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Preface

This paper is part of the Master program Business Mathematics and Informatics. The
objective of the paper is that the student learns how to do an investigation of a business
problem on his own and to present the outcomes of this investigation in a correct manner,
on paper as well as during an oral presentation.

Arnoud den Boer, who is doing a PhD thesis about Controlled Variance Pricing had some
testing to do on his policy. He would be helped with some extra research. I found this very
interesting, so I started this investigation energetically and finished with some interesting
results that hopefully will help Arnoud with his further research.
In the mean time I also learned to work with Crystal Ball, I wrote in Latex for the first
time and made pdf-documents of my pictures, so I learned a lot more than to write a paper.

I would like to thank Sandjai Bhulai for his patience and availability on short notice and
during the holidays. He motivated and inspired me during the whole process of writing
this paper.



Abstract

Companies that sell products or services have one objective in common: they need to make
an optimal profit. To reach that goal they have, among others, to learn the optimal price
to sell their products or services for. The process to learn the optimal price is a balance
between exploration and exploitation. If they emphasize too much on instant revenue, they
will probably not learn the optimal price in the long run. If they emphasize on the learning
part they might make unnecessary costs. It helps to use a pricing policy to find the right
balance between learning and income. In this paper, I focus on one recently developed
policy: Controlled Variance Pricing.
This policy is an extension of Certainty Equivalent Pricing with a shrinking taboo interval.
I focus on the performance of the policy with a linear demand function. The performance is
measured in the loss a company experiences on their search for the optimal price. This loss
is called regret. I explore the basic possibilities of this policy and find that it works very
well for linear demand functions with time independent parameters. The regret becomes
larger and has higher volatility when the parameters become time dependent. If only
one parameter changes, then the relative regret is acceptable in some cases. When more
parameters are time dependent one should be very careful for high regrets. A suggestion
how to choose the time settings and what history will be considered for the future settings
are given in this paper.
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Chapter 1

Introduction

The main goal for a manager in a company that sells products or services is to maximize
his profits. This is, among others, done by lowering the costs where possible and by
determining the optimal price to reach maximal revenue. To determine the best price he
needs to know how the demand behaves for the different prices. If the demand is known,
he can calculate the optimal price. The problem in practice is that the demand behavior
is unknown. Experimenting with the price is an option to learn the optimal price, but
this might be very costly. The manager will be helped with a good policy that balances
the loss of revenue and the gain of learning the optimal price to reach his goal of optimal
profit. This problem is known as a dynamic pricing problem with uncertain demand while
leaving inventory considerations out. Some known policies are:

• Certainty Equivalent Pricing

• MLE-cycle

• One-step ahead pricing

• Controlled Variance Pricing [1]

In this paper I will focus on the last policy: Controlled Variance Pricing.
Controlled Variance Pricing (CVP) is a policy that combines the techniques of Certainty
Equivalent Pricing with a shrinking taboo interval. Certainty equivalent pricing sets the
new price at each period equal to the price that would be optimal if the current parame-
ter estimates were correct. In: Simultaneously Learning and Optimizing using Controlled
Variance Pricing[1] it is proved that Controlled Variance Pricing will converge to the opti-
mal price with an acceptable loss (regret) if the expected demand is a linear function of the
price. In the same article it is proved that Certainty Equivalent Pricing does not converge
to the optimal price.

The question answered in this paper is: How robust is the Controlled Variance Pricing
policy for linear demand functions. I will experiment with the linear demand function
where the parameters are time dependent.
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The remainder of this paper is structured as follows: In Chapter 2 the CVP model is
explained. In Chapter 3 the basic model is implemented and the assumptions will be
stated. In Chapter 4 the results of basic parameter settings will be presented and in Chap-
ter 5 different time dependent linear models will be evaluated. In Chapter 6 I will give a
conclusion.
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Chapter 2

Controlled Variance Pricing

In many situations the demand level for a chosen price is not known. Companies try to
maximize their profit. To reach that goal, they need to know the optimal price to maximize
the revenue and so to maximize the profit. The process to learn the optimal price might be
costly. During the learning process, they do not have the optimal price and loose money in
comparison to the optimal situation. The manager is interested in a model that finds the
optimal price in a reasonable time with a minimal loss. This loss is also called regret. The
Controlled Variance Pricing is such a policy. Controlled Variance Pricing is a refinement
of the Certainty Equivalent Pricing policy.

2.1 Certainty Equivalent Pricing (CEP)

Certainty Equivalent Pricing is also called myopic pricing or passive learning. The idea
behind this policy is that you learn from your experience in the past and that you use
that knowledge to determine your next price. So, for the next price setting, you use the
gathered data of the past period. This period can be a week, a day or even a minute. You
calculate the optimal price with the corresponding parameter settings of the past period
and make this your new price and settings for the next period.
This method is intuitively appealing, but from the study [1] we learn that this method is
not consistent. There is a positive possibility that this method does not find the optimal
price. From the same paper [1] we learn that the possible cause is the emphasis Certainty
Equivalent Pricing puts on instant revenue maximization and not enough on the learning
phase. This process is also known as the optimal balancing between exploration and
exploitation. With CEP the balance tips to exploitation and not enough on exploration.
You can say that this method gets his conclusion ẗoo quicklÿ.

2.2 Controlled Variance Pricing (CVP)

CVP solves the problem of the speed by slowing the process to find the optimal price
down. This is done with a shrinking taboo interval [1]. The taboo interval is calculated
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around the average previously chosen prices. The method calculates the optimal price and
the parameter settings of the last period. If the optimal price lies in the taboo interval,
instead of taking this value as the new price, they take a suboptimal value outside the
taboo interval. In practice this is the border of the taboo interval closest to the optimal
price. Each new time step, this interval shrinks as the amount of data grows. The taboo
interval takes care of the speed of the process so it is guaranteed to have the time to gather
enough data to find the optimal price. In the next chapter this will be visualized and
clarified in a figure (see Figure 3.1 at page 13).
This method is proved to be consistent [1] for a linear demand model. For the remainder of
this paper I will focus on linear demand functions and the performance of the Controlled
Variance Pricing policy.
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Chapter 3

Model and notation

In this chapter, I use the same model as in [1]
Assumptions:

• We consider a monopolist firm that sells a single product. At the beginning of each
time period t ∈ {1, 2, . . .} the firm determines a selling price pt ∈ [pl, ph]. The prices
0 < pl < ph are the minimum and maximum price that are acceptable to the firm.

