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Preface 
 
 
This BMI paper is the last phase of the study Business Mathematics and 
Informatics at the VU University in Amsterdam. This paper has the goal to use 
the knowledge gained from the study to address a problem, formulate this in a 
clear way, and to provide a solution. 
 
Operations Research is a widely applied mathematical technique. It is used for 
many different business problems. However, Operations Research has its 
shortcomings. In this paper, I will give an example of these shortcomings and 
describe several approaches to solve these shortcomings. I will apply one of 
these approaches to an example in which the major shortcoming is solved by 
recourse models. 
 
I would hereby like to thank Sandjai Bhulai. Without his time, help, and 
catching enthusiasm, this paper would not have been possible. Furthermore, I 
would like to thank Maarten van der Vlerk for sending me his lecture notes on 
Stochastic Programming. These lecture notes enabled me to learn a great deal on 
the subject of Stochastic Programming. 
 
 
Jaap de Rue 
Haarlem, August 2007 
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Management summary 
 
 
Linear programming is one of the many specializations of Operations Research 
and it is one of the most applied mathematical techniques. The many different 
algorithms of linear programming can be used for the optimization of a wide 
range of problems. However, there are some drawbacks to using these 
algorithms. The major drawback is that all coefficients (i.e., the quantity of 
resources, time, and distance) need to be deterministic and known in advance. 
However, in many practical situations one can not be certain of the true value of 
these coefficients. These shortcomings can be solved by stochastic linear 
programming, which uses random variables to approach the values of these 
coefficients. 
 
This paper describes several approaches that can be applied when the model 
contains uncertainty on some of the parameters. In particular, recourse structures 
are seen as the most important class within Stochastic Programming. This paper 
therefore concentrates on the application of recourse structures. An example is 
given of a model which contains uncertainty on some of the parameters. Adding 
a recourse structure to this model shows that this leads to a model in which the 
risk is explicitly taken care of. 
 
Operations Research is already one of the mostly applied mathematical 
techniques. Combining Stochastics and Mathematical Programming increases 
the applicability enormously and may thus account for an even greater number 
of application areas. 
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1 Introduction 
 
 
 
Operations research, operational research, or simply OR, is an interdisciplinary 
science which uses scientific methods like mathematical modelling, statistics, 
and algorithms to help with decision making in complex real-world problems 
which are concerned with coordination and execution of the operations within 
an organization (Wikipedia.org). It is one form of applied mathematics that is 
being used more and more often. 
 
Linear programming is one of the many methods of Operations Research. It is 
one form of applied mathematics that is being used more and more often, 
especially after the introduction of the personal computer. However, linear 
programming has some shortcomings. One of the biggest shortcomings is that 
the model builder needs to provide numerical values for each of the coefficients, 
for instance, the run times of a production plant or the number of different 
resources. But, in most cases the model builder can not be completely certain 
about the true values of these coefficients. 
 
Stochastic linear programming is a framework for modelling optimization 
problems that take into account this uncertainty. Whereas combinatorial 
optimization problems are formulated with deterministic known parameters, real 
world problems almost invariably include some unknown parameters. Stochastic 
linear programming interprets the unknown parameters as realizations of 
random variables. Hereby, they use the framework for the quantitative analysis 
of uncertainty that is provided by probability theory. 
 
In this thesis, the most important class of stochastic linear programming will be 
given and an example will be given where this concept will be used to take into 
account the uncertainty of the values of some of the parameters of the linear 
programming model. 
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2 Operations Research 
 
 
The field of operations research arose during World War II, during which the 
team of Patrick Blackett made numerous crucial analyses to aid the war effort. 
An example of one of these analyses is the number of boats in a convoy. The 
idea of ships travelling in convoys was introduced by Britain, this way warships 
could be used to accompany and protect merchant ships. Since these convoys 
travel at the speed of the slowest member, the question arose whether convoys 
should be large or small. Since a small convoy will be faster, it will be harder to 
detect by a U-boat. Large convoys may be slower, but they can deploy more 
warships against such an attack. 
 
