
School Timetabling in Theory and Practice

Irving van Heuven van Staereling

VU University, Amsterdam
Faculty of Sciences

December 24, 2012

Preface

At almost every secondary school and university, some weeks or months before school
starts, there is always one person who stands before an enormous puzzle, and it is
always the same one. After spending days to schedule all lectures one by one, he
finally finds a timetable which should be acceptable and ready to publish. However,
he knows that probably many improvements could have been possible, but that he
simply does not have the time, insight or perhaps motivation to find them.

School timetable construction can be an extremely difficult task and usually con-
sumes a large amount of time. Although some have a better intuition for the problem
than others, it is most of the time practically impossible to construct a timetable
that satisfies the wishes of every teacher and student. For example, it always occurs
that students have idle hours between their lectures (which many students experi-
ence as a time waste), or worse, have courses with clashing lectures. Such conditions
affect the choice of student’s curriculum or even the student’s performance; one can
imagine that two scheduled exams on a day could affect a student’s concentration
and thus his chances of success. In other words, finding a good timetable is not
only desirable, but may also be essential. At many school institutes, timetables are
constructed by hand, which implies (for mathematicians) that improvements should
be possible. This research paper will investigate this conjecture by providing an
overview and contribution regarding the theory and practice of school timetabling,
with the ambition to improve the currently available timetabling software.

This work is part of my Master’s degree program Business Analytics at VU Uni-
versity, where each student is required to perform a research regarding a specific
problem motivated by practice. The choice for this subject is primarily driven by
my own experience and interests; it was my impression that the timetables I per-
sonally encountered had a lot of room from improvement. For example, I frequently
noticed that two or three simple adjustments in a timetable could avoid overlapping
lectures or reduce idle hours between lectures, and it was for me a very disturbing
idea that it would probably take only one smart insight to save 40 students from
waiting 2 hours for their next lecture. Furthermore, I discovered during my Bachelor
program that the courses within operations research interested me the most, and
finding a good timetable is due to numerous constraints and preferences (of teachers,
students and rooms) a perfect, complex optimization problem.

As last, but most important, I would like to extend my gratitude to my supervisor
dr. Sandjai Bhulai. His ideas, efforts and enthusiasm have helped me enormously in
making this research paper. Thanks Sandjai!

Irving van Heuven van Staereling
December 2012

i

ii

Summary

This research paper is concerned with the theory and practice of school timetabling.
An overview and contribution has been provided on both the theoretical and prac-
tical side, which resulted in a satisfying addition to the theory of timetabling and
new, important insights to construct better timetables in practice.

The theory of timetabling comprises problems that indeed are less complicated than
the problems in practice, but a theoretical analysis provides a fundamental un-
derstanding of the complexity of timetabling. The most basic timetabling problems
(almost without any special constraints) can be solved easily using elementary graph
theory. However, when other realistic possibilities are added (such as unavailabili-
ties of teachers), the problem becomes strongly NP-hard, meaning that it is unlikely
that the problem can be solved fast in theory. An own contribution to the theory
concerns a variant in which only the number of lectures on a specific time unit needs
to be maximized, which is proved to be strongly NP-hard as well.

The logical result is that the problems in practice also are very hard to construct
due to many various constraints. Such constraints include requirements such as the
prevention of clashing lectures, but also preferences such as the reduction of high
workloads on a day. To construct a timetable that can take any type of constraint
into account, this research paper proposes a new heuristic: the tournament heuristic.
This heuristic consists of three components: an extensive initialization technique,
a local search method and a “survival of the fittest” mechanism. Furthermore,
the heuristic can take the personal timetable of every single student into account,
including priorities of the constraints that need to be fulfilled.

This heuristic has been tested on experimental data that is based on data of
VU University. In fact, the problem instance could even be more difficult than is en-
countered in reality. The results show that the heuristic can find a timetable of very
good quality within only 100 seconds. For example, the number of clashing lectures
for students can reduced with 30% to 70% compared to standard timetabling meth-
ods that are used in practice. Similar numbers are achieved for other performance
measures, such as the prevention of high workloads and idle hours. Depending on
the time and preferences the school or university has to construct a timetable, dif-
ferent techniques need to be applied to find the best timetable. Even though some
parts of the heuristic have been considered before, the combination of existing and
new ideas have led to the satisfying results.

For a detailed explanation of the practical accomplishments, the reader is referred
to Chapter 3 (explanation of the heuristic) and 4 (experimental results). The the-
oretical part, Chapter 2, does not need to be read for a full understanding of the
practical part, since the used theoretical insights are recapitulated when required.

iii

iv

Contents

1 Introduction 1
1.1 Background . 1
1.2 Goals and research questions . 2
1.3 Outline . 3

2 School timetabling in theory 5
2.1 The Class-Teacher problem . 5
2.2 Well-known easy timetabling problems 7

2.2.1 Limited rooms . 7
2.2.2 Daily maximum . 7
2.2.3 Balanced workload . 8

2.3 Well-known hard timetabling problems 9
2.3.1 Lectures involving multiple classes 9
2.3.2 Merging lectures in rooms . 10
2.3.3 Unavailabilities of teachers . 10

2.4 Maximizing lectures on a time unit 11

3 School timetabling in practice 13
3.1 Previous work . 13
3.2 Problem formulation . 14

3.2.1 Definitions . 14
3.2.2 Constraints . 15
3.2.3 The timetabling problem . 16

3.3 The tournament heuristic . 17
3.3.1 Qualification . 17
3.3.2 Recursive local search . 20
3.3.3 Knock-out race . 21

3.4 Practical remarks . 22

4 Experimental results 23
4.1 Experimental data . 23
4.2 Performance . 25

4.2.1 Anytime behavior . 25
4.2.2 Comparison of initialization methods 27
4.2.3 Performance of the tournament heuristic 29

v

5 Conclusions and future work 33
5.1 Conclusions . 33
5.2 Future work . 34

A Strongly NP-hard/complete problems 35

B Complete experimental data 36
B.1 General . 36
B.2 Courses and events . 36
B.3 Student sets . 37
B.4 Teachers . 38
B.5 Rooms . 38

C Extra performance measures of results 39
C.1 Running time of best initialization methods 39
C.2 Dynamic tightness, Fixed . 40

vi

Chapter 1

Introduction

This research paper provides an extensive analysis of the theory and practice behind
school timetabling. Not only the most important findings in the research field are
discussed, but also new own findings regarding the theory of timetabling are pre-
sented. However, the main piece of this report is the presentation of a new heuristic,
that has been tested on realistic experimental data.

The focus will mainly be put on timetabling for secondary schools and univer-
sities, but this does not imply that the discussed techniques are solely applicable to
schools; one could imagine that the same setting holds in, e.g., hospital planning,
where students are replaced by patients and teachers by doctors. In this chapter,
the reader will be introduced to the field of school timetabling by illustrating the
practical relevance of the research today. In Section 1.1, the background of school
timetabling is provided to characterize the context of the problem. The goals and re-
search questions are formulated in Section 1.2 whereupon an outline of this research
paper is given in Section 1.3.

1.1 Background

The construction of school timetabling for secondary schools and universities has
been recognized as a difficult problem for decades. Informally, the problem can be
formulated as finding the best allocation of lectures between teachers and students
over a finite number of time units and rooms, while satisfying a (large) number of
various constraints. These constraints are mostly simple (e.g., a teacher may not
teach on Tuesday), but it is usually hard to satisfy a large combination of multiple
constraints in which many classes and teachers are involved. Even though the prob-
lem can be extremely large and complex, school timetables are nowadays mainly
constructed by hand, simply because the available software is not satisfactory. Both
free and paid timetabling programs have their limitations in terms of computation
time, the lack of functionalities or simply the poor quality of the timetables. In fact,
there currently exists no software which is considered as the “holy grail”, making
further research and development in the field the more interesting.

In practice, the construction of school timetables consists of two distinct phases
[9]. The first step concerns the creating of the curricula of each class including

1

the assignment of resources (such as teachers or equipment) to the courses/classes
and the number and types of lectures per course. The second step deals with the
assignment of these lectures to rooms and times. In this research paper, the focus
will only be put on the second phase and regard the information in the first step as
given. After all, the first step is generally performed by coordinators and/or teachers
of the educational institution.

Furthermore, the constraints can be distinguished in two different types: re-
quirements and preferences. Requirements (or hard constraints) need to be fulfilled
at all costs, because no education can be given otherwise. When a teacher is not
available on a specific day, then his lectures clearly may not be assigned to that
day. Preferences (or soft constraints) need to be fulfilled maximally, as long as the
hard constraints remain unaffected. These preferences only increase the luxury and
satisfaction of the classes and teachers. For example, students dislike waiting for
their lectures, so it is in their interests to minimize the number of “idle hours” be-
tween lectures. In many secondary schools in Europe, the timetable fulfills the hard
constraints, but has a lot of room for improvements regarding the soft constraints.
The problem for universities is so complex that not even all hard constraints can
be satisfied. It is not unusual that students have to choose between two courses
because they have clashing lectures, or that lectures are scheduled in rooms with
not enough space.

As last, it is worth mentioning that school timetabling problems come in sev-
eral variants. The generally accepted classification of the timetabling problem [19]
distinguishes the problem in three main classes:

• School timetabling: the weekly scheduling for all the classes of a school,
avoiding teachers meeting two classes at the same time and vice versa.

• Course timetabling: the weekly scheduling for all lectures of a set of uni-
versity courses, minimizing the overlap of lectures of courses having common
students.

• Examination timetabling: the scheduling for the exams of a set of univer-
sity courses, avoiding overlap of exams of courses having common students,
and spreading the exams for the students as much as possible.

Note that the three classes are not distinct; some timetabling problems can fall in
between two of the classes. Particularly the first classification method is considered
throughout this research paper, but a heuristic will be proposed that is able to take
the characteristics of all three problems into account.

1.2 Goals and research questions

As mentioned in Section 1.1, the realistic assumption is made that the list of events
for which the classes and teachers are already given, such that the problem becomes
the assignment of events to rooms and time slots. Generally, the timetable also has
to be constructed within a specific amount of time (minutes, hours, days or even
weeks), so there is a need for a method which generates a timetable of good quality

2

in proportion to the running time. These aspects provide the basis for the following
main research question that will be investigated in this research paper:

Given a list of events, requirements and preferences for a school timetable, how can
the best timetable be constructed within a reasonable amount of time?

