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Abstract 

Forecasting a future event is important for companies for a better planning in their daily operations, also it 

helps every company to understand their customers better. Companies use forecast methods to predict the 

future events on a daily, weekly, and monthly basis. Forecasting requires data from the past and present to 

predict the future.  

 

This report addresses the methods that are used to forecast the number of samples to be received in 2017 

for IDEXX Laboratories in the United Kingdom.  The data used for this research paper contains the 

number of samples received from the veterinary practitioners at IDEXX Laboratories from January 2010 

until December 2016. Because of the challenges in the data, customers are first clustered using three 

distance measures. The forecast is done on the clustered data using the Holt Winters model and the 

ARIMA model. The best forecasting model is then chosen with the lowest Root Mean Squared Error 

[RMSE]. 
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1. Introduction 
 

At IDEXX, the collection of samples in the UK has been outsourced to external courier companies and 

the route planning is done by IDEXX. Couriers are charged based on the distance they travel every day. 

Customers at IDEXX are grouped into two categories, namely regular and on-call customers. In the case 

of regular customers, an assigned courier will visit the clinic every day during the week. In the case of on-

call customers, an assigned courier will plan a visit only when there is a sample available for pickup. 

Most of the regular customers do not have a sample to be picked every day and the distance traveled to 

such customers is considered as a loss in revenue. Numbers indicate that nearly 50% of regular customers 

fall into this category. Predicting the number of samples per day for each customer will help IDEXX to 

optimize their route planning operations and thereby reducing the loss of revenue.   

 

The initial goal of this research paper was to predict the number of samples to be delivered per day by 

each customer to IDEXX Laboratories in the UK for 2017. To do the forecast will use the data from 

January 2010 until December 2016. Because of the structure of the data and the absence of additional 

information like the reason for variations in the number of samples and when a customer left the 

company, forecasting on a daily basis becomes very challenging. So, the goal of this research paper has 

been modified to forecast the number of samples to be delivered on a monthly basis. Not all the customers 

delivered samples every month of the year, so we decided to first cluster the customers by K-means, 

Hierarchy and PAM clustering methods using different distance measures after which the forecast is done 

for each cluster. Holt Winters and ARIMA models are used for forecasting and the best model is chosen 

with the least error value. Because of the structure of the data, assumptions had to be made to fit the 

model.  

 

Finally, the residuals of the model were verified if they satisfy the stationary property, which means 

residuals should have zero mean, a constant variance and having a normal distribution.  
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2. Data Description and Pre-processing 
At IDEXX, the customer data are retrieved from their LYNX system in Excel format, from which the 

customer code and the number of samples delivered per day from January 2010 till December 2016 were 

extracted. Not all customers were present from January 2010 and sometimes the customer codes of the 

customers who left the company were assigned to new customers. Since the information about such 

customers is not available they are treated as a single customer in this research paper. Also, to finalize the 

list of customers for further processing, we extracted the list of customers who were present in December 

2016 and only considered the data of those customers from January 2010 till December 2016. So 

customers who were present only until November 2016 will be excluded in this research work.  

In R-studio the data is viewed as a matrix and appears like in Fig-1 which only shows the entries of 9 

customers with their first 12 months of data only. As we can see, the entries are having numeric values 

greater than zero, some entries with zeros that represent that the customer did not deliver any samples in 

those months and the NAs correspond to no information available for those customers which can be for 

two reasons, customers were registered at IDEXX from January 2010 but no information was present for 

that time or customers were registered at IDEXX somewhere between January 2010- December 2016 and 

the NAs correspond to the months when they were not registered. We also decided to replace the 

customer entries with NAs to zero, as NAs does not have a value.  

Fig 1- Raw customer data 

Before beginning with forecasting, we need to split the data into a training and test dataset. Since each 

observation has 84 variables (each month from January 2010 till December 2016 is represented as a 

variable), we split the data into 66 observations of training data and 24 observations of test data. Then the 

forecasting models are applied to the training set and the forecasted data will be validated against the test 

set from which we will determine the best forecasting model with the smallest error value. 
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3. Approach 
In the pre-processing section we replaced NAs as zeros, after which we noticed that there were instances 

where the customers delivered samples only for two years out of seven years (example: 2013 and 2016 

only, and some others in 2015 and 2016 only). Since not all customers delivered samples every month of 

the year, we decided to first cluster the customers by three distance-based clustering techniques, before 

we introduce it to the forecasting models. By clustering we can determine the similarities in customers 

based on the number of samples delivered. Once the optimal number of clusters is determined by each 

clustering method, the forecast is done for each cluster and the error from each cluster for each clustering 

method are summed up by assigning weights for each error measure. The weight assigned is the number 

of customers in each cluster, considering that the cluster with more customers is more important than the 

ones with fewer customers. Both Holt Winter and ARIMA models were trained on the data starting from 

