predicting the likelihood that a commuter will choose transit rather than auto
for a commute trip based on aggregate characteristics of the surrounding area.

To provide the transit travel times instead of a proprietary library, they use the open
source library OpenTripPlanner that operates on a graph representing road, pedestrian,
and transit service. The transit travel times are calculated by constructing a shortest path
for each origin, repeatedly every minute between 7 and 9 am as the departure time. For
transit it uses census blocks as origin and destinations but the paper does not appear
to describe how it is being accounted for spatial variability of transit in a census block
zone. The paper concludes that continuous evaluation of accessibility as provided by
transit systems are a promising metric to use in ridership and mode share modeling.

Tenkanen et al. (2016) uses a grid system of 13231 cells of 250x250 meter to calculate
the travel times of public transport, bicycle, walk and car between each centroid of each
cell. Travel times by public transportation have been optimized using 10 different depar-
ture times within the calculation hour using a so-called Golomb ruler that can be used to
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gain maximal representation of departure times within one hour. The fastest route from
these calculations is selected for the final travel time matrix.

2.3.4. PARETO-OPTIMAL RANGE QUERIES
A list of so called Pareto-optimal journeys describes all journeys departing from a given
time period. The simplest version just optimizes on travel time with the tuple (Tdepar tur e ,
Tar r i val ), where for each advice applies that for each advice 1 and 2 in the list applies that
T 1ar r i val < T 2ar r i val or that T 2depar tur e > T 1depar tur e allowing for a later departure.
This is similar to the CDAF by Anderson et al. (2013) but with travel time as a accessibil-
ity function.

A range query will return all Pareto-optimal journeys departing or arriving in a given
time range. For most public transit passengers in the Netherlands this is their choice set,
as many will use the route suggestions from their favorite public transport app.

A range query will look at all possible departure possibilities within the given time
range, excluding departure possibilities where passengers will just have to unnecessarily
wait at transfer locations. Typically the number of transfers is also included as a prop-
erty, allowing for longer travel time as long as it reduces the number of transfers, as an
additional transfer might only reduce the travel time by a couple of minutes.

Kujala et al. (2018) use recent developments in transit routing algorithms to per-
form a range query of Pareto-optimal journeys between all public transport stops in the
Helsinki region. To do so they use the Connection Scan Algorithm (CSA) by Dibbelt et
al. (2018), a very simple algorithm that puts all possible connections between transit
stops in an ascending departure time order in a single array, to optimize cache locality.
This might be counter intuitive as it increases the number of operations, however due to
faster access to data stored in the CPU cache the algorithm performs very well or better
than algorithms that access the memory locations randomly.

Another algorithm that performs well for computing a range of Pareto-optimal jour-
neys is the Round-Based Public Transit Optimized Router (RAPTOR) algorithm by Delling
et al. (2014). RAPTOR is a dynamic programming algorithm that is organized into rounds,
where in each round n the algorithm finds the earliest arrival time for stops reachable in
n transfers. By using the transit lines reachable from a transfer in round n −1 or those
accessible from the origin, the algorithm runs until no better arrival time is found at any
stop. At that point a shortest path tree is complete, with the additional bonus of journeys
with a longer travel time but a lower number of transfers. RAPTOR has a range query
capability to efficiently compute bi-criteria range queries, outputting full Pareto-sets of
journeys for all departures within a time range.

2.3.5. ROOFTOP METHOD
With this full list of Pareto-optimal journeys it is possible to define accessibility beyond
just travel times. When increasing or decreasing frequencies of the transit network the
effect may not be directly visible when looking at the travel time of a single journey, de-
pending on how well connections still fit together. However, in the real world people
are looking for mobility that fits their agenda. For example if a person wants to arrive at
work by public transport in the morning by 9:00 a.m., this passenger will look for a jour-
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ney that will arrive as late as possible, while leaving some room for possible delays. The
optimal journey would consist of a journey that arrives just in time, but if frequencies are
reduced the probability that such journey exists meaning that the perceived travel time
of public transit will increase, even when the in-vehicle time stays the same. This is also
shown in stated preference surveys among Dutch public transit users such as Schaken-
bos et al. (2016) where a headway of 30 minutes instead of 15 minutes will add seven to
twelve minutes generalized travel time to the total utility of a trip.

To calculate this perceived travel time we used the "Rooftop" method described by
Guis and Nijënstein (2015) and the Passenger Demand Forecasting Handbook by Rail
Delivery Group (2009). This method calculates three aspects of the perceived travel time:

1. In-vehicle duration.

2. Transfer impedance: a value-of-time for each additional transfer; this value indi-
cates the level of travel time gain necessary to make an additional transfer worth-
while.

3. Average adaption time: the duration between the arrival time and the ideal arrival
time; this is the time necessary for a passenger to adapt the time table with their
own agenda.

These three values can be calculated at any moment, as the average adaption time will
differ for each moment. The three values combined are the travel impedance for that
moment and the average travel impedance for a time period is called the level of service
and a quantitative indication of the attractiveness of public transport on that origin-
destination pair.

In the research reported in this chapter we will not apply a transfer resistance, but
in the study by Guis and Nijënstein (2015) they based this resistance on work by Schak-
enbos et al. (2016) that estimated based on a static preference survey and a mixed logit
model. This model estimated a transfer resistance of 5 minutes for transfers between
trains and 20 minutes for transfers between train and bus/tram/metro. One of the rea-
sons for a higher transfer-resistance between train and bus/tram/metro in the Nether-
lands is a lack of fare integration, as passengers will always be confronted with a 90 euro-
cent entrance rate.

This method is called rooftop as plotting the travel time over an hour gives a roof top
pattern as shown in Figure 2.1. In this figure we see an O-D relation with a headway of 15
minutes: a departure opportunity at :00, :15, :30, :45. We have plotted the impedance for
each service as a line with a different color. As the impedance of an additional minute
will decrease gradually as the adaption time increases, this is modeled as a gradual re-
duction of the slope. The gray area plotted indicates the travel impedance faced by the
user at any time and the average travel impedance is the indication for the level of ser-
vice between the origin and destination.

• In Figure 2.1 we see that a person with a desired departure time coincides exactly
with a departure opportunity will only be faced by the in-vehicle duration and a
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potential transfer impedance. However, someone who arrives at the station at any
other moment will also be faced by the adaption time, which will increase after a
opportunity has left the station and will only decrease again once halfway between
two opportunities, marking the roof-top.

• If we increase the frequencies of a service and improve the headway between ser-
vices down to 10 minutes, as we did in Figure 2.2 we see that the rooftops have a
lower height as the adaption time decrease and passengers are better able to find
a suitable service without adapting their own agenda. This shows that increasing
frequencies that reduces the headway between services improves the level of ser-
vice.

• If we adjust the timetable such that the headway is not constant between services
as we did in Figure 2.3 we see that some of the rooftops got lower ( 65) but the
other two roof ended up much higher, as passengers arriving around the hour will
be faced with higher wait times. On average the travel impedance increase and
thus the level of service decreased.

• If we add services with an inferior travel time as we did in Figure 2.4, we see that
the level of service is not affected as even at the depart time of the inferior options,
the travel-time of these options is higher than the travel-time + adaption-time of
the faster options.

2.3.6. CHANGES IN ACCESSIBILITY
The study by Grengs (2004) looks at measuring change in small-scale transit accessi-
bility in terms of how many jobs are accessible, analyzing the transit routes serving one
neighborhood each in Buffalo and Rochester, New York. The main question addressed in
this study is firstly whether transit-dependent people with a low income living in inner-
city neighborhoods lost accessibility by transit to jobs during the 1990s. Secondly, how
much of that reduction in accessibility was caused by changes in transit server and not
a spreading out of land use. In this study the analysis of transit travel times is limited
to transit journeys without transfers as building a network to include transfers would
increase the computation time exponentially and was considered to be out of scope of
their study.

Farber and Fu (2017) compare how transit travel times and accessibility have changed
in response to network and service modifications. To do so they proposed a novel data
object called the public transit travel time cube, this cube contains the shortest path
transit travel time between sets of origins and destinations in a city, at all times of day.
This study looks at how travel times were impacted by service cuts and expansions in
the two regions respectively and the impact this had on jobs accessibility. Furthermore,
they use the travel time to compute to study the last mile problem and investigate the
last mile problem and compute travel time savings and reliability improvements of the
bicycle transit combination.
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Figure 2.1: Plot of travel impedance when applying the rooftop method, each line showing the impedance of
four departure opportunities each at the quarter of the hour. We see the rooftop effect of the adaption time

peaking increasing after missing a departure opportunity and decreasing when halfway to the next
opportunity. The horizontal axis indicates each minute of the hour and the vertical axis the travel impedance.
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Figure 2.2: Again the rooftop method applied, but now with a higher frequency, each service with an
alternating color. We see that the rooftops are now lower, indicating that the perceived travel impedance is

lower and thus a higher level of service.
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Figure 2.3: Plot of travel impedance when applying the rooftop method, each line showing the impedance of
four departure opportunities each at the quarter of the hour. We see that if the departure opportunities are in
an irregular pattern, the wait time between services varies. Over the hour the level of service decreases as the

wait-time on average increases.
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Figure 2.4: Plot of the rooftop model when we add two options with an inferior travel-time and/or transfer
impedance. As the impedance of these two options in dashed purple is higher than the other four options,

even when including the adaption time to those services the level of service is not affected
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The public transit travel time cube is a three-dimensional array, T = [ti , j ,m], of es-
timated transit travel times, with i and j the origin and destination zone respectively
and m the computed for a minute in the day. This makes the dimension of the cube:
N xN xM for N zones and M = 1440 for the minutes in a day for a cube that contains the
public transit travel time from all origins to all destinations at all times of day represent-
ing the latent structure of public transit connectivity in a region. In the implementation
of Farber and Fu (2017) the travel time is calculated with a toolbox of a proprietary geo-
graphic information system (GIS) software. This software allows their users to calculate
an origin-destination matrix with travel times at a specific departure time. These matri-
ces indicate the travel time between the centroid of each zone and 0 for intrazonal trips
as there is only a single point in each zone. To produce the cube they calculate such a
matrix for every minute of the day and combine it into a cube.

Through three case studies, the study shows how travel time cubes can unlock new
ways to describe the spatio-temporal patterns of travel times and use these in the devel-
opment of more sophisticated measures of accessibility and quantify the impact of ac-
commodating joint bicycle and transit trips. In the first case study they compare travel
times over time-of-day, looking at how travel time has changed based on absolute travel
times and a decomposed time series using the Fast Fourier Transform algorithm that
produces a distribution of frequencies that combine to reproduce the actual time series,
the second case study access to jobs using travel time cubes is being assessed and the
third case study looks at the effects of bicycle use on the last mile problem.

2.4. CASE STUDY
We will describe our case study starting with a short timeline on how the timetables were
affected by the pandemic. Next, we explain how we selected our study period and study
area. Finally, we describe how we calculate all travel times in three two-hour periods
between thousands of origin and destinations.

2.4.1. TIMELINE OF THE PANDEMIC AFFECTING PUBLIC TRANSIT IN THE

NETHERLANDS

The first official case of COVID-19 in the Netherlands was diagnosed on the 27th of
February 2020. By the 9th of March of 2020 there was a request by the authorities that
people in the south province of Noord-Brabant to work as much as possible from home
and on March 10th all events with over a thousand people were forbidden. As the pan-
demic was not contained to this province, these measurements were extended to the
entirety of the country on March 12th and people were requested to work from home
as much as possible. By March 13th all events with over a 100 people were forbidden,
museum’s, universities, theaters, and sport clubs were closed. On March 14th a sudden
announcement closed all bars and restaurants at 6 pm that night and that after an initial
resistance based on lower risk, the decision was made to also close K12 and high-schools.

Despite this extreme rapid shift in demand of mobility in this initial week only some
small modifications were made to remove special peak train services. However, 7 days
later, based on a high sick leave among staff members and the lack of passengers, the
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decision was made by transit operators and authorities to reduce timetables in order to
ensure continued service to essential workers. In effect this meant on the train network
the service was reduced to twice an hour in every direction from each station and remov-
ing almost all Intercity trains leaving only regional trains stopping at every intermediate
station. Bus, tram and metro service was generally reduced to the usual Sunday service
with some added frequencies in the (early) morning. To avoid a mismatch in demand
and supply especially in the context of allowing 1.5 meters (approximately five feet) dis-
tance between each passenger, a stringent request was made to all passengers to only
travel for essential purposes. The latter was not legally enforced, but generally adhered,
to especially in the initial phases. Furthermore, in Amsterdam a single metro line 51
was suspended leading to those passengers having to make an additional transfer. This
period of reduced service was in effect for 5 weeks.

By April 21st the first re-openings were announced, as primary schools would open
in smaller groups for half the time. In preparation for that and in response to a slight
increase of demand, transit agencies increased the level of service again. The intercity
train network was resumed on April 29th to ensure at least one intercity service per hour
in each direction from each Intercity station and local bus, tram and metro operators
also increased their frequencies. On the same day in Amsterdam the local operator GVB
resumed the service of metro line 51 and increased the number of frequencies of a num-
ber of tram and bus lines. Two weeks later it would further increase the services, moving
towards the level of service found each year in the summer holidays. By the 28th of May,
GVB reported in a press release to be transporting about 20 to 25% of it’s usual number
of passengers.

On the 1st of June, the original frequencies were restored for the train network. For
the bus,tram, metro network in most cases a return was made to the summer timetable,
which has lower frequencies. to avoid crowded situations, operators required a non sur-
gical mask to be worn on board of the vehicles. Without crush loads, this would mean
a return of 40% of the original capacity, meaning that the stringent advice to only use
public transport for essential travel was still in place. Meanwhile, on June 1st, bars and
restaurants were allowed to open for outdoor service, high schools were allowed to let
students in, primary schools open fully June 8th and universities were allowed to let stu-
dents take tests on campus.

On July 1st, the authorities dropped the stringent advice to only travel by public
transport for essential purposes. However, as of 1st of August 2020, the request to work
from home if possible is still in place and tourism to Amsterdam is lower than normal
as US citizens are still restricted from travel. This all has led to a significant reduction
in demand for mobility with GVB currently transporting around 40% of the passengers
in greater Amsterdam than it had in the same period last year. As public transport at
these ridership levels is probably not cost effective and the end date of this situation was
not known at that point, the transportation authority in Amsterdam gave permission to
reduce the frequencies of the metro network from 6 to 5 per hour and reduce the fre-
quencies on certain Bus Rapid Transport (BRT) lines.
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2.4.2. STUDY PERIOD
We selected only Thursdays to study, as Thursdays are generally representative for all
other business days while Thursday has commonly has the highest number of passen-
gers.

• For our baseline we selected two different days, as the week before the lockdown
there was noticeable interference from a works project that finished up in the first
weeks of the lockdown. The days we selected as the baseline were February 13th
and March 5th 2020.

• As it took some time for all the changes to get processed and end up correctly in the
published timetables, we selected the date of Thursday April 24th as the day most
reflective of the most heavily reduced timetable between March 21st and April 28.
And to reflect the third period with slightly increased service we picked Thursday
May 21st.

• As the final date we selected June 25th, measuring the as of writing current timetable.
This current situation has a currently unknown end date, perhaps not changing
before a vaccine or better therapy is found.

To measure accessibility during the day, we selected three different time ranges for
each day, measuring the morning peak between 7 and 9 am, the evening peak between
4:30 and 6:30 pm and off-peak between 11:30 am and 1:30 pm.

2.4.3. STUDY AREA
We limited our study area to the region of transport authority for greater Amsterdam (in
Dutch: Vervoerregio Amsterdam), which includes the municipality of Amsterdam and
fourteen neighbouring municipalities: Aalsmeer, Amstelveen, Amsterdam, Beemster,
Diemen, Edam-Volendam, Haarlemmermeer, Landsmeer, Oostzaan, Ouder-Amstel,
Purmerend, Uithoorn, Waterland, Wormerland and Zaanstad. The reason to limit it to
this smaller area was the exponentially increasing computational time involved with
scaling further spatially. Instead, we preferred to keep the number of sample points high
and look at effects in this specific context with a still interesting mix of urban and subur-
ban context.

2.4.4. SAMPLING OF ORIGIN AND DESTINATION PAIRS
As measuring from all addresses would be computationally prohibitive, we used a sam-
pler to select a smaller set of addresses. To make this selection of addresses more re-
flective of destination choices, we weighted based on the purpose of that address (such
as residential, education, retail, commerce, etc.) and the surface-area of the building.
To reflect real destination choice, we allowed the same address to be sampled multiple
times.
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As we saw interesting effect of the exact origin and destinations selected on the de-
termination of door-to-door travel time with public transport in our study Koch et al.
(2020), we slightly adjusted the sampler from that paper to allow for more points to be
sampled to have more probes of the spatial variability. Our data source to sample is the
national registry of buildings and addresses, containing information such as location,
surface area and the generic indication of purpose of that building such as education,
residential, commercial, retail, etc. The surface area is the sum of the surface areas of all
floor levels in the building.

As our zoning system we use the Dutch national bureau of statics zoning system at
the smallest public level of the neighborhood (in Dutch: buurt). These zones in Ams-
terdam have a surface area of median 0.411 km2 (0.16 square miles). Instead of a low
number of points per zone we opted for a high number of points with the constraints
that any point within a zone cannot be closer than 200 meters to an already included
address. This results in at least 1 and at most 64 points per zone, on average 8.3 points
per zone and median 6 points per zone and in total 6693 points. To remove any effect
caused by different sets of addresses that we saw in Koch et al. (2020), we used the same
set of addresses in every measurement.

2.4.5. CALCULATION OF TRAVEL TIMES
To establish perceived travel time we needed to calculate all optimal travel options in a
given time range. Based on our earlier experience with transit routing algorithms, we
decided on the Round-Based Public Transit Optimized Router (RAPTOR) algorithm by
Delling et al. (2014) as the algorithm to compute. As many open source implementations
exist of RAPTOR, we opted to use an existing extension to MATSimHorni et al. (2016)
developed by the Swiss railways Bundesbahnen (2020). This library used the MATSim
framework for transit schedules to run RAPTOR to calculate all Pareto-optimal journeys
departing in a given time range from and to zones.

We modified this library to output all intermediate results leading to a large data-
set with 534,188,098 records describing the descriptive statistics for three time periods
for four days between 6693 origin-destination pairs. With this data set it is possible to
explore accessibility differences for four days during and after the COVID-19 crisis.

2.4.6. WEIGHTED AVERAGE PER ZONE
As this high number of records made it difficult to visualize the results in an interactive
manner, we opted to calculate a weighted average of travel-times per zone. To do so, we
took the weight of each address and added this weight to the nearest address that was
part of our sampled set of origin and destinations. In this way, the weighted average is
a good representation of travel-time based on the relevancy of address while trying to
limit the effect of the spatial distribution of travel times across each zone.

2.4.7. INTERACTIVE TOOL
To visualize travel times and changes in accessibility interactively we built a simple web
application that lets any user click on a zone in order to render results for all destination
zones. The application allows the user to select the date and time period to visualize the
travel-times and differences in travel-time between each date and time combination.
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2.5. RESULTS
In this section we present four views of our results: two approaches to considering travel
time, and accordingly, two approaches to evaluating changes in accessibility.

2.5.1. TWO APPROACHES TO TRAVEL TIME

Running the computation is relatively quick, and we are able to compute 3 2-hour pe-
riods for the entire city of Amsterdam in a bit less than 2 hours on a 16 core machine.
This could have been less if we did not opt for writing all travel times between the 6693
selected points, as this meant writing 8 gigabytes compressed text to disk. These files did
allow us to look at accessibility at point level as we visualized in figures 2.5 and 2.6. In
Figure 2.5 we visualize the perceived travel time including wait times to the Vrije Univer-
siteit campus and in Figure 2.6 we visualize the median of all travel times found between
7 and 9 am, indicating the travel time without wait component.

2.5.2. TWO APPROACHES TO CHANGES IN ACCESSIBILITY

Looking at the effects on travel times of the different iterations of the timetables during
the Corona pandemic in March to June 2020 we see that as expected the travel times in-
creased between most origin and destinations. Specifically, we looked at two indicators
of accessibility, the travel-time as based on the fastest option in the two hour range and
travel-time as computed by the rooftop method to get an indication of frequency and
travel-time.
For some origin-destination pairs we saw some interesting effects where both indicators
diverged. We included one such example in Figure 2.7 with the fastest travel-time and
Figure 2.8 with the travel-time based on the roof-top method, comparing the changes
in accessibility from Amstelstation in the east of Amsterdam between Thursday March
6th and June 25th 2020. The changes in service between these two dates cut the metro
frequency from five to four departures per hour on metro line 50, 51, 53, 54, with service
unchanged for the North/South metro line 52 that still has a headway of six minutes.
The bus schedules were mostly unchanged outside the removal of peak bus routes and
reducing the frequencies on the Bus Rapid Transport network from the South of Amster-
dam to Schiphol airport.
Looking at Figure 2.7 where we look at only a single travel, we see no changes in acces-
sibility around the metro network, as all those stops are reachable without transfer or
on metro line 52 with unchanged frequency. However, as the metro frequencies were
reduced, a passenger arriving at an arbitrary moment probably will have to wait a few
minutes longer than normal. This reduction in the level of service is noticed when apply-
ing the rooftop-method in Figure 2.8, where we see a degraded service along the western
edge of the metro network.

2.6. DISCUSSION
We specifically picked the Vrije Universiteit (VU) campus as the destination to describe
our case study for two reasons: the location of the university itself, and the medical cen-
ter facility associated with it (VUmc).

The university itself is a major source of trip generation related to the 26593 bachelor
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Travel	time	(min)
5.3	-	25
25	-	35.5
35.5	-	43.6
43.6	-	51.1
51.1	-	58.2
58.2	-	64.9
64.9	-	71.7
71.7	-	78.7
78.7	-	95.1
95.1	-	164.5

Figure 2.5: Travel times towards the Vrije Universiteit campus in the period departing between 7:00-9:00 a.m.
on the 13th of February 2020. Each dot represents the perceived travel travel time including adaption time

and/or waiting time. Green indicates low travel time and red indicates high travel time. For clarity all points
with negligible travel time are omitted.

and master students that travel weekly to the campus from the region for their studies,
with only a relatively small number of students living nearby the campus in Amstelveen.
For these students, the campus serves as a hub for trip chaining to other activities. It is
not simply a matter of students coming to campus from their residential location and
returning directly, but instead often involving trip chain behavior to other locations. The
campus thus is ideally accessible to and from a vast range of residential locations spread
throughout the region, but also to and from other activity locations. This huge daily
flux of students creates challenges for transit providers in providing sufficient capacity
via sufficient frequency of service at peak periods. It also offers opportunities for the
university board to consider the impact of changing lecture schedules and giving online
options for course work.

In addition, the campus with the teaching hospital forms an important destination
for essential workers keeping the hospital running, such as janitorial staff, nursing aids,
nurses and doctors still working on site 24/7. In this regard, the accessibility is relevant
not only spatially for the essential workers living at residential locations spread through-
out the region, across all income levels, but also it is necessary to have ’temporal’ acces-
sibility throughout all hours of the day and night.

For public authorities, the impact of transit scheduling by transit providers is a care-
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Travel	time	(min)
3.3	-	13.4
13.4	-	18.8
18.8	-	23.1
23.1	-	27.7
27.7	-	31.6
31.6	-	36.1
36.1	-	39.2
39.2	-	44.9
44.9	-	54.6
54.6	-	87.1

Figure 2.6: Travel times towards the Vrije Universiteit campus in the period departing between 7:00-9:00 a.m.
on the 13th of February 2020. Each dot represents the median travel duration based on each optimal

departure opportunity found in the two-hour period. Green indicates low travel time and red indicates high
travel time. For clarity all points with negligible difference are omitted.

ful balance between equity and finance. On the one hand, there is a public responsibility
to provide equitable service for different segments of society. On the other hand, pub-
lic transit is a semi-public operation requiring a sufficient level of service to be afford-
able, financed partly by revenue from operations and from public funds. The research
methodology outlined here can support public authorities and transit providers in un-
derstanding the impact of scheduling from the perspective of the travelers in the system
at a fine-grained spatial level, for all locations 24/7 across the entire transportation re-
gion.

2.7. CONCLUSION
When looking at how changes affect travel time as experienced by the population as we
did for the service reductions for COVID-19, it becomes clear that there can be a gap
between the travel time for a single journey and the travel time for a passenger who has
to be somewhere at a given time.

Especially now, when many transit network operators are thinking about a reduction
of frequencies as a response to the lower demand in mobility during this pandemic, it is
important to keep in mind that accessibility of transit will vary for every minute of the
day and that the reduction of frequencies may not be visible in analysis that ignores the
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Figure 2.7: Difference in accessibility from Amstelstation (green marker) between March 6th 2020 and June
25th 2020 as measured by the shortest travel-time door-to-door in the early morning commute period (7 to 9
am) by taking the shortest travel time of any trip that departures between 7 and 9 am. A red shade indicates a
longer travel-time, a blue shade indicates an improved travel-time and gray indicates a difference of less than

90 seconds. The black lines indicate the metro network of Amsterdam.
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Figure 2.8: Difference in accessibility from Amstelstation (green marker) between March 6th 2020 and June
25th 2020 as measured by the perceived travel-time door-to-door in the early morning commute period (7 to

9 am) with the roof-top method. A red shade indicates a longer travel-time, a blue shade indicates an
improved travel-time and gray indicates a difference of less than 90 seconds. The black lines indicate the

metro network of Amsterdam.
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temporal variance caused by the frequency component of each transit schedule.
The main suggestion we see to get the full potential out of this tool, would be to

make these measurements of perceived travel-time more accessible to end users such
as public policy makers and transit operators to further optimize transit schedules and
understand how frequency increases or decreases would affect different demographics.

For future study we would like to compare perceived travel time with more accurate
comparisons of perceived travel times by car and bicycle.

To make a fair comparison with bicycle and car it would only be fair when measur-
ing the perceived travel time with that modality ALSO as door-to-door. This would re-
quire assuming a walk to the nearest available car parking spot on-street or off-street in a
garage, or to the nearest available bicycle parking rack on-street or off-street in a bicycle
parking facility. Ideally you would also include some cruising to find a parking spot and
some form of traffic information to include congestion information.

Another very interesting aspect of study, especially in Amsterdam, would be to study
perceived travel time of the "bicycle + public transit" combination. As travel by bicy-
cle can increase the accessibility to and from higher frequency transit services such as
metro, we hypothesize this would reduce the likelihood of having to wait for the next
possible departure opportunity at a lower frequency transit stop such as bus.



3
SHORT-TERM FORECASTING OF

OFF-STREET PARKING OCCUPANCY

Information and Communication Technologies have opened the way to guide recent de-
velopments in the field of parking. In this chapter, these technologies are applied to model
a Decision Support System that gives insight into six months ahead parking occupancy
forecasts for 57 off-street parking locations in Amsterdam. An effect analysis has been con-
ducted into the influence of weather, event, parking tariff and public transport attributes
on the parking occupancy. The most influential factors are the event variables, thunder-
storms, average wind speed, temperature, precipitation, sunshine, and the addition of a
public transport line. Parking tariffs did not significantly contribute to the model per-
formance, which can be caused by the lack of data and time variability in the parking
tariffs of the examined parking locations. The forecasting algorithms compared are Sea-
sonal Naive Model as a benchmark approach, Box-Jenkins Seasonal Autoregressive Inte-
grated Moving Average with and without exogenous regressors (SARIMAX and SARIMA,
respectively), exponential smoothing models, and Long Short-Term Memory neural net-
work. The SARIMAX model outperforms the other algorithms for the six months ahead
forecasts according to the lowest Root Mean Squared Error (RMSE). By including the event
factor, the model improved with 24% based on the RMSE. Weather variables improve the
predictive performance with 8%.

Fokker, E. S., Koch, T., van Leeuwen, M., & Dugundji, E. R. (2021). Short-Term Forecasting of Off-Street Parking
Occupancy. Transportation Research Record.
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3.1. INTRODUCTION

The development of low-cost, on-demand shared mobility systems and the rise of the
autonomous vehicle have made transportation the center of today’s debate and discus-
sion (Vazifeh et al. (2018)). Yet, innovations and developments in the field of parking
are happening more quietly on various fronts, such as technology, research and design
(Rosenblum et al. (2020)). One of these developments is the reduction or elimination of
parking minimums, which is the minimum amount of parking spaces required. Cities
at the forefront of parking progress reduce or remove parking minimums and replace
them with maximums, eventually resulting in a decrease in parking supply (Kodransky
and Hermann (2010)).
Another development is dynamic pricing. In dynamic pricing, parking prices vary based
on dynamic factors. One factor is pricing based on the expected parking occupancy.
Transport experts have found an optimal amount of 15% of unoccupied parking spaces
to minimize the time spent "cruising for parking", which adds substantially to the sever-
ity of downtown congestion (Arnott and Inci (2006) and Barth and Boriboonsomsin (2007)).
To reach this optimum, drivers need to pay a higher price to park in more desirable park-
ing locations. Another factor is pricing based on the emission level of vehicles. In some
European cities such as Amsterdam and London, cleaner vehicles pay a discount rate on
parking charges, whereas a higher rate applies for vehicles that pollute more (Kodransky
and Hermann (2010)). Nowadays, these developments have become even more rele-
vant, as more public space is required by the COVID-19 pandemic. Major cities such as
Athens, Paris and Berlin have set the goal to liberate public space from cars and make
place for clean traffic, such as walking and cycling.
Just as many other affluent cities, Amsterdam is actively engaged in these developments
in order to reduce the negative impacts of traffic and transport on the environment (Van
Wee and Handy (2016)). The municipality of Amsterdam strives for cleaner transport
alternatives, such as cycling and public transport, reduction of cars on the streets and
reduction of parking locations to create more public spaces (Dijksma (2020)). In order to
support the decision-making of these policy measures, information about the environ-
mental factors that influence the parking behavior and the predicted parking occupancy
is required. The objective of this paper is to propose a forecasting model that provides
insight into the future off-street parking occupancy.

For this study, historic off-street parking occupancy information of 57 public parking
garages and P+R locations in Amsterdam is used. These parking locations are either of-
fered and controlled by the municipality of Amsterdam or by commercial companies,
and cover over 90% of the total public off-street parking locations in Amsterdam. The
parking occupancy data are obtained from open data feed and are retrieved from the
barrier systems in the parking location. Using this data, a model is presented that gains
insight into the factors affecting the parking choice. We compare 3 different temporal
models to predict the parking occupancy for six months ahead: Long Short Term Mem-
ory (LSTM), Seasonal Autoregressive Integrated Moving Average with Exogenous vari-
ables (SARIMAX) and Exponential Smoothing models (ETS). The benchmark model is a
Seasonal Naive model. Additionally, we present a software system to visualize the pre-
dicted parking data on a map, allowing decision makers to consult the occupancy rate
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forecast for six months ahead.

3.2. RELATED LITERATURE
The prediction of vehicle parking occupancy and urban land use and transport planning
have been studied extensively during the past decade.
Manville, Shoup, et al. (2010) studied the interplay of parking with the built environment
in the City of Los Angeles, and concluded that eliminating the minimum standard led to
a 40–55% reduction in the parking supply. Christiansen et al. (2017) analyzed the impact
of parking availability at the start and the end of a trip on mode choice. They concluded
that parking restrictions at the workplace are more effective in reducing car-use on work
trips than the regulation through parking fees. Liu et al. (2017) investigated the inter-
action of parking with the built environment in densely built neighborhoods in China.
They found that the parking market can actively decrease the residential parking ratio,
that minimum parking standards lead to more office parking in dense neighborhoods,
and better transit services and lower parking ratios are supported. However, the increase
of office parking in these neighborhoods counteracts the benefits of compact develop-
ment. De Gruyter et al. (2020) explored the association of high quality public transport
with reduced car parking requirements in Melbourne. They concluded that a 10% in-
crease in public transport service supply is associated with a 0.9–1.2% reduction in car
parking demand.

In the field of parking occupancy prediction, Stolfi et al. (2017) compared various models
on parking prediction in the city of Birmingham, and found that the time series method
provided the most accurate results. They also presented a web page prototype to visu-
alize the current and historical parking data on a map. Differences with their study is
that our study models for a larger time span and incorporates external factors. S. Yang
et al. (2019) proposed a real-time model using deep learning approaches such as LSTM
for occupancy forecast in the Pittsburgh downtown area. For input, they used heteroge-
neously structured traffic data sources, such as parking meter transactions, traffic speed,
and weather conditions. They concluded that incorporating traffic speed and weather
information significantly improves the parking predictions.
In various time series analysis studies on parking space prediction, variants of ARIMA
have achieved valuable results. For example, Zhu et al. (2018) applied an ARIMA model
with additional real-time short-term forecasting framework to create a parking guidance
system in Nanjing China, that outperforms a conventional neural network method and
the Markov chain method. Friso et al. (2017) implemented Seasonal ARIMA in a short-
term traffic prediction case study that, despite its simplicity, obtained more accurate re-
sults than more complicated methods like multivariate spatial-temporal ARIMA. A ma-
jor difference is that these studies are more supposed for real-time purposes and predict
one-step ahead, while the purpose of this research is to gain insight into the parking oc-
cupancy in a larger time span.

The following studies highlight the most important factors that influence car drivers’
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parking decisions. According to Kaplan et al. (2009) historic parking data is influenced
by past parking availability for predetermined time intervals, days of the week, weather
conditions and events. Other influential factors found by van der Waerden and Oppewal
(1996) are parking cost and walking distance. Likewise, Khaliq et al. (2018) found that
the key attributes which the driver considers are "walking distance to destination" and
"parking cost". Golias et al. (2002) studied the off-street parking choice sensitivity and
concluded that the difficulty in finding a parking space is a more important factor than
the increased parking fee.

Although real time one-step-ahead predictions have been studied widely, only few stud-
ies are available on many-steps-ahead predictions. These studies predict the occupancy
for one Fan et al., 2018 to two weeks Stolfi et al. (2017) ahead. Contrary to previous stud-
ies, this study has a time span of six months ahead. Parking occupancy forecasts of this
time span are especially suitable for short-term policy decision making, such as the or-
ganization of parking supply for events, for instance by dynamic pricing.

Cleaned

data (csv)

Seasonal Naive

(Base model)

LSTM

ETS

SARIMAX

Forecast

data (csv)

DSS results

(csv)

User

User InterfaceOpenStreetMap

API call

Figure 3.1: System architecture of the forecasting model.

