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Preface

This paper is a part of the study “Business Mathematics and Informatics”
at the Free University in Amsterdam. The paper is a compulsory subject
in the fourth year of the study. The idea is that the student makes a little
survey of a particular subject on his own. The subject is chosen by the
student himself.

The subject of this paper came to my mind because a girlfriend of mine
works in a call center. She told me some stories about her call center. Once
she told me that she has time to make her homework at her work. I became
interested in how that was possible. Soon it became clear to me that she
has to wait until a call arrives. When no calls arrive at all or very little
calls arrive she could spent her time on her homework. At that particular
moment it came to my mind that, from a managerial perspective, it could be
better to let her also make phone calls to people. In other words she could
combine so-called inbound and outbound calls, which is called call blending.

Figure 1: The working environment of a call center

Another reason to choose for this subject was the course “Modeling of
business processes”. One of the subjects of this course is call centers. During
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this course I recognized my problem in the subject of so-called call blending.
It appeared that a lot work can be done on this subject. An idea for this
paper was born.

Some people were of great help. I would like to thank them here. In the
first place I would like to thank Sandjai Bhulai for the discussions we had
and the help he offered in writing this paper. I would like to thank Rob van
der Mei and Bart Gijsen, my expert supervisors of the graduation project I
did at KPN research during my study. They gave me some time to work on
this paper.

Yanko Hoekstra.
Amsterdam, April 2002
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Notation

e )\ = number of arrivals per time unit

e 11 = inverse of the mean service time for inbound calls
e 19 = inverse of the mean service time for outbound calls
e s = number of available agents

e z = number of inbound calls in the system

e y = number of outbound calls in service

e ¢ = threshold, i.e., x + y > ¢ should be satisfied

e p= ;%1 = load without type 2 jobs
e § = probability to do nothing when finished serving a job at level
r+y=c+1
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Chapter 1

Introduction

This paper describes a certain aspect of call centers called call blending.
There are two kind of calls in a call center. The first type of calls are phone
calls that arrive at the call center, referred to as inbound calls. The call
center itself also contacts other people by, e.g., e-mail, faxes, and phone
calls. These calls are referred to as outbound calls.

In most call centers the agents, the employees who make inbound and
outbound calls in call centers, exclusively handle either inbound or outbound
calls. In this system it could be the case that agents working on inbound
calls have no work to do because no phone calls arrive. This approach seems
quite expensive. Another problem with the inbound calls is the fact that
the arrivals per time unit fluctuates over the day. This makes it hard to
schedule your agents because you need a different number of agents for, i.e.,
each half hour. A simple solution to both problems is to mix the inbound
and outbound calls. This is what call blending is about. An agent working
on inbound calls and outbound calls seems more effective than an agent only
handling inbound calls. Another advantage is that it makes the scheduling
of the agents easier; it is possible to use the same amount of agents the
whole day while you increase the average productivity of the agents. Thus
call blending offers a way to increase resource utilization in a call center.

There is also a disadvantage. An inbound call has to wait longer if an
inbound call arrives and the agent is handling an outbound call it cannot
interrupt. In other words, say we have s agents available and we apply call
blending, in this case queueing times will be larger than the case that we
also have s agents en do not apply call blending. But if you combine your
agents available for inbound and your agents available for outbound it may
become possible to get an advantage in productivity and lower queueing
times due to call blending.

In this paper we assume a certain policy to be optimal for call blending
and we will derive expressions for the mean queueing time of inbound calls
and derive the mean throughput for the outbound calls. We also derive the
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CHAPTER 1. INTRODUCTION

productivity of the agents. These expressions will be implemented in a web-
based tool which can be used by call center managers. With a simulation
tool we will show that the expressions indeed lead to the expected waiting

time.

We also show that advantages can be accomplished by call blending.