Another example of the work of Blackett’s team is given by a report they 
analysed. This report was carried out by RAF Bomber Command, for which 
they inspected all bombers returning from bombing raids in Germany. This 
report contained a note of all the damages on the plane inflicted by Germany’s 
air defence. The RAF concluded from this report that the bombers should be 
armoured more heavily on the damaged areas. However, they made the 
remarkable conclusion that the armour should be placed on the areas that were 
not damaged. Since only the planes that came back from Germany were 
included in the survey, his team reasoned that the untouched areas were 
apparently the most vital areas. 
 
After the war, people realized that the planning methods that were developed for 
the military could also be used in the profit- and non-profit sector. The study 
after operations research flourished after the war and not long after that the 
famous simplex-method was invented by George Bernard Dantzig that still is of 
great practical use nowadays. 
 
Dantzig’s original example of finding the best assignment of 70 people to 70 
jobs still explains its success. The computing power required to scan all the 
permutations to select the best assignment is vast and impossible. He observed 
that it takes only a moment to find the optimum solution using the simplex 
method, which is effectively observing that a solution exists in the extreme 
points of the polygon described by the equations formed from the given 
constraints. 
 
Two other founders are John van Neumann, who developed the theory of duality 
in the same year, and Leonid Kantorovich, a Russian mathematician who used 
similar techniques in economics before Dantzig and won the Nobel Prize in 
1975 in economics. The linear programming problem was first shown to be 
solvable in polynomial time by Leonid Khachiyan in 1979, but a larger major 
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theoretical and practical breakthrough in the field came in 1984 when Narendra 
Karmakar introduced a new interior point method for solving linear 
programming problems. 
 
The possibilities of applying linear programming only became bigger and bigger 
after the introduction of the personal computer and nowadays it is one of the 
most applied mathematical techniques. 
 
 

2.1 Linear Programming 
 
 
In mathematics, linear programming involves the optimization of a linear 
objective function that is subject to (multiple) linear equality and inequality 
constraints. The goal is to find a feasible point for which the objective function 
assumes the smallest or largest value. Such points may not exist, but if they do, 
searching through the vertices of the model is guaranteed to find at least one of 
them. 
 
The standard (canonical) form of a linear program is the following: 
 
  Maximize xcT  

  Subject to 
,0


x

bAx
 

 
where x represents the vector of variables, where c and b are vectors of 
coefficients, and A is a matrix of coefficients. The expression xcT  to be 
maximized (or minimized) is called the objective function. The equations 

bAx   are the constraints which specify a convex polyhedron over which the 
objective function is to be optimized. Linear programming can be applied to 
various fields of study. Most extensively it is used in business and economic 
situations, but can also be utilized for some engineering problems. Some 
industries that use linear programming models include transportation, energy, 
telecommunications, and manufacturing. It has proved useful in modelling 
diverse types of problems in planning, routing, scheduling, assignment, and 
design. 
 
There are many practical problems in operations research that can be expressed 
as linear programming problems, of which certain cases are considered 
important enough to have generated much research on specialized algorithms for 
their solution. Linear programming is, for example, heavily used in 
microeconomics and business management where it is used to minimize costs or 
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maximize the income. Here one could think of, among others, inventory 
management, resource allocation for human and machine resources, and 
planning. Next to that, many of the central concepts of optimization theory are 
based on ideas from linear programming. It can thus be said that linear 
programming is an important field of optimization. 
  
 

2.2 Techniques 
 
 
This paragraph will give some of the most frequently used techniques to solve 
linear programming problems. 
 
 

2.2.1 Simplex method 
 
 
The simplex method is a technique that solves a linear programming problem in 
a finite number of steps, or it determines the insolvability of the problem. The 
name originates from the fact that a simplex (a convex hull of n + 1 points) is 
formed by the equations of the problem. 
 