January 2010 until December 2014 named as training set and the remaining data will be the test set. Since 

the Holt Winter and the ARIMA model use different error measures, the best model is chosen with the 

lowest Root Mean Squared Error [RMSE] value from the test set. The residuals of the model are finally 

verified to confirm that the errors are normally distributed with mean zero and constant variance with the 

help of a histogram plot. 

4. Clustering 

4.1Distance based Clustering 
Clustering is the process of grouping customers in such a way that the customers in a group have some 

similarity between them. In this paper, we discuss distance-based clustering which means that customers 

with the shortest distance between each other are grouped to form a cluster. Here we only focus on three 

types of clusters namely K-means clustering, Hierarchy clustering, and Partition Around Medoids 

clustering. Each clustering method is applied using three distance measures namely the Euclidean 

distance, the Manhattan distance and the Maximum distance.  The smallest values of each distance 

measure are considered to form a cluster.  
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a - Centroid is the mean position of all the points in an n-dimensional space  
b- Medoids are objects of a cluster whose average dissimilarity to all the other objects in the cluster is minimal 
 

The distances are calculated using the formula as below. 

     Euclidean distance           ii YX   
2

N
i=1 ,         --- [1] 

Manhattan distance      | ii YX   |𝑁
𝑖=1 ,     --- [2] 

Maximum distance    max𝑖 | ii YX  |.     --- [3] 

 

4.1.1 K-means Clustering 

The first step in the K-means clustering method is to specify the number of clusters (K). Choosing an 

optimal number of clusters will be discussed later in this paper after we explain the concepts behind each 

clustering method. The process begins by partitioning the 2,041 observations- with each observation as a 

customer, into K (≤ 2,041) sets of clusters so as to minimize the within-cluster sum of squares (i.e., 

variance). The K-means method can be explained in a 4 step process 

Step1 - The initial K means are randomly generated. 

Step2  - The distance from each observation to the initial K means are calculated, observations that are  

    closer to each other are grouped to form a cluster, and thus K clusters are created initially. 

Step3  - The means are then calculated for each of the K clusters, which then become the new centroid
a
. 

Step4 - Step 2 and 3 are repeated until convergence is reached.  

 

The distance in step 2 is calculated using the distance measure, by means of Equations [1], [2] or [3], and 

as a result we have formed K clusters for each distance measure. 

 

4.1.2 Partition Around Medoids (PAM) 

PAM clustering is somewhat similar to K-means and the number of clusters (K) should also be specified 

initially as in K-means. In contrast to K-means, PAM chooses one of the observations as the initial 

medoids
b
, and then associates each of the data points to the closest medoids using the distance measure as 

per Equations [1], [2] and [3]. The total cost is then calculated by summing the cost for each cluster, with 

the cost being the sum of distances of points to their medoids. The process is then repeated by changing 

the initial medoids each time with one of the non-medoids until the total cost of the K cluster 

configuration decreases. The cluster package should be loaded in R-studio before one can use the PAM 

clustering technique. 
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4.1.3 Hierarchical Clustering 

In this paper we will discuss only Agglomerative clustering- a bottom up approach where each 

observation starts in its own cluster and pairs of clusters are merged as one moves up the hierarchy. The 

result of the clustering is usually represented in a dendrogram. A dendrogram is formed based on the 

distance measure as per Equations [1], [2], and [3]. Pairs of clusters are formed based on the maximum 

possible distance between points belonging to two different clusters. A representation of a dendrogram for 

some random set of customers is shown in Fig-2 with the height being the distance at which the 

observations are merged. Once the dendrogram construction is complete, customers can be grouped into 

K clusters starting from the top of the tree. For example, if we need 3 clusters then starting from the top of 

the tree, at height 1,500 if we draw a horizontal line, we will have 3 groups of customers with GODD9 

being alone in one cluster. Fig 2 is only an example, as a representation for 2,041 customers will not be 

clearly visible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 2- Dendrogram 