Even though the intuition behind the research question should be clear, it is in-
tentionally formulated such that new subquestions arise. For example, how can
the “best” timetable of all possible timetables be defined? Or even better, when is
one timetable is better than another? A large difficulty to answer this subquestion
is that the quality of a timetable is subjective. It may well be that one student
prefers that two lectures are spread over two days for an optimal focus during the
lectures, while another prefers two lectures on the same day to obtain a free day.
Also, it is not clear yet what all possible (realistic) constraints and preferences are
for the problem, and what in practice is considered as “a reasonable amount of
time”. These subquestions will be considered throughout the research paper before
the main research question is answered.

1.3 Outline

The outline of this research paper is as follows. To obtain a thorough understanding
of the complexity behind the construction of timetables, the problem will initially
be formulated in its simplest form. Subsequently, several variants and extensions of
the basic problem are discussed until the basic problem is extended into a complex,
practical problem. For that reason, this research paper is split up a theoretical and
a practical part.

Chapter 2 is concerned with the theory of timetabling. A survey will be pro-
vided with reference to previous works that have shown under which conditions the
timetabling problem is easy or hard to solve. Furthermore, a new theoretical finding
is included regarding a specific variant of the timetabling problem. For this part,
the reader is required to have a good understanding of combinatorial optimization,
such as (integer) linear programming, graph theory and reducibility among NP-hard
problems. Several combinatorial optimization problems are mentioned and used to
prove NP-hardness of timetabling problems, and even though some of these prob-
lems are explained shortly as part of the proof, a formal definition of these problems
can be found in Appendix A.

The practical aspects of timetabling will be discussed in remainder of the re-
search paper. In Chapter 3, an overview is given containing the best-known ap-
proaches at this moment, but also their strengths and shortcomings are formulated
shortly. The practical part consists of an own contribution of heuristics including
implementation, after which its effectiveness will be demonstrated using realistic ex-
perimental data in Chapter 4. Knowledge on evolutionary algorithms such as local
search is advantageous, but not required. As last, the most important findings are
summarized in Chapter 5 including suggestions for future work.

3

4

Chapter 2

School timetabling in theory

This chapter considers the theory behind school timetabling construction, and starts
with a formulation of the most general case of the timetabling problem in Section 2.1
which serves as a fundamental basis for the remaining sections. Section 2.2 consists
of an overview of proposed optimal algorithms for easy (polynomially solvable) vari-
ants of this general case, whereas Section 2.3 considers previous works that prove
which variants are hard (strongly NP-hard). Finally, Section 2.4 contains an own
contribution to the theory, a proof of strongly NP-hardness of a variant of the
timetabling problem.

2.1 The Class-Teacher problem

The basics of timetabling theory consider decision problems, meaning that only
the question is asked whether a feasible timetable exists (i.e., satisfying the hard
constraints without taking preferences into account). One of the first fundamental
definitions of such a school timetabling problem has been provided in [24] and is
formulated as follows:

Class-Teacher

Given: A set of classes C = {c1, . . . , cm}, a set of teachers T = {t1, . . . , tn}, p
time units and an (m×n) matrix R, where rij is the number of lectures
that have to take place between class ci and teacher tj.

Goal: Determine whether there exists a timetable of at most p time units s.t.
all lessons are assigned while no class or teacher is involved in more than
one lecture per time unit.

Note that only 3 specific constraints are mentioned so far:

1. Every lesson needs to be taught.

2. Every class cannot be involved in more than one lecture per time unit.

3. Every teacher cannot be involved in more than one lecture per time unit.

5

More formally, Class-Teacher can be formulated as an Integer Programming
problem using the following binary variables and constraints:

xijk =

{
1, if class ci and teacher tj meet at time unit k,
0, otherwise.

p∑
k=1

xijk = rij, i = 1, ...,m; j = 1, ..., n, (1)

n∑
j=1

xijk ≤ 1, i = 1, ...,m; k = 1, ..., p, (2)

m∑
i=1

xijk ≤ 1, j = 1, ..., n; k = 1, ..., p, (3)

xijk ∈ {0, 1} i = 1, ...,m; j = 1, ..., n; k = 1, ..., p. (4)

Note that an objective function is redundant, since decision problems are only inter-
ested in finding feasibility and not optimality. It turns out that one can determine
very quickly whether a feasible timetable exists for any instance of Class-Teacher.
To see this, firstly define ∆ as the maximum number of lessons in which any student
or teacher is involved, i.e.:

∆ = max

{
max

i=1,...,m

n∑
j=1

rij, max
j=1,...,n

m∑
i=1

rij

}
.

Recall that Class-Teacher asks the questions whether a feasible timetable exists
using at most p time units.

Theorem 1. There exists a solution for Class-Teacher if and only if ∆ ≤ p.

Proof. The original proof is provided in [24] and is based on a bipartite graph rep-
resentation. Given an instance of Class-Teacher, construct a bipartite graph
G = (C, T,R) where the classes and teachers represent the nodes, and node ci and
tj is connected by rij parallel edges. Using this representation, one can formulate
the problem as an edge coloring problem, which is an assignment of colors to the
edges such that no two adjacent edges have the same color. Every color represents
a different time unit. Furthermore, note that ∆ is equal to the maximum vertex
degree of the bipartite graph. König’s Line Coloring Theorem [14] states that the
required number of colors for a feasible edge coloring in a bipartite graph always
equals its maximum vertex degree, meaning that a feasible timetable exists if and
only if ∆ ≤ p.

To find a feasible timetable, one should iteratively construct matchings that contain
edges incident to all vertices with maximum degree and remove these matched edges
(give these edges color i in iteration i). This leads to a decrease of 1 of the maximum
degree of the graph. Hence, this procedure must terminate in exactly ∆ iterations,
meaning that exactly ∆ colors are required to assign colors to all edges (and thus
solve the timetabling problem).

6

2.2 Well-known easy timetabling problems

In combinatorial optimization, the term “easy” for a problem is used if there exists
an algorithm that can solve a problem fast in theory. More formally, a problem is
easy if any instance of the problem can be solved in polynomial time of the input.
As seen in the previous section, the basic timetabling problem is easy. This section
provides three of the most well-known extensions that are shown to be easy as well.

2.2.1 Limited rooms

In Section 2.1, the assumption was made that it was possible to schedule any number
of lessons at any time unit. This implies an infinite number of available rooms,
which clearly is unrealistic. In fact, the room capacity is the largest bottleneck for
many high schools and universities. Therefore, an extension of Class-Teacher
is considered in which at most ρ identical rooms can be used (with ρ ∈ N) during
every time unit by adding the following constraint:

m∑
i=1

n∑
j=1

xijk ≤ ρ k = 1, ..., p (5)

Fortunately, it is also for this extension possible to determine a priori whether a
feasible timetable exists. To see this, firstly define λ as the total number of lessons
to be taught, i.e.:

λ =
m∑
i=1

n∑
j=1

rij

Lemma 1. There exists a solution for Class-Teacher including the limited rooms
constraint if and only if dλ

p
e ≤ ρ.

The proof is provided in [3], but for an intuition of timetabling complexity, the initial
insight of the proof is given. This insight notes that whenever there are λ lessons
to be given in a p-time unit timetable, that at least dλ

p
e rooms are required in at

least one time unit. One can show that it is always possible to find a timetable in
which λ lessons are scheduled in p time units s.t. at most dλ

p
e rooms are occupied

each time unit, which directly results in Lemma 1 (see reference).

2.2.2 Daily maximum

Class-Teacher considers a timetable of p subsequent time units, while practice
deals with five daily timetables (Monday until Friday). This does not necessarily
have to be a problem, since the chained timetable easily can be split into 5 pieces.
However, it would be ideal for students and teachers if the number of lectures is
limited to a specific maximum for every day, which is the extension to be considered
in this subsection. Redefine xijk as the number of lectures in which class ci and
teacher tj meet at day (instead of time unit) k. Moreover, define ai and bj as the
maximum number of lectures in which respectively class ci and teacher tj may be

7

involved with on any of the p days (instead of time units). Now, this extension can
be formulated as an Integer Programming problem by using constraint (1), (2) and
(3) plus the following constraints:

n∑
j=1

xijk ≤ ai, i = 1, ...,m; k = 1, ..., p, (6)

m∑
i=1

xijk ≤ bj, j = 1, ..., n; k = 1, ..., p, (7)

xijk ∈ N0, i = 1, ...,m; j = 1, ..., n; k = 1, ..., p. (8)

Lemma 2. There exists a solution for Class-Teacher including the daily maxi-
mum constraints if and only if

∑n
j=1 xijk ≤ p·ai for i = 1, ...,m and

∑m
i=1 xijk ≤ p·bj

for j = 1, ..., n.

The proof is provided in [24] and also uses a bipartite graph representation and edge
coloring formulation. In this case, the goal is to assign p colors to every edge such
that no more than ai and bj edges are adjacent to respectively node ci and tj have
the same color. It is not hard to see that the minimum number of required days is
equal to the maximum number of days any teacher or class needs, i.e.:

p = max

{
max

i=1,...,m

⌈ n∑
j=1

rij
ai

⌉
, max
j=1,...,n

⌈ m∑
i=1

rij
bj

⌉}
.

One can show that this minimum always can be achieved which directly leads to
Lemma 2 (see reference).

2.2.3 Balanced workload

A related extension is the balancing of lectures over the days. The reasons for doing
this ought to be clear; the maximum work for students and teachers on a day is then
minimized, leading to a balanced workload. In other words, this extension considers
constraint (1) including:⌊ n∑

j=1

rij
p

⌋
≤

n∑
j=1

xijk ≤
⌈ n∑
j=1

rij
p

⌉
, i = 1, ...,m; k = 1, ..., p, (9)⌊ m∑

i=1

rij
p

⌋
≤

m∑
i=1

xijk ≤
⌈ m∑
i=1

rij
p

⌉
, j = 1, ..., n; k = 1, ..., p, (10)⌊ rij

p

⌋
≤ xijk ≤

⌈ rij
p

⌉
, i = 1, ...,m; j = 1, ..., n; k = 1, ..., p. (11)

Recall that p now represents the number of days instead of the number of time units.

Lemma 3. There exists a solution for Class-Teacher including the balanced
workload for any p.

The proof is also provided in [24] and is an extension of Theorem 1 and Lemma 2.

8

2.3 Well-known hard timetabling problems

The extensions in Section 2.3 are unfortunately three of the few realistic extensions
that are easy. Many of the other realistic extensions are hard, meaning that there
is no known algorithm that can solve all possible instances of the problem fast
(in theory). More formally, a problem is hard (or strongly NP-hard) when there
exists no polynomial time algorithm that can solve the problem, unless P = NP.
In the coming subsections, three of the most well-known hard extensions of Class-
Teacher are discussed. Even though the reader is referred to the original works for
the complete proofs of NP-hardness, an intuitive explanation (or the initial step)
of the proofs will be provided to illustrate the complexity of school timetabling.
Knowledge of reducibility among NP-hard problems is required.

