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Preface 

 
The BMI paper is one of the last compulsory subjects of the master study Business 
Mathematics and Informatics. The target of the BMI paper is describing and analyzing a 
problem in the field of BMI based on existing literature. Its focus embraces aspects of 
economics, mathematics, and computer science. 
 
The building blocks of this paper are two papers. The first paper [1] describes an 
Approximate Linear Programming approach for average cost dynamic programming. A 
traffic control problem formulated in the second paper [4] is chosen to illustrate this 
approach. It focuses on the linear approach to approximate the dynamic programming 
value function through experiments with traffic control at isolated signalized 
intersections to find out how traffic light switching schemes for this system can be 
determined such that the number of cars in all flows is minimized in the long term.  
 
I would like to thank my supervisor, Sandjai Bhulai. He provided me guidance and 
support, not only during my writing, but also most of the time during my master study 
BMI. Also his optimism has encouraged me and I am grateful for that. 
 
Further, I would like to thank Paul Harkink, Chi Hung Mok, and Christel Nijman for 
their technical support. Without their generosity and help, finishing this thesis would 
have been much harder for me.  
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Management Summary in English 

 
 
Intersections are places in the traffic network where many potential conflicts occur. 
Traffic is much affected by the traffic light control. A single intersection of two two-way 
streets with controllable traffic lights at each corner is considered in this paper. The main 
purpose of this paper is to apply the two-phase Approximate Linear Programming approach for 
average cost dynamic programming presented by De Farias and Van Roy [1], to find out how 
traffic light switching schemes for this system can be determined such that the number 
of cars in all flows is minimized in the long term. Cars arrive at an intersection controlled 
by a traffic light and form a queue. The dynamic control of the traffic lights is based on 
the numbers of cars waiting in the queues. The model that describes the evolution of the 
queue lengths used in this paper is formulated in the paper of Haijema and Van der Wal 
[4], which is modelled as a Markov Decision Process in discrete time. The set of all flows 
is partitioned into disjointed combinations of non-conflicting flows that will receive 
green together.  
 
In principle, problems of this type can be solved via dynamic programming. Dynamic 
programming refers to a collection of algorithms that can be used to compute optimal 
policies given a model of the environment, such as a Markov Decision Process. Dynamic 
programming computes the optimal value function by solving the Bellman’s equation. 
The domain of the optimal value function is the state space of the system to be 
controlled. This means that the number of variables (value function) to be stored is equal 
to the size of the state space. When the state space is large this dynamic programming 
computation becomes intractable. It is known as the ‘curse of dimensionality’. Especially, 
when dealing with a multi-dimensional state space, its size grows exponentially in the 
number of state variables. This is also the case in traffic light control, due the fact that 
each queue (lane) has actually an infinite buffer.  
 
Approximate dynamic programming intends to alleviate the curse of dimensionality by 
considering the approximation to the value function, the scoring function, which can be 
stored and computed efficiently. One of the considerations within Approximate 
Dynamic Programming is choosing the approximation architectures, the structure of the 
approximation to the value function. In this paper, the use of linear architectures is 
considered. A collection of functions that maps the system state space to real numbers 
(the basis functions) is chosen and the scoring function can be generated by finding an 
appropriate linear combination of these basis functions. Hence, it suffices to store the 
weights assigned to each of the basis functions in the linear combination instead of 
storing the value function for each state in the system.  The number of variables (one per 
basis function) to be stored is tremendously smaller than the number used by the value 
function with one value per state in the system.   
 
A successful use of approximate dynamic programming depends on a good choice of the 
basis functions and a good choice of weights assigned to each of the basis function in the 
linear combination. The dynamic programming problem can be recast as a linear 
programming problem. However, this exact linear programming approach also suffers 
from the curse of dimensionality. They have as many variables as the number of states in 
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the systems and at least the same number of constraints. Combining the exact linear 
programming approach with the linear approximation architecture leads to the 
Approximate Linear Programming algorithm (ALP).  Compared to the exact linear program 
that stores the optimal value function for each state in the system, the ALP has a much 
smaller number of variables since that it has as many variables as the number of basis 
functions. There are two phases included in the ALP approach for average cost dynamic 
programming. The first phase prioritizes approximation of the optimal average cost, but 
does not necessarily give a good approximation to the value function. The second phase 
explicitly approximates the value function, with presence of the so called state relevance 
weights that is used for controlling the quality of the approximation to the optimal value 
function. 
 
Based on the pre-specified basis functions and state relevance weights, it is observed that 
the ALP algorithm did a good job in approximating the dynamic programming value 
functions. It corresponds to the determination of the switching scheme for the traffic 
light control such that the number of cars in all flows is minimized in the long term. 
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Management Summary in Dutch 

 
 
Kruispunten zijn plaatsen in het verkeersnetwerk waar veel potentiële conflicten 
voorkomen. Het verkeer wordt sterk beïnvloed door sturing van het verkeerslicht. Dit 
verslag behandelt een kruising van twee tweerichtingsstraten met controleerbare 
verkeerslichten op elke hoek van de straat. Het hoofddoel van dit verslag is om te weten 
hoe de omschakelingsregelingen van het verkeerslicht voor dit systeem kunnen worden 
bepaald, zodanig dat het aantal auto's in alle stromen op lange termijn wordt 
geminimaliseerd. Hiervoor wordt de voorgestelde benaderingsmethode door De Farias 
en Van Roy [1], ‘Two-phase Approximate Linear Programming for average cost dynamic 
programming’ toegepast. De auto's komen bij een kruising aan die door een verkeerslicht 
wordt gestuurd en vormen een rij. De dynamische controle van de verkeerslichten is 
gebaseerd op het aantal auto’s die in de rijen wachten. Het model dat de evolutie van de 
rijlengten beschrijft, is gebaseerd op de formulering van Haijema en Van der Wal [4], dat 
gemodelleerd is als een Markov Decision Process in discrete tijd. De stromen worden 
verdeeld in disjuncte combinaties van conflictvrije stromen die samen groen licht krijgen.  
 
In principe kan dit probleem worden opgelost via dynamische programmering. De 
dynamische programmering verwijst naar een verzameling van algoritmen die gebruikt 
kunnen worden om een optimaal beleid te vinden, gegeven een Markov Decision Process 
model. De dynamische programmering berekent de optimale waardefunctie door Bellman’s 
vergelijking op te lossen. Het domein van de optimale waardefunctie is de toestandsruimte 
van het systeem. Dit zou betekenen dat het aantal variabelen (de opgeslagen 
waardefunctie) gelijk is aan de grootte van de toestandsruimte. De dynamische 
programmering is niet meer computationeel efficiënt wanneer de toestandsruimte van het 
systeem groot is. Dit probleem wordt meestal genoemd als de ‘curse of dimensionality’. 
Vooral, wanneer de toestandsruimte multidimensionaal is, groeit zijn grootte 
exponentieel in het aantal variabelen. Dit is ook het geval in het verkeerslichtprobleem, 
door het feit dat elke stroom een oneindige buffer heeft.  
 
