
Active Appearance Models
for Face Recognition

Paul Ivan
ivan.paul@gmail.com

Supervisor: dr. Sandjai Bhulai

April 4, 2007

Vrije Universiteit Amsterdam
Faculteit der Exacte Wetenschappen
Business Mathematics & Informatics

De Boelelaan 1081a
1081 HV Amsterdam

2

3

Abstract

A growing number of applications are starting to use face recognition as the
initial step towards interpreting human actions, intention, and behaviour, as
a central part of next-generation smart environments. Recognition of facial
expressions is an important example of face-recognition techniques used in
these smart environments. In order to be able to recognize faces, there are
some difficulties to overcome. Faces are highly variable, deformable objects,
and can have very different appearances in images depending on pose, light-
ing, expression, and the identity of the person. Besides that, face images can
have different backgrounds, differences in image resolution, contrast, bright-
ness, sharpness, and colour balance.

This paper describes a model-based approach, called Active Appearance
Models, for the interpretation of face images, capable of overcoming these
difficulties. This method is capable of ‘explaining’ the appearance of a face in
terms of a compact set of model parameters. Once derived, this model gives
the opportunity for various applications to use it for further investigations of
the modelled face (like characterise the pose, expression, or identity of a face).
The second part of this paper describes some variations on Active Appearance
Models aimed at increasing the performance and the computational speed of
Active Appearance Models.

4

5

Acknowledgements

This paper was written as part of the master Business Mathematics and
Informatics at the Vrije Universiteit, Amsterdam. The main goal of this as-
signment is to write a clear and concise paper on a certain scientific problem,
with a knowledgable manager as the target audience.

I want to thank dr. Sandjai Bhulai for helping me defining a good sub-
ject for this paper and his comments during the writing-process.

Paul Ivan
Amsterdam, April 4, 2007

6

Contents

1 Introduction 9

2 Active Appearance Models 13
2.1 Statistical Shape Models . 13
2.2 Statistical Texture Models . 16
2.3 The Combined Appearance Model 18
2.4 The Active Appearance Search Algorithm 20
2.5 Multi-resolution Implementation 22
2.6 Example of a Run . 23

3 Variations on the AAMs 27
3.1 Sub-sampling during Search 27
3.2 Search Using Shape Parameters 28
3.3 Direct AAMs . 29
3.4 Compositional Approach . 30

4 Experimental Results 31
4.1 Sub-sampling vs. Shape vs. Basic 31
4.2 Comparative performance . 33

5 Discussion 35

7

8 CONTENTS

Chapter 1

Introduction

Researchers today are actively building smart environments. These envi-
ronments, such as rooms, cars, offices, and stores, are equipped with smart
visual, audio, and touch sensitive applications. The key goal of these ap-
plications is usually to give machines perceptual abilities that allow them
to function naturally with people, in other words, to recognize the people
and remember their preferences and characteristics, to know what they are
looking at, and to interpret their words, gestures, and unconscious cues such
as vocal prosody and body language [7].

A growing number of applications are starting to use face recognition as
the initial step towards interpreting human actions, intention, and behaviour,
as a central part of next-generation smart environments. Many of the actions
and behaviours humans display can only be interpreted if you also know the
person’s identity, and the identity of the people around them.

Recognition of facial expressions is an important example of face-recognition
techniques used in these smart environments. It can, for example, be useful
for a smart system to know whether the user looks impatient because infor-
mation is being presented too slowly, or confused because it is going too fast.
Facial expressions provide clues for identifying and distinguishing between
these different moods. In recent years, much effort has been put into the
area of recognizing facial expressions, a capability that is critical for a variety
of human-machine interfaces, with the hope of creating person-independent
expression recognition capability. Other examples of face-recognition tech-
niques are recognizing the identity of a face/person or characterizing the pose
of a face.

Various fields could benefit of systems capable of automatically extracting
this kind of information from images (or sequences of images, like a video-
stream). For example, a store equipped with a smart system capable of
expression recognition could benefit from this information in several ways.

9

10 CHAPTER 1. INTRODUCTION

Such a system could monitor the reaction of people to certain advertisements
or products in the store, or the other way around, they could adjust their
in-store advertisements based on the expressions of the customers. In the
same manner, marketing research could be done with cameras monitoring
the reaction of people to their products. Face recognition techniques aimed
at recognizing the identity of a person, could help such a store when a valued
repeat customer enters a store.

Other examples are, behaviour monitoring in an eldercare or childcare fa-
cility, and command-and-control interfaces in a military or industrial setting.
In each of these applications identity information is crucial in order to provide
machines with the background knowledge needed to interpret measurements
and observations of human actions.

Goals and Overview In order to be able to recognize faces, there are
some difficulties to overcome. Faces are highly variable, deformable objects,
and can have very different appearances in images depending on pose, light-
ing, expression, and the identity of the person. Besides that, face images can
have different backgrounds, differences in image resolution, contrast, bright-
ness, sharpness, and colour balance. This means that interpretation of such
images/faces requires the ability to understand this variability in order to
extract useful information and this extracted information must be of some
manageable size, because a typical face image is far too large to use for any
classification task directly.

Another important feature of face-recognition techniques is real-time ap-
plicability. For an application in a store, as described above, to be successful,
the system must be fast enough to capture all the relevant information de-
rived from video images. If the computation takes too long, the person might
be gone, or might have a different expression. The need for real-time appli-
cability thus demands for high performance and efficiency of applications for
face recognition.