Chapter 2 gives an overview of call blending in business life;
Chapter 3 describes the call blending model in more detail;

Chapter 4 derives the waiting time and throughput under call blend-
ing;
Chapter 5 discusses the results of Chapter 4 compared with sim-

ulation and shows some examples of performance gains that can be
achieved;

Chapter 6 shows the web based CALLculator. This chapter can be
read without reading the other chapters. This is a convenient tool for
call center managers;

Chapter 7 presents conclusions and topics for further research.

Chapter 2 represents the business part of this paper. Chapters 3 and 4 repre-
sent the mathematical part, and Chapters 5 and 6 represent the informatics
part of the paper.



Chapter 2

Call blending in practice

Call centers in general have two distinct groups to handle their calls. One
group for the inbound calls and one group for the outbound calls. During
my visit to the call center “tesselaar”, in Haarlem, I mentioned that it
seemed strange to me that they did not apply call blending. They said to
me that the techniques developed for call blending were not good. The only
call blending they apply, and according to them all the call centers in the
Netherlands, is the blending of various inbound calls.
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Figure 2.1: Typical arrival structure over the day

The research on the internet showed some packages that include pack-
ages for call blending. For example CISCO [2] is one of the manufacturers
that delivers a call blending option. The call blending technique they use
is as follows. Everybody works on outbound calls and the inbound calls are
assigned to the first available agent. This technique assures you that the
productivity of the agents is maximal. But the probability that an inbound
call has to wait is 100% assuming that you always have outbound calls avail-
able. Another disadvantage is that the packages do not include estimates
of the expected waiting times. This is very important because call centers
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4 CHAPTER 2. CALL BLENDING IN PRACTICE

agree on a certain service level agreement, for example 80% of the calls has
to be answered within 20 seconds.

In call centers the arrival of inbound calls varies over the day, e.g. see
Figure 2.1. One of the problems in call centers is the scheduling of the
agents for the varying arrival rates. Call blending can give a solution in this
case. The scheduling of the agents becomes easier because you can assign
the agents dynamicly. So if you notice that certain agents are not needed
on the inbound calls, you can assign them to the outbound calls. This will
increase the productivity while you still meet the service demands if you
apply a good strategy. The maximization of the productivity is essential in
call centers since the salary costs of agents account for 60-70% [3] of the
total operating costs. So the main objective in call blending is to maximize
the productivity while you still meet your demands.

This paper will give a strategy that can be used in call blending. The
simulation chapter will show some results for this strategy and shows that
it becomes possible to increase productivity and throughput while you use
the same number of agents if you do not apply call blending,.



Chapter 3

Model description

The exact model formulation is as follows. There are two types of calls,
inbound calls and outbound calls. The service times of these calls are inde-
pendently exponentially distributed with parameter

1
= 3.1
H mean inbound service time (3:1)
for the inbound calls and parameter
1
p2 = (3.2)

mean outbound service time

for the outbound calls. The inbound calls are assumed to arrive according
to a Poisson process with rate
1
A= (3.3)

mean time between arrivals’

The call center is assumed to have an infinite number of phone lines available
for inbound calls that cannot be served yet. We also assume that there is an
infinite number of outbound calls available. The number of agents available
is represented by s. The long-term average waiting time of inbound calls
should be below a constant «. Waiting excludes the service time. The
objective for the outbound calls is to serve as many jobs as possible while
the time constraint for the inbound calls is still met.

The following control actions are possible. The moment an agent finishes
service, or, more generally at any moment that an agent is available, he can
take one of the following three actions:

e Start serving an inbound call, if one or more phone calls are waiting;
e Start serving an outbound call;

e Remain idle.



6 CHAPTER 3. MODEL DESCRIPTION

We describe the threshold policy as follows. Let y be the number of out-
bound calls in service and let « be the number of inbound calls in the system.
There is a level ¢, called the threshold, such that if z 4+ y < ¢, then the pro-
posed action is to schedule ¢—x calls, if inbound calls are available they have
a higher priority since we want to minimize the long term average waiting
time for the inbound calls. If you served an outbound call first then the
throughput for that moment is higher but we are interested in the long term
throughput which stays the same. The average waiting time for the inbound
calls however increases so if an inbound call is available you should schedule
this first. If x +y > ¢, then the proposed action is to schedule no outbound
calls but only inbound calls. This policy is optimal if u; is equal to ps and
nearly optimal if this is not the case (see Bhulai and Koole [1]).