3.3. MODEL SET-UP
The system architecture of the model is given in Figure 3.1. The data set contains in-
formation about the occupancy and capacity per minute for the 57 parking locations in
Amsterdam during 2018 and 2019. This data set contains warnings, errors and missing
values. First, these are detected and imputed using Kalman Filter imputation (Welch,
Bishop, et al. (1995)). Afterwards, the parking occupancy is aggregated into hourly data
using the robust median. The cleaned data set is used to compare the LSTM, SARI-
MAX and ETS models, with a Seasonal Naive model as a benchmark model. The hourly
forecasts of the best performing model can be loaded into the Decision Support System
(DSS). The goal of the DSS is to provide a clear insight into forecast parking occupancy
in order to assists a human decision maker to make choices on parking more effectively.
The user can work with this system interactively, by giving input on certain parking lo-
cations and time ranges and save the results. The user interface uses the graphics from
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OpenStreetMap to visualize the off-street parking locations on a map.

CE-P03 Piet Hein

CE-P06 Byzantium

CE-P07 Museumplein

ZO-P06 Pathé Johan Cruijff Arena
ZO-P03 Mikado

ZO-P10 Plaza ArenA

Figure 3.2: Locations of the parking garages in Amsterdam that are highlighted in this paper.

3.4. EMPIRICAL STUDY
For the visualization in this paper six parking locations are highlighted, these are indi-
cated on the map in in Figure 3.2. The garages ZO-P03 Mikado, ZO-P06 Pathé Johan
Cruijff Arena, and ZO-P10 Plaza ArenA, are operated in the south east of Amsterdam by
the municipality of Amsterdam.

Figure 3.3 visualizes the environment of these parking locations, which contains a
soccer stadium, multiple concert halls, and a railway station. Other facilities are an
apartment block, a shopping center, and a business park. Therefore, this neighborhood
attracts residents and travelers with various purposes. The other three locations, CE-P03
Piet Hein, CE-P06 Byzantium, and CE-P07 Museumplein, are located in the city center
of Amsterdam. The environment of the first, CE-P03 Piet Hein, is given in Figure 3.4.

This parking location, operated by the Municipality of Amsterdam, is based near the
Amsterdam Central railway station, a concert hall, a ferry terminal, and the historic city
center. The last two are stationed in the historic city center and are operated by Q-Park,
a commercial parking operator.

Figure 3.5 shows that these parking locations are stationed nearby a park, museums,
concert halls and other entertainment venues. In addition, multiple commercial streets
are located in this area.

Figure 3.6 visualizes the development in occupancy and capacity of these locations
during Monday, July 24 midnight, 2019 to Sunday, July 30 midnight, 2019. Note that the
capacity can change over time. This is because some parking locations in Amsterdam
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CE-P03 Piet Hein

CE-P06 Byzantium

CE-P07 Museumplein

ZO-P06 Pathé Johan Cruijff Arena
ZO-P03 Mikado

ZO-P10 Plaza ArenA

Figure 3.3: Spatial environment of the parking garages in south-east of Amsterdam.

CE-P03 Piet Hein

CE-P06 Byzantium

CE-P07 Museumplein

ZO-P06 Pathé Johan Cruijff Arena
ZO-P03 Mikado

ZO-P10 Plaza ArenA

Figure 3.4: Spatial environment of CE-P03 Piet Hein.
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CE-P03 Piet Hein

CE-P06 Byzantium

CE-P07 Museumplein

ZO-P06 Pathé Johan Cruijff Arena
ZO-P03 Mikado

ZO-P10 Plaza ArenA

Figure 3.5: Spatial environment of CE-P07 Museumplein and CE-P06 Byzantium.
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Figure 3.6: Occupancy and capacity of six parking locations, July 24-30, 2019.
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work with time-varying parking regulations. It can also be observed that the parking
spaces are less occupied to idle overnight, whereas at daytime or in the evening a clear
peak is shown. The graphs of CE-P06 Byzantium, CE-P07 Museumplein and ZO-P06
Pathe Johan Cruijff Arena have double peaks. These are typical for parking locations that
serve both commercial and recreational purposes. Visitors park for commercial pur-
poses around noon, and park for catering establishments and entertainment venues in
the evening. In two parking locations established near the soccer stadium and concert
halls (ZO-P03 Mikado and ZO-P10 Plaza ArenA) a larger peak (e.g. Saturday, July 29) can
occur, which is caused by a soccer match.
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Figure 3.7: Empirical study: Autocorrelation function of six locations.

Patterns in the data set can also be investigated using autocorrelation function (ACF)
plots, given in Figure 3.7. The values on the x-axis are the lags λ which measure the
correlation between a time series and a shifted variant (by λ time steps) of itself. This
provides clues to an underlying model that describes the data well and characterizes the
predictability of a time series (Hoogendoorn and Funk (2018)). At the beginning of the
ACF plots high correlations are observed. This is because the lower shifted version of
itself is highly correlated with the current value (i.e. the lag λ is close to 0). Further, other
higher peaks represent daily and weekly components. From these plots, both intraday
and intraweek patterns can be observed: each day (24 lags in hours, visualized with ver-
tical grid) has a peak; additionally, each week (168 lags in hours) has a larger peak. Note
that some locations have a stronger intraday and intraweek pattern (e.g. CE-P06 Byzan-
tium) than other locations (e.g. ZO-P03 Mikado). Thus, from Figure 3.6 and 3.7 clear
patterns, but also differences between the locations can be found. Therefore, the park-
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ing occupancy forecasts are modeled for each parking location separately, rather than
applying one general model.

3.5. IDENTIFICATION OF FACTORS AFFECTING OFF-STREET PARK-
ING OCCUPANCY

This section highlights the statistical significance of external factors on the parking oc-
cupancy. The factors examined are the weather, events, parking tariffs, and the addition
of a public transport line. Factors that contribute significantly to the model performance
are implemented in the forecast model. In Table 3.1 a summary of the temporal variables
is given.

3.5.1. WEATHER
The weather metadata is provided by the Royal Netherlands Meteorological Institute
(KNMI) from Schiphol airport station near Amsterdam. This data set contains hourly
observations for 24 weather related variables, such as temperature, air pressure and rain.
Some of these variables are highly dependent on each other. For instance, the horizontal
view has a negative relationship with fog. To avoid overfitting, a selection is made in a
way that the weather variables are not explained by any other variable. The remaining
weather variables are average wind speed, temperature, sunshine, precipitation, view
and thunderstorm.

3.5.2. EVENTS
According to previous studies, sports and artistic events substantially affect the park-
ing occupancy in nearby parking locations (Arthur (1955) and Grodi et al. (2016)). This
paper focuses on the impact of sports and artistic events in the stadium Johan Cruijff
ArenA and the concert halls Ziggo Dome and AFAS Live, located in the south-east of
Amsterdam. For each event type, nine binary variables are included in the model. For
sports events, four binary variables are added for the hours before the match starts ("Pre-
match" in Table 3.1). These variables have a 1 if the certain hour is respectively 1, 2, 3,
and 4 hours before a match takes place and 0 otherwise. Similarly, four binary variables
are added for respectively 1, 2, 3, and 4 hours after the match is over ("Post-match" in
Table 3.1). Finally, a binary variable is included which is 1 during the match and 0 oth-
erwise ("During match" in Table 3.1). Nine variables are added instead of one, since in
reality the amount of occupied parking spaces does not increase to its maximum in one
hour before an event starts and drops back to its original value after the event is over. In-
stead, visitors arrive and leave a parking location more gradually. This is caused by both
the limitations of the parking system, and the crowded traffic on the surrounding roads.
For these reasons, a maximum of approximately 250-300 cars can leave in one hour per
barrier. With the same approach, music events are added to the model ("Pre-concert",
"During concert" and "Post concert" in Table 3.1).

3.5.3. PARKING TARIFFS
In almost all major cities, parking pricing is an important consideration for policy mak-
ers (Kelly and Clinch (2006)), because it does not only significantly contribute to the
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Table 3.1: External attributes for effect analysis.

Attribute name Explanation
Weather attributes
Average wind speed Average wind speed (in 0.1 m/s) for the previous 10 minutes
Temperature Temperature (in 0.1 °C) on 1.50m height during observation

Sunshine
Duration of the sunshine (in 0.1 hours) per hour
calculated from global radiation (-1 for <0.05 hours)

Precipitation Hourly sum of the precipitation (in 0.1 mm) (-1 for <0.05 mm)

View

Horizontal view during observation.
0 = less than 100m, 1 = 100-200m, 2 = 200-300m, ... ,
50 = 5-6km, 56 = 6-7km, 57 = 7- 8km, ... ,79 = 29-30km,
80 = 30-35km, 81 = 35-40km, ..., 89 = more than 70km

Thunderstorm 0 = did not occur; 1 = did occur in the previous hour
Event attributes

Pre-match
For h = 1, 2, 3, 4 hours before a sports match
0 = not h hours before a sports match;
1 = h hours before a sports match

During match 0 = not during a sports match; 1 = during a sports match

Post-match
For h = 1, 2, 3, 4 hours after a sports match:
0 = not h hours after a sports match;
1 = h hours after sports match

Pre-concert
For h = 1, 2, 3, 4 hours before a music event
0 = not h hours before a music event;
1 = h hours before a music event

During concert 0 = not during a music event; 1 = during a music event

Post-concert
For h = 1, 2, 3, 4 hours after a music event
0 = not h hours after a music event;
1 = h hours after a music event

Parking tariff attributes

Parking tariff hour
The parking tariff at the relevant parking location,
at the given hour

Maximum day tariff
The maximum parking tariff for a day ticket
at the relevant parking location

Public transport line attribute

North/South metro line
0 = before the North/South metro line opening;
1 = after the North/South metro line opening
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parking occupancy (Khaliq et al. (2018)), it influences the performance of the whole
transportation network (Jakob et al. (2020)). However, according to the municipality of
Amsterdam, even though parking in garages is 15% cheaper than on-street parking in
the same neighborhood, no strong (relative and absolute) increase in off-street parking
occupancy is detected yet. Paid parking always applies in the locations investigated in
this study. The local variation over time in parking prices is minimal. Two of the exam-
ined locations have a time-varying parking tariff, but the other four parking locations
have a constant parking tariff which is insensitive to the hour of the day. One change
in these variables occurred on July 14, 2019. From this day, the parking tariffs have in-
creased drastically, sometimes with 100% (Kruyswijk (2018)). For each parking location,
the parking tariffs in the certain hour and the maximal parking price for one day are
added to the model.

3.5.4. PUBLIC TRANSPORT LINE

As an experiment, a new metro line is included as a variable. This metro line is the
North/Southline, which connects the north to the south of Amsterdam via the city cen-
ter. A 0 is given for the period before the start of the adjusted timetable by the new metro
line on 22 July, and a 1 from the start of the adjusted timetable, from 22 July.

3.5.5. RESULTS OF THE EFFECT ANALYSIS

For the effect analysis, the estimates and p-values from a z-test of a SARIMAX model
are used. This model contains autoregression and moving average processes and the ex-
ogenous regressors in Table 3.1. Table 3.2 shows the estimates and the p-values of the
weather, event, and public transport line attributes that significantly affect the parking
occupancy. Statistically significant variables not included in the table are the autore-
gressive and moving average component variables. The parking tariff variables are not
included in the table, because these appear to be not statistically significant for the park-
ing occupancy prediction of the examined parking locations. This contradicts with the
literature such as Jakob et al. (2020), Kelly and Clinch (2006), and Khaliq et al. (2018).
An explanation for this is that the local variation over time in the parking tariff prices is
minimal. In four of the parking locations the parking tariffs only change once from April
14, 2019. This parking tariff change is at the end of the time range of the data set. Thus,
the model does not have enough data to learn from the changed parking tariffs.

Focusing on the weather attributes, it is found that the average wind speed has a
modest negative impact on the occupancy in the locations ZO-P06 Pathé Johan Crui-
jff Arena and CE-P06 Byzantium (estimates of -0.066 and -0.041, respectively). The less
wind, the slightly more people park their car in the above-mentioned locations. In half
of these parking areas, temperature has a small negative correlation with the parking
occupancy. An explanation for this is that on a colder day travelers choose the car over
an alternative transport mode (e.g. bicycle or public transport). Significant weather vari-
ables in CE-P06 Byzantium are precipitation (which has a negative impact) and sunshine
(which has a positive impact). This makes sense as this garage is located close to a park
and commercial streets. A sunnier and less rainy day can attract more visitors to the city
center. One variable that has a strong negative impact on parking is thunderstorms (-
9.194 for ZO-P06 Pathé Johan Cruijff Arena). A speculation is that during a thunderstorm,
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potential travelers choose to wait for the storm to pass. Except for thunderstorms, the
absolute difference in predicted occupied parking spaces caused by the weather is quite
small. However, these results provide evidence that seemingly unimportant factors can
still slightly affect the parking occupancy. For policy decision makers this means that
including these external factors can help in predicting the parking occupancy more ac-
curately. The weather variables are not relevant for six months ahead policy making, but
can be insightful for policy making for a few hours ahead (e.g. during events and holi-
days).
The event attributes strongly affect the parking occupancy, especially in the parking lo-
cations nearby this event location (ZO-P03 Mikado, ZO-P10 Plaza Arena and ZO-P23 Bi-
jlmerdreef). Also in the city center (CE-P07 Museumplein) a significant effect is noted
during the match until one hour after the match. This impact can be caused by this
match, but also by events that could occur at the same time in a concert hall or music
hall close to this parking location. To find the exact source of this increase, variables
with events in the city center should also be added to the model. The increase caused by
a sports match often starts 3 hours before the match, reaches its peak during the match,
and stays high for 2 up until 4 hours after the match. When the music concert estimates
are compared to the match estimates, we can see that in absolute numbers less people
park for a music event compared to a match. Possible reasons can be that music event
visitors choose a different mode (e.g. public transport), or that the concert variable does
not distinguish big concerts (in the football stadium) from smaller concerts (in a smaller
music venue). It can also be noted that after a music event visitors directly go home,
compared to a match event, where visitors stay up until 4 hours after the match has
ended.
Finally, the North/South line has a negative impact on parking in ZO-P10 Plaza ArenA.
Since the metro line started operating, the number of parked vehicles in this location has
dropped significantly. A possible explanation is that the metro line improved connectiv-
ity with the city center, but is not connected near this parking location. Accordingly, this
line may motivate the car to transit travelers who originally parked in ZO-P10 Plaza ArenA
to park elsewhere. It is however unlikely that this affects a large absolute number of
parked vehicles, because the number of short term parkers is relatively small compared
to parking subscription holders in Plaza ArenA. In order to find explanations, more re-
search needs to be conducted into this phenomenon.
Although some attributes affect the parking occupancy in many parking locations, such
as the match variables, clear differences between the locations can be noted. For in-
stance, the location CE-P03 Piet Hein is not affected by any of the external variables. A
reason for this is that mainly subscription and permit holders park at this location. In
addition, there are hardly any events close to this location that attract a large audience.
Further, because the parking location is close to the central station, destinations in the
same neighborhood can also easily be accessed by bicycle and public transport. Because
the exogenous regressors are location-specific, the significant factors on parking are in-
vestigated per location.
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Table 3.2: Significant external factors

Attribute ZO-P03 Mikado
ZO-P06 Pathé Johan
Cruijff Arena

ZO-P10 Plaza ArenA

Weather attributes Estimate* p-value** Estimate p-value Estimate p-value
Avg. wind speed - - -0.066 0.040 - -
Temperature -0.072 4.504e-5 -0.064 0.040 - -
Precipitation - - -0.156 0.023 - -
Thunderstorm - - -9.194 0.008 - -
Event attributes Estimate p-value Estimate p-value Estimate p-value
Pre-match (1h) 145.611 <2.2e-16 30.163 1.850e-6 360.638 <2.2e-16
Pre-match (2h) 81.251 <2.2e-16 27.024 7.318e-5 189.587 <2.2e-16
Pre-match (3h) 27.552 <2.2e-16 21.022 3.377e-5 44.888 8.906e-11
During match 173.548 <2.2e-16 37.119 6.611e-12 476.499 <2.2e-16
Post-match (1h) 82.557 <2.2e-16 - - 262.391 <2.2e-16
Post-match (2h) 16.340 0.0004 -25.752 1.821e-12 94.311 <2.2e-16
Post-match (3h) 6.768 0.045 - - 51.418 1.277e-7
Post-match (4h) - - - - 17.199 0.013
Pre-concert (1h) 16.585 6.754e-11 19.803 2.311e-6 36.119 6.596e-15
Pre-concert (2h) 10.475 8.198e-5 25.009 2.759e-7 14.486 0.0002
Pre-concert (3h) 7.558 0.0003 23.901 2.651e-7 - -
Pre-concert (4h) - - 14.211 1.176e-5 - -
During concert 16.463 2.543e-15 19.060 5.805e-9 35.112 <2.2e-16
Public transport
line attribute

Estimate p-value Estimate p-value Estimate p-value

North/South line - - - - -12.827 0.042
Attribute CE-P03 Piet Hein CE-P07 Museumplein CE-P06 Byzantium
Weather attributes Estimate p-value Estimate p-value Estimate p-value
Avg. wind speed - - - - -0.041 0.007
Sunshine - - - - 0.143 0.029
Event attributes Estimate p-value Estimate p-value Estimate p-value
During match - - 19.761 1.625e-08 - -
Post-match (1h) - - 20.019 8.104e-12 - -
* The estimates represent the correlation with the parking occupancy, where a value < 0 signifies a
negative correlation and a value > 0 signifies a positive correlation.
** The p-values are obtained from a z-test. Using significance level α= 0.05 the following
hypotheses are considered: H0 :βi = 0 versus H1 :βi 6= 0 for i = 1, ...,28. The null-hypothesis is
rejected for the attributes with a p-value <α. The coefficients with p-value >α are not
statistically significant (indicated with "-").

3.6. TEMPORAL FORECASTING MODELS

In this section five forecasting approaches are described: Seasonal Naive, Seasonal au-
toregressive integrated moving average (with and without exogenous variables) and Er-
ror, trend, seasonality models and a Long short term memory neural network. To com-
pare the predictive performance of these models and to reduce overfitting, the measure-
ments of the parking locations are split into a training, validation and test set in temporal
order. These are 60%, 20% and 20%, respectively.
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3.6.1. KEY PERFORMANCE INDICATOR
For model comparison, the Key Performance Indicator (KPI) Root Mean Squared Error
(RMSE) is chosen based on two reasons. First, the RMSE does not divide by the target
variable (i.e. the amount of occupied parking spaces) which is often 0. This would make
for instance the Weighted Mean Absolute Percentage Error a less suitable KPI for the
present case study. Second, the KPI is more strict when extreme peaks in the actual
values are missed by the models. This is essential as these moments can indicate a fully
occupied parking location. The equation is as follows

RMSE =
√∑

i (ŷi+τ− yi+τ)2

N
(3.1)

with yi+τ the actual occupancy, ŷi+τ the predicted occupancy for i = 1, ..., N samples,
with τ the time step.

3.6.2. SEASONAL NAIVE
Because the parking occupancy data shows a strong seasonal pattern, the Seasonal Naive
Model is chosen as a benchmark approach. This model is simple and requires minimal
data, but tends to be quite inaccurate at predicting highly fluctuating data or data that
changes due to irregular factors. Because of this, the expectation is that this model will
not work extremely well. In Seasonal Naive, a forecast value equals the last observed
value of the same season of this data point. The h-step ahead forecast is given in the
following equation

Ŷt+h|t = Yt+h−s(k+1) (3.2)

where h denotes the step size, s is the seasonal period (Barak et al. (2019)) and k stands
for the number of complete time steps in the forecast period prior to time t +h. Because
we observed a weekly seasonality for each location, a season of one week is considered
in this model.

3.6.3. SEASONAL ARIMA WITH EXOGENOUS REGRESSORS
An ARIMA(p,d , q) model is based on a combination of autoregression AR and moving
average MA processes of order p and q respectively (Badii et al. (2018)). To make time se-
ries with a trend component stationary, the model also differences over the trend (order
d). An extension is seasonal ARIMA(p,d , q) (P,D,Q), which differences over the seasons
of the corresponding parameters p, d and q as well. The addition of seasonal compo-
nents to the model is highly suitable for the seasonal parking data. This model is ex-
tended further by implementing the temporal exogenous variables discussed in the pre-
vious section, resulting in a SARIMAX model. SARIMAX models are a combination of
regression and SARIMA. In the last few years, these models have been widely used in
previous traffic demand forecast studies, for example in Cools et al. (2009) and Fışkın
and Cerit (2019) and Lin et al. (2013). The step-up method is applied to build the model.
In a step-up method, we start with an empty model, and step-wise add one statistically
significant exogenous regressor. For hyper-parameter testing, grid search is applied on
each separate parking location. Because the parking locations show a different time de-
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velopment (see section: Empirical Study) and statistically significant exogenous regres-
sors (see section: 3.5), the hyper-parameter values p,d , q,P,D and Q and the regressors
vary as well based on the location.

3.6.4. ETS MODELS

Error Trend Seasonality (ETS) models are classic time series models. These models pre-
dict based on applying exponential smoothing on the three main occurring components
in the time series, namely error, trend and seasonality. The chosen model depends on
the shape of these error, trend and seasonality components. The error ε and seasonality
s can be either additive (A), multiplicative (M) or non-existent (N). The trend compo-
nent b can either be additive (A), additive damped (Ad) or non-existent (N). Based on
the characteristics of the respective parking location time series, the suitable equation
can be chosen in Table 2.1 in the book by Hyndman et al. R. Hyndman et al. (2008). The
parameters γ and β are the smoothing parameters of the seasonal and trend compo-
nent respectively, and Φ is the damp parameter that reduces the trend each time period
for the damped additive model. Similar to ARIMA, grid search per parking location is
applied, in order to find the correct specific ETS model.

3.6.5. LONG SHORT-TERM MEMORY

Long Short-Term Memory neural network (LSTM) is a variant of a recurrent neural net-
work (RNN). RNN can be used to approximate almost any dynamic system. Traditional
RNN are trained via a gradient based approach. This approach has the fundamental
problem that the back propagation steps are exponentially dependent on the depth of
the weights (Gers et al. (1999)), resulting in vanishing or exploding gradients. Therefore,
traditional RNN are unable to detect dependencies for 10 or more steps. LSTM enforces
the backpropagation errors to be constant. Hence the gradients cannot explode or van-
ish. Figure 3.8 shows one hidden layer of an LSTM model. This layer contains one mem-
ory cell and two adaptive multiplicative gating units in which each has an input and an
output gate. These gates give and receive information to all memory cells in the block.
The memory cells contain a recurrently self-connected linear unit called the "Constant
Error Carousel" (CEC). This solves the vanishing gradient problem, since when there is
no input at a certain point in the data or when there are errors in a cell the backpropa-
gation steps remain the same. When the activation of a CEC gets close to 0 the irrelevant
data and noise do not disturb the other memory cells. The CEC activation function takes
three input variables and its own prior state, namely: netc (the ingoing input in the cell
itself), neti n , netout , which are the respective inputs and outputs of the output gates of
the gating units. For this model it is assumed that the predictions will be a discrete times-
tamp ahead. For each step the weights of all units and the CEC need to be updated. The
activation function used for the input and output gates is the standard sigmoid function.
The input that the memory cell receives from itself is then reduced by a centered sigmoid
function. An LSTM model does not assume the amount of data and has the benefit that
it does not necessarily need to have a trend or seasonal component in order to predict
something without violating the assumption.
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Figure 3.8: One Hidden Layer of an LSTM Model [adapted from Gers et al. (1999).]

Table 3.3: RMSE on Seasonal Naive, ETS, SARIMA and SARIMAX, six months ahead forecast and LSTM, 1 hour
ahead forecast.

Timespan Model ZO-P03 ZO-P06 ZO-P10 CE-P03 CE-P06 CE-P07
6 months ahead Seasonal Naive 59.481 68.947 96.868 27.970 46.728 71.411

ETS 56.295 65.331 92.037 26.234 44.221 55.308
SARIMA 59.919 68.932 96.868 28.030 47.743 71.195
SARIMAX 51.208 60.258 70.767 28.030 43.733 51.891

1 hour ahead LSTM 0.656 2.179 1.803 0.202 1.104 1.061

3.7. RESULTS OF THE FORECASTING MODELS

In Table 3.3 the models are compared based on the lowest RMSE value in the validation
set. LSTM is not included in the six months ahead forecasts due to the extensive input
data set and limited memory space. Instead, an alternative model with one hour ahead
forecasts is proposed. Note from the table that the LSTM model obtained lower RMSE
values. The improved results can be explained by the fact that for one hour ahead we
have more knowledge about the recent actual values, whereas for six months ahead the
predictive power reduces over time. Based on the lowest RMSE of the six months ahead
predictions, the SARIMAX model outperformed the other models, except for CE-P03 Piet
Hein, where the ETS model is the most accurate. Because none of the external regres-
sors contributes significantly for this location, the SARIMAX and SARIMA RMSE values
are identical. The highest errors were obtained by the benchmark model Seasonal Naive
(in the South-East of Amsterdam, ZO-P03, ZO-P06, ZO-P10), and by the SARIMA model
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Figure 3.9: SARIMAX model, fitted values.

(in the city center). A possible explanation for the less accurate results by the SARIMAX
model in the center is that parking in the city center is less predictable compared to the
south-east of Amsterdam. When SARIMA and SARIMAX are compared, strong differ-
ences in RMSE can be noted. For example, adding the external regressors in Plaza ArenA
and Museumplein decreased the RMSE values by 27%. For CE-P06 Byzantium, the ad-
dition of the speed and sunshine variables reduced the RMSE from 47.743 to 43.733,
which is an improvement of about 8%. Although this difference is smaller than in Plaza
ArenA and Museumplein, inclusion of weather information improves the prediction per-
formance.

Figure 3.9 presents the fitted values of the SARIMAX model for the six locations in
between January 1, 2020 to January 7, 2020. From this figure we observe that the model
and the external factors are close to the actual values.

Figure 3.10 compares the six months ahead forecasting models, for the location Plaza
ArenA during January 19, 2020 to January 25, 2020. For many steps ahead forecasts, each
of the models predicts the seasonal patterns well. The SARIMAX model is the only model
that is able to predict the off-seasonal spikes on January 20 and January 24. These spikes
are events, thus are not a part of a daily or weekly pattern. Because exogenous regressors
can be included in a SARIMAX model, these events can be incorporated. Note that the
first spike is estimated too low and the second spike is estimated too high. If this model
has more information regarding the expected number of visitors, these results can be
improved even more.

Figure 3.11 visualizes the six months ahead SARIMAX predictions for six months
ahead predictions for the six locations. Except for CE-P03 Piet Hein, where the exter-
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Figure 3.10: Comparison of models with six months ahead forecasts.
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Figure 3.11: Comparison of actual against forecasted values for the SARIMAX predictions.
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Figure 3.12: Comparison of actual against forecasted values for the LSTM predictions, one step ahead.

nal regressors did not have any impact, the SARIMAX model is able to predict the daily
patterns fairly well, especially for the broad timespan.

In Figure 3.12 a similar graph is given for the LSTM model results with one hour
ahead predictions. This model seems to detect the complex structures and patterns in
the data more than the other models. With smaller step sizes, the model outperforms
the multi-step ahead predictions of the other algorithms.

3.7.1. GRAPHICAL USER INTERFACE DECISION SUPPORT SYSTEM
The Decision Support System (DSS) provides information on the parking occupancy
forecast. For most of the locations, the SARIMAX model, and for a few locations (e.g.
CE-P03 Piet Hein) the ETS model is implemented in the DSS. The user interface of the
DSS is presented in Figure 3.13. Above the dotted line the main user interface of the
DSS is visualized. On the left side of the user interface the decision maker can select the
parking locations, and the date and time range of interest. On the right side of the user
interface a map is provided. This map uses the graphics of OpenStreetMap, where the
values in the placemarks represent the predicted parking occupancy rate for each park-
ing location, at the selected time. The results screen is given below the dotted line. The
time series graphs of the selected locations are visualized, and the moments of expected
occupancy greater than 95% and statistics are given. On top of the screen, the decision
maker can save these results with “Export to CSV” and select new data with “Select Data”.
The DSS can support the policy maker or parking manager to ultimately reduce the ur-
ban congestion problems mentioned in the introduction. Instances of applications are:

1. Dynamic pricing: One might increase the parking prices per hour during times
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when the parking occupancy is expected to be high. For instance, if the parking
occupancy is expected to be over 85%, the prices per hour can be raised to €1.00,
and if the expected parking occupancy is under 40%, the prices per hour can be
lowered by €1.00. The goal of this strategy is to reduce the auto mode share during
peak hours, and subsequently prevent congestion problems such as “cruising for
parking” (here, an occupancy of 15% is found to be optimal to minimize cruising
for parking Arnott and Inci (2006)). One can also use the DSS forecasts as an input
for other existing dynamic pricing models Lei and Ouyang (2017) and Tian et al.
(2018).

2. Urban planning: If it is noted that a parking lot is expected to be (almost) vacant
for a long period of time, these can be replaced with public areas (e.g. city parks)
and cleaner traffic infrastructure (e.g. bicycle lanes).

3.8. CONCLUSION
The objective of this paper is to propose a forecasting model that provides insight into
the future off-street parking occupancy. To meet this objective, five forecasting algo-
rithms are compared, namely Seasonal Naive Model, Box-Jenkins Seasonal Autoregres-
sive Integrated Moving Average, with and without exogenous regressors, exponential
smoothing and Short-Term Memory (LSTM).

For the six months ahead predictions, the SARIMAX model outperformed the other
models for the vast majority of the parking locations based on the Root Mean Squared
Error (RMSE). When the RMSE values of SARIMAX are compared to SARIMA, it can be
observed that the addition of exogenous regressors reduces the error significantly, some-
times with 27%. This indicates that including external variables is essential for parking
occupancy predictions. The external variables which affect the parking occupancy most
are the event variables for sport matches and music concerts. Policy makers can use this
information to reduce traffic congestion, for example by increasing the parking tariffs
when the expected occupancy is highest.
Other external variables that impact the parking occupancy are thunderstorms, average
wind speed, temperature, precipitation, sunshine, and the addition of a public trans-
port line. By adding weather variables, the model performance can be improved by 8%,
which can be used for a few hour ahead forecasts during events. The parking tariffs did
not significantly contribute to the model performance, which may be due to the lack of
data and time variability in the parking tariffs. The highest errors are obtained by the
benchmark model Seasonal Naive in the south east of Amsterdam, and by the SARIMA
model in the center of Amsterdam. For most parking locations ETS models are the sec-
ond best predictors.
The lowest errors were obtained by the real-time short-term LSTM model, because a
shorter prediction step leads to more precise predictions. As a result of this, the model
can be extended into an online short-term model, which is especially useful for short-
term event policy making. Because LSTM also has the possibility to add external vari-
ables, the model performance can be improved further with these extensions. Another
improvement on LSTM is to extend the model into a one day ahead predictor, instead of
one hour ahead.
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Since the event variable has the strongest impact on neighboring parking locations, this
variable can be elaborated further in future studies. By including all events around each
parking location, more peaks can be detected. Further, information about the number
of attendees in an event can be included to improve the model performance.
A follow-up study can be conducted into the parking costs, which in the present study do
not seem to have an effect on the parking occupancy. This could be caused by the lack of
data after the parking tariff change. To provide stronger conclusions on this topic, more
data is needed.
From the data analysis we observed major differences in the parking occupancy devel-
opment per parking location. To also investigate the spatial effects on the parking choice
behavior in future work, spatial features could be added to the models. Examples of spa-
tial features are the walking distance to public transport stations, recreational facilities,
business parks, hospitals, and features that define social safety. Similarly, the addition of
parking supply design features can provide insightful information for the built environ-
ment. An example is the average distance from a parking space to the entrance of the
parking lot. If this affects the parking occupancy, this can be incorporated in the design
to reduce urban congestion problems. Another instance of a design feature is whether
the parking lot is covered and its relation with the weather variables. In order to study
the impact of the parking occupancy of neighboring parking locations on a given parking
location, also the spatial auto-correlation between neighboring parking locations can be
covered in the future.
In this study the effect of temporal features on the parking occupancy is analyzed. Spatial-
temporal features would give the opportunity to investigate the effect of changes in traf-
fic and transport on the parking occupancy for different parking locations. Examples of
changes that affect the parking occupancy are new public transit networks or the impact
of the current policy measures of COVID-19 on parking. This way, we can use informa-
tion and communication technologies in smart cities to form a strong foundation for
urban planners and municipalities, resulting in more accurate decision-making.
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4
FORECASTING PUBLIC TRANSIT

RIDERSHIP USING NEURAL

NETWORKS

This chapter provides a framework for the efficient representation and analysis of both
spatial and temporal dimensions of panel data. This is achieved by representing the data
as spatio-temporal image-matrix, and applied to a case study on forecasting public trans-
port ridership. The relative performance of a subset of machine learning techniques is ex-
amined, focusing on Convolutional Neural Networks (CNN) and Long Short-Term Mem-
ory (LSTM) neural networks. Furthermore Sequential CNN-LSTM, Parallel CNN-LSTM,
Augmented Sequential CNN-LSTM are explored. All models are benchmarked against a
Fixed Effects Ordinary Least Squares regression. Historical ridership data has been pro-
vided in the framework of a project focusing on the impact that the opening of a new
metro line had on ridership. Results show that the forecasts produced by the Sequential
CNN-LSTM model performed best and suggest that the proposed framework could be uti-
lized in applications requiring accurate modeling of demand for public transport. The
described augmentation process of Sequential CNN-LSTM could be used to introduce ex-
ogenous variables into the model, potentially making the model more explainable and
robust in real-life settings.

Khalil, S., Amrit, C., Koch, T., & Dugundji, E. (2021). Forecasting Public Transport Ridership: Management of
Information Systems using CNN and LSTM Architectures. Procedia Computer Science, 184, 283-290.
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4.1. INTRODUCTION
In the context of public transport, forecasting ridership is essential for business opera-
tions. Knowing the demand for travel allows public transport companies to make the
transportation system more efficient, and helps to proactively improve the level of ser-
vice for their customers and eliminate unnecessary costs (Caceres et al. (2017) and de
Oña and de Oña (2015)). Having an effective model of how demand for public transport
changes over time is important for future planning, introducing new routes, more effi-
cient schedules, and optimizing transportation operations (e.g. frequency of buses on a
certain line) (Jin et al. (2016) and Knoppers and Muller (1995)).

This research aims to improve demand modeling for public transport based on his-
torical ridership data. The main objective of the research is to showcase different combi-
nations of machine learning models in order to effectively account for both spatial and
temporal relationships in historical ridership data. These models are trained and then
tested on how accurate the forecasts are.

The proposed methodology is a combination of two prominent neural network tech-
niques: Convolutional Neural Networks (CNN) are used in image processing (recogni-
tion and classification), and Long Short Term Memory (LSTM) models are great at iden-
tifying temporal patterns in data. More specifically, this research provides a performance
comparison of 5 different neural network architectures: CNN only, LSTM only, Sequen-
tial CNN-LSTM, Parallel CNN-LSTM as well as Augmented Sequential CNN-LSTM archi-
tectures. Additionally, a classical statistical baseline approach is showcased in the form
of a Fixed Effects Ordinary Least Squares (OLS) model for panel data.