2.3.1 Lectures involving multiple classes

In high schools and universities, students have the freedom to choose a part of
their courses. This means that the scheduler needs to take into account that two
lectures cannot be given at the same time, because there is a group of students that
might want to attend both lectures. The complexity for universities is much higher
as students have a larger freedom concerning the choice of their curriculum, and
especially for this case, extra (hard) constraints need to be fulfilled. The first task
is to seek a time slot such that two classes need to have the same lecture at the
same moment. However, assigning this lecture to a certain time slot might influence
the possibilities for the other lectures that need to be scheduled for the concerning
classes. In other words, there are strong (direct, but also indirect) dependencies
between classes that make the timetabling problem not trivial to solve.

Lemma 4. Class-Teacher including the possibility that lectures involve multiple
classes is strongly NP-complete.

The proof is provided in [8] and is based on a reduction from the decision variant
of the strongly NP-hard problem Graph K-Colorability. In this problem, a
graph G = (V,E) and an integer K are given. The goal is to determine whether
there exists a coloring of at most K colors s.t. all vertices are assigned a color and
Color(u) 6= Color(v) for every {u, v} ∈ E. In other words, for every edge, the color
of the two belonging nodes must be different.

Given an instance of Graph K-Colorability, one can construct an instance
for the timetabling problem s.t. every vertex v ∈ V represents one course with only
one lecture, and the edges {u, v} ∈ E represent classes attending course u and v.
Clearly, if the two vertex colors of every edge (i.e., the time units of the lectures of
the class) are different, then the timetable is feasible. Showing that the finding of a
K-coloring in Graph-K-Colorability is equivalent to finding a timetable of K
time units is then straightforward.

9

2.3.2 Merging lectures in rooms

Merging different lectures in the same room is normally not an option. However,
there may be cases in which merging classes in one room is acceptable, efficient
and thus desirable. For example, it is usual in examination timetabling that two
different courses have their exam in the same room. This saves staffing costs (the
number of required supervisors could be halved) and is efficient in terms of space.
The largest bottleneck is to group the exams, such that the sum of the sizes of
the classes does not exceed the room capacity. Note that the problem itself is not
exactly a timetabling problem, but is part of the timetabling process.

Lemma 5. Class-Teacher including the option to merge classes in one room is
strongly NP-complete.

The proof is based on a very simple reduction from the decision variant of the
strongly NP-hard Bin Packing problem. In this problem, a bin capacity V , an
integer B and a list of values A = {a1, . . . , an} are given, where ai ∈ [0, V]. The
goal is to determine whether there exists a partition of A into at most B sublists
such that each sublist sums to at most V .

Given an instance of Bin Packing, one can construct an instance for the
timetabling problem s.t. the sizes of the classes are represented by the list of values in
A and there are B identical rooms available of capacity V . Showing that the finding
of a valid partition of at most B sublists in Bin Packing is equivalent to finding a
valid assignment for the classes to B identical rooms is then straightforward.

2.3.3 Unavailabilities of teachers

In practice, many teachers are not available at all time units when lectures can be
given; both high schools and universities employ part-time teachers, who are only
available on specific days. Hence, this extension of Class-Teacher considers the
possibility that teachers are some time units are unavailable for teaching (these
time units are given). Note that this problem is slightly different than the daily
maximum constraints, as that extension considered a fixed maximum for all days,
whereas unavailabilities may differ per day.

Lemma 6. Class-Teacher including unavailabilities of teachers is strongly NP-
complete.

The proof is provided in [11] and is based on a reduction from the strongly NP-
complete problem 3-Satisfiability, but is due to its length omitted. In this
problem, a set of Boolean variables X = {x1, x2, ..., xn} and a set of clauses C =
{c1, c2, ..., cm} is given, where each clause is a disjunction1 of exactly 3 variables ∈ X
and a Boolean formula F = c1 ∧ c2 ∧ · · · ∧ cm. The goal is to determine whether
there exists a truth (True or False) assignment to x1, ..., xn s.t. F = True. One
can show that the timetabling problem is strongly NP-complete already when there
are only 3 time units. The problem becomes easy when classes are always available
and every teacher is available for exactly two time units (see reference).

1A disjunction is a Boolean formula containing only “or”-operators, e.g., ci = (x3 ∨¬x5 ∨¬x6).

10

2.4 Maximizing lectures on a time unit

In this section, a new timetabling variant is discussed. The problem is motivated
by the fact that timetabling problems are extremely difficult, and clever solution
methods are required. The subproblem of the timetabling problem that is considered
only wants to maximize the number of lectures on a specific time unit. Even though
the lectures that need to be scheduled on multiple days are given, it is a natural
approach to maximize each time unit individually. This could provide the basis of a
heuristic that firstly maximizes the number of lectures at time unit 1, subsequently
at time unit 2, and so on.

Theorem 2. Maximizing the number of lectures at a time unit in Class-Teacher
including the possibility that lectures involve multiple classes is strongly NP-hard.

Proof. The proof is based on a reduction from the decision variant of the strongly
NP-hard problem Maximum independent set. In this problem, a graph G =
(V,E) and an integer K is given, and the goal is to determine whether there exists
an independent set I of size at least K. An independent set I is a subset of the
vertices such that there is no edge between any two of the vertices in I, i.e., I ⊆ V
s.t. {u, v} /∈ E for every {u, v} ∈ I.

Given an instance of Maximum independent set, construct the following
instance for the timetabling problem:

• Every vertex v ∈ V represents one course with exactly one lecture.

• Every edge {u, v} ∈ E represents a class attending course u and v.

• The objective for the timetabling problem is to determine whether it is possible
to schedule at least K lectures on one specific time unit.

If the instance for Maximum independent set is a Yes-instance, then sched-
ule every lecture represented by a vertex (in I). Because I is an independent set,
there is no edge (class) between the vertices (lectures) in I, meaning that there is
no class that has to attend both lectures. Therefore, the schedule is feasible for all
classes and the number of lectures scheduled is equal to at least K.

If the instance for the timetabling problem is Yes-instance, then there are at
least K lectures scheduled at the specific time unit. Now pick the corresponding
vertices (lectures) in I for the Maximum independent set instance. By defini-
tion, |I| ≥ K and there is no edge between any pair of vertices in I. Otherwise,
there would have been a class (edge) following both lectures (i.e., connected to both
vertices), which would contradict to the assumption that the timetabling problem
had a Yes-instance. Hence, I is an independent set of size at least K.

In other words, simply maximizing the number of lectures on one specific time unit
is already strongly NP-hard, meaning that even intuitive approaches to acquire
suboptimal timetables are not possible. Knowing the complexity of the problem,
timetabling solvers are forced to consider heuristics that cannot provide any per-
formance guarantee with respect to the quality of the solution, but still can be
extremely powerful. Such heuristics will be considered in the next chapters.

11

12

Chapter 3

School timetabling in practice

In this chapter, the complete, practical setting of the timetabling will be researched,
by firstly providing a short overview of known approaches in Section 3.1. After
that, Section 3.2 formalizes the required definitions, assumptions and constraints,
after which the problem can be defined formally. This provides the basis for the
main result of this research paper to solve the timetabling problem, the tournament
heuristic. This heuristic consists of three components, described in Section 3.3,
whereupon two practical remarks are made in Section 3.4.

3.1 Previous work

School timetabling is due to its practical relevance and complexity a research topic
of relatively large interest, and has therefore been investigated by many researchers.
The two most well-known surveys can be found in [15] and [19], that also discuss the
open research questions. The direction of this research paper is mentioned in [19],
being the direction of standardization. Every educational institution has its own
rules and constraints, making it more difficult to create a program that is applicable
for any type of school and university.

Many researchers have proposed algorithms after reducing the timetabling prob-
lem to a graph coloring problem (such as in [2, 16, 22, 23, 24]), but only consider
relatively simple constraints. For example, it is very difficult to take the minimiza-
tion of idle time units into account. Fortunately, there exist approaches that can
take almost any type of constraint into account such as evolutionary algorithms,
simulated annealing and tabu search, of which a comparison is made in [7]. A large
part of such approaches use a weighted penalty function that define the quality of a
timetable as the weighted sum of violated constraints; this is also explained in the
next sections, as this is similar to the approach in this research paper.

Finally, it is worth mentioning that the survey in [15] notes that a distinction
can be made in so-called one-stage and two-stage algorithms. One-stage algorithms
optimize both hard and soft constraints at the same time (see, e.g., [1, 5, 7, 18,
20]). On the other hand, two-stage algorithms firstly optimize hard constraints, and
optimize soft constraints when a feasible timetable is found (see [4, 6, 13, 23, 25] for
different variants of such two-stage algorithms).

13

3.2 Problem formulation

3.2.1 Definitions

Before formulating the Timetabling problem, define the following:

Definition 1. A student set is a set of students that have the identical set of
lectures (curriculum) that it wants to attend.

This term will replace the earlier used term “class” because of the following reason.
It could be that a specific class contains multiple specializations; for example, the
class “Economics” has multiple specializations (such as “Finance”, “Accountancy”,
etc.). These specializations are in the same class and both share some courses, but
also have a lot of courses not in common. The use of the concept of student sets
makes the model more accurate, since it is now known more precisely when a specific
set of students is available or not (because the set has the identical curriculum).

With this small definition, it is possible to define the input of the problem
formally. Even though this notation is not used extensively in the remainder of this
research paper, the following list provides an overview of all ingredients that are
required for a timetabling problem:

• S = {S1, ..., Sx} is the set of student sets (with different student set sizes).

• T = {T1, ..., Ty} is the set of teachers.

• R = {R1, ..., Rz} is the set of rooms (with different room capacities).

• E = {E1, ..., En} is the set of events to schedule. Each event Ei consists of:

– A set wEi
⊆ {1, ..., w}, the weeks in which the event has to be scheduled.

– A set SEi
⊆ S, the set of student sets that are involved with the event.

– A set TEi
⊆ T , the set of teachers that are involved with the event1.

• C = {C1, ..., Cm} is the set of constraints. Each constraint Cj consists of:

– A resource ρCj
∈ (S∪T ∪R), being the student set, teacher or room that

is involved with the constraint.

– A type τCj
, the type of constraint (clarified in the next subsection).

– A penalty πCj
∈ R+, indicating the degree of satisfaction per violation of

the constraint.

• w is the number of weeks of the timetabling instance.

• d is the number of days of the timetabling instance.

• u is the number of time units per day of the timetabling instance.

The reason why the term “time unit” is chosen instead of hour, is due to the ap-
plicability of the model. Some schools teach in blocks of 45 minutes, while others
teach in blocks of 60.