Approximate Dynamic Programming is bedoeld om het probleem van de ‘curse of 
dimensionality’ te verminderen door het benaderen van de waardefunctie, die efficiënt 
kan worden opgeslagen en verkregen. Eén van de overwegingen binnen Approximate 
Dynamic Programming is het kiezen van benaderingsstructuur, de structuur van de 
benaderende waardefunctie. In dit verslag wordt de lineaire architectuur gekozen. We 
kiezen een verzameling van functies (basisfuncties) die de mapping van toestandsruimte van 
het systeem naar de reële getallen geeft. De benadering van de waardefunctie (scoring 
functie) kan worden verkregen door een geschikte lineaire combinatie van de basisfuncties 
te vinden. Het is dus voldoende om de wegingsfactor van elke basisfunctie in de lineaire 
combinatie op te slaan in plaats van het opslaan van de waardefunctie voor elk toestand 
in het systeem. Het aantal variabelen is daardoor enorm kleiner ten opzichte van het 
aantal waardefuncties met één waarde per toestand in het systeem.  
 
Een succesvol gebruik van Approximate Dynamic Programming hangt af van een goede 
keuze van de basisfuncties en een goede keuze van de wegingsfactor van elke basisfunctie 
in de lineaire combinatie. Het dynamische programmering probleem kan als lineaire 
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programmering (LP ) probleem worden herschreven. Maar deze lineaire programmering 
benadering lijdt ook onder de zogenaamde ‘curse of dimensionality’; ze hebben evenveel 
variabelen als het aantal toestanden in het systeem en minstens hetzelfde aantal 
restricties. Het combineren van de LP met de lineaire benaderingsarchitectuur leidt tot 
Approximate Linear Programming (ALP). De ALP heeft een veel kleiner aantal variabelen 
dan de LP omdat er zo veel variabelen zijn als het aantal gekozen basisfuncties. Er zijn 
twee fasen in de benadering van de ALP voor gemiddelde kosten dynamische 
programmering. De eerste fase is gericht op het benaderen van de optimale gemiddelde 
kosten, maar het geeft niet altijd een goede benadering voor de waardefunctie. De tweede 
fase benadert specifiek de waardefunctie.  
 
Gebaseerd op de gekozen basisfuncties en state relevance weights, de ALP algoritme doet het 
goed in het benaderen van de waardefuncties. Dit zorgt voor het bepalen van de 
omschakelingsregelingen voor de verkeerscontrole probleem dusdanig dat het aantal 
auto’s in alle stromen op lange termijn geminimaliseerd wordt.  
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1 Introduction  

 
As the number of road users and the need of transportation increases, cities around the 
world face serious road traffic congestion problems. Traffic jams have become the 
everyday life’s ritual for most of the people in the world. Traffic jams do not only cause 
tremendous costs due to unproductive time losses; they also cause the increasing 
probability of accidents and have a negative impact on the environment (congestion 
wastes fuel and increases air pollution due to increased idling, acceleration, and braking) 
and on the quality of life (stress and frustration). This leads to the question about the 
possibility of controlling traffic flows in order to reduce the traffic jams.  
 
Intersections are places in the traffic network where many conflicts can occur potentially. 
These conflicts exist because an intersection is a road area where multiple traffic flows 
meet or cross. Reducing conflicts can be accomplished through a combination of efforts, 
including the careful use of the road infrastructure, comprehensive traffic safety laws and 
regulations, sustained education of drivers, the willingness among drivers to obey the 
traffic safety laws, and traffic management. The traffic management around the 
intersection area is done by the traffic light control.  
 
In most countries, three-state traffic light is used [6]. The sequence is red, green and 
yellow which means stop, go and prepare to stop, respectively. The most control 
strategies found in practice are cyclic; the order in which the groups of flows are served is 
fixed.  There is a range of several logical policies by which the traffic light can be 
controlled. The most basic policy can be classified according to the following 
characteristics [4]: 
 
Fixed-time (FC) control. In this form of operation, not only the order is fixed but the red, 
yellow, and green light indications are timed at fixed intervals. Fixed cycle controllers are 
best suited for intersections where traffic volumes are predictable, stable, and fairly 
constant.  
 
Unlike the FC, intersections with traffic-responsive control consist of actuated traffic 
controllers and vehicle detectors placed on the lanes approaching the intersection. This 
form of control makes use of real-time measurements. The length of the green interval 
can be lengthened or shortened based on the present volume of the traffic. At a hectic 
intersection, the green interval would be lengthened, or one gets a green period on 
inquiry. 
 
Under exhaustive (XH) control, the green signals will be kept until all flows that have right 
of way are ‘exhausted’ (empty). The cyclic variant of exhaustive control is abbreviated by 
XHC. The alternative form of exhaustive control is anticipative exhaustive control XHC(1) 
and XHC(2), which anticipates departures during 1 and 2 yellow slots, respectively. In 
other words, the green periods will be kept until the number of cars at each flow in the 
combination that has right of way is at most one and two in XHC(1) and XHC(2), 
respectively. 
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Isolated control is applicable to single intersections. The signals are operated without 
consideration of any adjacent signals. In such a case, each intersection will have a signal 
control that is most appropriate for that single intersection. On the contrary, coordinated 
control considers an urban zone or even a whole network comprising many intersections.  
 
However, the annual toll of accidents due to motor vehicle crashes has not substantially 
changed in more than 25 years despite improved intersection infrastructures and more 
sophisticated application of traffic engineering measures. As mentioned in [7], installing 
signals do not always make intersections safer. The installation of signals that operate 
improperly can create situations where overall intersection congestion is increased, which 
in turn can create aggressive driving behavior. Drivers tend to become impatient and 
violate red lights when the traffic light control causes longer waiting times at 
intersections. This subjects local residents to a greater risk of collisions, worse 
congestions and more air and noise pollution. Hence, appropriate traffic control 
decisions are required.  
 
This paper focuses on the dynamic control at a signalized single intersection of two two-
way streets with isolated control. This control problem can be formulated as a Markov 
Decision Process (MDP) for a stochastic dynamical system with the average cost 
criterion. The state of system evolves under uncertainty and a sequence of decisions has 
to be made. Based on the real-time situation, i.e., the number of cars waiting in the 
queues, a decision has to be made as to which set of flows has right of way and these 
decisions have a long term effect. The current action determines a new configuration that 
determines which configurations may be reached in the future. A solution to a Markov 
decision problem is a policy (a mapping from a state to an action) that determines state 
transitions to minimize the average cost, which is the long-run number of cars in all 
flows. To be able to derive the optimal policies, a function defined on the state space 
called the value function is required to be computed and stored. For most problems of 
practical interest, the state space is extremely large so that computing and storing the 
optimal value function require a lot of time. This large space makes the dynamic 
programming computationally intractable.  
 