This paper describes a model-based approach for the interpretation of
face images, capable of overcoming these difficulties. This method is capable
of ‘explaining’ the appearance of a face in terms of a compact set of model
parameters. The created models are realistically looking faces, closely resem-
bling the original face depicted in the face image. Once derived, this model
gives the opportunity for various applications to use it for further investiga-
tions of the modelled face (like characterise the pose, expression, or identity
of a face).

This method, called Active Appearance Models, in its basic form is de-
scribed in Chapter 2. Because of the need for real-time applications using this

11

technology, variations on the basic form aimed at increasing the performance
and the computational speed are discussed in Chapter 3. Some experimental
results of comparative tests between the basic form and the variations are
presented in Chapter 4. Finally, a general conclusion/discussion will be given
in Chapter 5.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Active Appearance Models

The Active Appearance Model, as described by Cootes, Taylor, and Edwards
(see, [1] and [6]) requires a combination of statistical shape and texture mod-
els to form a combined appearance model. This combined appearance model
is then trained with a set of example images. After training the model, new
images can be interpreted using the Active Appearance Search Algorithm.
This chapter will describe these models in detail, mostly following to the
work of [1], [6], and [5].

2.1 Statistical Shape Models

The statistical shape model is used to represent objects in images. A shape
is described by a set of n points. The points are called landmarks and are
often in 2D or 3D space. The goal of the statistical shape model is to derive a
model which allows us to both analyze new shapes and to synthesize shapes
similar to those in the training set. The training set is often generated by
hand annotation of a set of training images, an example of such a hand-
annotated image can be seen in Figure 2.1. By analyzing the variations in
shape over the training set, a model is built which can mimic this variation.

If in the two dimensional case a shape is defined by n points, we represent
the shape by a 2n element vector formed by concatenating the elements of
the individual point positions:

x = (x1, y1, x2, y2, . . . , xn, yn). (2.1)

If we have a training set of s training examples, we generate s such vectors
xi, in which xi is the shape vector of shape i. Now, because faces in the
images in the training set can be at different positions, of different size, and
have different orientation, we wish to align the training set before we perform

13

14 CHAPTER 2. ACTIVE APPEARANCE MODELS

Figure 2.1: Hand annotated face

statistical analysis. The most popular approach of doing this is aligning each
shape by minimizing the sum of distances of each shape to the mean shape
vector, x̄, over all s shape vectors.

D =
s∑

i=1

||xi − x̄||2. (2.2)

This alignment can be done by applying re-positioning, scaling, and ro-
tation of the shape, which are valid operations considering the invariability
of shapes under Euclidean transformations. Although useful, this method is
poorly defined unless there are clearly defined constraints of the alignment of
the mean shape, like ensuring it is centered around the origin, has unit size,
and some fixed orientation. Cootes and Taylor describe a simple iterative
approach for applying this alignment.

1. Translate each example so that its center of gravity1 is at the origin.

2. Choose one example as an initial estimate of the mean shape and scale
so that ||x̄|| = 1.2

1The point in any solid where a single applied force could support it; the point where
the mass of the object is equally balanced. The center of gravity is also called the center
of mass.

2||x|| is defined as the norm of the n-dimensional vector x and can be calculated by
||x|| =

√
x2

1 + x2
2 + . . . + x2

n

2.1. STATISTICAL SHAPE MODELS 15

3. Record the first estimate as x̄i, with i = 0 to define the default reference
frame.

4. Align all the shapes with the current estimate of the mean shape.

5. Re-estimate the mean from the aligned shapes.

6. Apply constraints in the current estimate of the mean by aligning it
with x̄i and scaling so that ||x̄i+1|| = 1, set i = i + 1 and record this
estimate as x̄i.

7. If not converged, return to 4. (convergence is declared if the estimate
of the mean does not change significantly after an iteration.)

We now have a set s of points xi, aligned into a common co-ordinate frame.
These vectors form a distribution in the 2n dimensional space in which they
live. We wish to model this distribution to be able to generate new examples,
similar to those in the training set, and to be able to examine new shapes to
decide whether they are plausible examples.

We would like to have a parametrized model M of the form x = M(b),
where b is a vector of the parameters of the model. To be able to derive such
a model we first reduce the dimensionality of the data from 2n to a more
manageable size. This is done by applying Principal Component Analysis
(PCA). PCA is used to extract the main features of the data, by seeking
the direction in the feature space which accounts for the largest amount of
variance in the data set with possible correlations between variables. This
direction (the first principal component) becomes the first axis of the new
feature space. This process is repeated to derive the second principal com-
ponent, and so on until either all variance is explained in the new feature
space or the total explained variance is above a certain threshold (l). This
approach is as follows:

1. Compute the mean of the data,

x̄ =
1

s

s∑
i=1

xi. (2.3)

2. Compute the sample covariance of the data3,

S =
1

s− 1

s∑
i=1

(xi − x̄)(xi − x̄)T . (2.4)

3Note that, since xi is a vector, this matrix can be seen as the covariance matrix
between the individual (scalar) elements xi of the vector xi.