Given the following linear programming problem: 
 
  Maximize xcT  

  Subject to 
,0


x

bAx
  (1) 

 
with n variables and m restrictions and for which holds that m<n. In the simplex 
algorithm (an iterative procedure) bases  B  are formed with corresponding 

basis solutions  x . A basis B is a part of the matrix A consisting of m linear 
independent columns of the matrix A. The remaining columns of A form the 
matrix R. The basis solution x for nj ,....,2,1  is then defined by: 
 
    jj bBx 1 ,   for Bj , 

  0jx ,   for Rj . 

 
The reduced costs are defined by: 
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    cABcc
TT

B  1ˆ , 
 
and the corresponding criterion value of a solution  RB xxx ,  given a basis B 
is: 
 
    



 
Rj

jj
T
B xcbBcxz ˆ1 . 

 
The linear programming problem (1) is called the primary problem and the dual 
problem is defined as follows: 
 
  Minimize ybT  

  Subject to .cyAT   
 
In the primary problem it is taken care of that for every iteration it holds that x is 
allowed for the primary problem, i.e., 0jx  j  and a new iteration is started 

until x is also feasible for the dual problem, i.e., 0ˆ jc  j . 

 
If 0ˆ:  jcRj , a non-basis column Ras   is chosen with negative reduced 

costs ( 0ˆ sc ) to be entered into the basis B. A ratio-test has to point out which 

column la  has to leave the basis B, with: 

 

  
 
   













 





0:minarg 1

1

1

js

js

j

Bj
aB

aB

bB
l . 

 
This test ensures that for all new basis variables it holds that 0new

jx . 

 
In the dual problem it is taken care of that in every iteration x is feasible for the 
dual problem, i.e., 0ˆ jc  j  and a new iteration is started until x is also 

feasible for the primary problem, i.e., 0jx  j . 

 
If 0:  jxBj , a basis column Bal   with a negative value 

  01  
ll bBx  is chosen to leave the basis. A ratio-test has to point out which 

column sa  enters the basis B, with: 
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     












 



0:minarg 1

1

^

lj

lj

j

Rj
aB

aB

c
s . 

This test ensures that for all new reduced costs it holds that 0ˆ new
jc , where new

jĉ  

is defined by: 
 

  
 
  s

ls

lj

j
new
j c

aB

aB
cc ˆˆˆ

1

1





 ,  for nj ,...,2,1 . 

 
If a basis solution corresponding to a base of the primary problem is both 
feasible for the primary problem and for the dual problem, then this solution is 
optimal. 
 
However, in some cases the matrix A can become so large that it is almost 
impossible to solve because of enormous calculating times. A technique that can 
be used when matrix A becomes too large is column generation. This technique 
is described in the next sub-paragraph. 
 
 

2.2.2 Column generation 
 
 
Column generation can most easily be explained by considering a cutting stock 
problem. This problem is defined as a company producing iron bars of a given 
length L. Each week the company receives orders of customers, so the company 
has to produce ib  bars of length  mili ,....,1  which have to be cut of the large 

bars. The question then is: How to cut these bars in such a way that as less iron 
bars as possible are used? This problem can be solved by applying the technique 
of column generation. 
 
This technique is based on taking a part of the total collection of cutting 
patterns, while the rest of these cutting patterns is (not yet) taken into account. 
The linear programming problem for the chosen part of the collection is solved 
and studied for optimality for the linear programming problem for all cutting 
patterns. If this is not the case, one or more cutting patterns are added to the 
collection that is used. This iteration is repeated until the linear programming 
problem for the total collection of cutting patterns is optimal. 
 