1Usually, |TEi
| = 1 (i.e., the number of teachers that are involved in an event equals one).

14

3.2.2 Constraints

As mentioned in Section 1.1, requirements (or hard constraints) are constraints that
need to be fulfilled at all costs, while preferences (or soft constraints) need to be
fulfilled if possible. In the next paragraph, an overview is given of the six important
types that the constraint set C could contain.

1. Avoid unavailabilities (requirement) Clearly, the largest priority for the
school or university is that every event takes place, which clearly cannot happen
without teacher. Hence, the events need to be scheduled such that every student
set and teacher is available, including an appropriate room. Note that also student
sets could be unavailable, e.g., due to excursions, or weekly obligations at other
educational institutes.

2. Avoid clashes (requirement/preference) A constraint which is almost as
important as the previous, is the constraint to avoid clashes of compulsory courses
for all student sets (requirement). For optional courses, it is no disaster to have
clashes; the student set could pick one of them, but not both (preference). Therefore,
optional courses should have a lower penalty compared to compulsory courses. In
other words, this constraint also guards the degree of choice that student sets have
concerning optional courses.

3. Distribute events of course (preference) This constraint is close to being
a requirement, but is sometimes accepted. Most courses contain more than one
lecture per week, and it is preferred that these are spread over the week rather than
having both lectures on the same day.

4. Avoid high day load (preference) Lectures require a lot of concentration
from the students, and this concentration decreases over the day. Ideally, the number
of lectures on a specific day does not exceed a specific number. When exams would
be considered instead of lectures (examination timetabling), this constraint would
be even more desirable (and therefore have a higher penalty).

5. Avoid idle time (preference) Many students experience idle time (the time
between their lectures) as a waste of time and loss of concentration for the last
lecture. A perfect timetable for the students would contain no idle time, such that
the days are as short as possible.

6. Avoid working day (preference) This constraint only applies for students.
It could for example be that students have two different lectures on two different
days, meaning that they also have to travel two different days for just one lecture.
In this case, most (but not all) students prefer to have these two lectures on the
same day, such that they have a day off. For teachers, this constraint is less relevant,
since they usually are present at the education instance every day anyway.

15

Recall that a constraint Cj consists of a resource ρCj
(a specific room, student set or

teacher), a type τCj
and a penalty πCj

. It is important to note the reason for making
a distinction between different resource types; after all, idle time units for student
sets could be less desirable for teachers. But also the weight for two specific, different
student sets could differ. One could argue that different weights for different student
sets need to be used for the same constraint, e.g., by taking the number of students
in the set into account. For example, an idle hour for a student set containing 100
students is less satisfactory than an idle hour for a single student.

Note that only six constraints are mentioned, but that much more constraint
exist. For instance, many university have room types (e.g., computer rooms), which
add a new dimensions to the problem. Even though the heuristic proposed in the
next section can handle any type of constraint, they are not included in the re-
mainder of this research paper. Otherwise, the results would depend on too many
parameters and constraints, making it harder to understand the value of the results.

As last, the penalties per constraint also have an interpretation. For a specific
student set Si, the constraint “avoid idle time” could have a penalty of 2, and the
constraint “avoid working day” a penalty of 5, which implies the following. Students
are in this case willing to have one or two idle hours, if it provides them a free day.
However, the students are willing to sacrifice a free day (total penalty 5) if it prevents
three idle time units (total penalty 6).

3.2.3 The timetabling problem

Basically, the goal of the timetabling problem is to find a solution σ that simply
assigns every event ei ∈ E to a specific collection of |wEi

| time units and rooms,
where |wEi

| is the number of weeks in which event ei needs to be scheduled.
Denote f(Cj, σ) as the number of violations that solution σ causes for constraint

Cj. For example, if Cj is a “avoid idle time”-constraint for a specific student set,
and solution σ causes five idle time units for that student set, then f(Cj, σ) = 5.
Clearly, if f(Cj, σ) = 0, then the constraint is satisfied, but f(Cj, σ) can never be
smaller than 0. Knowing this, the complete timetabling problem can be defined as
follows:

Timetabling problem

Given: A set of student sets S, teachers T , rooms R, events E, constraints C
and three integers w, d, u, respectively the number of weeks, days and
time units per day.

Goal: Find an solution σ that minimizes the total penalty function Π(σ,C) =∑
Cj∈C πCj

· f(Cj, σ).

Clearly, this combinatorial optimization problem is strongly NP-hard, since the
timetabling problem with only unavailabilities of teachers is proven to be strongly
NP-hard (see Section 2.3.3). This problem contains unavailabilities and many other
hard and soft constraints, and the goal is to find optimality instead of feasibility (in
contrast to most theoretical timetabling problems).

16

3.3 The tournament heuristic

The proposed heuristic consists of three components: an initialization, local search
and a survival of the fittest mechanism. Even though parts of the heuristic are
intuitive, the combination has not been suggested before. Especially many of the
initialization methods have not been discussed before extensively, while their in-
fluence will prove to be striking. The three components of the heuristic are listed
below.

3.3.1 Qualification

The first step of the heuristic basically considers several types of initialization meth-
ods. An initialization is simply a first attempt to assign every event to a specific
time slot and room as good as possible. Before listing several smart ways in finding
an initial solution, it is required to introduce the following:

Definition 2. The tightness of an event Ei, tight(Ei), is the number of time units
at which there is an involved student set or teacher that is not available or no room
exists with enough capacity for the student sets.

Definition 3. The flexibility of an event Ei, flex(Ei), is the number of time units
at which every involved student set and teacher is available and a room exists with
enough capacity for the student sets.

In other words, the tightness is the number of time units at which the event cannot
be scheduled without large problems (unavailabilities or clashes), while the flexibility
is the reversed. Recall that d and u are respectively the number of days and time
units per day, meaning that d · u is the number of time slots at which an event can
be scheduled.

Corollary 1. d · u = tight(Ei) + flex(Ei) for all Ei ∈ E.

Initialization involves two different components: the order at which the events will
be scheduled (ordering method) and the way these events are assigned to time slots
(assignment method). For example, it is possible to order the events on tightness
and to assign these events on this order to a random time slot. The investigated
four ordering and four assignment methods are discussed below.

Random (ordering method) The first ordering method is self-explanatory; the
order in which the events will be scheduled is random.

Simple tightness-based (ordering method) The simple tightness-based order-
ing is perhaps the most intuitive. Note that the tightness of an event is a measure of
how hard it is to schedule. Since the events with the highest tightness are the most
difficult to schedule, it is more intelligent to (try to) schedule these first. After all,
if these would be scheduled last, then there would be even less possibilities for this
tight event, which could result in clashes that could have been prevented. There-
fore, this method orders the events on descending order of tightness beforehand, and
schedules the tightest first.

17

Dynamic tightness-based (ordering method) When more events are assigned
to time slots, the tightness of events could increase. Consider a student set Si which
is involved with two different events E1 and E2. If the first event is scheduled on a
specific time slot, then it could be that the tight(E2) increases by one, because the
student set is not available anymore on that specific time slot. Note that tight(E2)
does not necessarily have to increase, if there was another student set or teacher
involved with E2 not available anyway on that specific time slot. For this reason,
the dynamic tightness-based ordering method dynamically updates the tightness of
each event, and schedules the one with the highest tightness.

Size-based (ordering method) This method orders the events on number of
involved student sets. If there are more student sets involved, then there are more
timetables to take into account, which is easier to handle at the start of creating an
initial solution. When there are multiple events with the same number of involved
student sets, the tightest is chosen (dynamically).

Random (assignment method) For this first assignment method, a remark
has to be made because it is not entirely random. Clearly, the idea is to assign
the event to a random time slot. However, the current implementation also takes
two constraints into account, being the “avoid unavailabilities” and “avoid clashes”
constraint.

This assignment method firstly checks at which time slots the event can be
scheduled without clash and unavailability of anyone and chooses a random time
slot of this set of time slots. However, if the set is empty, then a new attempt is
done in which clashes are allowed (but no unavailabilities), and randomly assigns
to a time slot which causes the least number of clashes. In case such a time slot
also does not exist (i.e., there exists no time unit at which the student sets and
teachers are available or there exists no room with enough capacity), the event is
not scheduled. In practice, the event should then be scheduled outside the normal
time units (e.g., in the evening), which regularly occurs in universities due to the
lack of room capacity.

Fixed (assignment method) The previously mentioned remark also holds for
this method. But rather than assigning the event to a random time slot, it chooses a
fixed ordering. Thus, if the event can be scheduled on the first time unit on Monday,
then the method does so. Otherwise, it checks the second time unit on Monday,
third time unit, and so on.

The first time slots on the first days does not necessarily have to be the fixed
order. One can argue to schedule in the middle of the day first (instead of the start
of the day), to reduce the probability of creating many idle time units further on,
and this is also the order that has been implemented. For instance, if there are
three time units per day, the method firstly tries to assign to the second time unit
on Monday (if not possible, second time unit of Tuesday and so on). If the “middle”
of the schedule is not possible, then the first or third time units of the days are tried.

18

Lowest tightness increase (assignment method) The motivation for this as-
signment method is the question whether there is a time slot which could cause the
least problems (potential clashes) further in the initialization. The only reason why
clashes occur, is when the tightness of a specific event is too high. For that reason,
this method assigns the event to the specific time slot that increases the tightness
of all other events the least.

Lowest penalty (assignment method) The final but perhaps also most logical
method assigns the event to the time slot with the lowest penalty. This assignment
method is arguably also the one that (unconsciously) is used in practice, when
employees need to make a timetable manually. The scheduler needs to assign a
specific event and can choose several time slots, but needs to take multiple factors
into account (clashes, idle time units, etc.). These factors have different priorities
and clearly, the scheduler wants to choose the time slot causing the least trouble.

It is important to note that the ordering method and assignment method are truly
separate. One could select the event with the highest tightness (dynamic tightness-
based ordering method) and assign this event to a random time slot. The same
argument holds for all other combinations, thus there are 16 different initialization
methods in total, which are potential “participants” for the tournament heuristic.
Every initialization method is further referred to as (Ordering method, Assignment
method), e.g., (Random, Lowest penalty) or (Dynamic tightness, Fixed).

To fully explain the qualification mechanism, it is necessary to know that the
tournament heuristic in further phases include techniques that:

• improve an initial solution including some randomization (such that different
local optima can be found).

• quickly finds the best solution of a collection of k initial solutions, σ1, . . . σk,
the “participants” of the tournament.