Because of the computational complexity of solving the dynamic program, much effort 
has been put into finding alternative learning algorithms. For instance, Haijema and Van 
der Wal [4] presented an approach to smoothen the traffic flow that starts from a 
(nearly) optimal fixed cycle strategy and executes one policy improvement step that leads 
to a dynamic control strategy.  
 
Another approach is Approximate Dynamic Programming (ADP). This approach is 
about finding a good approximation to the value function. This paper applies the linear 
programming approach to approximate dynamic programming proposed by De Farias 
and Van Roy [1] for solving the traffic control problem that is formulated as a discrete 
time MDP. This approach considers the average cost criterion and a version of the 
approximate linear program that generates approximations to the optimal average cost 
and value function. 
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2 Approximate Dynamic Programming 

 
Markov decision processes (MDP’s) provide a mathematical framework for modelling 
decision making in situations under uncertainty. Given a model of the environment as a 
Markov decision process, dynamic programming can be used to compute the optimal 
policies. This chapter gives a description of how dynamic programming offers a solution 
to the problem of minimizing the average cost over a finite horizon. Moreover, we 
discuss how the curse of dimensionality affects the dynamic programming algorithm. 
Further, the main ideas in approximate dynamic programming will be presented.  

2.1 Markov Decision Processes 

Dynamic programming offers a solution to problems involving sequential decision 
making in systems with non-linear, stochastic dynamics. Systems in this setting are 
described by a set of variables evolving over time – the state variables. The state variables 
take values in the state space of the system, which is the set of all possible states the system 
can be in. The main idea in dynamic programming is that an optimal decision can be 
derived based on the score assigned to each of the states in the system – the value function. 
The optimal value function obtained from dynamic programming captures the advantage 
of being in a given state relative to being in all other states.   
 
Consider discrete-time stochastic control problems involving a finite state space S of 
cardinality NS || . For each state Sx , there are possible actions that can be chosen 
Ax.  In a given state x when action a is taken, a cost of ),( axc is incurred. The transition 

probabilities  yaxp ,, , for each state pair  yx,  and action a  Ax, represent the 
probability that given action a  while being in state x , the next state will be y .  
 
A policy is a mapping from a state to an action. Under policyu , the system follows a 
Markov process with transition probabilities  yxpu , .  
 
The solution to a Markov Decision Process can be expressed as a policyu , which gives 
the action to take for a given state, regardless of the prior history. Let tx denote the 

random variable for the state that the system is in at time t and )( tu xc denotes the 
corresponding cost when policy u is taken. Then, it is well known that there exists a 

policy u  such that 













xxxcE
T

T

t
tu 0

1

0

|)(
1

, as T goes to infinity, is minimized 

simultaneously for all states and the aim is to identify that policy.  
 
Here, the Markov process is assumed to be irreducible; for each pair of state  yx,  and 

each policy u , there is a t such that   0, yxPt
u . In other words, it is possible to get to 

any state from any state. This implies that, for each policyu , the limit 
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














xxxcE
T

T

t
tu

T
0

1

0

|)(
1

lim exists and the average cost is independent of the initial state 

in the system.  
 
Denote the optimal average cost by u

u
gg min*  . The optimal policy with the average 

cost criterion can be derived from the solution of Bellman’s equation,  

       








 
y

Aa
yVyaxpaxcxVg

x

,,,min . (2-1) 
 

 
where  V  denote value function. The interpretation of  xV  is the difference in 
accrued cost when starting the process in state x relative to a reference state. Bellman’s 
equation can be formulated in terms of matrices as follows. 
 

VPcVeg
uu **.  , 

(2-2) 
 

 
where e is a vector with 1 as entries, *u

c  and *u
P are vectors of the costs and the 

transition probabilities based on the optimal policy, respectively. 
 
Denote the solution of Bellman’s equation by pairs  ** ,Vg . An alternative method for 
deriving V is so called policy iteration. This algorithm starts with considering a policy π. 
The corresponding  Vg, can be obtained by solving the Bellman’s equation: 
 

     
y

yVyxxpxxcx ),(,)(,)(  . (2-3) 
 

 
To improve the policy π, take 
 

     








 
 yAa

yVyaxpaxcx ,,,minarg)('  (2-4) 
 

 
in each state. The corresponding  '' ,Vg can be obtained by again solving the Bellman’s 

equation. The improvement can be again obtained by solving (2-4) based on 'V . This 
iteration will be continued until the minimum is attained for each state. Note that the 
value function for every state has to be stored in memory in every step. Therefore, the 
applicability of dynamic programming is severely limited. The domain of the optimal 
value function is the state space of the system to be controlled. This means that the 
number of variables (value function) to be stored and computed is equal to the size of 
the state space. When the state space is large this dynamic programming method 
becomes computationally intractable. Especially when dealing with multi-dimensional 
state space, its size grows exponentially in the number of state variables. This problem is 
called curse of dimensionality. 
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2.2 ADP with a linear approximation architecture 

To alleviate the curse of dimensionality, the problem is solved by finding an 

approximation to the value function,  KSV :
~

, called the scoring function. The 
underlying assumption is that the value function has some structure such that a 
reasonable approximation exists.  
 
By using the linear approximation architecture, the scoring function is generated within a 
parameterized class of functions. It maps the system state space to the set of real 
numbers. Consider a given set of basis functions KiSi ,,1,:   , the scoring 
functions are represented as linear combinations of the basis functions: 
 

   



K

i
ii rxrV

1

~

.,   (2-5) 
 

 
Imagine that the pre-selected basis functions are stored as columns of matrix KS , 
and each row corresponds to the basis functions evaluated at a different state x .  
 


















||

||

1 K  . 
(2-6) 

 
 
Now the optimization problem is formulated and analyzed as an optimization problem 
for computing the weights K

ir  . Hence, it suffices to store the weights assigned to 
each of the basis functions in the linear combination instead of storing the value function 
for each state in the system.  The number of variables (one per basis function) to be 
stored is tremendously smaller than the number compared to the value function with one 
value per state in the system.   
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3 Approximate Linear Programming for average costs 

 
A successful use of approximate dynamic programming depends on a good choice of the 
basis functions and a good choice of weights assigned to each of the basis functions in 
the linear combination. A study to the optimal selection of basis functions is out of the 
scope of this paper. Therefore, we assume that the set of basis functions is pre-specified, 
and that the focus is on finding an appropriate parameter vector Kr  , given a pre-
selected set of basis functions.  
 
It is known that the dynamic programming problem can be recast as a linear 
programming problem. However, this exact linear programming approach also suffers 
from the curse of dimensionality. They have as many variables as the number of states in 
the system and at least the same number of constraints. Combining the exact linear 
programming approach with the linear approximation architecture leads to the 
approximate linear programming algorithm (ALP). Compared to the exact linear program that 
stores the optimal value function for each state in the system, the ALP has a much 
smaller number of variables since it has as many variables as the number of basis 
functions. In the next sections, the two-phase ALP approach for average costs is 
described. The first phase of the average-cost ALP prioritizes approximation of the 
optimal average cost, but does not necessarily give a good approximation to the value 
function. The second phase explicitly approximates the value function. 