16 CHAPTER 2. ACTIVE APPEARANCE MODELS

3. Compute the eigenvectors φi and the corresponding eigenvalues λs,i of
S (sorted such that λs,i ≥ λs,i+1).

Then, if Ps contains the l eigenvectors corresponding to the largest eigen-
values, then we can approximate any shape vector x of the training set using:

x ≈ x̄ + Psbs, (2.5)

where Ps = (φ1|φ2| . . . |φl) is an orthogonal matrix (thus P T
s = P−1

s and
P T

s Ps = Il) and bs is an l-dimensional vector given by

bs = P T
s (x− x̄). (2.6)

Now we have the parametrized form, in which the vector bs defines the set
of parameters of the model. By the use of Principal Component Analysis we
have reduced the number of parameters from s to l with l < s. Depending
on l this can be a significant reduction in dimensionality. By varying the
elements of b we can vary the shape. The variance of the ith parameter bi

across the training set is given by λs,i. By applying limits of ±3
√

λs,i to the
parameters of bs we ensure that the shape generated is similar to those in
the original training set. The number of parameters in bs is defined as the
number of modes of variation of the shape model.

2.2 Statistical Texture Models

To be able to synthesize a complete image of an object we would like to
include the texture information of an image. By ‘texture’ we mean, the
pattern of intensities or colours across an image patch.

Given an annotated training set, we can generate a statistical model of
shape variation from the points. Given a mean shape, we can warp each train-
ing image into the mean shape, to obtain a ‘shape-free’ patch. From that we
can build a statistical model of the texture variation in this patch. Warp-
ing each training image means, changing an image so that its control points
match the mean shape (using a triangulation algorithm, see Appendix F of
[6]). This is done to remove spurious texture variations due to shape differ-
ences. We then sample the intensity information from the shape-normalized
image over the region covered by the mean shape to form a texture vector,
gimage.

To minimize the effect of global lighting, the shape-free patches should
be photometrically aligned, or in other words, the shape-free patches should
be normalized. This is done by minimizing the sum of squared distances Eg

between each texture vector and the mean of the aligned vectors ḡ, using

2.2. STATISTICAL TEXTURE MODELS 17

offsetting (changing brightness) and scaling (changing the contrast) of the
entire shape-free patch:

Eg =
s∑

i=1

|gi − ḡ|2, (2.7)

where s is the number of shape vectors and texture vectors and thus the
number of images in the training set.

Eg is minimized using the transformation gi = (gimage − β1)/α, where α
is the scaling factor and β is the offset.

α = gimage · ḡ, β = (gimage · 1)/n, (2.8)

where n is the number of elements in the vector.
Obtaining the mean of the normalized data is a recursive process, as the

normalization is defined in terms of the mean. This can be solved by an
iterative algorithm. Use one of the examples as the first estimate of the
mean, align the others to it (using 2.7 and 2.8) and re-estimate the mean,
calculate Eg and keep iterating between the two until Eg is converged (does
not get smaller anymore).

The next step is to apply PCA to the normalized data, in a similar manner
as with the shape models. This results in:

g ≈ ḡ + Pgbg, (2.9)

in which Pg contains the k eigenvectors corresponding to the largest eigen-
values λg,i and bg are the grey-level parameters of the model. The number of
parameters are called the number of texture modes.

The elements of bi are again bound by:

− 3
√

λg,i ≤ bi ≤ 3
√

λg,i. (2.10)

If we represent the normalization parameters α and β in a vector u =
(α− 1, β)T , we represent u as u = (u1, u2)

T , and g = (gimage−β1)/α, we can
state that the transformation from g to gimage is the following:

Tu(g) = (1 + u1)g + u21. (2.11)

Now we can generate the texture in the image in the following manner:

gimage ≈ Tu(ḡ + Pgbg) = (1 + u1)(ḡ + Pgbg) + u21. (2.12)

18 CHAPTER 2. ACTIVE APPEARANCE MODELS

2.3 The Combined Appearance Model

The appearance model combines both the shape model and the texture
model. It does this by combining the parameter vectors bs and bg to form
a combined parameter vector bsg. Because these vectors are of a different
nature and thus of a different relevance, one of them will be weighted.

bsg =

(
Wsbs

bg

)
. (2.13)

Since bs has units of distance and bg has units of intensity, they cannot be
compared directly. To make bs and bg commensurate, the effect of varying
bg on the sample g must be estimated. This can be done by systematically
displacing each element of bs from its optimal value on each training example
and calculating the corresponding difference in pixel intensities.

A simpler alternative is to set Ws = rI where r2 is the ratio of the total
intensity variation to the shape variation (in normalized frames). Note that
we already calculated the intensity variation and the shape variation in the
form of the eigenvalues λs,i and λg,i, of the covariation matrix of the shape
vectors and the intensity vectors. Thus:

Ws =
λ+

g

λ+
s

, (2.14)

with,

λ+
g =

k∑
i=1

(λg,i), λ+
s =

l∑
i=1

(λs,i). (2.15)

where, λs,i are the l eigenvalues of the covariance matrix of the shape vector
and λg,i are the k eigenvalues of the covariance matrix of the texture vector.

PCA is once more applied to these vectors, giving the final model:

bsg = Pcc, (2.16)

where Pc are the eigenvectors belonging to the m largest eigenvalues of the
covariance matrix of combined and weighted texture- and shape modes bsg.
The vector c is a vector of appearance parameters controlling both the shape
and grey-levels of the model, defined as the Appearance modes of variation.
Note that the dimension of the vector c is smaller since m ≤ l + k. Now
from this model we can extract an approximation of the original shape and
texture information by calculating:

x = x̄ + PsW
−1
s Pcsc, g = ḡ + PgPcgc, (2.17)

2.3. THE COMBINED APPEARANCE MODEL 19

Figure 2.2: Result of varying the first three appearance modes

with,

Pc =

(
Pcs

Pcg

)
. (2.18)

From an image, we can now extract a compact vector c which describes the
appearance (both shape and texture) of the depicted face. And vice versa,
given a vector c, an image can be synthesized by calculating a shape-free
patch from bg and warping this to the shape described by bs. The elements
of the appearance vector c are referred to as the appearance modes.