It is not immediately apparent that there would be a substantial difference in perfor-
mance depending which way the models fit together. Yet, this research will demonstrate
that there indeed is significant difference and will provide possible explanations of why
this may be the case.

4.1.1. SCOPE OF THE RESEARCH AND RESEARCH QUESTION

The research is conducted on a large spatio-temporal data set counting quarterly rid-
ership across all public transportation operators in the greater Amsterdam region. The
scope of the research is limited to a relatively small subset of available Origin-Destination
(OD) pairs in the original data set. The main reason for it is the way that the data had
been aggregated by the Vervoerregio 1 due to privacy concerns. Only the OD-pairs that
have relatively large ridership values (more than 300 rides per day of the week in each
quarter in the whole period) have been considered.

Furthermore, this research has been conducted within the framework of the Impact
Study North-South Line, which means that one of the goals has been to specifically look
into how ridership had been affected by the inauguration of the North-South metro Line
(NSL) in Amsterdam. The implication of this is that research focuses on routes to and
from the North of the IJ.

Also, this research will not focus on exploring all possible architectural choices for
the CNN, LSTM and combined CNN-LSTM models. Instead, a baseline architecture for
all is chosen so that the relative performance of the models in question is highlighted.

1Transportation authority of the greater Amsterdam region
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It is important to mention that this research does not assume these architectures to be
the best machine learning algorithms, but rather such selection of algorithms and com-
bined architectures is based on the review of relevant literature, builds and improves on
previous research applying CNN, LSTM and combined architectures to forecasting rid-
ership.

The proposed methodology mainly focuses on efficient input processing. However
the described models could easily be adapted to a different forecasting goal, such as,
predicting categorical ranges, binary flags, identifying specific cases in data. This would
be just a matter of assigning proper labels to a given sample set.

The main research question is to determine whether a CNN could be combined with
a LSTM model to effectively extract both spatial as well as temporal relationships from
the available ridership data, and if that is the case, showcase which architecture captures
these relationships best.

4.2. BACKGROUND
We will describe relevant literature on Convolutional Neural Networks (CNN) and Long
Short-Term Memory (LSTM) and combined Neural Networks.

4.2.1. CONVOLUTIONAL NEURAL NETWORKS (CNN)
Convolutional Neural Networks have shown outstanding results in such tasks as im-
age recognition, image classification, and computer vision (Krizhevsky et al. (2017) and
Oquab et al. (2014)). One of the advantages of CNN architecture is that convolution lay-
ers are sparsely connected to the input, instead of fully connected as in the case of simple
neural networks. This allows the possibility for individual filters to extract specific fea-
tures more efficiently.

Another significant feature of CNN is the introduction of pooling layers, which in
the case of Max-Pooling selects the most prominent features in a given sample. These
two characteristics (sparse connection to input and pooling layers) drastically reduce the
number of modeled parameters and thus allows CNN to be employed on classification
problems at a large scale (Karpathy et al. (2014)). At the same time, research in the field
of face recognition shows that these characteristics allow CNN to efficiently incorporate
spatial relationships in the input data Lawrence et al. (1997).

The CNN model can be described as an automatic feature extractor for different
kinds of input data (LeCun and Bengio (1998)). This flexibility of CNN to extract fea-
tures from different sources is also shown in the field of music information retrieval by
T. Li et al. (2010), where CNNs are employed for capturing variations in musical patterns
for music genre classification. In fact, authors suggest that there was almost no modifi-
cation needed to adapt CNN’s to this particular task.

In order to apply CNN’s for feature extraction for forecasting ridership, the model
required some adjustment. Namely, the model inputs would be slightly different since
values in the "image" will be representing ridership values at a particular time on a par-
ticular route, instead of the level of color intensity for a given pixel of an image. Rider-
ship values needed to be scaled to an interval from 0 to 1 to prevent difficulties in model
training.
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In the context of forecasting ridership, CNN outputs also need to be conceptualized
differently. CNN will be predicting ridership instead of an image class (as is usually the
case with image classification). The loss function also had to be adjusted in accordance
with the goal of predicting continuous ridership values.

4.2.2. LONG SHORT-TERM MEMORY AND COMBINED NEURAL NETWORKS

Long Short-Term Memory networks have been used in a variety of contexts and use
cases. One of which is music, more specifically music computation as a dynamic in-
formation system described by (Franklin, 2006). LSTM neural networks are well suited
for the task of learning patterns in music and reproduction of songs is that the state of
a given song is conceptualized as a complex system that depends on past states. This
strength of LSTM neural networks potentially would be useful in the task of modeling
demand for public transport as a complex system with current states dependent on past
states.

The idea of combining CNN for extracting spatial features with LSTM for taking tem-
poral relationships into account has seen a number of successful attempts at fusing
those two methods together in one model for predicting ridership (Zhang et al., 2018)
(X. Ma et al., 2019). Inclusion of Parallel CNN-LSTM as well as Augmented CNN-LSTM
models in the analysis was inspired by X. Ma et al. (2019). Their research assesses the
performance of different prediction methods, including contrasting Sequential and Par-
allel combinations of the CNN-BiLSTM model. X. Ma et al. (2019) found that a Parallel
version of the model performs better than the Sequential counterpart.

X. Ma et al. (2019) use a slightly modified version of LSTM called BiLSTM which
stands for Bidirectional Long Short-Term Memory networks - a model that is based on
standard LSTM, but it implies passing the input sequence both forward and in reverse.
On the conceptual level, this allows the LSTM to be ’aware’ of the whole length of the in-
put sequence, instead of just current and past members at any given time. This approach
could potentially lead to better results in pattern recognition and network’s awareness of
the context.

There is also a significant difference in authors’ approach towards the CNN portion
of the model, specifically in the way that they generate image input for the CNN and the
depth of the CNN module of the model. First, X. Ma et al. (2019) attempt to preserve
more valid spatial relationship by mapping ridership values onto a matrix and making
sure that spatial relationships are preserved on that matrix (relative geographic distance
translates into a certain number of empty slots in the resulting image matrix). That way
there does not appear to be any information about temporal variation to be available to
the CNN module. Lastly, the number of filters that are used in the CNN layers appear
very low (16 and 8, or 32 and 16 for another variation).

4.3. DATA
Data access is provided by the Centrum Wiskunde & Informatica (CWI) as part of a re-
search project focusing on building a demand forecasting model for public transport
using Machine Learning techniques. The data set contains ridership data aggregated
from multiple public transport modes (i.e. metro, bus, train, tram) over the period be-
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tween 2017-09-18 and 2019-07-21. Ridership for approximately 60,000 5-digit Origin-
Destination pairs is present in the original data set.

CWI and other research institutes participating in the project do not have access to
the raw data underlying the data set; due to strict privacy rules, data needed to be ag-
gregated to the point where it does not contain data that could be used to identify in-
dividuals. Furthermore, in the original study design, spatial resolution was prioritized
over temporal resolution; the data set thus contains information about a large number
of Origin-Destination (OD) pairs but has limited granularity on the temporal dimension.
OD-pairs are constructed based on 5-digit postcodes of origin and destination of the un-
derlying raw data for individual trips.

For each OD-pair, data is aggregated temporally, which in this case implies that per
given quarter there are aggregates for months (e.g. ridership in Jan, Feb etc.), day of
the week (e.g. aggregated ridership on Mondays, Tuesdays etc. in Q4-2017), hour of the
day (e.g. aggregated ridership for 1-2pm time interval on a workday in Q1-2018). One
of the caveats of strict privacy rules is that values for ridership that are lower than 300
are assigned into bins (’1-50’, ’51-100’, ’101-200’, ’201-300’). All the values above 300 are
rounded to the nearest 20 (e.g. 1605 will be rounded to 1600, 1631 will be rounded to
1640).

Figure 4.1 shows a visualization of the values. Rows represent OD-pairs (5-digit origin
postcode: 5-digit destination postcode), and columns represent daily ridership values
for a given OD-pair.
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Figure 4.1: (a) Raw input matrix; (b) Scaled input matrix. Rows represent OD-pairs (5-digit origin postcode:
5-digit destination postcode), and columns represent daily ridership values for a given OD-pair.

As can be seen in the raw input matrix in Figure 4.1 (a), there are significant dif-
ferences between ridership across OD-pairs, with a few having an order of magnitude
higher numbers than the rest. To address this, MinMax scaling was used, as imple-
mented in Pedregosa et al. (2011). Each OD-pair (rows) has been scaled independently
to ensure that specific demand patterns for a particular route remain intact. The scaled
input matrix is depicted in Figure 4.1 (b).

There are a few reasons for using Min-Max scaling on an interval of (0, 1) as opposed
to standardization. First is that ML algorithms rely on input being positive and prefer-
ably normalized, which speeds up convergence and thus reducing training time. Second
reason is that scaling is less sensitive to outliers in the data, since it does not rely on the
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mean for a given OD-pair.

4.4. METHODOLOGY

4.4.1. DESCRIPTION OF "IMAGE INPUT" FOR CNN
CNN models are tailored to work with image input data. Normally, images are repre-
sented as a matrix of data corresponding to the intensity of color in a given pixel. There
is a time-series for each of the OD-pairs that is available, combined in the same matrix
(with OD-pair labels on the Y axis and time on the X axis). Data is then mapped to an
interval from 0 to 1 using Min-Max scaling technique.

Due to the nature of the convolutions that CNN performs, even spatial relationships
that are not bound together should still be identified, however this might require a bigger
(deeper) model and/or more time to train. It is thus better to make spatio-temporal pat-
terns more apparent. Thus it is important to note that ordering of the OD-pairs (rows of
the resulting matrix) has been adjusted to better reflect the spatial relationships between
clusters of trips originating from the same area or having similar destinations. The way
that was achieved is through ordering first on the basis of origin, and within the same
origin, based on destination. That way, trips that are within the same 4-digit postcode
are clustered together as well as trips to and from the same 5-digit postcode are close
together. Figure 4.1 (b) contains the visualization of the resulting matrix that is ready to
be split into training, validation and test sample sets.

4.4.2. EXAMPLE GENERATION AND ASSEMBLING TRAINING, VALIDATION AND

TEST SETS
A sliding time-window of 7 days was used over the whole data matrix. That way a set
of examples had been produced that contained 6 column vectors (inputs) in the sample
and 1 column vector for the day following that period (expected output). Effectively that
corresponds to using 6 days worth of data to predict the following day. This set of exam-
ples is then partitioned into training, validation and test sets with 80%, 10% and 10% of
the available examples assigned to respective sets. The training set was used for training,
the validation set was used in the process of tweaking the CNN model to produce better
results, while the test set was used to assess performance.

4.4.3. NEURAL NETWORK MODEL ARCHITECTURE
A summary of model architectures trained using the described example set is presented
in Table 4.1. All hyper-parameters have been fixed in order to assess the relative perfor-
mance between different models. The ’Adam’ learning algorithm had been used, with
the learning rate of 0.001.

All the models discussed further were evaluated on the same metric, Mean Squared
Error (MSE) as calculated in the following formula: MSE = 1

n ∗∑n
i=1 (yi − f̂ (xi ))2, where n

is number of samples in a set, yi is the actual normalized ridership value to be predicted,
f̂ is the set of procedures that a given model performs on input data xi to produce a
prediction f̂ (xi ). Previous studies such as X. Ma et al. (2017) and X. Ma et al. (2019) have
used this loss function for training their models, and it appears to match the context of
predicting the continuous variable of ridership.
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Table 4.1: Neural network architecture summary.

Model Input Architectural choices
CNN 59x6x1 Two Convolutional layers (128, then 64 3 by 3 filters

respectively) each followed by Max-Pool layers (2 by 2, with
a stride of 2). Same convolutions.

LSTM 1x354 Each example is directly connected to the LSTM layer
which contains 354 LSTM neurons that produce a sequence
of 354 activation values which are Fully Connected to an
output layer with 59 ordinary neurons with ReLu activation
function.

Sequential
CNN-LSTM

59x6x1 CNN part of that model is exactly the same as in Pure CNN
model, however the output of the Max-Pooling layer is
flattened into 896 features (14 * 1 * 64), reshaped into (1,
896) to be a valid input for 896 LSTM neurons as a sequence
Output of the LSTM layer is consequently Fully Connected
to the 59 Neuron output layer as previously.

Parallel
CNN-LSTM

59x6x1
and

1x354

Output of exactly the same Pure CNN and Pure LSTM
models had been flattened and then concatenated into one
vector of 1250 features (896 and 354 from CNN and LSTM
respectively) that is then Fully Connected to the output
layer with 59 Neurons.

Augmented
Sequential
CNN-LSTM

59x6x1
and

1x354

Having Pure LSTM connected after CNN, then, may limit
the potential of the LSTM layer of capturing time-series
features in the sequence. Thus raw input was concatenated
to the feature vector produced by the Pure CNN, in an
attempt to provide LSTM layer with extra information This
augmentation process could also be used to input different
kind of data into the model at this stage (e.g. exogenous
variables like weather, flags for special events etc.)
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4.4.4. ORDINARY LEAST SQUARES REGRESSION

A Fixed Effects Ordinary Least Squares (OLS) model for Panel Data has been used and it
is introduced to serve as a baseline for assessing how well Neural Network (NN) models
perform. Data from the test period (used for training NN models) was used for estimat-
ing OLS coefficients. The same normalization method had been employed as previously.
Six lagged ridership sequences were used as input variables to predict the following pe-
riod. By obtaining OLS predictions for inputs in a test period, MSE could be calculated
in the same way as for NN models.

4.5. RESULTS

4.5.1. MEAN SQUARED ERROR AND ACCURACY

Mean Squared Error evaluation values for all models are summarized in Table 4.2. It
appears that Sequential CNN-LSTM converges to approximately the same loss value as
Augmented Sequential CNN-LSTM over the course of 1250 epochs, and achieves the
lowest MSEtr ai n on a training set. LSTM, CNN and Parallel CNN-LSTM perform worse,
respectively from lower to higher MSEtr ai n .

Table 4.2: Evaluation values summary.

MSEtr ai n MSEtest
MSEtr ai n
MSEtest

Accuracy
after training

CNN 0.018105 0.010711 0.591604 0.188
LSTM 0.006634 0.006891 1.038736 0.801
Sequential CNN-LSTM 0.000294 0.000934 3.180420 0.833
Parallel CNN-LSTM 0.024177 0.015674 0.648315 0.188
Augmented Sequential CNN-LSTM 0.000263 0.001089 4.148850 0.892
OLS - 0.010186 -

Sequential CNN-LSTM, Pure LSTM as well as Augmented Sequential CNN-LSTM ap-
pear to reach accuracy of above 80%. Accuracy of both Pure CNN and Parallel CNN-
LSTM did not exceed 20% accuracy throughout 1250 epochs of training.

Sequential CNN-LSTM and Augmented Sequential CNN-LSTM models show at least
6-fold reduction in MSE to the second best model (Pure LSTM). On the other end, the
performance of both Pure CNN and Parallel CNN-LSTM on a test set is worse than OLS
model results (Table 4.2).

The ratio MSEtest /MSEtr ai n emphasizes the relative difference between training set
and test set performance, which might suggest which direction is more productive to
follow when improving the model. This will be explored in more detail in the Discussion
section.

4.5.2. PREDICTION

Figure 4.2 shows a cross-sectional view of predictions for all OD-pairs for a given day
in the test set, and Figure 4.3 shows a time-series view of predictions for the whole test
period for a given OD-pair.
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Figure 4.2: Prediction for 2019-06-27 (cross-section view).
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Figure 4.3: Prediction for 1012A:1131X OD-pair, whole test period (time-series view)

In the cross-sectional view in Figure 4.2 it can be seen that models with lower MSE on
the test set predict ridership values that are closer to ground truth. Even though it seems
like Pure CNN predictions fit the actual values well. Assessing it from time-series view of
predictions, as shown in Figure 4.3, for a given OD-pair reveals that CNN, in fact, predicts
values in a small proximity to the average ridership of a given OD-pair. This implies that
cross-sectional view for Pure CNN performance varies depending how close ridership is
to the average for any OD-pair. While predictions of the LSTM model seem to be accurate
most of the time, for one particular OD-pair the prediction is consistently null.

4.6. DISCUSSION
It appears that Sequential CNN-LSTM is the best model in terms of performance on the
test set. Its score, however, is quite close to that of the suggested Augmented CNN-LSTM
model. Moreover, in terms of convergence speed, the Sequential CNN-LSTM model is
the fastest in terms of passes (epochs) required to fit the training set.

This suggests that features extracted by the CNN module within the Sequential CNN-
LSTM model are sufficient for forecasting ridership accurately. Given that the Pure CNN
did not perform as well on its own, it is likely that the LSTM module on top of CNN had
played a crucial role in model performance.
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While Augmented CNN-LSTM had achieved similar results to its Sequential counter-
part, additional raw input does not seem to result in lower MSE. Also, in case the input
sequence was larger (e.g. the past 14 days worth of data, or if the time-frame was 10 min-
utes instead of 1 day), then the concatenated input would require a much larger LSTM
layer to be trained, which does not scale linearly in terms of compute time. That said, it
appears the augmentation method itself works, and potentially could be utilized to in-
sert exogenous variables or metadata about a given example into the model (e.g. weather
data, features of a given example etc.).

Ratios between training and test loss shows that models with better performance
have seen a relatively larger ratio of MSEtest /MSEtr ai n than poorer performing models.
Ratio of lower than one implies that Pure CNN and Parallel CNN-LSTM are not able to
fit the training well and could potentially be improved by increasing model complexity
and/or further hyper-parameter tuning.

Models with exceptional performance, in contrast, seem to over-fit the training set,
since MSEtest is 3 to 4 times higher than MSEtr ai n for Sequential and Augmented CNN-
LSTM models respectively. This could be potentially mitigated by including Batch Nor-
malisation for instance in the model, or a technique called "Early Stopping", where per-
formance on a validation set is checked after every epoch and in case of stagnation for a
specified number of epochs (or in case the loss on validation set goes up), then training
is stopped and the model is prevented from over-fitting the training set.

Interestingly, Parallel CNN-LSTM did not perform as well as expected from the find-
ings of X. Ma et al. (2019). Its performance had been closer to that of Pure CNN. Given
that the output layer is a simple Fully Connected layer with 59 neurons, it appears that
the fact that there are almost twice the amount of features coming from the CNN part
than that of LSTM steers the performance of the model towards that of Pure CNN. It is
possible that the results would be better if there had been a deeper NN on top of the
Concatenated layer, which could distinguish between CNN and LSTM feature sets and
utilize them more efficiently.

The prediction pattern of the OLS model in the time series view (Figure 4.3) reveals
that the forecast of the OLS model is equivalent to that of a naive model forecasting the
next day to be equal to the last known previous day. However, the OLS performance on
the test set is better than both the Pure CNN model and the Parallel CNN-LSTM. This im-
plies that the naive model would be better than those two as well. Nevertheless, it is pos-
sible that given more complexity in the input data, Pure CNN and Parallel CNN-LSTM
could still outperform OLS considering their theoretical capacity for learning complex
non-linear relationships in the data.

Pure CNN does not appear to distinguish temporal relationships in the input data
as well as theory would imply, since it is clear that for a given OD-pair CNN predicts
ridership value that minimizes the loss function (MSE) for a given OD-pair (Figure 4.3).
Cross-sectional view, however, indicates that spatial features are well incorporated in the
output of the CNN. It is possible that such outcome is the result of the low resolution of
the input, more so in the temporal dimension, since X. Ma et al. (2017) shows that it is
indeed possible to train a reliable forecasting Pure CNN model using granular spatio-
temporal data.

Visual inspection of predictions suggests that the LSTM model is sophisticated enough
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to produce accurate forecasts for the majority of OD-pairs. It is not clear why the OD-
PAIR "1012A:1441G" in particular is consistently forecast to have 0 ridership by Pure
LSTM. Yet, performance of the Pure LSTM on the other OD-pairs and improvement in
performance from Pure CNN to Sequential CNN-LSTM suggests that there is a lot of po-
tential for building accurate forecasting models using multiple data sources feeding into
an LSTM layer.





5
USING NEURAL NETS TO PREDICT

TRANSPORTATION MODE CHOICE

BEHAVIOR

In the Amsterdam metropolitan area, the opening of a new metro line along the north
south axis of the city has introduced a significant change in the region’s public transporta-
tion network. Mode choice analysis can help in assessment of changes in traveler behavior
that occurred after the opening of the new metro line. As it is known that artificial neural
nets excel at complex classification problems, this paper aims to investigate an approach
where the traveler’s transportation mode is predicted through a neural net, trained on
choice sets and user specific attributes inferred from the data. The method shows promis-
ing results. It is shown that such models perform better when it is asked to predict the
choice of mode for trips which take place on the same underlying transportation network
as the data with which the model is trained. This difference in performance is observed to
be especially high for trips from and to certain areas that were impacted by the introduc-
tion of the North South line, indicating possible changes in behavioural patterns, entail-
ing interesting possible directions for further research.

Buijs, R., Koch, T., & Dugundji, E. (2021). Using neural nets to predict transportation mode choice: Amsterdam
network change analysis. Journal of Ambient Intelligence and Humanized Computing, 12(1), 121-135.
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5.1. INTRODUCTION
In 2018, the region of Amsterdam witnessed the most comprehensive structural change
of their public transportation network in more than a century. The opening of a new
metro line serving the entire length of the north-south axis of the city has led to rigorous
changes in the existing tram and bus network. Analyzing the behaviour of transport
movements by individuals is an effective way to assess the impact of a rigorous network
change. A standard approach carried out to model transportation behavior is discrete
choice analysi, using statistical techniques for parameter estimation. Other approaches
involve simulation (Z. Li & Xu, 2019).

This study explores a relatively new method that can contribute to behavioral analy-
sis of transport movements, using a novel data set collected in Amsterdam with an app
on smartphones that automatically recognizes activity signals. (Thakur & Biswas, 2020)
present a comprehensive survey of smartphone sensor based human activity monitoring
and recognition techniques using Machine Learning and Deep Learning. Considering
the fact that Artificial Neural Networks are extremely capable of performing well when
assigned complex classification tasks (Long, 2019), we consider possible application of
this technique within the field of behavioral analysis in transportation.

The paper is structured as follows: Firstly, a brief literature review is presented, fol-
lowed by a description of the Amsterdam case study. Next, the data set used and method-
ology to process it will be discussed. After that, suggestions are made for a neural net im-
plementation to classify mode choice. Finally, results are presented assessing both the
proposed methodology and to what extent one might say that behavioral patterns are af-
fected by the network change. Based on these results and the discussion of the proposed
methods, recommendations for future research are made.

5.2. BACKGROUND
For several decades, discrete choice modeling has been dominated by statistical models,
such as the logit and probit models. This paradigm dates as far back as the 1970s ((Mc-
Fadden, 1973)) and 1980s (e.g. (Cosslett, 1981)), and is an approach that is built upon in
more recent publications (e.g. (Guevara & Ben-Akiva, 2013)).

In 2003, Vythoulkas and Koutsopoulos applied a different approach to this problem.
Trying to beat the results obtained by conventional statistical methods, they introduced
a neural net structure based on fuzzy set theory to model discrete choice behaviour in
transportation. They then applied this algorithm to a small data set that obtained by
the Dutch Railways. The data used in this study was collected from surveys and related
to transportation mode alternatives in the Dutch city of Nijmegen ((Bradley & Gunn,
1990) and (Morikawa, 1989)). The proposed model performed slightly better in the case
study than a logit model constructed for the same purpose. One of the key underlying
assumptions in this study was that travelers decide based on simple underlying rules
rather then complicated functions F : X → Y . Those rules were then incorporated into a
neural net system.

In the context of Market Share forecasting, a study has been carried out by Agrawal
and Schorling in 1996, regarding a comparison between the ANN and multinomial logit
method. In brand choice analysis, a hybrid model has been suggested by (Bentz & Merunka,
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2000).

Recently, (van Cranenburgh & Alwosheel, 2019) have been among a growing kernel
of researchers to again use neural nets in practice in a similar context. In their paper,
they describe how an ANN can be trained to investigate decision rule heterogeneity.
Their method trains a multinomial classification network to assign users to one of four
quintessential decision rules, based on theoretical choice data, where each user was pre-
sented a series of choices in order. The results of each user are then combined and fed
to the network that classifies the user into one of the four categories. A good overview
of papers that have applied Neural Nets and other machine learning (ML) techniques
to the problem of transportation mode choice can be found in the literature review by
(Hillel et al., 2019).

Currently, one of the particular aims of some of the works that apply specifically Neu-
ral Net structures to study human choice or behaviour is to focus on the interpretation
of the proposed model. One interesting paper from a different field focused mainly on
extracting decision rules from data using a neural net has been presented by (Hayashi
et al., 2010). They make use of the Re-RX algorithm to extract rules from a pruned neural
network. The data set used by the authors contains user characteristics and preferences
on eating behaviour, which is also an application of neural nets in a behavioral context.

Although Neural Nets are essentially black box algorithms, it is possible to look be-
yond merely assessing the predictive power of ML models, using them for the same
kinds of analyses that are commonly applied when applying conventional logit mod-
els. A study by (S. Wang & Zhao, 2019) focuses on the interpretability of a Deep Neural
Net (DNN), proposing a way to numerically compute economical information such as
choice probabilities and probability derivatives from the DNN.

Another way of developing a better understanding of the workings of Neural Nets
when used in the context of mode choice, trying to introduce some conventional knowl-
edge from the field into the model by modifying the architecture, is proposed by (S.
Wang, Mo, et al., 2020). They showed that using a sparse Neural Net architecture, based
on underlying assumptions of the Random Utility Mixing (RUM) model, could lead to
significantly better results than using a generic fully connected DNN. To get get a bet-
ter interpretability (S. Wang, Mo, et al., 2020) visualize choice probability functions and
compute elasticity coefficients in DNN models using numerical simulations. A special
type of Neural Net, called MultiTask Learning Deep Neural Networks (MTLDNNs) is ap-
plicable to choice modelling situations where it is useful to combine data from different
sources, such as bridging the gap between combining revealed and stated preference
data, with the capabilities of automatic feature learning that DNNs possess ((S. Wang,
Wang, et al., 2020)).

In earlier research, we introduced a novel way of extracting user-specific features
from choice set data and applied this data to a Neural Net model for classifying mode
choice, and tested this method on a relatively small subset of an Amsterdam data set
(Buijs et al., 2020). In this study, we aim to extend the application of this method to the
scope of the entire data set (see sections 5.3 and 5.5 for more context about this data set).
We will assess how well our model deals with the changes in the network, and discuss
what information regarding the network change can be inferred from our model.
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Figure 5.1: The Amsterdam transportation network change visualized by GVB. Conceptually, the upper map
shows the old network structure centered around the Central Station, which serves as a hub. The lower map

shows the new network structure where the new north-south metro line (the central green line) forms a spine.

5.3. CASE STUDY

In Amsterdam, a new metro line has been opened in 2018 serving the north-south axis
of the Dutch capital. In order to improve integration of the new metro line, the existing
transportation network underwent significant changes. A large number of the bus and
tram lines were re-routed to connect different areas. One particular aim of these changes
was to create more east-west links, that connect to the new north-south line at one of the
metro stations in the centre of the city. The design moved away from a network that was
heavily focused on lines to and from the central train station to a network where instead
the new North South metro line forms a spine. 1 An abstract visualization of the network
change is shown in Figure 5.1, which was published by the GVB, the main local public
transportation provider in the municipality of Amsterdam.2 For many inhabitants of
the city, these changes in the network meant that their personal travel itineraries were
affected. At the same time, car drivers were also confronted with the introduction of
new restrictions in the inner city and around Amsterdam Central train station to avoid
through-traffic in the inner city.

Policy makers from the regional transportation authority in Amsterdam and the city
of Amsterdam are keen to assess the impact of the introduction of this new network. For
this analysis, data was collected using a smart phone GPS application that was installed
by a panel of participants recruited via several existing survey panels. Additional partic-
ipants were recruited on the street. The smart phone application tracks the activities of
the user in the background of the smart phone using sensors on the phone such as GPS
and acceleration sensors.

1https://www.vervoerregio.nl/pagina/20160131-ov-lijnennetvisie
2https://ucarecdn.com/7bad75fd-27ad-4ee6-96c4-b51b2f400619/GVB_Vervoerplan_Amsterdam_2018.pdf

https://www.vervoerregio.nl/pagina/20160131-ov-lijnennetvisie
https://ucarecdn.com/7bad75fd-27ad-4ee6-96c4-b51b2f400619/GVB_Vervoerplan_Amsterdam_2018.pdf
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5.4. DATA

5.4.1. CHOICE SET GENERATION
In order to explore what other transportation modes were available for each user for each
of their observed choices, we generated a number of alternatives using an open source
library developed by Conveyal , R5 - Rapid Realistic Routing on Real-world and Reimag-
ined networks 3. This router has been used previously by other studies such as (Conway
et al., 2017) and (de Freitas et al., 2019). R5 is able to return a large set of feasible, fast
routes within a given time-range. This permits a more realistic assessment about acces-
sibility than would be possible using estimations based on fixed frequencies.

We used two separate General Transit Feed Specification (GTFS) 4 data files to feed
the router with the correct timetable before and after the opening of the metroline. For
the street network we used a temporally appropriate extract from OpenStreetMap. Ad-
ditionally, we directed R5 to generate transit routes specifically including and excluding
metro. For each observation and alternative we then categorized a route into one of 7
different non-overlapping strata:

1. Walk trip (generated if walking stays under 60 minutes)

2. Car trip (generated if destination is reachable by under 60 minutes)

3. Bicycle trip (generated if bicycling stays under 60 minutes)

4. Transit trip, with use of train and metro

5. Transit trip, with use of train (no metro)

6. Transit trip, with use of metro (no train)

7. Transit trip, not using train or metro

To generate choice sets, we looked at the observations and categorized each observa-
tion with a stratum and subsequently took the best (fastest) from the alternatives that fit
each alternatives. In some cases not each alternative was available, for example walking
is not always an option if the distance between origin and destination is long. It could be
possible to address the unavailability of walking in the loss function using the study by
(S. Wang, Mo, et al., 2020).

5.4.2. FEATURE ENGINEERING
From the observations and the generated alternatives we collected a number of explana-
tory variables as listed in Table 5.1. We used a walking speed of approximately 5 km/h
and a bicycling speed of 14.4 km/h. We based our car speed on the speed limits in Open-
StreetMap.

3https://github.com/conveyal/r5
4http://gtfs.ovapi.nl/nl

https://github.com/conveyal/r5
http://gtfs.ovapi.nl/nl
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Table 5.1: Variables collected for choice set.

Variable Description

group id A unique identifier referring to a single trip from origin to des-
tination; generated trips corresponding to the observed trip
have the same groupid and also refer to a specific person and
date

strata Categorical variable that indicates the
transportation mode of a (generated or actual)
trip:
1 for walking
2 for traveling by car
3 for traveling by bicycle
4 for traveling by public transportation with
use of metro and train
5 for traveling by public transportation with
use of train (no metro)
6 for traveling by public transportation with
use of metro (no train)
7 for traveling by public transportation without
use of metro and train

access mode Categorical variable that indicates the mode of access to pub-
lic transportation (i.e. mode of transportation used to reach
the bus stop/train station such as walk, bicycle or car)

egress mode Categorical variable that indicates the mode of egress from
public transportation (i.e. mode of transportation used to
reach the destination after leaving the bus stop/train station)

start time Time that trip started at origin
end time Time that trip ends at destination
transfers Number of transfers on the public transportation part of this

trip
distance Total distance of trip
bicycle distance Total distance of trip traversed on bicycle
car distance Total distance of trip traversed by car
walk distance Total distance of trip traversed on foot
bicycle duration Total duration of trip that is traversed on bicycle
car duration Total duration of trip that is traversed by car
walk duration Total duration of trip that is traversed on foot
waiting time Total time spent waiting on public transportation if applicable
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Table 5.2: Amount and fraction of data that were filtered out due to various reasons.

Original data set 106,647 entries (100.0%)

No alternatives could be generated 9,894 entries (8.5%)
Trip is a round trip/tour 9,784 entries (9.2%)
Significant parts are traversed by different
modes

5,848 entries (5.5%)

Trips that were likely indirect 3,524 entries (3.3%)
Trips that took longer than 100 minutes 885 entries (0.8%) -

Final data set 76,712 entries (71.9%)

5.4.3. DATA FILTERING
The entire GPS dataset consists of 106,647 trip entries from 712 users. The GPS data
is collected during 3 time periods spanning about one month each: The first period of
data collection took place in June and July and part of August 2018, largely before the
introduction of the new North-South metro line, and the second and third period of data
collection took place after the North-South line was opened: in September and October
2018 and June and July 2019, respectively.

Not every trip can eventually be used in a final data set to perform a mode choice
analysis on. It was found that several trips in the data turn out to be tours or round trips.
As these trips do not consider movement from A to B, these are not suitable to include for
a mode choice analysis. Another example of entries that had to be filtered out in some
cases, are non-public transport trips, for which different parts of the trip were traversed
by a different mode, as these type of trips have not been generated as choice alternatives.
These were dealt with as follows:

• Trips with the mode combination of car and cycling are all discarded.

• Trips with mode combination of car and walking are discarded if the duration of
the walking part exceeds the duration of the part traversed by car. Otherwise, the
trip is considered to be similar enough to a ’car-only’ trip, that it is concerned as
such, and the duration of the walk is set to 0.

• Trips with mode combination of walking and cycling are discarded if the duration
of the walking part is longer than 30% of the duration of the part traversed by bike.
Otherwise, the trip is considered to be similar enough to a ’bike-only’ trip, that it
is concerned as such, and the duration of the walk is set to 0.

For some trips, the difference between the observed trip duration and the theoretical trip
duration, determined by the duration of the generated trip with corresponding mode, is
rather large, ranging from a factor 2 to a factor 10 difference. These differences may have
various reasons, some of which could be a ground for excluding the trips from the data.
Trips that manifested such a difference and originally consisted of multiple segments
(except for public transport trips), are assumed to be an indirect trip from A to B, thus
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would not be of interest, and are filtered out likewise.
In addition to this, it is assumed that an Artificial Neural Net will be able to distinguish
between ’real’ observed data and generated data if the characteristics of the observed
data are too far apart from the range of values that occur in the generated data character-
istics. For this reason, all data entries concerning trips spanning more than 100 minutes,
are discarded as well. Table 5.2 shows the reasons why some data was discarded and
how many entries were involved for each reason. The final dataset consists of 76,712 trip
entries, concerning 709 users. For each of these entries, at least one alternative trip has
been computed in which a different mode was used.

5.5. METHODOLOGY
This section gives an account of what operations and techniques have been used in order
to make mode choice predictions based on the data set. Since we opt for a machine
learning approach, most methodological decisions are made such that input is created
which is suitable to train a machine learning model on.