3.1 First phase of the average-cost ALP 

Recall the Bellman’s equation (see Equation (2-1)). It can be solved by the average cost 
Exact Linear Programming (ELP): 
 

        .,,,,min..

max
,

xyVyaxpaxcxVgts

g

y
Aa

Vg

x










 

 
(3-1) 

 
 
The problem is translated in a maximization of the average cost that would be subject to 
inequalities of the form “≤” which corresponds to upper bounds. Note that the 
constraints are non-linear, each constraint involves a minimization over the possible 
actions. But each constraint can be decomposed into |Ax| constraints. Therefore, 
problem (3-1) can be seen as a Linear Programming described by (3-2).  
 

        .,,,,,..

max
,

axyVyaxpaxcxVgts

g

y

Vg

   (3-2) 
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This results in a total of || S |Ax|+1 constraints, which is unmanageable if the state 
space is large. The combination of the exact linear programming and the linear 
approximation architecture leads to the first phase ALP described by (3-3).  
 

        .,,,,,..

max
,

axyryaxpaxcxrgts

g

y

rg

   (3-3) 
 

Denote the solution of the first phase ALP by  11, rg . Note that the maximization 

problem in (3-3) is equivalent to minimizing || 1
* gg  . Since the first phase ALP 

corresponds to the exact LP (3-1) with the extra constraint rV  , the solution to the 
first phase ALP is limited, *

1 gg   for all feasible 1g . This implies that the first phase 
ALP can be seen as an algorithm to approximate the optimal average cost.  
 
Compared with the ELP that stores the optimal value function for each state in the 
system, the ALP has a much smaller number of variables since that it has as many 
variables as the number of basis functions plus one. However, the ALP has still as many 
constraints as the number of state-action pairs.  

3.2 Second phase of the average-cost ALP 

It turns out, from an example given in the paper [1], that even though the first phase 
ALP produces a good approximation to the optimal average cost, it can produce 
arbitrarily bad policies. The main problem is that the algorithm of the first phase ALP 
has priority to approximate the optimal average cost, but it does not necessarily yield a 
good approximation to the optimal value function. Hence, a two-phase average-cost ALP 
is proposed in which the first phase is simply the first phase of the average-cost ALP 
introduced in Section 3.1. In the first phase, the approximation to the optimal average 
cost is generated, while in the second phase the focus is on the approximation to the 
optimal value function.  
 
The second phase of the ALP is formulated as follows. 
 

        .,0,,,,..

max

2 axyryaxpaxcxrgts

rc

y

T

r





  (3-4) 
 

 
The parameters that have to be pre-specified are the state relevance weights c >0 and 2g . 
Denote the optimal solution of the second phase of the average-cost ALP by r2. In De 
Farias and Van der Roy [1], a lemma and some theorems were described and used to 
understand how the state relevance weights c and the estimated optimal average cost 

2g in the second phase of the ALP can be used for controlling the quality of the 
approximation to the optimal value function. 
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In the following theorem, the interpretation of second phase ALP as the minimization of 
a certain weighted norm of the approximation error is given, with weights equal to the 
state relevance weights.  
 
 
Theorem 1 (De Farias and Van Roy [1]):  

Let r2 be the optimal solution to the two-phase ALP. It minimizes 
cg rV
,12

  

over the feasible region of the two-phase ALP.  
Proof: The norm 

c,1
. is defined by 




Sx

c
xVxcV |)(|)(

,1
. 

 Maximizing rcT  is equivalent to minimizing )(
2

rVc g
T  .  It is well known 

that for all V, VegcPI   )()( 2
1

** 
, we have 

2gVV  . Hence, any r that is a 

feasible solution to two-phase ALP problems satisfies
2g

Vr  . It follows that 

,|)()(|)(
222 ,1

rcVcxrxVxcrV T
g

T

Sx
gcg  



 

and maximizing rcT  is therefore equivalent to minimizing 
cg rV
,12

 . 

 

Hence, any fixed choice of 2g , that satisfies *
2 gg  , there is bound 

 

    ePIcggrVrV T

cgc

1
2

*

,12,12
*

*
2




. (3-5) 
 

 

The two-phase ALP minimizes the upper bound on the norm 
c

rV
,12

*  of the error in 

the approximated value function. The state relevance weight c determines how errors 
over different regions of the state space are weighted when approximating the optimal 
value functions, and can be used for specifying the trade-off in the quality of the 
approximation across different states. Therefore, to generate a better approximation in a 
region of the state space one can assign relatively larger weights to that region. To have 
some clue on how to choose the appropriate state relevance weights c, performance 
bounds will be provided in the next section. 

3.3 State Relevance Weights 

A bound on the performance of greedy policies associated with approximate value 
functions were presented in De Farias and Van Roy [1] that provides some guidance on 
choosing appropriate state relevance weights. The bound is described in Theorem 2.  
 
Theorem 2 (De Farias and Van Roy [1]):  

For all V, let Vg  and V  denote the average cost and the stationary state 
distribution of the greedy policy associated with V. Then, for all V such that 
VV*

, 

.
,1

**

V

VVggV 
  

Proof: 
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Note that the average cost associated with V is given by V
T
VV cg   and 

T
VV

T
V P   is valid for the stationary state distribution. Vc and VP denote the costs 

associated with the greedy policy with respect to V. Vg  can be formulated as 

)( VVPccg VV
T
VV

T
VV   . Now if VV*, then  

 

V

VVegVVeg

VVeg

VVPcVVPc

T
V

T
V

VV

T
VVV

T
V







,1

****

**

*

.)(.

).(

)()( **





 

 
The performance bound described in Theorem 2 gives an alternative for selecting state 
relevance weights. One approach is to select the state relevance weight corresponding to 
the stationary state distribution associated with the greedy policy. It seems logical, since 
the aim is to have a good approximation to the value function, importantly, thus the 
states that are visited more often need to be approximated better. One difficulty with 
obtaining the stationary state distribution is that one should know the optimal policy 
beforehand and the problem is finding the optimal policy yet. It suggests an iterative 
scheme using in each iteration the weights corresponding to the stationary state 
distribution associated with the policy generated by the previous iteration.  
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4 Traffic light control  

 
The aim of this paper is to solve the traffic light control problem with the ALP approach 
described in Chapter 3. In this chapter, the basic notion and the modelling assumptions 
will be introduced. Furthermore, the problem will be formulated as a Markov Decision 
Problem.  