• The demand Dt in period t is modeled as a linear function of the selling price pt,
with a random disturbance term εt:

Dt = a0 + a1pt + εt. (3.1)

The parameters a = (a0, a1) are unknown to the firm, and are assumed to be in the
set A = (a0, a1) ∈ (0,∞)× (−∞, 0).

• The disturbance terms (εt)t∈N are independent identically distributed random vari-
ables with zero mean and variance σ2.

• We assume that the marginal costs of the sold product equal zero. If the marginal
costs are c > 0, then by replacing p by p− c we obtain the same model.The revenue
collected during period t is denoted by Rt, and is equal to:

Rt = ptDt. (3.2)

and

Ropt = poptdopt. (3.3)

The price popt(a), that maximizes the expected revenue per period E[Rt(p, a)], is
equal to

popt = arg max
p

p(a0 + a1p) =
a0
−2a1

. (3.4)
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• We assume that popt(a) ∈ [pl, ph].

• A pricing policy ψ is a method that generates a price pt ∈ [pl, ph] for each t ,
based on the previously chosen prices p1, p2, . . . , pt−1 and on the demand realiza-
tions d1, d2, . . . , dt−1. This pt may be a random variable. The performance of a
pricing policy is measured in terms of regret. Regret is the expected revenue loss
caused by not using the optimal price popt. For a pricing policy ψ that generates
prices p1, p2, . . . , pT , the regret Regret(T, a, ψ) after T time periods is defined as

Regret(T, a, ψ) =
T∑
t=1

E[R(popt(a), a)−R(pt, a)]. (3.5)

• Last but not least it is very useful for the comparison of different policies to calculate
the relative regret.

Relative Regret =
Regret(T, a, ψ)

TRopt

100% (3.6)

Given a number of periods T ∈ N, the goal of the firm is to find a policy ψ that
minimizes Regret(T, a, ψ) and finds the optimal price.

• I estimate the parameters (a0, a1) with least square regression. The least-square
estimates (â0t, â1t) of the parameters (a0, a1), based on historical data from the first
t periods, are the minimizers of the mean square error:

(â0t, â1t) = argmin
α0,α1

1

t

t∑
i=1

(di − α0 − α1pi)
2. (3.7)

If the initial prices p1, p2 are chosen different from each other, then (3.7) has a unique
solution for each t ≥ 2 according to [1].

• The taboo interval is the interval in which it is not allowed to choose the next price.
This interval controls the order of magnitude of the sample variance. The minimum
distance between the new price pt+1 and the average price p̄t is given by:

c0 · tα−1 ≤ (pt+1 − p̄t)2, (3.8)

for an α ∈ (0, 1) and a positive constant c0. The taboo interval(TI) at time t is given
by:

TI(t) =
(
p̄t −

√
c0 · t

α−1
2 , p̄t +

√
c0 · t

α−1
2

)
(3.9)
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first 3 steps of the controlled variance pricing policy

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16 18 20

price

d
em

an
d

g(x)=9,2289-0,5041x

h(x)=9,787-0,553x

j(x)=9,509-0,527

x*g(x)

x*h(x)

x*j(x)

p1p2p3

TI2 TI3  TI1

Figure 3.1: example taboo interval

I will visualize and explain the working of the model by Figure 3.1 and Figure 4.2 at page
19. In Figure 3.1 I delineated the first 3 steps of a simulation. I started the simulation
with 2 different prices pa = 8 and pb = 12. The program calculates a demand realization
with equation 10 − 0.5pt + εt, where εt has the standard normal distribution, and the
parameters a0 and a1 with equation (3.7) (see also the first lines of Figure 4.2). The
result is g(x) and with help of the revenue equation (3.2) belonging to these parameter
settings p1 is calculated. The taboo interval(blue lines) is calculated with equation (3.9)
with α = 0.5 and c0 = 10 and it is determined that p1 lies in this interval. For the next
parameter calculations not p1 is used but the left bound of the taboo interval, because the
left boundary is the closest to p1. The second step the demand is calculated with the same
formula and the parameters are calculated with the three prices and demand realizations.
This gives h(x) and the green taboo boundaries. The boundaries depend on the mean of
the prices, so we can clearly see the shift of the boundaries. Again lies p2 in the taboo
interval and will a boundary be used instead of p2. In the third step, with use of all the
data so far gathered, j(x) is the result and the red boundaries belong to the taboo interval.
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We can clearly see that the taboo interval has shrunken.
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Chapter 4

How does CVP behave in basic
settings?

To be able to compare different linear demand models and to get a feeling how the policy
works, I first implemented the basic model in Crystal Ball. For the taboo interval (3.9)
it is needed to choose α and c0. For all experiments I used α = 0.5 since it is proved in
[1] that that value is optimal. The effect of c0 will be examined in my second experiment.
In most cases I executed 1000 simulations. I also implemented the Certainty Equivalent
Pricing (CEP) policy. In this first experiment we compare CEP with CVP by computing
the optimal price for different time settings and comparing the relative regret.

4.1 Comparing Certainty Equivalent Pricing and Con-

trolled Variance Pricing

To start with, I used the demand function dt = 10 − 1
2
pt + εt, where εt has the standard

normal distribution. pl = 5, ph = 10. The optimal price is according to (3.4) on page
11 popt = 10. I tested the pricing policies on 4 different time horizons: T = 25, 100, 500
and 1000. Because setting the price is still handwork, it does not appeal to use more than
a 1000 time frames. If the time scale is an hour it is still more than 41 days that are
considered. If the price setting is fully automated it is possible to update the prices each 5
minutes, or even each minute and then time horizons of 10,000 or more are interesting. I
chose c0 = 10. The relative regret is computed with the formula (3.6) on page 12. Regret
is calculated by the formula (3.5). The regret is computed for each t and after T intervals
summed up. The optimal revenue(Ropt) is the revenue we can make if we know the optimal
price in advance. ( see formula (3.3)). In my case this is: Ropt = T · 50. The results for
the estimated prices and regrets in this basic situation are given in Table 4.1.
We observe that:

• CEP does not converge to the optimal price 10 within the time frames and CVP
does.
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Table 4.1: Comparing Certainty Equivalent Pricing and Controlled Variance Pricing

T CEP mean CVP mean CEP relative regret CVP relative regret
25 9.56 9.82 20.34 4.87
100 9.57 9.95 5.81 3.01
500 9.58 9.97 6.33 1.46
1000 9.52 10.00 6.53 0.93

• The accuracy gets better when I take more time intervals for both the prices and the
relative regret with CVP.