Assume that a threshold policy with threshold ¢ gives an expected wait-
ing time of p and that the threshold policy with threshold ¢ + 1 gives an
expected waiting time of r. However you need a policy with an expected
waiting time of ¢ with p < ¢ < r. To achieve this we introduce randomiza-
tion between level ¢ and level ¢ + 1. The randomization works as follows.
When finished serving an inbound or outbound call at level ¢ + 1 and no
inbound calls available there are two possibilities. The first possibility is to
schedule an outbound call with probability 1 — 4, in that case ¢ + 1 agents
are serving a call. The second possibility is to do nothing with probability
0, in that case only ¢ agents are serving a call. Note that when § = 1 we
have a normal threshold policy without randomization. The parameter §
must meet the following condition:

0<d<1. (3.4)

Figure 3.1 shows the model as a two dimensional Markov Chain. The
x axis represents the number of inbound calls in the system. The y axis
represents the number of outbound calls served at the moment. Now we

A Ty A (s —cjpu1 A

c S

Figure 3.1: System dynamics.

define ¢4 as the stationary probability that the system is in state (x,y).



To end this chapter we give an overview of the assumptions presented to
you in this chapter. Model assumptions summarized

Inbound calls arrive according to a Poisson process with parameter A;

The duration of inbound calls is exponentially distributed with param-
eter py;

The duration of outbound calls is exponentially distributed with pa-
rameter fo;

Customers do not abandon;
An infinite number of outbound calls is present;

An infinite number of phone lines is available;
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Chapter 4

Solving the model

4.1 Stationary probabilities for 6 =1 and ¢ = s

We start with y =c=s and z + y > s.
Note that there are no inbound calls in service at this level. The following
equilibrium equation holds

(A + SMQ)qI,S = AQE—I,s- (41)

The solution for this level will be:

A A *
Qz,s = <7>QI—1,5 = ( > qo,s forz>s—y,y=s. (4.2

A+ s A+ s

For convenience we define in the rest of this section

A
S = bl 4.3
L v (4.3)
and
Ks,O ‘= qo,s- (44)
So the solution can be written as follows:
qz,s = Ks,(ﬂ’f (4.5)

Now examine level y=s—1and z+y > s
The equilibrium equations are as follows.

(,U/l + A+ (3 - 1),“42)%7:,571 = Aqxfl,sfl + H1Gz+1,5—1 + SH24qx,s- (46)

We start with solving the homogeneous equation with respect to level s — 1.
Suppose that gz s 1 = vfjllqlvs,l with v, 1 to be determined. Then the
homogeneous equation looks as follows.

(11 4+ A+ (s = Dpa) V2 {qrem1 = M2 q1em1 + 1175 101,61, (4.7)

9



10 CHAPTER 4. SOLVING THE MODEL

thus
15— 1V PN = (1 + A+ (8 = D)p2)vs—1 + p1va_y] = 0. (4.8)

Since ys—1 > 0, due to the fact that the states we investigate in the previous
equation can and will be reached in finite time, we have to make sure that
the equation between brackets equals zero. This can be achieved by using
the abe-formula. One of the solutions is greater than 1 and therefore not
useful. The result for vs_1 is:

(11 + A+ (s = Do) = /(1 + A+ (s — Do) — 4y A
2 '

Vs—1 = (4.9)

Now we have the homogeneous solution:
Qu,s—1 = 7:3:11q175_1, forz>1,y=s5—1. (4.10)

For the general solution we need a particular solution to the inhomogeneous
equation. As particular solution we try

Gy = Ks—117; - (4.11)

With K, ;; the second constant for level y = s —1 (K 1, is the first
constant for this level used in the general solution for the homogeneous
part). After substitution in the inhomogeneous equation we get the next
equation:

Ks—l,wf*l[)\ — (1 + A+ (s—Dpu2)ys + ,uwf] + spaks 05 . (4.12)
Now subtract the following equation:
Koo1,107 7 A = (A sp2) ). (4.13)

Note that this term equals zero, because the term between brackets is zero
due to the homogeneous equation at level s. After subtraction we derive the
following equation:

Koot 175 = (1 — p2)vs + pav2] + spaKs 072, (4.14)

or
VolKs—1,1 - ( — (g1 — p2) + uws) + sp2K; o], (4.15)

which is equal to zero when

Sp2

Ky 11=
o (1 — p2) — p1vs

K.

)

(4.16)

For the general solution we have to multiply the homogeneous solution with
a constant C'. We define

Ks—l,O =C- qu_l. (417)
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The general solution for level y = s — 1 is now as follows

Gos—1 = K107 + Koo1177. (4.18)

Now examine level 0 <y <s and z+y > s.
The equilibrium equations are as follows.

((S—y)u1+>\+yu2)qx,y = Az 1,y +(5—Y)1qer1y+ Y+ p2geyr1 (4.19)

We start with solving the homogeneous equation with respect to level y.
Suppose that ¢, = 75_(s_y)qs_y7y with v, to be determined. Then the

homogeneous equation looks as follows.

Ts—y,y ((S—y)u1+>\+yu2) 7;’_(8_” = qs_yyy[Aﬁ—l—(s—y)+(5_y)mﬁ+1—(s—y)]’
(4.20)
thus

Gomyay ™ TIN5 = ) + Ak gz )y + (5 — )nZ] = 0. (4.21)

Since 7, > 0 due to the fact that each state we investigate in the previous
equation can and will be reached in finite time, we have to make sure that
the equation between brackets equals zero. This can be achieved by using
the abc-formula. One of the solutions is greater than 1 and therefore not
useful. The result for v, is:

((8 — Y1+ A+ Wz) - \/((s —y)u + A+ yuz)2 —4(s —y)uiA

2(s —y)u

Yy =

(4.22)
Now we have the homogeneous solution:

Goy =7 CVgy yy,  forz>s—y0<y<s. (4.23)

For the general solution we need a particular solution to the inhomogeneous
equation. As particular solution we try

Gy = 3 Kyimy-f O (4.24)
i=y+1

After substitution of this particular solution we see that we get a combina-
tion of linear equations in ~; which can be solved separately. We solve for
i=y+1,...,s separately. So we solve s —y equations. Now let’s introduce
j=1—y. So values for jare j =1,...,s —y.
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After substitution and focusing on 7,; in the inhomogeneous equation we
get the next equation.

V1 o

Kyvg "7 [/\—((S—y)u1+k+yu2)7y+j+(8—y)uw§+j]+(y+1)u2Ky+1,jfw§+§s v,
(4.25)

Now subtract the following equation:

Ky,ﬂ;;(s_y_”_l[/\— ((s—y—j)m+>\+(y+j)u2)7y+j+(S—y—j)u17§+j]-

(4.26)
Note that this term equals zero because the term between brackets is zero
due to the homogeneous equation at level y. Note that even at level s this
equation will equal zero since s — y = 0. After subtraction we derive the
following equation:

Ky,jﬁ;}s_y_j)_l (= (11— o) vy + 2] + (Y + 1)M2Ky+1,j—17;;](8;y2_;)
which equals 20

7;;](87?/73.)[— (j(ul — p2) — le’Yy+j)Ky,j + @+ DuaKy1;-1], (4.28)
which is equal to zero when

Ko (y + 1)z
Y3 — . _ __ 1 .
J(,u1 ,uz) JH1Vy+5

Ky o1 (4.29)

If we add the solutions of the linear equations for each ~; we get a particular
solution. For the general solution we need to add the homogeneous solution
multiplied with a constant Cy and the particular solution. We define:

Kyo:=Cy- qsyy- (4.30)

The general solution for level 0 < y < s is now as follows

s
A,y = Z Ky,ify ’ 7?7(371) (4:3].)