4.1 Basic notation and the modelling assumptions 

Consider a simple intersection of two two-way streets, F4C2, which is illustrated in 
Figure 4.1. The flows are numbered clockwise. Cars that arrive at one of the lanes go 
either straight crossing the intersection or make a left turn. The set of 4 flows is 
partitioned into 2 disjoint subsets, C1 and C2. A subset of flows is called a combination. 
Two compatible flows can safely cross the intersection simultaneously, else they are 
called antagonistic. The combinations are fixed, and they are chosen such that there is a 
conflict-free intersection. The flows 1 and 3 are considered as C1 and the flows 2 and 4 
constitute C2. Flows in the same combination will always have the same light indication 
at the same time. When one combination has green or yellow indication, another 
combination has red indication. 
 
Figure 4.1: Two two-way streets intersection, F4C2, which serve 4 flows in 2 
symmetric combinations. 

 

 
For the sake of simplicity, the problem is formulated in discrete time. Time is divided 
into slots. This time unit (slot) is taken to be the time a car needs to cross the intersection 
when the light is green or yellow. Haijema and Van der Wal [4] assumed this time unit as 
being two seconds.  
          

C2 

C2 

C1 

C1 

3

2

1
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To avoid interference between antagonistic streams of consecutive slots when switching 
from a green indication for one combination to a green for a different combination, a 
switching time is necessary. The switching time is chosen to be fixed and it takes 3 slots; 2 
slots of yellow and 1 slot in which all flows have a red indication.  As an example, a cycle 
for the light indication for the flows is shown in Figure 4.2. The flows 1 and 3 get a green 
indication during 3 slots and the flows 2 and 4 get a green indication during 1 slot. The 
switching time takes 3 slots. Hence, the duration of the cycle is 10 slots.  
 
Figure 4.2: Example of lights indication diagram. 

 
 
 
 
The arrivals in different flows and in different slots are independent. It is reasonable to 
assume that the number of car arrivals in one slot is either 0 or 1 per flow. We denote the 
arrival rate in one slot by fq  for flow f . 

 
In each flow that has right of way (having a green or a yellow indication), exactly one car can 
pass the stopping line in one slot. A car that arrives at an empty queue that has right of way 
passes the stopping line without delay. 
 
The state of the process is observed in each slot. The decision epochs are as follows. 
New arrivals take place at the beginning of the slot, which is after the observation of the 
state of the process. Departures take place at the end of the slot prior to the observation 
of the new state. Hence when a flow has right of way and a car arrives in the certain slot, 
the state of the flow remains the same for the next slot. 

4.2 Markov decision problem formulation 

As stated above, the problem is considered as a discrete-time stochastic control problem. 
The Markov decision problem formulation consists of the specification of the states 
space, the decision space (in each state there are several actions from which the decision 
must be chosen), the transition probabilities, and the cost function.  

1 

2 

3 

4 

slots 

green yellow red 
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4.2.1 States 

The state of the system is represented by two vectors, one represents the state of the 
traffic and the other represents the state of the lights. The state of the traffic is fully 
described by a vector  4321 ,,, kkkkk  , with fk  the number of cars in flow f  present 

at the beginning of a slot. Further, the state of the light is described by vector  ilx ,  

with  2,1l  the combination which is having a green  0i , a first yellow  1i , a 

second yellow  2i , or a red  3i  light. The state of the light is fully described by x , 
because when one combination of the flows has right of way (having a green or a yellow 
indication), the other flows all have a red indication.  Hence, the states are denoted by the 
vector    ),(),,,,(, 4321 ilkkkkxk  , in total a 6-dimensional vector.  

4.2.2 Decisions 

In each state there are several actions from which decision must be chosen. The 
decisions depend on the state of the traffic lights but also on the lengths of the queues. 
The possible decisions in the various situations are described as follows. 

 If all lights are red, the possible decisions are to keep all lights red, or to give a 
green indication to one of the combinations.  

 If the lights are green for one combination, there are two possible decisions: keep 
the lights as they are or change from green to first yellow. 

 At the end of a first yellow slot there is only one decision: continue to the second 
yellow slot. 

 After the second yellow, the only decision is to change into red for all flows. 
 
Hence the decision space, denoted by A   ilk ,, , is 
 

A   
    
 
    













3,0,,3,

2,1,1,

0,1,,0,

,,
' iifll

iifil

iifll

ilk , 
(4-1) 

 
 
with 'l  the next non-empty combination. Decisions are taken at the beginning of a slot 
and executed instantaneously. Thus, if a combination has right of way, cars of that 
combination can leave in the very same slot.  

4.2.3 Transition probabilities 

Given a state  xk, , the chosen action a  implies an instantaneous change of lights from 

state x  into state a , due to the fact that the chosen action is part of the state. Hence, the 

transition probability from state  xk,  to state  '' , xk  is 0 unless ax ' . The transition 

probabilities, denoted by  akxkp ,;, ' , are best described by considering each flow 

separately. Let  ',, fff kakp  denote the transition probability for the number of cars in 

flow f  when action a  is taken. Since the flows are independent, the transition 
probabilities are simply the product of transition probabilities for each flow.  
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   



4

1

'' ,,,,,
f

ffff kakpakxkp . (4-2) 
 

 
If by action a  flow f has right of way during the coming slot, the transition probabilities 
per flow are given by 
 

    0,,,;11,,  ffffffff kqkakpqkakp  

  10,,0 ap f . 
(4-3) 

 
 
And if action a  implies red for flow f , then  
 

    0,1,,;1,,  kqkakpqkakp ffffffff . (4-4) 
 

 
The transition probabilities for the number of cars in flow f are illustrated in Figure 4.3 
and Figure 4.4. 
 
Figure 4.3: Illustration of the transition probability for the number of cars in flow f 
when flow f  has right of way.  

 

 
 

 
Figure 4.4: Illustration of the transition probability for the number of cars in flow f 
when the state of light of flow f is red.  

 

 
 

 

4.2.4 Costs 

The aim is to minimize the overall average waiting time per car. Based on Little’s Law, 
this corresponds to minimizing the average number of cars waiting at the queues. 

0 1 2 3

1- qf 1- qf 1- qf 

 1 qf qf qf 

1- qf 
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qf 

 1-qf 1-qf 1-qf 1-qf 
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Therefore, a linear cost function is considered where one unit of costs is accounted for 
every car present at the beginning of a slot. Hence, the cost function, denoted by  kc , is 
given by 
 

  



4

1f
fkkc . (4-5) 

 

4.2.5 Countable state spaces 

To easily compute the performance measures (and the optimal policy), the state space 
has to be countable. The state space can be reduced to be a finite one by limiting the 
number of cars that can be present in each flow. The maximum state N  in each flow 
becomes one of the parameters in the system. Thus, the arrivals to a queue which is full 
will be rejected. This stochastic control problem involves a finite state space S  of 
cardinality 42|| 4  NS , where the state of the system is a 6-dimensional vector. The 

transition probabilities should be changed with respect to fq  such that there are no 

transitions from state N  to 1N . The transition probabilities per flow in the finite state 
space are defined as follows. If during the coming slot flow f  has right of way, the 
transition probability is defined as follows, 
 

    Nkqkakpqkakp ffffffff  0,,,;11,, , 

  10,,0 ap f . 
(4-6) 

 
 
If during the coming slot flow f  gets a red indication, the transition probability in the 
case of countable state spaces is defined as follow, 
 

    Nkqkakpqkakp fffffffff  ,1,,;1,, , 

  1,, NaNp f . 
(4-7) 
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5 The two‐phase ALP approach for F4C2  

 
After defining the model, the ALP formulation for this problem can be determined. The 
control strategy used in this paper is cyclic. The implementation of the approach is done 
in the following steps. 
 