Figure 2.2 (taken from [5]) shows the effect of varying the first three (the
most significant) appearance modes. Note that the image in the middle, at
zero, is the mean face (derived from a particular training set). From this
image, we can clearly see how the first two modes affect both the shape and
the texture information of the face model. Note that, the composition of the
training set, the amount of variance retained in each step and the weight-
ing of shape versus texture information will determine the most significant
appearance modes and what these modes look like (or what their influence
is).

20 CHAPTER 2. ACTIVE APPEARANCE MODELS

2.4 The Active Appearance Search Algorithm

Until now we have discussed the training phase of the appearance model. In
this section the Active Appearance Search Algorithm will be discussed. This
algorithm allows us to find the parameters of the model, which generate a
synthetic image as close as possible to a particular target image, assuming a
reasonable starting approximation4.

Interpretation of a previously unseen image is seen as an optimization
problem in which the difference between this new image and the model (syn-
thesized) image is minimized.

δI = Ii − Im, (2.19)

where, Ii is the vector of grey-level values in the image and Im is the vector
of grey-level values for the current model parameters. We wish to minimize
∆ = |δI|2, by varying the model parameters, c. This appears to be a difficult
high-dimensional optimization problem, but in [1] Cootes et al. pose that the
optimal parameter update can be estimated from δI. The spatial pattern in
δI, encodes information about how the model parameters should be changed
in order to achieve a better fit. There are basically two parts to the problem:

1. Learning the relationship between δI and the error in the model pa-
rameters δc,

2. Using this knowledge in an iterative algorithm for minimizing ∆.

The appearance model has one compact parameter vector c, which controls
the shape and the texture (in the model frame) according to:

x = x̄ + Qsc, g = ḡ + Qgc, (2.20)

where

Qs = PsW
−1
s Pcs, Qg = PgPcg, (2.21)

where x̄ is the mean shape and ḡ is the mean texture in a mean-shaped patch.
A shape in the image frame, X, can be generated by applying a suitable

transformation to the point, x : X = St(x). Valid transformations are,
scaling (s), an in-plane rotation (θ), and a translation (lx, ly). If for linearity
we represent the scaling and rotation as (sx, sy) where sx = (s cos θ− 1) and

4To find a reasonable starting position, often a separate module/application is used,
which has a fast way of finding an estimate of the position of a face in an image ([5, p.9])

2.4. THE ACTIVE APPEARANCE SEARCH ALGORITHM 21

sy = s sin θ, then the pose parameter vector t = (sx, sy, lx, ly)
T is zero for

the identity transformation and St+δt(x) ≈ St(Sδt(x)). Now, in homogeneous
co-ordinates, t corresponds to the transformation matrix:

St =

 1 + sx −sy lx
sy 1 + sx ly
0 0 1

 . (2.22)

For the AAM we must represent small changes in pose using a vector, δt.
This is to allow us to predict small pose changes using a linear regression
model of the form δt = Rg. For linearity the zero vector should indicate
no change, and the pose change should be approximately linear in the vec-
tor parameters. This is satisfied by the above parameterization. The AAM
algorithm requires us to find the pose parameters t′ of the transformation
obtained by first applying the small change given by δt, then the pose trans-
form given by t. Thus, find t′ so that St′(x) = St(Sδt(x)). Now it can be
shown that for small changes, Sδt1(Sδt2(x)) ≈ S(δt1+δt2)(x), see Appendix D
of [6].

From the appearance model parameters c and shape transformation pa-
rameters, t, we get the position of the model points in the image frame X.
This gives the shape of the image patch to be represented by the model.
During the matching phase we sample the pixels in this region of the image,
gimage, and project into the texture model frame, gs = T−1

u (gimage), with Tu

from (2.12). Then, the current model texture is given by gm = ḡ + Qqc. The
current difference between model and image in the normalized texture frame
is then:

r(p) = gs − gm, (2.23)

where p are the parameters of the model, pT = (cT |tT |uT). A scalar
measure of difference is the sum of squares of elements of r, E(p) = r(p)T r(p).
A first order Taylor expansion of (2.23) gives,

r(p + δp) = r(p) +
∂r

∂p
δp, (2.24)

where the ijth element of matrix ∂r
∂p

is dri

dpj
.

Suppose during matching our current residual is r. We wish to choose δp
so as to minimize |r(p+δp)|2. By equating (2.24) to zero we obtain the RMS
(root mean squared) solution.

δp = −Rr(p), whereR = (
∂r

∂p

T ∂r

∂p
)−1 ∂r

∂p

T

. (2.25)

22 CHAPTER 2. ACTIVE APPEARANCE MODELS

Normally it would be necessary to recalculate ∂r
∂p

at every step, an ex-
pensive operation. However, we assume that since it is being computed in
a normalized reference frame, it can be considered approximately fixed. We
can thus estimate it once from our training set, We estimate ∂r

∂p
by numeric

differentiation, systematically displacing each parameter from the known op-
timal value on typical images and computing an average over the training
set. Residuals at displacements of differing magnitudes are measured (typ-
ically up to 0.5 standard deviations of each parameter) and combined with
a Gaussian kernel to smooth them. We then precompute R and use it in all
subsequent searches with the model.