These two methods are discussed in more detail in the following two subsections.
With this information, the qualification of the tournament heuristic is also concerned
with the choice of the most-promising participants, which can be created using any
of the above mentioned ordering and assignment methods. However, if it turns
out that one of the initialization methods is superior, then all “participants” in the
tournament heuristic could be created using that specific initialization method.

Determining the best initialization methods can simply be done as follows. For
each of the 16 methods, generate n initial solutions, and improve these until a local
optimum is found (using the technique which will be discussed shortly). The ini-
tialization method(s) that produced the solution(s) with the lowest penalty, is/are
the best initialization method(s). As a remark, it is recommended to choose for
each initialization method the solution with the best penalty rather than the aver-
age penalty. For example, the (Random, Random) method could perform poor on
average, but also could produce extremely good outliers. In that case, the (Random,
Random) method is the most interesting to investigate, because it potentially yields
the best solution (given a large amount of time).

19

3.3.2 Recursive local search

Given an initial solution σ, there usually is still a lot of room for improvement.
Improvement techniques are also considered in other works (e.g., in [20]), and such
techniques are similar to the approach considered for the tournament heuristic. To
find improvements, the heuristic basically moves a specific event from one time slot
to another, to obtain a slightly adapted solution σ′. If the new penalty is smaller
than the old penalty, i.e., if Π(σ′, C) ≤ Π(σ,C), then keep σ′. Otherwise, continue
with the old solution σ and reject the move. Note that σ′ is also accepted when
the penalty is the same, since this could help escaping from local optima. This
procedure is repeated until either a specific time limit is reached or no improvement
is made after a specific amount of time.

So far, the heuristic only considers one move at the time. Recursive local
search implies to do multiple steps at once (to escape from local optima). It could
be beneficial to move a specific event only if another event is also moved. The
current implementation considers a maximum of thinking one step ahead, meaning
that two moves are attempted at the same time (in [20] defined as a “double move”).
Clearly, triple moves and further also can be considered, but this could increase the
computation time significantly. The most important reason to disregard this, is
because double moves already do not show a significant improvement compared to
single moves.

One could think of a smart selection of events to move, and a smart search of
the time slots to which these events should be moved to. However, there are good
arguments to do this randomly. This means that the local search takes a random
event, and try to move this event to a random possible time slot, and see whether
improvements are made. This allows for a larger diversification in the participating
solutions, which is important for a further phase of the tournament heuristic. Also,
it saves computation time; after all, when a search has to be done to find the
best time slot, the search runs in O(d · u) instead of O(1). But for the sake of
completeness, both search methods have been investigated, but the random search
proves to be more effective because a greedy approach results usually in a bad local
optimum. Both are hill climbing techniques (solutions with a higher penalty are
never accepted), but the last-mentioned method searches explicitly for the largest
improvement.

Tabu list A small but worthwhile addition to the heuristic concerns a tabu list of
events. After all, the heuristic randomly takes an event and searches improvements.
Whether this improvement was successful or not, it is potentially more rewarding to
try a different event to move, rather than the same one. Hence, the tabu list (with
fixed capacity) of events contains the events which may not be moved in the next
move, e.g., 50% of the number of events. In other words, if the number of events
n = 1000, and a specific event Ei has just been considered to move, then it will not
be considered again in the next 500 moves (this event is then declared taboo).

20

3.3.3 Knock-out race

In this phase, the heuristic will improve and evaluate the potential quality of the
initial solutions against each other in a very fast way, and requires k initial solutions.
These k solutions can be made using a combination of the techniques mentioned in
the previous section. For instance, a participating solution could be one where
the events were ordered and assigned randomly, the (Random, Random) method.
Any of the other 16 combinations can be used for the initialization of participating
solutions, and also specific initializations may be considered multiple times. After
all, local search does not converge constantly to the same local optimum, since
randomization is invoked in the search.

The heuristic starts with a set of initial solutions Ω = {σ1, σ2, ..., σk} (or set of
participants) and optimizes all solutions to find its local optimum using the recursive
local search method, as discussed in the previous subsection. However, for some of
these solutions, the heuristic will discover that its quality is poor and is doomed to
fail (i.e., improvements would still result in a bad local optimum). Therefore, the
heuristic will stop improving these solutions (these solutions are removed from the
race), such that it can dedicate its valuable time to improve the more promising
solutions.

Initially, the heuristic spends a specific amount time t1 (say, in seconds) in which
all k solutions are improved using the recursive local search method in parallel. In
other words, all solutions are changes with the use of randomization (in the local
search) to converge to a local optimum. Subsequently, the heuristic removes a
specific number of solutions r1 < k from Ω, being the r1 solutions with the highest
penalty. These solutions are the least promising solutions after t1 seconds and are
therefore not interesting enough to investigate further. After that, the heuristic
optimizes the remaining k − r1 solutions in Ω in parallel for t2 seconds, after which
the worst r2 < k − r1 are removed. This procedure is done p times (the number of
phases), meaning that the user of the heuristic needs to determine three parameters:

• The set of initial solutions Ω = {σ1, σ2, ..., σk}.

• The computational time vector t = (t1, . . . , tp). Note that
∑p

i=1 ti is the total
amount of time the knock-out race runs.

• The removing quantity per phase vector r = (r1, . . . , rp−1, 0). Note that∑p−1
i=1 ri = k − 1 is required to let the heuristic terminate with one assign-

ment (the assignment with the lowest penalty).

Note that the p time periods need to be provided, but p − 1 removing quantities.
Clearly, the choice of the above parameters determine the quality of the final solu-
tion. For example, if t1 is too small and r1 is high, then it could be some solutions
are deleted from the race too quickly. Or to call them informally, solutions with
a “slow start” but with good potential, will never reach their potential. For that
reason, it is recommended to choose t1 the largest, such that each solution can get
close enough to a local optimum. The choice of r1 is to the user of the heuristic,
but r1 ≥ 1

2
k is recommended since the knock-out race does not save a lot of time

otherwise. See the next page for the pseudo-code for the knock-out race.

21

Heuristic 1: Knock-out race of the tournament heuristic

Input: S, T,R,E,C,w, d, u,Ω = {σ1, σ2, ..., σk}, t = (t1, . . . , tp), r = (r1, . . . , rp)
set startingTime ← currentTime

for i = 1 to p
while currentTime < startingTime +

∑i
j=1 tj

for every solution σi in Ω
try to improve σi

end for
end while

remove the min{ri, |Ω| − 1} solutions with highest penalty from Ω
end for

set σ∗ ← arg minσi∈Ω Π(σi, C)
return σ∗

The step “try to improve σi” is simply one step in the recursive local search, i.e.,
moving a random event in σi to a random possible time slot. If the new penalty is
not higher, then keep the adjustment (otherwise, move the event back to its original
time slot).

3.4 Practical remarks

Efficiency It is very important to mention that all the mentioned constraints and
heuristic can be implemented in various ways. Clearly, some implementations are
computationally faster than others and the efficiency of the implementation can have
crucial effects on the performance. Most of the work in creating this research paper
has been dedicated to a good implementation method, such that the tournament
heuristic (particularly, the recursive local search) can be executed as fast as possible.

Practical implementation tricks The current implementation also includes fea-
tures that assign events to rooms and time slots intelligently. For example, if a room
has to be found for an event, it tries to find the smallest possible room. After all,
it would be inefficient to place a class of 30 students in a room with a capacity for
200. Otherwise, a problem could arise further in the assignment, when a class of
150 students needs to be scheduled, while only a room with a capacity for 40 is
available. Also, the assignment methods firstly check whether there is a possible
time slot without clashes. If this does not exist, it tries the find the time slot which
creates the minimum number of clashes for the involved student sets.

22

Chapter 4

Experimental results

This research paper focuses on data which is based on realistic statistics, and consid-
ers an instance that could even be more difficult to solve than in practice. Section 4.1
lists the chosen input (general information, events, student sets, teachers, rooms),
after which the performance of the tournament heuristic is visualized in Section 4.2.

4.1 Experimental data

To test the effectiveness and practical applicability of the proposed heuristic, it
is of vital importance that the datasets (instances) are realistic and must contain
every type of problem that is faced in practice. For example, there may not be too
many rooms since no overload in rooms would occur otherwise. After all, the room
capacity is very often a bottleneck in practice (especially during the “middle” of the
day). There is unfortunately no large, complete, directly usable dataset (e.g., from
a university) provided for this problem online. This is understandable, since this
would require a university to note the preferences and constraints of every room,
student set and teacher, which would become an administrative chaos.

Nevertheless, to replicate a realistic problem as good as possible, this research
paper bases its experimental data on statistics from VU University. Some impor-
tant information (such as the total number of courses) can be found online, and
these number provide a basis for this experimental data. There are, however, sev-
eral matters that are not known; for example, the number of students per course,
or unavailabilities of teachers. For this reason, several assumptions will be made
regarding the courses (events), rooms, student sets, teachers and constraints, to be
explained below.

Moreover, the timetabling instance will be made slightly harder than the statis-
tics from VU mention, to compensate for constraints that are unknown. In practice,
there could be preferences of teachers for specific time slots, and such constraints
need to be compensated to have (approximately) the same complexity of the real
problem. For example, VU University contains approximately 24403 students, but
this experimental data will consider as if there are 30000 students to make the prob-
lem harder. It could even be that the used data is more difficult, but this will
probably not be of large influence.

23

A summary of the used data is shown below, based on the statistics that can be
found on the VU-website1 and others.

Input variable Value
weeks w 2
days d 5

time units per day u 4
lectures 4500

student sets 1200
teachers 1500
rooms 195

Table 4.1: Used data

The actual dataset includes also extra constraints, such as unavailabilities of teach-
ers, room capacities and sizes of student sets. These characteristics are based on
realistic assumptions and samples from VU University. The complete information
regarding the experimental data including the arguments why these are chosen, can
be found in Appendix B.

The used constraints and their penalties are necessary for a good understanding
of the results, and are therefore shown below. These six types of constraints are
explained in Section 3.2.2 and the penalties are chosen based on personal preference.
A small distinction is made regarding the day load; for students, a day load of 3
time units (5 hours and 15 minutes) is undesirable, but a day load of 4 time units (7
hours) is even more unsatisfactory. Hence, different penalties for different day loads
are invoked, and also a distinction between teachers and student sets is made.

Constraint type Resource Penalty per violation
Avoid unavailability Every student set and teacher 10000

Avoid clashes Every student set and teacher 10000
Spread events of course Every student set 100

Avoid day load ≥ 2 Every teacher 20
Avoid day load ≥ 3 Every student set 10
Avoid day load ≥ 3 Every teacher 50
Avoid day load ≥ 4 Every student set 25
Avoid idle time unit Every student set 2

Avoid working day Every student set 3

Table 4.2: Constraint penalties

In other words, the priority of this experimental data lies in the assigning of lectures
(events) such that no unavailabilities or clashes occur. Spreading the events of a
course (i.e., not having two lectures of a course on the same day) has the second-
highest priority and the remainder should be self-explanatory.