1. Find the optimal average cost based on the first phase of the two-phase ALP, 

denoted by 1g . The greedy policies 1 associated with 1g can be obtained. The first 
phase of the two-phase ALP is done given the predefined basis functions. 

2. Evaluate the policies 1 by simulating the state of each flow for B slots, say 50000, 

and determine the state of the lights based on the greedy policies 1 . Then, the 
average cost can be computed by taking the average of the sum of the number of 
cars in all flows, denoted by *1g . It is expected that 1*1 gg  because the first phase of 
the two-phase ALP does not necessarily give a good approximation to the value 
function which leads to non-optimal policies 1 . 

3. Improve the policies 1 by using the second phase of the two-phase ALP approach, 

given the approximation of the optimal average cost 1g , the predefined basis 
functions, and the state relevance weights. The new policies obtained will be denoted 
by 2 . The average cost obtained will be denoted by *2g . 

4. Evaluate the new policies 2 by simulation as in step 2. It is expected 

that 1*2*1 ggg  .  
 
The steps are further discussed in the next section. The arrival rates will be varied to 
compare the approach with the other strategies. The results obtained are reported in 
Section 5.2.  

5.1 The two-phase ALP formulation 

To ensure uniqueness, assume state V(0,(1,0)) acts as a reference state by taking  
V(0,(1,0))=0. The first-phase ALP is given by 
 

        .),,(,,,,,,..

max
''

,

axkakrakxkpkcxkrgts

g

y

rg

   (5-1) 
 

 
Denote the solutions by ( 11, rg ). The basis functions that are used are  

},4,3,2,1{,;

,

,10





bakk

k

baab

aa





 
(5-2) 
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where bk  is the number of cars in flow b. The value function is approximated by a 
second order polynomial that includes terms that correlate different flows with each 
other, with different weights for each state of light  il, .  Hence, the value function is 

  ilkV .,  approximated by   ilkr ., , which is 
 

  
.

,,

43
),(

3442
),(

2432
),(

2341
),(

1431
),(

1321
),(

12

2
4

),(
44

2
1

),(
114

),(
41

),(
1

),(
0

kkrkkrkkrkkrkkrkkr

krkrkrkrrilkr
ilililililil

ililililil


 

 (5-3) 
 

 
The constant term )0,1(

0r =0, since    00.1,0 V is chosen. There are in total 158 = 120 
variables. In this case, the number of variables does not change as the number of states 
grows. The linear programming is solved by using the Premium Solver Platform for Excel, 
which is able to solve linear programming problems with a number of variables up to 
8,000. While the ALP may involve manageable number of variables, the number of 
constraints is still as many as the number of state-action pairs. Therefore, to be able to 
solve the ALP problem, the largest state on each flow has to be limited to be able to 
include all the state-action constraints for solving the LP problem. The maximum of the 
largest state on each flow is 4 corresponding to 7,500 constraints based on the MDP 
formulation. The optimal policy 1 associated with 1g  can be generated by taking 
 

 
 

   








 
 '

,,;,minarg, '
1

'

),(,
1

kilkAa
akrakxkpxk . (5-4) 

 
 
In order to check whether the first phase of the two-phase ALP yields a good 
approximation for the value function, simulation of the states will be done for 500,000 
slots. The second phase of the two-phase ALP is done by solving linear problem (5-5).  
 

        axkakrakxkpkcxkrgts

rc

y

T

r

),,(,,,,,,..

max
''

2 



  (5-5) 
 

 
An obvious choice for 2g is 1g , the estimate for the optimal average cost obtained from 
the first phase ALP. The solution to the second phase ALP is r2.  It is aimed to control 
the accuracy of the approximation to the cost function over different portions of the 
state space. As described in Theorem 1, maximizing rcT is equivalent to minimizing 

)(
2

rVc g
T  , which  is the sum the errors of the approximation to the cost function 

weighted by c for balancing accuracy of the approximation over different states. Based 
on Theorem 2, the state relevance weights can be chosen corresponding to the stationary 
state distribution. It may suffice to use rough guesses about the stationary state 
distribution in some cases. Thus, the state relevance weights c  are chosen in the form 
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 (5-6) 
 

where 
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  .,,

),(,


ilk

ilkca  (5-7) 
 

 
To make sure that the sum of state relevance weights is 1,   ilkc ,,  is multiplied by a

1 . 

5.2 Results and evaluation 

5.2.1 Symmetric arrival rates 

In this section, the results for varying arrival rates at a symmetric F4C2 intersection are 
presented in which all flows have identical arrival rates per slot. The average cost 1g  

resulted by the first phase ALP and the average cost *1g  and *2g  yielded by the greedy 

policy with respect to 1r  and 2r , respectively, are given in the Table 5-1 below. The 

second phase ALP is done for the state relevance weights c with i =0.99 for all i. As 
observed, the results from the second phase ALP do not differ much from the first phase 
ALP.  
 
Table 5-1: The average cost in slots for the symmetric F4C2.  

Largest state 4 4 4 

fq   0.2 0.3 0.4 

1g  1.86 3.22 4.96 

*1g  2.00 4.00 6.86

*2g  2.00 3.99 6.85 
 
The coefficients of the linear combination of the basis functions for approximating the 
value function are given below. There are several remarkable observations regarding the 
coefficients. The coefficients r13 and r24 for all  il,  are zero. This means that the 
multiplication of the number of flows from different combinations does not have added 
value to the approximation of the value function.   
 
Table 5-2: The weights of the linear combination of the basis functions for the 
symmetric F4C2, with 2.0fq  f . 

Coefficients 
l=1 l=2

i=0 i=1 i=2 i=3 i=0 i=1 i=2 i=3 
r0 0.00 0.34 1.17 0.13 0.00 0.34 1.17 0.13 
r1 0.76 1.00 6.99 5.76 4.70 3.35 2.01 0.62 
r2 4.67 3.35 2.01 0.62 0.78 0.98 7.06 5.84 
r3 0.63 0.98 7.06 5.85 4.67 3.36 2.02 0.61 
r4 4.70 3.36 2.02 0.61 0.61 1.00 6.99 5.76 
r11 0.64 1.41 0.00 0.13 0.26 0.44 0.55 0.66 
r22 0.29 0.44 0.56 0.67 0.63 1.45 0.04 0.17 
r33 0.65 1.44 0.04 0.17 0.29 0.43 0.55 0.66 
r44 0.26 0.43 0.54 0.65 0.65 1.41 0.00 0.13 
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r12 0.09 0.00 0.00 0.00 0.00 0.02 0.09 0.09 
r13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
r14 0.01 0.04 0.21 0.22 0.22 0.00 0.01 0.01 
r23 0.00 0.01 0.07 0.07 0.07 0.00 0.00 0.00 
r24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
r34 0.20 0.00 0.01 0.01 0.01 0.04 0.19 0.20 

 
 
Table 5-3: The weights of the linear combination of the basis functions for the 
symmetric F4C2, with 3.0fq  f . 