• The relative regret is lower for CVP.

• CVP works perfect in the situation that the parameters of the linear function are not
time dependent.

4.2 How to set the first width of the taboo interval?

I got curious as to the influence of c0 on the results, so in my next experiment I will try to
establish how to choose c0.
If I look at the taboo interval (3.9) at page 12, I see that the width of the interval equals:

2
√
c0 · t

α−1
2 . We learned already from [1] that α = 0.5 is optimal so that reduces the width

of the taboo interval to: 2
√
c0 · t

−1
4 . The bigger c0 the wider the taboo interval. I have

to be careful that the taboo interval does not get wider then ph − pl otherwise we are not

able to chose a new price. So I found that c0 ∈ [0,
√
t(ph−pl)2

4
] must apply.

For this experiment I use as demand function dt = 10−1.5pt+ εt and pl = 1, ph = 6, I used
the time intervals T = 500 and 1000. The optimal price according to (3.4) is popt = 31

3
.

Now I focus on finding the influence of c0 on the estimation of the optimal price and the
regret. To compare the regret results with [1] it is even better to calculate the relative
regret with (3.6). In this case is Ropt = 62

3
·T . I have registered the mean of the estimated

optimal price and calculated the relative regret. The results for different c0 are in Table
4.2.

From these values we notice not many differences, but if we look at the forecast his-

Table 4.2: Results for different c0 with dt = 10− 1.5pt + εt

T c0 = 1 c0 = 3 c0 = 5 c0 = 20
500 (mean) 3.33 3.33 3.32 3.31
1000 (mean) 3.33 3.32 3.33 3.33

500 (rel. regret) 0.092 0.162 0.273 0.023
1000 (rel. regret) 0.461 0.181 0.186 0.039
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tograms, we see something very interesting (see Figure4.1 at page 18). The mean value of
the prices do not differ much but when c0 = 20 the taboo interval remains relative wide
and the realizations of the prices stay far from the optimal price. I compared the width of
the taboo interval at the end of the time realizations for c0 = 1 and c0 = 20. In the first
case the width of the taboo interval after 1000 time steps is 0.36 and in the second case
1.59. On the other hand, the values of the relative regret with c0 = 20 are very low and
if I compare the standard deviations of the mean of the prices or the regret I notice only
a small difference compared with smaller values for c0. The details can be found in the
appendix A. I think it worthwhile for further investigation, but for the remainder of my
experiments I keep c0 small.

4.3 What is the influence of the number of data points?

Now I consider the first demand function: dt = 10 − 0.5pt + εt again but instead of using
all data points available so far, I will experiment with the number of data points N that
we use. If we can get good results with the use of less data points, that might give some
cost reduction opportunities for the manager. The estimation of a0 and a1 will be based
on N data points but do not forget that the taboo interval also will be calculated on only
N data points! We keep ph = 15, pl = 5, c0 = 10 and start with p1 = 8 and p2 = 12.

In Figure 4.2 you see how the implementation in Crystal Ball looks like. In the last
column of this picture I see that the taboo interval is really shrinking but that it is not
symmetric around one price. This is normal since the taboo interval lies around the mean
of the prices known so far. The mean is not constant, so the interval is sliding over the
price axes which we also observed in Figure3.1. I also observe that only in 2 cases the
calculated p is outside the taboo interval, in all the other cases we use the closest border
of the taboo interval. (The calculations are made in a Dutch version of Excel with Crystal
ball, so you read Waar and Onwaar instead of True and False).
We use the same time intervals T = 25, 100, 500 and 1000. The results for the mean of the
price and the relative regret for time intervals: N = 10, 20, 50 and 100 are in Table 4.3.
NA means Not Available. Because when t = 25, N = 50 and N = 100 have no meaning.

Table 4.3: Results with limited time intervals for dt = 10− 0.5pt + εt

T N = 10 N = 20 N = 50 N = 100 N = 10 N = 20 N = 50 N = 100
relative regret mean price

25 5.31 4.89 NA NA 9.87 10.02 NA NA
100 6.31 4.87 3.40 3.00 9.88 9.84 9.86 9.94
500 6.42 4.91 3.41 2.17 9.80 9.77 9.94 9.91
1000 6.45 4.89 3.40 2.94 9.66 9.73 9.81 9.81
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Figure 4.1: Histogram of the forecast of the price for c0 = 20 and c0 = 1

18



lo
w

es
t 

pr
ic

e
5

p 
op

t
10

hi
gh

es
t 

pr
ic

e
15

D
 o

pt
 

5
c0

10
al

ph
a

0,
5

it
e

ra
ti

o
n

p
ri

ce
d

e
m

a
n

d
a

1
a

0

te
m

p
 

p
ri

ce

le
ft

 

b
o

u
n

d

ri
g

h
t 

b
o

u
n

d

in
 t

a
b

o
o

 

in
te

rv
a

l?