5.5.1. DATA PREPARATION
Within the process of data preparation, 3 main steps can be distinguished: Combining
data, selecting features, and splitting data into a train, validation and test partition. We
will briefly discuss all three of these steps.

COMBINING DATA

Having obtained a filtered data set, the observed data was combined with the data con-
cerning generated alternatives. Initially, duplicates exist in this merged data set, i.e. for
a single trip, there can be two routes with the same transportation mode: one that cor-
responds to the trip that was made originally by the user, the other one is the generated
trip having the same transportation mode. In order for the data to be used in a machine
learning model, one of the two entries must be deleted, so that for each trip only one
option per transportation mode remains. While there are certainly relative advantages
to restricting the feature data to one source, most notably that an ML-model will not pick
up any bias from the fact that different data sources are combined, it needs to be noted
that redeeming the features from the observed trip data means losing valuable informa-
tion, possibly causing the model to be a worse reflection of reality. Therefore, it is opted
for to preserve this data and discard the generated duplicates. Reduction of bias present
in the data will be taken into account specifically when selecting features that will serve
as input for the ANN.

FEATURE SELECTION

In order to fully benefit from the power of ANNs and to get meaningful results, it is nec-
essary to carefully select the features that will eventually be fed to the ANN. The most
important reason for this is to reduce the risk of having ’false predictors’ as much as pos-
sible. These arise when the Neural Net would be able to distinguish ’real’ observed data
from generated data within a choice set. From all features initially present in the data, the
most reliable predictors will likely be tr ans f er s, di st ance, bi c ycle_di st ance, car _di st ance,
w alk_di st ance, bi c ycle_dur ati on,
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car _dur ati on, w alk_dur ati on and w ai ti ng _t i me. These features together form an
initial selection of input features for the ANN. Other features have not been considered
as direct input, either due to the nature of the feature or due to the feature having lit-
tle explanatory value. However, when comparing the generated and observed data, it
was found that a substantial number of entries in the generated data had a record of an
abnormally high waiting time, resulting in an abnormally high trip duration as well. It
is assumed that this is caused by users doing activities not related to transportation at a
station. Because of this, it was opted to exclude the feature w ai ti ng _t i me from the data
and to adjust the feature dur ati on accordingly. This operation was performed before
the data filtering took place as described in section 5.4.3. It was also observed, that the
features related to distance and the features related to duration display different corre-
lation patterns in the observed and generated data. This is illustrated in Figure 5.2. This
observation indicates that feeding a choice set including both distance and duration re-
lated attributes, might also introduce an unwanted form of bias in the data. Therefore,
we choose to discard all attributes related to distance, as it is known that duration plays
a more important role in mode choice considerations of individuals.

SPLITTING DATA

A common practice within the field of machine learning is to split the data before it is
being used. In supervised learning (training the model to predict a known target), the
data is usually split into a train set and a test set. The former is used to train the model,
whereas the latter is used to evaluate model performance on a batch of unseen data.
From the training set, some data is usually set apart for validation. This part of the train-
ing set is not used to train the model, but to check whether the model does not overfit.
This would be the case if the model performed significantly worse on the validation set
than on the training set. The data for each user is set to follow roughly this distribution
over the three sets:

• Training set: 50%

• Validation set: 20%

• Test set: 30%

In order for the model to be able to take into account individual user preference charac-
teristics, it is important that data from all users is contained in the train set. Some users
who have only one entry, will as a consequence only appear in the train set. The final
sizes of the three partitions are as follows:

• Training set: 38,539 entries (including all single-entry users); 50.2%

• Validation set: 15,156 entries; 19.8%

• Test set: 23,017 entries; 30.0%

The training set is the only set for which the target variable (in this case Strata) is not
hidden. Hence, all operations used for setting up the model that are described in the
following sections, apply to the training set only.
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Figure 5.2: Correlation between distance and duration related attributes in the generated data (left) and
observed data (right).
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5.5.2. CLASSIFYING CHOICES
It is clear that individual users have different preferences. Those individual preferences
should be taken into account in any predictive model, as becomes clear in the litera-
ture. Because of the nature of the data (panel data), where multiple trip entries will cor-
respond to the same user, it makes sense to include features to the input of the ANN
model that specifically concerns individual user preference. The literature suggests dif-
ferent methods in order to classify users as decision-makers, yet all are based on as-
sumptions. The most important notion that comes clear from this is that different in-
dividuals decide differently, and can be divided into classes or groups that share similar
decision characteristics. Regardless of what the underlying decision functions might be
(it will be nearly impossible to approximate them all due to many users having relatively
few training entries), it is possible to divide the observed mode choices into different
classes based on comparative measures regarding the alternative modes. The compar-
ative measures have been computed by normalizing the attributes transfers, duration,
bicycle_duration, walk_duration and car_duration within each choice set individually
and extracting solely the normalized values corresponding to the chosen mode. In this
way, for each trip, a singular value between 0 and 1 is obtained for each attribute, where
0 is obtained if the alternative with the lowest value of an attribute is chosen and 1 is
obtained if the alternative with the highest value for this attribute is chosen.

K-MEANS CLUSTERING

In order to subdivide the trips into different groups without having a clear target to aim
for, a method called k-means clustering is used (Steinley, 2006). K-means clustering is a
relatively simple and intuitive clustering method. Although multiple clustering methods
exist that can deal with specific types of problems, like Hierarchical clustering (Murtagh
& Contreras, 2012) and DBSCAN (Schubert et al., 2017), k-means clustering is fairly suit-
able for a relatively simple clustering task like the one at hand. With this particular data
set, there are two main challenges in terms of clustering:

1. The most obvious underlying structure is the strata classification itself, which tells
something about the choice, yet is not the particular information structure we are
looking for.

2. Some of the normalized variables may be correlated, for example walk_duration
and duration.

To overcome these obstacles, the following solutions have been suggested:

• Choose the number of clusters k such that k exceeds the number of significantly
different modes (In this case, 4: walking, cycling, car, and public transportation) by
a comfortable margin (but not higher than necessary) to create substantial ’classes’
that are composed of entries from different strata. In this case, k was set to 10.

• Perform principal components analysis prior to performing k-means clustering
(Jolliffe & Cadima, 2016). This method creates linearly independent vectors (i.e.
vectors that have correlation 0). The resulting vectors are then used as input for
the k-means classification algorithm.
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Figure 5.3: Ranked performance of models (in terms of sparse categorical crossentropy loss and prediction
accuracy) of ANNs with full user-specific input feature data (i.e. 10 distinct features) and input where

user-specific features are reduced in dimension (i.e. 5 distinct features). In the upper plot, early stopping is
applied when validation loss has not decreased for 2 consecutive epochs, whereas the lower plot shows
models that were trained with the application of early stopping condition when validation loss has not

decreased for 5 consecutive epochs.

PRINCIPAL COMPONENT ANALYSIS

Our next step is to gather information about users using the obtained choice classifica-
tion. Based on the outcomes of the labeling phase described earlier, each user now has
a characteristic ’label distribution’. The relative frequencies of the different choice types
are stored in a DataFrame for each user. Again, PCA is conducted to reduce these values
to a set of 5 vectors that aim to capture the users’ behavior and taste.

In order to assess the usefulness of applying PCA here, we trained 75 models with
hyperparameters randomly selected from a the hyperparameter space as described in
Table 5.4, with PCA applied to the user specific features and ranked the models based on
validation loss. After that, the same procedure was applied to assess the performance of
models that were trained based on input where PCA was not applied to the user specific
features. This was done once applying an early stopping condition of 2 epochs, and then
repeated once more applying an early stopping condition of 5 epochs.

The results of this procedure are shown in figure is assessed in Figure 5.3. The fig-
ure indicates that for the top-ranked models, models where PCA was applied to the user
specific input features have a slightly lower loss than models where this was not the case.
The reported accuracy values of the highest ranked models are roughly the same for both
the models where PCA was applied to the input and the models where PCA was not ap-
plied.

5.5.3. PREDICTION

In order to predict which strata will be chosen in different situations for different users,
we feed the acquired data concerning trips made, alternatives, and user preference to an
artificial neural network (ANN).

NEURAL NETWORKS FOR MULTICLASS CLASSIFICATION

Neural nets have extended the scope of machine learning beyond linear models. A feed-
forward neural network consists of one or more hidden layers, that each consist of a
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number of nodes. In a basic, fully connected neural net, each node gets input from all
nodes in the previous layer, and outputs to all nodes in the next layer. Each layer is as-
signed a type of activation function, i.e. a function that generates the output of a node
based on the input from a previous node. Commonly used non-linear activation func-
tions include sigmoid, tanh and reLU functions, with respective domains (0,1), (-1,1) and
[0,∞). All nodes except for those in the output layer have r eLU as activation function,
which is the most commonly used activation function nowadays. For a multiclass classi-
fication, the method that will be used in this study, another activation function is usually
used in the final (output) layer. The so-called softmax activation takes exponents of the
output of the previous layer and scales them such that they sum to 1. The network is
trained by a back-propagation algorithm that works upon a chosen loss function. Com-
monly used loss functions include least-squares and cross-entropy loss. The network
is trained with rate η. After each iteration the weights are adjusted in the direction of
the gradient of the chosen loss function, based local derivatives and the chain rule. The
training rate η is the parameter determining the magnitude of the change of weights af-
ter each iteration. Choosing a higher value for η increases the training speed but may
result in not being able to find optimal values. It is possible to train a Neural Net with
a constant value for η for all parameters, or with adaptive η, meaning that η can be dif-
ferent for each parameter update. Different optimizers have been introduced that make
use of adaptive η, like Adagrad (Duchi et al., 2011), RMSProp (Tieleman & Hinton, 2012)
and Adam. In this study, we use Adam as optimizer, since it is "robust and well-suited to
a wide range of non-convex optimization problems in the field machine learning" and
the method is computationally efficient, which is convenient for large data sets (Kingma
& Ba, 2014).

DATA SHAPE AND PROCESSING

In this case, the shape of the individual data entries fed to the network is a table of 7
by 10; 10 attribute values for each of the 7 different alternative strata. Each groupid in
the training set corresponds to one mode choice scenario and therefore to one of these
tables. The values of the 10 attributes are not always available for every stratum as not
every mode of transportation is possible on every trajectory. If no route was generated
for a certain stratum in a certain scenario, all attributes corresponding to this stratum
(including user-specific attributes that are essentially known even for alternatives that
do not have a route generated) are set to 0 in this scenario, and will be passed to the
network as such. This is done because the network requires the data entries passed to it
to have a consistent shape (Stratum 1= row 1, Stratum 2 = row 2 etc), while in the mean-
time strata without a generated route option must not affect the working of the model.
Before creating the data entries, all data has been normalized using the minimum and
maximum values of the entire combined dataset.
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5.6. RESULTS

5.6.1. CLASSIFYING CHOICES

Table 5.3 shows the composition5 of the clusters that result from the k-means clustering
algorithm with k = 10. After inspection of the clusters, a description has been added
based on the values of the used comparative measures observed among the choices in
each cluster.

5.6.2. PREDICTION

For this paper, we trained 75 ANNs with different hyperparameter configurations. All
models are trained for a maximum of 100 epochs, where early stopping is applied if the
loss on the validation set does not decrease for 2 consecutive epochs, to prevent the
model from overfitting on the training data. The hyperparameters concerning architec-
ture were randomly chosen for each run from a pre-determined set of possible values,
as given in Table 5.4. The models are trained using the Adam optimizer which was men-
tioned in section 5.5.3, with fixed α, β1, β2 and ε (Table 5.4. Based on the validation loss,
the best 5 models were selected, as can be seen in Table 5.5. For these models, we looked
into the confusion matrices for the classifications. Table 5.6 shows the confusion ma-
trix for the highest ranked model, based on the predictions made on the test set. As we
see, the model performs very well on choice sets where the actual mode was car. Decent
scores are also reported for all other Strata, except for Stratum 4. This is likely due to the
fact that this is the smallest class containing only 96 entries in the training set.

5.6.3. ANALYSIS IN THE LIGHT OF THE NETWORK CHANGE

In addition to the assessment of our model in general, we have explored the effect of
training our model on the different partitions of the collected data. For this, we com-
pared two different settings: One where the entire model was trained and validated
based only on data relating to trips made before the introduction of the North-South
line (this is data stemming from the first collection period), one where the model was
trained and validated based only on data relating to trips made after the North South
line was introduced (data from the second collection period). These models were than
tested on data from the final collection period. As a reference, we also trained a model
with roughly the same amount of data (about 20,000 entries) sampled randomly from all
three collection periods and tested this against a test set containing a random sample of
the remaining data. For all of these settings, 10 models were run with 4 hidden layers,
200 hidden nodes per layer and batch size 128. This approach is mainly used to obtain
a relative insight into how much the classification task will become ’different’ when the
underlying network is different. If the assumption that the data on which the model is
trained and the data on which the model is tested are i.i.d. is not valid, the model will
not be able to perform as well on the test data in comparison to situations where this as-
sumption does hold. This principle is related to the theory underlying transfer learning.

5When running the model multiple times, the exact composition of the clusters will slightly deviate due to the
nature of the clustering algorithm. The nature and sizes of the identified clusters however have shown to be
consistent over multiple runs.
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Table 5.3: Composition and description of clusters obtained by k-means clustering after applying PCA.

Stratum

Cluster 1 2 3 4 5 6 7 Total

0 1,270 0 0 0 5 6 3 1,284
1 0 13,412 0 0 0 0 0 13,412
2 0 0 9,994 0 0 0 0 9,994
3 4,273 0 0 0 26 5 34 4,338
4 0 0 0 34 558 353 372 1,317
5 0 0 3,472 0 0 0 0 3,472
6 0 707 0 0 0 0 0 707
7 0 0 0 2 269 88 578 937
8 0 0 0 60 324 404 548 1,336
9 273 0 0 0 302 264 903 1,742

Total 5,816 14,119 13,466 96 1,484 1,120 2,438 38,559

Cluster Size Description

0 1,284 Trips involving walking which are not the most time-consuming al-
ternative

1 13,412 Trips by car which are generally (among) the quickest alternative(s)
2 9,994 Trips by bicycle which are generally among the quickest alternatives
3 4,338 Trips where relatively more walking is involved, generally the slowest
4 1,317 Public transportation trips with relatively many transfers and (rela-

tively) longer walk involved
5 3,472 Trips by bicycle which are generally among the slowest alternatives
6 707 Trips by car which are generally among the slowest alternatives
7 937 Relatively slow public transportation trips with relatively few trans-

fers
8 1,336 Public transportation trips with relatively many transfers with rela-

tively fewer walking
9 1,742 Relatively fast trips without using car or bicycle or making a lot of

transfers
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Table 5.4: Hyperparamter configuration for the ANN.

Hyperparameters: randomly sampled for each run

Hyperparameter Values to sample
from

Number of hidden layers (excluding output layer) {1, 2, 4, 6, 8, 10}
Number of nodes in each hidden layer {5, 10, 25, 100, 200,

500, 1000, 2000}
Batch size {8, 32, 64, 128, 512,

2048, 8192, 38539}

Hyperparameters: Fixed for every run

Activation function for every layer except output layer reLU
Activation function output layer Softmax
Number of nodes output layer 7
Loss function Sparse categorical

Cross-Entropy
Loss

Learning rate α 0.001
β1 0.9
β2 0.999
ε 10−7

Table 5.5: Results and characteristics of the 5 best models selected on validation loss.

Rank Number
of hidden
layers

Number
of hidden
nodes

Batch
size

Number
of epochs
trained

Validation
loss

Validation
accu-
racy

1 4 200 128 17 0.422 0.843
2 4 200 64 13 0.433 0.834
3 4 1000 512 11 0.438 0.835
4 4 100 128 16 0.440 0.834
5 6 100 32 16 0.440 0.835
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Table 5.6: The confusion matrix of the highest ranked model.

Predicted Stratum

1 2 3 4 5 6 7 Predicted
correctly

Actual
Stratum

1 2,883 148 490 0 2 6 7 81.5%
2 164 7,866 635 2 65 97 40 88.7%
3 744 714 6,323 0 6 69 33 80.1%
4 0 66 2 25 8 5 2 23.1%
5 2 190 31 0 697 3 0 75.5%
6 1 44 39 0 5 492 5 84.0%
7 9 145 97 0 1 23 831 75.1%

An interesting further research direction, yet outside the scope of this paper, would be
to try to further generalize our model using the transfer learning techniques discussed
by (Yosinski et al., 2014)), by subjecting our model to two similar waves of data with a
different underlying network.

Table 5.7 shows the differences in (relative) cluster sizes for the clusters that were ob-
tained based on the 2 different collection periods. We can see that most clusters formed
are very comparable in composition and size for the two periods. However, it is worth
noting that the share of fast public transportation trips with relatively less transfers has
dropped, and the share of public transportation trips with relatively many transfers has
risen. This is in line with what one would expect given the new network structure with
the North-South line as a spine.

Figure 5.4 shows that the models that were trained on data from the second period of
data collection, generally had a higher performance on the test set (data from the final
collection period) than models that were trained on data from the first period of data col-
lection. This implies that the Neural Net is better able to capture mode choice relations if
the underlying transportation network is the same. Both groups of models however gen-
erally performed worse than those trained and tested on data that was randomly sam-
pled throughout the entire data set. It was also found that the difference in performance
between the models trained data from the first and second collection period depends
on the origin and destination of the trips in the test set. If we compare, for example,
the subsets of trips that had an origin in one neighbourhood containing a North South
line station and destination (North - Noord, City Centre - Centrum and South - Zuid) in
another neighbourhood containing such a station, we mainly observe an increase in pre-
diction accuracy for the second group of models compared to the first when looking at
trips going from Centrum to Noord (see Figure 5.5). The differences in accuracy between
the two model categories in Figure 5.5 may be an indication of the similarity between the
classification tasks with differing underlying networks for trips between these areas. Es-
pecially, the remarkable difference observed for the Centrum-Noord trips might indicate
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Figure 5.4: The loss (left) and accuracy (right) of models trained on data collected in the first and second
period, when tested against data collected in the final period, compared to the loss and accuracy of a model

with randomly sampled train and test set of roughly equal size.

Figure 5.5: The accuracy of predictions of trips grouped by the neighbourhoods of origin and destination, for
models trained on the first (left) and second (right) data collection period.

that the underlying behavioral patterns relating to travel between these areas are to some
degree different prior to and after the network change.

5.7. DISCUSSION
As tables 5.5 and 5.6 suggest, using a multi-layer ANN with sufficiently many nodes in
each hidden layer can be a useful and promising technique in predicting mode choice
for a large GPS dataset. As mentioned earlier, one of the disadvantages of using a fully
connected Neural Net in order to predict mode choice based on multiple sources of data,
is that the Neural Net will likely pick up on any pattern that is related to the source of
the data, which can cause the model to learn non-meaningful relations. In order to in-
vestigate which are predictors the model most heavily relies on, we also trained models
where several attributes were excluded from the Neural Net input (feature selection by
elimination). We tested 6 different settings that are relevant for the assessment of our
model, for which 10 models were trained each. In 5 of the 6 settings, a specific attribute
or set of attributes was removed from the input data, and in one setting, no attributes
were removed. All models were trained using 4 hidden layers with r eLU activation and
200 hidden nodes per layer, with batch size 128. The performance of these models in
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Table 5.7: Comparison of cluster size and composition between the first and second data collection periods.

Relative size
1st period

Description Relative size
2nd period

34.2% Trips by car which are generally (among) the quickest alterna-
tive(s)

36.9%

13.1% Walking trips or public transportation trips where relatively
more walking is involved, generally the slowest

10.4%

3.1% Relatively slow public transportation trips with relatively many
transfers and (relatively) longer walk involved

3.1%

1.8% Trips by car which are generally among the slowest alternatives 1.8%
2.4% Relatively slow public transportation trips with relatively few

transfers
2.2%

5.9% Relatively fast walking trips and relatively fast public trans-
portation trips with relatively less transfers

4.4%

3.2% Public transportation trips with relatively many transfers and
relatively less walking

4.1%

6.7% Trips by bicycle that are generally among the slowest alterna-
tives

8.2%

19.9% Trips by bicycle that are generally among the fastest alterna-
tives

25.4%

9.8% Trips by bicycle that are generally among the slowest nor the
fastest alternatives
Walking trips in general, that went faster than a generated
public transportation trip with a great walking component

3.5%
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Table 5.8: 10%-trimmed mean of loss and accuracy of model predictions on the test set when certain
attributes are excluded during training.

Excluded attributes Test set loss (10%
trimmed mean)

Test set accuracy
(10% trimmed
mean)

None 0.513 0.807
User-specific attributes 0.540 0.782
w alk_dur ati on, car _dur ati on,
bi c ycle_dur ati on 0.602 0.776
tr ans f er s 0.504 0.810
dur ati on 0.522 0.801
User-specific attributes,
tr ans f er s, dur ati on 0.721 0.727

Figure 5.6: The test loss (left) and accuracy (right) of models trained with different attributes excluded during
training.

terms of the losses on the test set and accuracy are displayed in Table 5.8 and Figure
5.6. The results suggest that the ANN is generally less prone to overfitting on the train
set if the attribute tr ans f er s is excluded. The variation in performance can also be
reduced by removing the user-specific attributes, however the high losses that are ob-
tained can partially by the fact that the training process is stopped when the validation
loss does not decrease for a period of 2 consecutive epochs, while in fact the valida-
tion loss could likely decrease more if the model training would not have stopped early.
Excluding car _dur ati on, bi c ycle_dur ati on and w alk_dur ati on leads to a greater
reduction in model performance. This fact may suggest that these are important predic-
tors, hinting at a possible relation between these variables that would lead the Neural Net
to detect which trip was a real record (and not a generated one). However, the models
based on only these predictors perform significantly worse than all other tested settings,
which weakens this assumption somewhat.
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5.8. CONCLUSION
This paper examined the usage of ANNs in order to predict transportation mode choice
using a combination of a large GPS-based data set and additionally generated data. Af-
ter combining and filtering the data, extra user-defining features were extracted using
k-means clustering and PCA. Several ANN models were trained based on the choice sets
and these extracted features, with different (randomly sampled) hyper-parameter set-
tings. The best model initially reported a validation accuracy of over 84% and performed
well in predicting trips from every category, except for trips from the smallest one (pub-
lic transportation with use of train and metro). It was found that the model performed
better on unseen data if the data on which it was trained and tested, were collected on
a very similar underlying transportation network, than if the underlying transportation
network would be somewhat different between the train and test sets. This difference in
performance was observed to differ based on the origin and destination area of the trip
for which the mode had to be predicted. After further analysis, it was found that exclud-
ing durations of each individual mode from the training data has the highest negative
impact on model performance, whereas excluding the number of transfers has little to
no negative impact, and might even reduce overfitting.

Building on this study, interesting for future research might be to investigate a more
problem-tailored Neural Net architecture, as well as to infer all information that could
be inferred from classical statistical mode choice models from the ANN.

As the source data for this neural network is panel data, it’s possible that better results
could be achieved by a model that is not blind to panel effects. The work by (Y. Yang et al.,
2020) proposes a new class of interpretable neural network models achieving both high
prediction accuracy and interpretability in regression problems with time series cross-
sectional data, might improve the accuracy achieve by this model.

Due to the methodological focus of this paper, the selection of input features for the
choice set has been limited to some extent. Another interesting suggestion for future re-
search would be to investigate how well the presented models are suited when the input
feature space is extended beyond core attributes like duration. Additional features that
could be considered for inclusion would be economic features like parking tariffs, fuel
cost or public transportation cost. Also, it would be interesting to see how the model
performs when external features are added to the input, such as weather (which is eas-
ily extracted from the original trip record database) or trip purpose (which, although
not readily available, could be extracted using an activity detection algorithm, see e.g.
(Reumers et al., 2013)).

Since the results also seem to hint at a clear change in behavioral patterns following
the opening of the new metro line and the restructuring of the network, it would cer-
tainly be interesting to investigate these in more detail. Given this change in behavioral
patterns, studying and tuning a tailored transfer learning model to this data is another,
final possible direction for further research.





III
PART III: TRAVEL TIME AND

CONGESTION

91





6
THE OPTIMIZATION OF TRAFFIC

COUNTER LOCATIONS IN

MULTI-MODAL TRANSPORTATION

NETWORKS

In this chapter we will investigate ways to optimize the placement and number of traffic
counters used in multi-modal transportation analysis studies for motorized vehicles, bi-
cycles and pedestrians. The goal is to strike a balance between using as few as possible
traffic counters for economical efficiency and deploying more counters which could collect
more data. By using shortest path algorithms to determine the paths between the cen-
troids of statistical divisions, we derive from origin-destination matrices which traffic is
flowing from where to where over which links in a multi-modal network. Using central-
ity measures such as betweenness, we determine the links in the transportation networks
that capture the most useful traffic in terms of as much unique traffic as possible. Next we
look at ways to implement additional criteria in the selection of locations: those that are
permanently covered, locations that were used for previous studies in prior years for which
historical analyses can be made, and locations that capture more than one modality for
vehicles, bicycles and pedestrians. Finally, we study groups of traffic counters organized in
screen lines.

Koch, T., van der Mei, R.D., & Dugundji, E. (2018). The optimization of traffic count locations in multi-modal
networks. Procedia Computer Science, 130, 287-293.
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6.1. INTRODUCTION
For the city of Amsterdam, we have been investigating methods how to optimize the
planning of where to put traffic counters that measure the traffic circulating within the
jurisdiction of the city. In prior years, the planning for the placement and number of traf-
fic counters was determined manually based on intuition and operational experience;
the city was interested if a data-driven approach could lead to improved deployment of
the counters.

An optimal planning for traffic measurement is a balance between deploying as few
counters as possible while not significantly decreasing the coverage of travel movements
within the city. For example we might prefer to catch less traffic with more measurement
points because we prefer to organize the counters within screen-lines. With screen-line
analysis all movements with an origin of travel at one side of a screen line and the desti-
nation on the other side are intercepted H. Yang et al. (2006). The benefits of screen-line
analysis is that it enables a comparison between the results of traffic assignment and
traffic count data along a screen-line; by comparing the sum of traffic volumes in the
assignment with the traffic counts, the ratio can be computed “What is Screenline Anal-
ysis?” (n.d.). Other reasons to prefer certain locations could be policy reasons such as
a high number of traffic complaints in a certain area, future developments in a region
or certain spots that are already often permanently covered by counters such as tunnels,
bridges and intercity highways.

To conduct the research we had access to multiple sources of data, such as origin-
destination matrices sourced from Google and the city council, the measurements of
the traffic counters in previous years and speed measurements sourced from Google and
city traffic control cameras. To model the street network we used geographical material
from the national government (NWB), OpenStreetMaps and the GIS data used within the
official traffic model of the city of Amsterdam.

6.2. BACKGROUND
A number of studies have been done in this area. H. Yang and Zhou (1998) derived
four rules to locate traffic counting points based on the theory of maximal possible rela-
tive error in origin-destination (O-D) matrix estimation: 1) the O-D covering rule, 2) the
maximal flow fraction rule, 3) the maximal flow-intercepting rule, and 4) the link inde-
pendence rule. The theory of maximal possible relative error "represents the maximum
possible relative deviation of the estimated O-D matrix from the true one or the upper
bound of the real relative error for a particular fitted O-D matrix". The O-D covering rule
states that traffic counters should observe at least a certain portion of traffic between
O-D pairs at at least one counter. The maximal flow fraction rule states that for an O-D
pair the traffic counters should be placed on links where we find the largest flow fraction
between that O-D pair and all flows on that link. The maximum flow-intercepting rule
states that under a minimum number of links to be observed, these links should inter-
cept the highest amount of traffic flow possible. The link independence rule states that
the traffic counters should be located on the network where the resultant traffic counts
on the chosen links are not linearly dependent. H. Yang and Zhou (1998) formulate the
problem of locating traffic counters as a mathematical problem, where the O-D covering
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rule and link independence rule are applied as constraints in the attempt to maximize
the total traffic flow observed, solved with a heuristic greedy algorithm.

Chootinan et al. (2005) published a distance-based genetic algorithm. They investi-
gated two methods to solve the problem: a weighed-sum method and a distance-based
method. With the weighted-sum method they combine two objectives, covering as much
traffic as possible while having the lowest number of counting points, into a single ob-
jective. By adjusting the weights different solutions will be found, switching between
covering more traffic or having more points. In the distance-based method their main
idea is to evolve the genetic search to get closer to Pareto optimal solutions. Their results
indicate that the distance-based method is able to provide a better description of the
quality-cost trade-off than the weighted-sum method. Additionally it can generate non-
dominant solutions in the duality gap that can not be represented in a weighted-based
search.

Ehlert et al. (2006) built a software application based on the heuristics published by
Yang and Zhou H. Yang and Zhou (1998) and applied it on the network in the district of
Gateshead in Northeast England, with 1980 O-D pairs on a network of 240 kilometers of
classified roads in 1414 directed links within an area of approximately 142 square kilome-
ters. Additionally Ehlert et al. (2006) proposed two extensions to take budget restrictions
into account. Their first extension takes into account locations of existing detectors by
using the second-best formulation of the optimization problem and then using these lo-
cations to define new link choice proportions. Their second extension prioritizes O-D
pairs based on the average information content of an O-D movement taken from previ-
ously collected O-D matrices.

C. Yang and Liu (2009) proposed an enhanced genetic algorithm to solve two traffic
counting location problems. Firstly they address the problem of determining the opti-
mal number of locations of traffic counts that will cover all the O-D pairs in the network.
Secondly they determine the maximum number of covered O-D pairs with a defined
number of locations. The enhancement of the genetic algorithm is due to the selection,
mutation and partial elitism policy leading to better and faster results.

A. Chen et al. (2007) developed strategies to select additional locations beyond an
initial set of already existing traffic counters in order to improve origin-destination trip
table estimation. Using these counts the O-D trip table is estimated using a modified
flow path estimator that is capable of internally consistent handling of the traffic count.
To solve this NP-hard combinatorial problem, they developed another genetic algorithm
embedded within a shortest path algorithm.

Barceló et al. (2012) proposes a modified set that formulates the link detection lay-
out with side constraints. Additionally it presents a new meta-heuristic tabu search al-
gorithm with a high computation efficiency. Their solution focuses on sensors that can
follow vehicles using the electronic signatures of phones with bluetooth, allowing the
placement of sensors at intersections. Specifically Barceló et al. (2012) proposed a new
formulation in terms of a node covering problem with side constraints that can be effi-
ciently solved by solving software.
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6.3. NETWORK
The road network of Amsterdam within the boundary of the city contains 18,438 links.
The VMA (’Verkeersmodel Amsterdam’ / Amsterdam Traffic Model) has 4,418 traffic anal-
ysis zones that represent origin and destinations for journeys between Amsterdam and
any region up to neighboring countries. The city itself has a ring road A10 and a radial
secondary network in the form of S-roads that connect the neighbors to and from the
ring-road. A water body (the ’IJ’) separates North and South districts of the city, which
are only connected via two tunnels on the A10 ring road and two S-road tunnels.

To create a graph to represent the network, you would ideally use geographical ma-
terial with only one edge between each intersection as multiple edges would dilute the
intensity of the traffic. Geographic material from OpenStreetMap often uses 3 separate
edges to represent one street with cycle-lanes, motorized vehicle lanes and a tramway in
the middle, making it a poor choice to use in our computation.

6.4. CALCULATING PATHS BETWEEN AREAS
To gain insight which and how much traffic is flowing from and to where, we calculated
the fastest paths between each origin and destination (O-D) pair. To do that we used
the open source routing library pgRouting to calculate all the links that are on the fastest
path using the A* algorithm. As the cost-function we used the travel-time for each direc-
tion on the link.

For each link we store a tuple (I Dor i g i n , I Ddesti nati on , I Ded g e , forward,backward),
denoting the identifiers of the origin and destination, the link number and whether the
path is following the direction of the ’LineString’ geometry on the link.

The full collection of these tuples represents an all-or-nothing assignment than can
be used to distribute O-D matrices along the network. Using this collection and an O-D
matrix it is possible to determine per link how much traffic flows along both directions of
the link. Additionally it is possible to calculate the traffic between a subset of the origin-
destination pairs along a link, for example to exclude traffic already captured along other
links.

6.4.1. SORTING LINKS BY AMOUNT OF TRAFFIC

Using the traffic assignment and an O-D matrix it is possible to sort links by the amount
of traffic flowing over them. This is a centrality measure called betweenness, the ratio of
how often a vertex or link is part of a shortest path between one of the other nodes in the
graph. This is given by

∑
s 6=v 6=t

σst (v)
σst

, where σst references the number of shortest paths
from s to t , and σst (v) the number of shortest paths from s to t that pass through v .

To avoid catching the same traffic at the links more than once, only traffic between
O-D pairs not covered yet is counted. To do this it is necessary to keep a record of which
O-D pairs are already covered.
By using the PostgreSQL database server, we keep the table with the route assignment
and a table with the O-D matrix. To query the link with the highest number of jour-
neys, we join these two tables, and pick the link with the highest aggregated count jour-
neys per edge. To exclude traffic already captured in this query, we keep a third table
with origin-destination pairs already covered. The moment we pick a link, we insert all
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origin-destinations that travel over that link. We continue this process until all origin-
destination pairs are separated by at least one link.

The process can be customized, for any reason such as links that are permanently
covered or areas that require additional scrutiny. By initializing the process with pre-
defined links, the algorithm will seek an optimal solution with the remaining links.

6.4.2. SORTING SCREEN-LINES BY AMOUNT OF TRAFFIC

An alternative strategy instead of placing traffic counters on links to capture the highest
share of traffic might deliver more useful data. For example it can also be worthwhile to
organize the counters within screen-lines. Screen-lines are groups of segments separat-
ing traffic between the origin and the destination. Screen-lines can help the validation of
Origin-Destination matrix estimations using traffic counts. In our experiment we used
previously determined screen-lines that were used in earlier transportation studies by
the city. Using the same screen-lines allowed for a better comparison with the data col-
lected in previous years.

To sort screen-lines by the amount of unique traffic we can apply a similar process.
For each screen-line, we sum the weight for each O-D pair that covers more than one
link that is part of the screen-line. To exclude traffic already covered, we exclude origin-
destination pairs separated by at least one link.

In order to weight screen-lines, we use two criteria: the amount of traffic covered
and the number of counters within a screen-lines. With a simple weighting function:
i ntensi t y/npoi nt s we observed a disproportionate avoidance of screen-lines with more
traffic-counters. As a screen line with more counters results in more useful data than a
screen-line with only two counters, we used instead the intensity per eighth-root of the
number of counters: i ntensi t y/ 8

p
npoi nt s . This weighting function was used to pick the

best screen-line each time and then look at subsequent screen-lines based on traffic not
yet covered.