 

4.2Determine the Optimal Cluster 
In this section, we will discuss two ways of determining the optimal number of clusters that will be 

applicable for all the three clustering methods discussed in the previous section. Those two methods are, 

1. The elbow method; 

2. The silhouette method. 
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4.2.1 Elbow Method 

The elbow method looks at the variation within the cluster and chooses the optimal number of clusters 

where adding more clusters will not give any improvement to the data. Plotting the within the sum of 

squares against the increasing number of clusters shows a graph as in Fig-3. As we can see in Fig-3 the 

variation is higher for one cluster and it gradually reduces as we keep increasing the number of clusters 

for the 2,041 observations. As the name of the method suggests, the point where the plot has a bend 

(knee) is generally considered as the optimal number of clusters. 

4.2.2 Silhouette Method 

The quality of the cluster is determined using the silhouette method. This method determines how close 

each object lies within a cluster in comparison to other clusters 

Silhouette Method  
},max{

||

)()(

)(

ii

ii
i

ba

ab
S


       --- [4]  

where ia = avg (dissimilarity within the cluster) and ib  = the lowest average dissimilarity to other 

clusters. The silhouette value usually lies in the range -1 ≤ )(iS ≤1. The higher the silhouette value, the 

better the clustering. Like in the case of the elbow method, we plot the Silhouette value against the 

increasing number of clusters and the optimal number of clusters is chosen with the best silhouette value. 

Fig-4 represents an example of the silhouette value against the increasing number of clusters. 

  

Fig-3 Optimal cluster using elbow method, K-means            Fig-4 Optimal cluster using Silhouette method, k-means 

 

Fig-3 and Fig-4 are plotted for the data with 2,041 observations and the clustering technique used is K-

means. The result shows that 3 clusters will be optimal. Similarly, the optimal number of clusters for 

PAM and Hierarchical clustering methods can also be determined.Fig-5 is an example of how customers 

are clustered by Hierarchical clustering using the maximum distance. Also clustering is performed for 

other clustering methods using the three distance measure chosen as per Equations [1], [2], and [3]. As we 
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can see in Fig-5, the majority of the 2,041 customers are grouped in the 1
st
 cluster where the 2

nd
 cluster 

has 4 customers and the 3
rd

cluster has only one customer. Examining the average number of samples per 

month, shows that that the customers in the 2
nd

 and 3
rd

 cluster were delivering a higher number of samples 

per month, when compared to the customers in the 1
st
 cluster, this analysis triggered two questions: 

1. Can we split the customers into n groups, based on the number of samples and then apply the 

clustering techniques for individual groups? 

2. What would be the threshold number for splitting the customers into n groups? 

Since cluster 1 has more than 95% of the customers, we decided to split the customers into two groups 

and then apply the clustering technique to each group. The reason to split the customers into two groups 

was to distinguish the high revenue generating customers from others. However, there are several ways of 

grouping the customers depending on the business requirements, for example we can also group the 

customers based on the route they were allocated to (every customer at IDEXX is assigned to an 

individual route based on which courier agent will collect the samples). In this research paper, we will 

proceed with the idea of grouping the customers into two groups, with group 1 having customers 

delivering fewer than 150 samples per month and group 2 having customers delivering more than 150 

samples per month.  

 

 

 

 

 

 

 

 

 

 

  

Fig 5 Hierarchical clustering of 2,041 customers 

Once the customers are divided into two groups, the optimal number of clusters is again determined for 

each group using the elbow method and the silhouette method for all the three clustering methods. Fig-6 

and Fig-7 are examples of PAM clustering from two groups using the Euclidean distance. These plots can 

be generated using the fviz_nbclust() function from the factoextra package in R studio. 
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Hclust PAM Kmeans

1925 567 1356

41 214 511

30 1215 129

By Manhatten distance
Hclust PAM Kmeans

1977 437 1248

14 915 216

5 644 532

By Maximum distance

Hclust PAM Kmeans

1946 639 518

37 229 128

13 1128 1350

By Euclidean distance

Hclust PAM Kmeans

19 18 1

25 26 19

1 1 25

By Euclidean distance
Hclust PAM Kmeans

9 26 12

35 18 1

1 1 32

By Maximum distance
Hclust PAM Kmeans

20 17 25

24 27 1

1 1 19

By Manhatten distance

 