d
is

ta
n

ce
 

le
ft

 b
o

u
n

d

d
is

ta
n

ce
 

ri
g

h
t 

b
o

u
n

d

b
o

u
n

d
 

cl
o

se
st

 t
o

 

te
m

p
 

p
ri

ce
re

gr
et

w
id

th
 

ta
bo

o 
in

te
rv

al
1

8
5,

19
62

6
2

12
3,

17
99

2
-0

,5
04

08
9,

22
89

3
9,

15
41

61
7,

34
08

5
12

,6
59

1
W

A
A

R
1,

81
33

09
3,

50
49

87
7,

34
08

52
-6

,3
59

8
5,

31
82

96
3

7,
34

08
5

5,
87

64
4

-0
,5

52
6

9,
78

70
2

8,
85

55
6,

71
08

1
11

,5
16

4
W

A
A

R
2,

14
46

94
2,

66
09

29
6,

71
08

06
15

,6
26

4,
80

56
23

4
6,

71
08

1
5,

83
69

7
-0

,5
27

04
9,

50
90

6
9,

02
11

64
6,

27
68

5
10

,7
49

W
A

A
R

2,
74

43
18

1,
72

78
18

10
,7

48
98

19
,1

99
4,

47
21

36
5

10
,7

49
5,

16
60

3
-0

,4
14

65
8,

76
64

8
10

,5
70

84
6,

84
53

9
11

,0
74

9
W

A
A

R
3,

72
54

53
0,

50
40

32
11

,0
74

87
-3

,8
69

3
4,

22
94

85
6

11
,0

74
9

6,
21

88
-0

,2
69

2
7,

75
26

6
14

,3
99

58
7,

29
20

7
11

,3
33

1
O

N
W

A
A

R
7,

10
75

1
3,

06
64

79
11

,3
33

1
-6

,6
84

4
4,

04
10

31
7

14
,3

99
6

3,
29

13
4

-0
,3

23
52

8,
21

45
12

,6
95

33
8,

09
51

7
11

,9
83

4
O

N
W

A
A

R
4,

60
01

58
0,

71
18

97
11

,9
83

43
-1

4,
48

1
3,

88
82

62
8

12
,6

95
3

3,
10

23
3

-0
,3

67
49

8,
54

48
2

11
,6

26
05

8,
49

1
12

,2
51

6
W

A
A

R
3,

13
50

45
0,

62
55

59
12

,2
51

6
-8

,3
61

8
3,

76
06

03
9

12
,2

51
6

3,
61

54
3

-0
,3

80
17

8,
63

16
11

,3
52

2
8,

75
44

8
12

,4
06

W
A

A
R

2,
59

77
15

1,
05

37
69

12
,4

05
97

-8
,1

40
5

3,
65

14
84

10
12

,4
06

2,
83

14
1

-0
,4

10
22

8,
84

66
1

10
,7

82
76

8,
98

45
2

12
,5

41
1

W
A

A
R

1,
79

82
37

1,
75

83
21

12
,5

41
08

-6
,8

12
3

3,
55

65
59

11
12

,5
41

1
3,

63
98

4
-0

,4
11

84
8,

85
86

3
10

,7
55

9,
18

80
5

12
,6

60
9

W
A

A
R

1,
56

69
5

1,
90

58
66

9,
18

80
52

-9
,2

49
1

3,
47

28
16

12
9,

18
80

5
5,

80
42

1
-0

,4
29

73
9,

11
22

9
10

,6
02

37
9,

08
07

2
12

,4
78

8
W

A
A

R
1,

52
16

53
1,

87
64

35
9,

08
07

16
4,

71
27

3,
39

80
88

13
9,

08
07

2
5,

20
67

3
-0

,4
29

65
9,

11
12

2
10

,6
03

02
8,

98
36

8
12

,3
14

4
W

A
A

R
1,

61
93

37
1,

71
14

3
8,

98
36

81
4,

78
65

3,
33

07
66

14
8,

98
36

8
6,

84
09

4
-0

,4
64

7
9,

59
37

7
10

,3
22

64
8,

89
53

12
,1

64
9

W
A

A
R

1,
42

73
42

1,
84

22
83

8,
89

52
96

6,
95

26
3,

26
96

25
15

8,
89

53
5,

33
41

6
-0

,4
62

05
9,

55
77

9
10

,3
42

83
8,

81
42

6
12

,0
28

W
A

A
R

1,
52

85
66

1,
68

51
47

8,
81

42
64

5,
89

27
3,

21
37

14
16

8,
81

42
6

4,
93

47
4

-0
,4

51
9,

40
93

8
10

,4
31

63
8,

73
95

5
11

,9
01

8
W

A
A

R
1,

69
20

76
1,

47
02

02
11

,9
01

83
5,

85
13

3,
16

22
78

17
11

,9
01

8
3,

18
56

6
-0

,4
67

46
9,

53
03

8
10

,1
93

86
8,

85
63

4
11

,9
71

1
W

A
A

R
1,

33
75

19
1,

77
71

92
8,

85
63

45
-6

,0
58

6
3,

11
47

11
18

8,
85

63
4

3,
31

61
-0

,4
29

18
9,

01
98

3
10

,5
08

26
8,

79
19

2
11

,8
62

4
W

A
A

R
1,

71
63

4
1,

35
41

79
11

,8
62

44
3,

79
25

3,
07

05
2

19
11

,8
62

4
3,

41
22

1
-0

,4
38

35
9,

08
80

7
10

,3
66

3
8,

89
33

4
11

,9
22

6
W

A
A

R
1,

47
29

68
1,

55
63

27
8,

89
33

36
-6

,3
55

3,
02

92
95

20
8,

89
33

4
6,

31
34

6
-0

,4
57

57
9,

34
28

7
10

,2
09

24
8,

83
69

11
,8

27
6

W
A

A
R

1,
37

23
34

1,
61

83
64

8,
83

69
03

6,
98

69
2,

99
06

98

C
on

tr
ol

le
d 

va
ria

nc
e 

pr
ic

in
g

a1
 a

nd
 a

0 
w

ill
 b

e 
ca

lc
ul

at
ed

 w
ith

 li
ne

ar
 r

eg
re

ss
io

n 
D

=
ao

+
a1

p+
ep

si
lo

n
ov

er
 th

e 
la

st
 p

ric
es

 k
no

w
n 

in
 a

n 
in

te
rv

al
 o

f w
id

th
 N

=
 2

0

D
em

an
d 

fo
rm

ul
a:

D
=

 1
0-

0.
5p

+
ε

Figure 4.2: Example of a worksheet
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• I observe lower optimal prices than in the first experiment, but they are still better
than in the CEP case.