Now if we have computed the matrix R, we can construct an iterative
method for solving the optimization problem. Given a current estimate of
model parameters, c, the pose t, the texture transformation u, and the image
sample at the current estimate gimage, one step of the iterative matching
procedure is as follows:

1. Project the texture sample into the texture model frame using gs =
T−1

u (gimage).

2. Evaluate the error vector, r(p) = gs − gm, and the current error, E =
|r(p)|2.

3. Compute the predicted displacements, δp = −Rr(p).

4. Update the model parameters p̂ → p + kδp, where initially k = 1.

5. Calculate the new points, X̂ and the model frame texture ĝm.

6. Sample the image at the new points to obtain ĝimage.

7. Calculate a new error vector, r(p̂) = T−1
û (ĝimage)− ĝm.

8. If |r(p̂)|2 < E then accept the new estimate (record p = p̂), otherwise
try at k = 0.5, k = 0.25, etc.

9. Repeat this procedure until no improvement is made to the error,
|r(p)|2, and convergence is declared.

2.5 Multi-resolution Implementation

Cootes and Taylor ([6]) propose a more efficient implementation of the previ-
ously described iterative algorithm. They use a multi-resolution implemen-
tation, in which they iterate to convergence at each level. The idea comes

2.6. EXAMPLE OF A RUN 23

from the multi-resolution Active Shape Models. The method involves first
searching and matching in a coarse image and then further matching in a
series of finer resolution images.

For all the images in the training and test set, a Gaussian image pyramid
is built. This pyramid represents the different resolution levels, in which
level 0 is the original image. The next level (level 1) is formed by smoothing
the original image and then sub-sampling to obtain an image with half the
number of pixels in each dimension, and so on for subsequent levels.

Figure 2.3: A Gaussian image pyramid is formed by repeated smoothing and
sub-sampling

During training different models for different resolution levels are built.
During search, the iterative algorithm from Section 2.4 is performed at the
different resolution levels. Starting with the highest level and iterated until
convergence is declared at that level.

2.6 Example of a Run

The previous sections described the whole process underlying the Active
Appearance Models. In this section a single run is presented. When an
image is presented to the system, first an approximation of the position of
a face (see Figure 2.4) is found. In the next stage, a model fit is created as
depicted in Figure 2.5.

From the image in Figure 2.5 and 2.4, we can see that all the main char-
acteristics of the face are preserved reasonably well and at first glance the
model and original might actually be confused. When we look closer, we can
see that the skin has become smoother, edges are less sharp and minor skin
blemishes have largely disappeared. It should be noted that this is totally
due to the variation in the training set. If the characteristics of a face image
presented to the system deviate greatly from the training set, the fit quality
degrades, and vice versa. Figure 2.6 shows the progress of a multi-resolution

24 CHAPTER 2. ACTIVE APPEARANCE MODELS

Figure 2.4: Approximation of the position of the face

Figure 2.5: Model fit of the face

2.6. EXAMPLE OF A RUN 25

search. Each starting with the mean model displaced from the true face
center.

Figure 2.6: Progress of a multi-resolution search

26 CHAPTER 2. ACTIVE APPEARANCE MODELS

Chapter 3

Variations on the AAMs

Since performance and efficiency is very important when implementing Active
Appearance Models (AAMs) in real-time applications, this section describes
modifications to the basic AAM search algorithm aimed at improving the
speed and robustness of search.

3.1 Sub-sampling during Search

In [2], Cootes et al. describe that during search, the basic AAM formulation
samples all the points in the model to obtain gs. There may be more than
10,000 pixels, but fewer than 100 parameters. There is thus considerable
redundancy. This indicates that it might be possible to obtain good results
by only sampling the most important (a sub-set) of the modelled pixels.
During the training phase the update matrix R is computed, this matrix is
used to calculate the change in the ith parameter, δci :

δci = aiδg, (3.1)

where ai is the ith row of R. The elements of ai indicate the significance
of the corresponding pixel in the calculation of the change in the parameter.
From this we can derive what pixels are most important for a certain parame-
ter. By sorting the elements of ai by absolute value and selecting the largest,
we can choose the most useful sub-set for a given parameter. However, the
pixels which best predict changes to one parameter, may be less or not useful
for a different parameter.

We can solve this by computing the best u% of elements for each parameter
and then generate the union of such sets. If u is small enough, the union

27

28 CHAPTER 3. VARIATIONS ON THE AAMS

will be less than all the elements. With this sub-set we perform a new multi-
variate regression, to compute the relationship a′ between the changes in the
sub-set of samples, δg′, and the changes in the parameters

δc = a′δg′, (3.2)

and using the same search algorithm, but using only a sub-set of all the
pixels.

3.2 Search Using Shape Parameters

In the original formulation the parameters c are manipulated. A different
approach is to use image residuals to drive the shape parameters bs and
computing the texture parameters bg, and thus c directly from the image
given the current shape. This might be useful when there are few shape
modes and many texture modes. This approach gives a different update
function:

δbs = Bδg. (3.3)

Now δg is given by the difference between the current image sample gs

and the best fit of the grey-level model to it, gm.

δg = gs − gm = gs − (ḡ + Pgbg), (3.4)

where bg = P T
g (gs − ḡ).