6.4.3. CYCLING AND WALKING MODALITIES

Besides cars and other vehicle traffic, the city of Amsterdam also deploys sensors to
count the number of cyclists and pedestrians. Since the city itself has no complete O-
D matrix for these modalities we had to use different sources. For cyclists we had access
to data collected by cyclists who volunteered to log their activities for a week with an
application that uses the GPS and sensors on smart-phones. Additionally we had access
to an O-D matrix supplied by Google, which contained the movements between areas of
pedestrians, cyclists and vehicle-passengers in June of 2016. As geographical material we
used OpenStreetMap which has a complete coverage for the cycleways in Amsterdam.

The difference between fast-traffic and slow traffic is that journeys are shorter on av-
erage and that there are much more possible paths. This results in less prominent loca-
tions to place counters. Since there is an economical advantage to also use the counting
locations for bicycle where possible, we used the top-100 locations as the starting point
for this computation. Each segment allowing bicyclists parallel to the location covered
by a car counting location was selected as a counting location for bicyclists. The remain-
ing locations were then primarily segments that only allowed slow traffic.
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Table 6.1: Amsterdam screen-lines sorted by unique traffic coverage

screenline Journeys covered ncounter s Cover ag e/npoi nt Cover ag e/ 8
p

npoi nt

Zuidas 169247647 4 42311911 142319739.652
Zuidoost 158309305 6 26384884 126542828.021
Amstel 135445001 5 27089000 110762240.020
Riekerpolder 113804400 2 56902200 104359094.934
Schinkel 104172820 4 26043205 87598550.905
Noord-kanaal-oost 99599079 4 24899769 83752508.494
Amstelveen 86381721 5 17276344 70639985.560
Westpoort/Haarlemmerweg 76489739 4 19122434 64319947.329
West 72324022 4 18081005 60817010.837
Singel 82659889 13 6358453 59986275.630
Noord-vanaf ring noordwest 54713890 3 18237963 47693306.907
Vondelpark 31482064 3 10494021 27442460.049
Gooiseweg 27784370 2 13892185 25478379.628
West(noord/zuid) 21690791 2 10845395 19890543.047
Boerenwetering 23159533 5 4631906 18939065.554
Centrum 15916517 6 2652752 12722695.444
Stadhouderskade 4391555 5 878311 3591261.880

Figure 6.1: Chart of unique traffic of cars covered. The first section includes coverage of all permanently
covered locations and the second section is grouped within screen-lines. Note the step-like behavior. Each

counter within each screenline is included in the order of the most unique traffic per counter per screenline.
The third section contains the most remaining unique traffic.
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Figure 6.2: Chart of unique bicycle traffic covered. The first 200 points are based on the top 75 locations with
the most unique car traffic. The difference in points is due to the fact that for proper coverage we include all

links parallel to the car locations.

Figure 6.3: Map with visualization of the top 100 traffic counting locations capturing the highest number of
unique traffic. Each digit indicates the priority, firstly we prioritize all locations that are permanently covered,
then the locations within screen-lines and finally a free-selection. Each point within a group is ordered by the

number of unique traffic it captures.
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Figure 6.4: Map with the resulting counting locations for bicycles. The green points mark locations added for
just bicycling; the blue points indicate that they were chosen based on car traffic patterns.

6.4.4. RESULTS

In the first step to obtain the best locations, we calculated the coverage based on 22 links
in the network at locations such as tunnels that are permanently covered by loop coun-
ters; these 22 links are sorted based in descending order on the most remaining unique
traffic captured. The next 77 edges were organized in 6 screen-lines. Originally the city
of Amsterdam proposed 17 possible screen-lines, which were then sorted using the al-
gorithm described; the results of this process are described in table 6.1. From this list
the city selected the ten screen-lines covering the most traffic. The 24th to 54th counting
point are selected within these screen-lines in a descending order of most unique traffic.
The remaining counting points were selected using the unique traffic remaining.

The top 100 locations for cars were used in our calculations for bicyclists; this re-
sulted in 197 "locations" since OpenStreetMap had many segments parallel to each se-
lected link in the car network.

6.5. CONCLUSION
Our idea to assign traffic from O-D matrices to a network to determine locations that
capture the most unique traffic in descending order worked well. The flexibility we
have in selecting locations allowed us to respond quickly to additional requirements that
came later on in this study. Requirements such as organization of counting locations
within screen-lines was solved by determining how much traffic each screen-line cap-
tures with taking into effect of screen-lines close to each other. Since any point can be
arbitrarily inserted into the process, allowed to take into account the preference for his-
torical locations for trend-lines and the preference to combine cycle with car locations
all came in the end phase of this project.

For future research it would be interesting to also find the optimal screen-lines, or a
weighting function to take other factors into account besides capturing more traffic. In
this study we used the screen-lines that were used in previous traffic studies since they
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came with the added benefit of providing new data on historical trends, but it should be
possible to find screen-lines that separate more traffic with fewer traffic counters, since
we know for each segment where each vehicle is coming from and is heading to.





7
A COMPARISON OF APPROACHES

FOR THE TIME SERIES

FORECASTING OF MOTORWAY

TRAFFIC FLOW RATE

Congestion forms a large problem in many major metropolitan regions around the world,
leading to delays and societal costs. Congestion is generally associated with reduced av-
erage speed at a high traffic flow rate. This traffic flow rate is defined as the number of
vehicles that pass a certain location at a given time. The modeling and prediction of this
traffic flow rate may lead to valuable insights that may be used to reduce congestion and
societal costs. This study aims to predict the traffic flow rate for 41 different locations in
and around Amsterdam, The Netherlands. Using TBATS, SARIMAX and LSTM models,
among others, the traffic flow rate of these locations has successfully been modeled. These
models may provide accurate predictions for the future flow rate, which may be useful for
the identification of infrastructure bottlenecks and the scheduling of maintenance. Con-
sidering the dramatic effects of the COVID-19 pandemic on the traffic flow rate, the inclu-
sion of 2020 data with a number of external factors, could lead to an improvement of the
results and the ability to model the future effects of the pandemic.

Bas van der Bijl, Bart Gijsbertsen, Stan van Loon, Yorran Reurich, Tom de Valk, Thomas Koch and Elenna R.
Dugundji (2022). A Comparison of Approaches for the Time Series Forecasting of Motorway Traffic Flow Rate.
Submited to The 13th International Conference on Ambient Systems, Networks and Technologies
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7.1. INTRODUCTION
Congestion is known to have increased substantially in major cities over the course of
the past few decades. Therefore, it is essential that governments stay aware of any trends
regarding the traffic flow rate in the major cities. This awareness enables governments to
foresee any bottlenecks in the infrastructure in the long term. These bottlenecks lead to a
lot of congestion, which results in immense costs. The Dutch institute for mobility policy
(KiM) estimated the societal cost of congestion on the primary highway network at 3.3
to 4.3 billion euros in 2018 Kennisinstituut voor Mobiliteit, 2019. Accurately predicting
and preventing the peaks in the traffic flow rate could lead to a huge cut in these costs.

Based on mobility data in 2015, the Dutch knowledge platform on traffic and mobil-
ity, CROW Voerknecht, 2016, forecasts that the increase in traffic flow rate will be espe-
cially problematic in the city of Amsterdam with its lack of space and large number of
narrow streets. Therefore, this study is focused on the analysis of the current traffic flow
rate in Amsterdam as well as the prediction of this traffic flow rate for the future. These
predictions are done by identifying and using patterns in the historical data.

The prediction of the future traffic flow rate can be used for various purposes. The
short-term predictions, for instance, can be used to find a route through Amsterdam that
avoids congestion. As previously mentioned, the long-term predictions can be used by
the government or the municipality of Amsterdam in the identification of bottlenecks
to take appropriate actions. These long-term predictions can also be used to schedule
maintenance without drastically affecting the traffic flow rate. The analyses and predic-
tions can also be used to investigate the traffic flow rate with respect to the COVID-19
pandemic.

Section 7.2 contains a description of the related literature, about papers that describe
similar or relevant studies. The section that follows, Section 7.3 provides a description of
the case study. In this section, the given data set and the practical relevance of the mod-
eling of the traffic flow rate are described. Section 7.4 describes a review of the literature.
This review is focused on different types of time series models, the evaluation of these
models and possible extensions of the given data set. Section 7.5, contains an overview
of the results. These results are discussed in Section 7.6. Lastly, concluding words are
given in Section 7.7 and future work is proposed in Section 7.8.

7.2. BACKGROUND
With regard to related literature, multiple papers have addressed the issue of increasing
traffic flow rate in cities. For instance, short-term traffic speed predictions have been
made using univariate and multivariate neural network models as well as ARIMA mod-
els Vlahogianni and Karlaftis, 2013. With the inclusion of daily rainfall for the road in
question, Vlahogianni and Karlaftis (2013) showed that neural network models allowed
for more accurate time series predictions than classical time series forecasting methods.
Rahman (2020) investigated k-nearest neighbors, support vector machine and neural
network models in the prediction of traffic flow. This study accentuated the value of
weather data in the prediction traffic flow for a one-month period of time with an in-
terval. In addition, Zhou et al. (2017) investigated short-term predictions for traffic flow
using multiple boosted algorithms such as an AdaBoost stacked autoencoder. In an-
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other study, Xie et al. (2010) used SVM and ARIMA models to evaluate the performance
of Gaussian process models in the prediction of traffic volume for four locations around
Seattle, USA. This study shows that SVM and Gaussian process models generally out-
perform ARIMA models. T. Ma et al. (2020) investigated the modeling of neural network
residuals with ARIMA models. Ensembling these models led to a notable performance
increase of 8.9–13.4% in the prediction of the traffic flow for 44 locations in Tel Aviv, Is-
rael, with at least six months of data per location. In addition to SARIMA models being
suitable for the prediction of the traffic flow, Shekhar and Williams (2007) suggest that fil-
tering techniques such as the Kalman, RLS and LMS filters may boost predictive perfor-
mance, achieving similar performance to machine learning models. Moreover, Shekhar
and Williams (2007) establishes that SARIMA models are fairly insensitive to parameter
tuning and, therefore, robust.

In contrast to a large segment of the available literature, this paper aims to investi-
gate the application of a broad spectrum of time series and machine learning models in
the short and long-term prediction of the traffic flow rate for a number of separate loca-
tions in Amsterdam, The Netherlands. These predictions disregard spatial information
about the data and are used to highlight the effects of the COVID-19 pandemic as well as
potential future bottlenecks in and around Amsterdam.

7.3. CASE STUDY

7.3.1. DESCRIPTION OF DATA SET

The data set that has been provided by the Dutch data portal for road traffic (NDW)
Nationaal Dataportaal Wegverkeer, 2021 and consists of 9,619,639 observations with 22
columns. These observations describe the flow rate of traffic, in the number of vehicles
that pass over a road sensor per hour, from 41 locations around Amsterdam. These loca-
tions are shown in Figure 7.1. It can be seen that the locations describe major motorways
around Amsterdam as well as a few smaller roads in the city center. The data set provides
hourly data for the 41 locations for five years from the 1st of January 2016 up until the 1st
of January 2021. The data describes an hourly aggregation of the number of vehicles, the
average speed and an optional categorization by the length of those vehicles.

7.3.2. DATA ANALYSIS

To determine which models are applicable to the provided data, an extensive data anal-
ysis is carried out. The data analysis will also provide other valuable insights regarding
the traffic flow rate in Amsterdam.

Since there is a large number of locations, it is not viable to show the analyses for all
locations. Therefore, two locations have been chosen. The two locations that have been
chosen are the A10 motorway at RWS01_MONIBAS_0101hrr0189ra and the A4 motor-
way at RWS01_MONIBAS_0041hrr0197ra. These locations show relatively large traffic
intensities and a large variance in traffic speed. It is assumed that large motorways, such
as these, have a larger effect on the traffic flow rate of Amsterdam than smaller roads do.
These two locations show a clear relationship of the average speed and traffic flow rate.
Most other locations show similar effects, which is why we expect that any conclusions
will generalize well. The A10 and A4 locations that have been chosen for the data anal-
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Figure 7.1: Visualization of the sensor locations showing a wide variety of different sensor locations in and
around Amsterdam.

ysis, will also be used later in the project for the validation of the different models. This
drastically simplifies the validation of models.

One metric that gives insight into the traffic flow rate for certain locations, is the den-
sity of vehicles. The density of vehicles is defined by the total number of vehicles, divided
by the average speed and the total number of lanes, resulting in the number of vehicles
per kilometer. Figure 7.2 shows the average vehicle density versus the average speed for
the A10 location. It can be seen that a low speed yields a higher density of vehicles. This
means that vehicles are closer together at lower speeds, suggesting that there is conges-
tion. The A4 location showed similar patterns regarding the vehicle density.

The average traffic flow rate can also be used to estimate which locations have the
potential to be future bottlenecks for traffic in Amsterdam. These locations can be iden-
tified by the fraction of time in which they are at their maximum capacity. Unfortunately,
the locations that are described by the data set have extremely diverse characteristics
and are, therefore, remarkably difficult to compare. This is especially difficult when it
comes to speed and flow rate. For that reason, only the roads and motorways with a
maximum speed of 100 km/h, have been analyzed regarding future bottlenecks. In Fig-
ure 7.2, it can be seen that the largest densities are reached for speeds of less than 30
km/h. With that, potential future bottlenecks can be identified by investigating which
motorways spend the largest fraction of time at a speed of less than 30 km/h.

Figure 7.3 shows the average traffic flow rate per year for the A10, with the standard
deviation plotted around the average. Since the different years approximately follow the
same patterns, it can be concluded that there is a yearly seasonal component. It can also
be seen there are no clear upwards or downwards trends that need to be considered.
Furthermore, it can be seen that 2020 significantly deviates from the other years. This is
a result of the COVID-19 pandemic. Especially the first national lockdown from March of
2020, shows a remarkable decrease in the traffic flow rate. This deviation will also have a
notable impact on the modeling of the data and the forecasting of the future traffic flow
rate. For that reason, it has been decided that model validation will be carried out in
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Figure 7.2: Scatter plot of the average speed versus traffic density (number of vehicles per kilometer) on the
A10. It can be seen that a low speed yields a higher density of vehicles, indicating that vehicles are closer

together at lower speeds and suggests that there is congestion.

2019 rather than 2020. These patterns were also visible for the A4 location.

The plot in Figure 7.4 shows the progression of the average traffic flow rate per hour
of the week for the A10. Here, 2020 is disregarded as the COVID-19 pandemic affects the
clarity of seasonal patterns. The plot shows a clear daily seasonal component. It can
be seen that the traffic flow rate is highest in the morning and in the afternoon. This is
shown by the two peaks in the graph of each day. Furthermore, it can be seen that the
traffic flow rate is by far the lowest during the nights. The plot also clearly shows that the
traffic flow rate is far lower on Saturdays and Sundays than it is the rest of the week. It can
also be observed that the nights during the weekend are slightly less quiet than during
the rest of the week. Another pattern that can be identified is that the morning rush hour
contains a higher peak in traffic flow rate than the evening rush hour does. The traffic
flow rate is slightly more spread out during the evening rush hour. These weekly and
daily patterns were also visible for the A4.

It is expected that the different seasonal components that have been identified, may
interfere with each other. This may result in difficulties when modeling the data.

7.4. BACKGROUND

Considering that the traffic flow rate depends on time, it can be interpreted as a time
series. There are multiple models that can be used for time series prediction. A num-
ber of these models are described in this section. After the elaboration of the different
models, the evaluation techniques of time series models are discussed. These evaluation
techniques are used to judge the quality of the fit of the model, as well as to compare the
performance of the different models. Furthermore, the input data may be enriched with
exogenous factors. This section also elaborates on which factors are suitable for this.
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Figure 7.3: Plot of the average flow rate per year of the A10. Multiple seasonal patterns can be observed and it
can be seen that the traffic flow rate for 2020 deviates from the general patterns. This is a result of the

measures to reduce mobility in order to stop the spread of COVID-19.

7.4.1. MODELS

SEASONAL NAIVE MODEL

Seasonal naive models are suitable for data with clear seasonal components R. J. Hynd-
man and Athanasopoulos, 2018. For this model, the predicted value is equal to the last
observed value from the same moment of the previous season. Considering that the
input data show multiple seasonal components, as described in Section 7.3.2, this ap-
proach may be limited. Another limitation of this model is that potential trends are not
used in the prediction. Disregarding the limitations, the simplicity of the model and the
seasonal patterns of the input data, the seasonal naive model will be used as a baseline
throughout this research.

AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODELS

Autoregressive integrated moving average, or ARIMA, models are a combination of au-
toregressive (AR) and moving average (MA) models. The order p in the AR model repre-
sents the number of historical values that are used in a linear combination to form the
next value. The order q in MA models represents the number of historical values that are
used in the moving average. The orders p and q can be determined using the partial au-
tocorrelation function (PACF) and the autocorrelation function (ACF) plots, respectively.
The next value X t can be defined using the following equation:

X t =
q∑

j=0
β j Zt− j +

p∑
i=1

αi X t−i +Zt (7.1)

In this equation, {Zt } is a white noise time series. α1,α2, ...,αp , and β0,β1, ...,βq are
the weights that describe the contribution of the previous p and q values, respectively.
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Figure 7.4: Plot of the average traffic flow rate per day of the week of the A10. Clear daily and weekly patterns
can be observed, with peaks during the morning and evening rush hours.

ARIMA models are most suitable for the modeling of time series that contain trends.
The modeling of time series with seasonal patterns can be overcome by differencing.
This differencing is described by parameter d , that ARIMA adds to the AR and MA mod-
els, resulting in an order (p,d , q) Esprabens and Arango, 2020.

ARIMA models require different modeling assumptions to be made. In the first place,
the time series is required to be stationary. For stationary time series, E(X t ) and E(X t X t+h)
exist and do not depend on t . This means that the time series is consistent over time, in-
dicating that the time series can not contain trends or seasonal patterns. An Augmented
Dickey-Fuller test can be used to test whether a given time series is stationary. In second
place, the residuals are required to be normally distributed. To determine whether the
residuals are normally distributed, a comparison can be made between a kernel density
estimation of the distribution of the residuals and the normal distribution. Further, a
correlogram of the residuals can be consulted to determine whether there are still pat-
terns present in the residuals. If this is not the case, it can be concluded that the ARIMA
model is an appropriate fit.

SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODELS

ARIMA models are used to make a non-stationary time series stationary by adjusting the
trend. Seasonal autoregressive integrated moving average, or SARIMA, models are an
extension of this, in which a seasonal component is also considered. This means that
a SARIMA model is used to make a non-stationary time series stationary by removing
the trend and seasonality Esprabens and Arango, 2020. This results in the addition of
seasonal parameters P,D,Q and s, where s is the number of observations in a season.
With that, a SARIMA model can be described by the order (p,d , q)x(P,D,Q)[s]. Similarly
to the ARIMA model, the ACF and PACF plots can also be used to determine the values
for P and Q.
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A SARIMA model uses differencing at a lag equal to the number of seasons (param-
eter s) to remove additive seasonal effects Cowpertwait and Metcalfe, 2009. The best
way to find the most suitable values for the parameters, is by trying a large number of
models with different parameter values Brownlee, 2019. These parameter values can be
determined using a grid search.

Additionally, SARIMA can also be implemented with exogenous features, resulting
in a SARIMAX model Khandelwal, 2020. These exogenous features, as the name states,
have a different origin than the original time series. This means that the features describe
other characteristics of the observations than the time series does. The addition of these
features may lead to a more precise forecast of the time series.

( T)BATS MODELS

(T)BATS is an acronym to describe the key features of the model: (Trigonometric sea-
sonality), Box-Cox transformations, ARIMA errors, Trends, Seasonal components. The
way in which these model components are used is fully autonomous NHS England and
NHS Improvement, 2020.

TBATS models use exponential smoothing to model highly seasonal data. Whereas
most popular models can incorporate at most one seasonal pattern, a TBATS model is
known to incorporate multiple, complex seasonal patterns. TBATS models can incorpo-
rate seasonal patterns of which the frequency is not constant Pentaho, 2020. According
to Skorupa (2019), each seasonality in a TBATS model is modeled by a trigonometric
representation based on a Fourier series. A Fourier series is an expansion of a periodic
function in terms of an infinite sum of sines and cosines. It is predominantly used to
break up periodic functions to calculate them individually Weisstein, 2020. The Box-Cox
transformations that are incorporated in the model, enable the model to handle non-
linearity in the data. This stabilizes the variance in the predictions Chou, 2017.

One major drawback of TBATS models is that forecasting may be slow, especially for
long time series R. J. Hyndman and Athanasopoulos, 2018. Another drawback of TBATS
models is that other explanatory variables may not be added, potentially limiting the
overall performance. The long-term predictions of TBATS models are thereby not always
adequate. Furthermore, TBATS models are used under the assumption that the residuals
are normally and independently distributed Chou, 2017. According to R. J. Hyndman
and Athanasopoulos (2018), the autonomous nature of the model components may thus
lead to predictions that are not useful.

RECURRENT NEURAL NETWORKS

A recurrent neural network, or RNN, is a neural network that is specifically designed for
the analysis of sequences. A specific subsection of RNN’s that are proven to be useful
in time series modeling are Long Short-Term Memory models, or LSTM models. These
models have a similar structure to neural networks, where there are input and output
layers, with at least one hidden layer to connect them both. The difference between
neural networks and LSTM models is the option to make connections between neigh-
boring nodes within the same (hidden) layer. The connections make it possible to attain
and retain ’memory’.

When training LSTM models, parameter-tuning is crucial. This means that optimal
values need to be found for the parameters of the LSTM. In the first place, the num-
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ber of input nodes determines how many historical values are used. In second place,
the number of output nodes determine the number of future values that are predicted.
When more output nodes are present, the accuracy and reliability of the prediction will
most likely decrease. The number of hidden layers determines the number of node lay-
ers between the input and output layers. Each hidden layer contains a given number of
(hidden) nodes, each with a non-linear activation function. Increasing the number of
layers and nodes leads to an increase in complexity. This means that a trade-off has to
be made between the complexity and the training time. The training of a LSTM model is
done for a number of epochs, which is equal to the number of times that the model will
iterate through the entire data set. The most suitable values for these parameters can be
found using a grid search, where the different models are evaluated using the evaluation
metrics that are discussed later.

LSTM models generally have one output node, giving one predicted value. In time se-
ries prediction, however, it is essential to predict further into the future. For that reason,
the rolling update method is used. This method is also known as walk-forward valida-
tion Tutorialspoint, 2021. The essence of the method is to use observed data as well as
predictions to predict future values. This prevents leakage of the validation data and it
enables the LSTM model to predict farther into the future.

ALTERNATIVE MODELS

Other models that have been considered for time series prediction are exponential smooth-
ing, the Holt-Winters method, autoregressive moving average models and variations
thereof, vector autoregressive moving average models and variations thereof, k-nearest
neighbors, convolutional neural networks and graph neural networks. These models
have not been discussed as they are too complex, lack flexibility or the ability to accom-
modate complex seasonal patterns.

7.4.2. EVALUATION OF MODELS
The evaluation of a model is crucial for the understanding of the performance of the
model and the comparison of different models. There is a large array of metrics that can
be used for this task. These metrics can be categorized as follows:

• Metrics to indicate the distance between the predicted and actual values

• Metrics that show the fraction of the variance in the data that is explained by model

• Metrics that assist in the trade-off between complexity and likelihood

Some of these metrics are more suitable than others for the evaluation of time series
forecasting. In this case, the MAE, or mean absolute error, is the best metric to use for the
comparison of different models JJ, 2016. The MAE is a measure of the distance between
the predicted and actual values, calculated using the following equation:

MAE =
∑n

i=1 |ŷi − yi |
n

(7.2)

Moreover, the AIC is used to select the most appropriate orders for the ARIMA and
SARIMA models. This measure penalizes the use of a large number of parameters and
reduces the probability of overfitting.
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7.4.3. EXTENSION OF DATA
Next to the data that have been provided, there may be more characteristics of the dif-
ferent locations that also affect the traffic flow rate.

One of the external features that may affect traffic flow is the weather US Department
of Transportation, 2018. Weather characteristics such as precipitation, fog and wind af-
fect the traffic flow negatively. For that reason, obtaining weather data for the different
locations in Amsterdam, may prove to be extremely valuable.

Next to the weather, large events in Amsterdam may also contribute to the traffic
flow rate. Therefore, information regarding events in venues such as the RAI Convention
Center, the Johan Cruijf Arena or the Ziggo Dome, may provide additional value to the
traffic flow rate data.

Considering that the COVID-19 pandemic has had a remarkable effect on the traf-
fic flow rate for 2020, using COVID-19 statistics to enrich statistics may provide more
precise predictions of the traffic flow rate. The following statistics, among others, may
provide valuable information in the prediction of the traffic flow rate: the number of
positive COVID-19 tests, the number of COVID-19 patients admitted to the hospital, the
number of COVID-19 patients admitted to intensive care units, the number of deaths per
day as a result of COVID-19 infections. Since the Dutch government bases its COVID-19
measures on these statistics, it is assumed that these statistics will affect the traffic flow
rate.

7.5. RESULTS
In this section, the results of the modeling stage are thoroughly discussed. As previously
mentioned, the models were initially fitted to hourly data. This worked adequately for
the simple models, but the computational limits formed a problem when training larger,
more complex, models. Therefore, the complex models were only applied to the daily-
aggregated data.

As mentioned in Section 7.3.2, the seasonal naive method forms a baseline for the
performance of the models. Therefore, the models that underperformed with respect to
the seasonal naive method, have been disregarded.

7.5.1. HOURLY RESULTS

SEASONAL NAIVE MODEL

The seasonal naive model achieves a MAE of 2999.63 for the A10 and 1898.77 for the A4.
Since the seasonal naive model is used as a baseline model, these MAEs represent the
baseline statistics for the validations for the traffic flow rate in 2019.

TBATS MODEL

The TBATS model achieves a MAE of 777.68 for the A10 and 578.10 for the A4. It is ex-
pected that the performance of TBATS models is better for short-term predictions, than
for long-term predictions. To investigate this hypothesis, the MAE for the first six months
of the validation was compared to the last six months of the validation. These MAEs were
extremely similar, which is why the expectation was incorrect.

The TBATS models were trained with seasonalities of 24, 168 and 8766 hours. These
seasonalities are equal to a day, 7 days and 365.25 days (a year with the consideration
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of leap years). During the training of the model, Box-Cox transformations and ARIMA
errors were used. The data were also transformed using a log-transformation before be-
ing entered into the model. These measures ensure that no negative predictions can be
made.

To determine whether the TBATS fit is adequate, the modeling assumptions need to
be verified. In the case of TBATS models, the residuals are required to be normally dis-
tributed. According to kernel density estimation plots, the residuals are approximately
normally distributed for the A10 and A4 locations. Therefore, it can be stated that the
TBATS models fit the data adequately.

7.5.2. DAILY-AGGREGATED RESULTS

SEASONAL NAIVE MODEL

The seasonal naive model achieves a MAE of 11110.53 for the A10 and 6880.92 for the
A4 on daily-aggregated data. These values form the baseline for the daily-aggregated
models.

(SEASONAL) ARIMA MODEL

ARIMA models were not appropriate for the hourly traffic flow rate due to the interfer-
ence of different seasonal patterns. Since the daily-aggregated data have less seasonal-
ities, the ARIMA model may be suitable for the daily-aggregated data. In Section 7.3.2,
it was concluded that the traffic flow rate contains both a weekly pattern and a yearly
pattern. Therefore, a difference of order 365 and a difference of order 7 were used on
the log-transformed time series of the A10 location. These differences remove any sea-
sonal patterns and result in a stationary time series. This stationarity is tested using the
Augmented Dickey-Fuller test, resulting in a p-value of 1.21 ·10−14. This means that with
an α-value of 0.05, the null-hypothesis of the time series being stationary, is rejected.
Therefore, ARIMA models may not be suitable for the modeling of the data.

Similarly to the A10, the differencing transformations were also carried out for the
A4. For the resulting time series, the Augmented Dickey-Fuller test led to a p-value of
1.23 ·10−17, indicating that the null-hypothesis is rejected once again. This implies that
the data are not stationary. Just as for the A10 that was described previously, a standard
ARIMA model may not suffice for the modeling of the traffic flow rate at the A4 location.

The PACF of the transformed time series of the A10 shows that there is a periodic
deviation around lag seven. This indicates that there may still be some weekly season-
ality in the transformed data. This seasonality explains why the transformed time series
is not stationary. A seasonal ARIMA (SARIMA) model could potentially solve this issue.
This leads to a SARIMA model of the order (2,0,1)x(1,0,1)[7]. The same conclusions hold
for the A4, leading to a SARIMA model of the order (1,0,1)x(1,0,1)[7].

The MAE for the SARIMA model for the A10 is equal to 7976.32. The MAE for the A4
is equal to 5118.73, which is a notable improvement with respect to the baseline model.

As mentioned in Section 7.4.1, SARIMA models require certain modeling assump-
tions. With that, the residuals need to be normally distributed and uncorrelated. These
assumptions are verified using a plot of the fitted values against the observed values,
a kernel density plot of the residuals and a correlogram. These plots suggest that the
residuals are indeed normally distributed and uncorrelated. This holds for the A10 and



7

114
7. A COMPARISON OF APPROACHES FOR THE TIME SERIES FORECASTING OF MOTORWAY

TRAFFIC FLOW RATE

A4 locations. Therefore, it can be concluded that the SARIMA models fit the data ade-
quately.

SARIMAX MODEL

Next to the SARIMA model that has been elaborated in the previous section, a SARIMAX
model has been developed. This model is equal to the SARIMA in the way that it was de-
veloped, with one crucial difference: namely, the SARIMAX model incorporates weather
data from Amsterdam. As mentioned in Section 7.4.1, the weather seems to affect the
traffic flow rate.

To determine the influence of the weather on the traffic flow rate, the correlation be-
tween the traffic flow rate and several weather characteristics has been investigated. This
analysis showed little correlation between the traffic flow rate and the following daily
weather characteristics: wind gusts, average temperature in degrees Celsius, number of
sun hours, daily fraction of fog, daily fraction of rain, amount of snow and ice formation.

The SARIMAX model that has been fitted to the A10 has an order of (2,0,1)x(2,0,1)[7].
This model results in a MAE of 11110.43 for the 2019 validation of the model. For the A4
location, the SARIMAX has an order of (1,0,0)x(1,0,1)[7]. This model results in a MAE
of 6880.82 for the 2019 validation of the model. Considering the MAE of the SARIMAX
models, it can be stated that the SARIMA model outperforms the SARIMAX model that
incorporates the weather data. This indicates that the chosen weather variables do not
have the desired effect on the traffic flow rate.

Furthermore, the use of weather data is fairly limited as future forecasts of Amster-
dam weather are not provided. This means that only past weather data can be used to
predict the future. Past weather data are expected to be invaluable with regard to future
predictions.

TBATS MODEL

The TBATS model achieves a MAE of 5365.72 for the A10 and 16380.73 for the A4. Consid-
ering the results of the baseline model, it can be stated that the TBATS model is adequate
for the A10 location. However, it can also be seen that the TBATS model is far from ade-
quate for the A4 location.

The TBATS models were trained with seasonalities of 7 and 365.25 days. These sea-
sonalities are equal to a week and a year with the consideration of leap years. During
the training of the model, Box-Cox transformations and ARIMA errors were used. Log-
transformations of the data did not further improve the performance.

TBATS models require the residuals to be normally distributed. Using kernel density
estimation plots, this assumption has been verified for both the A10 and A4 locations.
Therefore, the TBATS models can be considered to be an adequate fit.

The results from the TBATS model were inconsistent based on the MAE for the A10
and A4 locations. The MAEs show that the TBATS model is not always better than the
baseline seasonal naive model. Therefore, a model is trained for a number of other lo-
cations. The MAEs for these locations are used in the final decision regarding the use of
TBATS models for the modeling of the traffic flow rate. This decision led to the use of
TBATS models to model the traffic flow rate.
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LSTM MODEL

The final type of model that is applied to the daily-aggregated data is the LSTM model.
As mentioned in Section 7.4.1, a grid search could be used to find the most suitable pa-
rameters for the LSTM models.

The parameters that were investigated using the grid search are described in Table
7.1. This grid search was conducted for both the A10 and A4 locations. The shape of the
input layer of the LSTM was equal to (365,1), meaning that the LSTM will receive 365
input values. This indicates that the preceding 365 days of data are used to predict the
next day.

Table 7.1: LSTM Grid Search Parameters

Parameter Possible Values
Number of Epochs 10, 50, 100, 150

Batch Size 1, 5, 10, 20, 50
Number of Nodes Layer 1 1, 3, 5, 10, 20, 50, 100.
Number of Nodes Layer 2 0, 1, 3, 5, 10, 20, 50, 100

Activation Functions hyperbolic tangent, sigmoid, ReLu

The grid search led to different models for the A10 and A4 locations. In the trade-
off between complexity and performance, however, a simpler model was selected. This
simpler model performed nearly as well as the model that was selected using the grid
search. Moreover, the simpler model was identical for both the A10 and A4 locations.
This indicates that a model with the suggested architecture generalizes well and is likely
suitable for other locations. The characteristics of the final model and training procedure
can be described as follows:

• Number of epochs: 100

• Batch size: 1

• Number of nodes layer 1: 20

• Number of nodes layer 2: 0 (indicating that the model will only have one hidden
layer)

• Activation functions: hyperbolic tangent

Using the rolling update method, or the walk forward validation that was described
in Section 7.4.1, the two models were validated. This validation led to a MAE of 4503.00
for the A10 and 3423.48 for the A4.

7.6. DISCUSSION
Considering the results mentioned in Section 7.5, the MAE on the hourly data of 2019
is shown for a variety of models in Table 7.2. In this table, a distinction has been made
between the A10 and A4 locations.
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Table 7.2: Hourly Results

Location A10 Location A4
Model MAE 2019 MAE 2019

Seasonal Naive 2999.63 1898.77
TBATS 777.68 578.10

Figure 7.5: The validation in 2019 of the A10 motorway using the TBATS model with hourly data. The forecast
seems to follow the observed data fairly well, with the exception of the underestimation of the peaks. The

ascending nature of the peaks is not found in the observed data and is likely a result of the sinusoidal nature
of the TBATS model. This model performed 74.1% better than the seasonal naive baseline model, regarding

the MAE.

The best model that has been fitted to hourly data is the TBATS model. On average,
this model performed 72% better than the seasonal naive baseline model, regarding the
MAE.

In Figure 7.5 and 7.6, the 2019 validation of the TBATS models has been plotted. It
can be seen that the forecasts follow the observed data fairly well. An exception to this
is the fact that the forecast nearly always underestimates the peaks of the observed data.
One possible cause for this is that the traffic flow rate of 2018 was slightly lower than that
of 2019. This trend was not as present in preceding years, which is why the TBATS model
may not incorporate it sufficiently. As a result, the MAE is still notably high.