• The results for T = 500 are better than for T = 1000 if we look at the prices and in
the case of N = 100 is the relative regret for 500 time intervals is below 2.5%. In [1]
we learn that a relative regret below 2.5% is a good performance.

• I see that the relative regret improves with the number N used time intervals.

• The relative regret is above 5% for all T and N = 10. I think those results high
enough to exclude N = 10 for my next experiments.

• The relative regret for T = 100 and N = 100 are the same as in the first example
which should be the case, because N = 100 with T = 100 is the same as without a
N .

Now I have enough basic results to start with the experiments with 2 demand functions
during the time period.
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Chapter 5

Linear demand function with time
dependent parameters

In this chapter, I try to find out what the policy does, if after a certain time the demand
function changes. I measure only the relative regrets to determine differences between the
cases. I set c0 = 5, I keep α = 0.5 and I take T = 1000 in all experiments. I also take
p1 = 2 and p2 = 5 in all cases. I still execute 1000 simulations. I execute my experiments
for 3 different cases:

1. Only a0, the constant, changes. Dt = 10− 1.5pt + εt and Dt = 20− 1.5pt + εt,

2. Only a1, the slope, changes. Dt = 10− 1.5pt + εt and Dt = 10− 0.5pt + εt,

3. The constant and the slope change. Dt = 10− 1.5pt + εt and Dt = 20− 0.5pt + εt.

I am interested in the influence on the relative regret of this change in demand. I am also
curious whether the time at which the change takes place is of great influence. In reality
a manager does not know whether the demand function changes and the time when this
might happen is also unknown. For a manager it is thus valuable to know that his pricing
policy will pick up this change in an acceptable time period and with acceptable regret. I
put the change of demand at T = 50, 250 and 500 and I use N = 20, 50 and 100.

5.1 The constant a0 changes in the formula

Dt = a0 + a1pt + εt

The results for case 1: Only a0, the constant, changes. Dt = 10 − 1.5pt + εt and Dt =
20− 1.5pt + εt are in Table 5.1. I set ph = 15, pl = 1, popt1 = 31

3
, popt2 = 62

3
.

Note that the optimal revenue is different for the different shock times. For example
the optimal revenue for a shock at T = 50 in this case is given by the formula: Ropt =
50 · 31

3
(10 − 1.5 · 31

3
) + 950 · 62

3
(20 − 1.5 · 62

3
). A visualization of how a0 changes is made

in Figure: 5.1. I see that for all the three values of N , the reaction starts immediately
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after the shock, but the larger N , the longer it takes to estimate the new value for a0. The
fluctuation in estimates is lower for higher N .

a0 changes at t=100
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Figure 5.1: A realization of a0

Table 5.1: Relative regret for changed a0 in Dt = 10− 1.5pt + εt and Dt = 20− 1.5pt + εt

Shock at T N = 20 N = 50 N = 100
50 4.23 3.99 5.92
250 5.18 5.23 6.92
500 6.22 6.84 10.25

5.2 The slope a1 changes in the formula

Dt = a0 + a1pt + εt

In the second case: Only a1, the slope, changes. Dt = 10−1.5pt+εt and Dt = 10−0.5pt+εt
I set ph = 15, pl = 1, popt1 = 31

3
, popt2 = 10. The results are in Table 5.2. I also made a

picture of a realization of a1 for the different N -values. The picture can be seen in Figure
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a1 changes at t = 100
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Figure 5.2: Visualization of the development of a1

5.2. The picture shows that with N = 20 the new value is learned faster but the variance
stays bigger. It also shows that with N = 100 it takes the longest, but then it fluctuates
less.

Table 5.2: Relative regret for changed a1 in Dt = 10− 1.5pt + εt and Dt = 10− 0.5pt + εt

Shock at T N = 20 N = 50 N = 100
50 5.99 5.12 4.92
250 6.57 6.95 8.57
500 7.20 7.29 10.89

5.3 The slope and the constant change in the formula

Dt = a0 + a1pt + εt

In the last case: a0 and a1 change. Dt = 10 − 1.5pt + εt and Dt = 20 − 0.5pt + εt. I
set ph = 25, higher than in the other 2 cases, because the second optimal price is higher,
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pl = 1, popt1 = 31
3
, popt2 = 20. These results can be found in Table 5.3.

Now I got in serious trouble with N = 20. The system often got stuck because the estimate
for a1 became zero. In Figure 5.3 you can see what happens. This is an example with the
shock after T = 500, N = 20. Because of the shock, the temporary price gets values far
outside our assumed interval: pt ∈ [pl, ph] which is in our case [1, 25]. If we get outside our
allowed interval, we set the price at the closest boundary. Now we chose 20 times pt = 1
and then our temporary price which is calculated with: ptemp = −a0

2a1
becomes impossible to

calculate because a1 = 0. So my assumption that pt ∈ [pl, ph] is not correct. As Figure 5.3
shows it will not help to widen our interval, because in this case we got 20 times a negative
price which is never allowed. So my advice is not to use N = 20 when there is a serious
supposition for a variable demand.
Note that the results for N = 20 in Table 5.3 are based on only 618 simulations and not

Table 5.3: Relative regret for change of 2 parameters in Dt = 10 − 1.5pt + εt and Dt =
20− 0.5pt + εt

Shock at T N = 20 N = 50 N = 100 N = T
50 4.70 6.24 10.04 -13.66
250 5.89 8.10 12.12 53.35
500 7.94 11.00 18.57 43.40

1000. By accident I also found the following results. I forgot to change the ph in 25 so it
stayed 15 when I simulated the results for N = 50 with both parameters changing. The
system did not block but I found relative regret values of 39.54% with variance values over
20 million.
It is necessary to look at the variance values of these 3 experiments. They show values
between 1 and over 300 million. The mean of the relative regret alone is no more a faithful
indicator for the performance of the policy. See for the details of the estimations the
Appendix, Section B .
I also worked out the case when I use all the data points. They are in the last column of
Table 5.3. Here I can conclude that using all data in this situation is not advisable. It
costs a lot and when we look at the variance in Appendix B,Figure B.1. I observe a value
of the variance of the mean regret of nearly 719 million and I observe that the simulation
broke off at 918 simulations. Findings of my investigation can be summarized as follows:

• I see much larger relative regrets in all the cases.