1Annual report: http://www.vu.nl/en/Images/Student-ombudsman-annual-report-2011_

tcm12-313060.pdf

24

4.2 Performance

Before presenting the quality of the best timetables, it is crucial to observe how
fast an initial timetable improves using the recursive local search (without the tour-
nament heuristic), and which initialization methods are better than others. The
results of such experiments are shown in the first part of these results, after which
that information will be used for further application of the tournament heuristic. All
experiments were performed on a personal computer with a 2.67 Core-i5 processor
and 4.00 GB of main memory.

4.2.1 Anytime behavior

The anytime behavior illustrates the best objective value (total penalty) over time
for a specific evolutionary algorithm, which in this case concerns the recursive local
search. For example, if an initial solution was created using the (Random, Ran-
dom) method, then the local search should be able to reduce the number of clashes
and undistributed events significantly. The speed at which these two performance
measures are reduced, is visualized below (averaged over 10 runs).

0 10 20 30

100

200

300

Seconds

#
cl

as
h
es

0 10 20 30
0

100

200

300

400

Seconds

#
u
n
d
is

tr
ib

u
te

d
ev

en
ts

Figure 4.1: Average reduction of the number of clashes and undistributed events
using recursive local search

The most interesting result is that more than 90% of the total reduction is already
achieved in the first 10 seconds, while the remaining 10% of the improvement is
obtained until a local optimum is found (only the first 30 seconds are shown above).
Such curves, also known as the anytime behavior, are typical for evolutionary algo-
rithms [10]: an enormous improvement is shown in the beginning, while flattening
out later on. The reason for this phenomenon is that improvements are harder to
find, when the assignment is already close to its local optimum. For every of the 16
initialization methods, it took at most 120 seconds to reach its local optimum (see
Appendix C.1), showing the same anytime behavior as above.

Also, it is worth mentioning that clashes are more difficult to avoid. The (Ran-
dom, Random) method converges (on average) to 60 clashes and 14 undistributed
events. Clashes are harder to minimize since some student sets have too many
lectures, but some lectures can be swapped to avoid undistributed lectures.

25

See below for two different performance measures: the number of days with a load
larger than 3 or 4 for only student sets.

0 10 20 30

1,000

1,200

1,400

Seconds

#
d
ay

s
w

it
h

lo
ad
≥

3

0 10 20 30
100

200

300

400

Seconds

#
d
ay

s
w

it
h

lo
ad
≥

4
Figure 4.2: Average reduction of high day loads using recursive local search

These performance measures show the same anytime behavior and should be self-
explanatory. One point of interest is that the curve is slightly less sharp (decreases
slower) than the curve of the first two hard constraints. This is due to the fact that
the first two constraints have a higher penalty per violation. In other words, if a
clash can be prevented by increasing the day load for student sets, then the local
search does so. This insight is more recognizable for the number of working days.

0 10 20 30

1,000

1,500

2,000

Seconds

#
id

le
ti

m
e

u
n
it

s

0 10 20 30

7,300

7,400

7,500

Seconds

#
w

or
k
in

g
d
ay

s

Figure 4.3: Average reduction of idle time units and working days using recursive
local search

Recall that the reduction of the number of working days for student had a very low
penalty. If it is possible to prevent a day load of 3 or 4 by adding an extra working
day, then the local search does so. This is exactly what can be observed well in
the plot of the number of working days. Since the prevention of high day loads
has higher priority, this is optimized at the expense of the number of working days.
After the most important performance measures reach its local optimum, then some
moves can be done to improve also on the minor objective functions, which explains
the anytime behavior of the number of working days. The number of idle time units
is less affected, since it depends on fewer other constraint types.

26

4.2.2 Comparison of initialization methods

To apply the tournament heuristic, it is essential to know how the participants should
be selected, i.e., which method(s) should be chosen to create initial solutions. For
this reason, 10 runs for each of the 16 initialization methods (total 160 runs) are
performed to see which methods prove to be worth investigating or are doomed to
fail. Below is an overview of the best and average total penalty Π(σ,C) for each
method (in thousands and rounded, for readability). Also the standard deviation
are shown, for which the reason is clarified below.

Random Fixed Lowest penalty Lowest tight.
Best: 522 Best: 421 Best: 450 Best: 361

Random Mean: 653 Mean: 531 Mean: 574 Mean: 438
St.dev.: 90 St.dev.: 62 St.dev.: 81 St.dev.: 21
Best: 462 Best: 419 Best: 419 Best: 361

Simple tight. Mean: 534 Mean: 387 Mean: 426 Mean: 399
St.dev.: 60 St.dev.: 38 St.dev.: 8 St.dev.: 21
Best: 271 Best: 241 Best: 277 Best: 251

Dynamic tight. Mean: 298 Mean: 246 Mean: 278 Mean: 269
St.dev.: 25 St.dev.: 5 St.dev.: 0 St.dev.: 9

Best: 491 Best: 481 Best: 601 Best: 343
Size-based Mean: 573 Mean: 539 Mean: 625 Mean: 363

St.dev.: 53 St.dev.: 38 St.dev.: 16 St.dev.: 13

Table 4.3: Local optima (penalties) per initialization method in thousands

From this table, it can be very well argued that the two bold-printed initialization
methods are the better than the others. The (DT, Fixed)2 method has the lowest
mean thus performs best on average, which is a clear reason to declare this as a
good initialization method. The most likely reason for this good performance is the
fact that this method creates a good buffer on specific time slots. If the assignment
method always places events on a fixed order (firstly time unit 1, then time unit 2,
etc.), then the last time unit (say, time unit d ·u) is as empty as possible. Therefore,
clashing events can be moved to these time slots during local search, to avoid clashes
(recall that the avoidance of clashes had the highest priority).

However, arguably the most interesting and important observation is that the
(DT, Random) method performs not extremely well on average (a penalty of 298,
which is worse than the mean of 3 other methods), but produces good outliers.
The reason for this is because randomization creates diversity, i.e., more differences
between the initial solutions. The local optima that are found are then more spread
over the sample space of all solutions. This is in contrary to the (DT, Fixed) method,
where the initial solutions are identical to each other (the randomization in the local
search causes differences in the found local optima). Also, the fact that a dynamic
tightness-based ordering is used, ensures that the local optima are of good quality.

2DT = Dynamic tightness ordering method.

27

For these reasons, one could argue that the (DT, Fixed) method is most appropriate
when a good timetable needs to be found in a short amount of time. After all, this
method has the lowest mean and a small standard deviation, implying that this
method yields the most certainty for a good timetable immediately. However, if
there is available amount of time is large, then one could also consider the (DT,
Random) method, hoping on an extremely good outlier. Due to these arguments,
only the mentioned two initialization methods are considered from this point. But to
give away a glimpse of the conclusion: there is one other initialization method which
could be more interesting for other universities, but this is elaborated on further at
the final comparison.

Whether the standard deviation for the (DT, Random) method is high enough
to actually produce better timetables than the (DT, Fixed) initialization method
could do, depends on the amount of time. A very interesting question would be how
much attempts statistically are required for the (DT, Random) method to produce
better solutions than the (DT, Fixed) method would do in the same amount of time.
To make a plausible statement concerning this issue, a histogram is firstly provided
concerning the penalty distribution. Based on 60 runs for the two selected methods,
50 runs on top of the runs that already were available, the penalty distribution is
as follows.

240.8 241.6 250.6 251.4
0

5

10

15

Penalty Fixed

245 285 325 365
0

5

10

15

Penalty Random

F
re

q
u
en

cy

Figure 4.4: Penalty (in thousands) distribution of the best two initialization methods

The penalty of (DT, Random) has a mean penalty of 292 and a standard deviation
of 27. The data is normally distributed, which has been verified using the Shapiro-
Wilk test [21]. The penalty of (DT, Fixed) has mean 245 and standard deviation
4. The histogram shows fewer characteristics of a normal distribution, but there are
good reasons to believe why the penalty theoretically should be normally distributed
(see Appendix C.2 for these insights).

But the important observation concerns the large standard deviation of the
penalty for an optimized (DT, Random) solution. This suggests that this method
delivers more outliers and potentially could deliver a better solution. Clearly, the
solution with the lowest penalty is searched, but this could take too much attempts
and consume a lot of time. This is exactly the reason why the knock-out race is
included in the tournament heuristic, since this method is expected to find the best
solution out of many solutions quickly.

28

4.2.3 Performance of the tournament heuristic

As last, the final component of the tournament heuristic will be analyzed, the knock-
out race. It is required to have k initial solutions out of which the most promising
solution should be found. Even though it is not necessary, two knock-out races have
been considered: one with k = 1000 (DT, Random) solutions as participants, while
the other starts with the same number of (DT, Fixed) solutions. This is done to
compare the best solution of both initialization methods. Recall that based on 10
runs, the (DT, Fixed) method produced the best instance so far (see Table 4.3).

As mentioned in Section 4.2.1, more than 90% of the possible improvements
are already achieved in the first 5 to 10 seconds. For that reason, the time that is
dedicated to the first phase of the knock-out race t1 = 10 · k, meaning that every
solution will at least be optimized for at least 90%. Usually, more than 95% of the
improvements are achieved within 10 seconds. After the first round, it is time saving
to remove a large percentage of solutions with a relatively bad quality. Therefore,
900 of the 1000 will be removed, whereupon an extra 50 seconds is dedicated to the
remaining 100 solutions. All promising solutions have then almost reached their full
potential. After that, only the best solution will be optimized entirely further to its
local optimum. To summarize:

• The number of initial solutions k = 1000

• The number of knock-out phases p = 3

• The removing quantity per phase r = (900, 99, 0).

• The time vector t = (1000 ·10, 1000 ·50, 1 ·100) = (10000, 5000, 100). Note that
the total duration equals 10000 + 5000 + 100 = 15100 seconds ≈ 4.2 hours.

This implies that only one solution is left after 2 rounds, which is optimized for
exactly 160 seconds using the recursive local search.

Note already how much time the knock-out race saves. Normally, it takes
between 40 and 100 seconds to reach the local optimum (see Appendix C.1 for a
distribution of the running time that justify this statement). Instead of optimizing
1000 solutions to their local optimum, which would take on average 70000 seconds,
only 15100 seconds are used. The required time could even be more reduced when
t1 = 5 · k is found to be enough as well. Of course, there is a higher risk that the
best potential solution is knocked out too early, but the risk remains small since the
largest improvements are made in the start.