 

 

 

 

 

 

 

  

         Fig 6 Clustering – customers with samples <150                                                 Fig 7 Clustering – customers with samples > 150 

 

After applying the elbow and the silhouette method to both groups we found that 3 clusters are optimal 

for all the three clustering types. Fig-8 represents the division of customers from each cluster based on the 

optimal clusters suggested by the elbow and the silhouette method. The column represents the clustering 

method and each row represents one cluster forming 3 clusters in total. Thus, aggregating the samples 

from each customer will reduce the number of observations from 2,041 to 3 under each group. 

 

*Customers with samples below 150 

 

 

 

 

*Customers with samples above 150 

Fig-8 Grouping of customers in each cluster via the 3 distance measures 
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5. Time Series 
A time series is a sequence of data points listed in the order of time; usually the data will be starting from 

the past and not necessarily needs to end with the present day. In this paper we are going to forecast the 

number of samples for 2017.We use the available data from the past 7 calendar years. One of the most 

important concepts in the context of modeling time series is stationarity, which occurs in two forms: 

strictly stationary and weakly stationary. A time series is strictly stationary if, for any value of k, the joint 

distribution of (Xt+1,…, Xt+k) does not depend on t. Strict stationarity is a strong and, in practice, 

uncheckable assumption. For most practical purpose, including this research paper the assumption of 

weak stationarity is sufficient. A time series is second order stationary or weakly stationary if, for any 

value of k, EXt and EXt+k exist and do not depend on t.  

 

The time series in our paper is the clustered data from Jan-2010 till Dec-2016 and the data exhibits some 

structure as seen in Fig-9 and it does not satisfy the weakly stationary properly as the mean increases over 

time. So our first step is to convert the non-stationary time series into a stationary time series in order to 

do a forecast. A plot in Fig-9 represents the data from the 1
st
 cluster of the K-means using the Euclidean 

distance belonging to the group of customers with a number of samples fewer than 150.  

 

 

 

 

 

 

 

 

 

 

Fig-9 – Samples from the 1st cluster of K-means using Euclidean distance 

   

Fig-9 represents the data from a cluster we obtained from the previous section, as we can see that the data 

exhibits some trend over time and there can be possibilities of having seasonal variation. The 

corresponding time series model for the data in Fig-9 can be represented by Equation [5].
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     X t = m t+ s t +Y t     --- [5] 

 

where mt is a deterministic trend component, st is a deterministic seasonal component with known period 

d (in our case its 12 months) and Yt is the random noise component which is assumed to be stationary so 

that EYt= 0. So eliminating the trend and the seasonal component from the data can make the data 

stationary for which we need to first estimate the trend and the seasonal component in the given data. The 

decomposition function in R helps us to estimate the trend, seasonality in the model using moving 

averages. Fig-10 represents the decomposed plot for the data used to represent Fig-9, with the 1
st
 plot 

being the plot of original data, 2
nd

 being the estimated trend, 3
rd

 being the estimated seasonal component 

and the last one is the estimated randomness in the data whose behavior is similar to the white noise. 

fig – 10 Decomposed time series data 

Equation [5] is an example of additive time series where the trend and seasonal components are constant 

over time, however there can be situations where the trend and seasonal components can multiply over 

time. In such cases, a modified form of Equation [5] named as multiplicative time series will be 

applicable and can be represented by Equation [6]. 

    X t = m t * s t * Y t      --- [6] 
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6 FORECASTING 

6.1 Holt Winters Forecasting  
The forecasting equation for an additive series, using the Holt Winters model can be expressed as 

Equation [7], made after observation at time t, where at is the estimated level, bt is the estimated slope
1
 

and st is the estimated seasonal effect at time t. 

Additive Holt Winters Forecast  𝑌 t+k = at + k * bt+ st+k-p   k≤ 𝑝,    --- [7] 

   where  at = α (xt – st-p)+ (1- α) (αt-1 + bt-1), 

     bt= β(at – at-1)+ (1- β) bt-1, 

     st = γ(xt-at) + (1- γ)st-p. 

α , β, and γ are the smoothing parameters and at, bt and stare the one step ahead forecasts calculated using 

the estimates up to the time t, with 𝑝 being the time series period length. Repeating this for each step 

ahead using the current estimates helps us to predict the result upto t+k periods. 