To describe this technique in mathematical terms, suppose we have the 
following linear programming problem: 
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  Maximize xcT  

  Subject to 
,0


x

bAx
 

 
with n variables and m restrictions for which holds that m<n. Now, let 

  1;,....,11  knN ; and the matrix  ki NiAD  :  be a part of the matrix A 

for which holds that rank(D)=m, i.e., an optimal solution is possible. The vector 

kNc  and 
kNx  are formed in a similar way. Then, the limited linear programming 

problem is defined by: 
 
  Maximize 

kk N
T
N xc  

  Subject to 
.0



k

k

N

N

x

bDx
 

 
This limited linear programming problem is solved with the simplex method. If 
an optimal solution is found for this limited linear programming problem, this 
solution is also optimal for the original problem if all reduced costs are non-
negative, which are defined as follows: 
 
  jj

T
j cAyc ˆ ,  for nj ,....,1 . 

 
If the solution is not optimal for the original linear programming problem, the 
matrix D is changed, i.e., kN  is replaced with 1;1  kkNk  and the whole 

process is repeated. 
 
 

2.3 Drawbacks 
 
 
It is obvious that linear programming is very popular, since so many practical 
problems can be modelled as a linear program, or at least an approximation can 
be made. When a problem is modelled as a linear program, powerful software is 
available to solve these problems. However, the linear programming approach 
does have some drawbacks. 
 
One of these drawbacks is that numerical values have to be provided for each of 
the coefficients. But, in most situations one can not be completely certain about 
the true values of these coefficients. There are some approaches to take this 
uncertainty into account when building the model. For instance, one could use 
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ranges or solve the linear programming model for every possible realization of 
the coefficients. 
 
However, if the optimal solution depends heavily on the value of, some of, these 
coefficients, this uncertainty will have to be taken into account in a more 
fundamental way. Stochastic programming is characterized by interpreting the 
uncertain coefficients as realizations of random variables. Hereby the framework 
for the quantitative analysis of uncertainty provided by probability theory is 
used. 
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3 Stochastic Programming 
 
 
Stochastic programming is a framework for modelling optimization problems 
that involve uncertainty (stoprog.org). Many practical problems can be modelled 
with linear programming, in case these problems include known parameters. 
But, real-world problems almost invariably include some parameters of which 
the true values are unknown. Stochastic programming interprets these unknown 
parameters by taking advantage of the fact that probability distributions 
governing the data are known or can be estimated. 
 
When a linear programming problem has been completely specified with the 
exception of some parameters, which are assumed to be random variables with a 
known joint distribution, two types of models are considered in stochastic 
programming. These two types of models are the wait-and-see model and the 
here-and-now model. 
 
In the first case, the model builder is assumed to be able to wait for the 
realization of the random parameters. In the second case, the model builder will 
have to decide upon the value of these parameters without knowledge of the 
realizations. So, in the here-and-now model some parameters are undetermined, 
which makes the feasibility and/or optimality of the solution useless. Because of 
this, additional specification is needed to deal with questions of risk and risk 
aversion. 
 
The following paragraph will describe some approaches to deal with these 
questions of risk and risk aversion. 
 
 

3.1 Approaches 
 
 
Given is the following linear programming problem with random parameters in 
the constraints: 
 
  Minimize xcT  

  Subject to 

.0

~

~

x

hTx

bAx

  (2), 

 
where the relational symbol ~ denotes =,  , or  . 
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Then assume that the real value of  hT ,  is not known, i.e., it is not known 
which instance of the model occurs. Furthermore, assume that the uncertainty is 
expressed by a probability distribution, e.g., so-called scenarios: 
 
       s

ss phThT  ,,Pr , Ss ,....,2,1 . 

 
In addition to this, assume that the probability distribution is known, e.g., by 
data, or experts, and that a deterministic linear program is a degenerate case. 
 
By stochastic linear programming it is possible to decide on x  here and now, 
without knowing the real value of  hT , , but only by knowing its probability 
distribution. This is done by interpreting hTx   as a goal constraint, which is to 
be specified more precisely. 
 
There are several approaches which can be taken: 
 
- Fat solution 
 

The idea is to replace hTx   by ss hxT  , Ss ,....,2,1 . This constraint is to 
be satisfied in all scenarios. The advantage this approach has is that the 
problem is deterministic again. But on the other hand, it is very conservative 
and expensive. In addition to this, it results in a lot of constraints, which is 
the reason this approach is called the fat solution. 