These two tournaments both have produced a winning solution, further to be
called “Winner Random 1000” and “Winner Fixed 1000”. These are declared as
the best solutions that can be found for the two initialization methods based on
1000 initial solutions. Also, the best solution for each initialization method is shown
when only 10 solutions are optimized, i.e., the best solutions that are also listed
in Table 4.3. These solutions are further referred to as “Winner Random 10” and
“Winner Fixed 10”. The table on the next page compares the performance of
these solutions by listing all performance measures of interest, including the average
penalty for all other initialization methods (also shown in Table 4.3).

29

Init. method Clash Undist. DL ≥ 3 DL ≥ 4 Idle Work Pen.
Winner Random 1000 18 17 937 94 847 7438 233

Winner Fixed 1000 19 12 956 90 609 7451 241
Winner Random 10 22 16 932 90 845 7455 271

Winner Fixed 10 19 15 945 88 603 7440 241
Random, Random 60 13.1 949 113 840 7419 653

Random, Fixed 48 14.6 943 108 862 7422 531
Random, Lowest pen. 52 8.4 951 110 819 7409 574
Random, Tightness 39 12.7 940 103 745 7446 438

ST, Random 48 19 953 106 849 7400 534
ST, Fixed 34 10.3 935 104 809 7435 387

ST, Lowest pen. 38 3.1 932 93 656 7414 426
ST, Tightness 35 13.1 944 102 711 7424 399
DT, Random 25 15.7 951 97 835 7423 298

DT, Fixed 20 14.9 949 91 604 7431 246
DT, Lowest pen. 23 3 868 76 560 7454 278
DT, Tightness 22 16.4 954 104 665 7412 269
Size, Random 52 13.7 955 121 817 7416 573

Size, Fixed 49 7.9 942 116 704 7437 539
Size, Lowest pen. 58 6.8 935 121 598 7371 625
Size, Tightness 31 16 967 108 666 7421 363

Table 4.4: Final performance comparison

The bold-printed values are the best found values for the specific performance mea-
sure. Three important observations can be made based on the above table, that
each provide possibly new, but important insights for timetabling in practice.

The first observation concerns the fact that the (DT, Fixed) method produced
a better solution than the (DT, Random) method when only 10 attempts could
be done. However, using 1000 attempts, the (DT, Random) method is able to
produce a slightly better solution than the (DT, Fixed) method. The reason for
this phenomenon is that randomization causes diversification in the “participating”
solutions, meaning that more diverse local optima are found. Many of these local
optima are bad, but with some luck, the local optimum is better than would have
been possible with the (DT, Fixed) method. As also can be seen in the above table,
the best (DT, Fixed) solution out of 1000 runs is almost just as good as the best
solutions out of 10 runs3. The drawback is that, as mentioned, a certain degree
of luck is required when the (DT, Random) method is applied, which fortunately
occurred in the above results. Many attempts should be done to be fortunate enough
in finding such an extremely good local optimum, which could take (too) much time.
Yet, this is exactly the reason why the tournament heuristic includes a knock-out
race, since this technique can save time in finding an extremely good local optimum.

3As a small remark, the “Winner Fixed 1000” has a slightly better penalty than “Winner Fixed
10”, 240722 vs. 241226, but is due to rounding not visible in the above table.

30

Furthermore, the table shows that the (DT, LP) method4 scores best on four of the
seven performance measures, but this method did not belong to the two investigated
methods. Recall that the number of clashes had the highest priority; every violation
increases the total penalty with 10000. The (DT, LP) method produces at least
four more clashes, making the penalty much higher than the two methods that
participated in the knock-out race.

The point is that (perhaps ethical) questions could arise regarding the selected
weights, when comparing the performance measures of the (DT, LP) method to
the “Winner Random 1000” solution. On average, the (DT, LP) method produces
5 more clashes, but prevents 14 more undistributed events, 69 high day loads, 17
extremely high day loads, and 287 idle time units for the student sets. One could
argue that it is more fair that 5 student sets have a clash extra, such that many
other students have fewer high day loads and idle time units. Clearly, the heuristic
considers the “Winner Random 1000” solution currently as superior due to the large
weight on the “avoid clashes”-constraint. But when this constraint would have a
lower weight, then it would be most likely that the (DT, LP) method would have
been superior. In other words, determining the weights on the constraints must be
done with great care, because less desirable timetables could be produced otherwise.

The last question of interest is whether the heuristic also produces better timeta-
bles than in practice. After all, the ambition of this research paper is to improve
the currently available timetabling software. To make a good comparison, it is nec-
essary to have an intuition on how timetables are constructed in practice. In many
schools and universities, timetables are constructed manually by placing the events
one by one on the best slot and improve the timetable afterwards. This suggests
a “lowest penalty” assignment method in practice, which also has been suggested
in 3.3.1. Improving the timetable afterwards, suggests actually exactly the recur-
sive local search algorithm (trying to move an event from one slot to another, and
see whether improvements are made). A fair assumption is then that the scheduler
performs the local search just as good as a computer would do; humans normally
think more (smart) moves ahead, but a computer consistently performs much more
moves in a short amount of time. Furthermore, on large educational institutes, the
events are probably ordered randomly because it is too difficult and time-consuming
to order thousands of events on tightness (especially not dynamically). Also, many
schedulers schedule according the the first-come, first-served principle: the teachers
that send their preferences first, are scheduled first. Thus basically, the events that
need to be scheduled are randomly ordered.

This suggests a (Random, LP) initialization in practice, with a similar local
search method afterwards. If this is compared to the (DT, LP) method, one can
observe that many improvements are possible. The number of clashes, undistributed
events, extreme high day loads and idle hours could be reduced by respectively 56%,
64%, 31% and 32%, which is a significant improvement. The practical method can
also be compared to the actual winner “Winner Random 1000”, which improves the
most important performance measure better with a reduction of 65%. However, this

4LP = Lowest penalty. Recall that the (DT, LP) method orders the events dynamically on
tightness, and assigns the events to the slot causing the lowest increase in penalty

31

specific solution has more undistributed events and idle time units than (Random,
LP), while the reduction in extreme high day loads is also not extreme. In practice,
it could therefore be more convincing to present the results of the (DT, LP) method
that, roughly speaking, reduces the 4 most important performance measures with
30% to 70%.

Under these realistic assumptions, one can argue that the tournament heuristic
indeed produces better timetables than in practice. Furthermore, an extensive anal-
ysis of initialization techniques has not been considered before in the current litera-
ture (especially not in combination with optimization heuristics), while this proves
to be of the largest influence. The knock-out race is a component of timetabling
optimization that could not be found in the current research, while this can save an
enormous amount of time under a reasonable assumption that no optimality has to
be lost.

32

Chapter 5

Conclusions and future work

5.1 Conclusions

This research paper has investigated the theory and practice of school timetabling
which has lead in both aspects in very interesting results.

The theory of timetabling concerns many problems that are based on the
Class-Teacher problem, where a set of lessons need to be assigned to time slots,
without clashing lectures. This can be solved easily using a bipartite graph repre-
sentation. Easy extensions of the problem include a upper bound on the number of
rooms, invoking a daily maximum of lessons per day and balancing the work loads.
However, most of the timetabling problems are strongly NP-hard. For example,
when classes can have the freedom to choose lectures, when exams can be merged
in rooms or when teachers are unavailable. An own proof of strongly NP-hardness
has been provided for a variant in which the lectures on a specific time unit needs
to be maximized, via a reduction from Maximum Independent Set.

The practical part presents a new heuristic that can be applied in any school
or university: the tournament heuristic. This heuristic consists of an extensive
initialization, a local search method and a “survival of the fittest” mechanism. The
local search method is standard, yet very effective. The exact survival of the fittest
mechanism has not been proposed before (even though variants could exist), but
proves specifically for timetabling to be very time saving. However, the results have
shown that the biggest improvements can be obtained from a good initialization.

It turned out that the best initialization method should order the events (lec-
tures) dynamically on tightness (see 3.3.1). Based on this order, one could assign
the events according to a fixed order, randomly or on the time slot that achieves
the lowest penalty. Each of these methods have their own advantages and disad-
vantages and the choice of the most appropriate method depends on the available
amount of time, but mainly on the preferences of the educational institute. Com-
pared to timetables in practice, it can be very well argued that the heuristic realizes
an impressive reduction between 30% and 70% concerning the number of clashes,
high workloads, undistributed lectures over the week and number of idle time units.
Under several realistic assumptions, one can therefore conclude that the heuristic
indeed produces better timetables than in practice.

33

5.2 Future work

Even though the achieved results are very satisfactory, future work is always possible.
The first point concerns the experimental data, since only 1 timetabling instance
has been considered so far. The main reason for this is that already has been
explained in the final comparison when one method is better than another, and that
the tournament heuristic will always discover this if enough attention is paid to the
qualification phase. However, it could be interesting to find out which initialization
methods are more suitable for specific instances. For example, it could well be that
a complete random initialization method could perform best given a reasonable
amount of time, when a timetabling instance for example easily suffices all hard
constraints anyway.

Another interesting addition to the recursive local search could be an efficient,
effective method to reduce the number of clashes. Currently, the heuristic “thinks”
one move ahead. However, if 10 different student sets want to attend a specific
lecture, then one move ahead is not enough. What actually should be done, is
an attempt to make sure that all these 10 different student sets have no lecture
on a specific time unit, say Tuesday 11:00. When this is done, the lecture can be
scheduled at that moment of time without any clash, but could require thinking 10
steps ahead, which could explode in computation time. It would be interesting to
investigate whether one can determine fast for which time units this is possible.

34

Appendix A

Strongly NP-hard/complete
problems

Throughout the research paper, several strongly NP-hard problems are used to
prove hardness of miscellaneous variants of the timetabling problems. The formal
definitions of the used problems are listed below in alphabetical order, but can also
be found in [12] or [17].

3-Satisfiability

Given: A set of Boolean variables X = x1, x2, ..., xn, a set of clauses C =
c1, c2, ..., cm where each clause is a disjunction of exactly 3 variables of
X and a Boolean formula F = c1 ∧ c2 ∧ ... ∧ cm.

Goal: Determine whether there exists a truth assignment to x1, ..., xn s.t. F =
True.

Bin packing

Given: A bin capacity V and a list of values A = {a1, ..., an} where ai ∈ [0, V]
Goal: Minimize the sublists s.t. each sublist sums to at most V and the sublists

form a partition of A.

Graph K-Colorability

Given: A graph G = (V,E).
Goal: Minimize the number of colors s.t. all vertices are assigned a color and

Color(u) 6= Color(v) for every {u, v} ∈ E.