Coefficients 
l=1 l=2 

i=0 i=1 i=2 i=3 i=0 i=1 i=2 i=3 
r0 0.00 0.43 1.68 0.00 0.00 0.43 1.68 0.00
r1 0.98 1.91 7.21 6.60 5.79 4.38 2.81 0.98 
r2 5.54 4.39 2.82 0.98 0.98 1.89 6.98 6.30 
r3 0.67 1.87 6.83 6.13 5.39 4.11 2.53 0.67 
R4 5.64 4.09 2.52 0.67 0.67 1.90 7.06 6.44 
r11 0.82 1.28 0.00 0.00 0.13 0.40 0.60 0.82
r22 0.14 0.40 0.61 0.82 0.82 1.25 0.00 0.00 
r33 0.83 1.22 0.00 0.00 0.14 0.42 0.62 0.83 
r44 0.13 0.42 0.62 0.83 0.83 1.25 0.00 0.00 
r12 0.41 0.02 0.06 0.07 0.08 0.09 0.32 0.38 
r13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r14 0.06 0.07 0.26 0.30 0.32 0.01 0.05 0.06
r23 0.20 0.09 0.33 0.38 0.41 0.04 0.16 0.18 
r24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
r34 0.35 0.04 0.16 0.19 0.20 0.08 0.28 0.33 

 
Table 5-4: The weights of the linear combination of the basis functions for the 
symmetric F4C2, with 4.0fq  f . 

Coefficients 
l=1 l=2 

i=0 i=1 i=2 i=3 i=0 i=1 i=2 i=3 
r0 0.00 0.60 2.40 0.14 0.00 0.60 2.40 0.14 
r1 1.20 2.26 7.19 6.75 6.60 5.00 3.21 1.03 
r2 6.79 5.20 3.39 1.16 1.25 2.32 7.34 6.93
r3 1.11 2.34 7.38 6.96 6.83 5.22 3.40 1.11
r4 6.64 5.03 3.22 0.98 1.07 2.27 7.22 6.79 
r11 0.92 1.24 0.00 0.00 0.00 0.33 0.63 0.95 
r22 0.00 0.33 0.63 0.96 0.95 1.25 0.00 0.00 
r33 0.98 1.25 0.00 0.00 0.00 0.34 0.64 0.98 
r44 0.00 0.34 0.64 0.97 0.95 1.24 0.00 0.00
r12 0.10 0.16 0.21 0.26 0.29 0.06 0.07 0.09 
r13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
r14 0.15 0.04 0.05 0.07 0.07 0.08 0.11 0.14 
r23 0.24 0.03 0.04 0.05 0.05 0.13 0.18 0.22 
r24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r34 0.21 0.16 0.21 0.26 0.28 0.11 0.15 0.18 
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In order to evaluate the results obtained from the ALP approach, a comparison will be 
made with the average cost based on several control strategies obtained by simulating the 
chain. First, the ALP approach is compared to the FC strategy, in which the order of the 
served combinations is fixed and also the duration of the green periods. Further, the 
ALP approach is compared to the exhaustive control strategy, in which the order of 
served combinations is fixed and the green periods will be kept until the flows in the 
combination that has right of way is empty. Two alternative exhaustive controls are also 
added in the evaluation; XHC(1) and XHC(2), which anticipate departures during 1 and 2 
yellow slots, respectively. In other words, the green periods will be kept until the number 
of cars at each flow in the combination that has right of way is at most one and two in 
XHC(1) and XHC(2), respectively.  
 
Based on Little’s Law, the average waiting time per car can be derived from the average 
number of cars waiting at the queue. Denote the average waiting time in seconds for flow 
f as )( fW . Then,  
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where fg  and fq are the average number of cars waiting at flow f and the arrival rate, 

respectively. The overall average waiting time is weighted by the average arrival at the 
queues. Thus, the overall average waiting time in seconds is given by 
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where 

f
fqc . 

Table 5-5 presents the overall average waiting time in seconds for varying arrival rates at 
a symmetric F4C2 intersection, which means that all flows have identical arrival rates per 
slot of fq . 

 
Table 5-5: Overall average waiting time in seconds for the symmetric F4C2.  

Rule fq 0.2 fq 0.3 fq 0.4 

Two-phase ALP 5.00  6.65  8.57  
FC 5.37 7% 7.30 10% 8.92 4% 
XHC 5.66 13% 7.54 13% 8.65 1% 
XHC(1) 5.06 1% 6.69 1% 8.37 -2% 
XHC(2) 5.16 3% 6.97 5% 8.99 5% 
FC green periods in 
slots for C1, C2 

1, 1 3, 3 8, 8 

 
For this simple intersection, the overall average waiting time gained from the two-phase 
ALP approach is less than the other strategies. The results obtained by the two-phase 
ALP approach is close to the anticipating exhaustive XHC(1) strategy.  
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5.2.2 Asymmetric arrival rates 

In the case of asymmetric arrival rates, two situations are considered for F4C2. The first 
situation that is considered is where the arrival rates are 0.15 for flows 1 and 3, and 0.45 
for flows 2 and 4. Hence, the flows within the same combination have the identical 
arrival rates, but C2 is three times as busy as C1. The second situation is where the arrival 
rate for flow 1 is 0.10, and the arrival rates for the other flows are 0.30. The coefficients 
of the linear combination of the basis functions obtained from the two-phase ALP 
approach for approximating the value function are given below.  
 
Table 5-6: The weights of the linear combination of the basis functions for the 
asymmetric F4C2, with q =(0.15, 0.45, 0.15, 0.45). 