 
- Expected value 
 

The idea is to replace hTx   by 
__

hxT  , with  s

s
sTpT

_

 and 

 s

s
shph

_

. The advantage is again that this results in a deterministic 

linear program. But, the risk is not addressed in this model. The constraint 
ss hxT   only holds for some of the scenarios. This could be partly solved 

by using more conservative values for 
_

T  and 
_

h , or by applying sensitivity 
analysis. But, this would still lead to a poor model of a decision under 
uncertainty. 

 
- Scenario analysis 
 

The idea in scenario analysis is that for every scenario  ss hT , , Ss ,....,2,1  
the following linear programming problem is solved: 
 

Minimize xcT  
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 Subject to 

0

~

~

x

hxT

bAx
ss . 

 
The solutions for the corresponding scenarios are given by sx . An overall 

solution is then found by examining the different scenario solutions, i.e., 
what solutions are there and what are the probabilities sp  of the 

corresponding scenarios occurring. This approach is an improvement over 
the expected value approach and the advantage is that each scenario problem 
is a linear programming problem. The disadvantage, however, is that flexible 
solutions do not show up. 

 
- Chance constraint 
 

With chance constraints, hTx   is replaced by    hTxPr  for some 

prescribed reliability level  1,2
1 , where   is to be determined by the 

problem owner. The advantage this approach has is that the risk is explicitly 
taken care of, i.e., risk  hTx  Pr: . So the maximum accepted risk is 1 . 
The disadvantage this approach has is that a discrete probability distribution 
leads to a mixed-integer linear programming problem. 

 
The final approach is called recourse actions. Since recourse actions are seen as 
the most important class of stochastic programming, this concept will be 
discussed in more detail in the following paragraph. 
 
 

3.2 Recourse models 
 
 
Given is the following linear program with random parameters in the 
constraints: 
 
  Minimize xcT  

  Subject to    
.0

~

~

x

hxT

bAx

   (3). 

 
Here bAx ~  represents m1 inequality constraints. The m random inequality 
constraints are represented by     hxT ~ , where  T  is an nm  matrix, 
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and  h  is an 1m  vector. Both the matrix and the vector are dependent on a 

random vector r . It is possible that the whole of T and h is random, but 
more often than not only a restricted number of matrix and vector elements is 
random. We assume that the joint distribution of the random vector   is known. 
 
Now consider the linear programming problem given by (3) and suppose this is 
a so-called here-and-now problem. This problem needs a decision on x before 
the real value of   is known, i.e., only the joint distribution of   on   is 
known. Moreover, in recourse models the random constraints of (3) are 
reformulated as soft constraints, i.e., violation of the constraints is accepted but 
not at any price. To describe how violated constraints are dealt with a second-
stage linear programming model is introduced. This second stage model 
contains second stage variables py  . The name recourse can now be 
explained by the second stage, as its decisions are made after observations of the 
value of  . 
 
A recourse structure is formally specified by a triple  WqY ,, , which is defined 
as follows: 
 

 0:  yyY p , which describes the feasible set of recourse 
actions y, 
q is a p1  vector of unit recourse costs, 
W is an pm  matrix, the recourse (technology) matrix. 

 
When the recourse structure is applied to the linear programming problem (3), 
the following decision problem can be defined: 
 
  Minimize  yqxc TT min  

    Ax    b~    first stage 
          constraints 
  Subject to  xT      +     Wy   h~ ,   second stage 
          constraints 
    Xx            Yy  

                            
             first-stage       second-stage 
             decisions        decisions 
 
This representation makes clear how the introduction of the recourse structure is 
based on a relaxation of the constraints     hT ~ . 
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3.3 Modelling aspects 
 
 
Given a linear programming problem of which some parameters are unknown, 
the question is how to transform this problem into a well-specified linear 
programming problem with a recourse structure. There are three possibilities to 
insert the recourse structure ),,( WqY  into the linear programming problem. 
 