• I notice that in all the cases it is bad for the relative regret when the shock is at a
later time. So the moment the change in demand takes place has a not negligible
influence on the relative regret.

• The larger N , the larger the relative regret, with one exception: In the case that only
a1 changes and the shock takes place at T = 50, then the relative regret decreases
with increasing N.
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• I find the standard deviations very high in all the three experiments. I will suggest
further investigation of the risks involved with regard to the risks one takes with the
regret.

• Do not use all the values so far, because of the high relative regret and the large
variability.

• Use at least 50 data points and a wide interval for ph − pl to prevent stagnation in
the policy.
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iterati

on price demand a1 a0

temp 

price left bound

right 

bound

in taboo 

interval?

distance 

left bound

distance 

right 

bound

bound 

closest to 

temp 

price regret

521 2,83252 20,86463 1,129939 16,44161 -7,275439 1,791781 2,727845 ONWAAR 9,06722 10,00328 1,791781 358,1932
522 1 18,76114 0,805432 17,2314 -10,697 1,689986 2,625601 ONWAAR 12,38699 13,3226 1,689986 356,4617
523 1 17,83036 0,616435 17,53813 -14,22546 1,6144 2,549568 ONWAAR 15,83986 16,77502 1,6144 338,7769
524 1 19,04042 0,546862 17,82839 -16,30063 1,553158 2,48788 ONWAAR 17,85379 18,78851 1,553158 361,768
525 1 18,91991 0,479378 18,01664 -18,79168 1,494241 2,428517 ONWAAR 20,28592 21,22019 1,494241 359,4783
526 1 19,37248 0,377796 18,28003 -24,19296 1,436295 2,370127 ONWAAR 25,62926 26,56309 1,436295 368,077
527 1 18,46302 0,387723 18,23894 -23,52056 1,37951 2,312898 ONWAAR 24,90007 25,83346 1,37951 350,7973
528 1 19,3144 0,338183 18,38335 -27,1796 1,323362 2,256308 ONWAAR 28,50296 29,43591 1,323362 366,9737
529 1 18,20767 0,482966 18,18502 -18,82641 1,267659 2,200164 ONWAAR 20,09407 21,02658 1,267659 345,9458
530 1 19,7662 0,352602 18,42949 -26,13358 1,212177 2,144242 ONWAAR 27,34575 28,27782 1,212177 375,5577
531 1 18,80092 0,407224 18,38003 -22,56749 1,15629 2,087915 ONWAAR 23,72377 24,6554 1,15629 357,2174
532 1 19,58349 0,334481 18,52207 -27,68782 1,099634 2,030821 ONWAAR 28,78746 29,71864 1,099634 372,0863
533 1 18,84017 0,24953 18,60226 -37,27464 1,043313 1,974063 ONWAAR 38,31795 39,2487 1,043313 357,9632
534 1 19,38325 0,067808 18,81669 -138,7497 0,987595 1,91791 ONWAAR 139,7373 140,6676 0,987595 368,2817
535 1 20,79661 0,102818 18,92085 -92,01163 0,931958 1,861838 ONWAAR 92,94359 93,87347 0,931958 395,1357
536 1 17,91626 0,225034 18,72807 -41,61157 0,874483 1,803928 ONWAAR 42,48605 43,4155 0,874483 340,4089
537 1 19,68985 0,409207 18,59382 -22,71936 0,817251 1,746263 ONWAAR 23,53661 24,46562 0,817251 374,1072
538 1 18,42176 0,592506 18,38261 -15,5126 0,762074 1,690654 ONWAAR 16,27467 17,20325 0,762074 350,0135
539 1 20,75786 0,885423 18,20861 -10,28244 0,7112 1,639349 ONWAAR 10,99364 11,92179 0,7112 394,3993
540 1 18,67436 0,880443 18,19015 -10,33012 0,664938 1,592657 ONWAAR 10,99505 11,92277 0,664938 354,8129
541 1 20,04334 0,947035 18,18214 -9,59951 0,623618 1,550908 ONWAAR 10,22313 11,15042 0,623618 380,8234
542 1 19,36087 0 19,14021 #DEEL/0! 0,536569 1,463431 #DEEL/0! #DEEL/0! #DEEL/0! #DEEL/0! 367,8565
543 #DEEL/0! #DEEL/0! ######## ######## ######## #DEEL/0! #DEEL/0! ######## ######## #DEEL/0! ######## #DEEL/0!
544 ######## ######## ######## ######## ######## #DEEL/0! #DEEL/0! ######## ######## #DEEL/0! ######## ########

Figure 5.3: An example of trouble.
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Chapter 6

Conclusions

A manager needs to find out for which price he can sell his products or services best to
reach his objective: optimal profit. He can learn by trial and error but should watch out
for high costs. He also needs a balance between exploration and exploitation. Controlled
Variance Pricing is a policy that can assist the manager in his difficult search for the op-
timal price. Controlled Variance Pricing is an extension of Certainty Equivalent Pricing
with a shrinking taboo interval. The taboo interval guarantees that you will find the opti-
mal price with a bounded regret. In this paper I explored the boundaries of the policy for
linear demand functions. I found out that the policy works perfect for time independent
parameter settings. The only thing you have to consider in this situation is the value of
a constant c0 which determines the width of the taboo interval. My experiments showed
that moderate values are working fine for CVP like c0 ∈ [1, 5].
In the situation that the parameters might be time dependent there are some more ques-
tions to ask. How much regret is the learning process worth? What level of relative regret
is acceptable? The policy is still worthwhile but do not take all the history in to account,
because that will become costly and risk full. Also do not take too few time periods in
consideration to prevent to stagnate in the policy. I got results for N = 50 and N = 100
that are in some cases acceptable. The relative regret is highest when the change in de-
mand occurs later in time, but in practice you do not know whether there will be a change
or when this will take place.
To further explore the risks of the CVP policy in the situation with 2 time dependent pa-
rameters, I advice to experiment with larger time intervals. I would also explore with the
width of the taboo interval by experimenting with the value of c0. I found some promising
results in the small exploration I did of c0, so I advise to look further in the possibilities.