Coefficients 
l=1 l=2 

i=0 i=1 i=2 i=3 i=0 i=1 i=2 i=3 
r0 0.00 0.44 0.00 0.00 0.00 1.25 2.97 0.00
r1 2.25 1.22 9.01 8.32 7.61 5.97 4.28 2.25 
r2 6.30 6.13 4.61 0.91 0.91 3.10 6.76 6.44 
r3 2.64 1.07 9.67 8.70 8.29 6.59 4.81 2.64 
r4 6.19 5.66 4.03 0.91 0.91 3.07 6.65 6.30
r11 0.62 1.76 0.00 0.00 0.00 0.19 0.39 0.62
r22 0.00 0.00 0.30 0.95 0.95 0.95 0.00 0.00 
r33 0.68 1.97 0.00 0.00 0.00 0.21 0.43 0.68 
r44 0.00 0.10 0.42 0.95 0.95 0.94 0.00 0.00 
r12 0.08 0.01 0.01 0.01 0.01 0.03 0.06 0.07
r13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r14 0.03 0.00 0.00 0.00 0.00 0.01 0.02 0.03 
r23 0.12 0.17 0.21 0.25 0.26 0.04 0.09 0.11 
r24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
r34 0.22 0.18 0.21 0.26 0.27 0.07 0.16 0.20

 
Table 5-7: The weights of the linear combination of the basis functions for the 
asymmetric F4C2, with q =(0.1, 0.3, 0.3, 0.3). 

Coefficients 
l=1 l=2 

i=0 i=1 i=2 i=3 i=0 i=1 i=2 i=3 
r0 0.00 0.31 1.05 0.00 0.00 0.47 1.44 0.03 
r1 0.55 0.00 6.22 4.98 4.18 2.87 1.71 0.55 
r2 4.93 4.04 2.46 0.68 0.68 1.81 6.33 5.52 
r3 1.42 1.66 7.82 7.23 7.08 5.57 4.02 1.41 
r4 5.26 4.02 2.43 0.69 0.69 1.88 6.96 6.36
r11 0.56 1.54 0.10 0.17 0.23 0.46 0.51 0.56 
r22 0.10 0.36 0.59 0.79 0.79 1.13 0.00 0.00 
r33 0.91 1.38 0.00 0.00 0.00 0.32 0.55 0.91 
r44 0.16 0.34 0.58 0.78 0.78 1.23 0.00 0.00 
r12 0.00 0.01 0.15 0.16 0.16 0.00 0.00 0.00
r13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r14 0.02 0.05 0.27 0.29 0.29 0.00 0.00 0.00 
r23 0.66 0.21 0.24 0.28 0.30 0.14 0.51 0.61 
r24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
r34 0.22 0.24 0.15 0.18 0.19 0.05 0.17 0.20
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The results are given in Table 5-8. The overall mean waiting time is denoted by )(W  

and the average waiting time for flow f is denoted by )( fW . The length of green 

periods in the FC control strategy for C1 and C2 are 1 and 5 slots, respectively,  in the 
first situation. In the second situation, the length of the green periods is 3 slots for both 
combinations. 
 
Table 5-8: Mean waiting times in seconds for two asymmetric F4C2 cases.  

Rule )(W  )( 1W  )( 2W  )( 3W  )( 4W  
q =(0.15, 0.45, 0.15, 0.45) 

Two-phase ALP 
    

5.95 8.47 5.16 8.41 5.07 
FC 6.32 6% 10.53 4.91 10.55 4.91 
XHC 6.72 13% 9.86 5.68 9.88 5.67 
XHC(1) 6.37 7% 8.12 5.79 8.11 5.79 
XHC(2) 7.32 23% 7.07 7.42 7.08 7.39 
q =(0.10, 0.30, 0.30, 0.30) 

Two-phase ALP 
  

6.22 4.93 5.43 8.25 5.40 
FC 7.09 14% 5.19 7.30 7.31 7.30 
XHC 6.96 12% 6.42 6.66 7.72 6.67 
XHC(1) 6.22 0% 5.25 6.05 6.88 6.06 
XHC(2) 6.61 6% 4.63 6.65 7.19 6.65 

 
As observed, the two-phase ALP approach results a lower overall mean waiting time 
compared to the other strategies. Further, it is observed that the flows that are parts of 
the more busy combination have a lower waiting time. This gives an idea that a more 
busy combination gets the priority. If a busy flow and a less busy flow are grouped 
together in one combination, then the less busy flow will take advantage of the priority 
and the more busy flow will suffer a bit.  

5.3 Reduced Linear Program 

Although the dimension of the problem is reduced in the approximate version (ALP), 
the number of constraints is still as many as the number of state-action pairs which can 
be very large. The two-phase ALP only solves parts of the ‘curse of dimensionality’ problem. 
Therefore, the largest state on each flow is limited to 4. In practice, this is certainly not 
the case. Van Roy [2] suggested a constraint sampling approach for approximating 
solutions to optimization problems when the number of constraints is intractable, the 
Reduced Linear Program (RLP). The idea is to define a probability distribution Φ over the 
set of constraints and to include only a subset of the distributed constraints for solving 
the problem. Two properties were proven that if a reasonable number of constraints are 
sampled from distributed constraints, then almost all others will be satisfied and the 
constraints that are not satisfied do not distort the solution too much.  
 
The RLP for the traffic control problem is characterized as follows. The largest state on 
each flow is set to 10. The constraint sample size is 20,000. The subset of constraints 
were sampled based on probability measure Φ(k) =(1-ρ)4 ρ |k|, ρ =0.99.  In the case of 
small arrival rates, say 0.2, the RLP gives a good approximate to the value function that 
results the average cost similar to average cost yielded from the two-phase ALP. 
However, when the load is high, the results do not resemble the expectations because the 
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sampled constraints do not represent “almost all” other constraints, and the constraints 
that are not satisfied distort the solution effectively. It is proven that the results of RLP 
rely on an idealized choice of Φ. The underlying thought is similar as choosing the state 
relevance weights (see Section 3.3). The constraints that represent the states that are 
visited more often should be then included. The chosen probability measure Φ(k) has an 
exponential form which gives high probabilities to the states that are close to the 
situation when there are no cars present in all flows, i.e., the states with small number of 
cars present in the flows. This probability measure is an acceptable choice of Φ when the 
arrival rates are small. However, when the arrival rates are higher, the high probability has 
to be assigned to the states where more cars are present in the flows. Therefore, 
exponential form is not an idealized choice of the probability measure Φ.  
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6 Conclusion 

 
The two-phase ALP approach for average cost dynamic programming is applied to the 
traffic control at isolated signalized intersection. As an illustration, an intersection of two 
two-way streets with controllable traffic lights on each corner is considered. Based on the 
chosen basis functions and the state relevance weights, it is observed that the results 
based on the switching schemes obtained by the ALP approach were better compared to 
the other strategies where there are at most 4 cars on each flow.  
 
In order to deal with the intractable state space, the ALP approach provides an algorithm 
for finding a good approximation to the optimal value function by fitting a parameterized 
linear function. Hence, the number of variables that has to be stored in ALP approach is 
equal to the number of the pre-specified basis functions, instead of storing the optimal 
value function itself for each state in the system. However, the ALP approach still has as 
many constraints as the exact linear programming formulation. Therefore, the largest 
state on each flow is limited to 4. In practice, this is certainly not the case. Van Roy [2] 
suggested a constraint sampling approach for approximating solutions to optimization 
problems when the number of constraints is intractable. The idea is to define a 
probability distribution Φ over the set of constraints and to include only a subset of the 
distributed constraints for solving the problem.  
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