We now have to learn the relationship (B) between δbs and δg. We know
that any δg is orthogonal to the columns of Pg, thus the update equation
becomes:

δbs = B(gs − ḡ) = Bgs − boffset. (3.5)

where, boffset = Bḡ and thus a constant offset to the parameters bs. Fit-
ting a model to an image now simplifies to keeping track of the pose t, the
texture transformation u, and shape parameters bs. The texture parameters
can be computed directly from the sample at the current shape. So in this
case p = (bT

s |tT |uT). In a training phase one learns the relationships:

δp = −Rr(p), (3.6)

where R is calculated in the same manner as in Equation 2.25, except for
the fact that the model parameters p do not consist of the texture parameters
(bg).

During the search the update step is modified as follows:

3.3. DIRECT AAMS 29

1. Project the texture sample into the texture model frame using gs =
T−1

u (gimage).

2. Fit the texture model to the sample using bg = P T
g (gs − ḡ).

3. Compute the residual1 as r(p) = gs − gm.

4. Predict the pose parameters, the texture transformation, and the shape
parameter updates using 3.6.

5. Apply and test the updates as for the basic algorithm.

We can apply the constraints of the combined appearance model by com-
puting c, applying the constraints and then recomputing the shape parame-
ters. The magnitude of the residual ||r(p)|| can be used to test for conver-
gence.

This method may be faster in cases where there are significantly fewer
modes of shape variation than the combined appearance modes. However, it
might perform less fast, because it is only indirectly driving the parameters
controlling the full appearance c.

3.3 Direct AAMs

Hou et al. ([4]) suggest that in some cases it is possible to predict the shape
directly from the texture, which leads to a faster algorithm.

If we recall from Chapter 2 that:

x = x̄ + Psbs, g = ḡ + Pgbg. (3.7)

And recall that we denoted the individual parameter vectors of the shape
and the texture model as:

bs = Pcsc, bg = Pcgc. (3.8)

Now, Hou et al. claim that the relationship between the texture and shape
information, for faces, is many to one.

bs = Sbg = PcsP
−1
cg bg, (3.9)

where P−1
cg is the pseudo-inverse of Pcg. If the rank of Pcg is larger than the

number of shape parameters, we can accurately predict the shape parameters
from the texture. They suggest the following iterative procedure:

1Note that the residual r is denoted as a function of p, since gs and gm both depend
on parts of the current model parameters p.

30 CHAPTER 3. VARIATIONS ON THE AAMS

1. Fit the texture model to the normalized sample using bg = P T
g (gs− ḡ),

2. Compute the residual as r = gs − gm,

3. Predict the pose using δt = Rtr,

4. Apply and test the updates as in the basic algorithm.

3.4 Compositional Approach

According to Baker and Matthews ([8]), the essentially additive method of
updating the parameters in the basic form could be a problem. They pro-
pose an alternative compositional updating scheme. Their method applies
to the case in which separate (independent) shape and texture models are
used. Then, the shape model equation can be thought of as a parametrized
transformation of the mean shape.

x = Tbs(x̄). (3.10)

where,

Tbs(x̄) = x̄ + Psbs. (3.11)

When we use an additive update of the form bs → bs + δ, it leads to a new
transformation

xnew = Tbs+δ
(x̄). (3.12)

However, it might be more natural to think of the update itself as a
transformation,

xnew = Tbs(Tδ(x̄)). (3.13)

A way of achieving this is to approximate the transformation using thin-
plate splines ([8]) as follows

1. Compute the thin plate spine, Ttps(.) which maps the point x̂ to x,

2. Compute the modified mean points, xδ = x̂ + Psδ,

3. Apply the transformation, x′ = Ttps(xδ),

4. Find the shape parameters which best match, b′s = P T
s (x′ − x̂).

The sampling and updating is otherwise identical to that for the shape AAM
described above.

Chapter 4

Experimental Results

This chapter will show the results from some comparative experiments.

4.1 Sub-sampling vs. Shape vs. Basic

In [2], Cootes et al. describe the results of a comparative experiment. To
compare the variations described above (Sub-sampling and Shape), an ap-
pearance model was trained on a set of 300 labelled images of faces. The
set contains several images of 40 people each, with a variety of different ex-
pressions. Each image was hand-annotated with 122 landmark points. The
following table summarizes the number of parameters (modes of variation)
of the different parts of the model:

Model Modes of variation
Shape model 36

Texture model 223
(10000 pixels)

Combined model 93

Table 4.1: Overview of model parameters

Three versions of the AAM were trained for these models. A Basic AAM,
a Sub-sampling AAM using a sub-set of 25% of the pixels to drive the param-
eters c, and a Shape AAM trained to drive the shape parameters bs alone.

A test set of 100 unseen new images (of the same people but with different
expressions) was used to test the performance of the algorithms. From the
hand-annotated landmarks the optimal pose was found, and the model was
displaced by (+15, 0, -15) pixels in the x and y direction. They applied a

31

32 CHAPTER 4. EXPERIMENTAL RESULTS

multi-resolution search with 9 tests per image. Two different search regimes
were used:

1. A maximum of 5 iterations allowed at each resolution level. Each it-
eration tested the model at c → c − kδc for k = 1.0, 0.51, . . . , 0.54,
where the first iteration that gave an improved result was accepted or
convergence was declared if none did.

2. The update c → c−δc was forced without testing whether it was better
or not, applying 5 steps at each resolution level.

They used two ways of recording the quality of fit,

• The RMS grey-level error per pixel in the normalized frame,
√
|δv|2/npixels,

• The mean distance error per model point.