=y

Now examine level y =0 and = +y > s.

If you take a closer look to the equations that hold for 0 < y < s and
x 4+ y > s, you should notice that the solution also holds for y = 0. Up till
now we have only s + 1 unknown constants, which can be solved with the
remaining equations for z + y = s.

Now examine level y =s and z +y = s.

The equilibrium equation for this case is as follows:

Ado,s = H1q1,s—1, (4.32)
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SO A\
q1om1 = 202, (4.33)
231

Now examine level 0 <y < s and z+y = s.
The equilibrium equations are as follows:

(>‘+(3_y)ﬂl)q8ﬁy,y = (S_Q)qukyﬂ,y"‘(S_Z/‘i‘l)MIsterLyfl"‘(y+1)M2sty,y+1’
(4.34)

SO

A+ (8 =y)p1)qs—yy — (Y + D pags—yyi1 — (8 = Y1 qs—y+1,y
(s —y+ 1)

Qs—y+1,y—1 =

(4.35)
Now it is possible for each stationary probability to express it in terms of
one constant. We also know that

o s
Z Z Qe,y = 1. (4.36)
z=0y=0

This determines the last constant. Now all ¢, are determined for the
particular case that ¢ = s and § = 1. In the CALLculator described in a
later chapter we determine the ¢, , up to x +y = n. Where n is a figure for
the accuracy of the calculation.

4.2 Stationary probabilities for 6 =1 and ¢ < s

Start withy=cand z+y > s
For y = ¢ and = 4+ y > s the following equilibrium equation holds

((s—c)p1 + A+ cp2)aec = Ma—i,c + (5 — ) p1Goti,c (4.37)
Suppose ¢z c = Ve @s—c,c, then
(s = w1 + A+ cp2) Ve Gsmcie = Mo 'smcie + (5 = )1ve  gs—cer (4.38)
or
eV A = ((s = )p1 + X + cpun)ve + (s — )pu1vy?] = 0. (4.39)

Since v, > 0 due to the fact that each state we investigate in the previous
equation can and will be reached in finite time, we have to make sure that
the equation between brackets equals zero. This can be achieved by using
the abc-formula. One of the terms is not useful since it is greater than 1.
The result for . is:

((s =) + A +cpz) = V/((s = p1 + X+ cup)? — 4(s — )i
2(s — )y )

Ve =
(4.40)
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We define
KC,O = (s—c,c- (441)

Since the equation only holds for x + y > s the solution will be as follows:
Qrc = cwa*(sfc) forx >s—c,y=c. (4.42)

Continue with 0 <y <cand z+y > s.

A closer look at these levels tell us that the equibrilium equations are equal
to the case that ¢ = s. Since the solution for level y = ¢ for ¢ < s equals
the solution for level y = ¢ and ¢ = s, we have the same solution as in the
previous section. Only . differs from the previous section. So the solution
for ¢ < s and x + y > s for the stationary probabilities is as follows.

c
e,y = Z Ky,i—y : 7?7(371) (443)
=y

With K, ;_, recursively defined as

(y + 1)ua
K, ;= - : Kyi1i1, 4.44
DT — pe) — gy T (444)
and
2
((s — Yy A+ ym) - ((s — ) + A+ ym) —4(s —y)mA
Yy = .

2(s —y)u
(4.45)

Continue with z +y < s.

Up till now only ¢+ 1 constants are left to be determined. This can be done
with the remaining finite number of equations. The idea is as follows. Take
the equilibrium equations for level z+y = s. In each of these equations there
is just one ¢, 4, the g, , for which  +y = s — 1, which is not determined in
the ¢+ 1 unknown constants. So now it becomes possible to determine these
stationary probabilities in terms of the unknown constants. Now we take a
closer look at the equilibrium equations for level £ + y = s — 1 and solve
the stationary probabilities for  +y = s — 2. Continue in this way until all
stationary probabilities are determined in terms of the unknown constants.
For the determination of the stationary probabilities with z +y = s — 1 you
can use the following equation:

(A +ypo + (2 + 1)M1>%+1,y — (Y + Dp2geriy+1 — (@ + Dpigetoy
qx,y = °
A

(4.46)
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For the determination of the stationary probabilities with £+ y < s —1 you
can use the following equation:

(A +ypo + (2 + 1)u1)qr+1,y — (Y + Dp2ger1y+1 — (@ + 2)p1get2y
QI,y = )\ )
(4.47)

with,
Qoy =0 for y > ¢, (4.48)

as expected since you never exceed ¢ inbound calls.

Now all stationary probabilities are determined in the ¢+ 1 constants. From
here on we can use the equilibrium equations for z +y = ¢ to leave only one
constant to determine. First we determine ¢; .1 in terms of gp . with

AGo,c — H1q1,¢
ql,c—1 = : a —=. (449)
231
Now the other g; ., are determined in terms of ¢ . with
)\—i-III 1)qz,y — +1 2qx 1_$+1 14z+1
Gyt = A+ 2p1)4ay = (Y + Dp2gay1 — (@ + Diidat1y (4.50)

(+1Dm

Now all probabilities are expressed in one constant. We also know that

ZZQr,y =1. (451)

=0 y=0

Now all ¢, are determined for the particular case that ¢ < s and 6 =1. In
the CALLculator described in a later chapter we determine the ¢, , up to
x +y =n. Where n is a figure for the accuracy of the calculation.

4.3 Stationary probabilities for § < 1

This case is not much distinct from the previous problems. Now there exists
an extra level ¢ + 1. If we recalculate the previous sections with this new
level, it becomes clear that all equilibrium equations are the same except for
thelevelszx +y=cand z+y=c+ 1.

It is possible for all stationary probability to express it in ¢+2 constants.
Now it becomes possible to solve these constants in a similar manner as in
the case of § = 1. The only difference is the fact that we get ¢+ 2 equations
in ¢ + 2 constants. The equations can be solved by a solver program.

4.4 Determination of throughput, expected walit-
ing time, and productivity

Since all stationary probabilities are known it becomes possible to deter-
mine e.g., the throughput of outbound calls, the expected waiting time, the
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probability to wait for an agent, and the variance of the waiting time. In
our case we focus on the throughput of the outbound calls, the productivity
of the agents, and the expected waiting time.

The throughput ¢ of the outbound calls is given by:

E=12 Y Yay- (4.52)
.y
The productivity of the agents is defined between 0 and 1 as follows:
1 S5y
wzl—gyz:%zz:%(s—(x—l—y))qz,y (4.53)

Let [x]" = max {x,0} and define W (z,y) recursively by:

1
(s —y)u1 + yua

[L+ (s —y)mW(z — Ly) +ypaW (z, [y — 1]7)]

(4.54)
for x +y > s, and 0 otherwise. The expected waiting time for the inbound
calls is given by

W(xvy) =

EW‘] = Z W(IIJ, y)Qr,y- (455)

x7y



Chapter 5

Simulation

We developed a simulation program for two purposes. The first purpose is
to show that the equations are correct, the second purpose is to show some
advantages of call blending. We could have used the CALLculator (discussed
in the next chapter) for the second purpose, but the CALLculator does not
implement randomized policies yet. The simulation program on the other
hand is able to use the randomized policies between a level ¢ and a level
c+ 1.
Assume that we have the following parameters:

e \=0.5

o 11 =0.4;
o 1o =0.2;
® s =205.

Note that the service time for the outbound calls is twice as large as the
service time for the inbound calls.

Assume that we do not apply call blending. In that case we have 6
possibilities to divide the group. We can use the Erlang delay formula to
calculate the expected waiting time in each of these cases. The throughput
can be determined by multiplying the number of agents serving outbound
calls with pe. Then for each of the cases the following results hold.