27



28



Bibliography

[1] A. den Boer, Simultaneously Learning and Optimizing using Controlled Variance Pric-
ing 2010

29



30



Appendix A

c0 statistics

Statistics p1000c1 regret1000c1 p1000 c3 regret1000c3 p1000c5 regret1000c5 p500c1 regret500c1

Trials 500 500 500 500 500 500 500 500
Mean 3,33 10,59 3,32 39,76 3,33 38,48 3,33 57,83
Median 3,34 15,50 3,17 40,87 3,56 35,61 3,34 74,50
Mode --- --- --- --- --- --- --- ---
Standard Deviation 0,21 822,11 0,31 470,59 0,40 379,92 0,25 447,31
Variance 0,04 675.861,06 0,10 221.458,36 0,16 144.336,71 0,06 200.082,93
Skewness -0,0152 0,1006 0,0490 0,0363 -0,0083 -0,1432 0,0192 0,0862
Kurtosis 2,30 2,99 1,26 2,65 1,10 3,30 2,16 2,96
Coeff. of Variability 0,0629 77,62 0,0946 11,84 0,1194 9,87 0,0743 7,73
Minimum 2,77 -2.326,78 2,82 -1.179,30 2,72 -1.481,19 2,76 -1.041,08
Maximum 3,90 2.637,72 3,85 1.315,99 3,90 1.157,42 3,97 1.583,41
Range Width 1,13 4.964,50 1,03 2.495,29 1,18 2.638,62 1,22 2.624,49
Mean Std. Error 0,01 36,77 0,01 21,05 0,02 16,99 0,01 20,00

Statistics p500c3 regret500c3 p500c5 regret500c5 p1000c20 regret1000c20 p500c20 regret500c20

Trials 500 500 500 500 1000 1000 1000 1000
Mean 3,33 23,68 3,32 6,67 3,33 6,57 3,31 1,91
Median 3,32 28,31 3,06 -14,08 4,04 9,51 2,47 2,94
Mode --- --- --- --- --- --- --- ---
Standard Deviation 0,38 273,58 0,40 372,58 0,79 204,57 0,95 126,94
Variance 0,14 74.848,38 0,16 138.816,67 0,63 41.848,45 0,90 16.113,01
Skewness 0,0239 0,0478 0,0381 0,2090 -0,0040 0,2104 0,0517 -0,0495
Kurtosis 1,25 2,91 1,09 3,02 1,01 4,68 1,01 2,88
Coeff. of Variability 0,1127 11,55 0,1190 55,87 0,2383 31,14 0,2862 66,30
Minimum 2,69 -702,03 2,76 -1.083,92 2,45 -570,54 2,27 -513,33
Maximum 4,01 899,72 3,88 1.226,24 4,23 1.403,27 4,40 411,52
Range Width 1,31 1.601,75 1,11 2.310,16 1,78 1.973,81 2,13 924,85
Mean Std. Error 0,02 12,24 0,02 16,66 0,03 6,47 0,03 4,01

Figure A.1: Statistics for different c0
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Appendix B

statistics

Statistics

regret shock250 

N20 a0

regret shock50 

N20 a0

regret shock 

500 n20 a0

regret 

shock250 N20 

a0ena1

regret shock50 

n20 a0ena1

Trials 1000 1000 1000 668 665
Mean 2.804,46 2.715,67 2.592,42 9.084,55 8.976,96
Median 2.789,30 2.707,24 2.674,42 9.391,70 9.027,24
Mode --- --- --- --- ---
Standard Deviation 1.230,78 1.314,58 1.107,42 4.363,13 5.121,58
Variance 1.514.823,79 1.728.123,01 1.226.386,35 19.036.885,38 26.230.608,81
Skewness -0,0205 -0,0334 -0,2079 -0,0285 -0,0241
Kurtosis 2,92 2,78 2,63 2,85 2,46
Coeff. of Variability 0,4389 0,4841 0,4272 0,4803 0,5705
Minimum -898,74 -960,79 -538,48 -2.800,13 -5.041,62
Maximum 6.864,60 7.050,14 5.371,60 22.131,56 21.802,65
Range Width 7.763,34 8.010,93 5.910,09 24.931,69 26.844,28
Mean Std. Error 38,92 41,57 35,02 168,81 198,61

opt revenue 54166,67042 64166,95242 41666,67417 154166,6704 190833,3341
rel regret 5,17746374 4,232188788 6,221805422 5,8926841 4,7040828

Statistics

regret N=T 

shock250a1

regret N=T 

shock50a1

regret N=T 

shock 500a1

regret 

shock250 N20 

a1

regret shock50 

N20 a1

Trials 918 918 918 1000 1000
Mean 22.210,61 -6.600,48 14.467,73 2.735,93 2.892,96
Median 46.728,19 -8.168,86 419,94 2.677,02 2.834,82
Mode --- --- --- --- ---
Standard Deviation 26.813,27 3.455,66 16.229,29 1.323,13 1.421,50
Variance 718.951.623,25 11.941.586,20 263.389.952,34 1.750.665,36 2.020.663,23
Skewness -0,0645 1,06 0,1173 0,1790 0,1462
Kurtosis 1,01 3,59 1,02 3,03 3,03
Coeff. of Variability 1,21 -0,5235 1,12 0,4836 0,4914
Minimum -7.441,16 -11.173,42 -3.106,36 -1.415,85 -908,55
Maximum 49.745,62 9.720,93 33.834,33 7.575,48 8.410,54
Range Width 57.186,77 20.894,35 36.940,68 8.991,33 9.319,09
Mean Std. Error 884,97 114,05 535,65 41,84 44,95
Cell Errors 0 0 0 1 0

opt revenue 41666,66667 48333,33333 33333,33333 41666,66667 48333,33333
rel regret 53,30546502 -13,65617443 43,40318665 6,56623031 5,98542694