- The first possibility is not to model recourse actions. Instead, deviations 

from the goals are penalized. This means that the recourse variables only 
represent surpluses or shortages with respect to the goals. These recourse 
variables are then used in the objective function to penalize these surpluses 
or shortages. 

 
- The second possibility is to introduce recourse variables which represent 

corrective actions. These corrective actions are to be taken after realizations 
of   if the goals are not reached. 

 
- The third possibility is to split the vector of decision variables in the original 

linear programming problem in two parts. One set has to be determined 
before obtaining  , and the remaining set of variables may depend on the 
value of  . The constraints are also split into two parts. The first part of the 
constraints does not include  , and the second part of the constraints does. 

 
In the next chapter an example will be given of a linear program which is 
transformed into a well-specified linear programming problem with a recourse 
structure. 



BMI paper J.M. de Rue 

Page 22 
 



BMI paper J.M. de Rue 

Page 23 
 

4 The model 
 
 
In this chapter an example will be worked out in which the theory of the 
previous chapters will be applied. A linear programming model will be built to 
schedule operations with a given duration over multiple days and operating 
rooms in such a way that as much of the available time will be used for these 
operations. First a simple model will be built, after which the model will be 
expanded to deal with multiple operating rooms. 
 
Operations almost always take more or less time than anticipated beforehand by 
the model builder. Therefore, recourse actions will be applied to deal with a 
random surplus or shortage of the duration of these operations. 
 
For this first model, numerous assumptions have to be made regarding the 
values of the parameters such as the duration of an operation, the number of 
hours the operating staff works on one day, and more of such assumptions will 
be made along the path of building the model. 
 
 

4.1 Modelling 
 
 
The problem that has to be modelled is how to plan operations such that the staff 
and equipment are being scheduled most efficiently. In other words, if the staff 
and equipment are available for eight hours per day, operations have to be 
planned such that the staff and equipment are scheduled to be occupied during 
these eight hours. 
 
First the decision variable is defined: 
 

 ijx  starting time of operation j on day i. 

 
The assumption is thus made that the staff is expected to work eight hours per 
day. Then assume that there are n operations, that are being planned over m 
days, whereby operation j has a duration of dj hours. The decision variable is 
equal to zero if operation j is not scheduled on day i and it is equal to or greater 
than 0  if operation j is scheduled on day i. Hereby, one could think of a 
starting time for the staff of eight o’clock in the morning, which would result in 

8 . 
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First, the assumption is made that only one operating room is available to the 
hospital. This assumption keeps the model somewhat simpler, but will 
eventually be dropped later on. This assumption means that only one operation 
at the time can be carried out. To make sure that an operation j that is scheduled 
for day i is not scheduled again on a different day, a dummy-variable is needed. 
This dummy-variable ijz  is a 0-1 variable, which means it will only have the 

values 1, if operation j is scheduled on day i, and the value 0 in all other cases. 
Now, the following constraints can be formulated: 
 

ijij Nzx  ,   ji, , 

ijij zx  ,   ji, , 





m

i
ijz

1

1,   j , 

 
whereby N has a sufficiently large value, such that it always holds that Nxij   

ji,  and where   represents the starting time of the operating staff. 
 
So, if operation j is to be scheduled on day i, the variable ijz  will be assigned the 

value of 1, which will result in 8ijx  and Nxij  . If operation j is not to be 

scheduled on day i, the variable ijz  will be assigned the value of 0, which will 

result in 0ijx  and 0ijx . 

 
Next to this, it has to hold that for every pair of operations j and k, ikjij xdx  , 

or ijkik xdx  ji,  and jk  . In other words, if operation j is scheduled to 

start before operation k, the starting time of operation k has to be greater or equal 
to the starting time of operation j plus the duration of this operation so that 
operation k does not start until operation j is finished. In addition to this, this 
also holds for the case when operation k is scheduled to start before operation j 
respectively. 
 