Some searches fail to converge, this is detected by a threshold on the mean
distance error per model point. They considered those searches that have a
mean error of > 7.5 to have failed to converge. The results are summarized
in Table 4.2.

AAM Type Search Regime Failure Rate Final Errors Mean
Point Grey Time
±0.05 ±0.05 ms

Basic 1 4.1% 4.2 0.45 3270
Basic 2 4.6% 4.4 0.46 2490
Sub-Sampling 1 13.9% 4.6 0.60 920
Sub-Sampling 2 22.9% 4.8 0.63 630
Shape 1 11.4% 4.0 0.85 560
Shape 2 11.9% 4.1 0.86 490

Table 4.2: Comparative performance of different AAMs, given displaced cen-
ters

The final errors were averaged over those searches which converged suc-
cessfully. Overall, we can see that the second search regime decreased the
quality of the results, but was faster in every case. Sub-sampling considerably
sped up the search, but gave poorer overall results and was more likely to
fail. Using the Shape AAM was even faster, but led to more failures than the

4.2. COMPARATIVE PERFORMANCE 33

Basic AAM. Considering the point errors, it leads to more accurate locations
if the search converged correctly, but it increased the error in the grey-level
match.

Considering the overall results of this experiment, some questions remain
unanswered. At first, since they only used a sub-set of 25% of the total
pixels in the Sub-sampling AAM, an interesting experiment would be to find
out what would happen with a sub-set of say 50%, or 75%. Since the Sub-
sampling AAM had a considerable increase in speed, it would be interesting
to know if there is a linear relation between the size of the sub-sample, the
failure rate, and the mean running time.

Secondly, they used a test set with images of the same people as in the
training set (although, with different expressions). This makes this exper-
iment only applicable to some of the possible applications that use these
models for further investigation.

4.2 Comparative performance

In [3], the results of some comparative experiments are presented. The goal
was to compare the performance of the Basic, the Direct, the Shape, and
the Composition algorithms. An appearance model was constructed from
102 face images, each annotated with 68 landmarks. The following table
summarizes the number of parameters (modes of variation) and the retained
variation of the different parts of the model:

Model Modes of Variation Retained Variation
Shape model 49 98%
Texture model 73 98%
Combined model 92 99.9%

Table 4.3: Overview of model parameters

A test set of 155 text images of people (without glasses or facial hair) was
used. On each test image a search was started with the mean model shape
at positions displaced from the known optimal center by ± 10 pixels in the x
and y direction. They ran a 3-level multi-resolution AAM (allowing at most
10 iterations per level) and then computed the mean error between the model
points and the hand-labelled points, the mean distance of the model points
to the appropriate hand-labelled boundaries and the RMS texture error (in
the model frame). The results are summarized in Table 4.4.

34 CHAPTER 4. EXPERIMENTAL RESULTS

AAM Type Pt-Pt Error Pt-Crv Error Texture Error Time
Pixels Pixels (Grey-scale) ms

Median 90%ile Median 90%ile Median 90%ile mean
Basic 11.6 15.6 7.8 10.2 18.9 26.2 172
Direct 9.4 13.6 6.3 9.0 15.5 19.9 172
Shape 9.4 15.1 5.0 8.9 12.8 17.2 292
Composition 9.4 15.4 5.0 9.1 12.8 17.5 332

Table 4.4: Comparative performance of different AAMs, with no forced iter-
ations

The results suggest that based on performance, the Shape and Composition
AAMs significantly out-perform the Basic and Direct AAMs, and that the
Basic AAM is significantly worse than the direct AAM. Based on computa-
tional speed, the Basic and Direct AAMs are clearly faster than the Shape
and Composition AAMs.

In a different experiment, Cootes and Taylor, use the same model, but
only force one iteration at each resolution and then only accept subsequent
steps which improve the results. This approach is tested, because they have
found that search performance can be improved by applying the predicted
update without testing whether it improves the results or not. It appears to
allow for jumps over local minima. The results are summarized in Table 4.5.

AAM Type Pt-Pt Error Pt-Crv Error Texture Error
Pixels Pixels (Grey-scale)

Median 90%ile Median 90%ile Median 90%ile
Basic 8.4 12.4 4.7 7.7 13.8 17.9
Direct 11.2 15.5 7.1 10.2 17.0 21.3
Shape 9.8 15.4 5.1 9.1 12.7 16.7
Composition 9.8 15.6 5.2 9.1 12.8 16.9

Table 4.5: Comparative performance of different AAMs, with one forced
iteration

Table 4.5 shows that this strategy slightly improves the performance of the
Shape and Composition AAMs, degrades the Direct AAM, but significantly
improves that of the Basic AAM. The Basic AAM now leads to significantly
better location accuracy than in any of the previous experiment.

Chapter 5

Discussion

Before being able to build advanced applications for face recognition, such
as expression recognition, or identity recognition, there are some difficulties
with basic face recognition to overcome. Firstly, these difficulties include the
large variation in the shape of human faces, the large variation in the ap-
pearance of face images and the large dimensionality in a typical face image.
Secondly, the need for real-time applicability demands for high performance
and efficiency of applications for face recognition.

This paper described a model-based approach, called Active Appearance
Models, for the interpretation of face images, capable of overcoming these
difficulties. The AAM has a way of modelling the variation in different
appearances of faces, by training the model with a training set that has this
wide variation embedded. By analyszng the variations over the training set,
a model is built which can mimic this variation. The quality of fit of the
model is thus directly related to the variation in the training set.