Figure B.1: Statistics
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Statistics

regret shock 

500 n20 

a0ena1

regret 

shock250 N50 

a0ena1

regret 

shock50 n50 

a0ena1

regret shock 

500 n50 

a0ena1

Trials 667 1000 1000 1000
Mean 8.601,09 12.477,58 11.919,95 11.916,04
Median 8.969,46 14.451,86 11.925,14 15.080,49
Mode --- --- --- ---
Standard Deviation 3.876,91 9.159,49 9.385,02 8.740,18
Variance 15.030.404,18 83.896.347,08 88.078.563,41 76.390.787,52
Skewness -0,3145 -0,1110 0,0805 -0,1957
Kurtosis 2,91 1,78 2,06 1,59
Coeff. of Variability 0,4507 0,7341 0,7873 0,7335
Minimum -2.621,76 -8.200,34 -9.769,77 -5.955,01
Maximum 20.759,76 34.518,72 35.723,63 31.141,04
Range Width 23.381,51 42.719,05 45.493,40 37.096,05
Mean Std. Error 150,11 289,65 296,78 276,39

opt revenue 108333,3408 154166,6704 190833,3341 108333,3408
rel regret 7,9394646 8,09356545 6,24626200 10,99942440

Statistics

regret shock 

500 n20 a1

regret 

shock250 N50 

a1

regret 

shock50 N50 

a1

regret 

shock500 N50 

a1

Trials 1000 1000 1000 1000
Mean 2.398,46 2.897,52 2.472,58 2.429,67
Median 2.408,71 2.972,71 2.374,78 2.434,31
Mode --- --- --- ---
Standard Deviation 1.120,41 2.329,73 1.914,95 2.111,97
Variance 1.255.324,80 5.427.660,54 3.667.026,38 4.460.425,21
Skewness 0,0219 ,00041 0,2193 0,0470
Kurtosis 2,88 2,29 2,94 1,96
Coeff. of Variability 0,4671 0,8040 0,7745 0,8692
Minimum -814,38 -2.624,31 -2.922,00 -2.683,76
Maximum 7.010,49 9.225,91 9.152,18 8.013,08
Range Width 7.824,87 11.850,21 12.074,18 10.696,84
Mean Std. Error 35,43 73,67 60,56 66,79

opt revenue 33333,33333 41666,66667 48333,33333 33333,33333
rel regret 7,19538675 6,95405257 5,11569130 7,28899514

Figure B.2: statistics (continued)
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Statistics

regret 

shock250 

N100a0ena1

regret shock50 

N100a0ena1

regret shock 

500 

N100a1ena0

regret 

shock250 

N100a0

regret 

shock50 

N100a0

Trials 1000 1000 1000 1000 1000
Mean 18.691,86 19.153,51 20.120,38 3.746,32 3.800,68
Median 12.289,58 26.575,49 31.262,92 2.057,68 5.030,39
Mode --- --- --- --- ---
Standard Deviation 16.980,07 17.613,60 16.699,49 4.389,27 4.464,50
Variance 288.322.701,18 310.238.831,26 278.872.840,92 19.265.662,59 19.931.769,96
Skewness 0,0298 -0,0335 -0,1996 0,0536 -0,0393
Kurtosis 1,25 1,32 1,16 1,31 1,37
Coeff. of Variability 0,9084 0,9196 0,8300 1,17 1,17
Minimum -8.802,50 -12.224,31 -6.731,02 -4.181,47 -5.110,21
Maximum 52.785,45 53.545,30 42.578,23 12.362,97 11.512,68
Range Width 61.587,94 65.769,61 49.309,26 16.544,44 16.622,89
Mean Std. Error 536,96 556,99 528,08 138,80 141,18

shock250 a0 en 
a1N100

shock50 a0ena1 
N100

shock 500 
a0ena1N100

shock250 
N100 a0

shock50N100 
a0

opt revenue 154166,6704 190833,3341 108333,3408 54166,67042 64166,95242
rel regret 12,12444988 10,03677134 18,57266113 6,916286756 5,923112783

Statistics

regret shock50 

n50 a0

regret shock 

500 n50 a0

Trials 1000 1000
Mean 2.558,54 2.849,69
Median 2.496,47 3.572,28
Mode --- ---
Standard Deviation 2.439,41 2.298,10
Variance 5.950.743,21 5.281.260,60
Skewness 0,0414 -0,2976
Kurtosis 2,06 1,80
Coeff. of Variability 0,9534 0,8064
Minimum -3.182,02 -2.410,66
Maximum 9.010,23 8.117,90
Range Width 12.192,25 10.528,55
Mean Std. Error 77,14 72,67

shock 50 N50 
a0

shock 500 N50 
a0

opt revenue 64166,66667 41666,66667
rel regret 3,987328899 6,839254251

Figure B.3: statistics (continued)
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Statistics

regret shock 

500 N100a0

regret 

shock250 

N100 a1

regret 

shock50 

N100 a1

regret shock 

500 N100 a1

shock250 

N50 a0

Trials 1000 1000 1000 1000 1000
Mean 4.272,72 3.569,35 2.377,08 3.629,57 2.834,51
Median 6.933,67 2.978,27 2.088,57 5.247,39 3.195,76
Mode --- --- --- --- ---
Standard Deviation 4.406,44 3.703,79 2.532,01 3.663,89 2.410,25
Variance 19.416.673,43 13.718.045,61 6.411.051,84 13.424.101,48 5.809.315,58
Skewness -0,1695 0,0928 0,3668 -0,0681 -0,0910
Kurtosis 1,21 1,70 2,90 1,33 1,91
Coeff. of Variability 1,03 1,04 1,07 1,01 0,8503
Minimum -2.950,15 -4.538,31 -4.473,48 -2.842,22 -2.679,50
Maximum 11.609,16 12.791,94 10.705,11 10.253,88 8.819,91
Range Width 14.559,31 17.330,25 15.178,59 13.096,10 11.499,41
Mean Std. Error 139,34 117,12 80,07 115,86 76,22

shock500 
N100 a0

shock 250 
n100 a1

shock50 
N100 a1

shock 500 
N100 a1

shock250 n50 
a0

opt revenue 41666,67417 41666,67042 48333,33408 33333,34083 54166,66667
rel regret 10,25453583 8,566435662 4,918105161 10,88869356 5,232949002

Figure B.4: statistics (final)
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