 

In the case of multiplicative series, where the seasonal variations increase over time along with the trend  

forecast Equation [8] will be different from that of additive series forecasting. 

Multiplicative Holt Winters Forecast  𝑌 t+k = (at + k * bt)  *st+k-p   k ≤ 𝑝,    --- [8] 

            where   at = α 
xn

𝑠𝑡−𝑝
+ (1- α) (αt-1 + bt-1), 

      bt= β(at – at-1)+ (1- β) bt-1, 

      st = γ(
𝑥𝑡 

𝑎𝑡
) + (1- γ)st-p. 

The value for the smoothing parameters α ,β and γ are usually estimated by minimizing the one-step-

ahead prediction error (SS1PE). The smoothing parameter lies in the range between 0 and 1. A typical 

choice of the parameter value is 0.2 indicating that the forecast depends on the past data and the choice of 

smoothing parameters towards 1 indicates that more weight will be given to the recent data. The Holt 

Winters function in R studio automatically chooses the best smoothing parameters using the smallest 

SS1PE value. SS1PE value is calculated using the equation [9]  

SS1PE  =     𝑒𝑡 
𝑛
𝑡=2

2
,                                                                                           --- [9] 

where    𝑒𝑡  2     =  𝑒2 2  + 𝑒3 2 +  …+ 𝑒𝑛  2; 

 𝑒𝑡                    =   𝑋𝑡 − 𝑋 𝑡|𝑡−1 ; 

Xt is the  value of the variable to be predicted at time t; 

 𝑋 𝑡  is the predicted value of Xt ; 

n is the number of observations.
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6.2 ARIMA Forecasting 
The ARIMA- Auto Regressive Integrated Moving Average, is a combination of an AR- autoregressive 

and an MA- moving average model. Since the timeseries can be non-stationary, the concept of 

differencing is used in the ARIMA model to make the time series stationary. If, Xt is a non-stationary time 

series, then 
d 

Xt   will be the differenced time series which can be stationary, with d being the order of 

differencing. Such a model is represented as ARIMA(p,d,q). In the case of stationary time series, the 

differencing parameter will be of no use making the model as ARIMA(p,q) represented using Equation 

[10]. 

            Xt= α1Xt−1+ · · · + αp * Xt−p+ Zt+ β1 * Zt−1+ . . . + βq * Zt−q,                --- [10] 

where Xt is the stationary process; 

 p and q are the ARIMA parameters; 

Zt is the white noise- with mean zero and variance 𝜎2 . 

 

In R-studio the auto.arima() function helps to determine the best model based on the best AIC value. 

Given a collection of models for the data, the AIC estimates the quality of a model, relative to each of the 

other models. Hence, the AIC provides a means for model selection. Since the customer data is divided 

into clusters using three clustering methods, the best clustering method is chosen based on the ARIMA 

model with the least AIC value. AIC value is calculated using Equation [11]. 

 

Akaike information criterion (AIC) = 2k  - 2ln⁡(𝐿 )                                                                              --- [11]   

where  k is the number of estimated parameter in the model; 

  𝐿  is the maximum value of the likelihood function for the model; i.e. (𝐿    = P(x|𝜃 , M); 

M is the ARIMA forecasting model for the time series x; 

 𝜃  are the parameter values that maximize the likelihood function.    

7 Evaluation 
In the previous section, we trained the two groups of  data using the Holt Winters and the ARIMA model 

and obtained the forecasting result from both the models. Now we will explain how to determine the best 

model based on their performance. Since the Holt Winters model works on the data by removing trend 

and seasonality, we have 3 observations for each cluster which are Holt winters with the removal of trend 

only, Holt winters with additive seasonality, and Holt Winters with multiplicative seasonality. Since three 

clustering methods are applied using three distance measures and the optimal number of clusters is three 
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* Fig 11 represents the group of customers with samples less than 150 

in each method, we have 27 observations under ARIMA and 27 observations under each of the Holt 

Winters models making it challenging to choose the best model as visible in Fig-11. The best model is 

chosen based on the smallest error value from their forecast. As we can see from Fig 8 that each 

clustering method differs in their division of customers. Only adding the errors from each clustering 

method will not lead to a good choice for the best forecasting model. Instead, we assign weights to the 

error from each cluster and then sum the weighted error under each clustering method. This  reduces the 

27 results to 9 under the Holt Winters and the ARIMA model. The weights assigned are the number of 

customers in each cluster, because the clusters with more customers are more important than clusters with 

fewer customers.  