In Figure 7.5 and 7.6, it can also be seen that the forecasts contain an unusual pattern,
where the traffic flow rate is predicted to be low at the start of a week and higher towards
the end. When this pattern is compared to the observed traffic flow rate, it can be seen
that this pattern is not equal to the observed weekly patterns. This is likely due to the
sinusoidal nature of the TBATS model.

Due to the limit of computational resources, the implementation of other models
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Figure 7.6: The validation in 2019 of the A4 motorway using the TBATS model with hourly data. The predicted
values seem to follow the observed data fairly well, with the exception of the underestimation of the peaks.

The ascending nature of the peaks from Monday until Friday is not found in the observed data and is likely a
result of the sinusoidal nature of the TBATS model. This model performed 69.6% better than the seasonal

naive baseline model, regarding the MAE.

to the hourly data was not possible. Therefore, a number of models have been im-
plemented on daily-aggregated data. The MAE on the daily-aggregated data of 2019 is
shown for a variety of models in Table 7.3. The Holt-Winters method is omitted from
this table as it underperformed with respect to the seasonal naive model.

The best model that has been trained on the daily-aggregated data is the LSTM model.
On average, this model performed approximately 55% better than the seasonal naive
baseline model, regarding the MAE. Figure 7.7 shows the daily validation of 2019 for the
A10 using the LSTM model and Figure 7.8 shows this validation for the A4. It can be seen
that the two LSTM models describe the data in both figures fairly well.

Table 7.3: Daily-Aggregated Results

Location A10 Location A4
Model MAE 2019 MAE 2019

Seasonal Naive 11110.53 6880.92
SARIMA 7976.32 5118.73

SARIMAX 11110.43 6880.82
TBATS 5365.72 16380.73
LSTM 4503.00 3423.48
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Figure 7.7: The validation in 2019 of the A10 location using the LSTM model with daily-aggregated data. The
forecast seems to follow the weekly and yearly seasonal patterns fairly well. This model performed 59.5%

better than the seasonal naive baseline model, regarding the MAE.

Figure 7.8: The validation in 2019 of the A4 location using the LSTM model with daily-aggregated data. The
forecast seems to follow the weekly and yearly seasonal patterns fairly well. This model performed 50.2%

better than the seasonal naive baseline model, regarding the MAE.

7.7. CONCLUSION
Considering the results that were discussed in Section 7.6, it can be stated the modeling
of the traffic flow rate has been carried out successfully. That said, the TBATS model is
considered to be the most suitable model for the hourly traffic flow rate data. This model
performs 72% better than the baseline model, the seasonal naive model. With respect to
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the daily-aggregated data, the LSTM model is the most suitable. This model performs
55% better than the seasonal naive model on the daily-aggregated data.

7.8. FUTURE STUDY
There are numerous, interesting additions that could enrich the current research.

Firstly, the manner in which models are implemented could be improved. The vali-
dation of the models was done in 2019 for two locations. With this, it was assumed that
the model performance would be similar for other locations. In practice, this turned out
not to be the case in all instances. Therefore, it is suggested that the models should be
validated on all locations in the future. This ensures that the chosen model performs
well on all locations. Another way in which the implementation of models can be im-
proved is through the use of multiple evaluation metrics. In this study, the mean abso-
lute error was used. To complement this, the use of metrics such as root mean squared
error (RMSE), mean absolute percentage error (MAPE) or adjusted R-square are recom-
mended.

Secondly, there are a number of models that have not been implemented. As men-
tioned in Section 7.4.1, there are other models that are potentially useful in time series
prediction. These models include, but are not limited to, k-nearest neighbors, convo-
lutional neural networks and graph neural networks. In future research, the implemen-
tation of these models may lead to positive results in the prediction of the traffic flow
rate. Lastly, more extensions of the data could be considered. Some possible extensions
were mentioned in Section 7.4.3. In this research, weather data were used to enrich the
daily-aggregated data for a SARIMAX model. Since the weather is subject to change dur-
ing a day, it is expected that the use of hourly weather data may be beneficial for the
predictions. Next to the weather data, data regarding large events as well as COVID-19
statistics could be used to further enrich the data. This enables the predictions to in-
clude the effects of COVID-19. The addition of live data streams in combination with
dynamic systems, would also allow for more accurate short-term predictions, account-
ing for unforeseen circumstances.

These additions may lead to better model performance or improved insights regard-
ing the traffic flow rate in and around Amsterdam.
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PATH COMPLEXITY AND BICYCLE

ROUTE CHOICE SET QUALITY

ASSESSMENT

Everyday route choices made by bicyclists are known to be more difficult to explain than
vehicle routes, yet prediction of these choices is essential for guiding infrastructural invest-
ment in safe cycling. Building route choice sets is a difficult task. Even including detailed
attributes such as the number of left turns, the number of speed bumps, distance and other
route choice properties we still see that choice set quality measures suggest poor replica-
tion of observed paths.
In this paper we study how the concept of route complexity can help generate and ana-
lyze plausible choice sets in the demand modeling process. The complexity of a given path
in a graph is the minimum number of shortest paths that is required to specify that path.
Complexity is a path attribute which could potentially be considered to be important for
route choice in a similar way. The complexity was determined for a large set of observed
routes and for routes in the generated choice sets for the corresponding origin-destination
pairs. The respective distributions are shown to be significantly different so that the choice
sets do not reflect the traveler preferences, this is in line with classical choice set quality
indicators. Secondly, we investigate often used choice set quality methods and formulate
measures that are less sensitive to small differences between routes that can be argued to
be insignificant or irrelevant. Such difference may be partially due to inaccuracy in map-
matching observations to dense urban road networks.

Koch, T., Knapen, L., & Dugundji, E. (2019). Path complexity and bicyclist route choice set quality assessment.
Personal and Ubiquitous Computing, 1-13.
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8.1. INTRODUCTION

Route choice models play an important role in many transport applications and help to
understand why people travel the way they do and to predict what they will do in the
future. Route choice set generation is an essential part of route choice modeling in order
to establish the weight of several route attributes in the decision process and to predict
chosen routes in simulators. Route choice modeling for bicyclists is a topic of increasing
interest as more and more people travel by bicycle for their daily commute, leading to
problems with congestion in cycling lanes and at traffic lights as well as parking prob-
lems with bicycles. This in turn leads to traffic conflicts with both vehicles and pedestri-
ans, creating unsafe situations. Understanding more about how and why cyclists travel
and where they deviate from the shortest path, helps us to propose ways to improve safe
cycling infrastructure and to subsequently study the effects of the modifications. Sev-
eral attributes of a route are significant factors in the choice process: e.g. the number of
left turns, the number of speed bumps, distance, slope, scenery etc. This study investi-
gates the use of route complexity as an additional attribute. The complexity of a given
(observed) path in a graph is the minimum number of shortest paths that is required to
specify that path in the network. It can be interpreted as the (minimum) number of in-
termediate destinations that are connected by shortest subpaths. Note that complexity
is a graph theoretical property and is not related to geometric properties of the route.
Complexity is a path attribute which is considered to be important for route choice.
The complexity was determined (i) for each route in a large set of routes observed by
means of GPS traces and (ii) for routes in the choice sets for the origin-destination pairs
corresponding to the observed routes generated by implementations of BFS_LE and
DSCSG algorithms in the POSDAP tool by (ETH-Zurich, 2012). The distributions of ob-
served routes and these two route choice generators seem to significantly differ. The
complexity of the routes in the generated choice sets does not reflect the traveller be-
haviour we observed in the paths chosen by cyclists. This study looks at two route choice
generation techniques and how they compare to the observed routes taken by bicyclists.

The paper is organized as follows:Section Background briefly reviews the concept of
choice set generation and various choice set generators that are described in the liter-
ature. Section Route Complexity defines the concept of route complexity and describes
an algorithm to compute the complexity for a given route. Section Case study describes
the data set of chosen bicyclist routes, the distribution for the observed complexity and
the relations between route properties. Section Discussion shows that the distributions
for route complexity in generated choice sets significantly differ from the observed one.

8.2. BACKGROUND
Choice sets play a crucial role in route choice modeling and prediction. In choice set
generation, the universal set U contains all possible routes from the origin to the desti-
nation. Such universal set can be infinitely large if it is allowed to include cycles (hence
not only graph theoretical paths but also walks).

In route based choice models, finite choice sets are established. Each route in the
choice set bears a collection of attributes (distance, number of junctions, scenery etc). A
discrete choice model is used to predict the traveller’s choice from the attributes. Most
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models are based on multinomial logistic regression (MNL) and correction factors are in-
troduced to account for correlation between overlapping routes. Model parameters and
correction factors are determined using a finite choice set. Recursive logit (RL) models
described by (Fosgerau et al., 2013) and by (Mai et al., 2015a) do not require a choice set
for model estimation. Conceptually, they are equivalent to MNL models for route choice
from an infinite number of alternatives. The model described in (Fosgerau et al., 2013)
allows to compute the ratio of the probabilities of two routes due to the IIA (indepen-
dence of irrelevant alternatives) property. RL uses link-additive attributes as opposed to
route attributes and conceptually applies an MNL at each junction in order to predict
the next link. Hence, it can be interpreted as a link based choice model. However, in or-
der to apply route choice models in stochastic travel simulators, candidate routes need
to be generated and compared also after estimating an RL model.

A typical choice set faced by a cyclist can include different paths with detours from
the shortest path (i) to avoid dangerous situations such as busy highways, poor pave-
ment conditions, unlighted cycle paths in the dark or unsafe neighborhoods or (ii) be-
cause of personal preference for certain areas like a park, slope, signalized junctions or a
familiar path. Various choice set generators have been published.

(C. Prato & Bekhor, 2006) provides a method called Branch and Bound, which recur-
sively constructs paths that satisfy specific conditions i.e. directional, temporal, similar-
ity, loop and movement (avoiding left turns). For example with the temporal constraints,
a route will only be included if its travel time is not larger than the shortest time multi-
plied by a given factor.

(Rieser-Schüssler et al., 2013) came up with a shortest path method, called Breadth
First Search Link Elimination (BFS_LE ). The BFS_LE method first computes the least
cost path from origin to destination. Then links are eliminated in a particular order and
a new shortest path is found. BFS refers to the fact that a tree of networks is considered
and in each network a shortest path is determined using the A* algorithm. The tree is
constructed by consecutively eliminating each element from the shortest path such that
each recursively generated network differs in exactly one edge from the parent network
in the recursion.

(Kazagli et al., 2016) introduced the concept of Mental Representation Items (MRI),
to construct a data set they made use of a layer system. The first layer is used to de-
termine a MRI choice set, such as C1 = {avoi dCC , ar oundCC , thr oug hCC } where CC
stands for the city center. A layer on top of that can provide additional details. In order
to make the choice set operational, an attribute is assigned to each MRI by calculating
the expected maximum utility, by taking the sums of the logarithms of all utilities on the
path.

The Double Stochastic Generation Function method (DSCSG ) described by (Nielsen,
2000) for public transportation by (Bovy & Fiorenzo-Catalano, 2007) produces heteroge-
neous routes because both the cost and parameters used in the cost function for the
links are drawn from a probability function. A possible difficulty of this method is the
high computational cost, however (Hood et al., 2011) shows DSCSG to be faster than the
BFS_LE proposed by (Rieser-Schüssler et al., 2013). (Halldórsdóttir et al., 2014) shows
that DSCSG has a high coverage level of replicating routes taken by bicyclists and that it
performs well up to 10 kilometer. Furthermore (Bovy & Fiorenzo-Catalano, 2007) states
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that the method guarantees, with high probability, that attractive routes are in the choice
set, while unattractive routes are not.

In order to generate realistic predictions, the distribution for each route attribute in
the choice set needs to comply with the corresponding distribution found in observed
sets. This requirement related to route complexity is investigated in the current paper.

8.3. ROUTE COMPLEXITY
The complexity of a given path in a graph is the minimum number of Basic Path Compo-
nents (BPC) in the decomposition of the path where a basic path component is defined
as either a least cost path or a non-least cost edge. A non-least cost edge is an edge e
whose vertices are connected by a path having a lower cost than the cost to traverse e.

Figure 8.1 shows the minimum decomposition for an observed sample path p (blue
continuous line) in a graph having complexity c(p) = 3. The example shows that multiple
decompositions do exist for path p.

(Knapen et al., 2016) define non-cyclic trips as utilitarian and formulate the hypoth-
esis that in utilitarian trips, individuals tend to construct their routes as a concatenation
of a small number of basic path components. Utilitarian trips have a purpose differ-
ent from the fun of driving. They are driven with the intention to perform an activity at
the destination location. (Knapen et al., 2016) present Algorithm 8.3.1 to determine the
complexity of a path (i.e. the minimum number of basic path components).

Algorithm 8.3.1 Algorithm to determine the size of the minimum decomposition of a
path into basic path components.

Input Graph G , Edge costs c, P = (v0, v1, . . . , vl ) containing no non-least-cost edges
start ← 0
k ← 1 . k is the minimum decomposition size
while P (vst ar t , vl ) is not a least cost path do

. Find the first vertex v j in P (vst ar t , vl ) such that l c(vst ar t , v j ) < c(P (vst ar t , v j ))
v j ← f i ndF i r st Joi nV er tex(P, vst ar t )
k ← k+1.
vst ar t ← v j−1.

end while
return k

In algorithm 8.3.1 we have a graph G with positive edge costs c and a path P = (v0, v1, . . . , vl )
with no non-least-cost edges. Non-least-cost edges are easily determined in advance
and each of them constitutes a BPC. Variable start is the index of the first vertex in a ba-
sic path component. Variable k is the minimum decomposition size. In the while loop
we look for the first vertex v j for which we can find a shorter path from vstart to vertex v j ;
such vertices are called join vertices because in such vertex the given path and a short-
cut join (see (Knapen et al., 2016) for details). In a join vertex we increment counter k by
one. The predecessor of the join vertex is used to continue.

After the loop completes we can split the path at the vertex right before each join
vertex, the vertex preceding a join vertex is called the split vertex. Using this algorithm, a
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Figure 8.1: The blue continuous line visiting vertices A, B, C. . . I, J, K is the path followed by the traveler. Paths
BF, BLI, GLI, GLK, etc represent shortcuts to the chosen path. There are two sets of split vertices: {C,D,E} and
{H}. Hence there are three basic path components (BPC). Sample decompositions are ((A,C),(C,H),(H,K)) and

(A,E),(E,H),(H,K)).

splitting is found at k − 1 vertices, splitting our path P into k basic path components.
(Knapen et al., 2016) showed that the decomposition is minimal but not necessarily
unique. For example by running the algorithm in reverse direction of the path we may
find a different but minimal decomposition by identifying fork vertices. The technique
is illustrated by the example shown in Figure 8.1. The algorithm determines the least
cost path from A to B and finds out that this coincides with the chosen path. This is
repeated for the consecutive vertices and it turns out that the paths up to and including
〈A,B ,C ,D,E〉 are least cost paths but 〈A,B ,C ,D,E ,F 〉 is not. Hence, F is a join vertex:
the lower cost path 〈A,B ,F joins the observed path in vertex F . The same algorithm is
then applied again starting from vertex E (the predecessor of F in the observed path)
and vertex I is found to be a join vertex too. No other joins are found in the forward pass.

A backward pass is the executed starting from the tail vertex of the observed path.
Sub-paths 〈J ,K 〉, 〈I , J ,K 〉 and 〈H , I , J ,K 〉 are least-cost paths but 〈G , H , I , J ,K 〉 is not be-
cause 〈G , I , J ,K 〉 and 〈G ,L,K 〉 have a lower cost. Vertex G is a fork vertex. The set of
vertices enclosed between a fork and its corresponding join is a called a splitVertexSuite.
Figure 8.1 shows two splitVertexSuites 〈C ,D,E〉 and 〈H〉 respectively.

Knapen et al. (Knapen et al., 2016) prove (i) that the same numbers of join and fork
vertices are found, (ii) that the vertices in the splitVertexSuites are potential split vertices
(i.e. intermediate destinations that the traveler may have had in mind) and (iii) that each
minimum decomposition consists of exactly one vertex from each splitVertexSuite. Not
every combination of splitVertexSuite members constitutes a valid decomposition. In
(Knapen et al., 2017) the authors provide an algorithm to enumerate all valid decompo-
sitions. E.g. the set {C , H } may constitute a valid decomposition generating three BPC:
{〈A,C〉,〈C , H〉,〈H ,K 〉}.

Figure 8.2 is taken from (Knapen et al., 2016) and shows the distribution for the com-
plexity found in several data sets for which the majority (Belgian case) or all (Italian case)
trips are car trips. This supports the hypothesis that utilitarian trips are composed of a
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Figure 8.2: Relative frequency distribution for the size of the minimum decomposition of paths derived from
GPS recordings. The Belgian set consists of person traces. It was map-matched using different networks and

gap-filling thresholds. The Italian set consists of car traces only (recorded by on-board-unit (OBU).

small number of basic path components. Note that 95% of all trips had a complexity
lower than 6 basic path components.

8.4. CASE STUDY
This study considers a trip to be utilitarian if and only if it does not contain a cycle and
rd = dobs/dshort ≤ 1.08 where dobs and dshort are the observed and shortest route lengths
respectively (details are found in (Wardenier et al., 2019)). This definition is stricter than
the one used in (Knapen et al., 2016) in which all trips not containing any cycle have
been considered.

8.4.1. COLLECTING DATA OF BICYCLE MOVEMENTS
The Dutch 2016 FietsTelWeek (Bike Counting Week) data set ((Bikeprint, 2017)) is avail-
able at http://www.bikeprint.nl/fietstelweek/. It contains 282,796 unique trips (although
the corresponding infographic http://fietstelweek.nl/data/resultaten-fiets-telweek-bekend/
mentions 416,376 trips having a total distance of 1,786,147 kilometers). In order to anonymize
the data, parts were stripped from the head an from the tail of the trips; the length of the
stripped parts was randomly from the range [0,400] meters using a uniform distribution.
Entire road network links were cut away. This process removes short trips and may ex-
plain why only 282,796 trips are found in the dataset. It was collected by 29,600 cyclists
who voluntarily participated in a week-long survey to track their bicycle movements us-
ing a smart-phone app in the week of 19th of September 2016. The application ran in the

http://www.bikeprint.nl/fietstelweek/
http://fietstelweek.nl/data/resultaten-fiets-telweek-bekend/
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Figure 8.3: Cumulative distribution of the complexity of paths taken by bicyclists. Blue for unfiltered, red for
only utilitarian trips with rd <= 1.08.

background to collect the bicycle movements of all participants using the phone’s GPS
and acceleration sensors. The cyclists involved use their bike in a way often seen in The
Netherlands to travel from and to work, supermarket, school, friends, etc. For privacy
reasons, the resulting data was further anonymized in addition to the head/tail stripping
mentioned above by the data provider before making it publicly available (i) by the re-
moval of user information to make it impossible to trace multiple trips to a single person
and (ii) by rounding of the trip departure time into one-hour bins to the nearest hour.

8.4.2. ROUTE COMPLEXITY IN REAL-LIFE GPS TRACES
The route complexity for the 282,796 collected by the Dutch FietsTelWeek2016 routes
was computed and the distribution is shown in Figure 8.3 (blue line). For Flanders (Bel-
gium) no detailed results for the bike counting week are made publicly available; hence,
direct comparison is impossible. However, the distribution for the complexity of bicy-
cle routes in The Netherlands significantly differs from the distribution for complexity
found in person traces for Flanders shown in Figure 8.2. Car mode is the prevalent mode
in Flanders according to the recurrent OVG travel behaviour survey . Hence most person
traces consist of car trips and, as a consequence, most trips in the sets investigated by
(Knapen et al., 2016) are car trips. The difference may result :

• from behavioral difference between car drivers an bicyclists,

• from regional behavior differences and

• from parameters chosen for the map-matching process because some map-matching
algorithms fill gaps by connecting positions by the shortest path.

https://mobielvlaanderen.be/ovg/ovg52-0.php
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We had no control over the map-matching process because that was performed by
the FietsTelWeek organizer. Access to raw GPS traces is required to exclude the latter
possibility.

8.4.3. GENERATING ROUTE CHOICE SETS

To compare and analyze the conformance of reality, we looked at two route choice set
generation methods: Double Stochastic Generation Function (DSCSG ) by Halldorsdot-
tir (Halldórsdóttir et al., 2014) and Breadth First Search Link Elimination (BFS_LE ) by
Rieser. (Rieser-Schüssler et al., 2013) and compared their output to the path complexity
recorded in the Netherlands by the FietsTelWeek data-collection. For each observed trip,
the origin and destination were extracted (OD-pair). We used an existing implementa-
tion of both algorithms in POSDAP (ETH-Zurich, 2012) to generate route choice sets for
each OD-pair.

Only link length (travel distance) was used in the experiment. POSDAP allows to
specify a set of link specific attribute values (like scenery, separate bike lanes etc): this
was not used due to lack of data.

As there is no agreement on the size N0 of the route choice sets, we arbitrarily state
that the route choice generator should produce N0 = 16 routes for each origin destina-
tion pair. The POSDAP software was slightly modified in order to execute at most a given
number of M = 128 trials to find N0 different routes (instead of running for a given du-
ration) so that it behaves identically on different machines. For some origin destination
pairs POSDAP is not able to find as many as N0 routes in M trials, in which case we will
use all found routes. The choice sets are written to CSV files for further processing.

We computed the complexity for each route in the choice set generated by POS-
DAP using the algorithm specified in (Knapen et al., 2016). The distribution of the path
complexity was determined for the set of predicted paths (i.e. the paths in the generated
choice sets).

8.5. DISCUSSION

8.5.1. RUN-TIMES

In terms of performance, BFS_LE is significantly quicker than DSCSG , producing 31,000
route-choice sets in 22 minutes for a instance with 6 parallel threads, averaging to ap-
proximately 248.3 choice set per minute per instance, on a machine with 2 Intel Xeon
CPU E5440 CPU’s (4 cores/socket, 1 thread/core). DSCSG averaged to approximately
2.8 choice set per minute per instance on faster CPU’s: 2 Intel Xeon CPU E5-2660 v4 (14
cores/socket, 2 threads/core).

8.5.2. ROUTE COMPLEXITY IN GENERATED ROUTES

In figure 8.4 we plotted the different complexity distributions of the routes observed and
of the choice sets generated by Double Stochastic Generation Function (DSCSG ) and
Bread First Search Link Elimination (BFS_LE ) respectively. The results are in line with
what we expected based on the nature of both algorithms. First we explain the distri-
bution of BFS_LE as follows based on the structure of network in Amsterdam. A road
network is said to be dense with regard to a set of observed routes if the average length
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Figure 8.4: Cumulative distributions of number of basic path components of observed bicycling routes in the
Amsterdam (blue) and the number of components in paths predicted by POSDAP ’s implementations of
Double Stochastic Generation Function (DSCSG ) and Bread First Search Link Elimination (BFS_LE ).

of network links is small relative to the developed length for the observed routes. Equiv-
alently, a network has a high density if and only if commonly observed routes contain
many links. In the observations for Amsterdam in the fietstelweek2016 case, the net-
work seems to be dense with regard to the set of shortest paths associated with each
observed OD-pair. In most cases the shortest path SP(o,d) for OD-pair 〈o,d〉 contains
many links. This is shown in Figure 8.5 for the Amsterdam case. If the required size for
the choice set for 〈o,d〉 is smaller than the number of road links in SP(o,d), each route
generated by BFS_LE is derived by finding the shortest path SPm(o,d) in a modified net-
work where exactly one link link belonging to SP(o,d) was removed. This is easily verified
in Algorithm 8.5.1. Line 1 specifies the recursive BFS_LE procedure. elimLinkSetsColl
is a collection of link sets. Each such link set in turn is used to eliminate links from the
network.
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Algorithm 8.5.1 BFS_LE algorithm.

Require: nPathsReqd ,O,D,net wor k
function g ener ate(el i mLi nkSet sCol l , paths)

el i mLi nkSet sCol l NextLevel ←;
for all el i mLi nkSet ∈ el i mLi nkSet sCol l do

net wor k.r emoveLi nks(el i mLi nkSet )
sp ← shor testPath(O,D)
if sp 6∈ paths then . New one found

paths ← paths ∪ {sp}
if | paths | ≥ nPathsReqd then

return
else

for all l i nk ∈ sp do
es ← el i mLi nkSet ∪ {l i nk}
if es 6∈ el i mLi nkSet sCol l NextLevel then

el i mLi nkSet sCol l NextLevel .add(es)
end if

end for
end if

end if
net wor k.addLi nks(el i mLi nkSet )

end for
g ener ate(el i mLi nkSet sCol l NextLevel , paths)

end function
el i mLi nkSet sCol l ←;
paths ←;
GENERATE(el i mLi nkSet sCol l , paths)

The road network density (as defined above) severely affects the distribution for the route
complexity in the choice sets generated by BFS_LE . Figure 8.5 shows the first part of the
(fat tail) distribution for the number of links in the shortest path for each observed OD-
pair. Only 9.4% of the shortest paths contain at most 16 links. The required choice set
size is 16. Hence, in 90.6% of the cases the generated routes are derived from the shortest
path by eliminating only one link (belonging to the shortest path) from the network.

In contrast to BFS_LE , DSCSG uses randomness to the cost function to generate
new paths and thus subsequently the number of links in the shortest paths has less in-
fluence.

8.5.3. CHOICE SET QUALITY ASSESSMENT

In order to assess the quality of route choice sets, a technique to evaluate the similarity
of two routes is required. Three methods are discussed in this section. All methods use
the same concepts of coverage and consistency defined in Section 8.5.3 but use different
similarity (overlap) functions.
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Figure 8.5: Distribution for the number of links in the shortest path linking O to D in the observed routes.
Only 9.4% consists of at most 16 links.

COVERAGE BASED ON LINK MATCHING

In order to compare our routes generated with what we found in the literature, we com-
puted coverage (COV) and behavioral consistency (CON) as found in Prato(C. Prato &
Bekhor, 2007), Halldorsdottir (Halldórsdóttir et al., 2014) and others.

In general, multiple observed routes may share a single OD-pair. Let Sod p denote the
set of OD-pairs and Sobs (p) denote the set of observations for p ∈ Sod p .

The coverage realized by a particular choice set generator for a given set of observed
routes is the fraction of observed routes for which the generated choice set contains at
least one route for which the similarity to the observed one exceeds a given threshold.

Let I (.) be the coverage indicator function which equals one in case its argument is
true and zero otherwise. Let SOD denote the set of observed OD-pairs. Let O(r obs,ρ) de-
note the fraction of overlap between the observed route r obs and a route ρ in the choice
set SCS(r obs) for r obs . Let δ denote a threshold value. Then the coverage COV is defined
by:

O(r obs,ρ) = (length(overlap(r obs,ρ))

length(r obs)
(8.1)

COV = 1

| Sodp | ·
∑

p∈Sodp

(
max

r∈Sobs(p),ρ∈SCS(p)
I (O(r,ρ) ≥ δ)

)
(8.2)
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Table 8.1: Coverage and Behavioral Consistency of Path Generation Techniques.

Coverage (%) for overlap threshold

Path Generation Technique 100% 90% 80% 70%
Behavioral
Consistency

BFS_LE 14.58 28.96 38.37 47.89 0.642
DSCSG 11.01 22.80 33.26 44.69 0.645

Note that

max
ρ∈SCS(r obs)

I (O(r obs,ρ) ≥ δ) ∈ {0,1} (8.3)

COV ∈ [0,1] (8.4)

and that equation (8.3) was used to speed up the computation.
The index of behavior consistency (CON) considers each observed route r and com-

pares it to all routes in the appropriate choice set in order to find the largest similarity
value (i.e. finding the best match). The index of behavior consistency (CON) is the average
value, computed over all observations, of the maximal similarity between the observed
route and any of the generated routes.

The index of behavior consistency (CON) measure compares a path generation method
with an algorithm that would replicate all observations. It is formally defined by

CON = 1

| Sodp | ·
∑

p∈Sodp

( 1

| Sobs(p) | ·
∑

r∈Sobs(p)

(
max

ρ∈SCS(p)
O(r,ρ)

))
(8.5)

where: CON is the consistency index and O(r,ρ) is the overlap between the routes r and
ρ (see Equation (8.1)).

In the experiment using fietstelweek2016 data, each OD-pair has exactly one ob-
servation. In that case the expressions for coverage and consistency reduce to

COV = 1

| Sobs | ·
∑

r∈Sobs

(
max

ρ∈SCS(r )
I (O(r,ρ) ≥ δ)

)
(8.6)

CON = 1

| Sobs | ·
∑

r∈Sobs

(
max

ρ∈SCS(r )
O(r,ρ)

)
(8.7)

What we see in low values for coverage and behavioral consistency in table 8.1 is similar
to what we see in the route complexity distributions in Figure 8.4: the predicted routes
have a low conformance to reality.

COVERAGE BASED ON GEOMETRIC DISTANCE

Different geometric distances are proposed as alternatives for assessment of similarity
by matching complete links. Hausdorff and Fréchet distance are evaluated as similarity
measures to compare routes.

Firstly we looked at Hausdorff distance between the observed and each generated
path, which verifies whether every point on the route is close to the some other point
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in the other route. The Hausdorff distance is the longest distance between any point
p0 on the observed route to the point p1 on the generated route that is nearest to p0.
We use the euclidean distance dE (., .) between points as the base metric to define the
Hausdorff distance dH (., .) between routes as follows:

dH (r0,r1) = max
(

max
p0∈r0

min
p1∈r1

dE (p0, p1), max
p1∈r1

min
p0∈r0

dE (p0, p1)
)

(8.8)

min median mean max std dev

BFS_LE 0 93.491 297.009 25372.660 622.889
DSCSG 0 66.997 232.946 25372.660 584.124

Table 8.2: Statistics for the Hausdorff distance between an observation and the route with lowest
Hausdorff distance in the corresponding choice set.

Table 8.2 shows that in general the minimum Hausdorff distance between an ob-
served route and any of the routes in its associated choice set is smaller for DSCSG than
for BFS_LE .

On the other hand the Fréchet distance measures the similarity between curves, tak-
ing into account the location and order of points along the curves, which gives more
useful information about similarity. For example if we take a route and shuffle the order,
that route will still have the same Hausdorff distance however the Fréchet distance will
signal the difference.
Imagine two bicyclists cycling across town from the same origin to the same destination
but over two different paths, the Fréchet distance would be equal to the shortest rope
that would necessary to connect both cyclists. For example if the two bicyclists would
take a nearly parallel path but the first bicyclist on the left bank of a river and the other
bicyclist on the right bank of a winding river, the coverage and consistency would be
nearly 0 but the Fréchet distance would be limited to the width of the river.

min median mean max std dev

BFS_LE 0 84.904 243.549 25897.228 583.795
DSCSG 0 107.04 306.603 25897.228 624.756

Table 8.3: Statistics for the minimum Fréchet distance between an observation and the routes in the
corresponding choice set.

Table 8.3 lists the Fréchet distances for both generation methods. It shows that BFS_LE on
average is able to produce routes more similar to the observed one than DSCSG does.
This is opposite to the evaluation by Hausdorff distance, meaning that routes generated
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with DSCSG might be Hausdorff-closer to the observed routes but when taking into ac-
count curves with Fréchet the routes generated with BFS_LE have a lower Fréchet dis-
tance.

COVERAGE BASED ON GEOMETRY BUFFERING

Additionally we looked at a different way to measure overlap and coverage, by allowing
a given margin around one of the routes in the comparison.

The GIS (Geographical Information System) buffer concept is used. A buffer with
radius R around a geometry g is a geometry b(g ,R) that contains all points at a distance
from g that is less than or equal to R.

In order to evaluate the nearness of a route r0 to route r1 we define the buffer b(r1,R).
We transform the concatenation of the geometries of all links in the route r0 into a single
line-string which is then subdivided into patches of a predefined length (except for the
last one). A patch si in the reconstitution of route r0 is counted to be near to r1 if and only
if si ∩b(r1,R) (the patch intersects the buffer). In case of intersection, the total length of
the patch is assumed to be near r1. Let ρ0 denote the reconstitution of r0. The similarity
is defined as:

sim(r0,r1) =

∑
s∈ρo |s∩b(r1,R)6=;

len(s)∑
s∈ρ0

len(s)
(8.9)

When evaluating choice sets, the observed route is subdivided into short patches and
the buffers are defined around the generated routes.

By dividing up the complete geometry of the observed route into small patches of
d meter, we can use GIS to determine whether any point on each patch intersects with
the generated path. The total distance of all patches on the observed path that intersect
the generated path, divided by the total length of the observed path gives us a overlap
fraction. that is used to determine an approximation for the observed route covered by
the buffer. The fraction of the observed route length covered is used as a quality measure.
The smaller we make d patch size, the higher accuracy we get as we define intersection
as two geometries touching each other at all possible points. However this is a trade-off
with computation time as the work load multiplies, in this study we used a patch size of
50 and 5 meters.

By defining a buffer around the geometry of each observed route we can apply a
spatial tolerance while comparing two paths (link sequences). If a path p0 is within the
buffer b(p1,r ) we consider paths p0 and p1 to overlap (and hence to be equivalent). For
example: the prediction ppred follows a path parallel to the observation pobs but over the
cycle-way on the other side of the road.

For each observed route U we have the generated choice set CS(U ) that contains
N (U ) routes. For each generated route in CS(U ) we determine a buffer with radius
R meters and look at the total length of the patches on the observed routes that in-
tersect with the buffer of the generated path. For each observed route and for both
route choice set generation methods (BFS_LE and DSCSG ) we determine the generated
path with the highest overlap fraction. The corresponding maximum overlap is called
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50 meter patches 5 meter patches
BFS_LE DSCSG BFS_LE DSCSG

Using 1 meter buffer 0.696 0.711 0.665 0.662
Using 5 meter buffer 0.710 0.733 0.681 0.690
Using 50 meter buffer 0.788 0.842 0.770 0.817
Using 250 meter buffer 0.871 0.912 0.858 0.900
Using 500 meter buffer 0.916 0.944 0.914 0.914
Using 1000 meter buffer 0.947 0.963 0.956 0.969
Using 2500 meter buffer 0.964 0.973 0.980 0.983

Table 8.4: Average of maxOver l ap(U ,CS(U )) over all observed routes for two different resolutions (5 and 50
meters). A value of 1 indicates that each choice set contains at least one route that coincides (using a given
distance threshold) with the observed route). A value of 0 indicates that for all choice sets there is no route

that has any link near to the observed route (because we consider maxOverlap(U ,CS(U ))).