Inbound | Outbound Expected
agents agents Waiting time | productivity | throughput
0 5 INF 1 1
1 4 INF 1 0.8
2 3 1.602 0.85 0.6
3 2 0.222 0.65 0.4
4 1 0.038 0.45 0.2
5 0 0.006 0.25 0

17



18 CHAPTER 5. SIMULATION

Now assume that we do apply call blending for this case. The results
for the throughput, the waiting time and the productivity can be seen in
Figure 5.1. This figures show the result of the simulation and the result of
the calculations done in the previous chapter (the CALLculator, described
in the next chapter, is used for the calculations). The productivity for the
inbound calls equals the productivity minus the throughput for the outbound
calls. Now note that this productivity remains the same regardless of the
policy. This was to be expected because the inbound works that arrives has
to be done in each case.

14
1.2 =

& 0 N productivity
o througput

0e — expected wait
0.6 ® cale through

’ R / / ¥ cale produc
04 — / / e calc wait
024

Threshold

Figure 5.1: Simulation and calculated results

We can now start comparing the case with no call blending and with call
blending. Note that the calculated values lie on the curves of the simulation,
this confirms the correctness of the formulas derived for call blending. As-
sume that we did the calculation taking minutes as time unit. If we do not
apply call blending and assign only zero or one agent to the inbound calls,
then the waiting time becomes very large (infinite). If we assign two agents
to the inbound calls we still have to wait more than 1 minute and thirty
seconds. If we assign three agents to the inbound calls we get an acceptable
waiting time of about 13 seconds. In this case the throughput equals 0.4.
Now we consider the call blending case. If we use the threshold of 3 we get
an average waiting time of 7 seconds and a throughput of 0.45. So in the
call blending case the waiting time is smaller and the throughput is bigger.
By applying the randomization technique you could set the throughput to
0.40 as in the case with no call blending but with lower waiting times. It is
also possible to maximize the throughput while the expected waiting time
equals the waiting time in the case with no call blending. This will result in
a higher throughput.

We showed only one case in our paper. But the result holds in much
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more cases. Only if the outbound calls last much longer then you do not
have advantage in both waiting time and throughput but just in one of them.
Note however that the outbound calls in this case last twice as long as the
inbound calls. So better results can be obtained.



20

CHAPTER 5. SIMULATION



Chapter 6

The web-based CALLculator

We developed a calculator to get a quick answer on the throughput of out-
bound calls and the waiting time for inbound calls with user specified values
for the various parameters. This chapter gives an overview of the CALL-
culator and explains how to use the calculator. In Figure 6.1 you see a
screen-shot of the CALLculator.

On fore-hand you have to determine which time unit you will use, e.g.,
seconds, minutes, or hours. Once you have chosen this time unit stick to
it with every variable else the garbage in garbage out principle holds. The
first step is to estimate the number of inbound calls that will arrive in your
time unit. Then determine A (lambda) as follows:

A = mean number of incoming calls in your time unit. (6.1)

The next thing to do is to estimate the mean service time (remember your
time unit) for an inbound call. You then can determine p; by the following

equation:
1

= . 6.2
H mean service time for inbound calls (6:2)

The last estimation to make is the mean service time for an outbound call.
With this time you can calculate the po for the CALLculator as follows:

= ! (6.3)

mean service time for outbound calls’

As a call center manager you should have a feeling for how many agents
to schedule. If you have really no clue you can use the following idea.
First determine how many agents you should use for the inbound calls.
This can be done with the help of the Erlang delay formula on the web
located at http://www.cs.vu.nl/“koole/erlang.html. Only three parameters
are required. The first is the amount of arrivals per minute, the second is
the mean service time for the inbound calls, and the third is the number
of agents. Increase and decrease the number of agents until you satisfy the
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| Fil=  Edt Mew Favortes Tools Help |-

J'@.@.@ﬁ R = B |7

Back. Eaiiar Stop  PRefesh Home Search Favoites  History

J.t’-‘-.gdre_ss IE:‘I hittp: A oz vunld~yhoek str/callblending. php L' i Go HLir‘rks i