Clusters SSE_trend_alone SSE_additive SSE_multiplicative ARIMA_AIC 

eu.kmeans_cluster_1 888.117115 126.1722328 145.7832714 266.13134 
eu.kmeans_cluster_2 28.368453 4.3426922 5.2509043 77.58303 
eu.kmeans_cluster_3 6151.236867 968.725781 1110.528471 440.60158 
max.kmeans_cluster_1 693.366489 80.5266584 92.0482924 252.08261 
max.kmeans_cluster_2 2808.867758 512.0763889 594.6087365 389.01345 
max.kmeans_cluster_3 32.735332 4.582028 5.4996654 82.72976 
man.kmeans_cluster_1 969.223724 139.6115068 161.724435 259.65004 
man.kmeans_cluster_2 6328.691275 976.2132593 1114.220623 442.82078 
man.kmeans_cluster_3 23.072786 3.8540286 4.5564485 70.45854 
eu.hclust_cluster_1 195.718201 27.6110021 32.6122042 182.15261 
eu.hclust_cluster_2 10279.71494 1282.061808 1432.729813 469.17139 
eu.hclust_cluster_3 14361.56432 2382.779042 2213.044631 504.41844 
max.hclust_cluster_1 242.745328 32.7468703 38.6723678 193.35315 
max.hclust_cluster_2 13120.23061 2049.96666 1957.103255 500.93661 
max.hclust_cluster_3 236.661421 169.6479656 148.0326786 204.18071 
man.hclust_cluster_1 184.891996 24.3203915 28.4860723 180.80775 
man.hclust_cluster_2 9388.614396 1250.379738 1425.378298 383.78838 
man.hclust_cluster_3 6950.616106 2145.348326 2339.028526 453.4199 
eu.pam_cluster_1 512.398703 58.3111638 67.2847874 230.21705 
eu.pam_cluster_2 4115.570821 702.9978758 810.657939 415.40514 
eu.pam_cluster_3 9.805479 2.1730006 2.6651355 24.44343 
max.pam_cluster_1 1877.463579 285.6784186 333.7879923 297.98719 
max.pam_cluster_2 192.014694 22.4864804 25.9139116 177.81718 
max.pam_cluster_3 1.141046 0.7010614 0.8665233 -56.347 
man.pam_cluster_1 646.657211 76.6742667 89.9517766 234.94609 
man.pam_cluster_2 4355.18051 726.5426209 831.0069884 419.05347 
man.pam_cluster_3 11.983306 3.0940094 3.5493999 44.22671 

Fig 11* –SSE value from Holt Winters with trend alone, additive seasonality, multiplicative seasonality and AIC from ARIMA 

where, eu- Euclidean distance, man- Manhattan distance, max- Maximum distance 

kmeans, pam, and hclust are the three clustering methods
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* Fig 12 represents the group of customers with samples less than 150 

The model with the smallest SSE value is then chosen as the best from Holt Winters, first among the 

different methods (Trend only, additive seasonal effect, multiplicative seasonal effect) and then between 

the different clustering methods. Similarly, the best ARIMA model is chosen from the results with the 

smallest AIC value. Fig-12 represents the errors from Holt Winters and ARIMA after assigning weights 

to the error values.  

 

Cluster ARIMA_RME HW_RMSE 

Euclidean_kmeans 298990.1 195216.8 

Maximum_kmeans 321381.6 159167.1 

Manhattan_kmeans 285346.8 202499.1 

Euclidean_hclust 378385.8 129936.9 

Maximum_hclust 390293.2 92880.17 

Manhattan_hclust 377392.8 162442.8 

Euclidean_pam 269808.7 200698.5 

Maximum_pam 256635.7 145868.1 

Manhattan_pam 276627.3 202713.7 
 

Fig 12*- SSE and AIC value after assigning weights 

7.1 ARIMA vs Holt Winter’s evaluation 
The ARIMA and the Holt Winters model have different error measures and so we cannot compare the 

SSE and AIC values to choose the best between them. To solve this, we calculated the Root Mean 

Squared Error (RMSE) for both the ARIMA and the Holt Winters model and the model with the smallest 

RMSE for the test data is chosen as the final model and the forecast from that model will be the best fit. 