50 meter patches 5 meter patches
BFS_LE DSCSG BFS_LE DSCSG

Using 1 meter buffer 0.674 0.701 0.646 0.653
Using 5 meter buffer 0.689 0.722 0.661 0.680
Using 50 meter buffer 0.767 0.825 0.748 0.806
Using 250 meter buffer 0.846 0.894 0.834 0.884
Using 500 meter buffer 0.892 0.925 0.889 0.923
Using 1000 meter buffer 0.923 0.944 0.932 0.951
Using 2500 meter buffer 0.940 0.953 0.959 0.966

Table 8.5: Average of maxOver l ap(U ,CS(U )) over all observed routes for two different resolutions (5 and 50
meters). A value of 1 indicates that each choice set contains at least one route that coincides (using a given
distance threshold) with the observed route). A value of 0 indicates that for all choice sets there is no route

that has any link near to the observed route (because we consider maxOverlap(U ,CS(U ))).

maxOver l ap(U ,CS(U )) and is used as a quality measure for the choice set CS(U ). Ta-
ble 8.5 lists the average (over all observations U ) of the maxOver l ap(U ,CS(U )) for both
choice set generation methods (BFS_LE and DSCSG ). We experimented using two dif-
ferent patch sizes of 50 and 5 meters respectively to evaluate the effect of the resolution
on the precision; as expected we see a lower maximum overlap when using a smaller
patch size since we are able to look at a closer level at the distance between generated
and observed path. Intersection of the observed route with a 5 meter patch S5 implies
intersection of the observed route with each 50 meter patch S50 that contains S5 but the
inverse is not true.

Tables 8.6 to 8.12 show coverage values calculated in a similar way as in table 8.1 but
using different overlap functions. We used a large range of buffer radius values in order
to verify to what extent the difference between the generated and observed routes was
limited to being on the different side of the street, river, city block or neighbourhood.
For 1[m] and 5[m] buffers, BFS_LE has a larger coverage than DSCSG in most cases.
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Coverage (%) for overlap threshold

Path Generation Technique 100% 90% 80% 70%
Behavioral
Consistency

BFS_LE 11.50 29.59 39.06 48.62 0.646
DSCSG 8.71 23.69 34.52 46.19 0.654

Table 8.6: Coverage with 1 meter buffer.

Coverage (%) for overlap threshold

Path Generation Technique 100% 90% 80% 70%
Behavioral
Consistency

BFS_LE 12.06 31.68 41.40 51.05 0.661
DSCSG 9.65 27.04 38.71 51.31 0.680

Table 8.7: Coverage with 5 meter buffer.

Coverage (%) for overlap threshold

Path Generation Technique 100% 90% 80% 70%
Behavioral
Consistency

BFS_LE 12.77 48.62 56.57 63.79 0.748
DSCSG 13.47 54.12 63.77 72.23 0.806

Table 8.8: Coverage with 50 meter buffer.

Coverage (%) for overlap threshold

Path Generation Technique 100% 90% 80% 70%
Behavioral
Consistency

BFS_LE 13.32 64.00 71.44 76.95 0.834
DSCSG 14.11 72.21 79.73 85.29 0.884

Table 8.9: Coverage with 250 meter buffer.

Coverage (%) for overlap threshold

Path Generation Technique 100% 90% 80% 70%
Behavioral
Consistency

BFS_LE 13.49 73.95 82.02 86.46 0.889
DSCSG 14.27 81.65 88.10 91.45 0.923

Table 8.10: Coverage with 500 meter buffer.
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Coverage (%) for overlap threshold

Path Generation Technique 100% 90% 80% 70%
Behavioral
Consistency

BFS_LE 13.67 82.93 90.47 93.54 0.932
DSCSG 14.52 88.38 93.48 95.75 0.951

Table 8.11: Coverage with 1000 meter buffer.

Coverage (%) for overlap threshold

Path Generation Technique 100% 90% 80% 70%
Behavioral
Consistency

BFS_LE 13.71 89.51 95.87 97.84 0.959
DSCSG 14.63 92.09 96.35 98.01 0.966

Table 8.12: Coverage with 2500 meter buffer.

Starting at 50[m] BFS_LE consistently reports a lower coverage than DSCSG .
Using larger patches measures coincidence of sub-routes less accurately than using

smaller patches; furthermore, the coincidence is consistently overestimated. This is be-
cause a large patch indicates large overlap length even if only a single point of the ob-
served route is near to the generated one.

The over-estimation grows with the patch length. In cases where the observed and
generated routes share some nodes but the sub-routes connecting consecutive shared
nodes are spatially not near to each other, the use of longer patches generates a larger
over-estimation. Therefor, the coverage increases with the buffer radius (explaining dif-
ference between tables).

Regarding the differences within the tables, observe that the ratio
COVbfsle/COVdscsg < 1 for buffer radius values up to 5[m] and
COVbfsle/COVdscsg > 1 for the other cases. This reveals that the shortest routes selected
by BFS_LE (which are not necessarily the K shortest paths) on average have less points
near to the observed route than the (possibly more complicated) routes generated by
DSCSG .

Table 8.1 is taken as the reference case. It represents the case where network links
need to be replicated entirely (overlap is equivalent to identification). In the buffer based
methods, overlap is defined in terms of geometric neighborhood: this leads to a relaxed
requirement (identification is not a necessary condition) and hence, for each given choice
set, the coverage and consistency quality values can be expected to grow with the buffer
radius used in the overlap function.

This phenomenon is explained as follows. The coverage indicator function used in
Equation (8.2) uses overlap as a similarity measure (see Equation (8.1)). The overlap
function used to generate Table 8.1 considers entire links. In the case of Table 8.6, the
overlap function (i) considers patches (limited length parts of the links in the observed
route) and (ii) considers a predicted route to cover a patch if it is sufficiently nearby (i.e.
coincidence is not even required).
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Figure 8.6: Generated paths by BFS_LE , red-dashed path indicates the observed route.

DISTANCE MEASURES AND QUALITY ASSESSMENT

Several measures for dissimilarity between routes have been discussed in previous sec-
tions. These are based on euclidean distance and hence on the notion of nearness in
space.

All of them can be used a quality measures for a choice set.
Assume an OD-pair 〈O,D〉, its associated choice set C (〈O,D〉) and a set Sobs(〈O,D〉) of
observed routes for the OD-pair. The choice C (〈O,D〉) set is of high quality only if for
each observed route r obs ∈ Sobs it contains a route r having a small dissimilarity dX (r,r obs).
This is a necessary but not sufficient condition for quality.

Another requirement for high quality of a choice set is diversity of the routes with
regard to their attributes that are assumed relevant in the choice process. Such attributes
may be rated differently by different categories of travellers. Insufficient variation makes
it harder to understand why a particular participant took the observed route. This variety
may require routes not similar to the observed one in terms of the evaluation methods
presented above.

An additional quality measure is the compliance of the distribution for route com-
plexity (discussed in Section 8.3) in the choice set with the one observed in reality (dis-
cussed in Section 8.4.2).
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Figure 8.7: Generated paths by DSCSG , red-dashed path indicates the observed route.
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8.6. CONCLUSION
There are various methods to generate route choice sets. In this paper we used two of
them. Double Stochastic Generation Function (DSCSG ) is evaluated because it gener-
ates heterogeneous routes, because it is reported to perform well for trips up to a length
of 10 kilometers and because it puts more attractive routes in the choice set. The prob-
lem with this kind of route choice generation is that the generated route can be over-
complicated and unrealistic. Secondly we used Breadth First Search Link Elimination
(BFS_LE ) to compare run-times and output.

This study formally defines the concept of route complexity and computes complex-
ity distributions for both a set of observed routes by bicyclists and a set of routes gener-
ated by the POSDAP implementations of BFS_LE and DSCSG . The distributions of the
generated paths are shown to be significantly different from reality.

We propose two options to solve the problem. Firstly we could attempt to find a tech-
nique where we integrate route complexity inside route choice generation algorithms
such as BFS_LE and DSCSG in order to filter out the most inappropriate routes. How-
ever this may turn out to be impossible since the quality criterion applies to the distri-
bution of a particular route property as opposed to a route specific property. A second
option consists of a two-step method that first applies classical route choice-set gener-
ators like BFS_LE and DSCSG to generate an initial choice-set that we subsequently
reduce in order to make sure the complexity distribution is more realistic, as described
in prior work by (Wardenier et al., 2019). Finally, resulting choice-sets can be evaluated
by their complexity distribution and by their coverage and consistency quality indicators
making use of the proposed relaxed similarity functions as in this paper.
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LIMITATIONS OF RECURSIVE LOGIT

FOR INVERSE REINFORCEMENT

LEARNING OF BICYCLE ROUTE

CHOICE BEHAVIOR IN AMSTERDAM

Used for route choice modelling by the transportation research community, recursive logit
is a form of inverse reinforcement learning. By solving a large-scale system of linear equa-
tions recursive logit allows estimation of an optimal (negative) reward function in a com-
putationally efficient way that performs for large networks and a large number of obser-
vations. In this chapter we review examples of recursive logit and inverse reinforcement
learning models applied to real world GPS travel trajectories and explore some of the chal-
lenges in modeling bicycle route choice in the city of Amsterdam using recursive logit as
compared to a simple baseline multinomial logit model with environmental variables.
We discuss conceptual, computational, numerical and statistical issues that we encoun-
tered and conclude with recommendation for further research. Finally, we compare this
work to a conventional choice model, estimating models using multi-nominal logit, mixed
logit and mixed path size logit specifications. Our results show that cyclists have a highly
stochastic behavior that are likely to prefer detours to drive over cycle-way infrastructure,
near greener land-use and near water, and on less busy roads. Models such as mixed logit
that can estimate the stochasticity of cyclists perform best to capture this behavior.

Parts of this chapter have been presented at the 100th Annual Meeting of the Transportation Research Board
and the 3rd ACM SIGSPATIAL International Workshop on GeoSpatial Simulation. A third extension was
presented at the 14th ACM SIGSPATIAL International Workshop on Computational Transportation Science
(IWCTS 2021).
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Bicycling in Amsterdam is serious business: one third of the daily movements in Am-
sterdam by residents and visitors is done by bike and almost half of the commute trips
between work and home is done on a bike. Furthermore bicycling has seen a steady
growth, not just in Amsterdam but in all (major) cities in the Netherlands. This leads to
increasing congestion issues for bicyclists especially at intersections with traffic lights.
To address this, policy changes are required such as new infrastructure, changes in traffic
signal policies, etc. To create effective policies, policy makers need tools to gain insights
in the behaviour of bicyclists, to model when and where they will bicycle.

In our previous research in (Koch et al., 2019) found that bicyclists in Amsterdam
rarely take the shortest path and make more detours than cars. It is thus less straight-
forward to predict routes taken by the average bicyclist route and consequently estimate
the number of bicyclists on a given street. However with the advent of new data col-
lections techniques such as GPS on smartphones, more and more data is available on
the revealed preference of bicyclists, allowing researchers to develop new ways to model
influences on bicycle route choice. In this study we will to attempt to quantify the in-
fluence of environmental and spatial planning features on route choice decisions of ev-
eryday bicyclists in Amsterdam by estimating a model that can predict where and how
these cyclists traverse in and around Amsterdam. We begin this paper with a background
reviewing literature relevant to bicycle route choice, by discrete choice modeling with
generation of alternative routes. Next we review methods to model route choice with-
out generating choice sets: recursive logit and inverse reinforcement learning. The case
study describes the data set of observed bicycle routes. We also defined a number of en-
vironmental variables that potentially could have an effect on bicycle route choice. First
we estimate a baseline multinomial logit model with the environmental variables, based
on the observed routes compared with up to 16 generated route alternatives. Subse-
quently we describe our efforts to estimate a recursive logit model with the observed bi-
cycle routes in our data, environmental explanatory variables, and the Amsterdam street
network – without generating route choice alternatives. We discuss conceptual, compu-
tational, numerical and statistical issues that we encountered. We conclude the paper
with a reflection on our experience of modeling route choice of bicyclist in Amsterdam
and recommendations for further research.

9.1. BACKGROUND

9.1.1. DISCRETE CHOICE MODELING OF TRAVEL ROUTES

Since the 1970’s discrete choice modeling has been a leading method to understand
choice behaviour of individuals in a wide range fields such as marketing, economics and
transportation. Described by (McFadden, 1973) in 1973, discrete choice modeling has
subsequently been extended over the decades in order to overcome specific limitations
such as overlapping alternatives and correlations over time. The study of the specific
field of route choice, is more complicated than a choice between easily enumerable dis-
tinct alternatives, as route choice is typically a sequence of choices at each intersection,
each transit stop, each mode, etc. This leads to very large choice set that is theoret-
ically infinite due to loops. Often there can also be a large overlap between different
route alternatives leading to difficulties for choice modeling. We will highlight two com-
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monly used approaches: An approach established in the 1990s to model route choice
using a collection of observed paths and for each observations a set of generated paths
by a route choice generator. This approach has been used to estimate models such as
multi-nominal logit (MNL) and mixed logit. This approach comes with limitations: as
discussed in (Koch et al., 2019), these route choice generators do not necessarily create
realistic routes; and (Frejinger et al., 2009) argues that parameter estimates can vary sig-
nificantly depending on the bias of the route choice generator. To address the issues with
the overlap between difference alternative paths and the resulting correlations, multiple
extensions have been proposed to attempt to avoid erroneous path probabilities and
substitution patterns. The most two popular are path size logit (Ben-Akiva & Bierlaire,
1999) and C-Logit (Cascetta et al., 1996), which decrease the utility of overlapping paths
proportional to the overlap with other paths included in the choice set.

A second approach is to achieve a consistent choice set by sampling as proposed by
(Frejinger et al., 2009). This approach attempts to set up a sampling protocol in order
to obtain unbiased parameter estimates from the route choice sets to neutralize the bias
introduced by the route choice generator.

9.1.2. BICYCLE ROUTE CHOICE

In 2010, (Menghini et al., 2010) published a seminal route choice model for bicyclists
estimated from a large sample of GPS observations in a revealed preference study with
2435 persons logging 73,493 trips in Zurich, Switzerland. Using this data they estimated
a multinominal logit model and used breadth-first search link elimination (BFS-LE) to
generate choice alternatives for each observed trip. They included six different variables
in the choice model: length of the route, average absolute gradient change, maximum
gradient change, percentage of marked bicycle paths along the route, number of traffic
lights and the path size measure. Accounting for the similarity between alternatives with
the path size vector, their model showed that the elasticity with respect to trip length was
nearly four times larger than that with respect to the percentage of bicycle paths along
the route. The only other explanatory variable that had an impact albeit small, was the
product of length and the maximum gradient along the route.

(Sener et al., 2009) in 2009 estimated a choice model using a stated preference survey
on Texas bicyclists and analyzed a comprehensive set of attributes that influence bicy-
cle route choice, such as the bicyclists characteristics, on-street parking, bicycle facility
types and amenities, roadway physical characteristics, roadway functional characteris-
tics, and roadway operational characteristics. To estimate the model they used a panel
mixed multinomial logit model. Their results indicate that travel time (for commuters)
and motorized traffic volume are the most important attributes in bicycle route choice.
Other attributes with a high impact include number of stop signs, red light, and cross-
streets, speed limits, on-street parking characteristics, and whether there exists a con-
tinuous bicycle facility on the route.

(Hood et al., 2011) estimated a route choice model on GPS data collected by cyclists
with a smartphone in San Francisco. Their choice set was generated by double stochastic
method by (Bovy & Fiorenzo-Catalano, 2007). They avoid the issues with the overlap
between different alternative paths by opting for a Path Size Multinomial Logit model
and there results showed that bicycle lanes were preferred to other facility types, that
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steep slopes were disfavored. Other negative attributes were length and turns. Traffic
volume, traffic speed, number of lanes, crime rates, and nightfall had no effect.

(Broach et al., 2012) looked at are revealed preference dataset collected by 164 cy-
clists using GPS units. (Broach et al., 2012) used 1449 utilitarian trips to estimated a
bicycle route choice model. To generate the choice-set they used an algorithm based
on multiple permutations of path attributes and formulated to account for overlapping
route alternatives. Their results from the Path Size Logit model suggest that bicyclists are
sensitive to the effects of distance, turn frequency, slope, number of traffic signals, and
traffic volumes. Additionally, bicyclists appear to highly value off-street bike paths, en-
hanced neighborhood cycleways with traffic calming features, and bridge facilities. Bike
lanes more or less exactly offset the negative effects of adjacent traffic.

In 2017, (Ton et al., 2017) reported on a route choice model for bicyclists using the
same dataset as in the study in this paper. Ton et al. consider the construction of choice
sets via an empirical approach, using only the observed trips in the data set to compose
the choice alternatives. On basis of their specific focus (inner city travel in Amsterdam)
Ton et al. selected 6 variables: distance, percentage of separate cycle paths, number of
intersections, rain, sunset and sunrise times and trip purpose. Their findings suggest
that bicyclists in Amsterdam are insensitive to dedicated cycle paths, attributed to an
inner city characterized by a dense road network where cycling is the most prominent
mode of transport. Additionally they found that cyclists in Amsterdam were found to
minimize travel distance and the number of intersections per kilometer. Furthermore
they found that for early morning trips there was a stronger impact of distance on route
choice than outside these hours. In a subsequent paper (Ton et al., 2018) looked at a
data-driven path identification approach, combining all unique routes observed for one
origin-destination pair into a choice set and comparing this approach with two com-
monly used choice set generation methods (breadth-first search on link elimination and
labelling).

(Ghanayim & Bekhor, 2018) analyzed bicycle route choice for commuter trips us-
ing a dataset from a GPS-assisted household travel survey in the Tel Aviv metropolitan
area. Their results indicate an expected tendency to ride in longer routes, but on sepa-
rated bike lanes. In the absence of such lanes, riders prefer to use local streets and avoid
busy arterial streets and highways. Their route choice generation calculated 20 alter-
natives using 3 methods: link elimination, link penalties and a simulation method that
calculated a shortest path using link impedance after each draw from a log normal dis-
tribution. The paper estimated a choice model using 3 model forms: multinomial logit,
C-logit and Path Size-logit.

(Bernardi et al., 2018) analyzed the GPS traces recorded by 280 cyclists in a mobility
panel throughout the Netherlands, that made approximately 3500 bike trips over a four
week period in 2014. The choice sets were composed by the shortest-path for the origin
destination and 4 alternative paths that were observed for that origin-destination pair.
Route choice models were estimated using a binomial logit model and a mix multino-
mial logit model with path size logit formulation. Their results show that trip lengths and
trip distribution over time reveal a population sample much used to cycling, frequently
and over long distances.

(Zimmermann et al., 2017) showed that is possible to estimate bicycle route choice
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without the restrictiveness of pre-generated route choice sets and model route choice as
a sequence of choices via recursive logit. For comparison with the recursive logit model,
we will estimate a simple baseline multinomial logit model using a synthetically gener-
ated choice set. The synthetic approach allows us to generate additional plausible route
alternatives outside the set of observed routes. This means that we can include all ob-
servations even between origin destinations pairs with only a single observations, unlike
the study by (Ton et al., 2017) that is limited to trips traversing the inner city of Amster-
dam, due to a insufficient density of trips in the suburbs for this empirical approach
to work there. (P. Chen et al., 2018) examines the effects of built environment features,
including factors of land use and road network, on bicyclists route preferences using
GPS datasets collected in the city of Seattle. The choice model was estimated using a
path-size-based mixed logit model. (P. Chen et al., 2018) identifies five core factors that
influence route choice behavior: trip length, speed limit, slope, bicycle lanes, and street
lights.

The study by (C. G. Prato et al., 2018) focused on observing bicyclist behavior in the
cycling oriented country of Denmark, exploiting rich data about the cycling environ-
ment, estimating the model in value of distance rather than preference space. (C. G.
Prato et al., 2018) not only focused on preferences for traditional variables such as dis-
tance, hilliness and road characteristics. but also on aspects such as bicycle facilities and
land-use designations. They estimated a model on 3384 cycling trips using mixed path
size logit.

(Dane et al., 2019) looked at the route choice behavior of cyclists on e-bikes based on
17626 trips from 742 users extracted from GPS data. In this paper a mixed logit model
with addition of the path-size attribute is applied on the route choice of respondents.
Choice sets were generated using the K-shortest path algorithm.

In our work (Koch et al., 2019) we found that bicyclists in Amsterdam often devi-
ate from the shortest path, more than car drivers, indicating that there are different and
possibly also more factors that have an effect on the routes bicyclists in Amsterdam take.
In (Koch et al., 2019) we focused on the concept of route complexity: counting the num-
ber of locations where people deviate from the shortest path, in the interest of improving
route choice generation techniques and potentially get more insight into the motivations
for the route choice for bicyclists. In this study we explore other effects on route choice
using different methodologies, without looking at route complexity or where people de-
viate from the shortest path. In future research we intend to combine both streams of
work.

9.2. METHODS
In this section we will review two variants of performing choice modeling without choice
sets: an analytical solutions via recursive logit and a computational approximation via
inverse reinforcement learning.

9.2.1. DYNAMIC DISCRETE CHOICE MODELING OF TRAVEL LINK SEQUENCES

An alternative approach uses link-based Markov decision process to model route choice
as a series of sequential decisions. First proposed by (Fosgerau et al., 2013) it uses a linear
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system of equations to efficiently compute choice probabilities by using a solver to solve
Bellman equations.

An incidence matrix is established that defines the exponential utility to perform ac-
tion a from state k:

Mka =
{
δ (a|k)e

1
µ v(a|k), a ∈ A (k)

0 otherwise.

}
(9.1)

The size of the incidence matrix is given by |Ã| describing the number of states A and the
number of dummy links d representing termination states of destination. As the dummy
links d have no successors, the row k = d will be zero. Secondly (Fosgerau et al., 2013)

define a vector z of size |Ãx1| vector where zk = e
1
µV (K ) and a vector b of size |Ãx1| where

bk = 0,k 6= d and bd = 1. Now given the identity matrix I , (Fosgerau et al., 2013) write the
linear equation:

z = M z +b ⇐⇒ (I −M)z = b (9.2)

This system has a solution if I − M is invertible, which might not be the case. As
(Fosgerau et al., 2013) note this is highly dependent on the balance between the number
of paths that connect the nodes in the network and the size of instantaneous utilities
1
µv(a|k). They note that this issue is particularly important to consider when estimating
a model, as depending on the value of β, I −M can be ill-conditioned or even singular.
(Fosgerau et al., 2013) note that this limits the possible values of parameters, as when
equation 9.2 does not yield a valid solution for at least one observation, the log likelihood
function is not defined. They suggest to deal with this issue by starting at a feasible point
(meaning a large enough magnitude in the parameters) and then being conservative in
the initial step size of the line search algorithm at the price of an increased number of
iterations.

(Mai et al., 2015b) proposed a nested recursive logit that relaxes the independence
from irrelevant alternatives property of the logit model by allowing scale parameters to
be link specific. (Zimmermann et al., 2017) subsequently look at bicycle route choice
problem in the city of Eugene, Oregon. By using 648 observations of bike trips collected
from 103 users. They test a long list of 14 potential parameters: length; link constant to
penalize paths with many constants; length interacted separately with upslope, medium
traffic, heavy traffic, regional multi-use path, bicycle boulevard, bike lane; bridge; bridge
interacted with bike facilities; no turn; no turn interacted with crossroad; left turn inter-
acted with crossroad separately for medium traffic and for heavy traffic.

In (Mai et al., 2018) an improvement is proposed to (Fosgerau et al., 2013) by re-
ducing the numbers of linear systems that need to be solved. By adding all observed
destinations in vector b of size |Ãx|D|| it becomes possible to solve the problem one
iteration instead of solving the system for each destination separately, allowing for 30
times performance gain in their example. They use this performance gain to propose a
mixed recursive logit, which allows for random taste variation by adding a random value
to the utility function and running the model n draws each iteration to allow for a ran-
dom variation. They perform a case study in two cities. First a car route choice model
in the Swedish city of Borlänge, with 466 destinations, 1832 observations and a bicycle
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route choice model in Eugene, Oregon with 286 destinations with a unknown number of
observations.

In (de Freitas et al., 2019), recursive logit is used to model inter-modal travel based
on a static network that describes various connections in Zurich, Switzerland. The street
network consists of 30,372 links and 13,828 nodes and the transit network consists of
10,298 transit links and 1585 nodes.

In (de Moraes Ramos et al., 2020), a network composed of 520 links and 200 nodes in
is considered, using (nested) recursive logit to see how travel information affects route
choice behaviour, and what is the impact of the travel time representation on the inter-
pretation of parameter estimates and prediction accuracy.

9.2.2. INVERSE REINFORCEMENT LEARNING ON REAL WORLD TRAVEL TRA-
JECTORIES

From the field of computer science but similar to Recursive logit, inverse reinforcement
learning (IRL) aims to find reward function parameters θ by observing the behaviour
of each agent in a Markov decision process (MDP) with a finite set S of N states. The
reward function R(ζ) for trajectory ζ = {s, a}, performing action a at state s with fs the
feature vector of state s, is given by:

R(ζ) = θT fζ =
∑
s∈ζ

θT fs (9.3)

In the computer science literature there are several studies performing IRL on real
world problems. (Ziebart et al., 2008) introduced Maximum entropy inverse reinforce-
ment learning in 2008 based on the principle of maximum entropy by (Jaynes, 1957) that
the probability of a trajectory ζ with higher reward is exponentially higher than that of a
smaller reward: P (ζ) ∝ eR(ζ). In order to learn from observed behaviour, the maximum
entropy IRL algorithm maximizes the likelihood of the observed trajectories under the
maximum entropy distribution T

θ∗ = argmax
θ

∑
ζ

logP (ζ̃|θ,T ) (9.4)

The maximum entropy distribution T is derived using

P (ζ|θ) = 1

Z (θ)
e

∑
s j ∈ζ

θ>fs j
i (9.5)

For parameters θ the partition function Z (θ) will always converge for the problem
with finite horizons and infinite horizon problems with discounted reward weights. Since
function 9.4 is convex for a deterministic MDP, gradients for optimizers can be obtained
by taking the difference between the observed feature counts and the expected feature
counts based on a given set of parameters θ, that can be formulated as the expected state
visitation frequencies Dsi . To compute the gradients (Ziebart et al., 2008) uses:

OL(θ) = f̃−∑
ζ

P (ζ|θ,T ) fζ = f̃−∑
si

Dsi fsi (9.6)
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To efficiently compute the expected state frequencies for parameters θ, (Ziebart et al.,
2008) has proposed an algorithm that approximates the state frequencies by recursively
backing up from each possible terminal state, computing each probability mass of each
branch along the way, computing partition function Z at each action and state. The
branching values give the local action probability that can be used to compute state fre-
quencies and summed up for total frequency counts. (Ziebart et al., 2008) apply the
maximum entropy IRL model to learn the reward function of taxi drivers on the road
network of Pittsburgh, Pennsylvania. To do so, GPS logging of approximately 7403 tra-
jectories are used to determine the cost of different road type, speed, number of lanes
and turn costs. The MDP modeled from the road-network of Pittsburg is assumed to be
deterministic with over 300,000 states (street segments) and 900,000 actions (transitions
at intersections).

(Hirakawa et al., 2018) use maximum entropy IRL to learn from bird behaviour. As
birds are equipped with GPS loggers but gaps may occur due to unavoidable issues with
the equipment, a method is needed to fill those gaps with the most likely trajectory. By
using maximum entropy IRL to find the reward function they determine the most likely
route taken by bids based on environmental features. They applied this approach on
one type of bird and found improvement over existing interpolation methods. The IRL
model uses 53 trajectories in a 3 dimensional grid world, with 600 cells in height for 200
by 300 grid cells each a square of approximately 3 kilometers wide.

In (Nguyen et al., 2015) a generalization of the IRL problem is proposed that allows
multiple locally consistent reward functions to generate the trajectories. By representing
the IRL problem with a probabilistic graph model, an expectation-maximization (EM) al-
gorithm can be devised to iteratively learn different reward functions and the stochastic
transitions between them, in order to improve the likelihood of the observed trajecto-
ries. As a result, the EM algorithm can be used to derive locally consistent reward func-
tions. (Nguyen et al., 2015) empirically evaluated their algorithm with a small real world
network and GPS data of 59 taxis in Singapore. In this evaluation the road network is
modelled as a simplified grid world with 193 states.

(Mai, Chan, et al., 2019) proposes a generalized version of the causal entropy maxi-
mization problem, allowing the possibility to generate a class of maximum entropy IRL
models. Their proposed generalized model has the advantage of being able to recover an
expert function that would (partially) capture the impact of the connecting structure of
the states on experts’ decision. Their empirical evaluation on a real-world dataset and a
grid-world dataset shows that their generalized model outperforms classical approaches
in terms of recovering reward functions and demonstrated trajectories.

(Mai, Nguyen, et al., 2019) proposes a tractable approach to compute directly a log-
likelihood of observed trajectories with incomplete/missing data. By performing the
training by solving a sequence of linear equations that does not depend on the num-
ber of missing segments it is efficient at handling a large number of missing segments.
Their empirical evaluation showed that their approach outperforms other approaches.

(Mo, 2019) looks at bicycle route choice applying the maximum entropy IRL ap-
proach. To achieve multi-reward functions an extension is used known as Behaviour
Clustering IRL (BCIRL). He performs multiple experiments to investigate the applicabil-
ity of these methods in the context of bicycle route choice. In this study it was found
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that a low number of demonstrated trajectories, short trajectory lengths, large number
of Markov decision processes to be solved, and class imbalance were problematic issues
for the methods. An application was performed on a dataset of GPS trajectories in Ams-
terdam, but no factors other than distance were found to be relevant.

In 2017 (Wu et al., 2017) proposed a data driven method that construct a MDP that
models the decision making process of a public transit rider, decisions such as mode
choice, route choice and transfer location choice. The purpose is to predict public transit
route choice for urban planners, given various proposed transit construction scenarios.
Using this MDP they use maximum entropy IRL to infer the passenger reward function
from observed public transit chip card data (AFC) from Shenzhen, China for a period of
3 months. They model the real world as a grid world, dividing the world into grids of a
square kilometer and the action set as the possible choice set of different bus and subway
routes between each grid cell. The features they include are variables such as fare, travel
time, number of transfers and the amount of time remaining to 9 am. In their study they
find that they can find a reward function very closed to what is observed with regard to
behaviour by public transit users and claim that it justifies their hypothesis that public
transit users make sub optimal decisions.

In 2018 (Wu et al., 2018) extended this work in multiple ways to propose a transit
evaluation framework. This framework consists of three stages. The first stage data pre-
processing divides the urban area into equal size grids, which can be represented as a
graph: with the grids as nodes and connected via edges that represent the road and
transit system. The second part of the pre-processing consists of aggregating the bus-
stops and trajectories into that grid system. The second stage consists of data-driven
modelling, modelling the decision process as MDP and derive decision making features
from the network such as number of transfers, number of transit options,transit mode,
travel time, fare, etc. The final stage is to use this work to learn about rewards, pref-
erences and user choices in order to evaluate transit plans. In the study they describe
a preference learning algorithm Inverse Reinforcement Learning with Suboptimal Pol-
icy (IRL+SP) that can capture non-linear reward functions of travelers. This algorithm
works with the principle of maximum entropy and assumes that experts make decision
with soft-max based sub-optimal policies.

To study how well IRL+SP performs in reward learning, (Wu et al., 2018) compare it
to IRL and Apprenticeship Learning (AL) and claim that it leads to the lowest ridership
vector difference, that IRL and IRL+SP converge faster than AL. To learn how well their
algorithm performs in ridership prediction they combine IRL+SP with machine learning
techniques such as random forest, lasso regression and linear regression. They compare
this with a directly trained machine learning model and to a MNL model and claim to
have the lowest prediction relative error. In this study they correctly note that MNL con-
siders a route choice as a single decision of the entire trajectory instead of a sequence of
decisions.

9.3. DISCRETE CHOICE MODELLING

In this section we briefly explain the three discrete choice modeling techniques used in
this paper.
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9.3.1. MULTINOMIAL LOGIT
In the multinominal logit the utility U for each observation n for each alternative i is

Uni =βxni +εni (9.7)

εni ∼ iid extreme value (9.8)

The probability that for observation n alternative i is chosen is:

Pni = eβn Xni∑
j eβn Xn j

(9.9)

The model is then estimated by maximizing the log-likelihood. First we estimated multi-
nomial logit (MNL) models with a single variable per model and base on those results we
removed some variables with high correlation between them. Firstly we decided to in-
clude only the highest and lowest level of traffic noise exposure. While the four variables
were significant on their own, there was not much difference for the estimated coeffi-
cient values between 60 and 70 decibels. Secondly we only included the absolute num-
ber of traffic signals as the frequency of traffic signals per kilometer had a lower t-test
score. The choice model was estimated both using PandasBiogeme(Bierlaire, 2018).

9.3.2. TASTE VARIATION: MIXED LOGIT
A limitation of the multinominal logit model is that it does not take random taste varia-
tion among the thousands of cyclist in our dataset into account. This is why in this study
we opted for mixed logit, which is an extension of multi-nominal logit. In the mixed logit
the utility is generalized by allowing Bn to be random, this makes the utility of observa-
tion n for each alternative i :

Uni =βn xni +εni (9.10)

βn ∼ f (β|θ) (9.11)

The probability conditional on βn that for observation n alternative i is chosen is:

Lni (βn) = eβn Xni∑
j eβn Xn j

(9.12)

As βn is random, the choice probability is the integral of the logit formula in equation
9.12 over the probability density function f .

Pni =
∫

Lni (β) f (β|θ)dβ (9.13)

9.3.3. PATH SIZE LOGIT
With logit the utility of overlapping paths is overestimated. When δ is large, there is some
sort of double counting. The idea of path size logit is to correct for that:

Vp =−βxp +β lnPSp (9.14)
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where

PSp = ∑
(i , j )∈p

c(i , j )

cp

1∑
q∈C δ

q
i , j

(9.15)

and

δ
q
i , j =

{
1, if link (i,j) belongs to path q

0, otherwise
(9.16)

Where c is the cost function, in study we will simply use length as the cost function.

9.4. CASE STUDY

9.4.1. COLLECTING DATA ON BICYCLE MOVEMENTS
For this study we used the 2016 FietsTelweek ("Bicycle Counting Week") data set (Bikeprint,
2017) that is available at their website. It contains 282,796 unique trips (although the cor-
responding infographic http://fietstelweek.nl/data/resultaten-fiets-telweek-bekend/ men-
tions 416,376 trips having a total distance of 1,786,147 kilometers). During the week of
the 19th of September 2016 approximately 29,600 bicyclists volunteered to track their
bicycle movements using a smartphone app. For this case study we limited the study
to bicycle trips to and/or from the city of Amsterdam, Diemen, Amstelveen and Ouder-
Amstel, leaving around 29,684 trips. In Figure 9.1 we visualized all observed trajectories.