-

Call Blending Calculator
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Leave a field empty for a small explanation,
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calculate |

The throughput s equal to 0.62148445353057
The productivity is equal to 0.87148445353057
The expected waiting time is 0.38711511870843
The probability of delay is 0.35742226765285

[4]
|&] Done l_l_ i% Local intranet v

Figure 6.1: The CALLculator.

waiting time criterion. Call the number of agents found $;ppound- The second
step is to determine how many agents you need to realize the throughput of
the outbound calls. This can be done with the following equation:

1
Southound = desired outbound number served in time unit - ,u_ (6.4)
2

Then a start for the number of agents (s) is as follows:

S = Sinbound T Soutbound- (65)

You do not have to stick to this number. You can try to take another
number of agents. You could try a smaller number of agents and see if it
is still possible to meet your demands as discussed in the previous section
where you saw that you needed less agents.

The parameter ¢ is the so-called threshold. We describe the threshold
policy as follows. Let y be the number of outbound calls in service and let
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z be the number of inbound calls in the system. The level ¢, called the
threshold is such that if £ 4+ y < ¢, then the proposed action is to schedule
¢ — zx calls while inbound calls have a higher priority. If x +y > ¢, then
the proposed action is to schedule no outbound calls but only inbound calls.
In this paper there is no general answer for the best threshold to use. You
should experiment by yourself. Take the threshold as high as possible while
you meet your demands like waiting time and throughput.

By setting § (not shown in CALLculator) you can randomize the thresh-
old between ¢ and ¢+ 1. This work as follows in practice. Add the number of
outbound calls in service and the number of inbound calls in the system (so
the ones in service and the ones in the queue). If this number equals ¢ + 1
and an agent just finished his job, then with probability d you do nothing
and with probability 1 — § you schedule an outbound call. Up till now the
CALLculator does not provide the calculations for a threshold policy with
randomization between two levels i.e., § = 1 in the CALLculator. If you
would like to know the outcome of a randomized policy you should estimate
it by interpolation with a higher degree polynomial function. You could use
Excel for this interpolation.

The last parameter n in the CALLculator is only for the accuracy of the
calculations the bigger this number the better the accuracy but the longer
the calculation time. You could use the following equation to get an idea of
what number you can take.

n = s+ 4 - expected queue length. (6.6)

Again try to change this parameter to see how the throughput behaves. You
should take it at least as large as s, notice that in the particular case that
you should take n equal to s that you would not account for queueing times.
The next thing to do is click calculate and the CALLculator shows you
the expected queueing time for an inbound customer and the throughput
realized. Note that these numbers represent long term behavior and do not
say anything about a percentage of customers that has to wait for a certain
time. You cannot simply say that 50% of the customers waits less than the
average queueing time.

An example of how to use the CALLculator is in Figure 6.1. For this
example the following holds. The mean time between arrivals of inbound
calls is 2 minutes, the average duration of an inbound call is 2.5 minutes,
the average duration of an outbound call is 5 minutes, the number of agents
available is 5, the threshold used is 4 and the accuracy is set to 500. When
you click the calculate button you get the result as shown in Figure 6.1
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Chapter 7

Conclusion

Conclusion

If call centers apply call blending it is possible to increase productivity and
throughput significantly. While on the other hand at the same time it is
possible to decrease the waiting times. The CALLculator developed for the
calculations works good and can be used by call center mangers to get an
idea of what results can be obtained by applying call blending.

Topics for further research

At first the CALLculator could be extended to randomized policies (§ <
1). The CALLculator could also be extended with a comparison with the
case that no call blending is applied. The CALLculator could also give
the probability that a certain inbound call has to wait longer than say 10
seconds. This can be done because all stationary probabilities are already
determined.

We could also look at service times that are not exponentially dis-
tributed. Another idea is to investigate the arrival rate, do the customers
really arrive according to a Poisson process. We assumed that customers
did not abandon and that our queues are infinite. What if queues are finite
and customers are able to abandon. The last point we like to mention is
that you could investigate agents with various skills.
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