The RMSE is calculated for individual clusters and weights are assigned to each RSME value. Evaluation 

is done to both the group of customers, customers with samples fewer than 150 per month and above 150 

per month andthe best model is chosen in both cases.  

7.2 Results 
Computations show that in the case of customers delivering samples below 150 per month, the Holt 

Winters model using the Hierarchical clustering method by means of the maximum distance performs 

better among the other models. For the Holt Winters model, the 1
st
 cluster follows a time series model 

with additive seasonality, where as the 2
nd

 and 3
rd

 cluster follows a time series model with multiplicative 

seasonality. In the case of customers with samples above 150 per month, the ARIMA model using the 

PAM clustering method by means of the maximum distance performs better among the other ARIMA 

models. A plot of the forecast for 2017 can be viewed in Fig-13. The training set (64 observations – 2010 

January 
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till 2014 December) is indicated in black and the test set (24 observations – 2015 January till 2016 

December) in blue along with the forecast for 2017. 

 

However, in Fig-13 we can see that the forecasted result for the test set, indicated in blue does not follow 

the actual results indicated in red. The reason for the deviation is due to the variation in the training data. 

We can observe a higher difference in the case of the ARIMA forecast- cluster 3 (*customers with more 

than 150 samples) and the reason is also clear from the same figure, there is a drastic increase in the 

number of samples delivered from January 2016 which was not considered in the training data. In case of 

Holt Winters forecast – cluster 2 (*customers delivering samples below 150) the forecasted result is even 

lower than the actual which explains that the Holt Winters model forecasts are based on the observations 

from last few years but the test set does not follow the trend observed until June 2015 instead the number 

of samples increases starting from July 2015 and that increasing behaviour is not covered in the training 

set.  

*Customers delivering samples below 150 

 

*Customers delivering samples above 150 

Fig-13 Holt Winters and ARIMA forecast for 2017 
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Because of the variations post-June 2015, we again trained the data by including the observations from 

July 2015 and tested them for different periods. We observed that the accuracy was much better when the 

data post-June 2015 was ìncluded in the training set.However in this report we will show the result from 

one observations only, but the results were also tested for all other observations and the accuracy is better 

when compared to the result from Fig-13. Fig-14 shows the results of ARIMA forecasting method for 

different lengths of training data and the model with training data extended until February 2016 performs 

far better than the earlier case.  

 

To verify, if the forecasting errors are normally distributed we also plotted the residuals of the forecasting 

model using histogram as shown in Fig-15, we can see that the distribution of forecasting errors are 

centered on zero and is more or less normally distributed, although it seems to be slightly skewed 

compared to a normal curve. However, the skew is relatively small, and so it is plausible that the forecast 

errors are normally distributed with mean zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

             Result for Training data until Dec-2015                                                              Result for Training data until February-2016 

Fig-14 Results for ARIMA forecast with different lengths of training data 
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*Customers delivering samples below 150 

*Customers delivering samples above 150 

Fig 15- Residuals of forecasting model 

8 Conclusion 
In this research paper, we forecasted the number of samples to be delivered in 2017 for IDEXX 

laboratories in the UK using Holt Winters and ARIMA forecasting methods. Because of the variations in 

the number of samples, like customers only delivering samples for 1 or 2 years between January 2010 and 

December 2016 , we decided to cluster the customer using three distance measures. Based on the 

observations from Fig-5, 6 and 7 we see that the vast majority of customers are under one cluster. We also 

decided to divide the customers into two groups before clustering (customers delivering below 150 

samples and above 150 samples). The threshold of 150 samples was considered based on the assumptions 

that the customers delivering more than 150 samples fall under the category of high revenue generating 

customers, however based on business requirement the grouping can be done in different ways.  

 

We also discussed the possible ways to determine the optimal number of clusters. Finally, we trained the 

data using Holt Winters and ARIMA models for different lengths of training data and the best forecasting 

modelwas chosen based on the smallest Root Mean Square Error. We observed that the ARIMA model 

performs better in the case of customers delivering samples above 150 per month and the Holt Winters 

model performs better for the other group of customers. However, choosing different measures for the 
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customer grouping before clustering can give a different result in comparison to what we have achieved 

but we leave this discussion for future research.  
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