This app ran in the background collecting all movements by the bicyclists using the
phone’s GPS and acceleration sensors. The cyclists used their bike in a way as often seen
in the Netherlands, using their bike as transportation from and to work, supermarket,
school, etc. For privacy reasons the resulting data was anonymized by the data provider
before making it publicly available (i) by the removal of user information to make it im-
possible to trace multiple trips to a single person and (ii) by rounding of the trip depar-
ture time into one-hour bins to the nearest hour and (iii) removal of the random number
between 0 and 400 meters from the start and the end of the trip to obfuscate the true
origin and destination of each trip.

In prior research based on this data we found in (Koch et al., 2019) that bicyclists in
Amsterdam often deviate from the shortest path, more than car drivers, indicating that
there are different factors at play in the route choice of bicyclists in Amsterdam. In (Koch
et al., 2019) we focused on the concept of route complexity: counting the number of
locations where people deviate from the shortest path, in the interest of improving route
choice generation techniques and potentially get more insight into the motivations for
the route choice for bicyclists.

9.4.2. GENERATION OF ALTERNATIVES
To find out what kind of alternatives exist for each observed path we applied synthetic
route choice generation using the Double Stochastic Generation Function (DSGF) method
described by (Nielsen, 2000). The DSGF approach produces heterogeneous routes be-
cause both the cost and parameters used in the cost function for the links are drawn
from a probability function. This way it can generate random paths, just by calculating
the shortest path since the cost of each route is based on random factors. (Halldórsdót-
tir et al., 2014) showed that DSGF has a high coverage level of replicating routes taken by

http://www.bikeprint.nl/fietstelweek/
http://fietstelweek.nl/data/resultaten-fiets-telweek-bekend/
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Figure 9.1: Map visualizing the trajectories observed in Amsterdam in the case study.

bicyclists and that it performs well up to 10 kilometer. Furthermore (Bovy & Fiorenzo-
Catalano, 2007) state that the method guarantees, with high probability, that attractive
routes are included in the choice set, while unattractive routes are left out.

We used an existing implementation of DSGF, specifically POSDAP by (ETH-Zurich,
2012) working on a street network provided by the data collection team of the Fietstel-
week, that they imported from OpenStreetMap. We slightly modified POSDAP to execute
at most a given number of M = 128 iterations (instead of running for a given duration)
so that it behaves identically on different machines. For some origin destination pairs
POSDAP was not able to find as many as N0 routes in M iterations, in which case we will
use all found routes. The choice sets are written to CSV files for further processing.

Additionally we also run an implementation of Breadth First Search Link Elimination
(BFS-LE) by (Rieser-Schüssler et al., 2013), but we opted to leave out these alternatives
since there was not much variance in the route choice set. In (Koch et al., 2019) we
published on the coverage and consistency of both synthetic choice sets.
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Table 9.1: Descriptive statistics on the variables of the observed bicycle trips.

Min Median Avg Std-dev Max
Length 500.03 2640.41 4032.32 4935.01 149427.61
55+dB noise 0 0.73 0.68 0.27 1
70+dB noise 0 0.39 0.42 0.29 1
Near green 0 0.18 0.22 0.21 1
Residential 0 0.53 0.52 0.26 1
Near retail 0 0.18 0.22 0.20 1
Near tram 0 0.10 0.24 0.29 1
Tree cover 0 0.40 0.39 0.17 1
Near water 0 0.30 0.34 0.22 1
Traffic signals 0 1 1.99 2.64 25
Cycleway 0 0.53 0.52 0.27 1
lnPS -2.73 -1.30 -1.28 0.65 0

9.4.3. ENVIRONMENTAL VARIABLES

To collect a set of variables that would reasonably impact route choice of bicyclists we
collected and processed open data sources to compute various explanatory variables de-
scribing each route. The procedure for the generation of the variables is described below.
Descriptive statistics of the variables of the observed trajectories are given in Table 9.1
and for the complete set of generated alternatives in table 9.2.

First of all for each link in the network we include the length of that link as distance
and if that link is a dedicated cycle-way, we include the length as oncycleway. Addition-
ally we have a variable traveltime based on the length and an estimated speed based on
the GPS observations.

To include data about the environment of each link we extracted information of
data made openly available by the city of Amsterdam. Firstly we pulled potentially rele-
vant variables from a geographical data-set with land-use zones. To combine the street-
network with other relevant geographical data-sets, we cut each street link into small
segments of 5 meters and determined the distance of that segments to a geographical
feature in the land use data-set. The variable nearwater measures the distance of street
situated close to water bodies such as the canals of Amsterdam, (small) lakes, rivers and
other water bodies wider than 6 meters. To determine a preference for routes through
parks and forests we did the same thing with the variable neargreen, measuring dis-
tance of street situated within a 25 meter radius of ’green’ land used for parks, forests
and meadows.

For a more fine-grained indication of the level of green and trees along a route, we
used a data-set of the location of each individual tree in Amsterdam to determine what
portion of each street segment is covered by trees. Our reasoning is that the number of
trees has an influence on route choice as they can provide shade on hot days and func-
tion as a cover against the wind in storm conditions. To determine the variable neartree
we measured the distance of street within 30 meters left or right from one or more tree(s).
This way a street along a row of trees would have the full distance. We determined the
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Table 9.2: Descriptive statistics on the variables of the generated alternative bicycle trips.

Min Median Avg Std-dev Max
Length 175.59 2663.10 3956.69 4487.86 150758.47
55+dB noise 0 0.74 0.69 0.26 1
70+dB noise 0 0.43 0.43 0.26 1
Near green 0 0.15 0.20 0.19 1
Residential 0 0.54 0.52 0.24 1
Near retail 0 0.18 0.23 0.19 1
Near tram 0 0.15 0.24 0.26 1
Tree cover 0 0.39 0.39 0.16 1
Near water 0 0.27 0.31 0.22 1
Traffic signals 0 1 2.19 2.72 28
Cycleway 0 0.48 0.47 0.24 1
lnPS -2.78 -1.45 -1.44 0.49 0

distance of 30 meters between road and tree based on various situations where a rows of
trees are situated along bicycle roads in Amsterdam.

To measure the effect of residential areas the variable nearresidential measures the
distance of streets in residential areas. . The variable nearretail describes distance
within areas purposed for ’Shops, malls and hotels-restaurants-pubs’, ’Public offices and
services’ and ’Cultural, social, medical, educational’.

To see if the vicinity of busy roads, a major source of noise and pollution, has any
impact on route choice we used a data set with the noise contours map of road traffic
in Amsterdam as shown in Figure 9.2. This data-set is produced by a model that esti-
mates the level of exposure to traffic noise in this map there are four noise levels with
respectively at least 55, 60, 65 or 70 decibels of noise. The variables nearXdb represent
the distance of the street passing through these exposure zones.

Based on the idea that tramlines in Amsterdam form a radial artery towards the heart
of the city, we construct the variable neartram indicating the portion of the route that is
situated 100 meter from tram rails either to the left or right of the path, measured using
segments of 10 meters.

Finally we wanted to see if the number and frequency of traffic signals has a measur-
able effect on route choice. We included this in two ways: first the exact number of traffic
signals with ntrafficsignal and secondly the frequency of traffic signals trafficsignalfreq
where the number of signals is divided by the length of the route.

Since Amsterdam has no elevation changes beyond the occasional bridge, we did not
include any elevation changes as a variable.

9.5. RESULTS
MULTINOMIAL LOGIT

The estimated parameters for our baseline multinominal logit model are presented in
the first column of 9.3. The results are mostly as expected except for length. A Traffic
signals and being near roads with (heavy) noise emission all have a negative utility. Being
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Figure 9.2: Noise contour map of Amsterdam, used for the variable that indicates the distance of a trajectory
along roads with noisy traffic.

close to water and/or green land-use and dedicated cycle-way infrastructure all have a
strong positive utility. Being near retail land-use has a positive utility while residential
land-use has a negative utility. The positive utility of being near tram lines may be a
correlation effect of tramlines in Amsterdam forming a guide way into the city center.
The unexpected positive effect of additional distance warrants further investigation by
adding mixing for taste variation.

MIXED LOGIT

The results for the series of mixed logit models are listed in the second through twelfth
columns of Table 9.3. These results are based on running the model with 5000 draws. In
each column we list the estimated parameters for a mixed logit model with the standard
deviation (sigmaσ) on the variable indicated in the header of the column. The estimated
standard deviation (sigma) for that variable is listed at the bottom of the table, this is not
applicable for the baseline multinomial logit. model. The log likelihood for each model
is listed in Table 9.4.

PATH SIZE LOGIT

In Table 9.5 we listed results for models we ran with the path size logit as a variable.
The results for a multi-nominal logit and mixed logit models were estimated using 1000
draws. The log likelihoods are listed in Table 9.6. We also see that the natural log of path
size variable is a statistically significant in every model that we estimated. Again just like
as in the mixed logit we see here that the model with taste variation on route length has
the best log likelihood.
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9.6. RECURSIVE LOGIT MODEL EXPERIMENTS
In this section we describe a series of experiments in modeling bicycle route choice in
the city of Amsterdam using recursive logit model with the observed bicycle routes in our
data, environmental explanatory variables, and the Amsterdam street network – without
generating route choice alternatives.

9.6.1. RECURSIVE LOGIT WITH ENVIRONMENTAL VARIABLES

Our initial attempt was to model the Amsterdam network with each intersection as a
node and the streets as actions, following example in (Zimmermann & Frejinger, 2020).
This resulted in a network with approximately 46,000 links and 30,000 observations,
which we carefully controlled for full connectivity and no isolated graphs. Our moti-
vation to model intersections as states instead of links as states was driven to lower the
number of total states to be modeled, under the assumption that turn angles might have
a low influence on bicycle route choice in Amsterdam. We tested the recursive logit
model with the five variables length, oncycleway, nearwater, neargreen and near55db.
However we were unable to get the solver to give plausible results for equation 9.1 as the
solver would return incorrect results.

Table 9.3: Baseline multinomial logit and series of mixed logit models with taste variation per explanatory
variable.

MNL
Route

Length
55+dB

Noise
70+dB

Noise
Near

green
Resid-
ential

Near
retail

Near
tram

Tree
cover

Near
water

Traffic
signals

Cycle
way

βroute length 1.86 -2,21 1.67 1,66 1,76 1,74 1,77 1,61 1,76 1,77 1,8 1.9
t-test 62.1 -14,4 51.6 50,7 55,2 54.5 57,2 50,8 54,3 53,9 57,2 56.2

β55+dB noise -0.324 -0,496 0.484 -0,711 -0,284 -0,0492 -0,32 -0,403 -0,046 -0,519 -0,348 -0.356
t-test -3.32 -3,91 3.36 -6,06 -2,7 -0,45 -3,05 -3,66 -0,416 -4,57 -3,47 -3.15

β70+dB noise -2.09 -2,54 -2.68 -2,25 -2,28 -2,37 -2,13 -2,42 -2,39 -2,08 -2,2 -2.52
t-test -26.3 -24,9 -29.2 -18,1 -26,4 -26,8 -25,1 -26,3 -26,7 -22,6 -26,8 -26.9

βnear green 2.47 2,84 2.73 3,1 3,73 2,79 2,59 2,69 2,68 2,59 2,43 2.85
t-test 28.9 25,3 27.5 30,1 29 28,7 28,7 27,9 27,4 26,2 27,8 29.1

βresidential -0.373 -0,415 -0.094 -0,263 -0,261 -0,259 -0,43 -0,0838 -0,224 -0,511 -0,376 -0.324
t-test -5.51 -4,83 -1.2 -3,3 -3,54 -2,62 -5,86 -1,1 -2,96 -6,59 -5,39 -4.18

βnear retail 0.639 0,921 0.967 0,994 0,592 1,14 0,612 0,56 0,818 0,776 0,589 0.933
t-test 6.9 7,95 9.24 9,26 6,02 10,8 4,79 5,39 8 7,35 6,15 8.96

βnear tram 1.3 1,89 1.34 1,37 1,59 1,5 1,41 0,655 1,59 1,45 1,38 1.67
t-test 19.2 21,7 17 16,6 21,3 19,9 19,4 5,43 20,9 18,5 19,5 21.2

βtree cover 1.46 2,44 2.17 1,56 1,65 1,71 1,66 1,77 3 2,27 1,71 1.81
t-test 11.5 14,7 14.3 10 11,7 11,9 12,3 12,1 15,5 15,4 13 12.5

βnear water 2.11 2,22 2.26 1,93 2,16 2,31 2,23 2,15 2,29 2,11 2,09 2.09
t-test 36 29,5 33.6 27,7 33,7 35,1 35,5 33 34,8 21,2 34,6 30.8

βtraffic signals -0.496 -0,501 -0.591 -0,733 -0,465 -0,499 -0,513 -0,649 -0,501 -0,479 -1,21 -0.476
t-test -9.84 -7,61 -10.6 -12,5 -8,86 -9,28 -9,75 -11 -9,33 -8,71 -15,4 -8.64

βcycleway 4.3 4,63 4.91 4,87 4,61 4,67 4,55 4,89 4,71 4,86 4,35 6.43
t-test 78 70 78.5 76,4 77,8 77 77,7 79 77,5 78,3 76,9 64.8

σ N/A 16,9 10.6 10,3 8,93 8,22 8,94 10,1 15,8 9,3 4,89 6.53
t-test N/A 65,9 50.2 57,4 38,8 44,6 34,7 50,4 46,6 52,7 35 64.7

Table 9.4: Log likelihood of baseline multinomial logit and series of mixed logit models with taste variation
per explanatory variable.

MNL
Route

Length
55+dB

Noise
70+dB

Noise
Near

green
Resid-
ential

Near
retail

Near
tram

Tree
cover

Near
water

Traffic
signals

Cycle
way

LL -79817 -75922 -78500 -77851 -79215 -79028 -79407 -78092 -78963 -78478 -79365 -77705
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Table 9.5: Baseline multinomial logit and series of mixed logit models with path size and taste variation per
explanatory variable.

MNL
Route

Length
55+dB

Noise
70+dB

Noise
Near

green
Resid-
ential

Near
retail

Near
tram

Tree
cover

Near
water

Traffic
signals

Cycle
way

βroute length 1.27 -5.03 1.33 1.37 1.29 1.29 1.29 1.29 1.3 1.37 1.28 1.44
t-test 38.4 17.8 36.5 36.7 36.7 36.6 37.7 36.3 36.4 37 36.8 37.7

β55+dB noise -0.32 -0.353 0.41 -0.681 -0.291 -0.081 -0.312 -0.394 -0.075 -0.504 -0.337 0.334
t-test -3.39 -2.85 2.98 -5.93 -2.87 -0.766 -3.1 -3.66 -0.702 -4.56 -3.48 -3.03

β70+dB noise -1.93 -2.3 -2.54 -2.17 -2.13 -2.23 -2 -2.3 -2.25 -1.97 -2.04 -2.37
t-test -25 -23.1 -28.4 -18.1 -25.5 -25.9 -24.4 -25.5 -25.9 -21.9 -25.6 -25.9

βnear green 2.35 2.76 2.66 3.03 3.47 2.69 2.47 2.61 2.58 2.51 2.33 2.76
t-test 28.5 25.2 27.5 29.9 28.7 28.7 28.3 27.7 27.4 26.1 27.5 28.9

βresidential -0.347 -0.395 -0.103 -0.264 -0.263 -0.262 -0.408 -0.086 -0.225 -0.493 -0.351 -0.317
t-test -5.3 -4.7 -1.35 -3.38 -3.7 -2.81 -5.78 -1.15 -3.06 -6.54 -5.18 -4.18

βnear retail 0.665 0.953 -0.964 0.996 0.632 1.11 0.631 0.579 0.826 0.775 0.606 0.931
t-test 7.41 8.42 9.42 9.46 6.64 10.8 5.34 5.69 8.32 7.53 6.53 9.15

βnear tram 1.31 1.97 1.36 1.38 1.55 1.49 1.4 0.716 1.56 1.45 1.37 1.67
t-test 20.1 23.2 17.8 17.1 21.6 20.5 20.1 6.22 21.2 19 20.1 21.6

βtree cover 1.42 2.57 2.1 1.53 1.59 1.64 1.59 1.73 2.78 2.19 1.63 1.77
t-test 11.6 23.2 17.8 10 11.7 11.8 12.1 12.1 15.1 15.2 12.8 12.4

βnear water 2.03 2.13 2.2 1.9 2.09 2.23 2.16 2.11 2.21 2.05 2.02 2.04
t-test 35.6 28.8 33.6 27.8 33.7 35 35.4 33.1 34.6 21.7 34.5 30.8

βtraffic signals -0.477 -0.439 -0.575 -0.712 -0.449 -0.485 -0.494 -0.635 -0.486 -0.468 -1.13 -0.466
t-test -9.68 -6.72 -10.5 -12.3 -8.76 -9.22 -9.62 -10.9 -9.25 -8.67 -15.1 -8.6

βcycleway 4.26 4.6 4.86 4.85 4.55 4.63 4.48 4.86 4.66 4.82 4.31 6.32
t-test 78.6 70.2 78.8 76.8 78.2 77.6 78.1 79.3 78 78.6 77.6 65.2
βlnPS 0.56 1.06 0.365 0.313 0.473 0.458 0.484 0.339 0.462 0.396 0.496 0.439
t-test 30.5 37.9 17.2 14.3 23.9 22.6 24.6 16.1 22.8 18.8 26 20.9

σ N/A 17.8 9.71 9.7 7.77 7.32 7.45 9.35 14.3 8.58 4.31 9.08
t-test N/A 67.3 45.7 58.3 34 39.7 28.5 47.3 42.1 48.7 30.8 62.1

Table 9.6: Log Likelihood multinomial logit and series of mixed logit models with path size and taste variation
per explanatory variable.

MNL
Route

Length
55+dB

Noise
70+dB

Noise
Near

green
Resid-
ential

Near
retail

Near
tram

Tree
cover

Near
water

Traffic
signals

Cycle
way

LL -79372 -75221 -78356 -77758 -78951 -78793 -79123 -78030 -78805 -78307 -79044 -77501

9.6.2. PYTHON RE-IMPLEMENTATION OF RECURSIVE LOGIT

For the purpose of a better understanding of the algorithm we also implemented our
own version of the original recursive logit model in (Fosgerau et al., 2013) and the signif-
icantly faster decomposition recursive logit model (Mai et al., 2018) in Python with SciPy
and NumPy. We were indeed able to successfully replicate models with data available on-
line using our Python re-implementation. However also our Python re-implementation
was not effective in giving plausible estimation results for the Amsterdam bicycle case.

9.6.3. REDUCTION OF STUDY AREA TO AMSTERDAM CITY CENTER ONLY

Subsequently we simplified the study area to just the Amsterdam city center area con-
taining only about 4500 links, excluding the entire municipality and surrounding sub-
urbs. Again we carefully controlled for full connectivity and no isolated graphs. This too
did not lead to plausible estimation results. We visualized this specific selection in Figure
9.3.
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Figure 9.3: Map showing the selected area for city center of Amsterdam in red.

9.6.4. REDUCTION OF STREET NETWORK COMPLEXITY

Based on the remark by (Fosgerau et al., 2013) on dense networks and the number of
alternative paths, our next action was to simplify the street network in the Amsterdam
city center and remove all footpaths to reduce the complexity of the network. Again
we carefully controlled for full connectivity and no isolated graphs. We accordingly also
removed all observations of GPS trajectories cycling over footpaths. This too did not lead
to plausible estimation results.

9.6.5. EDGE-BASED NETWORK VERSUS INTERSECTION-BASED NETWORK

Finally to transform our model to a model more similar to the studies in the literature,
we instead created an edge-based network, instead of the intersection-based network.
In the adapted implementation, each state is a street-segment and each action is a move
to another street segment. This link-link approach allows the possibility to create new
features with a boolean to indicate turns, left turns and u-turns, similar to the Borlänge
model in (Fosgerau et al., 2013) and (Mai et al., 2018). For the entire city of Amsterdam
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Table 9.7: Results from models. that were estimated on 987 observations in the city center of Amsterdam.

Utility parameter Estimated value t-Test
Travel time (minutes) -2.9119 -19.7751
Intersections -0.6356 -13.8377
Left turn -1.5717 -20.8542
U-turns 0.4205 7.5003
Log likelihood -4.489078

Travel time (minutes) -18.0368 -2587.03
Log likelihood -10.279184

Travel time (minutes) -18.03681 -2587.035
Distance exposed to traffic noise >= 55db -1.9330 -0.1354
Log likelihood -10.279184

Travel time (minutes) -18.0369 -2580.7
Distance along water (km) -2566.333 -3.7053
Log likelihood -10.274874

Travel time (minutes) -18.0368 -2587.0
Distance along trees (km) -1.9330 -0.0098
Log likelihood -10.279184

this model contains 40063 links as states with 137724 transitions between states; for the
city center area only it consists of 4204 links as states with 15234 transitions.

EDGE-BASED NETWORK ON ENTIRE CITY OF AMSTERDAM: TURN VARIABLES

With this network we were now able to solve the linear system to obtain a solution of z
without (invalid) negative values for the entire city of Amsterdam. However even when
setting the maximum number of links per observation at 30 links, we are still unable to
calculate a log likelihood due to values of zor i g i n == 0 for one or more of the observations.

EDGE-BASED NETWORK ON AMSTERDAM CITY CENTER ONLY: TURN VARIABLES

In the smaller area of the city center of Amsterdam it is possible to estimate a model
but also with a relatively low limit of 30 links per observation, as a higher limit would
again return zero values for zor i g i n . This meant we are able to process only 987 obser-
vations and 681 destinations. We listed the results of this model in Table 9.7 where we
would describe the betas to be plausible. An increase travel time would be a obvious
cost. The negative value of an intersection, especially in the city center where almost all
road/bicycle intersections are equipped with traffic lights is also expected. The positive
reward for for left-turn seems as expected to avoid crossing traffic. The positive reward
for u-turn may seem odd, but u-turn costs on a bicycle should be less costly than in a
motorized vehicle.
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EDGE-BASED NETWORK ON AMSTERDAM CITY CENTER: ENVIRONMENTAL VARIABLES

Subsequently we modelled travel-time with our five variables separately: 70db traffic
noise distance, near green distance, near water distance, tree covered distance, cycle
way distance. While all these models did converge, it was only able to invert the hessian
to calculate a standard error for models: travel-time and length with tree cover; travel-
time and length along water; travel-time and length with traffic noise. We listed these
results in Table 9.7. The βlength− tree cover for is not significant, possibly because tree
cover is less of an issue in the city center which is shielded by buildings. The result for
traffic noise is not significant either. The only significant effect found besides travel-
time was the distance travelled near water, possibly due to cycling along the cobble-
stone paved narrow canals navigating between cars, trucks and tourists being perceived
as disadvantageous to persons who cycle for daily activities.

9.7. DISCUSSION
Given our experience with the Amsterdam model, we highlight several challenges during
the estimation of the recursive logit model. We reflect on why our initial plan for esti-
mating the bicycle choice behavior in the entire city of Amsterdam with environmental
variables was feasible with the baseline multinomial logit model, but faced numerical
complications with the recursive logit model.

9.7.1. NEGATIVE REWARD FORMULATION

In the original paper by (Fosgerau et al., 2013) on recursive logit it is mentioned that to
formulate the path choice problem as a dynamic discrete choice model with the utility
maximization problem consistent with a dynamic programming problem, the determin-
istic utility component is required to have negative value: vn(a|k) = v(xn,a|k;β) < 0.

As an experiment we set up a network based on a simple grid layout, with 625 in-
tersections, allowing the user to move left, right, up, down. There is one diagonal con-
nection across from the top left corner to the bottom right corner. We included each
segment between the intersections as a single unit of distance. See Figure 9.4 for a visu-
alization of 10 by 10 grid. We set up 4 different variables: βdi st ance for the unit distance,
βi nter sect i on that counts each intersection passed, βle f t that counts each move towards
the left side of the grid, βdi ag onal that counts each diagonal move. We included two
observations across the top and right of the grid and a observation across the left and
bottom of the grid and a series of 10 random observations that have a strong preference
to move diagonally when possible. This model estimated with a log likelihood of -10 and
βdi st ance = −1.54467129,βi nter sect i on = −2.04467129,βdi ag onal = −2.09161539,βl e f t =
−81.34025.

What we observed is that altering the attribute of a single link of this model to make
the utility of that link positive lead to the inability of the linear solver to return a valid
solution and thus not being able to find a log likelihood or estimate a model.

An implication that when using recursive logit you should aim for only including
costs in your function u. In practice this might turn out tricky as cost variables may
turn out to be correlated with reward variables not included in your model. For example
heavy traffic near a bicycle path may seem like a cost variable at first, but as such roads
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Figure 9.4: Two fixed paths to same destination along the boundaries of the graph (in red and green), plus
example of one randomly generated path (in blue). All paths start at the top left corner and end respectively at

the large red/green circle and the large blue circle.

are likely equipped with street lights in contrast to a path through a dark and empty park,
such variable may turn out to have a negative cost.

9.7.2. VALID INITIAL PARAMETERS AND LENGTH OF OBSERVATIONS
To take a closer look at how difficult it can be to determine a valid initial parameter prior
to iterative solution of the system, we proceeded to look at solely at travel-time without
any other features in the model. To do so, we manually computed the log-likelihood
function for a range of the βtr avel−t i me parameter in the range between -1 and -25. We
saw that only in a small window ofβtr avel−t i me between approximately -18.02 and -21.01
a valid log likelihood function exists. For a βtr avel−t i me <= −18 the equation system
would return an invalid sign for the log likelihood, for βtr avel−t i me >= 21.01 at least one
of the observations would return a exp(V ) = 0 for at the starting value.

This narrow range was achieved with a number of links in each observations limited
at 40. If we allowed observations with more links we were unable to find a window of
initial parameters where the log likelihood function is valid at all. We see numerical
issues as the root cause of this. As a long recursion will be a sum of each link utility, with
high values due to the exponential, we expect these results to be caused by overflows and
under flows in the solver.

9.7.3. THE DISTRIBUTION OF VALUES OF FEATURES AND NETWORK DEGREE

CENTRALITY
Subsequently, we attempted a similar experiment with the only feature in the model be-
ing βleng th , which is correlated with βtr avel−t i me . We were unable to find an exact pa-
rameter of βleng th that is valid, but deduce it is somewhere between -413.6 and -413.7,
based on where the solver returns a valid solution but exp(V ) = 0. To look at the differ-
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ence between both variables we refer to descriptive statistics presented earlier in Table
9.1 and histograms of the distributions plotted in Figure 9.7. Based on the descriptive

8cm

Figure 9.5: Length

8cm

Figure 9.6: Travel time

Figure 9.7: Histogram of the variables length and travel time of the bicycle network in the city center of
Amsterdam.

statistics we expect the same root cause that makes it difficult to find a valid starting pa-
rameter. The lower kurtosis in the distribution of the length indicates a fatter right-tailed
distribution presenting more possibility for a significant number of relatively large val-
ues to end up added together in the recursion on links. This too can lead to overflows
and under flows making it difficult to find starting values betas due to numerical issues.
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9.7.4. THE NUMBER OF ALTERNATIVE CHOICE OPTIONS

Another difference with existing studies in the literature that due to the complexity of
bicycle infrastructure in Amsterdam, the number of possible options is higher than we
would see in car route choice or in a city without two cycle-paths on both sides of major
roads or two roads in both directions (for cyclists) along the canals.

9.7.5. DISCRETE CHOICE MODELS

Based on the log likelihood ratio-tests conducted and included in Table 9.8 we see that
each extension brings a improvement of the log-likelihood at a very high level of statis-
tical significance.The series of mixed logit models with path size correction are the best
performing model.

We also see that adding the taste variation on the length attribute results in the largest
improvement, this intuitively makes sense as large number of anonymous cyclists ob-
served all have their own taste for how much distance they are prepared to cycle. This
leads to different tolerances to base behavior on attributes such as land-use and cycle-
way infrastructure.

A limitation in this study is that the cyclists data used in this study was anonymous,
so we were not able to group multiple observations with the same taste preferences of
an individual using with a panel mixed logit model. A panel mixed logit model likely will
likely yield a further improvement of the model.

While we see statistical significant improvement of path-size, we also see that it brings
a smaller improvement than taste variation. This is likely due to a low overlap in the al-
ternatives generated by the route choice generator that we used, namely POSDAP(ETH-
Zurich, 2012) with doubly stochastic choice set generation. This is also shown in the
distributions of path sizes in observed and generated paths as shown in Figure 9.8a and
9.8b. The low overlap is what we are already found in our earlier study on the quality of
these choice sets in in our previous work in (Koch et al., 2019).

(a) Observed trajectories (b) Generated alternatives

Figure 9.8: Histograms of PathSize (PS) on observed trajectories and in the collection of generated alternatives

Our cycling models show that cyclists route choice comes with a high level of stochas-
ticity: how much distance bicyclists are prepare to take detours can widely vary person
by person. This can make it hard to simulate route choice by bicyclists, harder than the
route choice for car drivers, as shown in our previous study (Koch et al., 2019) on route
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complexity for bicyclists and car drivers.

9.8. CONCLUSION
Recursive logit is a promising solution for inverse reinforcement learning on specific
route choice problems. However when designing your model and variables it is very im-
portant to keep the limitations of the linear equation system in mind. These limitations
can make it impossible to estimate your model or lead to wrong estimations.

As recursive logit may fail to converge if even a single link has a (high) reward instead
of cost, it is important to think through whether your variables are always costs for all
links in the network. This can be hard in practice, as assumptions can be deceiving. For
example you might model a bridge as a cost, as there is a small slope involved, however
in reality people might prefer a route over a bridge as a form of sight seeing opportunity.
Furthermore preferences can differ by person or vary over the time of day. For example
a park might be a beneficial detour during the day, but during the night an empty badly
lit park that feels unsafe might be worth a detour around instead.

DISCRETE CHOICE MODELLING

In this paper we have estimated a route choice model on 29,684 bicyclist trips conducted
to/from the City of Amsterdam, Diemen, Amstelveen and Ouder-Amstel. We have gen-
erated alternatives routes using the doubly stochastic generation function in POSDAP
(ETH-Zurich, 2012). Using this choiceset we have estimated 3 kind of discrete choice
models, a simple multinomial logit model, mixed logit and both extended with the path
size logit variable. Our results show that the mixed logit with path size correction and
taste variation on length results in the best performing model.

This model shows that bicyclists are prepared to make detours to use dedicated cycle-
way infrastructure, avoid roads near heavy noise (70 decibels or more) emitting roads
and avoid traffic signals. Cyclists prefer roads along tram lines, probably a correlation
with how cyclists find their way into the city center. Cyclists prefer to ride along water,
under the cover of trees and along green land-use zones such as parks. An interesting
finding is that cyclists prefer to cycling across retail land-use while avoiding residential
land use.

In a future study we would like to repeat our work on a data-set where we can identify
individuals in order to estimate a panel mixed path-size logit model.

9.9. FUTURE STUDY
For future study we are interested in the precise computational details that lead to the
invalid estimates by the solver when faced with numerical overflow and underflow is-
sues.

We are also looking into how well extensions of algorithms based on maximum en-
tropy IRL of (Ziebart et al., 2008) will function with the Amsterdam bicycle network given
the successful implementation of inverse reinforcement learning for bicycle paths in the
work by (Mo, 2019), however as in this study similar limitations were noted regarding the
size of the state space.

In our initial experiments with implementing maximum entropy IRL by (Ziebart et
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Table 9.8: Overview of log likelihood ratio tests

Reference Group(s) d.f. LR LU -2[LR- LU] χ2 d.f.(0.05) p-value Comments
LR Test: Mixed logit (unrestricted) vs. MNL (restricted)
Length 1 -79817 -75922 7790 3,84 0 Reject restrictions
55+ dB noise 1 -79817 -78500 2634 3,84 0 Reject restrictions
70+ dB noise 1 -79817 -77851 3932 3,84 0 Reject restrictions
Near green 1 -79817 -79215 1204 3,84 0 Reject restrictions
Residential 1 -79817 -79028 1578 3,84 0 Reject restrictions
Near retail 1 -79817 -79407 820 3,84 0 Reject restrictions
Near tram 1 -79817 -78092 3450 3,84 0 Reject restrictions
Tree cover 1 -79817 -78963 1708 3,84 0 Reject restrictions
Near water 1 -79817 -78478 2678 3,84 0 Reject restrictions
Traffic signal 1 -79817 -79365 904 3,84 0 Reject restrictions
Cycleway 1 -79817 -77705 4224 3,84 0 Reject restrictions
LR Test: Mixed logit with Pathsize (unrestricted) vs. MNL with Pathsize (restricted)
Length 1 -79372 -75221 8302 3,84 0 Reject restrictions
55+ dB noise 1 -79372 -78356 2032 3,84 0 Reject restrictions
70+ dB noise 1 -79372 -77758 3228 3,84 0 Reject restrictions
Near green 1 -79372 -78951 842 3,84 0 Reject restrictions
Residential 1 -79372 -78793 1158 3,84 0 Reject restrictions
Near retail 1 -79372 -79123 498 3,84 0 Reject restrictions
Near tram 1 -79372 -78030 2684 3,84 0 Reject restrictions
Tree cover 1 -79372 -78805 1134 3,84 0 Reject restrictions
Near water 1 -79372 -78307 2130 3,84 0 Reject restrictions
Traffic signal 1 -79372 -79044 656 3,84 0 Reject restrictions
Cycleway 1 -79372 -77501 3742 3,84 0 Reject restrictions
LR Test: MNL with Pathsize (unrestricted) vs. MNL (restricted)
Baseline 1 -79817 -79372 890 3,84 0 Reject restrictions
LR Test: Mixed logit with Pathsize (unrestricted) vs. Mixed logit (restricted)
Length 1 -75922 -75221 1402 3,84 0 Reject restrictions
55+ dB noise 1 -78500 -78356 288 3,84 0 Reject restrictions
70+ dB noise 1 -77851 -77758 186 3,84 0 Reject restrictions
Near green 1 -79215 -78951 528 3,84 0 Reject restrictions
Residential 1 -79028 -78793 470 3,84 0 Reject restrictions
Near retail 1 -79407 -79123 568 3,84 0 Reject restrictions
Near tram 1 -78092 -78030 124 3,84 0 Reject restrictions
Tree cover 1 -78963 -78805 316 3,84 0 Reject restrictions
Near water 1 -78478 -78307 342 3,84 0 Reject restrictions
Traffic signal 1 -79365 -79044 642 3,84 0 Reject restrictions
Cycleway 1 -77705 -77501 408 3,84 0 Reject restrictions
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al., 2008) on even the simplified problem of the Amsterdam city center with observations
with a length of less than 30 links, we encountered overflows when calculating the local
action probabilities as the expected reward for each state grew exponentially even when
applying a discount factor.

Our recommendation would consist of searching for a way to dramatically simplify
the state space by find ways to abstract the decision process. One possibility could be for
example applying principles of path complexity such as in (Koch et al., 2019).
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