To make this work, another dummy-variable jky  is needed, which again is a 0-1 

variable. This dummy-variable has the value 1 if operation j is scheduled to start 
before operation k, and has the value 0 in all other cases. This results in the 
following constraints: 
 

)1( jkikjij yMxdx  , ji,  and jk  , 

jkijkik Myxdx  ,  ji,  and jk  , 
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where M has a sufficiently large value so that Mdx jij   holds ji, . 

 
So, if operation j is scheduled to start before operation k, the variable jky  will be 

assigned the value of 1, which would result in ikjij xdx   and 

Mxdx ijkik  . If operation j is not scheduled to start before operation k, the 

variable jky  will be assigned the value of 0, which would result in ijkik xdx   

and Mxdx ikjij   . 

 
As is assumed before, the operating staff and equipment is available for eight 
hours per day. So, given the duration of the operations, some additional 
constraints are needed to make sure no operations are scheduled with a 
cumulative duration of over eight hours. To take this into account in the model, 
the previously declared variable ijz  will be used. This variable will be assigned 

the value of 1 when operation j is scheduled on day i and the value of 0 in all 
other cases. So, when this variable is multiplied with the duration of the 
corresponding operations, the total duration of all operations scheduled on day i 
will be known. This leads to the following constraint: 
 

8
1




n

j
jij dz , i . 

 
This constraint will make sure that the total duration of all operations scheduled 
on day i will be eight hours at maximum. 
 
What remains to be done is the objective function. To schedule the operations as 
efficient as possible, the difference jij dz8  needs to be minimized. This is the 

difference between the total duration of all operations planned on day i and the 
total available time (eight hours) of the operating staff and equipment. So, to 
optimize the schedule, the maximum difference has to be found. In other words, 
the biggest difference needs to be as small as possible. The biggest difference is 
given by the next expression: 
 









  

  

n

j

n

j

n

j
jmjjjjj dzdzdz

1 1 1
21 8,...,8,8max . 

 
To minimize this maximum difference, an additional variable q is needed, such 
that: 
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







   

  

n

j

n

j

n

j
jmjjjjj dzdzdzq

1 1 1
21 8,...,8,8max . 

 
Now, the linear programming problem becomes: 
 
 Minimize q  

 Subject to 



n

j
jij dzq

1

8 , for mi ,...,1  

ijij Nzx  ,     ji, , 

ijij zx  ,    ji, , 





m

i
ijz

1

1,     j , 

)1( jkikjij yMxdx  ,  ji,  and jk  , 

jkijkik Myxdx  ,   ji,  and jk  , 

8
1




n

j
jij dz ,     i , 

0ijx ,     ji, , 

 1,0jky ,     kj, , 

 1,0ijz ,     ji, . 

 
Suppose the model needs to be extended in order to be able to schedule 
operations in multiple operating rooms. Then, the decision variable needs to be 
adjusted first so it shows in which operating room which operation is scheduled 
on which day. The decision variable is defined as follows: 
 

ijlx = starting time of operation j on day i at operating room/location l. 

 
Second, additional constraints are needed to prevent one operation being 
scheduled in more than one operating room. To prevent this from happening, the 
dummy-variable ijz  is used again, but with an additional index. The dummy-

variable ijlz  will have the value of 1 when operation j is scheduled at operating 

room/location l on day i, and will have the value of 0 in all other cases. The 
additional constraints that are needed then become the following: 
 

ijlijl Ozx  ,  lji ,, , 

ijlijl zx  , lji ,, , 
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
 


m

i

s

l
ijlz

1 1

1 ,  j , 

 
where O has a sufficiently large value so that Oxijl   lji ,,  always holds. 