The Active Appearance Model uses several stages in modelling the vari-
ation embedded in face images. In the first stage the shape of a face is
modelled. The large variation of the large variety in the shape of human
faces is addressed in this stage by aligning the hand-annotated images in the
training set before statistical analysis is performed. In the second stage the
texture of a face is modelled. To remove spurious texture variation due to
shape differences we warp each training image into the mean shape, to obtain
a ‘shape-free’ patch. By photometrically aligning the shape-free patches, the
effect of the large variation in the appearance of face images is minimized.
In the final stage both the shape model and the texture model are combined.
It does this by combining the two parameter vectors. Because these are of a
different nature and thus of a different relevance, one of them is weighted.

To reduce the dimensionality of the images a technique called Principal
Component Analysis is applied. This technique is applied after each stage.

35

36 CHAPTER 5. DISCUSSION

With the result from PCA we can derive a parametrized model of the form
x = M(b), where b is a (compact) vector of the parameters of the model. Ev-
ery stage results in such a model, with the last stage resulting in a combined
shape and texture model, with a combined vector of parameters.

Now with the use of the Active Appearance Search Algorithm we can find
the parameters of the model, which generate a synthetic image as close as
possible to a particular target image, assuming a reasonable starting approx-
imation. This is done by minimizing the difference between an image and
the model instance of the image.

Because of the importance of performance and efficiency of face recogni-
tion techniques, variations on the basic algorithm were discussed. Since some
regions of the model may change little when parameters are varied, we only
need to sample the image in regions where significant changes are expected
(Sub-sampling). This should reduce the cost of each iteration.

The original formulation manipulates the combined shape and grey-level
parameters directly. An alternative approach is to use image residuals to
drive the shape parameters, computing the texture parameters directly from
the image given the current shape (Direct AAM).

Another possible way of increasing the efficiency of the AAM lies in the
way the updates of the parameters are computed. In Section 3.4 a variation
of the basic AAM was discussed where, instead of an additive approach,
a compositional approach is used to update the parameters of the AAM
(Compositional AAM).

Yet another variation comes from the idea that in some cases it is possible
to predict the shape directly from the texture, when the two are sufficiently
correlated (Shape AAM).

The results of two different experiments were presented. Firstly, the result
of a comparative experiment between the Basic, the Direct, the Shape, and
the Compositional approach was presented. The three alternatives all outper-
formed the basic algorithm when a straightforward test was done. However,
a minor modification to the search algorithm (allowing one or more ‘forced’
iterations in which an update is done regardless of whether it improves the
error) improved the result of the basic algorithm leading to the basic AAM
outperforming all the alternatives when the errors on point location are con-
cerned.

Secondly, the results of a comparative experiment between the Basic, the
Shape, and the Sub-sampling AAM were presented. Sub-sampling and driv-
ing the shape parameters during search both lead to faster convergence, but
were more prone to failure. The Shape AAM was able to locate the points
slightly more accurately than the original formulation. And testing for im-
provement and convergence at each iteration slowed down the search, but

37

lead to better final results.

38 CHAPTER 5. DISCUSSION

Bibliography

[1] T.F. Cootes, G.J. Edwards, C.J. Taylor, Active Appearance Models, In
H. Burkhardt and B. Neumann, editors, 5th European Conference on
Computer Vision 1998 , Vol.2, pp. 484-498, Springer, Berlin, 1998. 13,
20

[2] T.F. Cootes, G.J. Edwards, C.J. Taylor, A Comparative Evaluation of
Active Appearance Model Algorithms, In P. Lewis and M. Nixon, editors
9th British Machine Vision Conference, Vol. 2, pp. 680-689, Southamp-
ton, UK, Sept. 1998. BMVA Press. 27, 31

[3] T.F. Cootes and P. Kittipanya-ngam, Comparing Variations on the Ac-
tive Appearance Model Algorithm, British Machine Vision Conference,
Cardiff University, pp. 837-846, Sept. 2002. 33

[4] X. Hou, S. Li, H. Zhang, Q. Cheng, Direct appearance models,Computer
Vision and Pattern Recognition Conference 2001, volume 1, p. 828-833,
2001. 29

[5] H. van Kuilenburg, Expressions Exposed; Model Based Methods for Au-
tomatic Analysis of Face Images, Masters thesis, Department of Philoso-
phy, Utrecht University, The Netherlands, 2005. 13, 19, 20

[6] T.F. Cootes and C.J Taylor. Statistical models of appearance for com-
puter vision, Technical report, University of Manchester, Wolfson Image
Analysis Unit, Imaging Science and Biomedical Engineering, March 2004.
13, 16, 21, 22

[7] A. Pentland and T. Choudhury, Face Recognition for Smart Environ-
ments, IEEE Computer, vol. 33, no. 2, pp. 50-55, Feb. 2000. 9

[8] S. Baker and I. Matthews, Equivalence and Efficiency of image alignment
algorithms. Computer Vision and Pattern Recognition Conference 2001,
vol. 1, pp. 1090-1097, 2001. 30

39

	Introduction
	Active Appearance Models
	Statistical Shape Models
	Statistical Texture Models
	The Combined Appearance Model
	The Active Appearance Search Algorithm
	Multi-resolution Implementation
	Example of a Run

	Variations on the AAMs
	Sub-sampling during Search
	Search Using Shape Parameters
	Direct AAMs
	Compositional Approach

	Experimental Results
	Sub-sampling vs. Shape vs. Basic
	Comparative performance

	Discussion