Maximum independent set

Given: A graph G = (V,E).
Goal: Maximize the size of an independent set I, i.e. a set of vertices I ⊆ V

s.t. {u, v} /∈ E for every {u, v} ∈ I.

35

Appendix B

Complete experimental data

B.1 General

VU University has structured the school year in six periods, of which period 1 and 2
comprise respectively September-October and November-December. Some courses
are taught in both the first and second period (i.e., there are dependencies between
the first and second period), but there are no dependencies regarding other periods.
Therefore, the timetables for period 1 and 2 are made separately from the timetable
in other periods, and this is also the timespan that is tested in this research paper.
In these two periods, approximately 40% of the courses are taught.

The assumption is that the timetable per period stays the same, meaning that
only a timetable for two weeks (where one week is used the entire period) needs to
be made. In practice, this is not the case, as some lectures are only given once (or
excursions are only in a specific week). Optimizing on this feature can easily be
implemented, but is not considered in this specific dataset for simplicity.

Furthermore, VU University teaches five days per week (Monday until Friday)
and has specific slots at which lectures are taught: from 09:00 until 10:45, 11:00 until
12:45, 13:30 until 15:15 and 15:30 until 17:15. For the sake of simplicity, these time
units are referred to as “time unit 1” until “time unit 4”. Actually, some lectures
also occur in the evening (e.g., when there is not enough room space), but this will
be not included in this dataset to prevent misleading results. To summarize: w = 2,
d = 5 and u = 4.

B.2 Courses and events

In the year 2012-2013, students from VU University were able to enroll for 4492
courses1. As mentioned, only the first two periods (40%) are considered at VU
University, meaning that approximately 1800 courses are taught between September
and December. The actual number of courses that should be considered is actually
even less, since a substantial number of these courses do not require any lecture
(e.g., a thesis for a specific Bachelor’s program). To make the problem harder

1Obtained from the student’s portal, VUnet.

36

(to compensate for unknown information), the experimental data comprises 2000
courses, each having a different number of lectures per week. These numbers are
listed below and are based on a sample from 40 random courses at VU.

Lecture numbers Number of courses
1 200
2 1200
3 500
4 100

2000

Table B.1: Lecture numbers per course

Of these 2000 courses, 900 are taught in only the first period, 900 are taught in
only the second period while the remaining 200 are taught in both periods. These
numbers are based on the same random sample of 40 courses. Note that the total
number of lectures (events) is equal to 200 · 1 + 1200 · 2 + 500 · 3 + 100 · 4 = 4500.

B.3 Student sets

In total, 1200 student sets are considered, where each student set has a size (number
of students) of 10, 20, 30 or 40. There are 300 student sets with any of the four
different student set sizes, thus 30 · 10 + 30 · 20 + 30 · 30 + 30 · 40 = 30000 students
are involved in the instance. This is (as mentioned before) more than the 24403
students that VU University actually has, but it makes the problem harder for the
previously mentioned reason. The large number of students has influence on the
room constraints, since it will be harder to find rooms with enough capacity for the
students. The number of students per course are given in the table below.

Number of students Number of courses
300 100
200 150
100 200
50 300
20 1000
10 250

2000

Table B.2: Number of students per course

To clarify: the above table implies that there are 100 courses that have 300 students.
These 300 students are composed of a random collection of the 1200 student sets of
which the total sum of student sets sums to 300. Each student set has at most five
courses per period (thus at most ten in total).

37

B.4 Teachers

Recall that the data consists of 2000 courses, where each course is coordinated by
exactly one teacher. Based on a random sample of 20 teachers of VU University, it
turned out that active teachers teach on average 1.25 courses per two periods. This
has been slightly increased to 1.33 courses, meaning that there are 1500 teachers
that teach 2000 courses. See below for their availabilities.

Number of available days Number of teachers
5 1000
4 100
3 50
2 50
1 300

1500

Table B.3: Availabilities per teacher

Recall also that some courses had multiple lectures per week. If a course had, e.g.,
three lectures, then the course is not assigned to a teacher with only one or two
available days. Otherwise, the constraint “spread events of course” can never be
fulfilled.

B.5 Rooms

At January 2012, VU University had 196 lecture rooms available and approximately
34 computer rooms2. The computer rooms are removed from the set to make the
problem harder. As mentioned earlier, even though the heuristic can take different
room types into account, this feature is disregarded to make the results more in-
terpretable. The capacity of the rooms including the number of rooms with that
capacity is listed below and is based on the room sizes of VU (with some small
“roundings” such that only 5 different capacities need to be considered).

Capacity Number of rooms
300 5
200 10
100 20
50 50
25 100

195

Table B.4: Number of rooms and their capacities

Note that only 5 rooms have enough capacity for the 100 courses with 300 students.

2This information is publicly obtainable via VU’s website, http://www.vu.nl/.

38

Appendix C

Extra performance measures of
results

C.1 Running time of best initialization methods

For completeness, the running time distribution of the best two initialization meth-
ods are provided below.

30 50 70 90
0

10

20

30

40

Running time (DT Fixed)

F
re

q
u
en

cy

40 60 80 100
0

10

20

Running time (DT Random)

F
re

q
u
en

cy

Figure C.1: Running time distribution of the best two initialization methods

The running time of (DT, Random) has mean 73,5 seconds and standard deviation
15 seconds. The running time of (DT, Fixed) has mean 64,8 seconds and standard
deviation 12.8 m. The reason why the running time of (DT, Random) is higher, is
due to the fact that more improvements are possible. After all, an initial solution in
which randomization is used should have more room for improvement than an initial
solution that already is close to a local optimum. The initial solutions produced by
(DT, Fixed) on the other hand, do not include any randomization and are created
with the use of smart rules and are therefore closer to specific local optimum. These
graphs are shown merely to mention this observation, and to show that finding a
local optimum is done fast. A local optimum is found when no improvements can
be found anymore for 3 seconds. For completeness, the data is normally distributed,
which has been confirmed using the Shapiro-Wilk test [21].

39

C.2 Dynamic tightness, Fixed

See below for the distribution of extra performance measures of the (Dynamic tight-
ness, Fixed) initialization method after local search.

19 19.5 20
0

20

40

60

clashes

F
re

q
u
en

cy

12 14 16 18 20
0

10

20

undistributed events
F

re
q
u
en

cy

920 940 960
0

20

40

dayload ≥ 3

F
re

q
u
en

cy

82 88 94
0

20

40

dayload ≥ 4

F
re

q
u
en

cy

550 590 630
0

10

20

30

idle time units

F
re

q
u
en

cy

7400 7420 7440 7460
0

10

20

30

working days

F
re

q
u
en

cy

Figure C.2: Performance measure distribution for the (Dynamic tightness, Fixed)
initialization method

All samples have been tested on normality using the Shapiro-Wilk test [21], which
confirmed that these indeed are normally distributed, apart from the clashes. Ap-
parently, the (Dynamic tightness, Fixed) method is close to a local optimum where
the number of clashes can either only be 19 or 20, but since the penalty is a weighted
sum of the above data, it is assumable that the penalty is also normally distributed.

40

Bibliography

[1] D. Abramson, H. Krishnamoorthy & H. Dang, Simulated annealing cooling
schedules for the school timetabling problem, Asia-Pacific Journal of Operational
Research, 1996.

[2] N. Balakrishnan, Examination scheduling: a computerized application, Omega,
1991.

[3] J. A. Bondy & U. S. R. Murty, Graph Theory with Applications, American
Elsevier Publishing Company Inc., 1976.

[4] E. Burke, Y. Bykov, J. P. Newall & S. Petrovic, A time-defined approach to
course timetabling, Yugoslav Journal of Operations Research, 2003.

[5] M. Carrasco & M. Pato, Metaheuristics: computer decision-making, E. Burke
and W. Erben (editors), Practice and Theory of Automated Timetabling III,
2001.

[6] S. Casey & J. Thompson, GRASPing the examination scheduling problem, E.
Burke and W. Erben (editors), Practice and Theory of Automated Timetabling
IV, 2002.

[7] A. Colorni, M. Dorigo and V. Maniezzo, Metaheuristics for high-school
timetabling, Computational Optimization and Applications, 1997.

[8] T. B. Cooper & J. H. Kingston, The Complexity of Timetable Construction
Problems, Proceedings of the first International Conference on Practice and
Theory of Automated Timetabling, 1995.

[9] M. A. H. Demptser, D. G. Lethridge & M. A. Ulph, School timetabling by
Computer - A technical History, Educational Research, 1973.

[10] A. E. Eiben & J. E. Smith, Introduction to Evolutionary Computing, Springer,
2007.

[11] S. Even, A. Itai & A. Shamir, On the Complexity of Timetable and Multicom-
modity Flow Problems, SIAM Journal on Computing, 1976.

[12] M. R. Garey & D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Freeman & Company, 1979.

41

[13] K. Socha, J. Knowles & M. Samples, A max-min ant system for the university
course timetabling problem, M. Dorigo, G. Di Caro and M. Samples (editors)
Proceedings of Ants 2002 - Third International Workshop on Ant Algorithms,
2002.

[14] D. König, Über graphen und ihre anewendung auf determinantentheorie und
mengenlehre, Mathematische Annalen, 1916.

[15] R. Lewis, A Survey of Metaheuristic-based Techniques for University Time-
tabling Problems, OR Spectrum, 2007.

[16] N. K. Mehta, The application of a graph coloring method to an examination
scheduling problem, Interfaces, 1981.

[17] C. H. Papadimitriou & K. Steiglitz, Combinatorial Optimization: Algorithms
and Complexity, Dover Publications, 1998.

[18] A. Schaerf, Tabu search techniques for large high-school timetabling problems,
Proceedings of the Thirteenth National Conference on Articial Intelligence,
1996.

[19] A. Schaerf, A Survey of Automated Timetabling, Artificial Intelligence Review,
1999.

[20] A. Schaerf, Local Search Techniques for Large High-School Timetabling Prob-
lems, IEEE Transactions on Systems, Man, and Cybernetics, 1999.

[21] S. S. Shapiro & M. B. Wilk, An analysis of variance test for normality (complete
samples), Biometrika, 1965.

[22] S. M. Selim, An algorithm for producing course and lecture timetables, Com-
puters & Education, 1983.

[23] J. M. Thompson and K. A. Dowsland, A robust simulated annealing based ex-
amination timetabling system, Computers and Operations Research, 1998.

[24] D. de Werra, An introduction to timetabling, European Journal of Operations
Research, 1985.

[25] E. Yu & K-S. Sung, A genetic algorithm for a university weekly courses
timetabling problem, International Transactions in Operational Research, 2002.

42