 
The new linear programming problem then becomes: 
 
 
 Minimize q  

 Subject to 



n

j
jijl dzq

1

8 ,   li, , 

ijlijl Ozx  ,     lji ,, , 

ijlijl zx  ,    lji ,, , 


 


m

i

s

l
ijlz

1 1

1 ,     j , 

)1( jklikljijl yMxdx  ,  lji ,,  and jk  , 

jklijlkikl Myxdx  ,  lji ,,  and jk  , 

8
1




n

j
jijl dz ,     li, , 

0ijlx ,     lji ,, , 

 1,0jkly ,     lkj ,, , 

 1,0ijlz ,    lji ,, . 

 
 

4.2 Extending the model 
 
 
The model as built in the last paragraph will optimize a schedule such that 
personnel and equipment are planned as efficiently as possible. This model and 
resulting schedule are heavily dependent on the parameters, among others the 
duration of the operations. These durations will have to be known upon building 
the model. The drawback this has is that this is often not the case. Operations 
often take more, sometimes less, time than anticipated beforehand.  
 
To be able to deal with the surpluses or shortages in the duration of the 
operations, and thus the random factor in these parameters, the model will be 
expanded with a recourse structure. 
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First, the following additional variables are needed: 
   


j  = planned decrease in duration of operation j, 

 

j  = planned increase in duration of operation j, 

 

j  = random demand of extra time for operation j, 

 

jc  = unit cost for the increase in duration of operation j, 

 

jc  = unit cost for the decrease in duration of operation j. 

 
If an operation runs over time it means that personnel will have to work 
overtime. Obviously, this leads to additional costs. If an operation takes less 
time than anticipated, personnel is scheduled less efficiently than would have 
been possible afterwards. This will also lead to additional costs. 
 
Taking into account the aforementioned additional variables, the objective 
function needs to be adapted. The adapted objective function is as follows: 
 

Minimize    cc . 
 
Next to the objective function, the following constraint also needs to be adapted: 
 





 jj

n

j
jjijl dz  8

1

,   li, . 

 
Notice that this constraint is a second stage constraint, as described in paragraph 
3.2. Lastly, the following constraints need to be added to the model: 
 

jj d ,  j , 

0, 
jj  ,  j . 

 
These two constraints give an upper – and a lower bound to the increase and 
decrease in duration of operation j. 
 
Suppose that for the operations hold that the random demand of extra time is 
assumed to be normally distributed. Then for every operation, the mean and 
standard deviation of the random deviation j  per operation has to be given. In 
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addition to this, the different costs for an increase or decrease in duration need to 
be specified.  
 
The linear programming problem with the recourse structure then is as follows: 
 

Minimize    cc  

 Subject to 



 jj

n

j
jjijldz  8

1

,   li, , 

ijlijl Ozx  ,     lji ,, , 

ijlijl zx  ,    lji ,, , 


 


m

i

s

l
ijlz

1 1

1 ,     j , 

)1( jklikljijl yMxdx  ,  lji ,,  and jk  , 

jklijlkikl Myxdx  ,  lji ,,  and jk  , 

0ijlx ,     lji ,, , 

 1,0jky ,     kj, , 

 1,0ijlz ,     lji ,, , 

jj d ,    j , 

0, 
jj  ,     j . 
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5 Conclusions 
 
 
Linear programming is one of the many specializations of Operations Research 
and is one of the most applied mathematical methods. The many different 
algorithms of linear programming can be used for the optimization of a wide 
range of problems. 
 
The example that is worked out in this paper showed that there are drawbacks to 
Linear Programming. If there are parameters of which the values are uncertain, 
the measure of optimality is questionable. There are several approaches to take 
this uncertainty into account in building the model. However, it shows that these 
approaches lead to models in which the risk is not taken into account, or to 
models that are very restrictive. 
 
We have shown that adding a recourse structure to a well-defined linear 
programming problem is relatively easy to do. Furthermore, adding a recourse 
structure leads to a model in which the risk is explicitly taken care of. In 
addition to this, it leads to a large scale Linear Programming problem. However, 
it does have one disadvantage. The disadvantage is that the model may become 
too large to solve. 
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